
ALEKSI HÄKLI
IMPLEMENTATION OF CONTINUOUS DELIVERY SYSTEMS

Master of Science thesis

Examiner: Prof. Kari Systä
Examiner and topic approved by the
Faculty Council of the Faculty of
Computer and Electrical Engineering
on 4 May 2016

i

ABSTRACT

ALEKSI HÄKLI: Implementation of Continuous Delivery Systems
Tampere University of Technology
Master of Science thesis, 46 pages, 2 Appendix pages
June 2016
Master’s Degree Programme in Information Technology
Major: Pervasive Systems
Examiner: Prof. Kari Systä
Keywords: Continuous Integration, Continuous Delivery, Continuous Deployment

Continuous Integration, Delivery, and Deployment are subjects that have been on

the table in the recent years. The books Continuous Integration by Duvall et. al

(2007), and Continuous Delivery by Humble et. al (2010) are, however, the only

extensive literature that has been published on the subject. In addition to the

books there is information available based on miscellaneous conferences and scientific

publishments, but this information is fairly scattered and hard to compile.

A lot of companies suffer from long delays between implementing and delivering soft-

ware features. Multiple parties ranging from foreign developers to Finnish leader

projects have researched the benefits that can be gained from automating and mak-

ing software delivery continuous. Benefits include among other things rapid cus-

tomer feedback, lowered production delivery costs and delays, and smaller number

of errors in processes.

Companies do, however, have difficulties in implementing Continuous Integration,

Delivery, and Deployment. This is mainly due to the arbitrarity of the work. There

is information available on the subject, but collecting, studying, and distributing

that information can be very costly.

This Master of Science thesis researches the implementation a Continuous Delivery

system in a Finnish software company. The research work is done in an internal

project, and the aim is to implement a generic software build, test, and delivery

system. The process involves gathering business, technical, and user requirements,

compiling a requirements definition, designing a phased project plan, and executing

that plan to implement a Continuous Delivery system on top of the AWS cloud

platform.

ii

TIIVISTELMÄ

ALEKSI HÄKLI: Jatkuvien toimitusjärjestelmien toteutus
Tampereen teknillinen yliopisto
Diplomityö, 46 sivua, 2 liitesivua
Kesäkuu 2016
Tietotekniikan koulutusohjelma
Pääaine: Pervasive Systems
Tarkastajat: Prof. Kari Systä
Avainsanat: jatkuva integraatio, jatkuva toimitus, jatkuva tuotantoonvienti

Jatkuva integraation, toimitus ja tuotantoonvienti ovat viime vuosina paljon puhut-

tuja aiheita. Duvall et. alin kirja Continuous Integration (2007) sekä Humble et.

alin kirja Continuous Delivery (2010) ovat kumminkin ainoat kattavat teokset, jotka

on julkaistu aiheeseen liittyen. Näiden lisäksi aiheesta on saatavilla informaatiota

erinäisten konferenssien ja tieteellisten julkaisujen muodossa, mutta tieto on melko

hajanaista ja vaikeasti koottavaa.

Monet yritykset kärsivät pitkistä viiveistä ohjelmiston ominaisuuksien toteutuksen

ja niiden asiakkaalle toimittamisen välillä. Monet tahot ulkomaisista kehittäjistä ja

tutkijoista suomalaisiin kärkihankkeisiin ovat tutkineet etuja, joita saadaan toimi-

tuksen automaatiosta ja jatkuvaksi tekemisestä. Etuja ovat muun muassa nopea asi-

akaspalaute, alentuneet tuotantoonvientikustannukset ja -viiveet sekä vähentyneet

virhemäärät prosesseissa.

Yritysten on kumminkin vielä vaikea toteuttaa jatkuvaa integraatiota, toimitusta

ja tuotantoonvientiä, koska prosessien toteuttamiseen ei ole paljoakaan eväitä. Ai-

heesta on paljon hajanaista tietoa, mutta tämän tiedon kokoaminen, opiskelu ja

välittäminen on erittäin kallista.

Tämä diplomityö tutkii ohjelmiston jatkuvan toimittamisen toteutusta suomalaisessa

ohjelmistoyrityksessä. Tutkimustyö suoritetaan yrityksen sisäisessä projektissa, jonka

tavoitteena on toteuttaa yleishyödyllinen ohjelmiston koonti-, testaus- ja toimitus-

järjestelmä. Projektin aikana suoritetaan liiketoiminta-, teknologia- ja käyttäjä-

tarpeiden selvitys. Näistä tarpeista kootaan vaatimusmäärittely, jonka pohjalta

tehdään projektisuunnittelma sekä toteutus ohjelmiston jatkuvalle toimituspalvelulle

AWS-pilvipalvelualustaa hyödyntäen.

iii

TABLE OF CONTENTS

1. Introduction . 1

1.1 Background . 1

1.2 Scope of this Thesis . 3

1.3 Timeline of the Project . 3

2. What is Continuous Delivery? . 5

2.1 Terminology . 7

3. Why is Continuous Delivery important? 8

3.1 Adaptation of Continuous Delivery 8

3.2 Advantages of Continuous Delivery 9

3.3 The Continuous Delivery Maturity Model 10

3.4 Discussing the Continuous Delivery Maturity Model 12

4. How Can Continuous Delivery Be Implemented? 13

4.1 Analyzing the Different Paths . 14

4.2 Researching Continuous Delivery Systems 15

4.3 Discovering Fan-in and Fan-out . 17

4.4 Cost Models for Continuous Delivery Options 18

5. Requirements Specification . 20

5.1 Gathering Requirements . 21

5.1.1 Surveying the the End-Users . 21

5.2 Compiling the Requirements Specification 23

6. Choosing the Right Technology for Continuous Delivery 26

6.1 Deciding on Cloud Platforms versus Self-Hosted Solutions 26

6.2 Choosing the Right Open-Source Alternative for Vincit 27

7. Designing a Continuous Delivery System 28

7.1 Network Architecture . 28

iv

7.2 Software Architecture . 31

7.2.1 Operating System . 31

7.2.2 Orchestration and Monitoring Tools 32

7.3 System Cost and Scalability . 33

8. Implementing a Continuous Delivery System 38

8.1 Implementing the Continuous Delivery System 38

8.2 Analyzing, Managing, and Optimizing System Cost and Performance 40

8.3 Refactoring the System for New Requirements 42

9. Project Evaluation and Reflection . 44

9.1 System Costs . 44

9.2 Benefits achieved . 45

9.3 Measuring Progress for Continuous Delivery 46

References . 47

APPENDIX A. Vincit Tooling and Service Survey Highlights 52

v

LIST OF FIGURES

1.1 Initial project timeline . 4

2.1 Relations of Continuous Integration, Delivery and Deployment 6

2.2 Difference between Continuous Delivery and Continuous Deployment 6

3.1 Continuous Delivery Maturity Model 11

4.1 Fan-in and Fan-out in build tools . 17

7.1 Network design for Go build agents and servers 30

7.2 Software design for Go build agents and servers 33

7.3 AWS performance comparison per VM instance class 36

7.4 AWS pricing comparison per VM instance class 37

8.1 Initial pure AWS cloud architecture for GoCD 39

8.2 Refactored hybrid AWS cloud architecture for GoCD 43

vi

LIST OF TABLES

4.1 Open-Source Continuous Integration and Delivery tools 16

5.1 Initial technology support requirements 24

7.1 Network segments available in an AWS VPC 29

7.2 Network latencies to AWS service centers from Kuopio, Finland . . . 29

7.3 Software properties for select IT orchestration and automation tools . 32

7.4 Computing capacities for modelled AWS EC2 system nodes 35

7.5 AWS capacity pricing in Frankfurt 35

7.6 AWS EC2 t2.medium instance pricing in Frankfurt 35

vii

LIST OF ABBREVIATIONS AND SYMBOLS

AMI Amazon Machine Image

APT Advanced Package Management Tool

AWS Amazon Web Services

CapEx Capital Expense

CD Continuous Delivery

CI Continuous Integration

CIDR Classless Inter-Domain Routing

CM Configuration Management

DB Database

EC2 Elastic Compute Cloud (in AWS)

GoCD Go Continuous Delivery

IaaS Infrastructure-as-a-Service

IP, IPv4, IPv6 Internet Protocol, version 4 and 6

ISP Internet Service Provider

LTS Long-Term Support

OpEx Operating Expense

OS Operating System

PaaS Platform-as-a-Service

RPM RPM Package Manager

SaaS Software-as-a-Service

SCM Source Control Management

TCO Total Cost of Ownership

TFS Team Foundation Server

TUT Tampere University of Technology

URI Uniform Resource Identifier

URL Uniform Resource Locator (special case of URI)

VCS Version Control System (such as git or Subversion)

VPC Virtual Private Cloud (in AWS)

YUM Yellowdog Updater, Modified (package manager)

viii

PREFACE

A modern software project is ideally developed, tested, and delivered to customers

rapidly, keeping the time delta between the conception of a software feature and

its activation by users as small as possible. Speed enables monetization and value

delivery of features for companies, adjusting software functionality based on cus-

tomer feedback for management, and increasing productivity for development teams.

These all sum up to competitive edges.

This thesis discusses the research and development of an open-source, private cloud

based Continuous Delivery system, which enables faster software delivery for Vincit,

the Finnish software company, in the spring of 2016. This thesis is intended for peo-

ple studying and implementing Continuous Integration, Deployment, and Delivery,

and attempts to shed light to challenges and practicalities of software delivery.

I would like to thank Vincit for sponsoring the writing of this thesis, Tampere

University of Technology and its staff for all the direction and knowledge that is

available to Computer Engineering students, and all the individuals who have have

helped in the course of this thesis project by generously sharing their experience,

knowledge, and patience with me. I would like to especially thank professor Kari

Systä for his insight and experience in directing of this thesis work.

I would also like to thank my family, especially my mother and father, for supporting

and steering my ambitions in this life. The endeavour of this Master’s degree and

thesis would have been wholly another if it wasn’t for you.

Always remember that an education is a privilege. A free education such as that

which we have in Finland is a major one. We should all do our best to give back.

Little by little, one travels far. - John Ronald Reuel Tolkien

In Kuopio, Finland on May 24, 2016

Aleksi Häkli

1

1. INTRODUCTION

In 2015 a project at Vincit Oy, the Finnish software company, was started. The

project’s primary goal was to implement support for complex Continuous Delivery

pipelines with multiple build, test, and deployment platforms. Our motivation was

to make delivering software to our customers faster and less error-prone by the

means of software system automation. Vincit kindly agreed to sponsor the writing

of this Master of Science thesis as a part of the project in the hope of providing

useful information and documentation to others undertaking such a task.

In this technically oriented thesis we largely focus our discussion on the implemen-

tation of a customized open-source Continuous Delivery system for a medium-sized

software company. The different phases we look into include research, requirements

definition, design, implementation, and refactoring of a whole Continuous Delivery

software system on top of pure cloud infrastructure. This purely cloud based system

architecture later mutates into a hybrid cloud architecture, and we briefly discuss

transforming from pure cloud to hybrid cloud solutions.

1.1 Background

Contemporary software development teams and their customers might expect that

their software can rapidly and automatically

1. be built and compiled to a deliverable format on source code changes;

2. be tested on unit, integration, and end-to-end levels;

3. be delivered to customer for evaluation;

4. be deployed to production at each and every stage of development, and;

5. be monitored in each of the aforementioned stages.

1.1. Background 2

While this is indeed the state where most would like software development to be in,

it is very rare for software projects to have mechanisms in place to support all of

the aforementioned.

