
MIKKO TEUHO
DESIGN LEVEL PARAMETERIZATION IN KACTUS2

Master of Science thesis

Examiner:Prof. Timo D. Hämäläinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineer-
ing on September 9th 2015

i

ABSTRACT

Mikko Teuho: Design level parameterization in Kactus2
Tampere University of technology
Master of Science Thesis, 56 pages
November 2015
Master’s Degree Programme in Information Technology
Major: Pervasive Systems
Examiner: Professor Timo D. Hämäläinen

Keywords: Kactus2, electronic design automation, embedded systems, system-
on-chip, IP-XACT

Embedded systems are growing larger and more complex. Even now, current system
designs can contain hundreds of Intellectual Property (IP) components. To keep up with
productivity, the reusability of the IP components must be improved. This is the scope
of IEEE standard IP-XACT.

This thesis is based on Kactus2, an open source IP-XACT tool developed at Tampere
University of Technology. Kactus2 provides a graphical user interface for System-on-
Chip and embedded system IP packing, design capture and VHDL/Verilog code genera-
tion.

This thesis describes the development and implementation of version 2.8 of Kactus2.
The requirements and solutions are presented in detail for each of the new features and
improvements implemented in version 2.8. Alternative solutions are presented, and the
selected alternatives are justified. Possible future implementations are also given.

In version 2.8, the parameter usage of IP components is improved through the use of
universally unique IDs (UUID), which requires many changes e.g. to the IP-XACT
Component editors. New features include parameter importing, design level configura-
tion through parameters and a parameter propagation mechanism. Remapping IP-XACT
Memory Maps through the use of Remap States and memory Remap Elements has also
been added. To facilitate the storing of hierarchical IP components, a new save action
has been added to the Kactus2 toolbar.

Version 2.8 of Kactus2 was released according to its schedule. The development of the
version is considered a success, as it improves the design level parameterization in
Kactus2 while incorporating additional new features. Within a month of its release,
Kactus2 version 2.8 has been downloaded over 200 times, and its benefits over the pre-
vious version are confirmed by industrial System-on-Chip developers.

ii

TIIVISTELMÄ

Mikko Teuho: Suunnittelutason parametrisointi Kactus2:ssa.
Tampereen teknillinen yliopisto
Diplomityö, 56 sivua
Marraskuu 2015
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma
Pääaine: Ohjelmistotuotanto
Tarkastaja: professori Timo D. Hämäläinen

Avainsanat: Kactus2, elektroniikan suunnitteluautomaatio, sulautetut järjestel-
mät, system-on-chip, IP-XACT

Sulautetut järjestelmät kehittyvät koko ajan suuremmiksi ja monimutkaisemmiksi. Ny-
kyiset järjestelmät voivat sisältää satoja IP-lohkoja (Intellectual Property). Tuottavuu-
den ylläpitämiseksi tarvitaan parannuksia IP komponenttien uudelleenkäyttöön. Tähän
on tarkoitettu IEEE:n standardi IP-XACT.

Tämä työ perustuu TTY:n kehittämään Kactus2 IP-XACT-työkaluun. Kactus2 tarjoaa
graafisen käyttöliittymän järjestelmämikropiirien(SoC) IP-lohkojen paketointiin, integ-
rointiin, konfigurointiin ja VHDL/Verilog-koodin tuottamiseen.

Tässä työssä kuvataan Kactus2:n version 2.8 kehitys ja toteutus. Versioon kuuluvat vaa-
timukset ja näiden ratkaisut kuvataan yksityiskohtaisesti jokaisen ominaisuuden osalta.
Toteutetut ominaisuudet selostetaan ja mahdolliset vaihtoehtoiset ratkaisut esitellään.
Lisäksi annetaan esimerkkejä mahdollisista parannuksista Kactus2:n ominaisuuksiin
tulevaisuudessa.

