

ALEKSANDAR SVETOSLAVOV TONKIN

WEB INTERFACE FOR NATURAL LANGUAGE PROCESSING EN-

GINES

Master of Science thesis

Examiner: Asst. prof. Petri Ihantola
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineer-
ing May 4th 2016

i

ABSTRACT

ALEKSANDAR SVETOSLAVOV TONKIN: Web Interface for natural language
processing engines
Tampere University of technology
Master of Science Thesis, 45 pages
May 2016
Master’s Degree Programme in Information Technology
Major: Software Engineering
Examiner: Asst. prof. Petri Ihantola

Keywords: natural language processing tasks, natural language processing en-
gines, part-of speech tagging, interface, web application, web development

This thesis presents a graphical user interface that simplifies the use of natural language

processing engines. Until now the use of the implemented part-of-speech task and other

natural language processing tasks were possible only through command line interface.

This restriction of the current interface was the reason, because of which the users were

required to have both programming and scripting knowledge and experience. In addition

to that, the preparation of the input data, used to feed the engine, and output data from the

tasks had to be handled manually.

The problem was solved by developing a web-based application and integrating

OpenNLP engine and its part-of-speech tagging task. Hence, the chosen solution provides

portability and accessibility from various locations. The user interface simplifies the

working process for users with little or no technical knowledge and experience. Moreo-

ver, the application facilitates and guides the users through the task’s process flow. It also

allows them to automatically preprocess their data to a format required as an input for the

engine. After that, the users can simply follow the stages for the rest of the task and use

the engine. Moreover, the application saves the data at the end of every stage of the task,

which does not enroll the user to execute the whole task at once. Also the data used as an

input and output from every stage of the task is stored automatically on the server, which

provides reusability. And last, the application has modular structure, which provides the

ability to extend the amount of tasks and engines according to the needs of the users.

The application provides simple interface, automated process and file handling. However

the speed and accessibility of the application depends on the connection and the load on

the server. The current software can be expanded with additional engines and tasks, but

only if they support the current file and system structure.

In the future some parts of the user interface and the back-end structure could be im-

proved, as well as some more complexed tasks and different engines could be imple-

mented.

ii

PREFACE

I would like to thank assistant professor Petri Ihantola for his great help and mentoring

for the finalization of this thesis. Also I would like to pay my gratitude to all the colleagues

from Lionbridge Oy for the opportunity to do both the project and this thesis, and my

family for their moral support.

Tampere, 25.05.2016

Aleksandar Svetoslavov Tonkin

iii

CONTENTS

1. INTRODUCTION .. 1

2. PROBLEM AND CRITERIA ... 2

2.1 User Interfaces.. 2

2.2 Natural language processing engine’s problem ... 3

2.3 Criteria definition ... 4

2.4 Scope .. 5

3. NATURAL LANGUAGE PROCESSING AND OPENNLP 6

3.1 Natural language processing .. 6

3.2 OpenNLP .. 8

4. WEB APPLICATIONS .. 15

4.1 User interface design .. 18

4.2 Thick and Thin client ... 21

5. BUILDING UI FOR OPENNLP PART-OF SPEECH TAGGER 24

5.1 Requirements analysis .. 24

5.2 Implementation technologies ... 26

5.3 Structure of the GUI ... 27

5.4 Flexibility of the application .. 29

5.5 Users’ accessibility and files management... 31

5.6 Preprocessing of input files .. 33

5.7 Training part-of-speech model ... 35

5.8 Testing a model .. 37

5.9 Using a model... 38

6. EVALUATION ... 39

7. SUMMARY .. 44

iv

LIST OF FIGURES

Figure 1. CLI versus GUI example ... 3

Figure 2. Structure of the application ... 5

Figure 3. Repeatedly executed stages in tasks ... 7

Figure 4. Correlation between the tasks in OpenNLP .. 9

Figure 5. Web application programming structure overview ... 16

Figure 6. Web application layers .. 17

Figure 7. Static versus Dynamic website .. 17

Figure 8. Parallel design overview ... 19

Figure 9. Iterative design overview .. 20

Figure 10. Thick client vs. thin client responsibilities .. 22

Figure 11. Process flow overview ... 25

Figure 12. Cooperation between the elements in the environment 26

Figure 13. Structure of the application ... 28

Figure 14. Process flow stages with their inputs and outputs 29

Figure 15. GUI solution for the flexibility problem (Home content page) 30

Figure 16. Example of the storage folder structure based on reference [4] 32

Figure 17. Preprocessing stage overview ... 33

Figure 18. Training stage overview .. 35

Figure 19. Training stage as initial stage ... 36

Figure 20. Testing stage overview .. 37

Figure 21. Use stage overview .. 38

1

1. INTRODUCTION

Natural language processing is an area in computer science that is closely related to dis-

ciplines such as machine learning, artificial intelligence, linguistics, statistics and infor-

mation theory. The main idea behind natural language processing is to make computers

generate, understand and analyse written and spoken languages, as well as or maybe even

better that any human can.

There are many different methods used for natural language processing, which can be

accessed through so called natural language processing engines or toolkits. A toolkit is a

set of tools, such as software libraries, documentations or scripts, with defined and spe-

cific purpose. They are often used to execute the tasks of the users’ code. Therefore, if

one needs to use many of these engines, then this person is required to have at least some

programming or scripting skills. This requirement creates a huge gap when it comes to

the usage of these engines by nontechnical users, such as linguists. And considering that

this might appear a challenging task for such kind of users to interact with command line

user interface or dealing with scripts, appears the need for a software with user interface

that will allow processing natural languages.

To solve the aforementioned issues, an application was developed, that aimed to meet the

requirements of the nontechnical users. This software gives the users the freedom to use

the engines and access their tasks without the need of any programming or scripting skills.

The application provides a flexible process flow that can be paused and continued at any

step, as well as the natural language data, used as an input, is processed and stored auto-

matically.

The work in this thesis is divided in seven chapter. Chapter 2 is introductory chapter to

the user interface types that take place in the current project. Moreover, it defines the

problem and the criteria and sets the scope of this thesis. Chapter 3 provides background

information about natural language processing, OpenNLP engine and its supported tasks,

which take part in the current solution. Chapter 4 explains the background on web appli-

cations, gives an overview on user interface design and introduces client-server architec-

ture. Chapter 5 explains the structure of the application, its user interface, how the process

is divided into stages and how they work. In chapter 6 the solution of the problem is being

evaluated and it is observed how the criteria were fulfilled. The last chapter provides a

summary of the current project and how some issues, that are currently available, can be

fixed in the future.

2

2. PROBLEM AND CRITERIA

This chapter will introduce the user interface types that take part in this thesis. Moreover,

it will define the problem when it comes to using natural language processing engines

and accessing their tasks as well as the solution criteria will be set. In the end of this

chapter, the labor division, for the project, will be explained and the scope of this thesis

will be set.

2.1 User Interfaces

User interface (UI) in general describes the space where humans are interacting with ma-

chines. According to the area of use there are different types of UIs. In software engineer-

ing user interface can be described as the junction between a user and a computer pro-

gram. User interface is a part from any software and it is constructed to provide an insight

view of the software to the users. In the most abstract understanding, a good user interface

is attractive, simple to use, responsive in terms of speed, easily understandable and con-

sistent among all its screens [20].

In computer science, user interfaces can be divided into two groups: command line inter-

face (CLI) and graphical user interface (GUI). CLI is maybe the oldest interface method

and it was the primary way of interacting with computers until the invention of the video

display terminal. This is a character-based method that requires the use of keyboard [20].

The users have to type their commands and as response the computer prints out the result

back on the screen. In order to properly use CLI, users have to learn and remember a huge

amount of commands. The most famous examples of CLIs are the command prompt in

Windows and the terminal in Linux operating systems. In contrast to CLI, GUI allows the

users to graphically interact with the system by using windows, icons and menus, which

can be manipulated by various input device, for instance mouse or keyboard. GUI uses

more resources than CLI, due to that fact it has to load more visual components and de-

vices. GUI provides the users with some advantages, such as simplicity in the process of

learning and using, visualization of the executed actions and multitasking [5]. On the

other hand CLI still remains preferred user interface for the execution of some tasks or

by experienced users when interacting with a software, because in many cases it provides

more concise and powerful means of control. Figure 1 provides a visual example about

one difference between CLI and GUI. On the left side of the figure is an example of two

copy commands done by using CLI and the right side shows drag and drop copy method

in GUI environment. As you can see CLI requires just one command line to copy a file,

while GUI needs both source and destination windows open in order to execute the same

action. However, non-technical users prefer the GUI method as more convenient. Users

can visually navigate to both locations and produce the same operation without the need

3

to remember any commands or location addresses, which leads to smaller possibility of

making errors when typing the command in CLI or copying the file in a wrong location.

Figure 1. CLI versus GUI example

Mentioning UI it is also important to introduce the application programming interface

(API). While UI refers to an interface used by the users to interact with application, API

is an interface that provides a way one application to interact with or control another. API

is a set of libraries and tools, used when building a GUI application. In some cases one

can think of them as they are building blocks that a developers has to combine with theirs

in order that application to communicate with others [21]. In others, API refers to a group

of requirements on how applications can communicate between. But in the end, all that

API does is to “reveal” some of the program’s internal functionality to the outside world

in a limited manner, which allows data sharing and using the program’s functions. Ad-

vantage of using API’s is that one does not need to know details on how the external

application have been created, but instead only use its functionality.

2.2 Natural language processing engine’s problem

This thesis has the task to provide a solution for several problems concerning the access

and usage of natural language processing engines. The one problem involves the users

that has to perform their tasks by using these engines. The targeted group of users can be

categorized as commons users. They do not possess any specific technical skill, such as

administration, programming or scripting. The problem that they face, when using the

natural language processing language engines, is that they need to spend time on learning

how to program or create scripts beforehand in order to use the tasks. This is caused, due

to the reason that the main way of interacting with these toolkits is through command line

interface. Even though, these engines also provide API functionality, there are no availa-

ble GUI applications at this point. Another problem is the portability and accessibility. In

order to use these engines, the users are constrained to have them deployed on their local

working stations. In this case the access to these toolkits is limited and they cannot be

reached from a remote location.

4

2.3 Criteria definition

The project in this thesis aims to facilitate and guide the workflow when using and ac-

cessing natural language processing engines and their tasks through an application. It is

to simplify the working process so as to require no prerequisite technical knowledge, say,

skills in programming, installation, or command-line interaction. Its interface should pro-

vide expandability to any number of engines and tasks according the needs of the users.

The application should be independent of operating systems and easily supported and

accessed by the users, without the need of individual installations on their working com-

puters, from various locations. The interface should provide flexibility in the workflow

as needed by the users.