Many software development teams have a working version control system or VCS

[1] such as Git [2] or Subversion [3] incorporated into their workflow. Many teams

also have tests that test software functionality on unit, such as class or module

level. These level of tests are called unit tests [4, 5]. Some teams have integration

tests [6] implemented, which test how two or more units of software work together.

For example, a generic sales company could benefit from testing how warehousing

and sales systems might integrate with each other in isolated testing environments.

Some modern companies have end-to-end tests [7] in use. End-to-end tests test

how complete software systems function as whole when deployed into a staging or

production environments, reducing the need for manual testing and reducing the

amount of regressions that are introduced into systems over time in development

processes. These are some types of tests that can be ran automatically to verify

software functionality. [8, 9]

In practice many software projects are limited to a version control system containing

the project source code and developers running an array of unit tests manually to

test if software units function as intended with some input, and if the system seems

to function as expected. Some contemporary projects might have an automated

Continuous Integration server that periodically builds the software based on the

current time or a trigger such as a VCS commit.

There are a number of books, articles, and blog posts describing how not test-

ing software can cost time for the software development team and money for the

customer. Not testing software units introduces logic errors; not testing software

integrations introduces problems in building products from modular projects; not

testing end-to-end functionality introduces problems in deploying the product when

single deployments last for hours or days. These all lead to delays in receiving

feedback on product features and functionality. [10]

Most companies would like the aforementioned build-test-deliver cycle to be auto-

mated, but lack the resources in personnel or infrastructure, or the will of imple-

menting automation to the degree that developers could confidently say they can

deliver a recent, working version of their software in, for example, one day’s time

period to production, or demonstrate the latest version of the software to a customer

1.2. Scope of this Thesis 3

on the spot. There might not be enough knowledge about such systems to make it

viable to implement them in-house. The costs might be too high, because the initial

investments have not been made to set up baseline and infrastructure to train per-

sonnel. The technologies people are working on might not have any explicit support

for automated testing built into them. Each and all of these reasons make it more

difficult to set up Continuous Integration, Delivery, or Deployment for a project.

1.2 Scope of this Thesis

In this thesis we discuss what Continuous Integration, Delivery, and Deployment are

and discuss and deepen our knowledge on Continuous Delivery. We research and

gather requirements for a Continuous Delivery system. Further, we choose a way

of implementing Continuous Delivery, and based on our choice we design a custom

Continuous Delivery system architecture on top of the Amazon Web Services or

AWS cloud [11], and implement a private cloud based Continuous Delivery system

on top of open-source software called Go Continuous Delivery or GoCD [12].

This thesis acknowledges that there are multiple ways for implementing Continuous

Delivery pipelines on top of Software, Platform, and Infrastructure-as-a-Service or

SaaS, PaaS, and IaaS [13] solutions and platforms, as well as on-premise. These

providers and solutions might fit your requirements or they might not. In this thesis,

we have specific reasons for wanting to set up and administer a system ourselves.

You might have differing needs, but we want this thesis to provide useful insight for

you.

1.3 Timeline of the Project

In the initial kick-off meeting of the project we decided to split work into phases

that were planning, research and surveys, prototyping and AWS setup, implemen-

tation, and refactoring. Design of the actual system would take place in between

the planning and prototyping steps, and corrections to the design would be made

along the way. Each step would interleave with the others, to make working in an

agile manner possible, but time would be allocated for tasks separately according

to our collective assessments of task difficulty and time requirements. Our project

goal was to provide an useful suite of tools to our developers in the spring of 2016.

The project timeline is visualized in figure 1.1.

1.3. Timeline of the Project 4

Figure 1.1 Initial project timeline

In the first planning and research phases we plotted the timeline and scope of the

project and looked into different Continuous Integration, Delivery, and Deployment

solutions. We also surveyed our developers and management for their requirements.

After this we started prototyping the system on AWS to see if a cloud platform would

be suitable for our use. After this prototyping we started the real implementation,

and adjusted the solution based on feedback from developers and the problems we

faced. After documenting the system we will educate users and introduce Continuous

Delivery and the new tooling to our project teams and provide support for them.

5

2. WHAT IS CONTINUOUS DELIVERY?

What does everybody mean when speaking of different continuous practices in the

software development world? How are Continuous Integration, Delivery, and De-

ployment related to each other, and can some exist without the others?

Continuous Integration was coined as a term and became a mainstream as a concept

after the defining book Continuous Integration by Paul M. Duvall, Steve Matyas

and Andrew Glover was published in 2007 [6]. Continuous Delivery is a more recent

concept defined by Jeff Humble and David Farley in their book Continuous Delivery,

published in 2010 [8]. Continuous Deployment has not received a titled book as of

yet.

Continuous Integration means that building and unit testing software is automatic,

reproducible and frequent. Frequency means that software is built on periodically

or, for example, on every version control commit. The important thing to note about

Continuous Integration is that the testing process, the so called software integration,

is automated with tools that do not require manual intervention in building and unit

and integration testing of software. [6]

Continuous Delivery means making sure that the software is always deployable.

Software is built and tested as in Continuous Integration, and also deployed into

testing environments for further testing. The main thing is that build versions are

automatically proven to be deployable. [8]

Continuous Deployment includes always automatically deploying software to pro-

duction when it is committed to version control branches corresponding production

environments and qualified by the automatic tests to be production-ready. The

build, test, and deployment pipeline is not touched manually after version control

commits are made. [14]

The difference between Continuous Delivery and Deployment is that in Continuous

2. What is Continuous Delivery? 6

Delivery software is proven deployable and production deployments are manually

triggered. In Continuous Deployment software is automatically deployed to produc-

tion. Continuous Delivery and Deployment are often used in the same context and

can be mistaken with each other. [14]

We can also visualize the relations and differences of Continuous Integration, Deliv-

ery, and Deployment.

Figure 2.1 Relations of Continuous Integration, Delivery and Deployment

The relations of the different terms can be seen as subsets and supersets of each

other as in figure 2.1. One cannot implement Continuous Deployment without first

implementing functional Continuous Integration and Delivery systems.

Figure 2.2 Difference between Continuous Delivery and Continuous Deployment

A visualization of the difference between Continuous Delivery and Deployment is

represented in figure 2.2. Yassal Sundman defined the differences of Continuous

Delivery and Deployment in her 2013 blog post [15]. Carl Caum from Puppet [16]

later offered an expert view on the difference between Continuous Delivery and

Deployment in a 2013 blog post [14]. Both definitions were based on the material

of Jezz Humble, who in turn referred to Continuous Deployment first in 2010 [17],

2.1. Terminology 7

making a statement about Timothy Fitz’ blog post from 2009 [18]. From this chain

of online material we can date the Continuous Delivery and Deployment concepts

to be at least 7 years old, although they have been used well before that as well

[19, 20].

2.1 Terminology

For the sake of clarity, in this thesis we define different Continuous terms in the

following way:

• Continuous Integration is a group of practices that aims to improve software

development quality and speed with build and test automation in order to

improve reproducibility and to remove the chance of errors from manual build

step execution or environment state mutation in build processes. Continuous

Integration is a subset of Continuous Delivery;

• Continuous Delivery is a group of practices that includes Continuous Inte-

gration and adds to them the automated end-to-end testing and delivery of

software in such a way that software builds are stateless, reproducible, and

proven deployable across target environments and platforms. Continuous De-

livery makes delivering recent software iterations to production at any given

time feasible and aims at guaranteeing deployability. Continuous Delivery

is a superset of Continuous Integration, and a subset of Continuous Deploy-

ment. Continuous Delivery does not include automatically deploying software

to production environments;

• Continuous Deployment is a group of practices that includes the aforemen-

tioned Continuous Integration and Delivery practices but adds to them the

practice of automatically deploying software to production environments. Con-

tinuous Deployment ideally removes the need of manual production environ-

ment updates and aims to roll-forward only deployments. Continuous Deploy-

ment is a superset of Continuous Delivery.

We hope to avoid confusion with these definitions, which are based on contemporary

literature [6, 8, 14, 15, 17].

8

3. WHY IS CONTINUOUS DELIVERY

IMPORTANT?

The main point of Continuous Delivery is to deliver software to the end-user more

repeatably, reliably, and predictably. This makes delivery faster, lowers costs, and

reduces risk involved in deployments. Receiving feedback is faster and the amount

of errors and wrong directions taken in development is reduced. [8, p. 17-22]

Continuous Delivery practices can greatly save time and decrease costs in projects.

Development teams can be more certain that software has been tested and ready

for production environment when there are successfully tested and deployed builds

rolling from the build pipeline into staging environments. Managers and sales per-

sonnel can happily tell the customer that software is ready to be deployed when the

customer asks to see the latest sprint result in action. Customers do not have to

wait for a week or a month of deployment delays. [8]

Continuous Delivery can be implemented in stages, supporting processes where the

need for automation and orchestration is greatest, or just implementing the parts

which offer the most returns for invested money and time. The degrees of imple-

menting automation have been defined in the Continuous Delivery Maturity Model

which offers guidelines for what to implement in what order to be more efficient

[21, 22, 23].

3.1 Adaptation of Continuous Delivery

Continuous Delivery search hits and adoption have been growing in popularity for

the last few years [19, 24]. Since Humble and Farley published the self-titled book in

2010, which offered a firm basis for discussion and concrete implementation of Con-

tinuous Delivery practices [8], many company executives have begun understanding

the need to shorten software delivery times and deltas. The Agile manifesto has

been promoting shorter develop-build-test-deploy cycle times for a long time, but

3.2. Advantages of Continuous Delivery 9

concrete steps aside from talking about process agility have been sparse in companies

[25].

A research paper studying the degrees of Continuous Deployment implementation

in companies in 2015 by Tampere University of Technology and Aalto University

researchers in Finland was recently published [24] as part of the Need 4 Speed

project [26], shedding light into how successful companies have been in adopting

automation into their software release flows. The research team found that teams

have overall enjoyed great success in the implementation of Continuous Delivery to

a certain degree, but are yet to implement Continuous Deployment as part of their

repertoire due to Continuous Deployment being a fairly new thing and customers

not yet adopting the ideology. Amazon is one of the few public examples to employ

Continuous Deployment as part of their workflow for scalability reasons [27].

3.2 Advantages of Continuous Delivery

For many years the process of delivering the software product to the customer has

been a rather tedious process. Building software, testing it, and making a deliverable

can require very specialized knowledge. Information is not required only for a specific

software technologies and domain problems. Build machinery, target platforms,

and end-user affect the process as well. All of the aforementioned combined make

software delivery and deployment

• time consuming and expensive, because when software is built manually, the

build processes usually take time and require someone to watch over them.

Builds for web projects usually take 15 minutes to complete, while builds for

large native C projects can take multiple hours;

• error prone, because when software is built manually, there is room for human

error where build and configuration steps are repeated by hand, and;

• mutating and evolving because software requirements and properties and even

target platforms constantly change.

All of the aforementioned make software delivery slow and expensive. In other

words, either companies, customers, or both will end up paying if software is built

3.3. The Continuous Delivery Maturity Model 10

and delivered manually. The costs also cumulate over long times when the num-

ber of builds grows and expertise gathers into knowledge silos between teams and

personnel. [8]

In addition to the disadvantages of not using Continuous Delivery, reported benefits

of Continuous Delivery are, among other things, shorter time-to-market, feedback

benefits in feature steering, reliability of releases, quality and customer satisfaction

improvements, and improved efficiency [28].

