
HIDIR YÜZÜGÜZEL
LEARNING COLOUR CONSTANCY USING CONVOLUTIONAL
NEURAL NETWORKS

Master of Science thesis

Examiner: Prof. Moncef Gabbouj, Jari

Niemi

Examiner and topic approved by the

Faculty Council of the Faculty of

Computing and Electrical Engineering

on 12th August 2015

i

ABSTRACT

HIDIR YÜZÜGÜZEL: Learning Colour Constancy Using Convolutional Neural
Networks
Tampere University of Technology

Master of Science thesis, 45 pages, 0 Appendix pages

November 2015

Master's Degree Programme in Information Technology

Major: Signal Processing

Examiner: Prof. Moncef Gabbouj, Jari Niemi

Keywords: colour constancy, machine learning, deep learning, convolutional neural net-

work

Colour constancy has attracted attention of researchers from the academy and indus-

try as it is a fundamental preprocessing task in many computer vision applications.

Colour constancy is a feature of human visual system which enables humans to

perceive colors of the objects invariant to the illuminant. However, it has been a

challenging problem for computers due to its ill-posed structure.

Arti�cial neural networks have recently been very popular due to breakthrough

results of deep neural networks in recognition tasks. Deep neural networks learn

hierarchical representations (features) of data, which has started a new era in ma-

chine learning �eld. Deep neural network models combine the feature learning and

regression as a complete optimization procedure, namely they are an end-to-end

learning approach.

In this thesis, we investigate learning colour constancy using deep convolutional neu-

ral (CNN) networks. Unlike traditional color constancy methods, CNN model does

not rely on any explicit imaging assumptions and hand-crafted features. Two di�er-

ent CNN models are trained and evaluated on two widely used datasets (Shi-Gehler

and SFU subset) from scratch. The results are compared with traditional statistics

based approaches. It has been justi�ed that CNN model signi�cantly outperforms

statistics based methods on both datasets. The improvements in average angular

error are 26.6% and 20% for Shi-Gehler and SFU subset respectively.

ii

PREFACE

This thesis has been conducted in the Department of Signal Processing, Tampere

University of Technology.

I would like to thank to my supervisor Academy Professor Moncef Gabbouj for all

his support throughout the course of this research. I also would like to thank to my

examiner, Jari Niemi for the valuable feedback he has provided for this thesis. It

has been a great pleasure for me to have an examiner and a friend at the same time.

I would like to thank to the members of the Multimedia Research Group (MUVIS)

for their friendship. Particularly, many thanks go to Prof. Serkan Kiranyaz for

providing me the opportunity to join MUVIS team. It is not possible to mention

everyone here, but I would not forget Berkay Kicananaoglu for fruitful discussions

and co�ee breaks.

H�d�r Yüzügüzel

Tampere, November 2015

iii

TABLE OF CONTENTS

1. Introduction . 1

2. Theoretical Background . 4

2.1 Machine Learning . 4

2.2 Colour Constancy . 6

2.2.1 Image formation model . 6

2.2.2 Statistics based approaches . 7

2.2.3 Learning based approaches . 8

2.3 Arti�cial Neural Networks . 10

2.3.1 Perceptron . 10

2.3.2 Multilayer perceptron . 11

2.3.3 Autoencoder (Autoassociator) . 13

2.3.4 Training ANN . 14

2.3.5 Regularization . 19

2.4 Deep Convolutional Neural Network 21

2.4.1 Convolution . 22

2.4.2 Pooling (Subsampling) . 24

2.4.3 Recti�ed Linear Unit (ReLU) . 25

3. Methodology . 26

3.1 Preprocessing . 26

3.1.1 Gamma correction . 26

3.1.2 Image resizing and cropping . 26

3.1.3 Non-overlapping patch extraction 27

3.1.4 Global histogram stretching . 27

3.1.5 Feature standardization . 28

3.2 CNN architecture . 28

iv

3.3 CNN training and testing . 30

4. Experimental setup and results . 31

4.1 Datasets . 31

4.2 Error Measure . 32

4.3 Results . 33

5. Conclusions . 41

Bibliography . 43

v

LIST OF FIGURES

1.1 Correct white balance vs. reddish/yellowish white balance (Source:

http://www.cs.mtu.edu/~shene/DigiCam/User-Guide/white-balance/

wb-concept.html) . 2

2.1 rg chromaticity spaces of images in Figure 1.1 9

2.2 Sigmoid and tanh activation functions 11

2.3 Simple perceptron . 12

2.4 One-hidden-layer toy MLP with D = 3, K = 2, Dh = 5 12

2.5 Autoencoder example (Layer L2 acts as an encoder and layer L3 acts

as a decoder) . 14

2.6 Learned colour features on STL-10 dataset with a sparse autoencoder 15

2.7 Learned hierarchical features from a DL algorithm [20] 22

2.8 An example of 2D convolution without kernel �ipping (Source: http:

//www.iro.umontreal.ca/~bengioy/dlbook/version-07-08-2015/

convnets.html) . 24

2.9 Illustration for sparse connectivity and weight sharing (Source: http:

//deeplearning.net/) . 24

3.1 Plots of Equation 3.1 for various values of γ (c = 1 in all cases) . . . 27

3.2 CNN architecture . 29

4.1 Example images of Shi-Gehler RAW dataset 32

4.2 Example images of SFU subset dataset 32

4.3 Best mean pooling CNN result in Shi-Gehler 35

http://www.cs.mtu.edu/~shene/DigiCam/User-Guide/white-balance/wb-concept.html
http://www.cs.mtu.edu/~shene/DigiCam/User-Guide/white-balance/wb-concept.html
http://www.iro.umontreal.ca/~bengioy/dlbook/version-07-08-2015/convnets.html
http://www.iro.umontreal.ca/~bengioy/dlbook/version-07-08-2015/convnets.html
http://www.iro.umontreal.ca/~bengioy/dlbook/version-07-08-2015/convnets.html
http://deeplearning.net/
http://deeplearning.net/

vi

4.4 Worst mean pooling CNN result in Shi-Gehler 36

4.5 Best median pooling CNN result in Shi-Gehler 37

4.6 Worst median pooling CNN result in Shi-Gehler 38

4.7 Best mean pooling CNN result in SFU subset 39

4.8 Worst mean pooling CNN result in SFU subset 39

4.9 Best median pooling CNN result in SFU subset 40

4.10Worst median pooling CNN result in SFU subset 40

vii

LIST OF TABLES

2.1 Statistics based colour constancy algorithms 8

3.1 Parameters in CNN training . 30

4.1 Angular error statistics on linear Shi-Gehler RAW dataset 34

4.2 Angular error statistics on linear Gray-ball (SFU) subset dataset . . . 34

viii

LIST OF ABBREVIATIONS AND SYMBOLS

AE Automatic exposure, page 1

AF Automatic focus, page 1

ANN Arti�cial Neural Network, page 4

AWB Automatic White Balance, page 1

BP Backpropagation, page 13

CC Colour Constancy, page 1

CNN Convolutional Neural Network, page 3

DL Deep Learning, page 3

GPU Graphical Processing Unit, page 21

MLP Multilayer Perceptron, page 4

ReLU Recti�ed Linear Unit, page 22

SVM Support Vector Machine, page 4

SVR Support Vector Regression, page 8

b b chromaticity value, page 9

b(1) bias vector of �rst hidden layer in MLP, page 13

b(2) bias vector of second hidden layer in MLP, page 13

B blue value of colour image pixel, page 2

c camera sensor spectral sensitivity, page 6

D input feature dimension, page 10

Dh dimension of hidden layer neurons, page 12

e colour of light source, page 2

ê estimated colour of light source, page 33

exp exponential function, page 11

E error, page 5

E
′

augmented error, page 19

g g chromaticity value, page 8

g(.) model, page 5

G green value of colour image pixel, page 2

Gσ gaussian �lter, page 7

i, j, h indices, page 6

I (sub)image function, page 6

k constant such that illuminant colour e has unit length, page 7

ix

K output dimension in ANN, page 11

K number of cross validation folds, page 5

L(.) loss function, page 5

n order of derivative, page 7

N total number of samples, page 4

p Minkowski norm, page 7

P model complexity function, page 19

r desired output response (label), page 4

r r chromaticity value , page 8

r∗ desired output for (unseen) test input feature/pattern vector, page

4

R red value of colour image pixel, page 2

s surface re�ectance, page 6

t sample index, page 4

vih connection weight between ith unit in output layer and hth unit in

hidden layer, page 18

V weight matrix between hidden and output layer in MLP, page 13

w weight vector, page 10

w0 intercept value of ANN, page 10

whj connection weight between jth unit in input layer and hth unit in

hidden layer, page 17

wj jth element of weight vector, page 10

W weight matrix between input and hidden layer in MLP, page 13

x input feature/pattern vector, page 4

x̄ mean of x, page 28

x∗ (unseen) test input feature/pattern vector, page 4

x0 bias unit in ANN, page 10

xj jth feature of input feature/pattern vector, page 10

X training set, page 4

y (predicted) output vector, page 10

yi ith unit of (predicted) output vector, page 17

z output of hidden layer neurons, page 13

α momentum parameter, page 19

∆ change of any changeable quantity, page 16

η learning rate, page 16

γ gamma, page 26

λ wavelength of illuminant, page 6

x

∇ gradient, page 7

ψ regularization parameter, page 19

σ scale parameter (standard deviation), page 7

θ parameters, page 5

θ∗ best parameters, page 5

ϕ ANN activation function, page 13
∂E
∂θ

gradient of error function, page 13

‖.‖ norm, page 21

∗ convolution operator, page 7

1

1. INTRODUCTION

Computer vision is the term that de�nes a multidisciplinary research �eld which aims