A good way to evaluate the application design is by using heuristic evaluation. This is a

method that identifies usability problems in the process of user interface design by using

usability principles called heuristics. Heuristic evaluation method is widely used nowa-

days, especially for projects that experience lack of resources such as time or budget for

additional interface testing. This method has been developed by Jakob Nielsen, who has

come up with a set of heuristics called “10 Usability Heuristics for User Interface Design”

[36]. Let us now take a look at these heuristics. The first one is “Visibility of system status”

and it refers to system visibility. It should inform the users what is happening with the

use of some kind of feedback. Match between system and the real world states that the

system should follow the real-world convention and information should be displayed in

natural and logical way. User control and freedom explains that a system should always

provide clear means of leaving, going backwards or forwards. Consistency and standards

focus on the design where the same elements should be visualized in the same way. Error

prevention heuristic refers to error prevention and states that it is always good to have an

error message to prevent the error, than actually experiencing it and then notifying the

user. Recognition rather than recall concerns the user’s memory load. When designing,

it is better to make more actions and options visible, rather than asking users to remember

their locations. Flexibility and efficiency of use heuristic describes the need of interaction

between unexperienced and experience users. Aesthetic and minimalist design concerns

the interface in a sense that it need to be designed as simple as possible. Help users rec-

ognize, diagnose, and recover from errors principle focuses on the error messages that

should provide a detail explanation of the errors and a possible solution. The last heuristic

(“Help and documentation”) focuses on the documentation of the interface that should be

always present even if it is not being used.[36]

A web application, with clients and servers working over the Internet, will obviously pro-

vide for solutions for many of the above considerations. Lionbridge [8], the company to

commission the application, required the use of Microsoft ASP.NET framework [9] and

C# language [10] for the server-side coding. This is due to the application was to be de-

ployed on a server running a Windows operating system [11]. Moreover, at least the

5

OpenNLP natural language processing engine [1] was to be accessible through the appli-

cation, as well as its part-of-speech tagging task has to be implemented. Both OpenNLP

and its task will be explained in the following chapter.

2.4 Scope

The practical work performed for this thesis was done in the cooperation of Grigorij Lju-

bin Saveski [4]. The project labor itself was divided into three parts: client-side, server-

side and integration of OpenNLP engine [1] [2]. The client-side refers to the graphical

user interface that interacts with the user, in our case this is the web browser. The server-

side refers to all the operations performed on a remote server. Figure 2 presents an abstract

structure of the application for the current problem. This thesis focuses on the GUI design

that affect the client side (browser), what choices have been made during the design pro-

cess, and also some server-side functionality will be presented, because the workload

there was shared. Moreover, this thesis will provide some brief theoretical background

on natural language processing, OpenNLP engine and its supported tasks, needed to un-

derstand the user interface. For more detail information about natural language processing

refer to Grigorij Ljubin Saveski [4] work, which scope focuses on these matters.

Figure 2. Structure of the application

6

3. NATURAL LANGUAGE PROCESSING AND

OPENNLP

This chapter will provide background on what is natural language processing, its tasks

and some natural language processing approaches. Moreover, the engine used in the pro-

ject will be introduced as well as the tasks it supports and some example of how they can

be accessed.

3.1 Natural language processing

Natural languages refer to one type of communication between humans. The problem,

that machines are facing when it comes to understanding speech and text, is that people

do not always speak or write plainly. In many languages there are words that have more

than one meaning and according to the context the overall meaning is being changed too.

These levels of ambiguity in languages cause the raising of many problems in natural

language processing.

Humans use different linguistic points of view to analyse the data when it comes to lan-

guages. According to Liddy [18], by using different “levels of language” approaches

(phonological, morphological, lexical, semantical, or syntactical) numerous meanings can

be observed, for instance what is written, spoken or what the context of the data is. More-

over, for the successful creation of a human-like language system (so far this has not been

accomplished), one must create such a system that uses multiple levels simultaneously,

like humans usually do [18]. Liddy [18] explains the difference between natural language

processing and natural language understanding. A machine is able to understand, when it

is capable to achieve several different goals. The first of them is that the system should

be able to paraphrase an input. Secondly, it should be able to translate the input in various

languages without any problems. The third goal requires for the machine to be able to

answer questions based on the text. And finally it should be able to summarise it. How-

ever, while natural language processing has achieved some progress in the first three

goals, the forth one is still being an obstacle towards natural language understanding [18],

which in fact remains its final goal.

In natural language processing, the parts used for solving the issues are known as natural

language processing tasks. The main role of these tasks is to handle the given data text or

corpora (large textual data collection) in various ways, like extracting a meaning or serv-

ing as subtasks for solving larger ones [4] [6]. More information about some tasks will be

provided later in the next Section 3.2. The use of these tasks is possible through the natural

language processing engines, such as OpenNLP [1], Natural Language Toolkit (NLTK)

[12] or Stanford NLP [13]. Some of the widely used tasks supported from such engines

7

are part-of-speech tagging, tokenizing, name entity extraction, sentence detection, parsing

and chunking. Many of these tasks are based on different paradigms, such as machine

learning or pattern recognition [6] [15]. In order for a natural language processing task to

be executed, a set of steps, called stages, has to be followed. Often it can be observed that

some of these stages are being recurrently executed, for instance the training stage that is

regularly followed by an evaluation stage (Figure 3). The following paragraphs will pro-

vide a brief introduction to these and some other stages. According to the process or the

task requirements, additional stages can be added in the flow.

Figure 3. Repeatedly executed stages in tasks

Training a model for a task provides a task language model, which purpose is to make

predictions based on the tasks. After this stage is completed, the accuracy of the model

depends on the information used during this stage. There exists different forms of train-

ing. Two of the most famous ones are supervised and unsupervised [15] [16], where the

former one is caused by using annotated data and latter one by using unannotated data.

Nevertheless, there are some tasks or engines with supervised training that requires some

manipulations over the input data before the actual training stage.

When such tasks or engines are in scope, this means that they accept only a particular

data template as an input. Therefore, for the process to continue without any errors, a data

set with this specific format has to be provided. However, the available training data may

not be formatted properly, may contain errors or unnecessary extra information. In this

case a preprocessing stage has to be executed before the training. As a result the training

stage will receive formatted data stripped from any additional items, which will ensure

better prevention of errors [4].

 The evaluation stages is used to test the model and to ensure that it meets the require-

ments of the task. There exists different techniques that can be used in this stage to obtain

the precision of the model, such as cross validation [15]. The idea behind this type of

validation is that it depends on the input. The data is being divided into groups, where all

the groups are being used to train a model, except for one, that is being used for testing.

After each group is trained, it is being evaluated. The precision is calculated as average

of the testing scores of all groups. The method used in the current thesis divides the data

into two sets, namely training and testing data. The size of these sets is usually set before-

hand. However, in this particular case it may vary due to the freedom of the users to

8

choose the proportions they desire during runtime. During the testing stage, the model is

being evaluated by calculating the ratio between the amount of correct predictions and

the total amount of predictions. This stage is followed either by continuing with another

stage or going back to the training stage if the model’s precision level has not been

reached.

There exists roughly four approaches to handle natural language processing and their

tasks. They are symbolic, statistical (probabilistic), connectionist and hybrid [18]. As

mention before, this thesis focuses on part-of-speech tagging task and therefore we will

briefly pay attention on the statistical method, since it is the one that is being used. This

approach do not require any linguistic knowledge, because it uses statistical methods to

set the rules when training a model for particular task [4]. Many probabilistic methods

are used in natural language processing, but only one will be considered, namely maxi-

mum entropy. The principle of this method states that if there is more than one choice and

it is not clear which one is more possible to happen, then both should be considered with

the same probability (uniform distribution) [4].

To make it easily to understand let us apply the maximum entropy principle to a natural

language processing task. Let this task be part-of-speech tagging task. The first thing re-

quired is a large set of data or a corpus that will be used for training of the model for the

current task. Let us now say that there are few words that in the current data are met more

than twice. Moreover, let us set these words to have more than one meaning and to be

tagged as a noun, a verb or an adjective. After training the model with this rule, each of

these words should have the same probability, when it is encountered. However, if in

another piece of the input these words has been set preferably as nouns and verbs, then

this second rule on the other hand will increase the probability for these two tags. There-

fore, once the training is over there are two rules for these words. Since the model was

created by using maximum entropy, every time when one of these words is encountered,

into account will be taken the probabilities from these two rules and they will be tagged

in a way that satisfies both rules and also as uniform as possible. However, in natural

language processing this kind of probabilistic rules are not all that is taken into account

when dealing with maximum entropy models. Another rules can be tied to the context,

for instance previously assigned tags or the order of the words [4].

3.2 OpenNLP

Apache OpenNLP is a natural language processing toolkit based on machine learning that

was developed to serve as a sophisticated framework for the purpose of natural language

processing tasks and in the process of building more complex natural language processing

systems [1]. It provides its users with the ability to create models for multiple natural

language processing tasks [1]. Moreover, OpenNLP includes the use of maximum en-

tropy framework for some of its tasks [1] [2] [7].

9

OpenNLP engine development process was initiated in 2000 by Jason Baldridge and

Gann Bierner. In one of the web sites that provides information about the engine [3] it is

stated: “OpenNLP, broadly speaking, was meant to be a high-level organizational unit for

various open source software packages for natural language processing; more practically,

it provided a high-level package name for various Java packages of the form opennlp.*”.

The first implantation of OpenNLP has started as Grok parsing toolkit [3] for natural

language processing and offered OpenNLP Java API (application programming interface)

[1] [2].

OpenNLP engine supports several different natural language processing tasks: sentence

detection, tokenization, name finder, document categorizer, part-of-speech tagging,

chunking, parsing and coreference resolution, which will be briefly explained in the cur-

rent chapter as well as some examples will be given about how the training data should

look like and what is the outcome from executing them. Some of these tasks are required

to be executed beforehand in order more complex tasks to take turn. The relation between

OpenNLP tasks is shown in Figure 1.

Figure 4. Correlation between the tasks in OpenNLP

 All of these modules provide both application programming interface and command line

interface [2], which can be used for training and, if necessary, for evaluating the tasks.

By using these tasks one could build more sophisticated system. Moreover, OpenNLP

provides a great amount of external packages, some of which are specific to certain lan-

guage such as English, Spanish or German and others are used to store language rules.

However, these packages are only available for a small amount of languages. There are

also packages that can be used to convert a large amount of corpora to a format accepted

by OpenNLP.

Sentence detector is the first task in OpenNLP, which provides the users with the func-

tionality to identify sentences in a text by detecting that a particular punctuation character

marks their end, as well as it can modify the whole text by separating each sentence on a

10

new line. Maximum entropy model is being used to evaluate if a particular punctuation

character signify the end of the sentence. Therefore, the sentence detector task is based

on rules and not on the actual content of the sentence [1]. In order for the Sentence detec-

tor to work properly a model for this task has to be trained. The data for the model needs

to be converted to the “OpenNLP Sentence Detector training format” [1]. This format is

simply one sentence per line and the end of the file is marked with an empty line. After

that the model can be used on some random data to detect the sentences. The following

example represents how this tasks actually works. The following text is given to the model

as input:

“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group. Rudolph Agnew,

55 years old and former chairman of Consolidated Gold Fields PLC, was named a direc-

tor of this British industrial conglomerate. “

After detecting the sentences, the produced output would look like:

“Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29.

Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group.

Rudolph Agnew, 55 years old and former chairman of Consolidated Gold Fields PLC,

was named a director of this British industrial conglomerate. “

The output after executing the task appears in a form where each sentence is

printed on a new line [1].

Tokenizer splits the given input into tokens. The tokens usually include words, punctua-

tion characters and numbers. This is a two-stage process, where first the text has to be

divided using sentence detector, and then each sentence is being tokenized individually.

There are three versions for OpenNLP tokenizer: whitespace, simple and learnable to-

kenizer. The former tokenizer identify non whitespace sequences as tokens. The latter

one accepts as tokens the sequences of the same characters and the last one detects token

boundaries based on probability model [1]. The tokenizer task also provide a detokenizing

feature, which purpose is to reconstruct a string from tokenized sequence [1].