Large companies have researched and implemented Continuous Integration, Delivery

and Deployment as part of their IT strategies for a multitude of different reasons

[10, 22, 23, 24, 27, 28]. The only question that remains for us is when and in what

order should we start implementing Continuous Delivery as part of our processes?

3.3 The Continuous Delivery Maturity Model

Continuous practices enveloping integration, delivery and deployment practices have

gotten a serious look in the recent years when smaller and larger companies have

retrospected their software development and delivery practices. In between 2013 and

2015 a number of papers emerged describing the benefits of defining a framework

and a model for implementing Continuous Delivery.

IBM has published papers on Continuous Delivery maturity assessment in 2013 and

2014 proposing a basis for so called maturity models [22, 23]. The notable Agile

software company ThoughtWorks commissioned a technical report from Forrester

Consulting in 2013 to find out the current state of software automation in companies

[29]. Rehn et. al described a simplified, common-sense approach to Continuous

Delivery in their InfoQ post in 2013 [21]. Research has since taken place to explore

the state of Continuous Delivery and Deployment in companies [24, 28].

IBM has mainly analyzed the effect of having a framework in place for keeping

different parties of the development and deployment cycle synchronized and on a

reasonable delta in terms of competence and sophistication to mitigate effects of

some area of the software delivery chain falling behind or being too much ahead of

others to reap balanced benefits. This seems to be advantageous to a large software

company. The technical reports advice that a framework be established on the

delivery time of software. [23]

3.3. The Continuous Delivery Maturity Model 11

ThoughtWorks has found that many business executives, departments and software

delivery companies have different perspectives on how fast a software order-delivery

cycle should be. Most (51%) surveyed executives in 2013 expected their ordered

software to be delivery and deployment ready in less than 6 months time. Most IT

executives had differing views. The study proposes that a model be established to

evaluate how fast software can be delivered in working condition. [29]

Figure 3.1 Continuous Delivery Maturity Model

The InfoQ article highlights the IBM findings and go over different aspects of soft-

ware projects, proposing that each aspect and part of a development organization

such as culture and verification, should be split into different levels, more specifi-

cally Basic, Beginner, Intermediate, Advanced, and Expert. These different facets

of software projects and organizations should be developed in respect to each other,

balancing the amount of automation and Continuous Delivery methodology that

is introduced into software development and delivery. Figure 3.1 illustrates the

model InfoQ proposes, which is largely in concert with the suggestions IBM makes.

[21, 22, 23].

3.4. Discussing the Continuous Delivery Maturity Model 12

3.4 Discussing the Continuous Delivery Maturity Model

Large companies practice software business at a large scale where implementing the

correct processes at the correct times can be vital. When software projects gain

traction they start requiring support from DevOps and business processes. Business

operations can similarly start requiring support from software development processes

when scaling. Prime examples of scaling businesses are ecommerce systems, SaaS

platforms, and game development.

Maturity models for Continuous Delivery offer a ready-thought and research-backed

framework for implementing Continuous Delivery practices for software development

in stages. They aim to make lives of people deciding on the implementation of

continuous processes simple, and are intended to offer a roadmap for executives,

management, and developmen teams implementing continuous practices themselves.

Their purpose is to guide teams to the right path.

At the same time it is important to remember, that the processes are implemented

in large companies at scale, and it may not be the most effective option for a small

or medium sized company to implement the same things. Sometimes companies

should not enforce continuous methodologies at all, at least on the scale Maturity

Models would like to illustrate. In each and every situation it is necessary assess

the possible benefits of continuous practices in a company and analyze what is the

problem that is being solved without looking blindly at the model. There does not

seem to be considerable amounts of validation data available on the maturity models

as of yet, so you should use the best judgement available when utilizing them.

13

4. HOW CAN CONTINUOUS DELIVERY BE

IMPLEMENTED?

There are many tools for Continuous Integration and Delivery written in multiple

languages. Java is a much used runtime powering services such as Hudson Contin-

uous Integration [30] (an important project, but presently largely deprecated by its

alternatively licenced fork Jenkins), Jenkins [31], and Go Continuous Delivery [12].

There are also alternatives for Java powered platforms such as Buildbot [32] written

in Python, Travis [33] written in Ruby, and Strider [34] and Drone [35] written in

Node.js. These are just few examples of the tools available for implementing Con-

tinuous Integration. Many of the listed alternatives are available as partly or fully

open-source software.

Equally many architectural models exist for Continuous Integration and Delivery

systems. Systems range from simple examples running bash or Python scripts to

multi-tiered enterprise solutions that can be hosted in multiple data centres. For

example, the simplest of build systems can be implemented in hours on top of

Buildbot on a single computer, just requiring a Python runtime on any operating

system. Some platforms such as Travis or Snap CI [36] require an enterprise licence

and a multiple machine set up just to operate on-premise. Sometimes enterprise

services such as Team Foundation Server [37] are needed to orchestrate building and

deployment of complex enterprise scale C# solutions and sometimes simple shell

scripts are enough to build and test whole software products.

A noteworthy thing about Continuous Delivery is that it does not necessarily require

any tools that are specifically manufactured for Continuous Delivery. Platforms

such as Buildbot can be perfectly viable for implementing Continuous Delivery for

a software product, but the set up of the pipeline from development to production

server deployments with configuration management and source code builds can be

more difficult to master and scale. Some specifically tailored software platforms

can be much easier because they support the scenarios that you can run into when

4.1. Analyzing the Different Paths 14

setting up Continuous Delivery out of the box.

This said, developers have a myriad of options for adopting Continuous Delivery

into their work and project flows. Some of the obvious options are

• using a free or licenced hosted SaaS solution such as Travis CI or Snap CI;

• buying an enterprise solution with support and hosting it on-premises, or;

• hosting an open-source solution, on-premise or in the cloud.

Each of the aforementioned options can be a valid one, depending on the current and

future situation and conditions in the company. Smaller companies should prefer

to use lightweight solutions and avoid over-committing to one path unless there

is a clear need for a heavyweight system. Larger enterprises might need multiple

different systems to support their operations. In each case, an understanding of the

different alternatives and their service and cost models is necessary in making the

right choice.

4.1 Analyzing the Different Paths

Service-driven SaaS solutions are offered by multiple different vendors. The idea of a

SaaS solution is that you buy the right to use a service, most often a centrally hosted

one [38]. Most SaaS solutions are pre-configured for most common technologies and

offer good basic functionality for Continuous Integration in terms of build machinery

and unit test support. Some modern SaaS software offers support for very complex

Continuous Integration and Delivery pipelines. A good example is a Snap CI that

offers both simple and complex build pipeline support for a rather reasonable price

and also bundles in enterprise support plans [36]. Another contenders are the widely

used Travis CI and Drone.io, both open-source alternatives that offer software that

has integrations with the most widely used cloud-based version control providers

such as GitHub [39] and Bitbucket [40]. SaaS solutions might be a good option for

those who are developing open-source services, which have free hosting, or customer

projects where maintaining your own build machinery is not feasible in terms of

time or money spent. Many users find that SaaS services offer adequate capabilities

in proportion to the price paid and are happy with them.

4.2. Researching Continuous Delivery Systems 15

Enterprise licenced SaaS solutions are good for those who wish to buy a solution they

can host on their own premises or, for example, cloud infrastructure, but wish to

have enterprise support or exclusive access. Good examples are developers of large

software products such as Microsoft or Oracle, who in fact develop the aforemen-

tioned Team Foundation Server and Hudson platforms, and use them to run parts

of their own integration platforms. Different options exist for this: proprietary and

non-proprietary, even open-source solutions with company backing. For example,

Travis CI is primarily based on SaaS business model, but is partially open-source

and can be hosted on your own private infrastructure as an enterprise licenced ver-

sion. Enterprise licenced solutions can be good for companies that have a large

infrastructure and project portfolio and wish to simply buy a solution that has the

required features to build and test their software without the extra need for mainte-

nance. Sometimes customization is a problem and the degree of vendor lock-in can

be considerable in enterprise solutions.

Open-source solutions are an option for those who are willing to invest into the

development, maintenance, and support of their own Continuous Service portfolio

and have the necessary resources to upgrade and improve their systems continu-

ously. This might require a team of some sort, working on the build, integration

and delivery machinery part or full time. Usage of open-source solutions might

be harder than of their commercial brethren, and documentation and training can

be costly. Often a need for in-house support comes bundled in with open-source

solutions, as one cannot simply install open-source software platforms and expect

them to run unmaintained in perpetuity. Open-source solutions might be good for

companies who need diverse platform capabilities and offer customizability at the

price of expertise.

4.2 Researching Continuous Delivery Systems

There are a number of factors that should be looked into when making a decisions

regarding Continuous Delivery tooling. Not all platforms offer enough features to

make them feasible to use and support in the long run. Some might lack present or

future support for a specific framework or language. Some might be overly complex

to host, develop, and customize.

Management should, of course, be asked to specify their requirements as clearly as

possible. Developer requirements should be researched. A good way to find out

4.2. Researching Continuous Delivery Systems 16

Table 4.1 Open-Source Continuous Integration and Delivery tools

Software Implementation Published Maintainer Licence
Buildbot Python 2003 Mitchell et. al GPL 2.0
Go Java 2007 ThoughtWorks, Inc. Apache 2.0
Jenkins Java 2011 Kawaguchi et. al MIT
Travis CI Ruby 2011 Travis CI, GmbH MIT
Strider CD Ruby 2012 Radchenko et. al MIT
GitLab CI Ruby 2012 GitLab, Inc. Open-source
Drone Go 2014 drone.io Apache 2.0

technological metrics is to survey the developers. Such a survey can reveal language

and tool usage metrics that would otherwise be hidden information and very useful

in implementing systems.

At Vincit we first started researching different options and models for Continuous

Delivery systems by looking into the open-source systems that other companies were

using and exploring technological, architectural, and cost models of such systems. At

the research phase we would take a look at existing Continuous Integration, Delivery,

and Deployment platforms and hosted solutions from the following perspectives:

• Maturity and age: Is the platform stable? Will it exist in 5 years’ time. Has

it showed signs of evolution in its lifespan?

• Implementation technology: What language is the platform implemented in?

Can it be expanded easily by us?

• Architecture: Does the architecture make it possible to host the solution our-

selves? Does it scale vertically and horizontally?

• Licence: Is the platform licence permissive? Is it truly open-source, permissive,

and modifiable?

We gathered the most prominent open-source Continuous Integration and Delivery

systems into table 4.1. Out of these tools, we saw the earliest project, Go Continuous

Delivery, which was started in 2007 as a project named Cruise, to be the most

prominent choice that we would like to further explore. We had previously used

Jenkins, and have a lot of Java expertise in-house.

4.3. Discovering Fan-in and Fan-out 17

4.3 Discovering Fan-in and Fan-out

We discovered the concept of fan-in and fan-out on build tool level when we re-

searched the GoCD tool. Fan-in means that a component can depend on multiple

upstream components. Fan-out means that a component can be a dependency for

multiple downstream components in a build chain.

Fan-in and fan-out are relevant concepts in choosing tools when implementing Con-

tinuous Delivery and their meaning is illustrated in figure 4.1. In the diagram we see

that a product version is dependant on UI and server versions, and that a product

build provides a dependency for testing and the integration environment. In other

words, a whole product will be built and tested as a whole when there is change

anywhere in the dependency chain. Fanning in and out are important when one

is abstracting a build pipeline and thinking of builds as streams of interdependent

changes. Some complex projects need support for graph-like dependency models

on the build tool level to correctly reflect software composition on the architectural

level. Otherwise build tool configuration and management might not be feasible.