to acquire, process, analyze and understand images. The �elds most closely related

to computer vision are image processing, pattern recognition, signal processing and

machine learning. The computer vision problems can be mainly divided into two

groups such as high level and low level vision tasks. Sub�elds of high level computer

vision include object recognition, object tracking, image classi�cation and so on.

Among many sub�elds of low level computer vision (such as noise reduction, tone

mapping, auto-focus, auto-exposure etc.), colour constancy (CC) remains to be a

challenging problem due to its ill-posed nature.

CC is the ability to measure colours of objects independently of the colour of the light

source [25]. CC is also known as (automatic) white balance, colour balance, gray

balance and white point estimation problem in the literature. Generally speaking,

Human Visual System can perceive the colours of the objects, despite the variations

in ambient illuminant. A correctly and badly white balanced image pair is shown

in Figure 1.1. In contrast, CC is not a trivial task for the computers. A great deal

of research has been conducted into CC problem.

CC is a fundamental pre-processing step for various high level computer vision tasks.

Besides, it is one of the three key problems (auto-focus, auto-exposure, auto-white-

balance) in digital camera pipeline. In general, these three problems are referred

together to as "3A's": AF/AE/AWB. Therefore, it is important for the end-users

of the digital cameras and mobile phones who want to take aesthetically plausible

images with their devices.

Traditional computational CC models attack the problem using a two step proce-

dure, namely illuminant estimation and colour correction. Firstly, they estimate

the colour (chromaticity) of the light source (illuminant) from a RGB input image

based on some assumptions. The most common assumption is uniform light source

colour across the scene. Secondly, they correct the input image using that estimated

1. Introduction 2

illuminant so that the corrected image appears to be taken under a canonical, e.g.

perfect white (i.e.
[
1/
√

3, 1/
√

3, 1/
√

3
]T
), light source [1]. The colour correction

is achieved by inverting a diagonal model named Von-Kries Model:RG
B

 =

eR 0 0

0 eG 0

0 0 eB


R

′

G
′

B
′

 (1.1)

where [R G B]T is the colour of any pixel taken under an unknown light source,[
R

′
G

′
B

′]T
is the transformed colour which would appear as if it were under canon-

ical light source and [eR eG eB]T is the colour of the light source which has already

been estimated in the �rst step. As can be seen from Equation 1.1, the second step

of the procedure is straightforward when the illuminant is estimated accurately.

Figure 1.1 Correct white balance vs. reddish/yellowish white balance (Source: http: //
www. cs. mtu. edu/ ~shene/ DigiCam/ User-Guide/ white-balance/ wb-concept. html)

Many illumination estimation algorithms have been presented in the literature. The

proposed solutions for CC can be roughly classi�ed into two main groups: statistics-

based vs. learning-based approaches. The former type of algorithms are methods

which are directly applied to any image without requiring training. For the lat-

ter type of algorithms, a model should be learnt before the illumination can be

estimated.

http://www.cs.mtu.edu/~shene/DigiCam/User-Guide/white-balance/wb-concept.html
http://www.cs.mtu.edu/~shene/DigiCam/User-Guide/white-balance/wb-concept.html

1. Introduction 3

Traditional machine learning techniques require careful hand-crafted feature engi-

neering as the performance of machine learning methods depends on the data repre-

sentation (or features). In other words, one should have domain expertise to design

a feature extractor which transforms the raw data, e.g. pixel values of an image, into

a suitable internal representation (feature vector). Another important drawback of

feature engineering is that features extracted from one dataset do not work well on

another dataset. These di�culties of feature engineering motivated researcher to

�nd out algorithms to learn features. In deep learning (DL) models features are not

designed by humans but they are automatically learned from the raw data for the

task at hand. Contrary to feature engineering approach, there is no need to design

features manually ahead of time.

In this thesis, a deep convolutional neural network (CNN) model is trained to esti-

mate the colour of the light source from the non-overlapping patches extracted from

the almost raw input colour images. Although CNNs are proved to be extremely

successful in high level vision tasks, such as recognition, using CNNs for low level

vision tasks, such as CC, is a quite new idea and, to our knowledge, [8] is the only

work that investiages the use of CNNs for illumination estimation. As opposed to

[8], which trains and evaluates the CNN on a single dataset, we train and evaluate

two di�erent CNN models from scratch on two di�erent widely used datasets. Fur-

ther, our CNN model yields similar performance as [8] by extracting fewer patches

in an intelligent way on Shi-Gehler dataset. Our simple patch extraction strategy

signi�cantly reduces the computational burden compared to [8].

The rest of the thesis is organized as follows. In Chapter 2, we formulate the CC

problem and present a short literature review on CC. In this chapter, we also provide

the necessary background information. In Chapter 3, we present the pre-processing

and our CNN model in detail. In Chapter 4, we present our experimental results.

Finally, Chapter 5 o�ers concluding remarks.

4

2. THEORETICAL BACKGROUND

This chapter starts with a brief overview on machine learning paradigm. Then,

existing CC methods will be discussed. Further, arti�cial neural network (ANN)

models are presented. Finally, a deep CNN model is described.

2.1 Machine Learning

Machine learning refers to computer programs which can improve their performance

P in some task(s) T by their own experience E [21]. There is a model de�ned

up to some parameters, and learning refers to optimization of the parameters of

the model using training data or past experience. Most often, machine learning is

used interchangeably with the term Pattern Recognition (PR) although they are not

exactly the same.

There are two main sub�elds of machine learning, namely, supervised learning and

unsupervised learning. In supervised learning, there exists a training set X =

{xt, rt}Nt=1 where x is the feature/pattern vector, r is the desired output (usually

called as label, particularly in the context of classi�cation), t is the index of di�er-

ent samples in the set of N samples. The aim is to learn a mapping from the input x

to an output r such that given a novel input x∗ the predicted output r∗ is accurate.

The pair (x∗, r∗) is not in X but assumed to be generated by the same unknown

process that generated X . The term 'supervised' indicates that there is a so-called

'supervisor' who provides the output r for each input x in the training data X .
There exist many supervised learning techniques in the literature: k-nearest neigh-

bour (kNN), multilayer perceptron (MLP), decision tree, support vector machine

(SVM) and so on. Unlike supervised learning, in unsupervised learning, there is no

supervisor and we have only the input data x, i.e. we do not have output values r.

The aim is to �nd interesting and hidden structure in the unlabelled input data. It

is closely related to density estimation in statistics. Among many other techniques

such as matrix factorization, clustering methods are most widely used unsupervised

2.1. Machine Learning 5

learning methods.