Uusien ominaisuuksien joukossa Kactus2:n versiossa 2.8 on parametrien uudelleenkäy-
tön parantaminen. Tähän kuuluvat parametrien tuominen tiedostoista, sekä suunnittelu-
tason komponenttien muokkaaminen. Myös muistikarttojen uudelleenkartoitus on toteu-
tettu standardin mukaisilla uudelleenkartoitustiloilla. Hierarkkisten komponenttien tal-
lentaminen on helpotettu lisäämällä mahdollisuus tallentaa koko hierarkkinen järjestel-
mä yhdellä toiminnolla.

Versio 2.8 julkaistiin aikataulunsa mukaisesti ja sen kehitystä pidetään erittäin onnistu-
neena. Tämä versio parantaa suunnittelutason parametrisointia Kactus2:ssa, sekä lisää
muita uusia ominaisuuksia. Kactus2:n versiota 2.8 on ladattu yli 200 kertaa kuukauden
sisällä julkaisusta, ja sen hyödyt verrattuna vanhaan versioon on varmistettu teollisuu-
den ammattisuunnittelijoiden palautteella.

iii

PREFACE

No thesis can be written alone. There are some exceptions to this, but since this is not
the case here, I would like to express my gratitude to the people who have helped make
this happen.

I would like to thank the entire department of Pervasive Computing in Tampere Univer-
sity of Technology for the friendly working atmosphere. Esko Pekkarinen for helping
me understand Kactus2. Panu Sjövall for help with the generators of Kactus2. Timo D.
Hämäläinen for offering me the opportunity to work on this project.

And the folks at home: my sister for graduating before me and showing how it can be
done, my brothers for helping me carry on despite everything, and my parents for en-
couraging me onwards.

Tampere, 13.11.2015

Mikko Teuho

iv

CONTENTS

1. INTRODUCTION .. 1
2. KACTUS2 .. 3

2.1 Design principles .. 3
2.1.1 Tools related to Kactus2 .. 4

2.2 User interface ... 7
2.2.1 Tools of Kactus2 ... 10

2.3 Component editor ... 11
2.3.1 Memory maps editor ... 12
2.3.2 Views editor .. 13

2.4 Design editor .. 14
2.5 Generators .. 16

2.5.1 Kactus2 generators .. 16
2.5.2 Plugin generators .. 17
2.5.3 Source analyzers ... 18
2.5.4 Import Plugins .. 19

2.6 Summary .. 20
3. DEVELOPMENT ENVIRONMENT .. 21

3.1 Microsoft Visual Studio 2010 ... 21
3.1.1 Visual Assist ... 22

3.2 Qt 5.2.0 ... 22
3.2.1 Model / View / Delegate ... 22
3.2.2 Signals and Slots ... 23
3.2.3 Creating a tree model with Qt.. 23

3.3 Redmine ... 24
3.4 Source forge ... 25

4. REQUIREMENTS .. 26
4.1 Feature #9: Memory map editor should show the edited item 26
4.2 Bug #121: Show errors is not visible for all library items 26
4.3 Feature #171: parameter usage .. 27

4.3.1 Feature #177: Design level configuration 27
4.4 Feature #180: Signal based configuration .. 28

4.4.1 Feature #192: RemapStates and memoryRemap 28
4.4.2 Feature # 193: Tabs for memory remaps 30

4.5 Feature #206: Scrollable ribbon .. 30
4.6 Feature #214: Support parameter IDs in Verilog generation 31
4.7 Feature #216: Support parameter IDs in HTML document generation 31
4.8 Feature #217: Support parameter IDs in generated header files 31
4.9 Feature #221: Add a vendor extension for Kactus2 version 32
4.10 Feature #222: Locked column in parameter editor 32

v

4.11 Feature #236: Group configurable element values 32
4.12 Feature #237: Product level view configuration tool 33

5. IMPLEMENTATION ... 34
5.1 Memory map editor should show the edited item 34
5.2 Errors are not visible for all library items .. 35
5.3 Parameter usage .. 36

5.3.1 Design level configuration .. 38
5.4 Memory remap and remap states ... 39
5.5 Scrollable ribbon .. 41
5.6 Parameter ID support .. 42