[41]

Figure 4.1 Fan-in and Fan-out in build tools

Fan-in and fan-out are rare features in Continuous Integration, Delivery, and De-

ployment tools, and we did not find them in any other tool than GoCD. For example,

the very popular Jenkins doesn’t support fan-in and fan-out dependencies, which we

require in our complex projects, although they might be possible to support with

plugins.

4.4. Cost Models for Continuous Delivery Options 18

4.4 Cost Models for Continuous Delivery Options

Different kind of Continuous Delivery solutions have different cost models, which

are essential knowledge when making management decisions regarding the imple-

mentation and lifespan of Continuous Delivery systems. Terms such as operating

expenses and capital expenses become relevant [42, ch. 5]. In short, capital expenses

are multiple-term costs that are tied to a system for a long time, such as data centre

build and system vendor acquisition costs, network infrastructure acquisition and

initial large licence purchases. Operating expenses are single-term costs that are tied

to running the system at a certain load, for example network transfer and electricity

costs and manual maintenance labor. Using an operation-ready SaaS platform has

a fairly simple cost model: you can pay for what you use. Implementing a platform

yourself with on-premise hardware or cloud hardware can have very different cost

models which can include servers acquisition, management, power, cooling, backups,

maintenance, licences, and an assortment of other things, which can be very hard

to predict.

If you are acquiring a platform licence to, for example, Travis CI, Circle CI or Snap

CD, the platform cost model is straightforward. You pay for a licence and get a

certain amount of build capacity. The costs are predictable if project sizes and

capacity needs are predictable.

If you are building your own platform and using the cloud, the expenses become

more complicated to predict. Most cloud service providers bill you for networking,

CPU, RAM, and storage capacity. For example, Amazon Web Services bills you for

network components such as VPN connectivity and outbound traffic (in respect to

the Amazon Web Services cloud platform), server usage and storage capacity for

servers and storage units. In addition to this, if you are using proprietary operating

systems, you will have to pay the operating systems licences, such as Windows

or Red Hat Enterprise Linux, licences on per-machine basis. If you are using a

proprietary software solution, you will most probably be required to pay for a usage

licence to your Continuous Delivery tool. [43]

If you are building your own platform on-premise, you will, in addition to the cloud

platform components, have to pay for power, cooling, and staff work. You will also

have to have resources for handling with power outages, loss of data, et cetera.

These different expenses can be found in detail from multiple data centre design

and administration books and should be looked into if deciding to host a solution

4.4. Cost Models for Continuous Delivery Options 19

on-premise.

Making a difference between operating and capital expenses is vital. Capital ex-

penses mean up-front investments to servers, racks, power supplies, networking

equipment and the like. These investments have to be made before a system can

even be built, and are tied to the system at once. Operating expenses on the other

hand are exemplified by power, networking costs, and virtual server prices that are

accumulated from operating the system over time.

From these concepts we arrive to fixed and floating costs. Fixed costs are baseline

costs that are tied to the running of the system and rarely change unless scaling

production: data centers and equipment are examples of fixed costs. Floating costs,

on the other hand, are costs that change in the lifespan of the system.

The ability and willingness to pay large fixed costs and make purchases up-front

affects the choice of service and hosting model. If a company can predict capacity

needs in detail and has liquidity, then an upfront investment can be wise. If, on

the other hand, capacity need evolve and can change drastically, it might be wise

to build a Continuous Delivery system with more operating than capital expenses.

This way, capital is not tied to fixed investments, and risks are reduced.

20

5. REQUIREMENTS SPECIFICATION

Defining and prioritizing requirements for a Continuous Delivery system is much the

same as requirements definition in any IT project. The exception is that end users

are software development professionals, which are a homogeneous group. This is the

case with Vincit with all developers being experienced with a multitude of software

systems.

After understanding the client or software target group, the requirements specifica-

tion process typically involves three main phases [44].

The first step is typically the gathering of business requirements. This usually entails

asking the right questions and finding out what the business needs and outcome goals

are for the project. Are we trying to solve a new problem or improve some existing

solution? Are we trying to create a new product or system? Is the system we will

be working on purely for internal use or offered to external audiences? How much

time and money do we have to use?

After determining what is the high-level task that we are trying to perform, we can

start working on user requirements and finding out what the end-users are trying

to achieve with such a system. Is the Continuous Delivery system used for a single,

repetitive task? Are we performing a lot of differing tasks? What kind of integrations

do we need to provide for users? From where and how must the system be usable?

From business and user requirements we can transition to defining functional and

non-functional requirements for the system and gathering constraints that will be

set to the system. What programming languages and platforms do we need to

support? How many concurrent builds will we be executing? Where do we need to

store build results?

5.1. Gathering Requirements 21

5.1 Gathering Requirements

An important part of the design and development of a software system is finding out

what our end-users would like in such a system. Our end users are our developers

and software engineers. Hence, we were motivated to find out what exactly a group

consisting of our own employees with a very specific demography was expecting

from such a system. We designed a survey and ran it for all our personnel to

provide information about our current way of developing software.

In structuring surveys it is important to take great care in designing the questions

and deciding what kind of data the survey is intended to provide. The target

audience and the timing of the survey are equally as important as the questions and

the format it is conducted in. [45]

At Vincit we firstly decided that anyone involved in software projects was eligible to

answer the survey. This was because we wanted the largest possible coverage from

the results. We have a very flat organizational hierarchy where everyone is involved

in everything in our software projects. A developer can be the lead developer, the

mobile programmer, and the release engineer, if he or she is the best person to

handle the job.

We also decided that we would like the survey to be an online one. This was

easiest to organize with our large target audience, and would give our developers

the opportunity to answer the questions when they felt comfortable doing so.

5.1.1 Surveying the the End-Users

We designed a survey that focused on the following topics to find out our end-user

requirements:

• developer profile;

• technological profile;

• internal service usage, and;

• current and future needs.

5.1. Gathering Requirements 22

These topics were discussed beforehand and based on our prior questionnaires that

we conduct on about a yearly basis. Their purpose was to provide information

on our current state of developer’s personal position in projects, their technological

responsibilities, utilization of tooling, and the needs from our internal support teams

offering DevOps [46] and IT services.

In the developer profile section we wanted to find out what our developers are doing

in our software projects. Are they just programming? Are they designing the soft-

ware architecture? Are they designing and possibly implementing user interfaces?

And how many of those developers are currently testing their software, delivering it

to the customer and possibly deploying it?

In the technological profile section of the questionnaire our motivation was to find out

what languages technologies our developers are using and in what proportions. Are

they programming Java, Python, or PHP? What operating systems are still in use?

This is important in deciding which technologies will be supported first and which

will receive official support down the road. Do we need Ruby build infrastructure

and package management if only one of our developers is currently programming

Ruby?

In the service profile portion we wanted to find out how are developers currently

using the services we offer to them. Do they utilize Dokku infrastructure for de-

ployments, deploy into AWS, or build their staging and production environments?

It is relevant to know from what is being used from where and which tools should

be able to interact with each other.

In the current and future needs portion of the survey we focused on finding out what

developers were currently missing and would like to be implemented.

Analyzing the different sections of the survey we wanted to implement, we quickly

saw, that a fairly simple tool supporting scalar, text, and multiple selection answering

options would be suitable. Since at Vincit we use Google Apps for Work [47], we

took a look at Google Forms. It had the features we required from a survey:

• support for all our question types;

• authentication for users;

• access control for people who can answer with only single answer per person,

5.2. Compiling the Requirements Specification 23

and;

• easy export for survey answers and built-in visualization tools.

We decided to use Google Forms for implementing our survey as it would offer an

easy-to-use survey that could be easily sent to our whole group of employees and

be answered online, when developers had time to take a look at it. This enabled

very lean survey implementation without the need to introduce any new processes

or tools for gathering data.

We sent the survey out to 178 people and got back 21 responses in two weeks’ time

period. Hence our sample size for the survey was 178 and our answering rate was

11.8%. Some of the answer highlights are illustrated in Appendix A in the hope

that they will be useful to our readers.

5.2 Compiling the Requirements Specification

When we started gathering our technical and non-technical requirements we sepa-

rated our findings into different relevance classes as business, user, and functional

and non-functional requirements as described before.

Our initial business requirement for the project was to implement a scalable system

that could offer additional value to our developers and customers. From business

point of view we are not hugely interested in the technical details, but instead on

the end result of the project: it has to be competitive in comparison to other similar

systems, it must be scalable and support, at the very least, our most represented

technologies in respect to our company’s order base.

In respect to our user requirements we wanted to implement support for our most

used technologies and tools first. Agile software companies, our company included,

are very technology driven. A lot of competitiveness stems from having the right

expertise and tooling for the technologies customers wish to invest into. The techno-

logical and functional requirements largely span from the user or developer profiles

we wish to support.

This meant that based on our technology survey, we wanted to support Java versions

7 and 8 and select Node.js versions, namely the current long term support or LTS

5.2. Compiling the Requirements Specification 24

Table 5.1 Initial technology support requirements

Technology Importance Phase of implementation
Ubuntu 14.04 High Beta
Ubuntu 16.04 High First revision
Mac OS X High First revision
Windows 10 Low Future revisions
Java High Beta
Node.js High Beta
Python Medium First revision
Clojure Medium First revision
Objective-C Medium Future revisions
Swift Medium Future revisions
C/C++ Medium Future revisions
Selenium High First revision
iOS / XCode Medium Future revisions
Android SDK Medium Future revisions

and the more recent development versions. In addition to programming languages

we wanted to support their ecosystems that include build tools such as Ant, Maven

and Gradle for Java and npm, bower, grunt and gulp for Node.js. These became

our initial web platform targets.

Mobile technologies such as Objective-C and Swift for the iOS and Java for the

Android are largely represented in the survey, and they would be supported after

prototyping the system with web technologies.

Vincit has a large customerships in the so called native programming side which

include platform specific binary software that is programmed in C family languages,

primarily C++. Native projects are usually developed for a specific platform such

as embedded Linux and tightly coupled to the static and dynamic libraries that

are either operating system specific or distributed with the software. These are

very specific projects, and most of our current customers have their own Continuous

Integration platforms implemented to support them. They did not become our first

priority.

We also identified that a lot of our developers are using Python and Clojure for

software development, but projects in those languages are much less common than

Java, JavaScript, Android, and iOS projects. They are, however, fairly easy support,

and would be implemented in the first revisions of the Continuous Delivery system.

5.2. Compiling the Requirements Specification 25

As the nature of the project was largely exploratory and we did not want to set

up a requirements definition that was too rigid at this point, we wished to stick

to a lean and simple list of things that we needed (primary requirements), that

we would need (future requirements), and that would be nice to have. This way of

defining requirements is quite useful if one is not writing a comprehensive definition,

as it can usually be fit into a single whiteboard or paper sheet, creating a rather

compact representation of the project needs. Hence we gathered our initial support

requirements into table 5.1.

We decided to implement support for some large stand-outs representing our web

technologies in the first beta phase, namely Java and Node.js support. After testing

the system with those technologies, we would implement support for other technolo-

gies into our first revision, and later on add support for mobile platform tooling.

This would allow us to implement the Continuous Delivery system in reasonably

sized chunks without spending too much time working on support for technologies

that we might never use in case the system wasn’t up to the task on some facet.