Supervised learning has two important applications, namely classi�cation and re-

gression. Classi�cation deals with the prediction of categorical class labels whereas

regression models continuous-valued functions. An example application for classi�-

cation would be e.g. classifying images of humans as 'male' or 'female'. A regression

example would be e.g. predicting the price of a used car. The regular approach in

machine learning [6] is that we assume a model g(x|θ) where g(.) is the model, x

is the input and θ are the parameters. The machine learning program optimizes

the parameters θ such that the approximation error, or loss, is minimized. The

approximation error E is the sum of individual losses over the instances of X :

E(θ|X) =
∑
t

L(rt − g(xt|θ)) (2.1)

where L(.) is the loss of the residual between the desired output rt and our approx-

imation to it g(xt|θ) given the current value of the parameters θ. We aim to �nd

best parameters θ∗ that minimize the total error:

θ∗ = arg min
θ
E(θ|X) (2.2)

After training phase is completed, i.e. parameters θ∗ are found, we are interested in

the generalization performance (o�-training set error) of the learning algorithm. Per-

formance assessment is an essential part of machine learning system. Performance

evaluation methods can be grouped into three categories, namely resubstituation

error rate, holdout error rate and cross validation error rate. The simplest error

rate estimate is the resubstituation error rate which is the training error rate. It is

an optimistic estimate of the machine learning system. For example, the training

error of 1-nearest neighbour is always zero. In holdout case, we split the dataset

into two di�erent sets: training and test set. This division is usually performed after

the dataset is randomly shu�ed. Holdout method is not suitable for small datasets

since there will not be adequate training data to train the learning algorithm after

splitting. In this situation, a better method is cross-validation, in which the dataset

is divided into K equal sized parts (folds) and one of the K parts is used as test

set, while remaining K − 1 parts are used as training set. This training/testing is

repeated K times and an average of test errors on each fold is calculated as test

2.2. Colour Constancy 6

error estimate. Cross-validation is also referred to as K-fold cross validation. In the

extreme case where K = N , it is named as leave-one-out method. Leave-one-out is

quite useful when there the datasets are very small.

2.2 Colour Constancy

2.2.1 Image formation model

CC is an under-determined (ill-posed) problem since we have one image and two

unknowns (illuminant and re�ectance). The basic image formation model is quite

handy to understand the ill-posedness. We shall denote images by two-dimensional

functions of the form I(i, j). The function I(i, j) is mainly characterized by two

components [16]:

• the amount of source illumination incident on the scene being viewed (illumi-

nation)

• the amount of illumination re�ected by the objects in the scene (re�ectance)

If we want to write the image formation model more rigorously,

I(i, j) =

∫
e(i, j, λ)s(i, j, λ)c(λ)dλ (2.3)

where

• λ: wavelength of the illuminant

• I(i,j): intensity value of the pixel at given position (i,j)

• e(i,j,λ): illuminant spectral power distribution

• s(i,j,λ): surface spectral re�actance

• c(λ): sensor spectral sensitivities (0 ≤ c(λ) ≤ 1)

CC problem tries to solve both e and s given one I and c, which makes the problem

ill-posed.

2.2. Colour Constancy 7

2.2.2 Statistics based approaches

To tackle the ill-posedness problem additional assumptions are needed. The statis-

tics based methods are based on assumptions about the distribution of colours in

the image. The most common and widely used instance of this class is Gray World

[9] assumption. It is assumed that average colour in the image is gray and therefore,

the illuminant colour can be estimated as a deviation from gray of the averages in

image colour channels. Another well-known instance of this class is White Patch

[19] assumption. It is assumed that there always exists a white patch in the im-

age and the maximum response in each channel is caused by perfect re�ection of

the illuminant on the white patch. As a result of this, the colour of this perfect

re�ectance is exactly the colour of the light source. A third instance of this class

is Gray Edge [25] assumption in which higher order image statistics, namely image

derivatives, are utilized. It is assumed that average colour of the edges are gray and

the illuminant colour can be estimated as the deviation from gray of the averages of

the edges in the image colour channels. Van der Weijeer et. al. combined all these

statistics based methods into a single framework (Equation 2.4) of CC methods

based on low level image features [25].

e(n, p, σ) =
1

k

(∫∫
|∇nIσ(i, j)|pdxdy

) 1
p

(2.4)

where

• n: order of the derivative

• p: order of the Minkowski norm

• Iσ(i, j) = I(i, j)∗Gσ(i, j) where Gσ(i, j) is a gaussian �lter with scale parameter

σ

• k: constant such that illuminant colour e has unit length (using L2 norm)

By varying n, p and σ, we result in di�erent statistics based CC algorithms (Table

2.1).

The statistics based methods are considered as state-of-the-art and are widely in use.

The drawback of statistics based approaches is that they only work well when some

2.2. Colour Constancy 8

Algorithm n p σ
Gray World (GW) 0 1 0
White Point (WP) 0 ∞ 0

Shades of Gray (SoG) 0 4 0
general Gray World (gGW) 0 9 9
1st-order Gray Edge (GE1) 1 1 6
2nd-order Gray Edge (GE2) 2 1 1

Gamut Mapping (GM) 0 0 4

Table 2.1 Statistics based colour constancy algorithms

pre-de�ned assumptions are satis�ed. For example, gray world assumption does not

hold for every image since the average intensity of primary colours is assumed to

be equal. As an example, when taking photos of a forest, it is obvious that the

average intensity of the green channel di�ers from averages of red and blue. On the

other hand, the main advantage of statistics based approaches is that they require

very low computational resources. For example, white patch (max-RGB) �nds the

maximum or gray world computes average pixel values.

2.2.3 Learning based approaches

The learning based CC algorithms estimate the colour of the light source using a

model that is learnt in a supervised manner, in which we have labelled training data.

Learning CC can be formulated as a regression problem. Although any machine

learning technique can be used for regression, in the literature mostly MLP [10],

support vector regression (SVR) [12] and ridge regression [5] are used. The pro-

posed learning based methods usually rely on hand-crafted low level visual features

such as pixels. Mostly, as input (feature) representation, binarized rg chromaticity

histogram of the images are used and the measured ground truth illuminations are

given as desired output in learning based approaches. rg chromaticity space:

r = R/(R +G+B) (2.5)

g = G/(R +G+B) (2.6)

where RGB refers to red, green and blue. rg chromaticity space is bounded between

0 and 1 (Figure 2.1), which does not require additional feature normalization when

2.2. Colour Constancy 9

being an input to a learner. It is important to note that using rg chromaticity space

discards all spatial and intensity information, which has pros and cons [10]. The rg

chromaticity space is uniformly quantized with a �xed step size. The binary input

(feature) representation is constructed by binarizing the quantized rg chromaticity

space.

Figure 2.1 rg chromaticity spaces of images in Figure 1.1

When the blue chromaticity component is necessary, it can easily be calculated:

b = 1− r − g (2.7)

There also exist di�erent chromaticity spaces, such as:

r = R/G (2.8)

b = B/G (2.9)

MLP will be discussed in more detail in Chapter 2.3.2. SVR, which is also referred

to as a kernel machine, is a maximum margin method that allows the model to

be written as a sum of the in�uences of a subset of the training instances, namely

so-called support vectors [6]. Both MLP and SVR are nonlinear regression methods.

2.3. Arti�cial Neural Networks 10

Ridge regression is an extension to linear regression which incorporates regulariza-

tion. In linear regression, the sum of squared errors are minimized whereas in ridge

regression, combination of both sum of squared errors and the norm of coe�cient

vector is minimized.

Bayesian approaches [13] model the variability of re�ectance and of illuminant as

random variables, and then estimate illuminant from posterior probability distribu-

tion conditioned on image data.

2.3 Arti�cial Neural Networks

2.3.1 Perceptron

The perceptron is the elementary processing unit in ANN models. It has inputs

xj ∈ R, j = 1, . . . , D, associated weights wj ∈ R and output y. The weights are

often named as synaptic weight or connection weight. In the simplest form, it is a

weighted sum of its inputs (Figure 2.3):

y =
D∑
j=1

wjxj + w0 (2.10)

where w0 is the intercept value which is the weight associated with bias unit x0 = +1.

The output y can equivalently be written as an inner product of two vectors:

y = wTx (2.11)

where w = [w0, w1, . . . , wD]T and x = [1, x1, . . . , xD]T . The perceptron de�ned in

Equation 2.11 is a linear neuron and de�nes a hyperplane which divides the input

space into two. If we want to use the perceptron as a linear discriminant function, we

need to check the sign of the output y using a binary threshold activation function.

Since the linear discriminant assumes that the classes can be optimally discrimi-

nated by a linear discriminant boundary, we cannot use binary threshold activation

function in non-linear cases. In nonlinear cases, the output of a perceptron is usually

calculated by a nonlinear activation function such as tanh or sigmoid. Note that,

2.3. Arti�cial Neural Networks 11

tanh is a rescaled version of the sigmoid, and its output range is [−1, 1] instead of

[0, 1] (Figure 2.2).

tanh(x) =
exp(x)− exp(−x)

exp(x) + exp(−x)
(2.12)

sigmoid(x) =
1

1 + exp(−x)
(2.13)

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sigmoid

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

tanh

Figure 2.2 Sigmoid and tanh activation functions

2.3.2 Multilayer perceptron

ANN models are inspired by the human brain and thus mimic human brain. The

MLP (also referred to as feedforward networks) is an ANN structure that can be used

for regression and classi�cation tasks. MLPs are universal function approximators.

