
PANU SJÖVALL
HIGH-LEVEL SYNTHESIS OF HEVC INTRA PREDICTION
ON FPGA
Master of Science Thesis

Examiners:

Dr Jarno Vanne and

Prof. Timo D. Hämäläinen

Examiners and topic approved by the

Council of the Faculty of Engineering

Sciences on 9th September 2015

I

TIIVISTELMÄ

Tampereen Teknillinen Yliopisto

Automaatiotekniikan koulutusohjelma

Panu Sjövall : HEVC-videokoodekin intra-ennustuksen toteutus FPGA-piireille

C-kielestä syntesoimalla

Diplomityö, 49 sivua

Marraskuu 2015

Pääaine: Digitaalisten piirien suunnittelu

Tarkastajat: TkT Jarno Vanne, Prof. Timo D. Hämäläinen

Avainsanat: HEVC, Kvazaar, Intra Prediction, HLS, Catapult-C, C-Synthesis, FPGA

High E�ciency Video Coding (HEVC) on uusin standardi videon pakkauksessa

ja purussa. HEVC:n avulla videota pystytään pakkaamaan puolella bittivirralla,

verrattuna aiempaan standardiin, AVC:hen (Advanced Video Coding), saavuttaen

silti saman laadun. Tämä kuitenkin lisää enkooderin laskentavaatimuksia.

Kun järjestelmien kompleksisuus kasvaa, nykyisillä laitteistonkuvauskielillä (Hard-

ware Descrpition Language, HDL), kuten VHDL tai Verilog, ei enää pystytä ku-

vamaan järjestelmää vaivattomasti. Ratkaisu on käyttää korkeamman tason ku-

vauskieli. Korkeamman tason synteesissä (High-Level Syntehesis, HLS) laitteisto

kuvataan käyttäen ohjelmointikieltä kuten C tai C++, ja HDL kuvaus luodaan

automaattisesti. HLS:n avulla koodi on helpompi lukea ja ymmärtää, ja siksi toteu-

tukseen käytetty aika pienenee.

Tässä työssä käytettään Catapult-C:tä, jonka avulla luodaan HLS toteutus HEVC

video koodekin intra-ennustuksesta FPGA:lle (Field Programmable Gate Array).

HEVC enkoodeerina käytetään avoimen lähdekoodin Kvazaaria, joka kehtitetty TTY:llä.

Työn tavoitteena on toteuttaa kiihdytin intra-ennustukseen, nopeammin kuin se

olisi mahdollista rekisteritason HDL kuvaksella (Register Transfer Level, RTL) ja

silti saavuttaa vertailukelpoisia tuloksia.

Tämä työ esittää kuusi kehitysversiota intra-ennustuksen kiihdyttimestä. Ki-

ihdyttimen kompleksisuus kasvoi työn edetessä, sitä kun uusia ominaisuuksia lisät-

tiin. Lopullinen versio pystyi suorittamaan intra ennustuksen, moodin kustannuksen

laskennan sekä moodin valinnan teräväpiirto videolle 24.5 kuvaa sekunnissa käyttäen

11 662 ALM:ia (Adaptive Logic Modules) Altera Cyclone V FPGA:sta.

Tässä työssä tuodaan esille Catapult-C:n sekä HLS:n edut. Toteutuksen tulokset

olivat laadullisesti vertailukelpoisia käsin tehtyyn RTL-koodiin. Karkeasti arvioiden

VHDL-toteutus vie kuukauden, mutta saman tekeminen HLS:llä vie vain viikon.

Suurin hyöty on muutosten tekemisen nopetumuinen sillä vain C-kielistä kuvausta

on muutettava. Testipenkit ja RTL-koodi luodaan sen jälkeen automaattisesti.

II

ABSTRACT

Tampere University of Technology

Master's Degree Programme in Automation Technology

Panu Sjövall : High-Level Synthesis of HEVC Intra Prediction on FPGA

Master of Science Thesis, 49 pages

November 2015

Major: Digital circuits design

Examiners: Dr. Jarno Vanne, Prof. Timo D. Hämäläinen

Keywords: Kvazaar, HLS, HEVC, Catapult-C, C-Synthesis, intra prediction

High E�ciency Video Coding (HEVC) is the latest video coding standard in

video compression. With HEVC, it is possible to compress the video with half the

bitrate compared to the previous video coding standard, Advanced Video Coding

(AVC), with the same video quality. Now even, the complexity of the encoder is

signi�cantly larger.

As designs become more and more complex, traditional hardware (HW) descrip-

tion languages (HDLs), such as Very High Speed Integrated Circuit Hardware De-

scription Language (VHDL) or Verilog, can not be used to present the designs

without increasing e�ort. The solution for this is a higher abstraction language for

describing HW. High-Level Synthesis (HLS) is a way of using a programming lan-

guage like C or C++ to describe the HW and automatically generating the HDL

from it. This makes the code easier to understand and decreases the time used for

implementing the design.

This Thesis uses Catapult-C to create an HLS-based implementation of HEVC

intra prediction for a Field Programmable Gate Array (FPGA). The HEVC encoder

used in this Thesis is open source Kvazaar which has been developed at Tampere

University of Technology. The objective is to implement an intra prediction acceler-

ator faster than implementing it with register-transfer level (RTL) using VHDL or

Verilog and still get comparable area and performance.

This Thesis presents six development versions of the intra prediction accelerator.

The complexity of the accelerator grows gradually, as more features were added to

it. The �nal version is able to perform the intra prediction, mode cost computation

and mode decision for Full HD video at 24.5 fps using 11 662 adaptive logic modules

(ALMs) on an Altera Cyclone V FPGA.

This Thesis presents the bene�ts of Catapult-C and HLS. The implementation

results were comparable to hand coded RTL but achieved with a fraction of the

estimated time for a VHDL implementation. As a rough estimate, if something

takes a month to implement in VHDL, it takes a week with HLS. The biggest gain

with HLS is the fast process of changes. Only the C implementation needs to change.

The testbench and the RTL-code are generated automatically.

III

PREFACE

This Master of Science Thesis was written in the Department of Pervasive Comput-

ing at Tampere University of Technology as part of research.

I want to thank my examiners Jarno Vanne and Timo D. Hämäläinen for giving

me the opportunity to work in the university and for guidance during the work for

this Thesis. I would also like to thank my co-workers Esko Pekkarinen, Marko Vi-

itanen and Ari Koivula for all the help.

My deepest gratitude to my family, and especially for Mari, for all the support.

Tampere, 19th November 2015.

Panu Sjövall

IV

CONTENTS

1. Introduction . 1

2. Background . 3

2.1 High E�ciency Video Coding (HEVC) 3

2.2 High-Level Synthesis (HLS) . 3

2.2.1 Catapult-C . 5

2.3 Field Programmable Gate Arrays (FPGAs) 5

2.3.1 ARM . 5

2.3.2 Altera SoCs . 6

2.4 Related work . 7

3. HLS design �ow with Catapult-C . 9

3.1 Proof of concept . 9

3.2 Design Flow . 11

3.3 Veri�cation . 12

4. Kvazaar HEVC intra encoder . 14

4.1 Pro�ling Kvazaar . 15

5. Intra search . 18

5.1 Intra prediction . 18

5.2 Angular prediction modes . 18

5.3 DC prediction mode . 19

5.4 Planar prediction mode . 19

5.5 Mode cost computation . 20

5.6 Kvazaar intra search �ow . 21

6. Hardware designs . 23

6.1 Veri�cation . 23

6.2 Accelerator I: Angular prediction modes 23

6.2.1 Design . 25

6.2.2 Performance . 25

6.3 Accelerator II: Angular prediction modes with mode cost computation 25

6.3.1 Design . 28

6.3.2 Performance . 28

6.4 Accelerator III: All prediction modes with mode cost computation

and selection . 29

6.4.1 Design . 29

6.4.2 Performance . 29

6.5 Accelerator IV: Parallel implementation of Accelerator III 30

6.5.1 Design . 32

6.5.2 Performance . 33

V

6.6 Accelerator V: Integrating the Accelerator IV to ARM 33

6.6.1 Design . 35

6.6.2 Performance . 35

6.7 Accelerator VI: Multiple pixel prediction 37

6.7.1 Design . 37

6.7.2 Performance . 38

6.8 Accelerator VII: Optimized implementation of Accelerator VI 40

6.8.1 Design . 40

6.8.2 Performance . 43

7. Analysis . 45

7.1 Performance . 45

7.2 Area . 47

7.3 Comparison to related work . 47

7.4 Development time . 48

8. Conclusion . 50

REFERENCES . 51

VI

LIST OF TERMS AND ABBREVIATIONS

ALM Adaptive Logic Module

ALUT Adaptive Look-Up Table

AVC Advanced Video Coding

AXI Advanced eXtensible Interface

CTU Coding tree unit

DMA Direct Memory Access

FPGA Field programmable gate array

FPS Frames per second

HD High-de�nition

HDL Hardware description language

HEVC High E�ciency Video Coding

HLS High-Level synthesis

HW Hardware

IP Intellectual property

LE Logic element

RDO Rate-distortion optimization

RDOQ Rate-distortion optimized quantization

RISC Reduced instruction set computing

RTL Register-transfer level

SAD Sum of absolute di�erence

SAO Sample adaptive o�set

SATD Sum of absolute transformed di�erences

VHDL Very high speed integrated circuit hardware description language

1

1. INTRODUCTION

High E�ciency Video Coding (HEVC) standard is the latest milestone in the progress

of video compression. With HEVC, it is possible to compress the video with half the

bitrate compared to the current mainstream Advanced Video Coding (AVC) stan-

dard without sacri�cing video quality, but at a cost of increased encoder complexity.

In all-intra coding, HEVC reduces the bitrate by 23% compared to AVC with the

same quality, but at about 3.2x encoding complexity [1].

Designing, implementing, and verifying new hardware (HW) takes more and

more time as the complexity increases. Traditional hardware description languages

(HDLs) including Very High Speed Integrated Circuit Hardware Description Lan-

guage (VHDL) and Verilog are laborious and error-prone in large projects. Nowa-

days, most of the time is used for �nding, �xing, and minimizing errors. With

a higher abstraction level language, the focus is on the algorithm and not on the

register-transfer level (RTL) and timing. High-Level Synthesis (HLS) tools promise

to generate high-quality RTL and to greatly accelerate the design time. HLS is able

to automate the process from a high level model, usually done in C, to RTL and thus

is able to eliminate the source of many errors that could come from implementing

the RTL manually. This also reduces the overall veri�cation e�ort. The HLS tool

used in this Thesis is Catapult-C that supports hardware description with C, C++,

and SystemC.

As HEVC is a very complex encoder requiring a lot of processing power, it is a

perfect candidate for Field Programmable Gate Array (FPGA) acceleration. Im-

plementing a full HEVC encoder by hand for an FPGA would be a on year task.

Writing RTL for an FPGA is comparable to writing assembly for a CPU. The most

optimum result is obtained in this way, but it will need a lot of e�ort.

The main purpose of this Thesis is to use HLS design and implement an intra

prediction accelerator for Kvazaar on an FPGA. Kvazaar is the leading open source

HEVC implementation at the moment. The goal is to show how fast a complex

hardware accelerator can be designed and implemented using HLS, and still get

result that are comparable to hand-made VHDL or Verilog.

The work was done by �rst getting familiar with HLS and Catapult-C by im-

plementing an H.263 encoder as a proof of concept. After getting the example

implementation working, the work on HEVC and Kvazaar was started by �rst imple-

1. Introduction 2

menting small portions of the system and incrementally adding more functionality.

This Thesis shows and explains the designs and results of each development version.

The structure of the Thesis is as follows: Chapter 2 brie�y introduces HEVC,

HLS, Catapult-C and FPGAs. This chapter also discusses and presents related

work in the �eld. Chapter 3 discusses the HLS design �ow and coding style with

Catapult-C. In Chapter 4, �rst runs with HEVC and Kvazaar are done together with

pro�ling. Chapter 5 introduces intra search and related algorithms more precisely.

Chapter 6 presents the work done and di�erent development versions of the intra

prediction accelerator. Finally, Chapter 7 concludes the Thesis.

3

2. BACKGROUND

This chapter brie�y introduces the main topics of this Thesis: High E�ciency Video

Coding (HEVC), High-Level Synthesis (HLS), as well as the used HLS tools, Field

programmable gate array(FPGA) chips and boards. This chapter also presents the

related work.