The training data for the tokenizer model, similar to sentence detector task, has its own

format. This format is one sentence per line and the tokens are separated either by

whitespace or by the tag <SPLIT> or by both.

Let us now train a model with the following example data:

Pierre Vinken<SPLIT>, 61 years old<SPLIT>, will join the board as a nonexecutive

director Nov. 29<SPLIT>.

Mr. Vinken is chairman of Elsevier N.V.<SPLIT>, the Dutch publishing group<SPLIT>.

11

 Now let us use the model over the same example sentences, but in this case they are

stripped from the tags. The given output uses the whitespace tokenizer implementation:

“Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 .

Mr. Vinken is chairman of Elsevier N.V. , the Dutch publishing group .”

After the execution of this task, the result is presented in such a form where every token

(including the punctuation characters) are followed by whitespace [1].

Name finder is a task, which purpose is to identify names and numbers in the provided

textual data. In order to perform the task, a model, trained over some corpora, is needed

so that it can distinguish the name for the current language. Moreover, to train a name

finder model, the sentence detector and tokenizer tasks has to be executed beforehand [1].

The following example visualize how name finder is used. Let us have these two sen-

tences as an input text:

“Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 .

Mr . Vinken is chairman of Elsevier N.V. , the Dutch publishing group .”

Then the output from the name finder task would be:

“<START:person> Pierre Vinken <END> , 61 years old , will join the board as a non-

executive director Nov. 29 . Mr . <START:person> Vinken <END> is chairman of Else-

vier N.V. , the Dutch publishing group .” [1].

As you can see only the names of people are tagged. This result is caused by the content

of the data set used during the training stage.

Document categorizer task is used to classify input data into categories, which needs to

be predefined by the users. The task is based on maximum entropy framework and a

trained model, over some data, is required for the task to be performed. The input has to

be pre-classified into groups, so later to be used over any input given to the model [1]. To

make this sound more clear let’s explain it with an example. The first thing that is required

to train a model. The data format that OpenNLP accept is one document per line. This

document consist the category and the text separated by whitespace. The following ex-

ample consists of data and two categories GMIncrease and GMDecrease that are prede-

fined by the users.

GMDecrease Major acquisitions that have a lower gross margin than the existing net-

work also had a negative impact on the overall gross margin, but it should improve fol-

lowing the implementation of its integration strategies .

12

GMIncrease The upward movement of gross margin resulted from amounts pursuant to

adjustments to obligations towards dealers .

After the model is created, let us use it on the same data but without the categories. When

the first sentence is read it will be categorized as GMDecreased and the second one as

GMIncreased.The classifications for the training data is user-specific, therefore there are

no pre-build models that exist. The training data has to be created according the require-

ments for the task and the documents that are targeted.

Part-of-speech tagger tasks iterates through the input text token-by-token and predicts a

tag for each of them based on maximum entropy part-of-speech tagging [4]. It is important

to mention that the tagger uses probability model, where the prediction of a tag over an-

other one depends by the token and the context. Tag dictionaries are optional to use and

need to be provided by the users. These dictionaries are files that contain all available

tags that are specific for every individual token. By using them the algorithm speed might

get increased and also the number of possible tags for a token might get reduced [1],

which will avoid a token to be assigned with an inappropriate tag.

The OpenNLP part-of-speech tagger uses the Penn Treebank tag set [1] to perform the

task over the tokens. Before using the tagger, a model need to be trained beforehand. The

training input needs to be correctly tokenized, annotated and formatted. Every sentence

has to be on a separate line and to contain its tokens along with their tags. The combina-

tion of token and tag need to be split only with underscore such as “token_tag”. Another

important issue is that all the assigned tags in the training data has to be correct. An indi-

vidual model has to be created for every language and relevant data in the same language

has to be provided [1].

The following example explains how OpenNLP part-of-speech tagger works. An example

sentence for training can be:

About_IN 10_CD Euro_NNP ,_, I_PRP reckon_VBP ._.

As you can see there is the token, followed by underscore and the tag, which is an abbre-

viation of the corresponding part of speech for the current language. For instance “PRP”

tag means personal pronoun and “VBP” is Verb, non-3rd person singular present. For

more information about all abbreviations of the tags refer to Penn Treebank tag set [31]

After the model is create, let us provide the following sentence that needs to be tagged.

“Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 .

Mr. Vinken is chairman of Elsevier N.V. , the Dutch publishing group .”

As a result the part-of-speech tagger will output the following:

13

“Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS old_JJ ,_, will_MD join_VB the_DT

board_NN as_IN a_DT nonexecutive_JJ director_NN Nov._NNP 29_CD ._. Mr._NNP

Vinken_NNP is_VBZ chairman_NN of_IN Elsevier_NNP N.V._NNP ,_, the_DT

Dutch_NNP publishing_VBG group_NN ._.” [1] .

Chunker task function is to group the various syntactical elements from the input data

without specifying their internal structure or role in the sentence. To perform the task first

a tokenized sentence has to be provided as an input. After that part-of-speech tagger is

used to tag the words of the sentence and in the end they are split into syntactic groups,

such as nouns, verbs, adjective. However, the data also needs to be properly formatted.

For the chunker task training data format it is required that every word is on a separate

line followed by two tags – the first one is its part-of-speech tag and the second is the

chunk tag [1]. An example of training data can be:

2

4

6

8

10

12

14

16

He PRP B-NP
reckons VBZ B-VP
the DT B-NP
current JJ I-NP
account NN I-NP
deficit NN I-NP
will MD B-VP
narrow VB I-VP
to TO B-PP
only RB B-NP
I-NP
1.8 CD I-NP
billion CD I-NP
in IN B-PP
September NNP B-NP
. . O

As you can see the first column holds all the words in a sentence, the second column are

the appropriate part-of-speech tags and the third one are the chunker tags. The chunker

tags holds the name of the chunker type, for instance “I-NP” stands for “noun phrase

words” and “I-VP” for “ verb phrase words”. The chunker tags are two types B-CHUNCK

(first word of the chunk) and I-CHUNK (each other word in the chunk) [1].

After the models is trained, let us have the following sentence that is already tagged by

part-of-speech tagger:

“Rockwell_NNP International_NNP Corp._NNP 's_POS Tulsa_NNP unit_NN said_VBD

it_PRP signed_VBD a_DT tentative_JJ agreement_NN extending_VBG its_PRP$

contract_NN with_IN Boeing_NNP Co._NNP to_TO provide_VB structural_JJ

parts_NNS for_IN Boeing_NNP 's_POS 747_CD jetliners_NNS ._.”

The produced output after chunking it would look like:

“[NP Rockwell_NNP International_NNP Corp._NNP] [NP 's_POS Tulsa_NNP unit_NN

] [VP said_VBD] [NP it_PRP] [VP signed_VBD] [NP a_DT tentative_JJ

14

agreement_NN] [VP extending_VBG] [NP its_PRP$ contract_NN] [PP with_IN] [NP

Boeing_NNP Co._NNP] [VP to_TO provide_VB] [NP structural_JJ parts_NNS] [PP

for_IN] [NP Boeing_NNP] [NP 's_POS 747_CD jetliners_NNS] ._.”

As a result the tokens, along with their tags, have been grouped by using square brackets

[1].

Parser is used to divide the input data string into tokens, which afterwards are group

according to their syntactic relation. The purpose of this tool is mainly for demonstration

and testing. The best way for using it is through the command line interface. After the

process is over it is possible for the parse tree to be printed on the screen if needed. When

using the parser to train the model, a part-of speech tagger model will be also created so

that the input can be tagged and parsed simultaneously. To achieve better accuracy for

the result, the default tagger can be replaced with another trained on a larger corpus of

data [1]. As an example let us have the following input sentence:

“The quick brown fox jumps over the lazy dog.”

After using the parser model on that input, the output would be:

“(TOP (NP (NP (DT The) (JJ quick) (JJ brown) (NN fox) (NNS jumps)) (PP (IN over)

(NP (DT the) (JJ lazy) (NN dog))) (. .))) ” [1] .

In the result the words are grouped in a parse structure according to their relation on

syntactical level. The tags in front of the words are actually part-of speech tags, while the

tags that stands alone near the opening brackets are groups’ phrases, for instance “NP” is

noun phrases and “PP” stands for preposition phrases.

Coreference resolution is the last supported task by the OpenNLP engine. It purpose is

to links multiple mentions of an entity in a document together [1]. However, the

OpenNLP implementation is currently limited to noun phrase mentions only [1], because

the functionality of this task is still in process of development.

OpenNLP provides a variety of natural languages processing tasks that are supported both

by command line user interface and application programming interface. Part-of-speech

tagger is one of the basic tasks and it is often uses as prerequisite in the developing process

of more complexed algorithms, such as language dictionaries or spell-checkers. To-

kenizer and sentence detector provide the base for more complexed tasks. Therefore, it

can be concluded that OpenNLP is a powerful framework that can be used in the building

process of more sophisticated natural language processing systems.

15

4. WEB APPLICATIONS

Web applications are Internet-based application programs, stored on a remote server and

delivered over the HTTP [24]. They are client-server applications, where the client (front-

end) is browser-based and the server (back-end) is known as web server. Web applica-

tions rely on a browser-like applications to render them and in most cases they are cross-

browser compatible.

The term cross browsing refers to the ability of a web application to be properly rendered

by all browsers. The major cause for this problem is due to different browsers, their ver-

sions, the operating system they work on, the screen size and the browser bugs [46] [47].

Cross browser applications focus on providing such a solution that preserves its function-

ality and layout when used by multiple browsers. In order for such applications to support

cross browsing they have to be tested if they are rendered without any problems on the

targeted group of browsers [46] [47]. Although, most of the browsers have similar fea-

tures, small difference are expected, because of the rendering engines or the code inter-

preters they use, which may affect the overall of the application. Therefore, during the

development and the testing of the web applications, they have to be adapted to work with

different browsers.

There are many different languages that can be used in the developing process of web

applications. However, there is no one best language for this task [37]. When creating

web applications they are usually divided into two front-end and back-end. The most

basic languages used for front-end web development are HTML [26] and CSS [26].

HTML stands for Hyper Text Markup Language and it is the backbone of any website.

The HTML code provides the base framework of the website view. It consist of markup

tags, where each tag describes different content in the HTML document. These tags are

always in pairs – opening and closing one. In order to display the page content properly

a browser-based application needs to be used, that reads the code and determine how

things has to be shown based on the tags.[38]. Cascading Style Sheets (CSS) is a front-

end language used to control the presentation of the web document and adds to the web

site a unique look. CSS is independent from the HTML and can be stored in external CSS

stylesheet files. Moreover, CSS saves a lot of work, due to the fact it can control the view

of multiple pages simultaneously. The term cascade come from the fact that multiple style

sheets can be applied on the same web page.[38].

Another programming language that is quite common is JavaScript and it is used for cli-

ent-side scripting [37]. Client-side scripting (also includes HTML and CSS) concerns any

code that run on the client side. This describes any action that is done on the page without

the need to post back to the server. JavaScript is a lightweight, cross-platform, object-

oriented, scripting language. The one of its uses is to manipulate the content of HTML

16

pages and to transform them from static into dynamic. For example, JavaScript can be

used to validate user’s input before it is being sent to the server or to update parts of the

page without the need to reload the whole page. Nowadays, JavaScript is also used for

different non-browser environments, for example back-end programming. All browsers

support it and it provides the users with flexibility and dynamism over there web pages

without the need to send requests to server. Advantage of JavaScript is that there are many

available libraries that can provide functionality or extend current one [27].