5.6.1 Verilog Generator ... 43
5.6.2 HTML Document Generator ... 43
5.6.3 Memory map Header Generator .. 44

5.7 Locked column in parameter editor ... 44
5.8 Product level view configuration tool .. 46

6. ANALYSIS... 49
7. KACTUS2 VERSION 2.8 VERIFICATION ... 52

7.1 Expressions in Kactus2 ... 52
7.2 Unresolved issues ... 53

8. CONCLUSIONS ... 56
REFERENCES ... 57

vi

LIST OF FIGURES

Figure 2.1 The user interface of Kactus2... 7
Figure 2.2 The different versions of the IP-XACT library tree. The left figure

displays a VLNV tree, while the right displays a hierarchical tree. 8
Figure 2.3 Basic view of the Kactus2 toolbar. ... 10
Figure 2.4 Component editor. ... 12
Figure 2.5 Design editor. .. 15
Figure 2.6 Source analyzers in Kactus2 fileSets editor. ... 19
Figure 3.1 The tree model structure in Qt [33]. ... 24
Figure 4.1 Configurable elements editor. .. 28
Figure 4.2 IP-XACT memory remap schema [4]. .. 29
Figure 4.3 IP-XACT remap state schema [4]. ... 29
Figure 4.4 Toolbar of Kactus2 version 2.6. ... 30
Figure 5.1 Memory map editor.. 34
Figure 5.2 Component with errors in the Kactus2 library view. 35
Figure 5.3 The expression selection.[39] .. 37
Figure 5.4 The improved configurable element editor. .. 38
Figure 5.5 The combined editor for memory maps and memory remaps. 39
Figure 5.6 Remap state editor. .. 40
Figure 5.7 Scrollable toolbar. ... 41
Figure 5.8 Class diagram of the ParameterFinders used in ExpressionFormatter. 42
Figure 5.9 Table view with a locked column.. 45
Figure 5.10 Alternative locked column. ... 45
Figure 5.11 Another alternative locked column. .. 46
Figure 5.12 View Configuration Tool. ... 47
Figure 6.1 Kactus2 Gantt chart for version 2.7.x [38]. .. 50
Figure 6.2 Kactus2 Gantt chart for version 2.8 [38]. .. 51
Figure 7.1 The parameter reference tree. .. 53
Figure 7.2 A suggestion for memory remap visualization. ... 54

vii

LIST OF TABLES

Table 2.1 Source analyzers of Kactus2. ... 18
Table 2.2 Import plugins of Kactus2.. 19
Table 6.1 Estimated time spent for each issue. .. 49

viii

LIST OF SYMBOLS AND ABBREVIATIONS

AUB Address Unit Bits
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
COM Communication
ESL Electronic System Level
FPGA Field-Programmable Gate Array
HDL Hardware Description Language
HTML Hypertext Markup Language
HW Hardware
IP Intellectual Property
IP-XACT A standardized XML-format for defining IP
MCAPI Multicore Communications API
RTL Register-transfer level
SoC System-on-a-Chip
SW Software
VHDL Very High Speed Integrated Circuit HDL
VLNV Vendor Library Name Version
XML Extensible Markup Language

1

1. INTRODUCTION

This thesis is based on Kactus2, an open source tool for embedded system and system-
on-a-chip (SoC) design using IP-XACT metadata. Kactus2 is being developed by Tam-
pere University of Technology.

An embedded system describes a system consisting of a hardware (HW) platform and
the software within it. The platform is constructed using reusable intellectual property
(IP) blocks. A SoC is a circuit consisting of multiple IP components in a single chip [1].
The software component is executed on one or more programmable cores of the system.
A HW platform may contain different implementations, and the implementation may be
ported on several platforms.

Digital systems are growing larger and more complicated, with current SoC designs
containing hundreds of IP blocks [2]. This results in huge stacks of layers and applica-
tion programming interfaces (APIs) with a multitude of programs and libraries. Kactus2
was developed to make designing SoCs and embedded systems easier.