2.1 High E�ciency Video Coding (HEVC)

The standardization of High E�ciency Video Coding (HEVC) was formally launched

in January 2010. It is the latest international video coding standard in the progress

of video compression. It is developed by Joint Collaborative Team on Video Coding

(JCT-VC) as a joint activity of ITU-T Video Coding Experts Group (VCEG) and

ISO/IEC Moving Picture Experts Group (MPEG) The �rst version of HEVC was

completed in January 2013.

With HEVC it is possible to compress video with half of the bits compared to

Advanced Video Coding (AVC) without sacri�cing the quality of the video. HEVC

can also be used to deliver higher resolutions and higher frame rates [2, p.1-11].

Currently, there are three noteworthy open- source HEVC encoders: x265 [3],

Kvazaar [4], and f265 [5], out of which only x265 and Kvazaar are currently under

active development. Compared to x265, Kvazaar is more hardware-friendly being

implemented in C from scratch. Therefore, Kvazaar is the HEVC encoder used in

this Thesis.

This thesis focuses only in Kvazaar all-intra coding due to its appropriate com-

plexity and design time. In intra coding, each frame is encoded individually, i.e. no

temporal processing is performed outside of the current frame.

2.2 High-Level Synthesis (HLS)

HLS tools are able to generate high RTL implementations using high abstraction

languages. The main point of HLS is to be able to automate the process from a high

level model, usually done in C, to RTL. The use of HLS eliminates many errors that

come from implementing the RTL manually. This greatly accelerates the design

time while also reducing the overall veri�cation e�ort [6, p. 1-4].

Figure 2.1 shows the traditional RTL design �ow compared to the HLS design

�ow. It can be seen that the HLS design �ow is much simpler than the RTL design

2. Background 4

Figure 2.1: Traditional RTL design �ow versus an HLS design �ow

�ow. In both �ows, a speci�cation is made from the existing C-source code, which is

followed by an implementation of an executable model, which is commonly written

in C,C++ or SystemC. The executable models produce the same output in both

design �ows, but the executable model in the HLS design �ow might take more time

to implement. The traditional executable model is just a representation of the struc-

ture of the HW with certain ine�ciency in the code, but with the HLS executable

model the code must be optimized for HW generation and done by following HLS

coding rules. In behavioral testing, both executable models are tested against the

speci�cation, and should produce identical results.

After verifying that the executable model ful�lls the speci�cations, the RTL can

be generated automatically in HLS, versus hand writing the code in the RTL �ow.

This is one of the huge time saving techniques that HLS o�ers. The other one comes

from testing, as HLS tools can reuse the same testbench for both RTL veri�cation

and behavioral testing. In the RTL �ow, both testbenches must be created and

updated separately.

There are several HLS tools in the market, e.g. Catapult-C from Calypto [7],

Cynthesizer [8] and C-to-Silicon from Cadence [9], Vivado High-Level Synthesis

from Xilinx [10], and Synphony C Compiler from Synopsys [11]. This Thesis does

2. Background 5

not compare the di�erences between di�erent HLS tools but instead only relies on

the results of Catapult-C, available through a university license.

2.2.1 Catapult-C

Catapult-C is developed by Mentor Graphics that is also known for software like

Modelsim [12] simulator and Precision synthesis [13], which o�ers advanced RTL

and physical synthesis for FPGAs. Catapult-C was acquired by Calypto Design

Systems in 2011. Catapult-C is an HLS tool that allows generating RTL code using

a higher abstraction language compared to VHDL or Verilog. Catapult-C supports

C-to-RTL. It can generate RTL using ANSI C, C++ or SystemC [7].

The version of Catapult-C was updated twice during the work. Each update

brought support to newer FPGA chips, new synthesis tools, and minor improvements

to the resulting RTL. The �rst version used was 2011a.126, the next update was

2011a.200, and the latest one is 8.0. All these versions were used with the university

license, which limits some of the features. For example, it does not allow the use of

SystemC and hierarchical blocks in one project.

2.3 Field Programmable Gate Arrays (FPGAs)

FPGAs [14] are re-programmable logic circuits that allow fast development and real-

time emulations. The results of this thesis are based on an FPGA execution instead

of calculations or simulations.

The FPGA chips used in this Thesis are manufactured by Altera. At �rst a DE2

development and education board [15] was used since it was available immediately

and it was supported by Catapult-C. Arria II GX FPGA Development Kit[16] was

taken to use when more logic elements (LEs) were needed. The DE2 board has

a Cyclone II FPGA chip with 33k LEs and the Arria II has 124k LEs. The �nal

board in use was a Cyclone V VEEK board which is a System on Chip (SoC) FPGA

board. Cyclone V has a dual-core ARM Cortex-A9 processor running at 900 MHz

and 110K LEs in one chip [17]. A picture of the used Cyclone V VEEK board can

be seen in 2.2.

2.3.1 ARM

ARM is the leading supplier of semiconductor Intellectual Property (IP). ARM

doesn't manufacture their own semiconductor chips, but designs and licenses IPs.

This way, other companies buy the licenses for IPs (e.g. ARM based CPUs) and use

them in their own products.

ARM o�ers a wide range of microprocessors cores varying in performance, power,

and cost. ARM processors are reduced instruction set computing (RISC) based

2. Background 6

Figure 2.2: The Cyclone V VEEK board used in the �nal implementation

CPUs, i.e. they require signi�cantly less transistors than typical x86 processors.

Their reduced power, heat dissipation, and cost makes them ideal for portable de-

vices. [18]

2.3.2 Altera SoCs

Altera System on Chip (SoC) FPGAs have an integrated ARM-based hard pro-

cessor system (HPS) that consists of a processor, peripherals, interconnections to

peripherals, the FPGA area, and a SDRAM Controller Subsystem as depicted in

Figure 2.3. An FPGA integrated hard processor enables higher CPU clock frequen-

cies compared to a soft processor synthesized on a FPGA and still have a fast and

simple interconnection to the FPGA fabric [20].

The Microprocessor Unit (MPU) Subsystem is connected to the L3 Interconnect

as shown in the Figure 2.3. The L3 Interconnect is an Advanced eXtensible Interface

(AXI) bus structure. The AXI bus o�ers high performance and supports high clock

frequency system designs and high speed interconnections. The ARM processor can

access the FPGA Portion through the L3 Interconnect, using the HPS to FPGA

and the Lightweight HPS to FPGA bridge. The processor has a dedicated line to

the SDRAM Controller Subsystem through the L2 Cache. The SDRAM Controller

Subsystem can also be accessed via the L3 Interconnect and the FPGA portion

2. Background 7

Figure 2.3: Block diagram of the Hard Processor System in Altera SoCs[19, p. 499]

directly, allowing fast access to the HPS External Memory from the FPGA portion.

2.4 Related work

A master's Thesis [21] by Ayla Chabouk and Carlos Gómez also utilizes Catapult-

C. Their purpose was to study, analyze and test Catapult-C with reference models

provided by ARM Sweden. They compared the correctness and quality of the RTL

code generated by Catapult-C against handwritten RTL description of the models.

They found the following advantages in using HLS: 1) A well known programming

language like C in HLS makes the code easier to write and easier to understand;

2) HLS tools include a useful way to verify the C code and the RTL code with one

testbench; 3) HLS tools save time. They also found some disadvantages in using

HLS, which are: 1) The control of the design in C code is not as detailed as in the

RTL description, so it is not possible to write cycle-accurate descriptions; 2) HLS

2. Background 8

has problems with complex blocks.

At the moment, the only published HLS-assisted HEVC intra encoder imple-

mentation is Author's previous work [22], which is an older version of the same

accelerator implemented in this Thesis. There are some non-HLS implementations

for the core HEVC functions, like intra-prediction. One of the works presents an

intra prediction FPGA accelerator that can predict 17.5 Full HD frames per second.

The implementation supports all intra block sizes from 4x4 to 32x32 and uses 15

589 adaptive logic modules (ALMs) on Altera Arria II [23].

An FPGA implementation capable of real-time HEVC encoding of 8k video is

presented in [24]. It utilizes 17 boards, each having 3 FPGA chips. Each board is

capable of encoding full-HD at 60 fps. Comparison with this work is challenging

due to lack of speci�cs on algorithm speeds, FPGA chips, and the used area.

There also exits HLS implementations for AVC. One paper presents a complete

design of an H.264 encoder with Catapult-C as the HLS tool [25]. The Authors

conclude that using an HLS design �ow did not make the design and implementation

process faster compared to a traditional RTL design �ow. This was mainly because

it takes some time to learn how to use the HLS tool. They do say that coding

and simulation times are reduced, because high level description of HW with C is

easier than writing RTL descriptions. They state that there is a huge bene�t with

the reusability of HW C descriptions, as the target RTL is generated depending on

constraints like clock frequency. So if they started to work e.g. on a HD encoder

after the SD encoder, they could reuse a lot of code from the SD encoder project.

The work in [26] presents an HLS design �ow and implementation of H.264 De-

blocking �lter, using Catapult-C as the HLS tool. The obtained results are even

better than those of some state-of-the-art architectures with the same operating

frequency. There was only one implementation that was better, but it was a highly

hand optimized, and with a long development time.

9

3. HLS DESIGN FLOW WITH CATAPULT-C

This chapter shows the proof of concept work done with Catapult-C and presents

the design �ow and veri�cation process used with HLS.

3.1 Proof of concept

Starting to work with Catapult-C and implementing the �rst design does not take

much time. However, really understanding the functionality of the code does take

some time without any help from more experienced users. Because Catapult-C is a

licensed commercial software, there are practically no online discussions, that tend

to be a good source for help with software like this. Catapult-C comes with few

tutorials to get started with, but these tutorials are minimal. Catapult-C includes

an HLS Blue Book [6]. The book is very comprehensive on what kind of code should

be written to get the desired results.

The �rst tests with HLS and Catapult-C were made with the H.263 encoder that

is a predecessor of HEVC. Because the main task of this Thesis was to accelerate

HEVC with HLS, getting comfortable with Catapult-C even before taking a look at

HEVC was the �rst priority. Accelerating H.263 �rst acted as a proof of concept

A ready made H.263 encoder running on a NiosII [27] soft processor synthesized

on a DE2 FPGA board was available. This software version of the encoder later

worked as a reference output when testing. The work started by taking the code and

trying to generate RTL from it. Creating the top level interface for the accelerator

to get the required data in and the calculated data is not hard. When trying to

generate the RTL from the C code with minimal changes, a common problem is that

Catapult-C optimizes everything away as it examines that nothing is happening.

Catapult-C usually concludes this if there are no outputs or some conditions for

calculations are not activated. Catapult-C gives very minimal information on the

matter other than just informing everything is optimized away.

Catapult-C treats the top level function as a loop. This creates few challenges

on how to write the top level function. The code listed in 3.1 shows a few of the

problems mentioned before. Now, the function is executed in a loop so the integer

a is always zero The same happens with the table. Static makes the values stay the

same as they were after the functions execution ended. Now because a is always zero

the code never reaches the part where data is written out, and therefore optimizes

3. HLS design �ow with Catapult-C 10

the output port away and possibly the whole design. The code also has a 1-bit port

irq. If all other problems with the code would be solved irq would still never be high

even for a cycle. Because irq is set low at the end and never used after it's set high,

Catapult-C optimizes the port to being always low. This is a simple example with

obvious errors, implying that with more complex designs �nding similar errors may

take considerable time.

Without any major coding related problems and with some experience with

Catapult-C, creating the accelerator for the H.263 encoder took less than a week.

In retrospect there are many small things that could have been done in order to

increase the speed and lower the area cost of the design. The end result was more

than encouraging, as the resulting frames per second (FPS) performance was better

compared to a reference work that had the encoder running on a NiosII and a hand

written VHDL quantization acceleration system.