The basic processing element of MLP is a perceptron/neuron.

A one-hidden-layer MLP (Figure 2.4) is a function f : RD → RK , where D is input

dimension of x and K is output dimension of y = f(x):

2.3. Arti�cial Neural Networks 12

Figure 2.3 Simple perceptron

Figure 2.4 One-hidden-layer toy MLP with D = 3,K = 2, Dh = 5

2.3. Arti�cial Neural Networks 13

f(x) = ϕ(b(2) + V (ϕ(b(1) +Wx)︸ ︷︷ ︸
=z(x)

))

︸ ︷︷ ︸
=y(x)

(2.14)

with bias vectors b(1), b(2); weight matrices W , V and activation function ϕ. The

vector z(x) = ϕ(b(1) +Wx) constitutes the hidden layer which can be considered as

a feature extractor. W ∈ RD×Dh is the weight matrix between the input layer and

hidden layer. As activation function ϕ, one can use tanh, sigmoid and/or relu.

The vector y(x) = ϕ(b(2) + V z(x)), where V ∈ RDh×K denotes the weight matrix

between the hidden layer and output layer, constitutes the output layer.

The parameters of MLP to be learnt during training is the set θ =
{
W,V, b(1), b(2)

}
.

The parameters are learnt using (stochastic) gradient descent. The gradients of

the error function, ∂E
∂θ
, are computed through the backpropagation (BP) algorithm,

which is essentially the chain-rule of derivation.

2.3.3 Autoencoder (Autoassociator)

In Chapter 2.3.2, a common ANN architecture, namely MLP, for supervised learning

is discussed. However, we do not have labels all the time since collecting labels is

a non-trivial task. In this case, we aim at �nding some underlying structure. This

branch of machine learning is named as unsupervised learning. If we do not have

labels, i.e. if we have only the set of
{
x(1), x(2), . . .

}
, we can still use an ANN by

setting the target values to be equal to the inputs, i.e. y(i) = x(i). This special

ANN architecture is a so called autoencoder (autoassociator) and it still uses BP as

training algorithm.

Autoencoder tries to learn a function f = hW,b(x) ≈ x. At �rst glance, it might

look like as if autoencoder is trying to learn the identity function which is de�nitely

a trivial function. However, if we impose additional constraints on the network

structure (Figure 2.5), for example, restricting the number of hidden neurons, we

can discover a useful structure of the data [2]. If there is a structure in the data and

if we use fewer neurons in the hidden layer compared to input layer, we can learn a

compressed representation. This is similar to principal component analysis (PCA)

if we do not use nonlinear activation function in the hidden layer. We can still

2.3. Arti�cial Neural Networks 14

discover interesting structure although we use many hidden neurons by imposing

sparsity constraint on the hidden neurons. This type of autoencoder is called as

sparse autoencoder. Figure 2.6 shows the learned features on a set of 100, 000 small

8 × 8 patches sampled from the larger 96 × 96 STL-10 1 [3] images using a linear

decoder (a sparse autoencoder whose output layer uses a linear activation function).

Sparse autoencoder learns features looking like edges and opponent colours as shown

in Figure 2.6.

Figure 2.5 Autoencoder example (Layer L2 acts as an encoder and layer L3 acts as a
decoder)

There are di�erent variants of autoencoders such as denoising autoencoder [27].

Autoencoder, denoising autoencoder or sparse autoencoder can be stacked to form

a deep network. These deep autoencoders can be used to initialize the weights of

deep CNNs.

2.3.4 Training ANN

There are two main training procedures for ANNs, namely online learning and batch

learning. In online learning, we write the error function on individual instances

1The STL-10 dataset contains 5000 training and 8000 test examples, with each example being
a 96× 96 labelled colour image belonging to one of ten classes: airplane, bird, car, cat, deer, dog,
horse, monkey, ship, truck.

2.3. Arti�cial Neural Networks 15

Figure 2.6 Learned colour features on STL-10 dataset with a sparse autoencoder

whereas in batch learning we write the error function on the entire training dataset

X . In the former one, network adapts itself slowly in time since the network param-

eters are updated after each instance. In the latter one, we accumulate the changes

over entire training set and update the network parameters after a complete pass

over the entire training set. Online learning converges faster because there may be

similar patterns in the training set, and the stochasticity has an e�ect like adding

noise and may help escape local minima [6]. Online learning is useful for a number

of few reasons [6]:

1. It saves the cost of storing the training samples in an external memory and

storing the intermediate results during optimization.

2. The problem may be changing in time, which means that the sample distribu-

tion is not �xed, and a training set cannot be chosen a priori.

3. There may be physical changes in the system

2.3. Arti�cial Neural Networks 16

A widely used training method for perceptron is stochastic gradient descent and for

MLP there is a BP method.

Stochashastic Gradient Descent

For example, if we consider regression problem, the error on the single training

instance with index t, (xt, rt), is:

Et(w|xt, rt) =
1

2
(rt − yt)2 =

1

2
(rt − (wTxt))2 (2.15)

and for j = 0, . . . , D, the online stochastic update is

∆wtj = −η∂E
t

∂wj
(2.16)

= η(rt − yt)xtj (2.17)

where η is the learning parameter. Equation 2.17 can be stated as follows:

Update = LearningRate× (DesiredOutput− PredictedOutput)× Input (2.18)

After we compute the update, we update the weights:

wtj = wtj + ∆wtj (2.19)

For classi�cation problems, the update rules can be derived in a similar way using

sigmoid outputs (for 2-class classi�cation problem) or softmax outputs (for K > 2

classes). For example, the output for a single training instance with index t will

be yt = sigmoid(wTxt) for 2-class case. As error function, instead of using squared

error, cross-entropy error is more suitable for classi�cation problems. The update

rule for cross-entropy error is the same as Equation 2.17.

2.3. Arti�cial Neural Networks 17

Backpropogation

Considering the MLP in Figure 2.4, we assume xj, j = 1, . . . , D are the inputs,

zh, h = 1, . . . , Dh are the hidden units, yi, i = 1, . . . , K are the output units, whj are

the weights between the input layer and hidden layer and vih are the weights between

hidden layer and output layer. Further, we assume sigmoid activation function for

the hidden layer and linear activation function for the output layer. Since the hidden

layer acts as an input layer to the output layer, we can think of it as a perceptron

without loss of generality. Therefore, we already know how to update the parameters

vih given the input zh. In order to update the �rst-layer weights, whj, we use the

chain rule to calculate the gradient:

∂E

∂whj
=
∂E

∂yi

∂yi
∂zh

∂zh
∂whj

(2.20)

We can interpret the Equation 2.20 as the error E propagates from the output y

back to the input x through zh. Now, we consider a nonlinear regression problem

to derive the Equation 2.20. In the forward pass, we �rst calculate the zh and then

yi.

zh = sigmoid(wTh x) =
1

1 + exp
[
−
(∑D

j=1whjxj + wh0

)] (2.21)

yi = vTi z =

Dh∑
h=1

vihzh + vi0 (2.22)

In the backward pass, we start with writing the error function over the entire training

set:

2.3. Arti�cial Neural Networks 18

E(W,V |X) =
1

2

N∑
t=1

K∑
i=1

(rti − yti)2 (2.23)

Next, we write the (batch) update rule for the weights between hidden and output

layer:

∆vih = η

N∑
t=1

(rti − yti)zth (2.24)

Note that the only di�erence between Equation 2.24 and Equation 2.17 is that the

former is written over the entire training set whereas the latter one is written over

a single training instance. This is the di�erence between the basic and stochastic

gradient search.