Kactus2 is a graphical user interface tool designed to help with the management and
integration of reusable IP blocks built with the IP-XACT metadata, as well as to help
with the system design flow through an easy to use interface, memory visualization and
a hidden IP-XACT structure. The developed version 2.8 of Kactus2 contains features
belonging to the design level parameterization of component instances.

IP-XACT is an extensible markup language (XML)-format used for unified specifica-
tion of electronic design automation, semiconductor, electronic design intellectual prop-
erty and system design communities [3] [4]. Through the use of IP-XACT metadata, IP
components can be packaged and reused regardless of the tool, implementation or ven-
dor used for creating the IP-component. IP-XACT was developed for both IP exchange
and SoC configuration [5].

The purpose of this work is to develop version 2.8 of Kactus2 and extend its capabilities
as a tool for SoC and embedded system design by developing design level parameteriza-
tion. Solutions to the encountered issues are explained together with any discovered
optional solutions.

This thesis is organized in a way to allow consistent flow of information from one area
of interest to the next. The first chapter gives a brief introduction to this thesis. Chapter
two presents the Kactus2 application through explaining the different editors, tools and
generators available within Kactus2. Additionally, this chapter gives a comparison of

2

other tools that have been developed regarding SoC and embedded system design.
Chapter three features information regarding the development environment of Kactus2,
and the various tools in managing the development process. Chapter four gathers re-
quirements of version 2.8 of Kactus2. The covered issues are extracted from the
Redmine issue control system of the Kactus2 project, and have a feature number associ-
ated with each feature to help with the identification of the different issues. Chapter five
describes the implementation of the features given in chapter 4. The implementation
includes alternative solutions and information regarding any difficulties faced during
development. Chapter six recounts the implemented features as well as evaluates the
amount of work done. Chapter seven gives an evaluation of version 2.8. Chapter eight
contains the conclusions made from the development, and ends with an analysis of the
future development of Kactus2.

3

2. KACTUS2

This chapter introduces Kactus2, an open source tool for SoC and embedded system
design [6] [7]. Kactus2 guides the user in creating IP-components and designs through a
graphical user interface, using the IP-XACT standard for easier reuse of IP components.
While the development of Kactus2 is still ongoing, this work concentrates on the devel-
opment of version 2.8.

2.1 Design principles

IP components or cores are reusable logical building blocks for SoCs [1]. Cores come in
three forms: hard, firm and soft cores. Hard cores are encrypted simulation models with
a provided high performance mode, such as microprocessors or phase-locked loops.
Firm cores are provided with a logic synthesis and technology mapping, but without
layout information. Soft cores require the user to implement the synthesis and layout
information.

SoC is an integrated circuit consisting of reusable IP-components of a board in a single
chip [1], typically applied in embedded systems. In SoCs, a large design can be split
into multiple smaller portions. This creates subsystems of the design, where each sub-
system has fewer components to test. Thus the testing and verification of the instantiat-
ed chip are made more manageable [8].

Platform-based SoCs have been set up as the engines for embedded systems. However,
current SoC designs may incorporate hundreds of IP blocks. In an ideal case, a high-
enough description of the required application functionality and available execution
platforms exists for the design. Using this kind of model-based design, the implementa-
tions could be automated for the SOC, and both the applications and platforms could be
made reusable. However, according to Kamppi et al. [2], this introduces the following
obstacles to the model-based design:

· There are too many paradigms and domain-specific models within the design.
· Modelling the design is a separate side-task not fitting to the whole flow.
· The amount of legacy code base and the different versions and variants are not

adequately accounted.
· Automation for one-way use from top to bottom works only in ideal settings us-

ing limited use cases.
· The high abstraction makes the creation and comparison of visual models diffi-

cult.

4

Kactus2 is based on the IEEE 1685/ IP-XACT standard, which provides a framework
for enabling both integration of hardware components and maintaining the relevant de-
sign information of a product [5]. The main concepts for the design of Kactus2 are the
utilization of standards, a small learning curve for new users and the effortless incorpo-
ration of legacy IP components [2]. To accommodate the IP components, an IP-XACT
library is supported. The library can be imported from other vendors, checked for integ-
rity and exported from Kactus2.