After generating the RTL with Catapult-C, the next phase is to synthesize the

RTL for the FPGA. This phase has some problems, related to the Catapult-C project

settings, and took some time to solve. Because all arrays in C code become either

registers or on-chip memory after RTL generation, it causes some tool speci�c prob-

lems. If only registers are used for arrays the design is usually faster, but the registers

and the resulting muxes take a lot of area, resulting in that they are only useful with

small arrays and when high speed is essential. The solution for saving area is to map

the arrays to an on-chip memory, that exists as a dedicated memory on the FPGA

1 void top_leve l (ac_channel<ac_int <8, f a l s e > > in ,
2 ac_channel<ac_int <8, f a l s e > > out ,
3 ac_int <1, f a l s e > ∗ i r q)
4 {
5 int a = 0 ;
6 int t ab l e [1 0] ;
7 t ab l e [a] = in . read () ;
8 i f (a == 9) {
9 int b = 0 ;
10 int sum = 0 ;
11 for (b = 0 ; b < 10 ; b++) {
12 sum += b ;
13 out . wr i t e (sum) ;
14 }
15 ∗ i r q = 1 ;
16 }
17 else {
18 a++;
19 }
20 ∗ i r q = 0 ;
21 }

Listing 3.1: Catapult-C example

3. HLS design �ow with Catapult-C 11

chip. The on-chip memory takes 1 cycle to read and write per address, so accessing

a single value is fast but accessing multiple values sequentially is slow compared to

parallel access to all register values. The synthesis tool for the RTL is set from the

Catapult-C project settings. In this Thesis the synthesis tool used was Precision

RTL Synthesis 2014b (with Catapult-C 8.0) and 2013b (with previous Catapult-C

versions). The synthesis tool is important when using a library component like a

single-port or dual-port on-chip memory. When an array is mapped to a single-port

or a dual-port memory, Catapult-C adds a memory model to the generated RTL

for simulation purposes. If the generated RTL would be synthesized directly with

Quartus II [28], it would end in an error because Quartus II does not know what to

do with the memory model. This is why Precision Synthesis is needed in the middle

to switch the memory model to an FPGA chip speci�c on-chip memory format, by

synthesizing a netlist of the RTL. The generated netlist can then be place & routed

with Quartus II without errors.

The most speci�c tool related problem with Catapult-C and Precision Synthesis

is that the only way to get everything working is to do the following: The Catpult-

C generated Verilog RTL should be used for synthesis, instead of VHDL. After

Precision Synthesis, Verilog Quartus Mapping File netlist should be used for place

& route, instead of Electronic Design Interchange Format, VHDL or Verilog netlist.

This seemed to be the case at least with these speci�c tools, otherwise an error free

compilation was not guaranteed.

3.2 Design Flow

Figure 3.1 shows the whole general design �ow based on the proof of concept work.

The work �ow depicts the process from C source code to FPGA, and this work �ow

was followed during the work on this Thesis. First the source codes are taken form

an existing implementation, e.g. function or an algorithm. Next the source code is

modi�ed to work in Catapult-C. Only a single testbench is created, because it can

test both the software implementation and the RTL generated code with Catapult-C.

The software implementation is tested before the RTL generation. Project speci�c

settings are applied to Catapult-C e.g. FPGA chip and clock frequency. After

generating the RTL, it is tested with the same testbench as the software version.

At this point the project settings can be re-evaluated for better results, e.g. higher

frequency, or loop unrolling for more parallelism. Once satis�ed with the results,

the RTL code is taken to Precision Synthesis for netlist generation, after which the

netlist is taken to Quartus II for place & route. Quartus II generates the FPGA

image with which the FPGA is programmed.

3. HLS design �ow with Catapult-C 12

3.3 Veri�cation

With HLS and Catapult-C, the veri�cation e�ort is minimal. The veri�cation pro-

cess consists of testing the executable model and the RTL with the same testbench.

The nature of the testbench is to only test the functionality of the design. As the

RTL generation phase is automated, the resulting RTL can be assumed to be valid.

This means that the veri�cation is done by testing the output with certain stimulus.

Being able to test the HW design in software �rst, gives the advantage of faster

simulation times and better coverage. The RTL veri�cation is required, but it is

only done to reveal minor problems with the di�erence in software code and RTL

code. For example, problems caused by typecasts and bit accurate types. These

problems can still be minimized with a proper coding style.

3. HLS design �ow with Catapult-C 13

Figure 3.1: The full design �ow with Catapult-C from source code to programming
to an FPGA

14

4. KVAZAAR HEVC INTRA ENCODER

Kvazaar [4] is an open-source HEVC encoder that is being developed from scratch

in C by Ultra Video Group in the Department of Pervasive Computing at Tampere

University of Technology. Kvazaar has a modular and portable structure that attains

high coding e�ciency with optimized speed and resources. Kvazaar is currently the

leading open source intra encoder. Table 4.2 summarizes the basics of Kvazaar. The

source codes of Kvazaar [4] are on GitHub, which is a web-based Git repository

hosting service.

Table 4.1: Kvazaar HEVC coding parameters used in this work
Feature Kvazaar HEVC intra encoder
Pro�le Main
Internal bit depth, color format 8, 4:2:0
Coding modes Intra
Sizes of luma coding blocks 64x64, 32x32, 16x16, 8x8
Sizes of luma transform blocks 32x32, 16x16, 8x8, 4x4
Sizes of luma prediction blocks 64x64, 32x32, 16x16, 8x8, 4x4
Intra prediction modes DC, planar, 33 angular
Mode decision metric SAD
RDO 1
RDOQ Disabled
Transform Integer DCT (integer DST for luma 4×4)
4x4 transform skip Enabled
Loop �ltering DF, SAO

Table 4.2: Kvazaar digest
Main developer Tampere University of Technology
Source codes github.com/ultravideo
License GNU LGPLv2.1
Contributors 7 at TUT + 6 external
Language C with intrinsics/ASM
Operating systems x86, x64, PowerPC, ARM
Processors DC, planar, 33 angular
Presets RD1 for high-speed encoding, RD2 for high-quality encoding

Table 4.1 shows the coding parameters used with Kvazaar in this thesis. The

most important values from the table are that only intra coding is used, all block

4. Kvazaar HEVC intra encoder 15

sizes and prediction modes are supported, Sum of Absolute Di�erences (SAD) is

used as the mode decision metric, Rate-Distortion Optimization (RDO) is 1, Rate-

Distortion Optimized Quantization (RDOQ) disabled, and transform skip enabled.

These settings are chosen for reducing the complexity of the encoder.

This thesis does not cover all aspects of the encoder. As the main purpose of this

thesis was to accelerate only a part of Kvazaar, a limited knowledge of the whole

HEVC encoding process, but deep understanding of the functions to be accelerated,

is su�cient. First runs with Kvazaar were done on a PC. These runs were done to

get familiar with Kvazaar parameters and doing some step-by-step debug runs to

better learn the encoding �ow of Kvazaar.

When the work on this Thesis started, Kvazaar intra encoder was still greatly

under development. It was still missing some encoding tools for intra encoding

and was just getting parallelization tools added. The changes in Kvazaar during

the process of this Thesis had minimal e�ects to the work done. Kvazaar was

easy to get working on a soft processor synthesized to an FPGA chip on a DE2

board. The software development environment for NiosII was NiosII 12.1 Software

Build Tools for Eclipse, which was able to compile the source codes with minimal

changes. Changes included removing and replacing unsupported code and writing

a new method to read video input from memory as there is no trivial way to read

data from an external storage with NiosII. This was the case with the earlier Kvazaar

version that did not yet implement threads as a major part of the encoder. Compiling

for NiosII with the later versions of Kvazaar would require major changes to the code.

To get an understanding how demanding HEVC and Kvazaar is, the encoding speed

with a QCIF resolution (176x144) video (Carphone [29]) was only 0,065 fps, with

the NiosII processor running at 50 MHz.

4.1 Pro�ling Kvazaar

After the runs on NiosII, it was very clear that Kvazaar would need a major speed

boost to get acceptable results. These improvements could be achieved by creating

an HW accelerator for Kvazaar. Choosing what parts or functions to be accelerated

can be hard, because not all functions can be accelerated depending on the structure

and the functionality. By pro�ling the encoder and getting accurate time usages of

all functions helps to narrow the search.

Gprof [30] is a tool for pro�ling programs and it is part of the GCC compiler.

To compile a source �le for pro�ling, the only thing needed to do is to specify a -pg

�ag when the compilation is done. When the gprof compiled application is run it

produces a "gmon.out" �le that can then be processed with gprof, which in turn

outputs tables of processing times for all functions and also the cumulative time for

all functions. This table is useful as-is, but from it a visual graph representation

4. Kvazaar HEVC intra encoder 16

Figure 4.1: Kvazaar time usage diagram.

can be generated with gprof2dot [31].

Table 4.3 and Figure 4.1 shows the most time consuming parts of Kvazaar intra

encoding. The video sequence (Kristen And Sara [32]) used to get these results had a

1280x720 resolution. From the Table 4.3 it can be seen that the most time consuming

function in Kvazaar with quantization value 32 is intra_get_angular_pred. The

function takes 39.23% of the overall encoding time when using full-intra search and

22.50% when using rough search.

Rough search implements a coarser version of the full-intra search. First it calcu-

lates the SAD for evenly spaced modes to select the starting point for a more re�ned

search around the starting point.

Although the search_intra_rough function only takes 2.17% of the overall en-

coding time when using full intra search and 2.75% when using rough search, the

cumulative time is much higher for both. For full intra search it is 66.24% and

for rough search it is 41.83%. The cumulative time usage of search_intra_rough

consists of all the functions marked purple.

The rest of the Thesis will focus on full intra search only, rather than rough

search, as it will produce better picture quality and a better insight to accelerating

algorithms by using an HLS tool.

4. Kvazaar HEVC intra encoder 17

Table 4.3: Most time consuming functions of Kvazaar in percentages
Full intra search (CPU only) Rough intra search (CPU only)

% Functions % Functions
39.23 intra_get_angular_pred 22.50 intra_get_angular_pred
10.93 quant 15.63 quant
8.01 sort_modes 5.79 quantize_residual
4.26 sad_8bit_32x32_generic 5.79 sort_modes
4.17 sad_8bit_16x16_generic 2.89 intra_get_planar_pred
4.01 sad_8bit_8x8_generic 2.75 search_intra_rough
3.09 quantize_residual 2.60 partial_butter�y_32
2.84 intra_get_pred 2.46 sad_8bit_8x8_generic
2.17 search_intra_rough 2.32 partial_butter�y_inverse_16
1.59 partial_butter�y_16 2.03 intra_build_reference_border
1.42 intra_build_reference_border 1.88 sad_8bit_4x4_generic
1.34 intra_get_planar_pred 1.88 dequant
1.25 sad_8bit_4x4_generic 1.88 sad_8bit_16x16_generic
1.25 partial_butter�y_32 1.59 partial_butter�y_16
1.25 partial_butter�y_inverse_32 1.45 partial_butter�y_inverse_8
0.83 dequant 1.30 partial_butter�y_8
0.83 partial_butter�y_inverse_16 1.30 sad_8bit_32x32_generic
0.75 intra_pred_ratecost 1.16 intra_get_pred
0.75 partial_butter�y_8 1.01 intra_pred_ratecost
0.67 intra_recon 1.01 partial_butter�y_inverse_32
0.42 intra_�lter 0.87 search_cu_intra
0.42 intra_recon_lcu_luma 0.87 intra_�lter
0.33 search_cu_intra 0.87 intra_recon
0.33 fast_forward_dst 0.72 fast_inverse_dst
0.33 transformskip 0.43 fast_forward_dst
0.25 partial_butter�y_4 0.43 partial_butter�y_inverse_4
0.25 partial_butter�y_inverse_8 0.29 partial_butter�y_4
0.25 partial_butter�y_inverse_4 0.14 intra_recon_lcu_luma
0.17 intra_get_dc_pred 0.14 intra_recon_lcu_chroma
0.17 fast_inverse_dst 0.14 transform2d
0.08 transform2d 0.14 itransform2d
0.00 itransform2d 0.14 transformskip
0.00 intra_recon_lcu_chroma 0.00 intra_get_dc_pred

18

5. INTRA SEARCH

Intra search is a process of conducting a series of intra predictions and reconstruc-

tions in order to partition a Coding Tree Unit (CTU) into di�erent modes and sized

coding blocks. The intra search is done for every CTU, which can have a size of up

to 64x64 pixels. The CTU can be divided into 64x64, 32x32, 16x16, 8x8 and 4x4

sized coding blocks.

Figure 5.1 shows the search order of each block in a CTU. Intra predictions for

di�erent blocks is done in the numerical order as seen in the Figure 5.1. This �gure

shows the worst case situation where every block is searched, but in a real scenario

that might not be the case. After predicting the best mode for a speci�c block,

reconstruction is done to get the actual coded pixels. These pixels are necessary

for the adjacent blocks, as these pixels are used as the reference pixels for the next

prediction. Using the actual coded pixels lowers the bitrate compared to using the

original pixels.

5.1 Intra prediction

The HEVC intra prediction has three distinctive methods: planar, dc, and angular.

The total number of intra prediction modes supported by HEVC is 35. The set

of de�ned prediction modes consists of methods modeling various types of content

typically present in video and still images [2, p. 91-93].

Figure 5.2 shows how the reference samples from the adjacent reconstructed

blocks are utilized by the HEVC intra prediction modes. For example, when pre-

dicting a 8x8 block, the coordinate for the upper left pixel for the predicted block

is (0,0), the needed above reference pixels go from (-1,-1) to (15,-1) and the left

reference pixels go from (-1,-1) to (-1,15). All modes do not need all reference pixels

to predict the block. Figure 5.3 shows an example of intra prediction in HEVC for

8x8 blocks for di�erent modes and angles.