26

6. CHOOSING THE RIGHT TECHNOLOGY FOR

CONTINUOUS DELIVERY

In the beginning of the project we wanted to research existing solutions and see how

those supported the different functionalities we required. If those systems would fit

our way of doing things we could leverage them as the whole Continuous Delivery

solution, part of the solution, or maybe as an architectural example for our own

solution.

6.1 Deciding on Cloud Platforms versus Self-Hosted Solutions

One important factor in choosing the right alternative for us was the solution’s

extensibility. If in 5 years time we need a feature that is not implemented, what

would we do? Taking a look at the solutions at hand, a lot of systems do not offer

extensibility. Travis CI offers access to its deployment tools, but a lot of platforms

offer no access to their inner workings or source code, and can’t be modified at all.

We already knew some requirements for the software system we wanted to implement

at this stage. Important factors were that the platform was extensible so that

we could alter its behaviour or implement features ourselves. Another one of the

required features was also the ability to support cross-platform builds. We wanted

the same tool to be usable on Mac OS X, Windows, and Linux environments. An

important requirement was also that we could host the Continuous Delivery service

ourselves in the place we wanted to. Having someone else host the service was simply

too rigid of an option. Our customers have a need for flexibility, so we wish to offer

them as many options as possible.

Hence we decided that we wanted to invest in an open-source solution that we could

extend and program ourselves, and hopefully host ourselves, if needed. In the open-

source front there are a few options that have a community around them offering

6.2. Choosing the Right Open-Source Alternative for Vincit 27

support and toolsets to each other. Narrowing the search down, we found ourselves

facing yet another decision: choosing the right open-source option for our company.

6.2 Choosing the Right Open-Source Alternative for Vincit

One of our requirements that was born during the project was the ability to support

and specify fan-in and fan-out dependencies for build steps and different projects

[41]. Complex dependency management is important when building, for example, a

microservice architecture or complex multi-tier software where one wants to define

the build, test and delivery chain as a graph. For example, first build the backend

and frontend software such as Java server and JavaScript UI, then test their units

and statically analyze or lint [48] their code bases, then test component integration,

and finally test the system’s end-to-end functionality as described in chapter 4.

Considering the different requirements regarding tooling support for multiple plat-

forms, languages and tools we decided to look further into options that offered script

based and non-opinionated architectures. The most prominent of these systems was

GoCD. GoCD is a Continuous Delivery tool written in Java and backed by a com-

pany named ThoughtWorks.

GoCD has most of the things we wanted our tool to have. It is:

• open-source and has a permissive licensing;

• platform agnostic and runs anywhere where Java is supported;

• non-opinionated and runs anything you can script to run via system shell;

• scalable, both horizontally and vertically, and lastly;

• has a stable user community and good documentation.

All these factors combined, the only issue we had with the project was its lack

of an established plugin ecosystem, such as the one in Jenkins. Jenkins CI has a

myriad of different extensions and supports most common tools because of its age

and community. GoCD is, at the time of writing, in middle of implementation of

some very central features such as dynamic build agent provisioning. Small delays,

however, are things that we are willing to deal with when investing into long-term

tooling.

28

7. DESIGNING A CONTINUOUS DELIVERY

SYSTEM

System design is an important part of each and every software project. Because the

project was both multi-platform and had multiple different technologies associated

to it, we decided that the system would have its initial architecture designed and

reviewed by all stakeholders before starting implementation.

Because at Vincit we do not like to invest heavily in something we have not yet

prototyped, we anticipated that it would be wise to set up a lightweight cloud

prototype before committing to a large scale implementation or purchasing any

fixed resources such as servers or test machines to our office. This way we would

be paying periodically for testing the project setup instead of investing heavily in

something that we didn’t have any experience in. Due to the author’s previous

experience in the AWS cloud we decided that we would implement and host the

initial version of the system in AWS EC2, and evaluate how the system performed

on that platform.

AWS has a lot of very specific terminology and building blocks that are well out of

the scope of this master’s thesis, but we will briefly discuss the architectural and

technological terminology that is relevant. Further, up-to-date documentation can

always be found in the AWS documentation portal, and should be referred to when

reading this thesis due to the possibility of it having outdated information. This is

due to the fast evolution of the platform. [49]

7.1 Network Architecture

We firstly decided that the system should be in its own private network segment,

but still available in terms of network addressing to our office network, offering

loose but usable coupling between our current and the new infrastructure. Network

design is an important factor that defines if it is even possible to connect private

7.1. Network Architecture 29

Table 7.1 Network segments available in an AWS VPC

Network segment address Prefix length Netmask Addresses
10.0.0.0 /8 255.0.0.0 16777214
172.16.0.0 /12 255.240.0.0 1048574
192.168.0.0 /16 255.255.0.0 65534

Table 7.2 Network latencies to AWS service centers from Kuopio, Finland

AWS datacenter location Network latency
US-East (Virginia) 150 ms
US-West (California) 215 ms
US-West (Oregon) 210 ms
Europe (Ireland) 80 ms
Europe (Frankfurt) 65 ms
Asia Pacific (Singapore) 395 ms
Asia Pacific (Sydney) 350 ms
Asia Pacific (Japan) 330 ms
South America (Brazil) 300 ms

networks to each other transparently. AWS offers top level network segment called

the Virtual Private Cloud or VPC that is configured as a private subnetwork in the

standardized, private IPv4 CIDR blocks as defined in IETF RFC 1918 [50]. VPCs

can thus be internally configured to the IPv4 blocks illustrated in table 7.1. It is

worth noting that AWS does not support IPv6 at the time of writing [51].

Looking at our office network which contains addresses in blocks 10.170.0.0/16

through 10.176.0.0/16, we decided that we would freeze our AWS network range

into the 10.177.0.0/16 block. This would allow us to freely connect our AWS private

cloud network segment to our office network by simply configuring a Virtual Private

Network or VPN tunnel between the two network and establishing IP routes.

After deciding that we would be setting up a remotely connected network segment,

we quickly realized that we should try and locate our private cloud as close to our

offices as possible. This namely meant that we would be hosting our Continuous

Delivery servers in Europe. The nearest locations to our offices in Tampere and

Helsinki, Finland are AWS data centres in Dublin, Ireland and Frankfurt, Germany.

Out of these two locations Frankfurt is the closest one to us, and thus offers the

smallest networks latencies. We further tested this theory by pinging different AWS

data centres, and got the average responses illustrated in table 7.2 back, rounded to

the nearest 5 millisecond interval. The ping testing was done from Kuopio, Finland.

7.1. Network Architecture 30

We decided that we would like to pursue a high-availability network topology at

some point. High-availability schemas require that networks are designed for fault

tolerance. Even if one segment of the network becomes unavailable, services are still

available to users. Luckily, AWS makes this rather easy. When defining VPCs in an

AWS regions, VPCs being regional services, one can define a VPCs subnetworks to

be placed into different Availability Zones or AZs. An AZ is a physically separated

segment of a network that is hosted in a different physical building with dedicated

power supply that is guaranteed by AWS to be unaffected by networking, power and

cooling problems in different availability zones. A good example would be a power

outage or a fire. In case of such an event happened in one of the data centers, our

Continuous Delivery machines would still be available to our users.

Figure 7.1 Network design for Go build agents and servers

In the end, we ended up on further splitting the VPC up to /24 sized subnets that

can each contain 254 hosts (two addresses in AWS subnetworks are reserved, one for

subnetwork gateway and one for subnetwork broadcasting). These subnets would

separately contain our network management nodes and worker nodes. We would

configure the topology to multiple AZs in production phase to avoid downtime from

AZ outages. Our current AWS network layout is illustrated in figure 7.1.

7.2. Software Architecture 31

7.2 Software Architecture

System wise, a large scale networked computer system consists of many machines

that must be manageable on node and network level. System nodes consist mostly

of their software setup in virtualized environments. They have an operating system

and software which interacts with the network. Virtualized computers must be

provisioned, have their security updates promptly applied, et cetera.

We started the designing of our system topology in the previous chapter by firstly

deciding on the network topology. It is also important to decide on the operating

system, its monitoring and management, and the interaction mechanisms with indi-

vidual computers from the perspective of system administration. Provisioning and

managing servers manually one by one is error prone, and automation is recom-

mended where feasible to implement.

7.2.1 Operating System

Since we wish to use open-source software as much as possible due to its customiz-

ability and transparency on the tool level, we immediately were interested in the

prospect of hosting the whole system on top of Linux operating system. We al-

ready host large parts of our infrastructure on top of Ubuntu Linux, and the AWS

cloud offers, among other choices, Red Hat Enterprise, Ubuntu, Debian, and Ama-

zon (RHEL derivative) Linux virtual machine images, specifically Amazon Machine

Images or AMIs in AWS terminology. We briefly compared RPM and DEB based

distributions, since their main difference is the packaging mechanism. RPM based

distributions are based on the Linux kernel and RPM Package Manager as well as

Yum which offers dependency based RPM package management with central reposi-

tories. Debian is based on Linux kernel as well, but uses dpkg and Advanced Package

Manager or APT and its derivatives to manage system packages.

We had a discussion on which distribution would be the best option for us, and

since we are already running Ubuntu Long-Term Support or LTS version on our

infrastructure, we decided to prototype the system on Ubuntu 14.04 LTS version,

and to upgrade to Ubuntu 16.04 LTS rolling out in May 2016, before our production

phase launch.

7.2. Software Architecture 32

Table 7.3 Software properties for select IT orchestration and automation tools

Tool Appeared Language Syntax Architecture Licence
Ansible 2012 Python YAML, Python Push GPL 3.0

Chef 2009 Ruby Ruby Pull Apache 2.0
Fabric 2008 Python Python Push Open-source
Puppet 2005 Ruby Ruby Pull Apache 2.0

Salt 2011 Python YAML, Python Pull Apache 2.0

7.2.2 Orchestration and Monitoring Tools

It is important to have IT orchestration and automation as well as system monitor-

ing tools available in case the system grows and needs to scale horizontally, which

was a basic requirement for us all the way from the start. Managing multiple com-

puter systems by hand is simply too error prone and starts accumulating technical

debt rapidly when the amount of connected nodes grows. We therefore decided

to incorporate automation and monitoring tools into our AWS tool stack from the

beginning.

Taking a look into different tools there exist many options for system automation.

The brief contenders at the moment are Puppet [16] and Chef [52] written in Ruby,

and Ansible [53] and Salt [54] written in Python. All tools offer the same basic func-

tionality of programmable environment and large-scale infrastructure management,

but differ in architecture in terms of machine communication and remote command

execution policies. Since we were evaluating management tools at the time, we took

a look at all the options. The different tools we researched are summarized in table

7.3.

In the end we ended up trying out Salt management tool since it is open-source,

has a pull based command execution architecture, and is a lighter option to heavy-

weight competitors that require heavy investment in assorted tools before making

use. Management of inventories requires extra components to be installed for Chef,

Puppet and Ansible, but Salt has computer inventories, file servers, secure con-

nections and high performance all built in. It is also smaller in size, and is very

customizable both via included YAML based command execution with Salt Recipes

(platform specific term for state description, which is called Recipe in Chef as well,

and Playbook in Ansible) and via Python modules.

Monitoring tools offer a few options for system monitoring as well. Nagios [55] is a

7.3. System Cost and Scalability 33

well established option with a decent sized user base. Sensu [56] is an API compatible

modern option for Nagios. We didn’t need to consider monitoring options, since we

were happily using Nagios and Sensu in our infrastructure, and didn’t feel a need

for additional tools. We eneded up using Sensu for monitoring the whole system.