Kactus2 combines a component editor, a component integration designer and source
code generators [8]. Through extending the IP-XACT standard, Kactus2 supports soft-
ware, software to hardware mappings and application communication abstraction using
e.g. multicore communications API (MCAPI). With the standard IP-XACT metadata
and Kactus2 extensions, porting applications between hardware (HW) and software
(SW) or between platforms becomes simpler. [2]

With the help of the library, Kactus2 can create system designs for mapping HW and
SW components. The designs can further be configured to increase the reusability of the
IPs. Design synthesis and simulation scripts can be created in generators contained
within Kactus2. The generators create code templates, including Very High Speed Inte-
grated Circuit Hardware Description Language (VHDL) entities, ports and C headers
for new IP-components. Additionally, Kactus2 can integrate additional, user created
generators as plugins.

2.1.1 Tools related to Kactus2

System design tools can be placed in two different categories [8]: system composing
tools for higher abstraction level models, and tools that manage IP-blocks and incorpo-
rate them into larger entities. Kactus2 belongs to the second group. Some of these tools
allow only file management of the associated system.

Mentor Graphics offers the Hardware Description Language (HDL) Designer as a tool
for Verilog and VHDL design environment, supporting IP-XACT standard [9]. The
HDL Designer contains graphical user interfaces for instantiating and connecting IP-
blocks, along with tools for design analyzation, creation and management. For example,
Lockheed Martin Space Systems utilizes the HDL Designer in solving verification chal-
lenges in space-based Field-Programmable Gate Arrays (FPGAs) [10].

M-Files provides a tool for information storage and management [11]. It takes care of
the documents, making sure everything is up to date and in the correct place. Through a
check-in and check-out system, the editor of the files can be tracked. M-Files supports
locking and sharing of documents. However, other tools are needed to edit the docu-
ments contained within the M-Files.

5

Scineric Workspace, developed by The Council for Scientific and Industrial Research in
South Africa (CSIR), is a tool for FPGA design management [12]. Scineric Workspace
is a file manager tool for importing and exporting many design formats using a custom-
ized SVN and Git version control. The tool contains build management capabilities for
Xilinx, Altera and Plunify environments. Scineric Workspace manages the designs as
components using IP-XACT standard.

Abdi et al. suggest Embedded System Environment (ESE), a model-based design meth-
od toolset for multi-processor embedded systems [13]. ESE generates Transaction Level
Models (TLM) from the visualized platform and the code of an application. The TLMs
can be used for SW development or for estimating system performance, thus iteratively
refining the system definition. ESE provides an automatic synthesis from the TLM, the
required software and hardware. With these, a cycle-accurate model is made. This Cycle
Accurate Model can be given to an FPGA or an Application-Specific Integrated Circuit
(ASIC) design tool.

Magillem provides a commercial IP-XACT based toolset for hardware design, embed-
ded software and documentation [14]. These tools provide register managing for SoC
solutions with an integrated design environment for platform assembly and configura-
tion in implementing IP-based systems.

Socrates Design Environment developed by ARM provides a commercial IP-XACT
design environment for IP configuration and integration [15]. Socrates Design Envi-
ronment configures and integrates IP of IEEE1685-2009 standard with ARM IP to cre-
ate a SoC. IP definition, IP packaging, configurability, connectivity and registers are
taken into account.

Xilinx has developed the commercial Vivado Design Suite as a SoC-strength, IP- and
system centric development environment for system-level integration and implementa-
tion [16]. This Design Suite provides acceleration to design, integration, verification
and implementation processes of systems. The Design Suite achieves these through the
use of software-programmable ARM processing systems, programmable Analog Mixed
Signal subsystems and an expanding range of IP cores. Additionally, Vivado Design
Suite uses place-and-route algorithms to increase the efficiency of integrated circuit
design interconnections. Xilinx uses IP-XACT as the IP format.