5.2 Angular prediction modes

Angular intra prediction is speci�ed in HEVC to model di�erent directional struc-

tures, which are usually present in image content [2, p. 97]. The angular intra pre-

diction has 33 di�erent prediction angles that can be seen in Figure 5.3 (examples

2 to 34). These directions are selected to provide a good trade-o� between encoder

5. Intra search 19

Figure 5.1: HEVC CTU search order

Figure 5.2: Example of reference pixels [2, p. 93]

complexity and coding e�ciency [2, p. 97]. The number of prediction directions in

addition to the supported block sizes of HEVC o�er more compression capabilities

than the AVC standard. Angular prediction is performed by intra_get_angular

function in Figure 5.4.

5.3 DC prediction mode

With DC prediction, the predicted block is �lled with values representing the average

of above and left reference pixels. With block sizes of 4x4, 8x8, and 16x16, the

predicted block is further �ltered to soften the left and above edges as seen in

Figure 5.3 with example 1 [2, p. 101]. DC prediction is performed by intra_get_dc

function in Figure 5.4

5. Intra search 20

Figure 5.3: Intra prediction examples for 8x8 luma blocks [2, p. 92]

5.4 Planar prediction mode

Although angular prediction provides good approximations for structures with edges,

it can create visible contouring in picture areas. Some blockiness can also be observed

in smooth image areas when DC prediction is applied at low bitrates. The purpose

of planar prediction is to generate a prediction surface without discontinuities on the

block boundaries, as seen in Figure 5.3 with example 0, this way it overcomes some

of the issues of predictions done with Angular or DC [2, p. 101]. Planar prediction

is performed by intra_get_planar function in Figure 5.4

5.5 Mode cost computation

In digital imaging, it is useful to have a simple criterion for block similarities. In

HEVC this criterion is used to select the best possible prediction mode. Calculating

the SAD is one way to measure the di�erences between two picture blocks. The

SAD is computed between the corresponding pixels from the original block and the

block being compared to.

The other algorithm used to measure di�erences between two image blocks is the

sum of absolute transformed di�erences (SATD). In SATD, a frequency transform is

taken from the di�erences between the original block and the block being compared

to. Therefore SATD is more complex and slower than SAD. Only SAD is used in

this Thesis, as SATD was not implemented in Kvazaar until the accelerator was

already �nished.

5. Intra search 21

Figure 5.4: Kvazaar intra search �ow diagram

5.6 Kvazaar intra search �ow

Figure 5.4 shows the intra search �ow in Kvazaar. The intra search starts at depth

0. The block size at depth 0 is 64x64 and 4x4 at depth 4. At depth 0 the 64x64

block is immediately split into four 32x32 blocks. The left upper 32x32 block is the

�rst coding block to be predicted. The build_ref_border builds the reference pixels

for the block. Search_intra_rough calls the prediction functions and chooses the

best mode. The predicted block is reconstructed in order to have the reference pixels

for adjacent blocks. During reconstruction, it is possible that all quantized pixels

are zero and the coded block �ag (cbf) is set to zero. This means that splitting

the block does not necessarily give better results, reducing the number of blocks to

be predicted. Otherwise the block is further split into smaller blocks. Search_cu

determines, into which block sizes the CTU is parted.

22

6. HARDWARE DESIGNS

This chapter presents the veri�cation method and the process of creating an HW

accelerator for Kvazaar using HLS. All the measured results are for a QCIF (176x144)

resolution video sequence (Carphone). The resolution was mainly limited by the

speed and the memory of the �rst board. CycloneII DE2, that had only 8 MB of

SDRAM and 50 MHz operating frequency. Although the other boards used have

better performance and more memory, the same test sequence was used to have

directly comparable results between di�erent designs. The tables with pro�ling

values were generated with an HD (1280x720) resolution video sequence (Kristen

And Sara) as the PC version used the same sequence.

6.1 Veri�cation

As discussed in Section 3.3, the veri�cation with Catapult-C is easy. The presented

HW blocks generated by Catapult-C are tested in software and in RTL with sim-

ulators. The system testing is done by running the system on the FPGA. The

HW accelerator and the original source code are run in series and the results are

compared. The results are expected to be identical.

The golden reference data for the HW blocks is generated with Kvazaar. Kvazaar

code was modi�ed to output real data input and output for each accelerated function

for various test cases. The golden input data is then passed to the design under

testing and output is veri�ed against the golden output data. These test cases are

done with a simulator to clear the most obvious errors, and the system test is used

for more exhaustive testing. Errors in the code are solved by running the original

function with debug prints against the debug prints in the HW design.

6.2 Accelerator I: Angular prediction modes

As seen in Table 4.3, intra_get_angular_pred is the most demanding function tak-

ing over 39% of the overall processing time. It was therefore a perfect candidate to

start the accelerating process from.

The �rst step was to take the intra_get_angular_pred function to Catapult-C

and generate RTL for it. Modifying the C implementation of the function to get

functional RTL was fairly straightforward. As the proof of concept H.263 encoder

6. Hardware designs 23

Figure 6.1: First implementation for intra prediction accelerator

was successful, the same design �ow was used with intra_get_angular_pred func-

tion. The work was started by creating the top level function, that handles all the

data communications from NiosII to the accelerated function.

Only small modi�cations were made to the code of the function to minimize

the resulting HW area. For example, the original function contained a secondary

array of 129 8-bit values both for the above reference pixels and for he left reference

pixels. The arrays were oversized even for the largest 32x32 block. The number of

pixels needed for the above and left reference pixels is cu_width ∗ 2 + 1. Another

modi�cation addressed the indexing of the reference pixels table inputed to the

original function. The original function got a pointer to a two-dimensional table that

had useful data only on the �rst row and in the �rst value of every row. This was

changed to use two separate arrays, one with the above reference pixels and a second

one for the left reference pixels. Other smaller optimizations included creating limits

to loops. It is not important to know the limits of loops in C when compiling to

CPUs, but it is when generating RTL. The loop limits are usually other variables,

which means that Catapult-C cannot specify how many iterations a speci�c loop

takes and thus cannot optimize or unroll the loop. For example, considering the

following loop, for(int a = 0; a < cu_width; a++), where cu_width is a 16-

bit value, Catapult-C is unaware that the loop can only run for a maximum of 32

iterations. Instead it will expect the worst case, i.e., 65536. The way to avoid this

is to specify the maximum limit as in for(int a = 0; a < 32; a++) and then

break the loop with if(a == cu_width-1) break; inside the loop, as is also seen

in Listing 6.1.

6. Hardware designs 24

6.2.1 Design

Figure 6.1 shows the block diagram of the resulting design. This design was imple-

mented for a Cyclone II FPGA chip on DE2 board. NiosII runs the whole encoding

process excluding the angular prediction which is o�oaded to the FPGA. NiosII is

connected to the peripherals through Avalon bus. Peripherals include a SDRAM

controller, Timer for the processor, and two JTAG Uarts for debug prints and data

transfers. The accelerator is connected to Avalon through a Parallel input/output

(PIO).

NiosII calculates the right reference pixels and the �ltered ones and sends them

through the PIO to the accelerator. Data amount sent to the GET ANGULAR

block is (2 ∗ cu_width + 1) ∗ 4 + 2 bytes. Filtered pixels are not sent when the

block size is 4x4, in which case the data amount is only (cu_width + 1) ∗ 4 + 2.

The GET ANGULAR block utilizes the mode and block size to decide whether to

use the �ltered or un�ltered reference pixels. Then it calculates the prediction for

modes 2 to 35 and sends the predicted data back to the NiosII, through the PIO.

GET ANGULAR block is able to calculate the prediction for all block sizes, so the

amount of data generated per block is 33 ∗ cu_width ∗ cu_width bytes. Code for

the GET ANGULAR block can be seen in Listing 6.1.

6.2.2 Performance

The presented design, with the intra_get_angular_pred function on the FPGA, is

able to encode the test QCIF video at 0.13 fps. The GET ANGULAR block takes

2 449 LEs on the Cyclone II. The design is able to encode the video 1.7x faster

compared to the CPU only version which was able to encode the video at 0.07 fps.

By accelerating the intra_get_angular_pred function, the overall time used in the

intra_search_rough function decreases from 66.24% to 43.62% over the CPU only

version. NiosII and the accelerator were both running at 50 MHz.

6.3 Accelerator II: Angular prediction modes with mode cost

computation

After the intra_get_angular_pred function was o�oaded to the FPGA the next

phase was to o�oad more functionality to the FPGA. According to Table 4.3, quan-

tization is the second most demanding function, but its acceleration would not give

much better results. Implementing quantization on FPGA would need data to be

transfered between the FPGA and the CPU multiple times, hindering the acceler-

ation because of data transfer times. So the logical choice was to implement SAD

6. Hardware designs 25

calculation for the modes using intra_get_angular_pred. Altogether, the SAD cal-

culation functions account for 13.69% of the time.

In order to calculate the SAD value, the predicted pixels and the original luma

pixels of the same block are needed. The predicted pixels are generated by the GET

ANGULAR block, so only the original luma pixels of the right block have to be

sent to the FPGA. A new project was created with Catapult-C in order to have

1 #pragma hls_des ign top
2 void get_angular (ac_channel<uint_8> &data_in ,
3 ac_channel<uint_8> &data_out)
4 {
5 uint_8 width=0, th r e sho ld=0, d i s t ance =0,a=0,mode=0;
6 p i x e l u n f i l t e r e d 1 [6 5] , u n f i l t e r e d 2 [6 5] , f i l t e r e d 1 [6 5] , f i l t e r e d 2 [6 5] ;
7 p i x e l ∗ src1 , s r c2 ;
8 width = data_in . read () ; th r e sho ld = data_in . read () ;
9 // Reading a l l r e f e r ence p i x e l s
10 for (a = 0 ; a < 65 ; a++){
11 un f i l t e r e d 1 [a] = data_in . read () ;
12 i f (a == 2∗width){break ; }
13 }
14 for (a = 0 ; a < 65 ; a++){
15 un f i l t e r e d 2 [a] = data_in . read () ;
16 i f (a == 2∗width){break ; }
17 }
18 i f (width != 4){
19 for (a = 0 ; a < 65 ; a++){
20 f i l t e r e d 1 [a] = data_in . read () ;
21 i f (a == 2∗width){break ; }
22 }
23 for (a = 0 ; a < 65 ; a++){
24 f i l t e r e d 2 [a] = data_in . read () ;
25 i f (a == 2∗width){break ; }
26 }
27 }
28 // Ca l cu l a t e angu lar p r e d i c t i o n s
29 for (mode = 2 ; mode < 35 ;mode++){
30 i f (width == 4){
31 s r c1 = un f i l t e r e d 1 ; s r c2 = un f i l t e r e d 2 ;
32 }
33 else {
34 d i s t ance = MIN(abs (mode − 26) , abs (mode − 1 0)) ;
35 i f (d i s t ance > thre sho ld){
36 s r c1 = f i l t e r e d 1 ; s r c2 = f i l t e r e d 2 ;
37 }
38 else {
39 s r c1 = un f i l t e r e d 1 ; s r c2 = un f i l t e r e d 2 ;
40 }
41 }
42 angular_pred (src1 , src2 , data_out , width ,mode) ;
43 }
44 }

Listing 6.1: Catapult-C code for calculating angular predictions

6. Hardware designs 26

an HW-block that works in parallel with the GET ANGULAR block. The newly

created SAD block gets the predicted pixels from GET ANGULAR one pixel at a

time, and calculates the SAD. The SAD block has an interface to an on-chip RAM

that holds the original luma pixels. The right pixels are read from the RAM as the

predicted pixels arrive. The code for the SAD block is illustrated in Listing 6.2,

where orig_block and sads are parameters for the function. Catapult-C can map a

table to an single port on-chip RAM interface and use it as a normal array in C. The

single port on-chip RAM interface is generated by Catapult-C. So, after the RTL is

generated the interface can be connected to an external single port on-chip RAM,

or in this case to the second interface of a dualport memory.

If the prediction mode is higher than 17, the pixels are predicted in transpose.

The original source code �ips the block before continuing, but it takes time. In

order to minimize the area cost and the computation time in HW the SAD block

calculates the SAD in transpose for those modes, as illustrated in Listing 6.2.