The above mentioned programming languages are used for front-end development, ex-

cept JavaScript that can also be used for back-end. For implementing the logic of the

application on the server-side, languages such as C# [10], PHP [39] and Java [40], can be

used. When developing web applications, the developers usually choose to use the ones

they are experience with or the ones that will suits them best in their project. Figure 5

visualize the web application programming structure.

Figure 5. Web application programming structure overview

From the most abstract point of view, web applications consist of three layers – presen-

tation, business, and data [41] [42]. These layers are illustrated in Figure 6. The presen-

tation layer interacts with the users. It contains the presentation logic components, the

user interface components and it provides the connection with the business layer. The

business layer refers to the actual logic of the system. Also this layer may include parts

that others can use as service interface. The last one is the data layer that gives the access

to the data within the server as well as outside through some services similar to the ones

in the business layer. The amount of the layers may vary according to the general purpose

they are needed for.

17

Figure 6. Web application layers

Web applications are mainly divided in to two types - static and dynamic. The first one

consist of HTML files where each page is presented by a physical file and if they have

the same elements, then these elements appear in the code for each page. In contrast are

dynamic web server technologies, such as ASP, where pages are a build dynamically.

Figure 7 presents the difference between static and dynamic pages.

Figure 7. Static versus Dynamic website

With static web applications, the client makes a request for a resource by sending a re-

quest to the server. Then the server responds by locating the files on its local storage and

sending them back to the client. In dynamic environment an application server software

is installed on the same server where is installed the web server. The application server

18

has the ability to communicate with the databases and the other resources on the server.

In this environment the client makes a request. Then the web server talks with application

server, which is talking to the database and the resources. After that it is up to the web

server to construct an HTML format in response, which is being sent to the client. The

important difference compared to the static one is that the client is not aware of the appli-

cation server, hence, does not require additional software. All that clients do is sending a

request for html and then receiving an html.

Web applications often require some kind of authentication from its users, because of

different reasons such as keeping track on users’ progress or restricting access [44]. As

already mentioned web applications are accessed via HTTP and this protocol is stateless

[45]. This means that HTTP do not demand from the server to store information or status

about the users during multiple requests and once the transaction is completed the con-

nection between the client and the server is lost. A solution to this issue should be the use

of a mechanism that will link each response and requests. There are different methods

such as the use of HTTP cookies or session cookies. Both examples are almost similar.

The main difference is that the first one have expiration date and they are stored on the

client machine. Once they expire, they are being deleted from the client. The latter one,

on the other hand, does not have expiration period and they are stored on the server. Once

the user closes the browser the session cookies are being deleted [45]. Session cookies

are usually created during the process of authentication. After that they are attach to each

HTTP request and act as a temporary replacement of the user’s credentials.

These two mechanism for authentication can also be used for storing and passing data

between pages which is a widely used approach with web applications. Both have their

advantages and disadvantages. For example, session cookies can store more data com-

pared to HTTP cookies. Moreover, the session cookies reduce the bandwidth usage, be-

cause they pass only a reference when the page loads, while HTTP cookies have to pass

all the data to the server first. However, the client-side cookies have advantage towards

the serve-side ones. They last longer, even after the browser is closed, which is useful if

one wants to store authentication data or some temporary settings.

4.1 User interface design

Joel Spolsky says “A user interface is well designed when the program behaves exactly

how the user thought it would.” [32]. There are different ways of describing what actually

user interface design is. Some sources state that it is the design of machines, computers,

software applications or websites, where the focus is aimed at the user’s experience and

interactions. Others explain it as a process where the idea of how a machine works is

being interpreted into the way humans think, or as a process of creating a visual language

that allows the users to interact with application. However, all these are correct and it can

be concluded that user interface design combines them all [33].

19

There exists many different user interface design methodologies and there is no one that

is perfect by itself. In order to achieve good interface multiple design approaches have to

be applied. The two most used methods are the parallel and the iterative design [34] [35].

Although, they seems as different types, both design patterns start from version 0 concept,

that describes the interface purposes, and often parallel design method is followed by

iterative. Typical for parallel design process, as the name hints, is that during the initial

step one or more designer (depends on the team), produce several multiple designs at the

same time. Usually the preferred amount is between 3 and 5 alternative designs [35].

These designs do not require to consist of all the features and they had to be created

quickly without sparing too much expenses on them. A good approach in this case is

paper prototyping, where the designs are drawn on papers and they provides a rough

wireframes on the interface. Once they are ready, it is time to put them to a user testing.

The prototypes are given to users, where one user evaluate several versions. After this

process is done the results are taken into account with all the prototypes and a single

merged design is created. In the end the process continues with iterative design to improve

more the merged design. Figure 8 provides a visual representation of the parallel design.

Figure 8. Parallel design overview

Let us now have a look at iterative design. It is cheap, simple and strong methodology. It

is simple, because it provides a simple process model, cheap, because an iteration can be

done for a short time, and strong, because you can do as many iteration as you can afford

in means of budget [34]. The iteration design simply means that you create a design ver-

sion, administrate usability evaluation, for instance user testing or heuristic evaluation,

and then improve the next version based on the results from the testing. Figure 9 shows

the cycle in iterative design.

20

Figure 9. Iterative design overview

This look like the worst-case design due to the fact that the design flaws are found after

all the three stages are executed. However it is one of the most common design methods,

because the evaluation takes place on the market, where the actual users are giving feed-

back to the designers. This design method aims for short iterations, because the require-

ments are constantly evolving. During the implementation of the current design flaw

fixes, the users are providing new set of requirements for the next iteration. This way the

design and functional fixes are being created shortly before being implemented, which

leads to a tight feedback loop, where a quick user testing can be performed and the new

flaws can be fixed during the next iterations.

Important stage in the process of user interface design is the evaluation, during which the

design is being examined and measured in terms of effectiveness, efficiency and satisfac-

tion [48]. There exists different evaluations approaches, such as heuristic evaluation, soft-

ware guidelines, cognitive walkthroughs, and usability testing [49]. As it was already

mentioned, heuristic evaluation is method that uses principles called heuristics to identify

usability problems. This method is usually performed by UI specialist, who have the task

to study the interface in depth and look for properties that may lead to usability problems.

Usability testing method is performed under real-world conditions, where the evaluation

takes place during the use of the user interface [49]. However, this method is expensive

and time-consuming. Another method is the software guidelines, where a set of guidelines

is published and used during the evaluation. These guidelines provide recommendations

about the user interface design content and this evaluation method can be performed even

from people that are not UI specialists [49]. Cognitive walkthroughs is another method

for evaluation of the user interface design. This method can be performed by the devel-

opers, who examine the interface in terms of typical users’ usage. Then the results are

compared with the users’ goals and knowledge and the differences are noted as problems

[49]. A way to compare the above-mentioned evaluation methods is to perform them over

the same user interface design. However, there is no single best method and each of them

has its advantages and disadvantages (Table 1). [49]

21

Table 1. Comparison between different UI design evaluation methods

4.2 Thick and Thin client

When users are performing tasks by using an application or processing some data, it is

not always mandatory that the results has to be stored on their local machines. It has

become very common to use the term client-server architecture [22]. This kind of archi-

tecture refers to a network where client is communicating with a server in order to execute

some task or service. In this order, we can define that a client is an application that run

on the user’s workstation and it is dependent by the server to perform operations. On the

other hand, server is usually a powerful computer that is used to manage and perform

different tasks and processes. When it comes to client-server architecture, the most im-

portant thing that has to be determent is if the client or the server will handle the workload.

Therefore, there are two main types of architecture, namely thick and thin client.

Thin client usually refers to a stateless workstation without hard drive. It is can be referred

as to a remote terminal. All the features with this kind of client are stored on a remote

server. In many cases thin clients are browser-based applications. The most common

 Advantages Disadvantages

Heuristic

evaluation

A method that identifies a big

variety of UI design problems

both serious and low-priority.

Also it is a low cost method.

Requires UI knowledge and

expertise. More than one

evaluator is required.

Usability

testing

Method that identifies serious

problems and avoid the low-

priority ones.

It is an expensive, time con-

suming method that require

UI expertise

Software

guidelines

Method that identifies recur-

ring and general problems. It

can be performed by non UI

specialists.

Possibility to miss severe

problems

Cognitive

walkthroughs

Can be used by developers and

it helps defining the users’

goals

Time consuming method

which requires task definition

methodology. Possibility of

missing recurring problems.

22

thing about them is that it is usually displayed in browsers, they can be cross platform and

most of the processing is done by the server.

Thick or fat client refers to architecture that provides rich functionality as well as it is

independent from the server, in contrast to thick client that is dependent [22].Thick client

also is a machine that has its own storage device where to store and process data, since

the most workload is done on the local machine.

Typically client-server applications usually consist of several layers, namely user inter-

face, application logic, business logic, data access and external communication. The first

one refers to what the users are presented with and interact with. The next layer concerns

the communication between the users and the computers. The business layer include the

logic on manipulation of the data. The data layer is concern with reading and writing the

data to storage locations. And the external communication layer concerns the outside sys-

tems that take part in exchanging information resources. According to where these layers

are utilized, it can be determent what kind of architecture is present (Figure 10).

Figure 10. Thick client vs. thin client responsibilities

Even these two architectures are quite similar, because they both run on the user’s ma-

chine and exchange data with the server over the network, they also have many differ-

ences. Some of these differences between the two architectures can be observed below

(Table 2) [22] [23].

23

Table 2. Comparison between thick and thin client architecture

Because of all this advantages and disadvantages of each of these two kinds of applica-

tions, nowadays, a new kind has been created. It acts as a bridge between thin and thick

client and it is called smart or rich client [23]. The tendency is to move from the traditional

client-server architecture to web-based one and to provide the application over the web

HTTP connection [24]. This kind of client applications can work both online and offline

as well as automatically updated without the need of the user. Moreover, due to the fact

they are web-based, they supports various amount of platforms and languages. Smart cli-

ents also provide rich graphical user interface similar to a common desktop application.

Thin client Thick client

Application is easy to deploy and does

not require additional installation

Application has to be deployed on

every machine

Data is validated by the server after cap-

tured from the client

Data is validated by the client itself

If there is server timeout, the client can-

not perform processes. Server communi-

cation should be present at all time

Continues communication is not

required.

Portability. Application is probably on

the server and can be accessed from any

location

Application can be accessed only

on the machine that it has been in-

stalled

Ability to use old equipment at client

side.

Reduce workload on the server

Reduce security threats Increased security issues

24

5. BUILDING UI FOR OPENNLP PART-OF

SPEECH TAGGER

The GUI solution that is presented in this chapter aims to simplify and guide the working

process of the users when they are interacting with natural languages processing engines

and their tasks. Based on the criteria for portability and accessibility, it was concluded

that the most suitable choice for the project will be the development of a web-based ap-

plication. Hence, the application will be separated into two parts, namely client-side

(front-end) and server-side (back-end). The client in this case will be the browser through

which the users will access the application and the server will be used to process the data

and interact with the natural languages processing engine. Therefore, it can be concluded

that this application can be classified as a thin client, due to the fact that the most workload

will be done by the server.