Nivalis Solutions provides IP-XACT based tools for managing IP design using a cloud
service [17]. Nivalis’ IP Packager is a web application for IP content built on an extend-
ed IP-XACT standard. The Design Assembly combines HW assembly and SW address-
ing operations and creates a schematic view of a design provided by the assembled IPs.

EDAUtils provides a free IP-XACT design environment for constructing and integrat-
ing IP-components [18]. EDAUtils provides a graphical user interface for building IP-
XACT components from ports and parameters of a register-transfer level (RTL). The

6

tool allows importing component definitions from VHDL and Verilog source files, of-
fers IP-XACT validators and an equivalence checker for two component XML-files.

Nikolov et al. has introduced Daedalus, a system design flow for designing multiproces-
sor SoC (MP-SoC) based embedded systems [19]. Daedalus uses an integrated and
highly automated environment for system design. Daedalus thus provides an open
source integrated toolset for design space exploration, system-level synthesis, applica-
tion mapping and prototyping of MP-SoCs.

Balarin et al. has designed Metropolis [20], a design environment for integrated elec-
tronic systems. The goal for Metropolis is to create a unified framework for system-
level design chain. Metropolis provides an environment for complex electronic-system
design supporting simulation, analysis and synthesis.

SystemCoDesigner, developed by Haubelt et al. [21], is an electronic system-level tool
for design space exploration and prototyping of SystemC models on an FPGA basis.
SystemCoDesigner helps in the early stages of design by closing the gap between elec-
tronic system level (ESL) and RTL.

Eker et al. have presented the Ptolemy approach [22]. The Ptolemy II introduces a mod-
el structure and semantic framework to support a hierarchical heterogeneity modelling
environment using domain polymorphism. The Ptolemy II software environment intro-
duces support for combining a variety of computation models hierarchically.

Synopsys has developed CoreBuilder [23], a tool for creating IP-XACT metadata and
incorporating the reuse of IP-components. CoreBuilder captures the detailed infor-
mation of an IP core and the design. The core is packaged into a coreKit with its associ-
ated design files e.g. verification and documentation files.

Microsoft Excel [24] can be used as an improvised tool for listing parameters, registers
or other IP component elements. These can be used in to form referencing expressions.
The expression editor of Kactus2 has incorporated similar features existing in Excel,
such as defining complex equations, or selecting a reference suitable to the currently
written input. Additionally, the idea of locked columns in a table editor of Kactus2 is
originally a feature in Excel. The implementation of this feature can be found in section
5.7.

IP-XACT based tools usually extend the basic IP-XACT standard through vendor ex-
tensions. As an example, Xilinx Vivado has approximately 100-200 extensions. Extend-
ing the IP-XACT has a potential to result in vendor locking or unable to incorporate IP
components created on another system. The IP-XACT standard is still valid in the cor-
responding applications, but the extensions in them are not usable by other tools.

7

Compared to the tools listed here, Kactus2 offers an IP-XACT based open source solu-
tion, combining both design management and a component editor. One or the other is
missing in some of the related tools. Kactus2 provides access to the management and
creation of the IP-components that is lacking in all tools focused on file management.

2.2 User interface

The main user interface of Kactus2 is presented in Figure 2.1. The interface consists of
multiple views, with each view showing information regarding the currently active li-
braries and documents. The views can be repositioned, resized and closed to allow the
user to customize the interface. Closed views can be reopened through the view tools in
the toolbar. This gives freedom and control to the user, increasing the user friendliness
of the application [25].

Using the default settings, the toolbar of Kactus2 is located in the top section of the in-
terface, while the IP-XACT library is situated in the left side, along with the component
preview window. The output and context help windows are located at the bottom sec-
tion of the interface. The area reserved for the currently open document is located at the
center of the interface. The document area contains all the views and editors related to
the open document.

Figure 2.1 The user interface of Kactus2.

8

The contents of the document area depend on the selected library element. The open
document shows a component editor for components. This editor allows the user to
manage the data contained within the selected IP-XACT component. The type of the
component determines the actual component editor used. This is further described in
section 2.3. If the selected library element is an HW, SW or system design, the view
displays the design editor. Design editors are used to manage component designs and
hierarchies. This editor is further explained in section 2.4.