We cannot use the same update rule as Equation 2.24 to update the weights between

input and hidden layer, whj, since we do not have the desired output values for the

hidden layer. We need to apply chain rule:

∆whj = −η ∂E

∂whj
(2.25)

= −η
N∑
t=1

K∑
i=1

∂Et

∂yti

∂yti
∂zth

∂zth
∂whj

(2.26)

= −η
N∑
t=1

K∑
i=1

−(rti − yti)︸ ︷︷ ︸
∂Et/∂yti

vih︸︷︷︸
∂yti/∂z

t
h

zth(1− zth)xtj︸ ︷︷ ︸
∂zth/∂whj

(2.27)

= η
N∑
t=1

[
K∑
i=1

(rti − yti)vih

]
zth(1− zth)xtj (2.28)

Gradient descent based training is simple but it converges slowly. In order to im-

prove the convergence performance of gradient descent, two methods have been

developed, namely momentum and adaptive learning rate. Successive parameter

updates of ∆wtj (Equation 2.17), ∆vih (Equation 2.24), ∆whj (Equation 2.25)

might oscillate and leads to slow convergence. In order to solve this problem, a

2.3. Arti�cial Neural Networks 19

parameter named as momentum, which smooths the gradient using moving average,

is introduced. Momentum has an e�ect of smoothing the trajectory during conver-

gence. For example, if we rewrite the Equation 2.17 by taking momentum into

account:

∆wtj = −η∂E
t

∂wj
+ α∆wt−1j (2.29)

where α is generally chosen between 0.5 and 1. Equation 2.29 incorporates the

previous update in the current update.

2.3.5 Regularization

In machine learning, most of the time, the trained model performs well on training

set. Namely, the resubstitution error (training error) might be severely too opti-

mistic. However, for most purposes, we are interested in the performance of unseen

test set. In other words, we desire our trained model to perform well enough on

test data. This phenomenon is called generalization. The main reason for lack of

generalization is using a complex (�exible) model. Using a �exible model leads to

over�tting which causes poor generalization. For example, using a 5th order model

in polynomial regression for a training set which is sampled from 2nd order polyno-

mial is an over�tting example. The widely used approach to combat over�tting is

regularization. The basic idea in regularization is to impose prior information about

the solution through some nonnegative function. Therefore, we write an augmented

error function [6]:

E
′
(θ|X) = E(θ|X) + ψ P (θ) (2.30)

where E is the error on data, P (θ) is the model complexity function and ψ is the

regularization parameter that controls the trade-o� between the error in data and

model complexity. It penalizes for too �exible models. ψ is usually �ne-tuned with

cross-validation (Algorithm 1). Regularization is analogous to assumptions made

in statistics based methods discussed in Section 2.2.2 in the sense that they try to

overcome the ill-posedness problem.

There are several widely used methods for ANN regularization but we will explain

2.3. Arti�cial Neural Networks 20

Algorithm 1 Setting regularization parameter ψ using cross-validation

Choose a set of regularization parameters ψ1, . . . , ψA
Choose a set of training and validation set splits {Xi,Vi}Ki=1

for a = 1 to A do
for i = 1 to K do
θia = arg minθ [E(θ|Xi) + ψaP (θ)]

end for
L(ψa) = 1

K

∑K
i=1E(θia|Vi)

end for
ψ∗ = arg minψa

L(ψa)

here only early stopping and L1/L2 regularization.

Early-stopping

As we train ANNs further and further, the training error continues to decrease

but at some point the validation error starts to increase. This is the instant when

the over�tting starts. Training should be stopped early to overcome this problem.

Initially, all the parameters, weights in ANN context, are randomly initialized close

to 0. As training continues, the most important weights start to move away from

0 and if training continues further on to get less error on the training set, almost

all weights are updated away from 0 and become e�ective parameters [6]. We can

think of it as increasing the model complexity P (θ) by adding new parameters to

the model.

L1/L2 regularization

In L1/L2 regularization, P (θ) = ‖θ‖pp penalizes certain parameter con�gurations. If

we rewrite the error function in Equation 2.23 by changing the parameters {W,V }
to θ:

E(θ|X) =
1

2

N∑
t=1

K∑
i=1

(rti − yti)2 (2.31)

2.4. Deep Convolutional Neural Network 21

then the regularized error function will be:

E
′
= E(θ|X) + ψ‖θ‖pp (2.32)

where ‖θ‖p =
(∑|θ|

j=0 |θj|p
) 1

p
which is the Lp norm of θ.

The most commonly used values for p are 1 and 2, hence it is named as L1/L2

regularization. If p = 2, it is also named as weight decay. It penalizes networks with

many nonzero weights.

2.4 Deep Convolutional Neural Network

DL is the fastest growing area of machine learning. Note that, DL is used inter-

changeably with representation learning or feature learning. DL learns many levels

of abstraction, i.e. builds a hierarchical representation (Figure 2.7). If we consider

image data, the �rst hidden layer represent learn edges of various orientations, the

second hidden layer may represent corner, lines, etc. and so on. Although the DL is

widely used in many applications such as speech recognition and natural language

processing, the breakthrough results have been achieved in object recognition. The

researchers from Toronto decreased the error rate from 26.1% to 15.3% in the Im-

ageNet2 object recognition competition in 2012 by using a deep CNN [18]. DL

approaches are robust to natural variation in the data. The same network can be

used for many di�erent applications (generalizable). Namely, a pre-trained network

can be used as a feature extractor for a completely di�erent problem. This is known

as transfer learning. Furthermore, DL methods are massively parallelizable and that

is why the computations can be done on Graphical Processing Units (GPUs).

CNNs are widely used models for vision tasks. They are also used for 1D signals

such as audio data and time series data. There are several parameters in CNN

model: width and height of the input (sub)image, kernel (�lter) size at each layer,

pooling size and CNN structure, i.e. number of layers and neurons at each layer.

Moreover, CNN parameters should be set such that the output of �nal CNN layer

produces scalar, 1× 1 feature maps.

CNN training is based on BP algorithm which is discussed in Section 2.3.4 in detail.

2http://www.image-net.org/

2.4. Deep Convolutional Neural Network 22

Figure 2.7 Learned hierarchical features from a DL algorithm [20]

Training a CNN with BP algorithm requires a lot of training data, which lacks in

most of the cases, to have a good generalization performance. A very common trick

to solve this problem is to conduct an unsupervised pre-training stage, performed in

a greedy layer-wise manner, prior to actual CNN training. In this way, the network

weights are initialized with pre-training results instead of being initialized randomly.

For example, stacked sparse autoencoder can be used in pre-training phase.

CNNs have two important operators, namely convolution and pooling (subsam-

pling). Since the natural images are stationary, which means that the statistics of

one part of the image are the same as the other part, convolution is a good operator

to learn the same features at all locations. Stationarity is used in the sense that

the probability of occurrence of a certain feature (e.g. edge) is the same in every

region of the image. A 2D feature map is obtained by the convolution of the input

image with a kernel (�lter) and adding a bias term and then applying a non-linear

activation function. The recti�ed linear unit (ReLU) [22] is the most widely used

activation function in training of deep CNNs. In order to extract di�erent features,

several feature maps are created at every hidden layer. The second important op-

erator of CNNs is pooling. Basically, it decimates the obtained feature maps after

convolution by aggregating the statistics feature maps (summary statistics).

2.4.1 Convolution

Convolution is a linear mathematical operation which has many applications in

engineering and mathematics. Discrete convolution of the input signal x and weight

(�lter) w are given below (both in 1D and 2D):

2.4. Deep Convolutional Neural Network 23

y[n] = x[n] ∗ w[n] =
∞∑

u=−∞

x[u]w[n− u] =
∞∑

u=−∞

x[n− u]w[u] (2.33)

y[m,n] = x[m,n] ∗ w[m,n] =
∞∑

u=−∞

∞∑
v=−∞

x[u, v]w[m− u, n− v] (2.34)

In DL models, a weight w consists of a set of learnable parameters. In fact, in CNN

implementations, cross-correlation is used rather than convolution. The expression

for cross-correlation looks quite similar to that of the convolution sum given by

Equation 2.33 and Equation 2.34. The kernel w is not �ipped in cross-correlation

calculation:

y[n] = x[n] ∗ w[−n] =
∞∑

u=−∞

x[u]w[−(n− u)] =
∞∑

u=−∞

x[−(n− u)]w[u] (2.35)

In DL context, both operations are referred to as convolution. Figure 2.8 shows an

illustration of 2D convolution without kernel �ipping.

Convolution impose three important ideas that can improve a machine learning

system: sparse connectivity, weight (parameter) sharing and equivariant represen-

tations [4]. Traditional ANNs are fully connected which means that every neuron in

a particular layer is connected to every neuron in the next layer. On the contrary,

CNNs have sparse interactions because of using a smaller kernel w than the input

x. This property reduces the number of free parameters to be learnt and thus mem-

ory requirements. As we know from �ltering, same w is convolved with the input

x. Namely, weight w is shared. Sparse connectivity and weight sharing properties

of convolution are illustrated in Figure 2.9. The replication of weights (kernels)

causes the layer to have the equivariance property to translation [4]. In other words,

it allows the same features to be detected invariant to their positions in the input.