This chapter starts with an explanation on how the requirements for this project has

evolved during the application development. Then an overview of the used technologies

will be provided and explanation about the choices that have been made. After that, the

GUI structure will be presented followed by the flexibility solution of the user interface.

Then there is a section that describes how the application deals with the users and how

the files are managed on the server. After that, there are several sections that explain the

user interface and some functional matters of every stage in the application.

5.1 Requirements analysis

In the process of application development not all the requirements stay fixed during the

whole process. Sometimes it happens that some requirements has to be dropped, others

has to be adopted. There are different reasons for this to happen, such as unforeseen prob-

lems that can occur during the development, missing stakeholders or just the customer

has come up with some new ideas on their mind during the working process.

In the current thesis the stated set of requirements corresponds to the ones set at the point

when the application was already deployed. However, these requirements evolved from

the initial ones due to some of reasons that will be explained below. Let us now observe

the requirements and see the steps that resulted the current set.

In the initial staged of web development the first thing that had to be decided was the

environment and the programming language that will be used. Since application is web-

based it was obvious that HTML, CSS and JavaScript will be the ones that will take place

for the client-side development. However, for the server-side there are many possibilities.

25

Due to our stakeholders’ requirements, it was set that .NET environment and C# pro-

gramming language should be used. The reason for this choice was that the server, where

the application was targeted for deployment, uses Windows based operating system [11],

such as Microsoft Windows Server. During the developing process these requirements

stayed fixed and they didn’t face any changes.

The next major requirement concerned the natural language processing engines. The ini-

tial idea was to implement the part-of-speech tagging task by using two different engines,

namely OpenNLP [1] and SharpNLP [25]. However, this requirement faced an unfore-

seen problem that was determined during the developing process. During the initial re-

search it seemed that OpenNLP engine will provide us with a challenge, due to the fact it

was developed using Java programming languages [40], while SharpNLP integration

seemed easier, due to the reason it uses the same framework as our application. However,

during more extensive research it was concluded that the integration of SharpNLP engine

will not be possible, because of the lack of documentation about its implementation and

use. Moreover, the project was abandoned and there was not any support available. There-

fore, as a result it was set that only OpenNLP part-of-speech tagging task has to be im-

plemented.

The last major requirement focuses on the task process flow. As already mentioned, nat-

ural language processing tasks consist of stages. The main ones that usually take place

are the creation of the language model and its evaluation for the current task. In order to

create a part-of-speech model properly formatted data, like the one shown earlier, has to

provided. Since the users do not have such kind data another step had to be executed

beforehand, namely preprocessing the files. Therefore, an initial requirement was to cre-

ate a stage that will handle this preprocessing step. Later in the developing process the

users have decided that they would like to have a stage where they would be able to use

the tagger on various inputs if they are satisfied with the results from the testing stage. As

a result the process flow ended with four stages show in Figure 11.

Figure 11. Process flow overview

In the first stage the users preprocess their data by filtering it and converting it to the

necessary format for training. Then in the train stage the input data is used by the part-of-

speech tagging task to train a model for the specific languages, followed by the testing

stage where the accuracy of the model is determent based on its reaction over some data.

26

And the last stage is meant for industrial use, where the users are able to use the model

with whatever data they wish to be tagged.

An abstract view of the application can be seen in Figure 12, where the parts of the appli-

cation that interact with the users are presented as stages. They are based on the approach

required for natural language processing models that was shown earlier.

Figure 12. Cooperation between the elements in the environment

The stages has the task to handle and verify the information in several ways and to ensure

that the engine will receive a proper formatted data. Although, the data provided from the

user is not always properly formatted and needs manipulations, it has at least to be cor-

rectly tagged with its part-of-speech tags.

5.2 Implementation technologies

According to the technical specifications we were entitled to use C# and .NET framework,

hence, we agreed with company that for this project the most suitable solution will be

delivered by using ASP.NET. ASP is an object-oriented platform that allows to select

among a variety of programming languages, such as C# or Visual Basic, to create dy-

namic web-based application, where the client makes a HTTP request and the server re-

sponds by dynamically constructing an html page and send it to the client.

ASP.NET provides three frameworks for web development, namely ASP.NET Web

Forms, MVC and Web Pages [9]. Web Forms are used to create dynamic content web

application, as the pages run as programs on web server when requested. While a page is

running it can perform any task required by the web site. As a result a page is dynamically

produced and send to the browser. The ASP.NET Web Forms file consist of tightly cou-

pled view with the code behind. The ASP.NET MVC is used to develop large scale web

applications. This model consist of three parts- model, view and controller. The model is

the part that handles the logic for the application, the view handles how the data is dis-

played, and the controller handles the user interaction. MVC is an alternative to Web

27

Forms and it provides features like lightweight, testable framework, and also provides

independence between the view and the logic of the application. The ASP.NET Web

Pages are used to target developers that desire to create a simple web story. In these pages

there is the HTML code and also the server-based one that is used to dynamically control

the rendering process of the page [9].

In this thesis ASP.NET Web Forms were used with addition of the “master pages” con-

cept that provides a template-based approach. There were few reason due to which it was

decide to use this approach instead of MVC. The first reason is that the team for the

project consist of two people – myself and Grigorij Ljubin Saveski [4]. Moreover, both

of us didn’t have enough practical experience with MVC and compared to Web Forms, it

requires more programming and deeper knowledge of how this architecture works. More-

over, ASP.NET Web Forms provides more control over the client from the server since

the view and the controller are one and the same. Also, the natural language processing

tasks required specific stages, as well as control. Therefore, in case of expansion it will

be simpler by adding the required stage with its functionality. In addition to the web forms

we used the common for web development HTML, CSS and JavaScript languages.

As far as the engine is concerned, we had to find a way to connect the OpenNLP interface

with ours. In many cases it is assumed that Java and .NET are mutually exclusive tech-

nologies. However, thanks to IKVM.NET [43] tool were able to achieve that. This tool

has allowed us to compile the OpenNLP libraries down to DLL files. After that we had

just to reference these files directly to our application and used them as they were .NET

objects.

5.3 Structure of the GUI

Figure 13 shows the structure of the application. As mentioned earlier, this web applica-

tion uses the “master-page” template approach. This means that all the common layout

and functionality of the pages can be implemented only in the master page. By doing this

the repeated code in the different web forms is being reduced and centralized at only one

place, which makes it easy to alter if needed and will affect the final result among all

pages. Moreover, the master page and the content pages cannot exist separately. In order

for the users to access a specific content page, they send a request to the web server. Then

the web server merge both master and content page and produce one page with combined

layout.

28

Figure 13. Structure of the application

The idea with the master page templates is that they consist of two parts, namely the

master page content and a placeholders. The first one encapsulate all the common ele-

ments that should be visible, such as headers, menus and footers. Also in this section all

the common style files and JavaScript files can be places. For example, since in our ap-

plication uses jQuery, it is hardcoded in this page and there is no need to add it in any

other file. The master page placeholders defines the place where the content of the actual

pages should be placed. Every master page can contain as many as needed. This place-

holders can be overridden by a content pages. This is very convenient, because every page

can be placed in different file. In our application we have five content pages – home,

preprocessing files, training, testing and using model. On the top of every file it is marked

where the master page physical location is. After that they contain controls named “Con-

tent” that are linked to the master page placeholders. These controls enclose the specific

content for every page. The graphical design of every content page consist of two things.

The left side is the working area, where all the controls and messages appear, and the on

the on the right side there is a section, which includes a brief manual what is the current

page for and tutorial explaining how to use it. Moreover, in the structure of the applica-

tion, there is a separate web form page that is not connected to the master page. Its inter-

faces is simple and consist only from images that visually show the steps for the whole

process flow. This page was created as users’ request, because usually it is easier for the

users to see something than to read manuals.

29

5.4 Flexibility of the application

The process flow of part-of-speech tagging task in the most basic scenario can be consid-

ered straightforward (Figure 14). The first overview of the figure gives the idea that

process is complexed. However, the bold rectangles represents the stages and all the start-

ing arrows refers to the entry points. The bold oval shapes refers to the output files from

the stages that are requirements for other stages and all other shapes are additional re-

quirements or outputs. For instance, in training stage it is required to have a natural lan-

guage engine and to provide the proper preprocess data file in order train a language

model as an output.

Figure 14. Process flow stages with their inputs and outputs

As you can see in Figure 14, the process is direct when it comes to the user to preprocess

its own data, then train a languages model, evaluate the precision of the this model and in

the end to use it. However, this process cannot always follow this order of execution. Due

to an external reasons or just the need from the user side, this process might need to be

interrupted at some point. Therefore, some flexibility is required that will provide multi-

ple entry and exit points in the process stages. By using these access points, the users will

be able to start or stop at any stage or just continue with the following one.

Possible situation with interrupting the process flow can occur if the user creates a lan-

guage model, but during the testing stage it appears that the results are not satisfying. In

this case the process is being paused and redirected back to the training stages where

another old model is loaded into the engine and then tested with the current testing data.

Then if the expected results are met, the process can continue to the next stage where the

model will be used to tag wider variety of data.

30

The access points to every stages are handled by the graphical user interface of the appli-

cation. However, with such flexibility a set of restrictions are required in order to control

the actions of the user. This is also needed so the application to follow what stage was

accessed and what were the conditions that occurred. As you can see in Figure 14, in

order to execute a stage, users are required to provide the necessary input files. Further-

more, after the stage is executed, the applications marks this stage by saving some data

that is required during the following stages. This data refers to the physical location of

the output files on the server (the bold outline oval shapes in Figure 14). This way the

process of creation and evaluation is being simplified, because these files can only be

expected as results at a particular stage in the process.

Figure 15 provides a graphical overview of the solution to the flexibility problem ex-

plained above. As you can see this is achieve with a content page named “Home”. It acts

as starting point for the whole process flow, as well as an entry point to all the other

stages.

Figure 15. GUI solution for the flexibility problem (Home content page)

This page is the default one that is opened at the initial start of the application. To proceed

to a specific stage, the users are required to provide some data that is being used in the

process, namely the language, the task type and from which stage they want to start. By

providing this data the users can continue to the chosen stage. However if they do not

select one of these option, there are error messages that will be shown beneath these fields.

31

During the process, if the users desire to start their task from another stage, they are re-

quired to go back to the home page. This step backwards was chosen as step to control

the actions of the user as well as an attempt to keep the files in some specific order that

will be explained later.

5.5 Users’ accessibility and files management

In order to provide some level of control on the users, there were several choices that

have been made. The first one concerns the users that access the application in order to

prevent anonymous entries. In Lionbridge, every individual user has its own domain ac-

count to login in the workstation onsite. Moreover, to use the server where the application

is deployed, the users have to use the same credentials even if they access it remotely.

Therefore, it was decided to use these domain accounts in order to authenticate in our

application too. In the configuration file it was set that no anonymous access is allowed

and the application uses windows authentication method to determine who is the user.

When a user tries to access the application, his credentials are being check. If they appear

in the corporate domain, then the user is allowed to use the web application. However if

the user tries to access the application from a different machine then he will be prompt to

enter corporate credentials in order to log in into the application. These usernames are

used later when the folder structure is being created.

The second choice was done in order to follow the state of the stages in process flow.