1 #pragma hls_des ign top
2 void sad (uint_8 or ig_block [1 0 2 4] , ac_channel<uint_8> &data_in ,
3 uint_32 sads [3 4] , ac_int <1, f a l s e > ∗ i r q)
4 {
5 . . .
6 for (y = 0 ; y < 32 ; y++){
7 for (x = 0 ; x < 32 ; x++){
8 pred = data_in . read () ;
9 // Ve r t i c a l
10 i f ((a > 17)){
11 temp1 = orig_block [x∗width+y] − pred ;
12 }
13 // Hor i zon ta l
14 else {
15 temp1 = orig_block [y∗width+x] − pred ;
16 }
17 sad [a] += (abs (temp1)) ;
18 }
19 i f (x == cu_width−1) break ;
20 }
21 i f (y == cu_width−1) break ;
22 . . .
23 }

Listing 6.2: Catapult-C code for calculating SAD

6. Hardware designs 27

Figure 6.2: Adding SAD block

6.3.1 Design

Figure 6.2 shows the the block diagram of the resulting design. Here, the di�erences

over the Accelerator I are the use of on-chip memories. The memories have one port

connected to the Avalon bus and the other port to the GET ANGULAR and SAD

blocks. Now, the PIO is only used to create an IRQ signal to the NiosII.

Here, the �ltered and un�ltered reference pixels are sent to the GET ANGULAR

block through an on-chip RAM. The RAM is sized (max_cu_width ∗ 2 + 1) ∗ 4 + 1

bytes to have enough space for a ready �ag and for all reference pixels. The ready �ag

is in the �rst index indicating that the reference pixels are all written to the memory

before GET ANGULAR starts to read the data and process it. The same concept is

used for the SAD block, where size of the the on-chip memory is max_cu_width ∗
max_cu_width and 140. The max_cu_width ∗ max_cu_width bytes is needed

for the original CTU pixels, so that the SAD can be calculated as explained before.

The 132 + 4 bytes is needed for the ready �ag and for 33 32bit SAD values. As in

the Accelerator I, the GET ANGULAR block calculates the prediction for modes 2

to 35, but this time sends the predicted data to the SAD block which calculates the

SAD value for all 33 modes and saves all the SAD values to the on-chip memory.

After all 33 SADs have been calculated the SAD block signals NiosII with an IRQ.

6.3.2 Performance

Accelerator II is able to encode the QCIF video at 0.13 fps. The GET ANGU-

LAR block needs 2 449 LEs and the SAD block 854 LEs on the Cyclone II. The

design is able to encode the video 2.0x faster compared to the CPU only version.

6. Hardware designs 28

Compared to the Accelerator I the improvement is 1.2x and the time used in the

intra_search_rough function decreases from 43.62% to 32.24%. NiosII and the ac-

celerator were both running at 50 MHz.

6.4 Accelerator III: All prediction modes with mode cost com-

putation and selection

After the GET ANGULAR block and the SAD block working successfully on HW,

a more complete intra prediction accelerator (IP ACC) was designed, by including

the prediction for modes 0 (planar) and 1 (DC). Listing 6.3 shows the updated

get_angular function. The only di�erences are the name of the top level and the

last for-loop, that now includes modes 0 and 1, as well as the function calls for

planar_pred and dc_pred. The algorithms for planar and DC are much simpler

compared to angular prediction, making it fast to get the �rst version working in

Catapult-C after adding them to the existing GET ANGULAR code. The same

optimization techniques were used for the new code, as covered in section 6.2

6.4.1 Design

Figure 6.3 shows the �rst complete version of the IP ACC. The only di�erence over

the Accelerator II is that the GET ANGULAR block is now a complete INTRA

PREDICTION block that performs the prediction for all modes sequentially. The

data sent to the INTRA PREDICTION block is equal to that sent to the GET

ANGULAR block before. The SAD block calculates the SAD value for all modes

as the predicted data arrives. The on-chip memory connected to the SAD block

contains 8 bytes more data for two extra 32bit SAD values. Since the SAD block

calculates values for all modes, it can also sort them accordingly. This means that

sort_modes function, which uses the third most time in the encoder, is o�oaded to

the FPGA.

6.4.2 Performance

The Accelerator III is able to encode the QCIF video at 0.17 fps. The IP block

consumes 5 454 LEs and the SAD block 854 LEs on the Cyclone II. The design

is able to encode the video 2.6x faster compared to the CPU only version. Com-

pared with the Accelerator II, the improvement is 1.3x and the time used in the

intra_search_rough function decreases from 32.24% to 22.09%. NiosII and the ac-

celerator were both running at 50 MHz.

6. Hardware designs 29

6.5 Accelerator IV: Parallel implementation of Accelerator III

All three prediction functions, intra_get_planar_pred, intra_get_dc_pred and in-

tra_get_angular_pred, use the same input data to calculate the prediction for all

modes. In addition they have no dependencies between each other. Therefore it is

possible to run the prediction and calculate the SAD for all modes in parallel. Mak-

ing parallel prediction blocks means separate Catapult-C projects for all functions

in order get them working in parallel.

As the INTRA PREDICTION block in the Accelerator III was able to calculate

all modes, the reference pixels were only sent there. Multiple prediction blocks using

the same data need a structure that writes the same data to all of them. Rather than

instantiating 35 on-chip memories and writing the data to all of them with NiosII,

an IP CTRL block was created that reads the data from the same on-chip memory

as before and distributes the data to the prediction blocks in parallel. Creating a

1 #pragma hls_des ign top
2 void i n t r a_pred i c t i on (ac_channel<uint_8> &data_in ,
3 ac_channel<uint_8> &data_out)
4 {
5 . . .
6 for (mode = 0 ; mode < 35 ;mode++){
7 i f (width == 4 | | mode == 1){
8 s r c1 = un f i l t e r e d 1 ; s r c2 = un f i l t e r e d 2 ;
9 }
10 else i f (mode == 0){
11 s r c1 = f i l t e r e d 1 ; s r c2 = f i l t e r e d 2 ;
12 }
13 else {
14 d i s t ance = MIN(abs (mode − 26) , abs (mode − 1 0)) ;
15 i f (d i s t ance > thre sho ld){
16 s r c1 = f i l t e r e d 1 ; s r c2 = f i l t e r e d 2 ;
17 }
18 else {
19 s r c1 = un f i l t e r e d 1 ; s r c2 = un f i l t e r e d 2 ;
20 }
21 }
22 i f (mode == 0){
23 planar_pred (src1 , src2 , data_out , width) ;
24 }
25 else i f (mode == 1){
26 dc_pred (un f i l t e r ed1 , un f i l t e r ed2 , data_out , width) ;
27 }
28 else {
29 angular_pred (src1 , src2 , data_out , width ,mode) ;
30 }
31 }
32 }

Listing 6.3: Catapult-C code for calculating all prediction modes

6. Hardware designs 30

Figure 6.3: Support for all modes

1 #pragma hls_des ign top
2 void sad_para l l e l (uint_8 or ig_block [1 0 2 4] , port ∗ in [3 5] ,
3 uint_32 sads [3 7] , ac_channel<uint_32> &conf ig ,
4 one_bit ∗ i r q)
5 {
6 . . .
7 for (y = 0 ; y < 32 ; y++){
8 for (x = 0 ; x < 32 ; x++){
9 . . .
10 // Loop f o r c a l c u l a t i n g 35 SADs fo r 35 modes
11 for (a = 0 ; a < 35 ; a++){
12 ac_int <9, true> sad_temp = 0 ;
13 input_temp = in [a]−>read () ;
14 // Ve r t i c a l
15 i f ((a > 17) | | (a == 0) | | (a == 1)){
16 sad_temp = orig_block [x∗width+y] − input_temp ;
17 }
18 // Hor i zon ta l
19 else {
20 sad_temp = orig_block [y∗width+y] − input_temp ;
21 }
22 sad [a] += abs (sad_temp) ;
23 }
24 i f (x == cu_width−1) break ;
25 }
26 i f (y == cu_width−1) break ;
27 . . .
28 }
29 }

Listing 6.4: Catapult-C code for SAD PARALLEL

6. Hardware designs 31

Figure 6.4: Parallel intra prediction

SAD PARALLEL block that calculates the SAD value in parallel was implemented

through loop unrolling. A similar loop structure can be seen in Listing 6.4 and

in Listing 6.2, except that there is a third inner loop for(a = 0;a < 35;a++) in

Listing 6.4. This loop can be unrolled in Catapult-C project settings. This helps

the coding process as the loops do not need to be unrolled manually, which would

lead into code that is di�cult to read and manage.

6.5.1 Design

Figure 6.4 shows the new parallel IP ACC as part of the entire system. The IP

components above the Avalon bus are the same as in previous versions. The IP

ACC now has an IP CTRL block, separate GET PLANAR, GET DC, and 33 GET

ANGULAR blocks that work in parallel, and a SAD PARALLEL block. The size of

the on-chip memory connected to the IP CTRL block is now half the size compared

to the one in Figure 6.3.

In this design, only the un�ltered reference pixels are sent to the accelerator. The

IP CTRL block selects the modes for the un�ltered and �ltered reference pixels and

calculates the �ltered pixels in real-time as they are sent to the prediction blocks. All

the prediction blocks start the prediction after getting the respective reference pixels.

6. Hardware designs 32

The SAD PARALLEL block calculates the SAD value for all modes in parallel. If

some mode is predicted slower than the others, the SAD PARALLEL stalls the other

modes. For example, some modes can start the prediction faster, because not all

modes need the same amount of reference pixels. In addition there are one cycle

delays in some modes because of state changes. Otherwise, the prediction blocks

can calculate the prediction one pixel per cycle in average.

The resulting IP ACC was so large that it did not �t in the low level CycloneII

FPGA chip on the DE2, so the Arria II GX FPGA Development Kit with a larger

entry-level FPGA chip was taken into use. NiosII and the accelerator were both

running at 125 MHz.

6.5.2 Performance

The Accelerator IV is able to encode the QCIF video at 1.4 fps. The IP CTRL

block takes 3 742 LEs, the GET blocks 21 627 LEs, and the SAD PARALLEL

block 2 871 LEs on the Arria II. The combined area was 28 240 LEs which equals

to 10 656 ALMs. The design is able to encode the video 3.0x faster compared to

the CPU only version, which is able to encode the video at 0.47 fps on the Arria II.

These results are not entirely comparable to the previous ones. When taking the

operating frequencies into account, the frame rate of 0.07 fps obtained with NiosII on

the CycloneII should be scaled on ArriaII as follows: (125Mhz/50MHz)∗0.07fps =

0.175. The di�erence may be caused by memory speed and NiosII that takes di�erent

number of cycles per instructions. The improvement with the IP ACC is still 3.0x.

6.6 Accelerator V: Integrating the Accelerator IV to ARM

Even though the NiosII is a good soft processor, it is not made for heavy calculations.

The speed is mainly limited by the FPGA chip in use. So, an ARM hard processor

is suggested to get a speed boost for the processor side. Altera SoC device has an

integrated ARM processor and a CycloneV FPGA chip. Although the CycloneV

is a newer chip than the ArriaII they both have almost the same amount of LEs.

They are also about the same speed grade despite that CycloneV is a lower level

FPGA. Linux operating system is run on the ARM to ease the use of a �le system,

a network connection, and threading.

The interface to the ARM uses an AXI bus whereas an Avalon bus is used on

Arria II. Therefore, switching from NiosII to ARM requires some changes in the

surrounding components. The most signi�cant change is the way the data is sent to

the accelerator. A VHDL implementation of a Direct Memory Access (DMA) was

created for reading the data from the CPU data memory directly, using dedicated

interfaces to the memory controller. Altera provided IPs PIO and on-chip memories,

6. Hardware designs 33

Figure 6.5: Final system on CycloneV

are still used, but as they are not AXI native, QuartusII generates a wrapper between

them and the AXI bus. AXI bus and Avalon bus are similar enough for this to be

possible.

Changes in the IP ACC include optimizations in all blocks. IP CTRL now has

channels as inputs for the reference pixels compared to the memory interfaces seen in

Accelerator IV. The GET ANGULAR block from Accelerator IV is further divided

into three separate blocks GET POS, GET ZERO, and GET NEG according to the

angle of the mode. As the GET ANGULAR in Accelerator IV had slightly di�erent

operations depending on the mode it was useless to have the same functionality in all

modes. GET ANGULAR was a more generic block, compared to the three new ones.

Doing this saved LEs on the FPGA and made the code more readable. The delivery

of the original CTU pixels is also optimized for the SAD PARALLEL block. Before,

the memory for the original pixels was updated every time for each coding block.

This caused some duplicate data to be transfered for di�erent sized coding blocks.