For example, one layer can detect edges in an image regardless of their positions in

the image. However, convolution is not equivariant to other transformations such

as scale and rotation.

2.4. Deep Convolutional Neural Network 24

Figure 2.8 An example of 2D convolution without kernel �ipping (Source: http: // www.
iro. umontreal. ca/ ~bengioy/ dlbook/ version-07-08-2015/ convnets. html)

Figure 2.9 Illustration for sparse connectivity and weight sharing (Source: http: //

deeplearning. net/)

2.4.2 Pooling (Subsampling)

Using convolved feature maps is impractical due to computational complexity, stor-

age requirement and over�tting. In order to solve this problem, we need to reduce

the dimensionality through a subsampling (downsampling) procedure, namely pool-

ing operator. The most popular pooling functions are max pooling and mean pooling.

Max-pooling divides the feature map into non-overlapping patches and outputs the

maximum value from each patch while mean-pooling outputs the mean value from

each patch. To illustrate, we have apply max pooling and mean pooling operators

http://www.iro.umontreal.ca/~bengioy/dlbook/version-07-08-2015/convnets.html
http://www.iro.umontreal.ca/~bengioy/dlbook/version-07-08-2015/convnets.html
http://deeplearning.net/
http://deeplearning.net/

2.4. Deep Convolutional Neural Network 25

to a subimage I:

I =


1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

→ Imax =

[
6 8

14 16

]
, Imean =

[
3.5 5.5

11.5 13.5

]
(2.36)

Pooling is also useful for its ability to make the representation become invariant to

translations and rotations of the input.

2.4.3 Recti�ed Linear Unit (ReLU)

Recti�ed Linear Unit is a non-saturating activation function in the form of

ϕ(x) = max(0, x) (2.37)

The main advantage of training of deep CNNs with ReLUs over traditional sigmoid

or tangent hyperbolic functions is its training speed with gradient descent. Both

the ReLUs themselves and their derivatives are computed faster than the other

activation functions since it is an if-else check. Although ReLU function is not

di�erentiable at x = 0, in practice it does not pose a severe problem.

26

3. METHODOLOGY

In this chapter, the details of the implementation steps for the thesis work are

described. These steps mainly consist of preprocessing and CNN structure.

3.1 Preprocessing

Preprocessing plays a crucial role in many machine learning algorithms including

DL. With the help of preprocessing, the data is made more robust for learning

tasks.

3.1.1 Gamma correction

The original images of SFU subset are nonlinear (γ 6= 1) and thus gamma correction

(γ = 2.2) is applied to get almost linear images [14]. Gamma correction is also known

as power law transformation which has the basic form [16]:

s = crγ (3.1)

where c and γ are positive constants. In Figure 3.1, r is mapped to s. γ < 1 maps

a narrow range of dark input values into a wider range of output values whereas

γ > 1 works in the opposite way.

3.1.2 Image resizing and cropping

Images in Shi-Gehler dataset are resized such that maximum of width and height

is 1200, i.e. max(width, height) = 1200. Further, the Macbeth Colour Checker

3.1. Preprocessing 27

Figure 3.1 Plots of Equation 3.1 for various values of γ (c = 1 in all cases)

(MCC) is removed from every image for training and testing. Images of SFU subset

are not resized but the images are cropped to remove the gray ball for the same

reason as Shi-Gehler dataset. The resulting images are 240× 240 pixels.

3.1.3 Non-overlapping patch extraction

The number of all possible 32 × 32 patches are quite large in Shi-Gehler dataset.

There are more than 500 possible patches per image. Unlike [8], which extracts

random patches from the image, only the most 100 brightest patches are extracted

from the images in this work. The brightness is de�ned as the sum of all pixel

intensity values of RGB channels in the patch. The brightest pixels has been proved

to be useful in illumination estimation process on statistics based algorithms [23].

On the other hand, for SFU subset, there are 100 24× 24 non-overlapping patches

per image after the gray ball is cropped from the images. Since the number of

all possible patches are small, we extract and use all 100 patches for SFU subset

dataset.

3.1.4 Global histogram stretching

Global histogram stretching is an image enhancement technique which aims to in-

crease the dynamic range of the image. It improves an image by stretching the range

3.2. CNN architecture 28

of values via a linear mapping T . The �rst step is to de�ne the lower and upper

limits, a and b respectively, of the output image. For example, for 8-bit image, a = 0

and b = 255. In the second step, we �nd out the lower and upper limits, c and d

respectively, of the input image. Then, the global histogram stretching mapping

s = T (r) is de�ned as:

s = (r − c)
(
b− a
d− c

)
+ a (3.2)

where r is mapped to s.

After patches are extracted from the colour images, a contrast normalization through

global histogram stretching is applied to every patch.

3.1.5 Feature standardization

Zero-mean and unit-variance feature standardization is the most common method

for normalization and is widely used, e.g. in ANN and SVM training. In the �rst

step, the mean of each dimension (across the entire dataset) is computed and then

subtracted from each corresponding dimension. In the second step, each dimension

is divided by its standard deviation.

x′ =
x− x̄
σ

(3.3)

where x is the original feature vector, x̄ is the mean of that feature vector, and σ is

its standard deviation.

After the contrast normalization is performed, the zero-mean and unit-variance stan-

dardization is applied to the patches.

3.2 CNN architecture

In this thesis, a CNN is used to estimate the colour of the light source from the

non-overlapping patches extracted from the raw input colour images. The authors

3.2. CNN architecture 29

of [8] tried di�erent parameters including network architecture and concluded that

the network architecture shown in Figure 3.2 is the best one for Shi-Gehler dataset.

We build our CNN model based on the architecture of [8] for Shi-Gehler dataset as

it was proved to be the best network architecture. The network consists of 5 layers:

32× 32× 3 - 32× 32× 240 - 4× 4× 240 - 40 - 3. The �rst layer is input layer which

takes 32× 32× 3 non-overlapping patches. The second layer is a convolutional layer

that �lters the input patches with 240 di�erent kernels, whose size is 1× 1× 3 with

a stride of 1 pixel. The convolutional layer produces 240 di�erent feature maps of

size 32× 32. The third layer is a max-pooling layer with 8× 8 kernels and stride of

8 pixels. The results of max-pooling layer are 240 feature maps of size 4× 4 . The

third layer is reshaped from 4×4×240 into a 4×4×240 = 3840 vector and is passed

through Recti�ed Linear Units (ReLUs). The fourth layer is a fully connected (FC)

layer which consists of 40 neurons. Finally, the �fth layer is the output layer which

consists 3 neurons for each chromaticity value of r, g and b. However, there is a

minor di�erence in the network structure for SFU subset dataset since the input

patches are 24 × 24 instead of 32 × 32. The network structure is 24 × 24 × 3 -

24× 24× 240 - 3× 3× 240 - 40 - 3.

Figure 3.2 CNN architecture

3.3. CNN training and testing 30

3.3 CNN training and testing

CNNs are trained with 32× 32 and 24× 24 image patches for Shi-Gehler and SFU

subset datasets, respectively. In the output layer, euclidean loss is used. For Shi-

Gehler dataset, error estimates are calculated using 3-fold cross validation. In each

run, the CNN is trained with two folds and tested with one fold and this procedure

is repeated three times. For SFU subset dataset, error estimates are calculated

using 15-fold cross validation. In each run, the CNN is trained with 14 folds and

tested with one fold and this procedure is repeated 15 times. In other words, a

single experiment is completed after each fold has been used as testing set. The

ground truth illuminant of each image is assigned to all patches extracted from that

particular image. In testing stage, patches extracted from a particular image are fed

to the CNN and CNN outputs predicted patch illuminants. We generate a single

global predicted illuminant per image by aggregating patch illuminants. Here, we

adopt two di�erent pooling strategies, namely mean pooling and median pooling.

Mean pooling takes simple average of all predicted patch illuminants in r, g and b

dimensions separately. Median pooling takes the median value of all predicted patch

illuminants in r, g and b dimensions separately and can be considered more robust

than mean pooling.

In ANNs, the weights are randomly initialized. Random initialization is a factor

determining the performance and the speed of the network. Because of this, we

trained the CNN ten times and calculated the error estimates using an average of

ten di�erent runs. Further, we initialized the kernels using the Xavier algorithm

proposed by Bengio's team [15]. The algorithm automatically determines the scale

of initialization based on the number of input and output neurons. In training, we

choose the parameters given in Table 3.1.