There are different ways to pass parameters between pages, such as URL variables, cook-

ies or sessions. In our case we use session. There are a bit similar to cookies, again tem-

porary storing data files, but the difference is that while cookies are stored on the client-

side, sessions are stored on the server-side. Moreover, we chose sessions, because cookies

can be deleted or alter on the client machine. Also the URL variables, can be also altered

and the URL may lead to some unexpected behavior, like error. Compared to these two

methods the session is being destroyed ones the browser is closed. The session variable

have a lifetime during which the users can go to another websites and come back. How-

ever, the session in our case was set in way that if the users go back to the home page,

their current one is deleted and a new one is created that is empty. This was done with the

idea to prevent any free access to the different stages without the proper requirements to

be fulfilled first, and particularly choosing the language and the task type which are vital

for the folder structure.

The third decision that had to be taken was focused on how the files on the server will be

managed. According to minor criteria from the users, they should be allowed to upload

files from their local machines or to use files that are already on the server. The first

problem that was faced here was about the file size. ASP.NET web application was de-

ployed on Internet Information Server (IIS). They both have restrictions about the size of

files that are being uploaded. And since our users may want to upload multiple files we

had to alter these variables. The variable for ASP.NET is “maxRequestLength” and refers

32

to the size of the allowed input stream and it is measured in “KB”. The default value is 4

MB (4096 KB). The variable for IIS is named “maxAllowedContentLength”, it specifies

the maximum length of the content in the request, calculate in bites and the default value

is around 30 MB. Therefore, these two values were altered in the configuration file to

allow the upload up to 1 GB combined size of files. Also, there is an error if users try to

upload bigger files. A good idea for the files’ size might be to set an invisible variable

that will store this data and by using JavaScript code to compare it with the calculated

total size of all files added before the actual upload in order to prevent this error to occur.

The next step was to think of an understandable and easy to use file structure on the server

that should be easily managed if accessed directly. After careful consideration and taking

into account all the different stages and variables for the whole process flow, we came up

with a structure that consists of four levels of folders that are nested as it can be seen in

Figure 16.

Figure 16. Example of the storage folder structure based on reference [4]

The top level is the server folder. It is usually deployed with application files. However,

if it is missing there is no problem, because it will be created when the user starts the

application and selects all the fields in the home page and then proceeds to the starting

stage. This folder act as a default storage place. The username folder aims to structure the

33

work for every individual user and to make it easy to navigate through other users’ fold-

ers. Initially a random string was used for naming. However, we decided that this was not

a convenient approach, because the users are not going to remember all these characters.

Hence, the name for this folder, as mentioned earlier, is taken by the application from the

current workstation credentials that have been used to log in. Languages and task direc-

tories are required, because the amount of languages and tasks are greater than one. The

names for both of them are acquired from data fields that has to be selected in the Home

content page. The language folder usually contains only the name of the specified lan-

guage for the task. On the other hand, a user can perform multiple tasks, or the same task

many times for specific language. To prevent this folders to be overwritten, when a folder

structure is created to the name of the task folder is appended a time stamp.

5.6 Preprocessing of input files

Preprocessing is the first stage in the process flow. It is a preliminary one and its purpose

is to be used if the users do not have a properly formatted data that can be used directly

for the purpose of training a part-of-speech model. On Figure 17 can be seen a brief over-

view of the content of the page. There are several sets of controls that are hidden and will

be visible at a specific state of this stage. All this hiding and showing is achieved by using

jQuery library. When the users initially start from this stage the controls that they can see

are a checkbox for tag validation of the input files, buttons for selecting and uploading

the input files, as well as a cancel button. There is also a table that will show the names

of the selected files, their size and current status.

Figure 17. Preprocessing stage overview

34

The first thing that the users has to decide is whether they want to do tag validation over

their input data. In case they want, they need to click the checkbox and the proper controls

to upload a file with tags will appear and the others will become hidden. This tag file has

to consist of all the available part-of speech tags for the specific language. After providing

this file, it has to be uploaded and it will be stored on the server for later usage. This

upload as well as the input data files upload and the preprocessing request, is handled

with the use of ASP.NET Generic handler that act as target for the incoming HTTP re-

quests.

As already mentioned, no matter whether tag validation is required or not, the default

controls are the ones for uploading the input data files. Due to the fact these files do not

have specific extension, we cannot filter them this way. The input data files are actually

plain text files, maybe even without extension, that contain the data used for training and

testing model. Once the files are selected they are being stored using JavaScript array and

in the same time the name, size and the status of each of them is being printed in the table.

If the users have forgotten to add files, they can use again the button and add the extra

files.

Once all the files are selected, they need to be uploaded. To do this a jQuery Ajax ()

request is used to send a request to the generic handler. This process might take some

time due to size of the files and the speed of the connection with the server. A status bar

is shown, but its accuracy is not always very precise. In the generic handler first it is

checked whether a folder for the files exists and if it does not it is being created. Also the

tag validation is handle there. Once the process is complete a message is returned and the

table status fields are being changed. If tag validation is chosen beforehand, the users

will be notify if some file had problems with the tags and it will be discarded from the

table and deleted from the server folder.

Once this step of the stage is done, the upload controls will hide and the preprocessing

one will be shown. These set of controls consist of a button that starts the process and

input field where the users are required to enter a number as percentage (Figure 17) that

will be used in the division of the data for training and testing. At this stage the table

contain only the files passed the validation, if there was such one. By pressing the button

the process will start by sending another Ajax request to different generic handler. The

software will create a temporary file in which all the data from the input files, after for-

matting, will be combined. Then based on the number entered as percentage this file will

be divided into two parts. Here there are three possibilities for the percentage. The first

one is to be “0%”, then all the data will be used to train the model. The next one is to

“100%” then all the data will be used for testing a model. And the third case is if the

number is between the above two values. Then the application determine the percent and

randomly choose this amount of sentence and move them to another file. Let us have an

example. If the user choose to have 20% testing data and he has total of 100 sentence.

This means that from the temporary file 20 random sentence will be moved in a file for

35

testing and the rest will be saved in another that will be used for training. After this the

process continues by stripping the tags from each sentence from the testing file and they

are copied to another file that is marker “without tags”. As a final result a message is

shown to the user that the process has been successful. Also a link is provided if the users

would like to download the output files which from this stage are training data and two

files for testing, namely one with tags and one without Figure 17. Then the users have to

use the button to proceed to the training stage or they can just leave the application and

continue another time.

One button that was only mentioned was the cancel button. This button is visible during

the whole stage and its purpose is to restart the stage and also delete all the uploaded files.

5.7 Training part-of-speech model

The training stage uses OpenNLP engine to create part-of-speech language model with

the data provided from the previous stage. Figure 18 shows a visual representation of the

stage. This however is the case when the user comes from previous stage. Then the pro-

cess is direct and since all the requirements for this stage are fulfilled the user sees only

two controls – the training button and the button to proceed to the testing stage, which is

disabled before the training is done. After the training is done the users get a message that

informs them whether the process was successful. They are also provided with a down-

load link for the model file if they wish to download it as well as the train button is disa-

bled and the button to proceed to the next stage is enable at this point. Drawback of this

process is that once a model is trained with a set of data, another set cannot be added to

the same model. The training data has to be merged and a new model has to be created.

Figure 18. Training stage overview

However, the things are a bit different if the users’ initial stage for the process flow is this

one and they do not fulfil the requirements for the stage. For visual idea of the stage in

36

this state see Figure 19. In the current case when the users come directly to this stage their

session values for this stage are missing. Therefore, the server renders a section that gives

them two choices.

The first one is to upload a local file. In this case the interface provides them with a simple

file upload control. They select the desired file and upload it to the server. After this action

is over the location for this training file is saved in the session and the user is redirected

to the same page. In this case the server reads that there is available training file and the

section that is being rendered to the user is the one explain in the beginning of this chapter.

The second choice is to select a file that is already on the server. A tree view structure is

shown with two controls beneath, namely the train and the proceed (Figure 19). The user

expand the tree and observes all the folders available. The tree structure has checkboxes

but with the help of JavaScript code, we ensure that only one option can be selected at a

time. Moreover, if the user want to download the preprocessed data from the previous

stage, they only need to click the name of the folder. After selecting the desired folder,

the users have to press the training button and the model will be trained. In order to pre-

vent the page from executing post back (reloading the page) this tree view structure with

the controls is enclosed in an update control that executes an asynchronous request when

the training button is clicked. This visualize a loading image that informs us for the train-

ing process and when it is over the train button is disabled and the button for the testing

stage is enabled. Moreover, there is again a message for the status of the process as well

as a download link to the model. If the user click the training button without choosing a

folder, he is being alerted for that.

Figure 19. Training stage as initial stage

37

5.8 Testing a model

During the testing stage, the model, created in the previous stage, is being evaluated by

its behavior when used over unannotated data. There are three files that are required for

this stage as it can be seen in Figure 20. This stage has similar sections like the ones in

the training stage. The sections here are three and the one needed is rendered according

to the data stored in the session. If all the required files are present, then the user sees just

two controls – one for testing and one to process to the next stage (disabled until testing

is done). In this scenario the user directly test the model. The evaluation is done word-

by-word. The part-of-speech tagger read the testing file without tags and predict an ap-

propriate tag, then this prediction is compared with original tag from the testing file with

tags. In the end a ratio is calculated between the correctly tagged words over the whole

amount of words. When the process is completed the user is notified about the status of

the stage. Also if the process is successful the evaluation result and all the files’ locations

are being printed on the screen. In the end of this stage there are two output files. The one

contains the accuracy result from the testing and all the files’ physical locations. The other

contains all the predicted tags from the testing file without tags in one column and next

to them in another column are all the correct tags. The latter file was created in case the

users wants manually to observe where the part-of-speech tagger has made an error. And

as in all other stages, there is a download link too.

Figure 20. Testing stage overview

The other scenarios are if the training, the testing data or all three files is missing. Then

there are similar sections like the one in the training stage. The users has to either choose

from the local storage or from the files that are already on the server. If they select to

upload their own files from the local machine, then the users will be redirected again to

first scenario. If they decide to use files from the server, they will have to choose among

the folders provided in the two tree view structures: one for language model and one for

testing files.

38

5.9 Using a model

The goal of this stage is the model to be used with various inputs of unannotated data

since the results from the testing stage were satisfactory. It is also called a production run

stage. It is pretty similar to the testing of the model, when it comes to its functionality,

with the only difference it does not calculate accuracy. The user interface is also quite

sample. If the user’s session has the location of a model file saved then the server will

render the section where the user has to upload the file with unannotated data. If this data

in the session is missing then the user, similarly to training and testing stage, has first to

choose the model file either from the local machine or from the server. Visual represen-

tation of the task can be seen in Figure 21.

Figure 21. Use stage overview

The data file can be anything from random sentences to online articles and books, as long

as the information is stored in a single text file. Then this file is also uploaded and the

part-of-speech tagger process it. The result from this task is written in a file that contains

the data tagged and the user can download it and observe it (Figure 21). At this state of

the stage the user has two choices. Either to go to the home page and start with a new

process flow or to add new data set that needs to be tagged.

39

6. EVALUATION

In Chapter 2.3 three different sets of criteria were set. The first one refers to the overall

project success, the second set is used to evaluate the design of the application, and the

third set presents technical criteria. The last one will not take place here, because it was

already explained how it was taken into account during the implementation process. Let

us first run-through the project criteria and observe how they were fulfilled during the

developing process.