Now, the whole CTU of original pixels is sent at once and only the coordinates are

sent among the con�guration data through the AXI TO CHANNEL block, which is

a wrapper between the AXI bus and the Catapult-C generated channel.

6. Hardware designs 34

Figure 6.6: CPU only Kvazaar compared to FPGA accelerated Kvazaar

6.6.1 Design

Figure 6.5 shows the design on the SoC CycloneV. All the data sent to the IP ACC

is read from the HPS DDR with ORIG DMA, UNFILT1 DMA, and UNFILT2 DMA

blocks. The data is written to a speci�c address in the memory by a kernel driver.

The encoder uses system calls, e.g., ioctl(),write(), and read() to interact with

the FPGA. The encoder gives the pointer to the data as a parameter to the driver,

and the driver copies the data to memory location reserved by the driver. After

the data is copied to continuous memory locations, the DMA can start reading the

data from the start address con�gured to the DMA beforehand. The IP ACC works

pretty much the same way as in Accelerator IV, except for the changes explained in

Section 6.6. The ARM is running at 900 MHz and the accelerator at 100 MHz.

6.6.2 Performance

With the Accelerator V on the SoC FPGA Cyclone V, the design was able to encode

the QCIF video at 16.5 fps. The IP CTRL block needs 645 ALMs, the GET blocks

5 363 ALMs, and the SAD PARALLEL block 2 256 ALMs on the Cyclone V. The

combined area is 8 264 ALMs. Compared to the area of the Accelerator IV, the

area for this design is 2 392 ALMs less. The design is able to encode the video 2.5x

faster compared to the CPU only version which was able to encode the video at 6.5

fps. Although the Accelerator IV is reported to improve the performance by 3.0x,

the improvement with the Accelerator V is still better, as the ARM CPU and the

memory on the CycloneV SoC are much faster compared to the CPU and memory

speed on the ArriaII board.

Table 6.1 and Figure 6.6 show the improved results of the design seen in Figure

6.5. Table 6.1 tabulates the CPU only results on the left side and the acceler-

6. Hardware designs 35

Table 6.1: Most time consuming functions of Kvazaar in percentages
Full intra search (CPU only) Full intra search (Accelerator V)

% Functions % Functions
39.23 intra_get_angular_pred 4.25 intra_get_angular_pred
10.93 quant 20.70 quant
8.01 sort_modes - HW Accelerated
4.26 sad_8bit_32x32_generic - HW Accelerated
4.17 sad_8bit_16x16_generic - HW Accelerated
4.01 sad_8bit_8x8_generic - HW Accelerated
3.09 quantize_residual 8.83 quantize_residual
2.84 intra_get_pred 0.30 intra_get_pred
2.17 search_intra_rough 4.93 search_intra_rough
1.59 partial_butter�y_16 4.96 partial_butter�y_16
1.42 intra_build_reference_border 3.22 intra_build_reference_border
1.34 intra_get_planar_pred 0.57 intra_get_planar_pred
1.25 sad_8bit_4x4_generic - HW Accelerated
1.25 partial_butter�y_32 7.09 partial_butter�y_32
1.25 partial_butter�y_inverse_32 5.46 partial_butter�y_inverse_32
0.83 dequant 3.01 dequant
0.83 partial_butter�y_inverse_16 4.71 partial_butter�y_inverse_16
0.75 intra_pred_ratecost - HW Accelerated
0.75 partial_butter�y_8 1.63 partial_butter�y_8
0.67 intra_recon 1.75 intra_recon
0.42 intra_�lter 1.70 intra_�lter
0.42 intra_recon_lcu_luma 0.46 intra_recon_lcu_luma
0.33 search_cu_intra 1.74 search_cu_intra
0.33 fast_forward_dst 0.60 fast_forward_dst
0.33 transformskip 0.46 transformskip
0.25 partial_butter�y_4 0.64 partial_butter�y_4
0.25 partial_butter�y_inverse_8 1.42 partial_butter�y_inverse_8
0.25 partial_butter�y_inverse_4 0.04 partial_butter�y_inverse_4
0.17 intra_get_dc_pred 0.07 intra_get_dc_pred
0.17 fast_inverse_dst 0.28 fast_inverse_dst
0.08 transform2d 0.57 transform2d
0.00 itransform2d 0.14 itransform2d
0.00 intra_recon_lcu_chroma 0.62 intra_recon_lcu_chroma

ated results on the right side. CPU only functions that are colored with two colors

are used by both intra prediction and reconstruction. However, functions like in-

tra_get_angular_pred on the right, are mono colored as the whole intra prediction

is o�oaded to the FPGA and these functions are only used by reconstruction.

From Table 6.1 it can also be seen that search_intra_rough is the only intra

prediction function run on software, as intra prediction, result sorting, and SAD

calculation are o�oaded to the FPGA. The overall improvement to intra prediction

6. Hardware designs 36

Table 6.2: Comparing search_intra_rough with di�erent block sizes fully on CPU
and with Accelerator V @100 MHz

Block size Count CPU (s) Accelerator V (s) Improvement
4x4 356820 11.190 1.519 7.37x
8x8 161880 12.550 0.831 15.10x
16x16 57960 14.050 0.453 31.02x
32x32 17600 15.370 0.327 47.00x

TOT 594260 53.160 3.130 16.98x

can be seen in Figure 6.6. It shows the time usage diagram of both CPU only and

FPGA accelerated Kvazaar. In the CPU only Kvazaar, the intra prediction accounts

for 66,24% and in the FPGA accelerated Kvazaar the respective percentage is only

4.93%. Hence, the improvement is 13x. Table 6.2 shows the actual time used in

search_intra_rough in both CPU only and FPGA accelerated.

6.7 Accelerator VI: Multiple pixel prediction

Although intra prediction is no longer the bottleneck, accelerating it further is still

necessary. As the next step would be to o�oad reconstruction functions (dct, in-

verse dct, quantization, dequantization) and actual intra search to the FPGA, intra

prediction is foreseen to again become the bottleneck of the system. To make intra

prediction faster, it is possible to predict multiple pixels at a time with minimal

changes to the code.

6.7.1 Design

The faster Catapult-C top level function for GET POS is illustrated in Listing 6.5.

The di�erence between this version and the one predicting only one pixel at a time

is the number of src arrays. The src arrays are mapped to on-chip memories to save

area. If they were registers the resulting area would at least double. Reading and

writing to on-chip memories takes one cycle each. For this reason, there are two

separate arrays for the reference pixels located above (src1 and src3) and left (src2

and src4). This way the accelerator has enough memory bandwidth without the

increase in latency or area.

The Catapult-C code for predicting two pixels at a time with GET POS blocks

is illustrated in Listing 6.6. The get_ang_pos function is called from the top level,

that passes two sets of reference pixel arrays to the function. The function produces

two predicted pixels in parallel, and writes them to the output, which is twice the

size from the previous version. This halves the time used in the inner loop, and thus

almost halves the entire time of the prediction.

The block diagram is almost the same as in 6.5. The only di�erence being the

6. Hardware designs 37

data width from GET blocks to the SAD is increased in this version from 8 + 2 bits

to 16 + 2 bits.

6.7.2 Performance

Table 6.3: Comparing intra prediction with di�erent block sizes fully on CPU and
with Accelerator VI @100 MHz

Block size Count CPU (s) Accelerator VI (s) Improvement
4x4 356820 11.190 1.416 7.90x
8x8 161880 12.550 0.691 18.16x
16x16 57960 14.050 0.318 44.18x
32x32 17600 15.370 0.182 84.45x

TOT 594260 53.160 2.607 20.39x

With the Accelerator VI, the design is able to encode the QCIF video at 16.8 fps

and a HD video at 0.7 fps. The IP CTRL block takes 645 ALMs, the GET blocks

7 229 ALMs, and the SAD PARALLEL block 2 941 ALMs on the Cyclone V. The

combined area is 10 815 ALMs. The frame rate improvement with the Accelerator

VI only produces a minimal increase in speed compared to the result of Accelerator

V, but that was expected as explained in Section 6.7.

As is shown in Table 6.3, halving the intra prediction and SAD calculation time

does not double the performance in all block sizes. The time used for the 4x4 blocks

with Accelerator VI is almost identical to Accelerator V seen in Table 6.2 (only

1 #pragma hls_des ign top
2 void get_ang_pos (ac_channel<uint_16> &data_in ,
3 ac_channel<uint_16> &data_out)
4 {
5 uint_8 width = 0 , a = 0 ,mode = 0 , bytes = 0 ;
6 one_bit mode_ver ;
7 p i x e l s r c1 [6 5] , s r c2 [6 5] , s r c3 [6 5] , s r c4 [6 5] ;
8 width = data_in . read () ;
9 mode = data_in . read () ;
10 mode_ver = data_in . read () ;
11 bytes = 2∗width ;
12 for (a = 0 ; a < 65 ; a++){
13 uint_16 temp = data_in . read () ;
14 s r c1 [a] = temp . s l c <8>(0);
15 s r c2 [a] = temp . s l c <8>(8);
16 s r c3 [a] = temp . s l c <8>(0);
17 s r c4 [a] = temp . s l c <8>(8);
18 i f (a == bytes)break ;
19 }
20 ang_pos_pred (src1 , src2 , src3 , src4 , data_out , width ,mode , mode_ver) ;
21 }

Listing 6.5: Catapult-C code for GET POS top level

6. Hardware designs 38

1.07x improvement). In the case of 32x32 blocks, the respective improvement was

1.8x. The suggested reasons for this are the sheer number of 4x4 calculations and the

time used for 4x4 predictions. The overhead from the function call, the system calls,

sending of data, and actually starting the HW prediction hinders the improvement

got in the 4x4 predictions with the Accelerator VI. In the case of 32x32 blocks, the

1 void ang_pos_pred (p i x e l ∗ src1 , p i x e l ∗ src2 , p i x e l ∗ src3 , p i x e l ∗ src4 ,
2 ac_channel<uint_16> &data_out , uint_8 cu_width ,
3 uint_8 dir_mode , one_bit mode_ver)
4 {
5 . . .
6 ref_main = mode_ver ? s r c1 : s r c2 ;
7 ref_main2 = mode_ver ? s r c3 : s r c4 ;
8 data_out . wr i t e (mode_ver) ;
9 ac_int <12, true> delta_pos=0;
10 ac_int <7, true> delta_int , de l ta_fract , minus_delta_fract , main_index ;
11 for (y = 0 ; y < 32 ; y++){
12 delta_pos += abs_ang ;
13 de l ta_int = delta_pos >> 5 ;
14 de l t a_f rac t = delta_pos & (32 − 1) ;
15 minus_delta_fract = (32 − de l t a_f rac t) ;
16 for (x = 0 ; x < 32 ; x++){
17 i f (de l t a_f rac t){
18 // P i x e l one
19 main_index = x + de l ta_int + 1 ;
20 pred = (minus_delta_fract ∗ ref_main [main_index] +
21 de l t a_f rac t ∗ ref_main [main_index+1] + 16) >> 5 ;
22 output_temp . s e t_s l c (0 , pred) ;
23 // P i x e l two
24 x++;
25 main_index = x + de l ta_int + 1 ;
26 pred = (minus_delta_fract ∗ ref_main2 [main_index] +
27 de l t a_f rac t ∗ ref_main2 [main_index+1]+16) >> 5 ;
28 output_temp . s e t_s l c (8 , pred) ;
29 }
30 else {
31 // P i x e l one
32 pred = ref_main [x + de l ta_int + 1] ;
33 output_temp . s e t_s l c (0 , pred) ;
34 x++;
35 // P i x e l two
36 pred = ref_main2 [x + de l ta_int + 1] ;
37 output_temp . s e t_s l c (8 , pred) ;
38 }
39 // Write p i x e l s out
40 data_out . wr i t e (output_temp) ;
41 i f (x == cu_width−1) break ;
42 }
43 i f (y == cu_width−1) break ;
44 }
45 }

Listing 6.6: Catapult-C code for GET POS fuction

6. Hardware designs 39

time used in the HW is clearly more than the communication time and the related

overhead.

6.8 Accelerator VII: Optimized implementation of Accelerator

VI

According to Table 6.3, the biggest problems with Accelerator VI are the 4x4 blocks,

so further analysis was done to identify the issues and solving them. First, a series

of simulations were made to identify possible bottlenecks in the HW. Most of the

slowness at this point is most likely caused by the software overhead, but it does not

explain the lack of improvement in the smaller block sizes. From previous results it

is known that the time used in the predicting blocks is minimal. So IP CTRL block

and the SAD PARALLEL block are taken into closer observation.