Table 3.1 Parameters in CNN training

Parameter Value
Batch size 100
EPOCH 8

Learning rate 0.1
Weight decay parameter 0.0005

Momentum 0.9

31

4. EXPERIMENTAL SETUP AND RESULTS

In this chapter, experimental setup and results are discussed in detail. The angular

error results are presented in tables. Moreover, some example images are shown for

visual assessment. The implementation platform for this thesis work was MATLAB.

MatConvNet [26], which is a MATLAB toolbox implementing CNNs, is used in the

implementation.

4.1 Datasets

The performance of CC algorithms are tested on two standard benchmark (pub-

licly available) datasets, re-processed version of Shi-Gehler (Colour Checker) RAW

dataset [24] and SFU subset (Grayball subset) [7]. The size of the datasets are

small for CNNs, however, since we use image patches as input, we have much larger

training datasets.

The Shi-Gehler RAW dataset contains 568 indoor and outdoor images (246 of them

are indoor and 322 of them are outdoor) taken using Canon 5D and Canon 1D

digital cameras. The dataset was originally provided by Gehler et. al. [13] and Shi

et. al. [24] reprocessed the dataset. The dataset contains linear (gamma=1) almost

raw 12-bit PNG format images. The spatial resolution of images which are taken

using Canon 1D are 2041 × 1359 whereas the spatial resolution of images which

are taken using Canon 5D are 2193 × 1460. Canon 1D has a black level of zero

while Canon 5D has a black level of 129 which we have to subtract. The three folds

are provided with the dataset. The ground truth illuminant of each acquired scene

is obtained through the Macbeth ColourChecker (MCC) which is present in every

scene. Example images of Shi-Gehler RAW dataset are shown in Figure 4.1.

The SFU subset contains 1135 images which are selected from the original SFU

dataset [11] (11346 real-world images) based on a video-based analysis to reduce the

e�ect of correlation. The images are 8-bit and the spatial resolution of the images

4.2. Error Measure 32

Figure 4.1 Example images of Shi-Gehler RAW dataset

are 240 × 360 pixels. The SFU images are divided into 15 subcategories based on

geographical location and therefore 15-fold cross validation is used. The ground

truth illuminant of each scene is obtained through a gray ball which is present in

the right-bottom of each image. Example images of SFU subset dataset are shown

in Figure 4.2.

Figure 4.2 Example images of SFU subset dataset

4.2 Error Measure

In this thesis, angular error is used as the error metric since it is intuitive and the

most widely used error metric in the literature. The error metric which was suggested

4.3. Results 33

in [17] is the angle between the RGB triplet of the ground truth illuminant e and

the RGB triplet of the estimated illuminant ê:

angular error = arccos

(
eT ê

‖e‖ ‖ê‖

)
(4.1)

where ‖.‖ is the L2 norm operator.

In Table 4.1 and Table 4.2, the minimum, 10th-percentile, median, average (mean),

90th-percentile, and maximum of the angular errors obtained are reported.

4.3 Results

In Table 4.1, the angular error statistics obtained from the statistics based ap-

proaches and CNN approach on Shi-Gehler dataset are presented. The reported

angular error statistics are the minimum, 10th percentile, median, average, 90the

percentile and maximum. The upper block in the table consists the statistics-based

algorithms results whereas the bottom block consists CNN results. As can be seen

from the table, CNN average-pooling and median-pooling signi�cantly outperforms

statistics based approaches in terms of average, 90th percentile and maximum error.

It is possible to see that the improvement is 26.6%, 33.6% and 5.8% respectively.

However, in terms of median error, gamut mapping is slightly better than CNN

based approach. CNN median-pooling has an angular error 3.9% worse than gamut

mapping. However, it is important to note that CNN based results are obtained

with same algorithm whereas the best results from statistics based approaches are

obtained with di�erent algorithms. Figure 4.3 and 4.5 present some corrected

images on which CNN approach makes the smallest angular error. On the other

hand, Figure 4.4 and 4.6 present some corrected images on which CNN approach

makes the largest angular error.

In Table 4.2, the angular error statistics obtained from the statistics based ap-

proaches and CNN approach on SFU Subset dataset are presented. Similar to

Table 4.1, the reported angular error statistics are the minimum, 10th percentile,

median, average, 90the percentile and maximum. The upper block in the table con-

sists the statistics-based algorithms results whereas the bottom block consists CNN

results. As can be seen from the table, CNN average-pooling and median-pooling

signi�cantly outperforms statistics based approaches in terms of average, median

4.3. Results 34

and 90th percentile error. It is possible to see that the improvement is 20%, 17.63%

and 12.13% respectively. In terms of maximum error, white patch is better than

CNN based approach. CNN average-pooling has an angular error 13.9% worse than

white patch. Figure 4.7 and 4.9 present some corrected images on which CNN ap-

proach makes the smallest angular error. On the other hand, Figure 4.8 and 4.10

present some corrected images on which CNN approach makes the largest angular

error.

Algorithm Min 10thprc Med Avg 90thprc Max
Do-Nothing 3.72 10.38 13.55 13.62 16.45 27.37
Gray-World 0.18 1.88 6.30 6.27 10.12 24.84
White-Patch 0.08 1.38 5.61 7.46 15.68 40.59
Shades-of-Gray 0.18 1.04 4.04 4.85 9.71 19.93
general GW 0.03 0.82 3.45 4.60 9.68 22.21
Gray-edge1 0.16 1.82 4.55 5.21 9.78 19.69
Gray-edge2 0.26 2.06 4.43 5.01 8.93 16.87
Gamut-Mapping 0.05 0.40 2.28 4.10 11.08 23.18
CNN per patch 0.00 0.95 2.60 3.46 6.87 29.70
CNN avg.-pooling 0.09 0.90 2.42 3.05 6.19 15.89
CNN med.-pooling 0.08 0.90 2.37 3.01 5.93 17.39

Table 4.1 Angular error statistics on linear Shi-Gehler RAW dataset

Algorithm Min 10thprc Med Avg 90thprc Max
Do-Nothing 0.48 1.55 14.55 15.69 33.91 41.57
Gray-World 0.09 2.91 10.75 12.97 26.09 56.39
White-Patch 0.33 1.95 10.33 12.73 26.62 39.59
Shades-of-Gray 0.05 3.08 9.77 11.60 22.16 49.95
Gray-edge1 0.10 2.78 9.14 11.13 21.19 54.04
Gray-edge2 0.15 2.87 9.43 10.89 21.18 45.77
Gamut-Mapping 0.29 2.60 11.98 14.18 29.65 43.86
CNN per patch 0.01 2.26 8.21 10.43 21.88 61.53
CNN avg.-pooling 0.15 2.09 7.53 9.18 18.81 45.11
CNN med.-pooling 0.15 2.05 7.23 8.97 18.61 48.84

Table 4.2 Angular error statistics on linear Gray-ball (SFU) subset dataset

4.3. Results 35

Figure 4.3 Best mean pooling CNN result in Shi-Gehler

4.3. Results 36

Figure 4.4 Worst mean pooling CNN result in Shi-Gehler

4.3. Results 37

Figure 4.5 Best median pooling CNN result in Shi-Gehler

4.3. Results 38

Figure 4.6 Worst median pooling CNN result in Shi-Gehler

4.3. Results 39

Figure 4.7 Best mean pooling CNN result in SFU subset

Figure 4.8 Worst mean pooling CNN result in SFU subset

4.3. Results 40

Figure 4.9 Best median pooling CNN result in SFU subset

Figure 4.10 Worst median pooling CNN result in SFU subset

41

5. CONCLUSIONS

In this thesis, we have studied DL architectures, namely deep CNNs, to learn CC.

The motivation was to show that CNNs are very good models not only for recognition

tasks but also for low level computer vision problems. Unlike existing learning based

methods that rely on hand-crafted, low level visual features, we propose to use CNNs

to learn hierarchical feature representations to achieve robust CC.

CNNs, probably the most popular DL models, are biologically inspired variants of

MLPs. Both CNNs and MLPs are trained with BP algorithm. However, there are

two essential di�erences of CNNs compared to MLPs. First, CNNs are not fully

connected as MLPs. CNNs exploit local connectivity structure, which is usually

referred to as receptive �eld, of the data. This property leads to sparse connectivity.

Second, the parameters (weights) are shared in CNNs. In fact, sparse connectivity

and weight sharing are a constraint of CNN model but this constraint enables CNNs

to achieve good performance e.g. on vision tasks when the amount of data is limited.