The first criterion concerns nontechnical users. The current web application reduce the

memory load by releasing the users from remembering different commands and specifi-

cations. The interface replace all the technical details with visual controls, such as but-

tons, input fields, dropdown buttons, and the process requires mostly clicking and follow-

ing steps. In addition to that the application handles everything automatically while fol-

lowing the process. For example, after preprocessing the training data and proceeding to

the training stage, the application will provide the necessary data that follows and the

users can directly train the model without the need to search for this data. Moreover, the

application stores the data after every step on the server and provides a way to download

it. This helps the users to reuse their data or to use others’ data for their tasks.

The next criterion refers to the flexibility of the process flow. The current application

provides a way for the users to start from any stage they desire, as well as to leave the

application after every stage. The current flexibility in the application acts in a way that

each start of a process is a separate instance with its own file structure. This way the users

can track what they did during every run. A drawback of the current solution is that for

one full process run there might be several folder structures, if the users start and stop

during the flow. A good solution to improve the application, when it comes to this criteria,

might be the use of some kind of configuration file for every instance which stores data

such as completed stages, time, task name and files location. This way instead of starting

a new process instance with its own folder structure every time, users can continue work-

ing on their old one. This also might reduce the amount of folder structures and make

them more organized.

The third criterion involves the application expandability with other engines and their

supported tasks. The web application, in its current stage, provides expandability with

other engines and tasks as long as they support both folder and process flow structure.

Every page in the application process flow correspond to some stage. Let assume that

one wants to implement OpenNLP sentence detector task or another engines’ task with

the same stages. In this case only the logic for the current task has to be implemented.

However, if a task requires additional stages, then new pages have to be created with both

40

design and logic. As far as the folder structure is concerned when adding more stages then

a new folder structure can be created separate from the current or merged with it.

The next criterion concerns the portability. In order to observe the advantages and disad-

vantages of the current solution, let us compare it with the CLI method of accessing the

natural languages processing engines. The CLI demands individual installation on every

machine, whereas, the current solution require deployment only on a web server. Hence,

it can be accessed from multiple machines simultaneously without any additional instal-

lations. Another feature is that CLI requires the files to be on the local machine. The

current web application not only allows the use of local files, but it also enables the use

of files that are on the server. A drawback for this criterion is the accessibility. Since the

application is deployed on a remote server, there should be always an active connection

in order to access to application and the files.

Indeed the last criterion is the accessibility of the application. If a user is using the engine

through the CLI, then it has to be deployed on the current working station. In this situation

if the user works on different machines then they all need to have the engine and the

required software installed. In contrast is the web application, presented as a solution in

this thesis. Its portability provides remote access from various locations and from differ-

ent machines. However, a drawback of the application is a situation when there appears

to be connection issues, such as the server is down, or the server is overloaded. Then the

use of the application will be slow or will not be possible at all. The details explained

above for the project criteria are summarized in Table 3.

Table 3. Criteria and their achievement

Criteria Fulfilment

No technical knowledge Everything is being handled automatically from the applica-

tion during the process flow

Process flow flexibility Multiple entry and exit points were provided for every stage

of the process flow; data is automatically saved;

Expandability New engines and tasks can be added as far as they support

both the folder and system structure

Portability Getting rid of installation can be done through a web-based

application.

Accessibility The interface is a web application , which allows its acces-

sibility from various locations

41

In addition to these criteria let us now see how the current web interface design corre-

sponds to Nielsen’s 10 Usability Heuristics for User Interface Design. These heuristics

are not specific usability rules, they refer more to guidelines and can be taken into account

during the user interface design process. The heuristic evaluation helps to identify usabil-

ity problems in the user interface design.

The first heuristic refers to the visibility of system status. The current application provides

different ways of feedback among the different stages. An example that compiles with

this heuristic is when uploading files there is a status bar during that process and after the

process is done the status of the files in the table is being changed. This way the users are

informed about the process status.

The second principle refers to matching the system with the real world. The application

interface is simple and it consists only the necessary controls. Its stages are named based

on the step for the task and follow the convention of the engine’s task. Moreover, the

controls are named in similar matter, so they will not mislead the users about their pur-

pose.

The next heuristic concerns the user control and freedom. The application provides mul-

tiple entry and exit point, but there are also some restrictions for the process flow. Due to

the application file handling the data is passed among the different pages. If wrong data

is provided the system will crash with an error and the users will have to restart the current

stage. This heuristic cannot be fully covered due to the nature of the process flow. For

example, if wrong data is provided for training a model, then the engine will crash. In this

case the stage need to be restarted, because an undo action of that page will navigate the

user to the previous one.

The forth principle refers to the consistency of the interface. The layout of the application

is fairly similar among all the pages. They all contain the working area and the manual

information sections. Moreover, all the elements with similar functionality use the same

layout. For example, all the controls for uploading files in the different stages have the

same visual layout, only the names are different due to their purpose.

The following principle targets the prevention of errors. The web application provides

messages for most of the controls if someone tries to skip using them or use them without

fulfilling the requirements. Moreover, some of the controls are even disabled to prevent

their use. For example, if user tries to upload files, without selecting any, then this button

will be disabled until files are selected. However, there is drawback, because incorrect

files can be selected. The problem appears, because there is no predefined file format. For

example, the files that can be used must contain plain textual data, but they might have

extension, such as “.txt” or “.log”, or they may lack such one.

The sixth principle refers to the memory load and every control in the application refers

to some action. Moreover, all the elements are named accordingly and instructions are

42

provided to prevent any errors and reduce to amount of information that the users need to

remember.

The following heuristic focuses on the flexibility and the efficiency. The current applica-

tion facilitates and guides the workflow. However, not all stages are efficient and flexible.

The only stage that complies with the heuristic is the “use” stage. It allows the users to

iterate that stage as many times as need with different data. However, things are different

with the other stages. For example, in the preprocessing stage it is possible only ones to

upload data. A possible improvement here will be to provide the interface with a way to

preprocess data even if the stage is at its end. This can be achieved by adding the data and

using the same variables to format and then merge it with the rest.

The next principle refers to minimalistic design. The web application implements only

the most needed functionality, without any additional visual elements that will make the

process slow and will affect the layout. Moreover, the interface provides simple design,

which meets the users’ requirements.

The ninth principle refers to error messages that tend to explain an error or unexpected

behavior. This heuristic is also not fully covered. During the evaluation, all the errors that

the users came in touch with were observe as far as they were part of the web application

interface. However, due to the fact the OpenNLP API is used, not all errors provided by

the engine were covered. Some of the engine’s errors that were met and compiles with

this heuristic concern the state of the input data.

The last heuristic concerns the documentation. According to the users’ desired every stage

has its own section that provides a brief explanation of its work and a short manual what

needs to be done. Moreover, the application has a separate page which provides a visual

manual about the steps needed in order to execute each stage.

After explaining how the application meet these heuristics, it can be concluded that there

are several of them can classified as strengths. These principles are visibility, match with

real world, consistency, memory, aesthetics, and help documentation. Although I have

classified them as strengths, they should be still considered as improvement areas. The

rest of the heuristics can be classified as weaknesses of the interface design that need

improvement. Table 4 summarize the details explained above.

Table 4. Comparison of the application with Nielson's heuristics

Usability Heuristics Web application design

Visibility of system

status

The user interface contains only the necessary controls and

in every view there is element that represents the current sta-

tus.

43

Match between sys-

tem and the real world

We don’t use icons, but all the buttons were named with an

understandable names.

User control and free-

dom

Users can enter and exit the process flow, but there is no

undo and redo functionality

Consistency and

standards

The user interface reuses the same visual elements and lay-

outs

Error prevention All the input fields, checkboxes, radio buttons and upload

buttons are provided with error messages if they are skipped

or tried to be used without data.

Recognition rather

than recall

For all actions there are controls provided, as well as in-

structions for some of them in order to prevent even errors.

Flexibility and effi-

ciency of use

The process provides a guided work flow, but now all stages

provide flexible and efficient use.

Aesthetic and mini-

malist design

 Only the most essential functionality takes place.

Help users recognize,

diagnose, and recover

from errors

All the errors gives information what went wrong with the

application. However, not all errors were covered as far as

the OpenNLP engine is concerned.

Help and documenta-

tion

Every individual content page provides a manual on how to

be used as well as there is separate page that has the whole

process described by pictures.

As a result, it can be stated that both the project and design criteria were carefully taken

into consideration and were used as guidelines during the development process of the

application.

44

7. SUMMARY

The resulting application, explained in chapter 5, grants access to the part-of-speech tag-

ging task, supported by OpenNLP natural language processing engine, without any com-

plications from the targeted group of non-technical users, in our case people with linguis-

tics background. The system allows them to preprocess their data into the required input

data format, create a part-of-speech language model by training it with this data, evaluate

the accuracy of model and last to use the tagger for their purposes.

In addition to that, the process flow of the application, presented in chapter 5.4, contains

multiple entry and exit points. These points give the users the freedom to enter the process

flow and start from any of the stages. The use of these points, however, rely on the fulfil-

ment of the requirements for the specific stage. Moreover, the results from every stage

are stored automatically on the server, which gives the freedom of the users to quit the

system at any stage they desire and later on to continue from the stage they have paused.

Moreover, the system should be able to expand with new engines and their tasks. Some

of them might require additional tools or libraries, like the one mentioned in chapter 5.2,

in order to interact with our application. However, this implementation should not be

much more complicated than the one that was already done in order to access OpenNLP

engine and its part-of-speech task. Also, the application’s amount of supported tasks can

easily be extend with others provided by OpenNLP engine, in a way similar to the imple-

mentation of the current task.

In addition to all, the accessibility and portability criteria are fulfilled due to the specifics

of the application, which was developed as a web-based by using Microsoft ASP.NET

framework and it was deployed on a remote Windows server machine. Therefore, it can

be access by multiple users at any moment as long as they have access to Internet and to

the server. The application does not require any specific installations, except for an Inter-

net browser, but most operating systems nowadays have at least one that is preinstall

within the package.

Currently the application is deployed on one of the remote servers own by Lionbridge

and it is being used by its employees. This application relief the users’ workload when

they have to perform part-of-speech tagging tasks due to several reasons. Firstly, as al-

ready stated the users are linguists and this application gives them the freedom to perform

the task without the need of any scripts or commands, which may be an obstacle for them.

Moreover, it handles the preparation and management of the files, which until now was

manual and time consuming process. And last, the users are not entitle to be in the office

and to use company workstations in order to perform their tasks. The application has

portable interface that can be accessed even from outside the corporate network.

45

Future work

As any other software application some improvements can be done in future in order for

system to be more efficient and usable. These upgrades can be divided into two catego-

ries. The first one concerns the user interface of the application. A good improvement can

be the integration of responsive design features. This will allow the user to use the appli-

cation through a wider range of devices such as tablet or phones. Moreover, some of the

elements, like help sections or error messages, can be moved to modular windows. This

feature may increase the size of the working area in the application as well as focus the

users’ attention to the content presented in these modular windows. The user interface for

some stages can be also modified to provide reusability features of the stage. For example

the testing stage can provide retesting feature with multiple data, not only the one used

during the process flow. This improvement will remove the need to start new process

flow in order to test with different data.