The system architecture regarding the management nodes and worker nodes began

to look like a decoupled, remotely manageable environment, where components can

be ported across different operating systems and platforms. GoCD, Salt, and Sensu

are all platform agnostic and can be run on Windows, Mac OS X, and a variety of

Linux distributions. We have a kernel and operating system tools, on top of which

we install GoCD, Salt, and Sensu. As a whole and have a working build node, as

illustrated in figure 7.2.

Figure 7.2 Software design for Go build agents and servers

7.3 System Cost and Scalability

When we take a look at the system costs based on the current designs regarding

the networking and worker design, we can calculate some of the cost factors on a

monthly and yearly basis for the system. This is useful to do before implementing

the first version of the system because we can save ourselves from unwanted surprises

in terms of high operating expenses. Some system architectures are not very suitable

for running in the cloud and can be rather expensive due to large storage or data

transfer costs.

7.3. System Cost and Scalability 34

Since we already know that we are implementing the system in the AWS Elastic

Compute Cloud or EC2, we know that we need a specific network setup in the

cloud. We need some management nodes, a central GoCD server, some worker

nodes and a basic networking setup that can be connected to a private network if

needed.

If we built a small-scale system with, for example, a single management server, a

single central GoCD server and some worker nodes, we could try and specify the

following computing requirements for our components.

• CPU: Since we are running management and computation tasks on the net-

work, we will wish to have at least dual core CPU virtual machines to avoid

hangups introduced by running multiple heavy tasks on a single core.

• RAM: Amazon EC2 offers the smallest possible amount for dual core com-

puters at 4GB. We will initially try this size and resize if necessary: changing

virtual machine instance size simply requires stopping and restarting a com-

puter, so we can increase memory later.

• Storage: Amazon EC2 offers storage from a minimum of 8GB per virtual

computer. Since we are running a fairly large Linux server instance on each

node, including kernels and storage needs, we will wish to start at a minimum

of 16GB of storage, which is a decent amount of storage for a contemporary

Linux worker node. For the GoCD server, we will wish to have a decent sized

storage disk locally for storing build results and artifacts. We will start with

a 128GB disk. Disks can be migrated to larger volumes, so we can increase

disk sizes later if needed.

• Networking: A VPC network segment with internet access and publicly ad-

dressable IPs for at the very least the management server and the GoCD

server.

We arrive to the overall requirements specified in table 7.4

Cost-wise, if we decided to initially run, for example, 4 servers, we would have 6

Amazon EC2 nodes of t2.medium size. We would in addition to this have 208GB

of Elastic Block Storage or EBS storage capacity. This would, at the time of the

writing, sum up to the costs illustrated in table 7.5 without any discounts [57].

7.3. System Cost and Scalability 35

Table 7.4 Computing capacities for modelled AWS EC2 system nodes

Purpose EC2 instance size CPU cores RAM Storage
GoCD server t2.medium 2 4GB 128GB
GoCD worker t2.medium 2 4GB 16GB
Maintenance server t2.medium 2 4GB 16GB

Table 7.5 AWS capacity pricing in Frankfurt

Component Service Item Units Unit price Monthly price
Computing EC2 t2.medium 4320h $0.06 $259.20
Storage EBS GP2 SSD 208GB $0.149 $30.99
Networking VPC VPN GW 720h $0.052 $36.00
Networking VPC NAT GW 720h $0.052 $37.44
Total price per month $363.63
Total price per year $4363.56

From these fairly simple calculations we can see that running a 6 instance setup with

about 200GB of storage per month and VPN and internet connectivity will cost us

about $4400 annually, data transfer costs excluded. Transferring data out of Amazon

VPC costs $0.090 per GB for the first 10TB transferred, but data transfer costs vary

so wildly that you should simulate the load you are expecting. We calculated that

with 10GB of data transferred per day, or 300GB per month, we would be paying

about $27 for transfer costs.

The over $4000 price is, however, the maximum price for such a setup. Amazon Web

Services offers discounts if instances are bought up-front for example a year, and

will greatly reduce computing instance prices for the so called reserved instances.

We can also calculate the pricing for a single reserved t2.medium EC2 instance for

a 1-year and 3-year reservation period, which we have done in table 7.6.

For all instances this would mean that pre-purchasing computing capacity from

AWS for a single year’s period could bring the total system price down to $2112 for

EC2 computing nodes and $3357 for the whole system per year. Pre-purchasing for

Table 7.6 AWS EC2 t2.medium instance pricing in Frankfurt

EC2 instance type Term Payment Monthly price Yearly price
On-demand 1-year Monthly $43.2 $518.40
Reserved 1-year Upfront $29.22 $352.00
Reserved 3-year Upfront $19.92 $239.00

7.3. System Cost and Scalability 36

Figure 7.3 AWS performance comparison per VM instance class

a period of three years could bring the total cost of EC2 computing nodes down to

$1434 and the total system price down to $2687, totalling for almost a 40% reduction

in system price.

If we expected to be using for example 10 decent sized builder nodes in our Contin-

uous Delivery system, we would be paying about $5000 per year plus storage and

data transfer costs, which are about 10-20% cost increase in our modelled solution.

If we were to buy capacity up front, we could reduce this to about $2500 plus storage

and data transfer.

To further model price scaling in respect to system computing power scaling, we

could graph price per instance in our cloud system and use the competitively priced

t2.large type instances as our basic unit of computing resources. In figure 7.3

illustrating performance comparison and figure 7.4 illustrating pricing comparison

we can see that the very competitively priced t2 instance class has quite a good

balance of CPU and memory capacity: here we are looking at instances from m4

(general purpose), r4 (memory optimized) and c4 (computing optimized) classes,

and can see that t2 offers a good balance in all respects [57, 58].

7.3. System Cost and Scalability 37

Figure 7.4 AWS pricing comparison per VM instance class

This discussion attempts to illustrate that running a private cloud of a dozen small

servers with decent specifications can be more affordable than getting a single decent

on-premise server, and does not necessarily have fixed costs, although in the case

of converting floating costs to fixed costs we can reduce the system price further.

Some might even argue that buying on-premise capacity is not sensible if we can

not be certain of full utilization of resources, because cloud systems can be scaled

to the exact capacity requirements in a very flexible and exact manner.

38

8. IMPLEMENTING A CONTINUOUS DELIVERY

SYSTEM

8.1 Implementing the Continuous Delivery System

The implementation of an AWS cloud based computer system is rather easy once

you have a proper design and have factored in needs for capital, capacity, system

architecture, administration, and orchestration. An avid computer engineer experi-

enced with Linux should easily enough grasp the basic concepts of the AWS cloud

regarding networking, computing and storage capacity. The system illustrated in

this thesis does not have much need for all the complex building blocks AWS offers,

and can be built on the very basic concepts.

Our implementation work for the private cloud at Vincit began by creating a net-

work layout illustrated in the previous chapters; We created a VPC in Frankfurt

with CIDR block 10.177.0.0/16, and created three different subnets in that network

segment. Our subnets consisted of a management subnet 10.177.0.0/24, a Go server

subnet 10.177.1.0/24, and a Go worker subnet 10.177.2.0/24. Once we had our net-

work layout defined, we set up a VPN gateway to it and opened a ticket to our

Internet Service Provider or ISP requesting that our office network be connected

via our router with VPN to the AWS network and routing policies be configured.

This took about two weeks and a few failed configuration attempts from our ISP,

but after the wait we had our networks defined and were able to connect to the AWS

cloud from our office. During this waiting period we started setting up our virtual

server infrastructure and software components into AWS to avoid downtime in the

whole process.

We started our EC2 node configuration by searching for the Ubuntu 14.04 LTS

Amazon Machine Image from the AWS Marketplace [59], which houses software

that can be run on the AWS. Most free Linux distributions can be found on the

Marketplace free of charge as they have permissive licencing schemes.

8.1. Implementing the Continuous Delivery System 39

After finding and launching our Ubuntu instances, we continued by configuring them

with SSH keys and setting up secure connectivity with them. After succesfully

connecting to the instances we installed updates and provisioned the instances with

Salt. Salt then proceeded to automatically install Sensu and GoCD software to the

nodes. At this point we had the architecture illustrated in figure 8.1 implemented.

Figure 8.1 Initial pure AWS cloud architecture for GoCD

The system seemed to work in the beta testing environment, and we had everything

running smoothly. Builds were executing on the workers and we were managing node

8.2. Analyzing, Managing, and Optimizing System Cost and Performance 40

state and the server state with Salt, and following node statistics with Sensu. Our

Salt scripts would install packages and whole programming environments required

in builds, fetch SSH keys and configurations needed to interact with source code

repositories. We had network connectivity to our office intranet and the internet

from the private cloud system.

8.2 Analyzing, Managing, and Optimizing System Cost and Per-

formance

Analyzing the degree of system usage is easy on most IaaS cloud platforms. Most

IaaS platforms are virtualized and offer access to the virtualization system’s CPU

usage statistics. AWS is not too different in this regard. AWS offers numerous

statistics of an instance that can be gathered and stored for an arbitrary period of

time.

Some of the statistics that AWS offers via its proprietary CloudWatch system for

an EC2 virtual machine instance are:

• CPU usage;

• disk read and write statistics, and;

• network device usage.

Memory usage statistics are not provided by the virtualization platform, but can

be additionally monitored with reporting scripts running in the virtualized guest

operating system. [60]

After running the service for a while we realized that we were running workers in

AWS that weren’t being used during the night time when all our developers were

out-of-office. This meant that we were running computing capacity idle and paying

for the full capacity.

Because AWS supports capacity scaling with Scaling Groups and Autolaunch Con-

figurations, we created an automatically scaling cluster that would scale capacity

up in the morning and only run a minimal amount of capacity in the night time.

Namely the system would run zero instances in the night and 2-4 instances between

8.2. Analyzing, Managing, and Optimizing System Cost and Performance 41

6AM and 8PM, local time. This would total to a 40% less running time for worker

instances, which would reduce our EC2 instance costs for 4 worker instances and 2

management and server instances by over 25%. Since we earlier saw that the EC2

running costs constitute for about 80% of our overall costs, we could reduce our

overall AWS costs by about 20%.

Automatic scaling requires that each time an instance is started, all necessary soft-

ware and configuration is installed to it. We configured our Linux instances to run

a bootstrapping script that installs a Salt Minion [61] to a node each time a cluster

machine is brought up, and Salt, our orchestration tool, would configure the node

as a Go Agent after that. All-in-all, our whole bootstrapping for the instance con-

stituted to program 8.1. The script is just a basic Bourne shell or bash script that

can easily be modified to install Salt on any Linux distribution. It also can be re-

configured largely on the same principles to bootstrap a node that is running OS X

or Windows for Salt configuration. This removes the need for manually configuring

computers.

#!/ bin/bash

Set shell flags

set -x # verbose mode

set -e # exit on error

set -u # do not allow unset shell variables

Fetch Salt Apt keys and add the salt repository

wget -O - \

https :// repo.saltstack.com/apt/ubuntu /14.04/ amd64/latest/SALTSTACK -GPG -KEY.pub \

| sudo apt -key add -

echo \

"deb http :// repo.saltstack.com/apt/ubuntu /14.04/ amd64/latest trusty main" \

> /etc/apt/sources.list.d/saltstack.list

Install the Salt Minion program

apt -get update

apt -get install -y salt -minion

Configure the Salt master node address

sed -i "s/^# master :.*/ master: 10.177.0.42/" /etc/salt/minion

sed -i "s/^#id:.*/id: go-agent -$HOSTNAME/" /etc/salt/minion

Restart the minion program

to initiate connection to management node

service salt -minion restart

Program 8.1 Bootstrapping script for Go Agents

8.3. Refactoring the System for New Requirements 42

8.3 Refactoring the System for New Requirements

After about two months of testing and running the system and adjusting its pa-

rameters such as instance and disk sizes, network settings, pre-installed packages,

and software configurations, we were pretty happy with the overall health and per-

formance of all components. We had about ten software projects building in the

new system and had proven the concept of running a small-scale private cloud build

farm that was connected to our office network as a transparent part of our logical

intranet.