6.8.1 Design

The simulation results of the SAD PARALLEL block show that the search for the

minimum SAD value takes 35 cycles for every block size. That is a huge part of the

1 //CONFIG
2 . . .
3 //SAD CALCULATIONS
4 . . .
5 for (y = 0 ; y < 35 ; y++){
6 uint_8 r a t e c o s t = 5 ;
7 ac_int <18, f a l s e > cost_temp = 0 ;
8 i f (cand idate s [0] == −1){
9 r a t e c o s t = 0 ;
10 }
11 i f (cand idate s [0] == y){
12 r a t e c o s t = 1 ;
13 }
14 else i f (cand idate s [1] == y | | cand idates [2] == y){
15 r a t e c o s t = 2 ;
16 }
17 cost_temp = sad [y]+ r a t e c o s t ∗ lambda ;
18 i f (cost_temp < best_sad){
19 best_sad = cost_temp ;
20 best_modecost = ra t e c o s t ;
21 sad_index = y ;
22 }
23 sads [y] = cost_temp ;
24 }
25 sads [3 5] = sad_index ;
26 sads [3 6] = best_modecost ;
27 ∗ i r q = 1 ;

Listing 6.7: Calculating the cost in SAD PARALLEL

6. Hardware designs 40

overall time of 4x4 blocks. In comparison, predicting 16 pixels (two at a time) takes

8 cycles. Listing 6.7 describes the process of �nding the minimum SAD value and

calculating the cost of that mode. The cost is calculated by using a lambda value

and by the surrounding modes of the current predicted block. The lambda value

is obtained from the quantization parameter and the surrounding modes from the

candidates array. The surrounding predictions a�ect the choosing of the best mode

in cases where there are minimal di�erences between the SADs. Encoding the block

with a same mode as the surrounding CUs saves bits and thus lowers the bitrate.

In Listing 6.7 the whole process of �nding the best SAD is done after the predic-

tion and SAD calculations. The for-loop could be unrolled, but that would lead to a

signi�cant increase in area, because there would be a need for 35 separate multipli-

ers. Hence this part of the code is impossible to make faster by exploring Catapult-C

project settings. The only solution is to change the structure of the code.

1 template<int N> struct min_s {
2 template<typename T> stat ic T min(T ∗a , ac_int <6, f a l s e > index ,
3 ac_int <6, f a l s e > ∗best_index)
4 {
5 ac_int <6, f a l s e > i0 , i 1 ;
6 T m0 = min_s<N/2>::min (a , index ,& i 0) ;
7 T m1 = min_s<N−N/2>::min (a + N/2 , index+N/2,& i 1) ;
8 i f (m0 <= m1){
9 ∗best_index = i0 ;
10 return m0;
11 }
12 else {
13 ∗best_index = i1 ;
14 return m1;
15 }
16 }
17 } ;
18
19 template<> struct min_s<1> {
20 template<typename T> stat ic T min(T ∗a , ac_int <6, f a l s e > index ,
21 ac_int <6, f a l s e > ∗best_index)
22 {
23 ∗best_index = index ;
24 return a [0] ;
25 }
26 } ;
27
28 template<int N, typename T> T min(T ∗a , ac_int <6, f a l s e > ∗best_index){
29 return min_s<N>::min (a , 0 , best_index) ;
30 }

Listing 6.8: Template recursion code used to generate a balanced comparison tree

Listing 6.8 shows a template recursion [6, p 138] that implements the same search

for the best SAD as seen in Listing 6.7. The template recursion is inlined during the

6. Hardware designs 41

compilation and it results into a balanced comparison tree. The for-loop in Listing

6.7 has a comparison dependency to the previous best_sad value. It results in a

long chain of operations and to a multi-cycle for-loop with even small iterations. In

Listing 6.8, the min function is a template function that calls the template function.

A series of recursion calls start from the value N, according to the �rst template

call to min. N is halved every recursion call until N=1, after which the default

template<> struct min_s<1> is called.

Listing 6.9 illustrates the changes to the structure of the best mode search. The

sad array is now initialized with the ratecost compared to calculating the ratecost

in real-time in Listing 6.7. This way the array initialization loop can be unrolled

without a huge increase in area, as the multiplication is done outside the loop and

there is no need for 35 separate multipliers. The ratecost for modes a�ected by

the surrounding CUs are calculated after the loop. The SAD PARALLEL block is

able to initialize the sad array after the con�guration from the IP CTRL block and

before the prediction blocks start sending data to the SAD PARALLEL block.

Changes were also made to the retrieval of the reference pixels in the IP CTRL

block. Instead of loading the reference pixels to an internal memory structure,

and �ltering and sending the data afterwards, it now loads the reference pixels and

1 //CONFIG
2 . . .
3 lambda = lambda ∗5 ;
4 for (y = 0 ; y < 35 ; y++){
5 sad [y] = lambda ;
6 }
7 sad [cand idates [0]] = lambda ;
8 sad [cand idates [1]] = 2∗ lambda ;
9 sad [cand idates [2]] = 2∗ lambda ;
10 . . .
11 //SAD CALCULATIONS
12 . .
13 best_sad = min<35>(sad ,&best_index) ;
14 ac_int <3, f a l s e > r a t e c o s t = 5 ;
15 i f (cand idate s [0] == −1){
16 r a t e c o s t = 0 ;
17 }
18 i f (cand idate s [0] == best_index){
19 r a t e c o s t = 1 ;
20 }
21 else i f (cand idate s [1] == best_index | | cand idate s [2] == best_index){
22 r a t e c o s t = 2 ;
23 }
24 sads [best_index] = best_sad ;
25 sads [3 5] = best_index ;
26 sads [3 6] = r a t e c o s t ;

Listing 6.9: Optimized calculation of cost in SAD PARALLEL

6. Hardware designs 42

Table 6.4: Comparing search_intra_rough with di�erent block sizes fully on CPU
and with Accelerator VII @100 MHz

Block size Count CPU (s) Accelerator VII (s) Improvement
4x4 356820 11.190 0.973 11.50x
8x8 161880 12.550 0.489 25.66x
16x16 57960 14.050 0.237 59.28x
32x32 17600 15.370 0.161 95.47x

TOT 594260 53.160 1.860 28.58x

Table 6.5: Comparing the cycles used in Accelerator V and Accelerator VII
Block size Accelerator V (cycles) Accelerator VII (cycles) Improvement
4x4 159 40 3.98x
8x8 243 68 3.57x
16x16 503 172 2.92x
32x32 1403 572 2.45x

calculates the �ltered pixels at the same time without unnecessary temporary data

structures. The data width from IP CTRL to GET blocks was also increased from

16+2 to 32+2 in order to send more reference pixels per cycle. Reason why this was

not made before, was to �rst get a working version with readable code. HLS suits

for this kind of work, getting a working version fast and with little ease, and then

modifying the code afterwards for more functionality or improved performance and

just regenerating the RTL again. And as long as the interfacing works the same way

nothing else needs changes e.g. software code or other blocks.

6.8.2 Performance

After the optimizations, SignalTapII, which is part of QuartusII FPGA design soft-

ware, was used to get cycle accurate pro�ling of the accelerator. The IP ACC time

consumption for 4x4 blocks is divided into following parts: IP CTRL and SAD

PRALLEL con�guration (14 cycles); Receiving, �ltering and sending the reference

pixels to the prediction blocks (7 cycles); Actual prediction and sad calculation (13

cycles); The search for the lowest mode cost and saving the results to the on-chip

memory (6 cycles). In the Accelerator VI, reading and sending the reference pixels

in the IP CTRL block takes 9+9=18 cycles, resulting in 2.6x improvement over

the Accelerator VII. Finding the minimum cost in the SAD PARALLEL block in

the Accelerator VI takes 37 cycles and in Accelerator VII 6 cycles, resulting in a

6.17x improvement. The whole process for the 4x4 blocks takes 40 cycles with the

Accelerator VII resulting in 2.05x improvement over the Accelerator VI.

As reported in Table 6.4, Accelerator VII processed 4x4 blocks 1.56x faster than

the Accelerator V and 1.46x faster than the Accelerator VI. In conclusion, the

6. Hardware designs 43

Table 6.6: Comparing the time usage of Accelerator V and Accelerator VII for one
HD frame @125 MHz
Block size Count Accelerator V (s) Accelerator VII (s) Improvement
4x4 356820 0.454 0.114 3.98x
8x8 161880 0.315 0.088 3.57x
16x16 57690 0.233 0.080 2.92x
32x32 17600 0.198 0.080 2.45x

Total 1.2 (16.7 fps) 0.362 (55.2 fps) 3.31x

optimizations really speed up the processing of 4x4 blocks. With 32x32 blocks, the

improvement is 2.03x compared to Accelerator V. With the Accelerator VII, the

design is able to encode the QCIF video at 18.0 fps and a HD video at 0.74 fps.

The IP CTRL block takes 919 ALMs, the GET blocks 7 581 ALMs, and the SAD

PARALLEL 3 162 ALMs on Cyclone V. The combined area is 11 662 ALMs.

According to Tables 6.5 and 6.6 the average improvement from the Accelerator VI

to the Accelerator VII is 3.31x. The Accelerator VII can perform the prediction

and mode selection for HD video at 55.2 fps.

44

7. ANALYSIS

Table 7.1 summarizes the results of the accelerators. This chapter presents analyzes

of the di�erent accelerator versions and compares the time usage in the HLS design

�ow to traditional RTL �ow.

Table 7.1: Results of all development versions

Accelerator Features Board ALMs
Area %
of total

QCIF fps

I
Angular prediction
modes

Cyclone II 924 7.4 0.109

II
Angular prediction
modes with mode cost
computation

Cyclone II 1246 10.0 0.131

III

All prediction modes
with mode cost
computation and
selection

Cyclone II 2380 19.1 0.170

IV
Parallel
implementation of
Accelerator III

Arria II 10 656 22.8 0.472

V
Integrating the
Accelerator IV to
ARM

Cyclone V 8 264 19.9 16.50

VI
Multiple pixel
prediction

Cyclone V 10 815 26.1 16.77

VII
Optimized
implementation of
Accelerator VI

Cyclone V 11 662 28.1 18.03

7.1 Performance

First the Accelerator I with angular prediction modes was created. The angular

prediction is the most demanding function of Kvazaar. Before any acceleration

it takes over 39% of the overall encoding time. With Accelerator I the overall

7. Analysis 45

time consumption of intra prediction decreased from 66.24% to 43.62%. The NiosII

processor alone was able to encode the video 0.065 fps on the Cyclone II FPGA.

The Accelerator II has mode cost computation or SAD calculation added to the

Accelerator I. None of the SAD calculation function are the next most demanding

functions in terms of time usage by them selves, but combined they took 13.69%.

Adding the SAD calculation is more natural than e.g. quantization to get a more

coherent implementation. With Accelerator II the overall time consumption of intra

prediction further decreased to 32.24%.

Next the rest of the prediction algorithms, planar and DC, and mode selection

were added to the Accelerator III, creating an accelerator that is able to perform the

same function as the intra_rough_search. This meant that sort_modes function,

which used the third most overall time of the encoder, was also o�oaded to the

FPGA. With Accelerator III the overall time consumption of intra prediction further

decreased to 22.09%.

At the next phase the Accelerator III was re-implemented to work in parallel. All

the 35 prediction modes are calculated at the same time and the SAD value is also

calculated in parallel. The NiosII processor alone was able to encode the video at

0.065 fps on the Arria II FPGA.

After getting the support from Catapult-C for more FPGA chips, the Cyclone V

SoC FPGA was taken into use. This meant the integration of the Accelerator IV to

the ARM interface, which included an implementation for a DMA and a kernel driver

for the HW. With Accelerator V the overall time consumption of intra prediction

was down to 4.93%. The ARM processor alone was able to encode the video 6.52

fps on the Cyclone V SoC FPGA.

To further show the ease of using Catapult-C, the Accelerator V was further ac-

celerated. The Accelerator VI has modi�ed predicting blocks that are able to predict

two pixels at a time, supposedly halving the time used compared to Accelerator V.

After further inspection, the acceleration time did not halve as �rst thought.

More work was done to optimize the Accelerator VI. Optimizations included

receiving data from the DMAs faster, sending data to the prediction blocks faster

and sorting the SAD values faster. These improvements lowered the overhead of

data transfers and calculations compared to the prediction, more than doubling the

speed of the Accelerator VII compared to the Accelerator VI. The �nal version was

able to encode the QCIF video at 18.03 fps as seen in Table 7.1.

The Accelerator V was able to perform intra prediction and mode selection for

HD video 16.7 fps using 8 265 ALMs and the Accelerator VII was able to do the

same 55.2 fps using 11 662 ALMs. So the improvement was 3.31x but the area

increase was only 1.41x.