Using CNNs for CC is a quite new idea and, to our knowledge, [8] is the only

work that investigates the use of CNNs for illuminant estimation. Unlike [8], which

extracts almost all possible patches from the images of Shi-Gehler dataset, only

the most 100 brightest patches are extracted from the images in this work. This

intelligent patch extraction signi�cantly reduces the computational burden. As

pre-processing, all extracted patches are contrast normalized via global histogram

stretching. After contrast normalization, zero mean unit variance feature standard-

ization is applied. Instead of traditional sigmoid or tanh non-linear activation func-

tions, ReLUs are used in the fully connected layer. During testing phase, illuminant

estimation of patches for every test image are aggregated, e.g. mean pooling and

median pooling, to generate a single illuminant estimation per image.

Two CNN models are trained to learn the CC and tested on two widely used datasets

in MATLAB environment. We evaluated the performance of our CNN models based

on cross-validation error rate. The experimental results show that CNN-based CC

5. Conclusions 42

outperforms almost all the traditional approaches both in Shi-Gehler dataset and in

SFU subset dataset. It is important to note that the best results from statistics based

approaches are obtained from di�erent algorithms and selection of best algorithm

is an on-going research topic. On the other hand, CNN based results are obtained

from a single algorithm.

43

BIBLIOGRAPHY

[1] http://colorconstancy.com/, (accessed September 13, 2015).

[2] http://deeplearning.stanford.edu/wiki/index.php/Autoencoders_and_

Sparsity, (accessed September 13, 2015).

[3] http://cs.stanford.edu/~acoates/stl10/, (accessed September 13, 2015).

[4] http://www.iro.umontreal.ca/~bengioy/dlbook/convnets.html, (accessed

September 13, 2015).

[5] V. Agarwal, A. V. Gribok, and M. A. Abidi, �Machine learning approach

to color constancy,� Neural Networks, vol. 20, no. 5, pp. 559 � 563,

2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0893608007000846

[6] E. Alpaydin, Introduction to Machine Learning, 2nd ed. The MIT Press, 2010.

[7] S. Bianco, G. Ciocca, C. Cusano, and R. Schettini, �Improving color constancy

using indoor-outdoor image classi�cation,� Image Processing, IEEE Transac-

tions on, vol. 17, no. 12, pp. 2381�2392, Dec 2008.

[8] S. Bianco, C. Cusano, and R. Schettini, �Color constancy using cnns,� in Com-

puter Vision and Pattern Recognition Workshops (CVPRW), 2015 IEEE Con-

ference on, June 2015, pp. 81�89.

[9] G. Buchsbaum, �A spatial processor model for object colour perception,� J.

Franklin Inst., vol. 310, pp. 1�26, 1980.

[10] V. C. Cardei, B. Funt, and K. Barnard, �Estimating the scene illumination

chromaticity by using a neural network,� JOURNAL OF THE OPTICAL SO-

CIETY OF AMERICA A, vol. 19, no. 12, pp. 2374�2386, 2002.

[11] F. Ciurea and B. V. Funt, �A large image database for color constancy

research.� in Color Imaging Conference. IST - The Society for Imaging

Science and Technology, 2003, pp. 160�164. [Online]. Available: http:

//dblp.uni-trier.de/db/conf/imaging/cic2003.html#CiureaF03

http://colorconstancy.com/
http://deeplearning.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity
http://deeplearning.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity
http://cs.stanford.edu/~acoates/stl10/
http://www.iro.umontreal.ca/~bengioy/dlbook/convnets.html
http://www.sciencedirect.com/science/article/pii/S0893608007000846
http://www.sciencedirect.com/science/article/pii/S0893608007000846
http://dblp.uni-trier.de/db/conf/imaging/cic2003.html#CiureaF03
http://dblp.uni-trier.de/db/conf/imaging/cic2003.html#CiureaF03

BIBLIOGRAPHY 44

[12] B. V. Funt and W. Xiong, �Estimating illumination chromaticity via

support vector regression,� in The Twelfth Color Imaging Conference: Color

Science and Engineering Systems, Technologies, Applications, CIC 2004,

Scottsdale, Arizona, USA, November 9-12, 2004, 2004, pp. 47�52. [Online].

Available: http://www.ingentaconnect.com/content/ist/cic/2004/00002004/

00000001/art00010

[13] P. Gehler, C. Rother, A. Blake, T. Minka, and T. Sharp, �Bayesian color con-

stancy revisited,� in Computer Vision and Pattern Recognition, 2008. CVPR

2008. IEEE Conference on, June 2008, pp. 1�8.

[14] A. Gijsenij, T. Gevers, and J. van de Weijer, �Computational color constancy:

Survey and experiments,� Image Processing, IEEE Transactions on, vol. 20,

no. 9, pp. 2475�2489, Sept 2011.

[15] X. Glorot and Y. Bengio, �Understanding the di�culty of training deep feed-

forward neural networks,� in In Proceedings of the International Conference on

Arti�cial Intelligence and Statistics (AISTATS). Society for Arti�cial Intelli-

gence and Statistics, 2010.

[16] R. C. Gonzalez and R. E. Woods, Digital Image Processing (3rd Edition). Up-

per Saddle River, NJ, USA: Prentice-Hall, Inc., 2006.

[17] S. Hordley and G. Finlayson, �Re-evaluating colour constancy algorithms,� in

Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International

Conference on, vol. 1, Aug 2004, pp. 76�79 Vol.1.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, �Imagenet classi�cation with

deep convolutional neural networks,� in Advances in Neural Information Pro-

cessing Systems, p. 2012.

[19] E. H. Land, John, and J. Mccann, �Lightness and retinex theory,� Journal of

the Optical Society of America, pp. 1�11, 1971.

[20] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, �Unsupervised learning

of hierarchical representations with convolutional deep belief networks,�

Commun. ACM, vol. 54, no. 10, pp. 95�103, Oct. 2011. [Online]. Available:

http://doi.acm.org/10.1145/2001269.2001295

[21] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA: McGraw-Hill,

Inc., 1997.

http://www.ingentaconnect.com/content/ist/cic/2004/00002004/00000001/art00010
http://www.ingentaconnect.com/content/ist/cic/2004/00002004/00000001/art00010
http://doi.acm.org/10.1145/2001269.2001295

Bibliography 45

[22] V. Nair and G. E. Hinton, �Recti�ed linear units improve restricted boltzmann

machines.� in Proc. 27th International Conference on Machine Learning, 2010.

[23] H. Reza, V. Joze, M. S. Drew, G. D. Finlayson, P. Aurora, and T. Rey, �The

role of bright pixels in illumination estimation.�

[24] L. Shi and B. V. Funt, �Re-processed version of the gehler color constancy

dataset of 568 images,� http://www.cs.sfu.ca/~colour/data/, (accessed Septem-

ber 13, 2015).

[25] J. van de Weijer, T. Gevers, and A. Gijsenij, �Edge-based color constancy,�

Image Processing, IEEE Transactions on, vol. 16, no. 9, pp. 2207�2214, Sept

2007.

[26] A. Vedaldi and K. Lenc, �Matconvnet � convolutional neural networks for mat-

lab,� CoRR, vol. abs/1412.4564, 2014.

[27] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, �Extracting

and composing robust features with denoising autoencoders,� in Proceedings

of the 25th International Conference on Machine Learning, ser. ICML

'08. New York, NY, USA: ACM, 2008, pp. 1096�1103. [Online]. Available:

http://doi.acm.org/10.1145/1390156.1390294

http://www.cs.sfu.ca/~colour/data/
http://doi.acm.org/10.1145/1390156.1390294

	Introduction
	Theoretical Background
	Machine Learning
	Colour Constancy
	Image formation model
	Statistics based approaches
	Learning based approaches

	Artificial Neural Networks
	Perceptron
	Multilayer perceptron
	Autoencoder (Autoassociator)
	Training ANN
	Stochashastic Gradient Descent
	Backpropogation

	Regularization
	Early-stopping
	L1/L2 regularization

	Deep Convolutional Neural Network
	Convolution
	Pooling (Subsampling)
	Rectified Linear Unit (ReLU)

	Methodology
	Preprocessing
	Gamma correction
	Image resizing and cropping
	Non-overlapping patch extraction
	Global histogram stretching
	Feature standardization

	CNN architecture
	CNN training and testing

	Experimental setup and results
	Datasets
	Error Measure
	Results

	Conclusions
	Bibliography