The only pain points of the software were that sometimes Salt was failing with

message queue communications and the orchestration software was crashing, which

might have been because we were not using a stable release, but a development

release, or because we were running maintenance scripts that possibly affected the

program’s execution. Either way, everything but Salt worked quite smoothly.

A need for restructuring the system arose from an outward requirement. We had

decided to move our production services such as LDAP, CI, and CD master nodes

to a server that ran Docker Engine, an infrastructure service for running Linux

containers [62]. At Vincit we advocate Docker because of the simplicity it provides

in easily providing isolated services anywhere where Linux is installed. The basic

idea is that a Docker container is an environment that is separated from the host

operating system in which it runs, and programs can be bundled into such separate

environments with necessary libraries and hosted on any server easily. This makes

distributing and setting up programs easy, as no modification is usually required

in a host system for running a container once container hosting service is set up.

Downloading an image and running it is enough to set up software infrastructure.

We wished to move the Go Server into a our internal network, and enable agents

from our own and connected networks to be plugged into it. This would make setting

up network topology easier than running on AWS, because we have off-site capacity

and off-site offices that need to be connected to the system, and Tampere acts as the

central node for many of those systems. The system topology would mutate from

the pure AWS setup slightly, as illustrated in figure 8.2.

The refactoring of the system is currently done and the Go Server nodes are trans-

ferred to our infrastructure without problems. A simple copy of the Go Server con-

figuration and recreation of a few select projects were necessary when we upgraded

8.3. Refactoring the System for New Requirements 43

Figure 8.2 Refactored hybrid AWS cloud architecture for GoCD

our server software after downloading and starting a Docker image that contains the

Go Server software.

All-in-all, with our system architecture where software components and their re-

sponsibilities are clearly split, refactoring and physically moving parts of the system

in and out of the cloud was not perceived hard.

44

9. PROJECT EVALUATION AND REFLECTION

Determining the success of a project before the product has been in production is

hard. This can be even more true for a thesis project, where large amount of the

work done is research, writing and documentation work. We do not have comparable

system metrics such as build and deployment rates and durations as of yet.

From our former build systems built on top of Jenkins and GoCD we had data such

as:

• build durations for multiple thousand different builds;

• failure rates due to configuration, build tool, and system errors;

• rate of deployments to development and production, and;

• end-user feedback.

From the new system we primarily have cost models, a small amount of build dura-

tion and rate data, and some early feedback.

9.1 System Costs

The Amazon costs are feasible to calculate. We are, at the moment, paying for a

couple medium sized build nodes. In our initial pure cloud architecture we also had

an orchestration node and a master server node. These amount to half a dozen

cloud computing nodes. In addition to the computation capacity we are also paying

for approximately 200GB of storage capacity and low network transfer costs. We do

not have fixed dedicated capacity tied to the build system yet, but acquisition and

utilization of extra capacity is fairly easy.

9.2. Benefits achieved 45

Work wise, we have spent about two weeks of time in design stages and meetings

throughout the project. One person has also worked on the project for about three

months. In grand total, we have about 4 months of work invested in research, imple-

mentation of the system. It might be possible to implement a Continuous Delivery

system from scratch for a small amount of projects much faster, but overall, the

effort of studying the tooling and theory associated to software automation, orches-

tration, metrics and data gathering, and different details such as cloud platform

specifics is quite time consuming.

9.2 Benefits achieved

Our build durations have dropped by approximately 25% due to moving our builders

to the cloud and having them less loaded. This is largely connected to a single builder

node only processing a single project and not taking any additional load. We were

able to select the correct build machine sizes for various projects and select the

optimal amount of resources to host our systems, making it possible to finely tune

the offered build capacity to the needs of our developers.

Relative failure rates due to system errors have reduced, because we are only exe-

cuting a single build on a single system, and are not introducing conflicts, caching

problems, or computing resource exhaustion into the build process. These are all

things that are fairly expensive to debug, because a person has to go and look at

the build logs to determine an indeterministic reason for a build failure. The exact

reduction in errors is not transparent, but early data suggests we have solved some

of our concurrency, virtualization, and container based problems, moving from plat-

form problems to build node or job configuration errors. The latter are much easier

to locate and fix.

It also seems that we have improved our build tooling on many parts. GoCD sup-

ports resource tagging, build environment specification, heterogeneous builders, fan-

in and fan-out capabilities, and other features that are hard to find in traditional

build tools. We have not faced any performance issues or instability from the tool.

In addition to improving our systems technically we have introduced the concept

of push-button deliveries and high deployability. Only some projects are using this

delivery scheme on GoCD, but we have implemented similar features using Travis CI

for Continuous Delivery with the AWS Elastic Beanstalk platform using the Travis’

9.3. Measuring Progress for Continuous Delivery 46

dpl tool [63]. We are currently introducing push-button delivery to new projects,

which has reduced the need for manual deployments and saved work time in projects.

All-in-all, the perceived improvements are considerable. The concrete measurable

improvements which will save our customers money will hopefully come apparent

in the upcoming months and years. Quantifying the project results is hard at this

stage, when we do not have extensive data available yet. Many of the benefits

we have achieved were not expected to be immediately available though, and will

accumulate in time when an increasing number of projects adopt the Continuous

Delivery methodology and gain confidence in rapidly available customer deliverables

and increased deployment rates.

9.3 Measuring Progress for Continuous Delivery

Getting features implemented and delivered to the customer with less work, fewer er-

rors, shorter development cycle, and less downtime is the main thing that automation

enables [8]. To improve the rate of delivery we hope to implement a comprehensive

measuring system that could give us insight on deltas between development, de-

ployment, and activation times. We want to measure features and releases done per

month in addition to other system statistics such as build durations and frequencies.

We also want to make this information transparent to software development teams

and customers [64]. Metrics and data enable improved decision making processes

which are based on scientific methods.

Most build and deployment tools offer some built-in data visualization and metrics,

but few offer simple APIs for exporting their internal metrics into usable formats.

The implementation of a metrics service that integrates into our GoCD service,

hosting platforms, and other tools is therefore a task that will require more research.

Research is most likely suited for another thesis work.

47

REFERENCES

[1] Wikipedia, “Version Control System,” https://en.wikipedia.org/wiki/Version

control, retrieved January 20, 2016.

[2] L. Torvals, “Git,” https://git-scm.com/, retrieved April 29, 2016.

[3] Apache Software Foundation, “Subversion,” https://subversion.apache.org/,

retrieved April 29, 2016.

[4] R. Osherove, The Art of Unit Testing. Manning Publications, 2013.

[5] M. Fowler, “UnitTest,” http://martinfowler.com/bliki/UnitTest.html, re-

trieved January 20, 2016.

[6] P. M. Duvall, S. Matyas, and A. Glover, Continuous Integration: Improving

Software Quality and Reducing Risk. Addison-Wesley Professional, 2007.

[7] M. Fowler, “TestPyramid,” http://martinfowler.com/bliki/TestPyramid.html,

retrieved January 20, 2016.

[8] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases

Through Build, Test, and Deployment Automation. Addison-Wesley, 2010.

[9] J. Mukherjee, Continuous Delivery Pipeline - Where Does It Choke?: Release

Quality Products Frequently And Predictably (Volume 1). CreateSpace Inde-

pendent Publishing Platform, 2015.

[10] R. Black, “Investing in Software Testing: The Cost of Software Quality,”

http://www.compaid.com/caiinternet/ezine/cost of quality 1.pdf, Tech. Rep.,

2000, retrieved April 29, 2016.

[11] Amazon Web Services, Inc., “Amazon Web Services,” https://aws.amazon.

com/, retrieved May 13, 2016.

[12] ThoughtWorks et al., “Go Continuous Delivery,” https://www.go.cd/, retrieved

May 13, 2016.

[13] National Institute of Standards and Technology, “The NIST Defini-

tion of Cloud Computing,” http://nvlpubs.nist.gov/nistpubs/Legacy/SP/

nistspecialpublication800-145.pdf, retrieved May 13, 2016.

https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Version_control
https://git-scm.com/
https://subversion.apache.org/
http://martinfowler.com/bliki/UnitTest.html
http://martinfowler.com/bliki/TestPyramid.html
http://www.compaid.com/caiinternet/ezine/cost_of_quality_1.pdf
https://aws.amazon.com/
https://aws.amazon.com/
https://www.go.cd/
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf

REFERENCES 48

[14] C. Caum, “Continuous Delivery Vs. Continuous Deploy-

ment: What’s the Diff?” https://puppetlabs.com/blog/

continuous-delivery-vs-continuous-deployment-whats-diff, retrieved January

20, 2016.

[15] Y. Sundman, “Continuous Delivery vs Continuous De-

ployment,” http://blog.crisp.se/2013/02/05/yassalsundman/

continuous-delivery-vs-continuous-deployment, retrieved May 13, 2016.

[16] PuppetLabs, Inc., “Puppet,” https://puppet.com/, retrieved May 14, 2016.

[17] J. Humble, “Continuous Delivery vs Continuous De-

ployment,” http://continuousdelivery.com/2010/08/

continuous-delivery-vs-continuous-deployment/, retrieved May 13, 2016.

[18] T. Fitz, “Continuous Deployment,” http://timothyfitz.com/2009/02/08/

continuous-deployment/, retrieved May 13, 2016.

[19] Google, Inc., “Google Trends: Continuous Delivery,” https://www.google.com/

trends/explore#q=continuous%20delivery, retrieved January 20, 2016.

[20] ——, “Google Trends: Continuous Deployment,” https://www.google.com/

trends/explore#q=continuous%20deployment, retrieved May 13, 2016.

[21] A. Rehn, T. Palmborg, and P. Böstrom, “The Continu-

ous Delivery Maturity Model,” http://www.infoq.com/articles/

Continuous-Delivery-Maturity-Model, Tech. Rep., 2013, retrieved January 18,

2016.

[22] E. Minick, “Continuous Delivery Maturity Model,” https://developer.ibm.com/

urbancode/docs/continuous-delivery-maturity-model/, Tech. Rep., 2014, re-

trieved January 18, 2016.

[23] P. Bahrs, “Adopting the IBM DevOps approach for continuous software deliv-

ery: Adoption paths and the DevOps maturity model,” https://www.ibm.com/

developerworks/library/d-adoption-paths/, Tech. Rep., 2013, retrieved Jan-

uary 18, 2016.

[24] M. Leppänen, S. Mäkinen, M. Pagels, V.-P. Eloranta, J. Itkonen, M. V.