The second category focuses on the server side efficiency of the web application. A pos-

sible improvement might be providing an algorithm to read various types of files, such as

Word or Excel, that are not supported at the moment. This way the application will allow

the users to use a wider variety of data for their tasks. Another addition to the system can

be improving the file and folder structure, by allowing the users to interact with it. How-

ever, this feature might lead to the implementation of some sort of control system that

will monitor these interactions. And last but not least, a database can be implemented to

work side by side with the folder structure, which can provide some features like sorting

and viewing the data in various ways.

46

REFERENCES

[1] Apache OpenNLP Developer Documentation, The Apache Software Foundation,

website. Available (10.03.2015): http://opennlp.apache.org/documenta-

tion/1.5.3/manual/opennlp.html

[2] Apache OpenNLP Tools 1.5.3 API, The Apache Software Foundation, website.

Available (10.03.2015): http://opennlp.apache.org/documenta-

tion/1.5.3/apidocs/opennlp-tools/

[3] OpenNLP Proposal, The Apache Software Foundation, website, Available

(10.03.2015): http://wiki.apache.org/incubator/OpenNLPProposal

[4] G. L. Saveski, Accessing natural language processing engines and tasks , Tampere

University of Technology, 2014

[5] The Linux Information Project, GUI Definition, website. Available (8.09.2015):

http://www.linfo.org/gui.html

[6] L. Marquez i Villodre, Part-of-speech Tagging : A Machine Learning Approach

Based on Decision Trees, Universitat Politecnica de Catalunya, 1999, pp. 16‒20.

[7] Maximum Entropy Framework, SourceForge, website. Available (20.09.2015):

http://maxent.sourceforge.net/about.html

[8] Professional Translation and Localization Services, Lionbridge, website. Availa-

ble (10.11.2015): http://www.lionbridge.com/

[9] Microsoft, ASP.NET Overview, website. Available (10.11.2015):

https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx

[10] C# Reference, website. Available (10.11.2015): https://msdn.microsoft.com/en-

us/library/618ayhy6.aspx

[11] Microsoft Windows Server 2012, website. Available (10.11.2015):

https://www.microsoft.com/en-us/server-cloud/products/windows-server-2012-r2/

[12] NLTK 3.0 documentation, NLTK Project, website. Available (10.11.2015):

http://www.nltk.org/

[13] The Stanford Natural Language Processing Group, Stanford NLP Group, website.

Available (10.11.2015): http://nlp.stanford.edu/

[14] A Tutorial on Techniques and Applications for Natural Language Processing,

Philip J. Hayes, Jaime G. Carbonell, Carnegie-Mellon University 1983, pp 6-10

http://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html
http://opennlp.apache.org/documentation/1.5.3/manual/opennlp.html
http://opennlp.apache.org/documentation/1.5.3/apidocs/opennlp-tools/
http://opennlp.apache.org/documentation/1.5.3/apidocs/opennlp-tools/
http://wiki.apache.org/incubator/OpenNLPProposal
http://www.linfo.org/gui.html
http://maxent.sourceforge.net/about.html
http://www.lionbridge.com/
https://msdn.microsoft.com/en-us/library/4w3ex9c2.aspx
https://msdn.microsoft.com/en-us/library/618ayhy6.aspx
https://msdn.microsoft.com/en-us/library/618ayhy6.aspx
https://www.microsoft.com/en-us/server-cloud/products/windows-server-2012-r2/
http://www.nltk.org/
http://nlp.stanford.edu/

47

[15] S. B. Kotsiantis, Supervised Machine Learning: A Review of Classification Tech-

niques, University of Peloponnese, 2007, pp. 2‒4.

[16] T. Naseem, B. Snyder, J. Eisenstein, R. Barzilay, Multilingual Part-of-Speech

Tagging: Two Unsupervised Approaches, Journal of Artificial Intelligence Re-

search 36, 2009, pp.1‒3.

[17] Bootstrap, website. Available (16.04.2016): http://getbootstrap.com/css/

[18] E.D. Liddy, Natural Language Processing. Encyclopedia of Library and Infor-

mation Science, 2nd Ed., Marcel Decker Inc., 2001, pp. 1-10.

[19] A. Ratnaparkhi, Maximum entropy models for natural language ambiguity resolu-

tion, University of Pennsylvania, 1998, pp. 6‒51.

[20] M. Krol, I. Tarnopolsky, User Interfaces, The Gale Group Inc., 2002, website.

Available (26.04.2016) : http://www.encyclopedia.com/topic/User_Interface.aspx

[21] V. Beal, API - application program interface, website. Available (27.04.2016):

http://www.webopedia.com/TERM/A/API.html

[22] V. Beal, The Differences between Thick & Thin Client Hardware, 2006, website.

Available (accessed on 27.04.2016): http://www.webope-

dia.com/DidYouKnow/Hardware_Software/thin_client.asp

[23] V. Beal, The Differences between Thick, Thin & Smart Clients, 2006, website.

Available (accessed on 27.04.2016): http://www.webope-

dia.com/DidYouKnow/Hardware_Software/thin_client_applications.asp

[24] W3C Recommendation, Hypertext Transfer Protocol -- HTTP/1.1, 1996, Website.

Available (accessed on 27.04.2016): https://www.w3.org/Proto-

cols/HTTP/1.1/draft-ietf-http-v11-spec-01#Connection

[25] SharpNLP - open source natural language processing tools, Microsoft, website.

Available (27.09.2016): https://sharpnlp.codeplex.com/

[26] W3C Recommendation, HTML & CSS, website. Available (28.04.2016) :

https://www.w3.org/standards/webdesign/htmlcss

[27] Mozilla Developer Network and individual contributors, JavaScript, website.

Available (28.04.2016): https://developer.mozilla.org/en-US/docs/Web/JavaScript

[28] The jQuery Foundation, jQuery, website. Available (28.04.2016):

https://jquery.com/

http://getbootstrap.com/css/
http://www.encyclopedia.com/topic/User_Interface.aspx
http://www.webopedia.com/TERM/A/API.html
http://www.webopedia.com/DidYouKnow/Hardware_Software/thin_client.asp
http://www.webopedia.com/DidYouKnow/Hardware_Software/thin_client.asp
http://www.webopedia.com/DidYouKnow/Hardware_Software/thin_client_applications.asp
http://www.webopedia.com/DidYouKnow/Hardware_Software/thin_client_applications.asp
https://www.w3.org/Protocols/HTTP/1.1/draft-ietf-http-v11-spec-01#Connection
https://www.w3.org/Protocols/HTTP/1.1/draft-ietf-http-v11-spec-01#Connection
https://sharpnlp.codeplex.com/
https://www.w3.org/standards/webdesign/htmlcss
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://jquery.com/

48

[29] Microsoft, Internet Information Services (IIS), website. Available (29.04.2016):

http://www.iis.net/overview

[30] St. Walter, K. Hoffman, N. Dudek, ASP.NET 4 Unleashed, Pearson Education,

Inc., 2011, pp 237-268.

[31] University of Pennsylvania, Alphabetical list of part-of-speech tags used in the

Penn Treebank Project, website. Available (03.05.2016): https://www.ling.up-

enn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

[32] J. Spolsky, User Interface Design for Programmers, Apress, 2001, pp 5-8.

[33] D. Dragilev, What is User Interface Design? , website. Available (03.05.2016):

http://www.freshtilledsoil.com/what-is-user-interface-design/

[34] J. Nielsen, Parallel & Iterative Design + Competitive Testing = High Usability,

Nielsen Norman Group, website. Available (03.05.2016):

https://www.nngroup.com/articles/parallel-and-iterative-design/

[35] J. Nielsen, Improving System Usability Through Parallel Design, Nielsen Norman

Group, 1996, Available (03.05.2016): https://www.nngroup.com/articles/parallel-

design/

[36] J. Nielsen, 10 Usability Heuristics for User Interface Design, Nielsen Norman

Group, 1995, Available (03.05.2016): https://www.nngroup.com/articles/ten-usa-

bility-heuristics/

[37] Cleverism, Top Programming Languages used in Web Development, website.

Available(05.05.2016): https://www.cleverism.com/programming-languages-web-

development/

[38] Refsnes Data, The world’s largest web developer site, website. Available

(05.05.2016): http://www.w3schools.com/default.asp

[39] The PHP Group, PHP, website. Available (05.05.2016): https://secure.php.net/

[40] Oracle, Oracle Technology Network for Java Developers, website. Available

(05.05.2016): http://www.oracle.com/technetwork/java/index.html

[41] Microsoft, Microsoft Application Architecture Guide, 2nd Edition, Microsoft

Press, 2009 pp 55-67.

[42] Microsoft, Microsoft Application Architecture Guide, 2nd Edition, Microsoft

Press, 2009 pp 277-297.

http://www.iis.net/overview
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
http://www.freshtilledsoil.com/what-is-user-interface-design/
https://www.nngroup.com/articles/parallel-and-iterative-design/
https://www.nngroup.com/articles/parallel-design/
https://www.nngroup.com/articles/parallel-design/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.cleverism.com/programming-languages-web-development/
https://www.cleverism.com/programming-languages-web-development/
http://www.w3schools.com/default.asp
https://secure.php.net/
http://www.oracle.com/technetwork/java/index.html

49

[43] J. Frijters, IKVM.NET Home Page, website. Available (07.05.2016):

https://www.ikvm.net/

[44] St. J. Murdoch, Hardened Stateless Session Cookies, University of Cambridge,

2008, Available (20.05.2016): http://sec.cs.ucl.ac.uk/users/smurdoch/papers/pro-

tocols08cookies.pdf

[45] I. Dacosta, S. Chakradeo, M. Ahamad, P. Traynor, One-Time Cookies: Preventing

Session Hijacking Attacks with Stateless Authentication Tokens, Georgia Institute

of Technology. College of Computing,2012, pp 1-10

[46] J. G. Ochin, Cross Browser Incompatibility: Reasons and Solutions, International

Journal of Software Engineering & Applications, 2011, Available (21.05.2016):

http://www.airccse.org/journal/ijsea/papers/0711ijsea05.pdf

[47] Wordpress, Documented approach for cross browser compatibility, 2013, Availa-

ble (21.05.2016): https://testingnerds.files.wordpress.com/2013/03/documente-

dapproachforcrossbrowsercompatibility.pdf

[48] M. A. Hearst, Search user interface, Cambridge university press, 2009, website,

Available (21.05.2016): http://searchuserinterfaces.com/book/sui_ch2_evalua-

tion.html

[49] R. Jeffries, J. R. Miller, C. Wharton; K. M. Uyeda, User Interface Evaluation in

the Real World: A Comparison of Four Techniques, Hewlett-Packard Company,

1991, Available (22.05.2016): http://www.hpl.hp.com/techreports/91/HPL-91-

03.pdf

https://www.ikvm.net/
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/protocols08cookies.pdf
http://sec.cs.ucl.ac.uk/users/smurdoch/papers/protocols08cookies.pdf
http://www.airccse.org/journal/ijsea/papers/0711ijsea05.pdf
https://testingnerds.files.wordpress.com/2013/03/documentedapproachforcrossbrowsercompatibility.pdf
https://testingnerds.files.wordpress.com/2013/03/documentedapproachforcrossbrowsercompatibility.pdf
http://searchuserinterfaces.com/book/sui_ch2_evaluation.html
http://searchuserinterfaces.com/book/sui_ch2_evaluation.html
http://www.hpl.hp.com/techreports/91/HPL-91-03.pdf
http://www.hpl.hp.com/techreports/91/HPL-91-03.pdf