7. Analysis 46

7.2 Area

With all the accelerator versions, speed was the �rst main criterion before area. Area

of the accelerator was optimized at the cost of speed if the speed decrease compared

to the area saving was minimal. From Table 7.1 can be seen that the Accelerator

I takes only 7.4% of the Cyclone II, due to it being only part of the whole intra

prediction. The area percentage of the di�erent accelerators vary depending on the

di�erent sized FPGA chips.

The reason why the Accelerator VII does not use the whole capacity of the FPGA

chip is that the purpose of the �nal accelerator was to become as fast as possible, but

still have minimal area cost. The future purpose of the Accelerator VII is to become

a part of a bigger system, where rest of the area is needed for other components.

The whole area of the Cyclone V, can still be utilized by adding more instances of

Accelerator VII, or by increasing the number of pixels predicted in the prediction

blocks.

7.3 Comparison to related work

The implementation in [23], which is able to predict 17.5 Full HD frames per second

and takes 31 179 ALUTs (15 589 ALMs) or 33.3% of ArriaII. The �nal version of

the accelerator done in this Thesis can predict 24.5 Full HD frames per second

and takes 11 662 ALMs or 28.1% of Cyclone V. The 24.5 fps result for Full HD

video is gotten by scaling the result for HD video, with resolution as the factor

(55.2fps/(1920 ∗ 1080/1280 ∗ 720)). So in comparison the accelerator implemented

in this Thesis takes less area and is faster than [23]. In addition the accelerator

presented in this Thesis implements the SAD calculations, which [23] does not.

The �nal optimized version is also 2.25x faster compared to the same accelerator

presented in [22].

The 24.5 fps result was achieved with a speci�c video sequence. Depending on the

sequence the performance might vary. Because the time used for intra search varies

between LCUs and frames, the maximum number of CUs searched in a CTU for Full

HD can be calculated. A CTU has four 32x32 blocks, 16 16x16 blocks, 64 8x8 blocks

and 256 4x4 blocks, so a Full HD frame has 506 CTUs. So the maximum number of

intra predictions in a Full HD frame is (4+16+64+256)∗506∗35 = 6021400. With

the worst case scenario the presented intra prediction accelerator can predict 12.5 fps.

The sequence or testing environment for the accelerator in [23] is not known. But if

the SAD calculation is taken o� from the Accelerator VII and another accelerator is

added to work in parallel with the other one, the accelerators combined can achieve

25 fps using 17 002 ALMs or 41% of Cyclone V and thus is still faster than in [23]

and uses only slightly more ALMs. The absolute performance of the system is not

7. Analysis 47

Figure 7.1: Comparison of the time usage in the traditional RTL design �ow and
the HLS design �ow for the SAD PARALLEL block

near the performance of the accelerator, as the CPU is hindering the overall fps.

The purpose of this Thesis was to research the HLS design �ow and the scalability,

and not to get the maximum performance for the whole encoding process.

7.4 Development time

HLS and Catapult-C has an reasonable learning curve compared to traditional RTL

design. Learning an RTL language from scratch takes time and practice to perfect.

With HLS, the the language is usually not the problem, as users are already familiar

with C or C++. With HLS and Catapult-C, time is spent for learning the tool itself

and the slightly di�erent way of writing the HW oriented C-code.

The time to learn the basics of Catapult-C took 1 day with the included �nite

impulse response �lter tutorial. Using the H.263 proof of concept done in this Thesis

as a reference, a �rst HLS implementation with some complexity, took one month.

After some experience with Catapult-C, re-design with similar complexity is esti-

mated to take less than a week. Most of the time used in the �rst implementation

was learning the tool �ow following the RTL generation.

Figure 7.1 presents the time used in the SAD PARALLEL block in Accelerator

VII. The �gure compares the estimated traditional RTL times to the times it took

in HLS. The time used for the speci�cation and the execution model based on the C-

7. Analysis 48

source code takes more time with the HLS design �ow than with the traditional RTL.

This is because the execution model in HLS is written more precisely and optimized

for RTL generation. The di�erence between the two �ows should still not be too

signi�cant, if both of the executable models have the same overall functionality.

The time used in testing the executable models is the same. The testbenches should

not di�er too much. The major di�erence in time usage comes after the behavioral

testing. Using the SAD PARALLEL block as an example, it takes 10 minutes

to generate the RTL code for it. The time for manually writing the RTL code is

estimated to take 7 days. HLS also saves time in the RTL veri�cation, because

the behavioral testbench is re-used in the RTL veri�cation. With traditional RTL

the testbench is usually done in the same language as the implementation, or for

example in SystemVerilog, nevertheless, the testbench is re-written for the RTL. In

HLS, the RTL veri�cation usually passes with the �rst try, if the behavioral testing

has passed. For example, errors that might happen in the HLS veri�cation are due

to the use of bit accurate types, but these are rare and easy to �x. With traditional

RTL, both the implementation and the testbench can have several errors making

the veri�cation cumbersome.

To summarize, HLS was proofed to decrease the accelerator design and imple-

mentation time signi�cantly compared to traditional RTL. As a rule of thumb, one

month in RTL is decreased to one week in HLS.

49

8. CONCLUSION

The main goal of this Thesis was to use Catapult-C HLS tool for creating an HEVC

intra prediction accelerator for an FPGA faster than could be done with traditional

RTL coding. The accelerator was synthesized for an FPGA and run in real-time on

an FPGA development board. Several boards were used during the Thesis, as the

size of the accelerator grew during the process. The �nal FPGA board used was a

Cyclone V SoC FPGA with a dual-core ARM processor integrated to the FPGA.

The power and the ease of HLS was exploited in this Thesis. A simple accelerator

was created at �rst to get familiar with the Kvazaar and Catapult-C, after which

more features were gradually added to the accelerator. The features of a new devel-

opment version were selected after pro�ling Kvazaar with the previous development

version.

The goal of using HLS to create RTL for an FPGA was achieved and the end

results were relatively good. The resulting intra prediction accelerator for Kvazaar

HEVC intra encoder achieved better results compared to the related work.

As future work, the Accelerator VII can still be further accelerated ,e.g. for

4k video resolution, by increasing the data width of receiving and sending of the

reference pixels, and by predicting even more pixels at a time. Other work focusing

on increasing the performance, would need o�oading more functions to the FPGA,

e.g. reconstruction functions dct, inverse dct, quantization and dequantization. The

best results would be achieved by implementing the entire CTU search on the FPGA

leaving only the �le IO, data control and entropy encoding to the CPU.

50

REFERENCES

[1] J. Vanne, M. Viitanen, T.D. Hämäläinen, and A. Hallapuro, �Comparative

rate-distortion-complexity analysis of hevc and avc video codecs,� Circuits and

Systems for Video Technology, IEEE Transactions on, vol. 22, pp. 1885�1898,

Dec 2012.

[2] V. Sze, M. Budagavi, and G. J. Sullivan, High E�ciency Video Coding (HEVC).

Springer, 2014.

[3] x265, �x265.� http://x265.org/, 2015. [WWW], Accessed 04.09.2015.

[4] Ultra Video Group, �Kvazaar HEVC Encoder.� https://github.com/

ultravideo/kvazaar, 2015. [WWW], Accessed 08.06.2015.

[5] f265, �f265.� http://f265.org/, 2015. [WWW], Accessed 04.09.2015.

[6] M. Fingero�, High-Level Synthesis Blue Book. xlibris corporation, 2010.

[7] Calypto, �Catapult: Product Family Overview.� http://calypto.com/en/

products/catapult/overview/, 2015. [WWW], Accessed 03.06.2015.

[8] Cadence, �Cynthesizer Solution.� http://www.cadence.com/products/sd/

cynthesizer/pages/default.aspx?CMP=MOSS1/, 2015. [WWW], Accessed

07.09.2015.

[9] Cadence, �C-to-Silicon Compiler.� http://www.cadence.com/products/

sd/silicon_compiler/pages/default.aspx, 2015. [WWW], Accessed

07.09.2015.

[10] Xilinx, �Vivado High-Level Synthesis.� http://www.xilinx.com/products/

design-tools/vivado/integration/esl-design.html, 2015. [WWW], Ac-

cessed 07.09.2015.

[11] Synopsys, �Synphony C Compiler.� http://www.synopsys.com/Tools/

Implementation/RTLSynthesis/Pages/SynphonyC-Compiler.aspx, 2015.

[WWW], Accessed 07.09.2015.

[12] M. Graphics, �ModelSim.� https://www.mentor.com/products/fpga/

model/, 2015. [WWW], Accessed 19.10.2015.

[13] M. Graphics, �Precision RTL.� https://www.mentor.com/products/fpga/

synthesis/precision_rtl_plus/, 2015. [WWW], Accessed 19.10.2015.

REFERENCES 51

[14] Xilinx, �What is an FPGA?.� http://www.xilinx.com/training/fpga/

fpga-field-programmable-gate-array.htm, 2015. [WWW], Accessed

03.06.2015.

[15] Altera, �DE2 Development and Education Board.� http://wl.altera.

com/education/univ/materials/boards/de2/unv-de2-board.html, 2015.

[WWW], Accessed 03.06.2015.

[16] Altera, �Arria II GX FPGA Development Kit.� https://www.altera.

com/products/boards_and_kits/dev-kits/altera/kit-aiigx-pcie.html,

2015. [WWW], Accessed 03.06.2015.

[17] Terasic, �VEEK-MT-C5SoC.� http://www.terasic.com.tw/cgi-bin/page/

archive.pl?Language=English&No=828, 2015. [WWW], Accessed 03.06.2015.

[18] ARM, �ARM.� http://www.arm.com/, 2015. [WWW], Accessed 04.09.2015.

[19] Altera, �Cyclone V Device Handbook.� https://www.altera.com/

content/dam/altera-www/global/en_US/pdfs/literature/hb/cyclone-v/

cyclone5_handbook.pdf, 2015. [WWW], Accessed 15.06.2015.

[20] Altera, �Altera SoCs.� https://www.altera.com/products/soc/overview.

html, 2015. [WWW], Accessed 12.06.2015.

[21] A. Chabouk Jokhadar and C. Gomez Gonzalez, �High level synthesis for design

of video processing blocks,� 2015. MSc Thesis.

[22] P. Sjövall, J. Virtanen, J. Vanne, and T. D. Hämäläinen, �High level synthesis

design �ow for hevc intra encoder on soc-fpga,� in Euromicro Conference on

Digital System Design (DSD), 2015, Aug 2015.

[23] A. Abramowski and G. Pastuszak, �A double-path intra prediction architecture

for the hardware h.265/hevc encoder,� in Design and Diagnostics of Electronic

Circuits Systems, 17th International Symposium on, pp. 27�32, April 2014.

[24] K. Miyazawa, H. Sakate, S.-I. Sekiguchi, N. Motoyama, Y. Sugito, K. Iguchi,

A. Ichigaya, and S.-I. Sakaida, �Real-time hardware implementation of hevc

video encoder for 1080p hd video,� in Picture Coding Symposium (PCS), 2013,

pp. 225�228, Dec 2013.

[25] S. Kim, H. Kim, T. Chung, and J.-G. Kim, �Design of h.264 video encoder with

c to rtl design tool,� in SoC Design Conference (ISOCC), 2012 International,

pp. 171�174, Nov 2012.

REFERENCES 52

[26] T. Damak, I. Werda, N. Masmoudi, and S. Bilavarn, �Fast prototyping h.264

deblocking �lter using esl tools,� in Systems, Signals and Devices (SSD), 2011

8th International Multi-Conference on, pp. 1�4, March 2011.

[27] Altera, �Nios II Processor.� https://www.altera.com/products/

processors/overview.html, 2015. [WWW], Accessed 16.06.2015.

[28] Altera, �Quartus II software.� https://www.altera.com/products/

design-software/fpga-design/quartus-ii/overview.html, 2015.

[WWW], Accessed 19.10.2015.

[29] Xiph, �Xiph.org Video Test Media.� https://media.xiph.org/video/derf/,

2015. [WWW], Accessed 24.11.2015.

[30] J. Fenlason, �GNU gprof manual.� https://sourceware.org/binutils/

docs/gprof/, 2008. [WWW], Accessed 14.08.2015.

[31] J. Fonseca, �Gprof2dot.� https://github.com/jrfonseca/gprof2dot, 2015.

[WWW], Accessed 17.08.2015.

[32] F. Bossen, �Common Test Conditions and Software Reference Con�gurations.�

document JCTVC-H1100, JCT-VC, San Jose, CA, Feb. 2012.