Mäntylä, and T. Männistö, “The Highways and Country Roads to Continu-

ous Deployment,” IEEE Software, vol. 32, pp. 64–72, 2015.

https://puppetlabs.com/blog/continuous-delivery-vs-continuous-deployment-whats-diff
https://puppetlabs.com/blog/continuous-delivery-vs-continuous-deployment-whats-diff
http://blog.crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-continuous-deployment
http://blog.crisp.se/2013/02/05/yassalsundman/continuous-delivery-vs-continuous-deployment
https://puppet.com/
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://continuousdelivery.com/2010/08/continuous-delivery-vs-continuous-deployment/
http://timothyfitz.com/2009/02/08/continuous-deployment/
http://timothyfitz.com/2009/02/08/continuous-deployment/
https://www.google.com/trends/explore#q=continuous%20delivery
https://www.google.com/trends/explore#q=continuous%20delivery
https://www.google.com/trends/explore#q=continuous%20deployment
https://www.google.com/trends/explore#q=continuous%20deployment
http://www.infoq.com/articles/Continuous-Delivery-Maturity-Model
http://www.infoq.com/articles/Continuous-Delivery-Maturity-Model
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://developer.ibm.com/urbancode/docs/continuous-delivery-maturity-model/
https://www.ibm.com/developerworks/library/d-adoption-paths/
https://www.ibm.com/developerworks/library/d-adoption-paths/

REFERENCES 49

[25] R. C. Martin, Agile Software Development, Principles, Patterns, and Practices.

Pearson, 2002.

[26] Digile, “N4S-Program: Finnish Software Companies Speeding Digital Economy

- Digile N4S,” http://www.n4s.fi/en/, retrieved May 13, 2016.

[27] J. Seiden, “Amazon Deploys to Production Ev-

ery 11.6 Seconds,” http://joshuaseiden.com/blog/2013/12/

amazon-deploys-to-production-every-11-6-seconds/, retrieved May 13, 2016.

[28] C. Lianping and P. Power, “Continuous Delivery: Huge Benefits, but Challenges

Too,” IEEE Software, vol. 32, pp. 50–54, 2015.

[29] Forrester Consulting, “Continuous Delivery: A Maturity Assessment

Model: Building Competitive Advantage With Software Through

A Continuous Delivery Process,” https://info.thoughtworks.com/

Continuous-Delivery-Maturity-Model.html, Tech. Rep., 2013, retrieved

January 20, 2016.

[30] Eclipse Foundation, “Hudson Continuous Integration,” http://hudson-ci.org/,

retrieved May 15, 2016.

[31] K. Kawaguchi et al., “Jenkins,” https://jenkins.io/, retrieved May 15, 2016.

[32] D. J. Mitchell et al., “Buildbot,” http://buildbot.net/, retrieved May 15, 2016.

[33] Travis CI, GmbH, “Travis CI,” https://travis-ci.com, retrieved January 21,

2016.

[34] I. Radchenko et al., “Strider Continuous Delivery,” http://stridercd.com/, re-

trieved May 15, 2016.

[35] drone.io, “drone.io,” https://drone.io/, retrieved May 15, 2016.

[36] ThoughtWorks, Inc., “Snap CI,” https://snap-ci.com/, retrieved January 21,

2016.

[37] Microsoft, Inc., “Team Foudation Server,” https://www.visualstudio.com/

en-us/products/tfs-overview-vs.aspx, retrieved May 15, 2016.

[38] PC Magazine, “SaaS Definition from PC Magazine Encyclopedia,” http://

www.pcmag.com/encyclopedia/term/56112/saas, retrieved May 15, 2016.

http://www.n4s.fi/en/
http://joshuaseiden.com/blog/2013/12/amazon-deploys-to-production-every-11-6-seconds/
http://joshuaseiden.com/blog/2013/12/amazon-deploys-to-production-every-11-6-seconds/
https://info.thoughtworks.com/Continuous-Delivery-Maturity-Model.html
https://info.thoughtworks.com/Continuous-Delivery-Maturity-Model.html
http://hudson-ci.org/
https://jenkins.io/
http://buildbot.net/
https://travis-ci.com
http://stridercd.com/
https://drone.io/
https://snap-ci.com/
https://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx
https://www.visualstudio.com/en-us/products/tfs-overview-vs.aspx
http://www.pcmag.com/encyclopedia/term/56112/saas
http://www.pcmag.com/encyclopedia/term/56112/saas

REFERENCES 50

[39] Github, Inc., “GitHub,” https://github.com/, retrieved January 21, 2016.

[40] Atlassian, Inc., “Bitbucket,” https://bitbucket.org/, retrieved May 24, 2016.

[41] ThoughtWorks, Inc., “Fan-out & Fan-in,” https://www.go.cd/videos/

go-fan-out-fan.html, retrieved April 29, 2016.

[42] A. Damodaran, Applied Corporate Finance: A User’s Manual, 4th ed.

John Wiley and Sons, 1999. [Online]. Available: http://people.stern.nyu.edu/

adamodar/New Home Page/ACF4E/appldCF4E.htm

[43] Amazon, Inc., “How AWS Pricing Works,” https://d0.awsstatic.com/

whitepapers/aws pricing overview.pdf, Tech. Rep., 2016, retrieved May 15,

2016.

[44] K. Wiegers and J. Beatty, Software Requirements (3rd Edition) (Developer

Best Practices), 3rd ed. Microsoft Press, 8 2013. [Online]. Available:

http://amazon.com/o/ASIN/0735679665/

[45] N. Thayer-Hart et al., “Survey Fundamentals: A Guide to Designing and Imple-

menting Surveys, version 2.0,” https://oqi.wisc.edu/resourcelibrary/uploads/

resources/Survey Guide.pdf, Tech. Rep., 2010, retrieved April 10, 2016.

[46] M. Loudikes, “What is DevOps?” http://radar.oreilly.com/2012/06/

what-is-devops.html, retrieved May 4, 2016.

[47] Google, Inc., “Google Apps for Work,” https://apps.google.com/, retrieved

April 18, 2016.

[48] A. Pennebaker, “Linters - an introduction to static code analysis,” https://

github.com/mcandre/linters, retrieved May 15, 2016.

[49] Amazon Web Services, Inc., “AWS Documentation,” https://aws.amazon.com/

documentation/, retrieved April 20, 2016.

[50] Y. Rekhter, R. G. Moskowitz, D. Karrenberg, G. J. de Groot, and E. Lear,

“IETF RFC 1918,” https://tools.ietf.org/html/rfc1918, retrieved April 20,

2016.

[51] Amazon Web Services, Inc., “AWS Virtual Private Cloud Documen-

tation,” http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/

vpc-ip-addressing.html#vpc-public-ip-addresses, retrieved April 20, 2016.

https://github.com/
https://bitbucket.org/
https://www.go.cd/videos/go-fan-out-fan.html
https://www.go.cd/videos/go-fan-out-fan.html
http://people.stern.nyu.edu/adamodar/New_Home_Page/ACF4E/appldCF4E.htm
http://people.stern.nyu.edu/adamodar/New_Home_Page/ACF4E/appldCF4E.htm
https://d0.awsstatic.com/whitepapers/aws_pricing_overview.pdf
https://d0.awsstatic.com/whitepapers/aws_pricing_overview.pdf
http://amazon.com/o/ASIN/0735679665/
https://oqi.wisc.edu/resourcelibrary/uploads/resources/Survey_Guide.pdf
https://oqi.wisc.edu/resourcelibrary/uploads/resources/Survey_Guide.pdf
http://radar.oreilly.com/2012/06/what-is-devops.html
http://radar.oreilly.com/2012/06/what-is-devops.html
https://apps.google.com/
https://github.com/mcandre/linters
https://github.com/mcandre/linters
https://aws.amazon.com/documentation/
https://aws.amazon.com/documentation/
https://tools.ietf.org/html/rfc1918
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-ip-addressing.html#vpc-public-ip-addresses
http://docs.aws.amazon.com/AmazonVPC/latest/UserGuide/vpc-ip-addressing.html#vpc-public-ip-addresses

References 51

[52] Chef Software, Inc., “Chef,” https://www.chef.io/chef/, retrieved May 15, 2016.

[53] Red Hat, Inc., “Ansible,” https://www.ansible.com/, retrieved May 15, 2016.

[54] SaltStack, Inc., “Salt,” https://saltstack.com/, retrieved May 15, 2016.

[55] Nagios, “Nagios Enterprises LLC.” https://www.nagios.org/, retrieved May 15,

2016.

[56] Heavy Water, LLC., “Sensu,” https://sensuapp.org/, retrieved May 15, 2016.

[57] Amazon Web Services, Inc., “Amazon EC2 Pricing,” https://aws.amazon.com/

ec2/pricing/, retrieved April 21, 2016.

[58] ——, “Amazon EC2 Instance Types,” https://aws.amazon.com/ec2/

instance-types/, retrieved April 21, 2016.

[59] ——, “AWS Marketplace,” https://aws.amazon.com/marketplace/, retrieved

April 21, 2016.

[60] ——, “AWS CloudWatch,” https://aws.amazon.com/cloudwatch/, retrieved

April 22, 2016.

[61] SaltStack, Inc., “SaltStack architecture for system command and control,”

https://saltstack.com/saltstack-architecture/, retrieved May 15, 2016.

[62] Docker, Inc., “Docker,” https://www.docker.com/, retrieved April 22, 2016.

[63] K. Haase, “Dpl deployment tool,” https://github.com/travis-ci/dpl, retrieved

May 4, 2016.

[64] T. Lehtonen, S. Suonsyrjä, T. Kilamo, and T. Mikkonen, “Proceedings of the

14th Symposium on Programming Languages and Software Tools (SPLST’15)

Tampere, Finland, Oct 9-10, 2015.: Defining Metrics for Continuous Delivery

and Deployment,” CEUR Workshop Proceedings, vol. 1525, pp. 16–30, 2015.

[Online]. Available: http://nbn-resolving.de/urn:nbn:de:0074-1525-1

https://www.chef.io/chef/
https://www.ansible.com/
https://saltstack.com/
https://www.nagios.org/
https://sensuapp.org/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/pricing/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/ec2/instance-types/
https://aws.amazon.com/marketplace/
https://aws.amazon.com/cloudwatch/
https://saltstack.com/saltstack-architecture/
https://www.docker.com/
https://github.com/travis-ci/dpl
http://nbn-resolving.de/urn:nbn:de:0074-1525-1

52

APPENDIX A. VINCIT TOOLING AND SERVICE

SURVEY HIGHLIGHTS

Operating system usage

Programming language usage

APPENDIX A. Vincit Tooling and Service Survey Highlights 53

Testing tool usage

Build tool usage

Continuous Integration and Delivery tool usage

	Introduction
	Background
	Scope of this Thesis
	Timeline of the Project

	What is Continuous Delivery?
	Terminology

	Why is Continuous Delivery important?
	Adaptation of Continuous Delivery
	Advantages of Continuous Delivery
	The Continuous Delivery Maturity Model
	Discussing the Continuous Delivery Maturity Model

	How Can Continuous Delivery Be Implemented?
	Analyzing the Different Paths
	Researching Continuous Delivery Systems
	Discovering Fan-in and Fan-out
	Cost Models for Continuous Delivery Options

	Requirements Specification
	Gathering Requirements
	Surveying the the End-Users

	Compiling the Requirements Specification

	Choosing the Right Technology for Continuous Delivery
	Deciding on Cloud Platforms versus Self-Hosted Solutions
	Choosing the Right Open-Source Alternative for Vincit

	Designing a Continuous Delivery System
	Network Architecture
	Software Architecture
	Operating System
	Orchestration and Monitoring Tools

	System Cost and Scalability

	Implementing a Continuous Delivery System
	Implementing the Continuous Delivery System
	Analyzing, Managing, and Optimizing System Cost and Performance
	Refactoring the System for New Requirements

	Project Evaluation and Reflection
	System Costs
	Benefits achieved
	Measuring Progress for Continuous Delivery

	References
	APPENDIX A. Vincit Tooling and Service Survey Highlights