The IP-XACT library is located on the left side of the user interface. The contents of the
library are searched from the user set active library locations. The given paths and their
subdirectories are analyzed for documents containing IP-XACT related tags in files with
an XML suffix. Kactus2 then analyzes the dependencies between the collected compo-
nents [7]. The IP-components are organized in the library according to their vendor,
library, name and version (VLNV), a unique version identifier group used to define a
reference of or from an IP-XACT object [3].

The IP-XACT library has two different view styles. The VLNV tree view is displayed
on the left side of Figure 2.2. This tree is constructed using the VLNVs of the IP-XACT
objects found in the library paths, forming a four level deep tree structure.

Figure 2.2 The different versions of the IP-XACT library tree. The left figure displays a
VLNV tree, while the right displays a hierarchical tree.

9

The other view, displayed on the right side in the Figure 2.2 is the hierarchical tree
view. This view displays dependencies between the different objects [26]. Each hierar-
chical component contains the designs referenced by its hierarchical views and the
component instances contained within the design. Additionally, the hierarchical tree
informs the amount of instances made from the same components. An example of this is
displayed in the instances belonging to the design TUT:ip.hwp.accelerator hi-
bi_dct.design:1.0 in Figure 2.2.

The library can be filtered according to type of item, implementation type of compo-
nent, product hierarchy and firmness. In addition, the library can be searched for a spe-
cific set of VLNV values. The components containing errors are displayed in red and
the user can examine the errors through a context menu associated with the library.

The items in the library are shown as a tree model. A tree model helps to identify the
relative positions of the components. In the hierarchical view, the tree model helps to
describe the components that are connected to other components, such as bus abstrac-
tion definitions being a part of bus definitions and component instances belonging to a
component design.

A component preview window shows the preview image of the selected component.
This image is the basic, unaltered form that is used when a component is instantiated in
a design. The preview image displays the name of the component, an icon displaying
whether it is a hierarchical component or not and all the interfaces contained within it,
distinguishing the slave and master interfaces.

The output window prints text related to the user operations. This helps in identifying
possible errors within the currently selected component or design. Information on the
running tasks, such as generator procedures and library integrity checking is also shown
here. Notification messages are displayed in blue while warning messages are displayed
in red.

To fully customize the user interface of Kactus2, the concept of workspaces was added.
These allow the user to create task specific configurations to the user interface, which
can be stored in the Kactus2 settings file. The workspaces include information of the
size and position of the main window of Kactus2, the currently open views and the con-
figurations given to Kactus2. The user can freely switch between the different work-
spaces through the Kactus2 workspace tools. The user may also delete obsolete work-
spaces, with the exception of the default and the currently active workspaces.

Kactus2 aims to be as user friendly as possible. Context sensitive help files are used to
guide the user in operating the currently active document or editor. Awkward IP-XACT
terms are hidden and information is displayed with tooltips and highlights to ensure that
important data is always available. In a component editor, each editor has its own help

10

file. This file is shown when an editor is selected. In a design editor, selecting a design
item, such as a component instance or an interconnection, opens a help file related to it.

2.2.1 Tools of Kactus2

The available tools in Kactus2 are located in the top part of the user interface. Figure 2.3
displays the available toolbar. The toolbar is divided into tool specific category groups.
The tools are context sensitive, being disabled and hidden when the user cannot use
them. If there is not enough space to display the whole toolbar, two buttons are enabled
to scroll the toolbar left and right. The scrolling can also be done by using the mouse
wheel. For the implementation of the toolbar, see section 5.5. Figure 2.3 does not dis-
play the generator, diagram, configuration or protection tool groups.

Figure 2.3 Basic view of the Kactus2 toolbar.

The file group contains actions related to the creation and saving of VLNV items. New
VLNV items can be created as components, designs, systems, buses, communication
(COM) definitions or API definitions. In addition to regular saving features, Kactus2
provides an option for hierarchically saving a design. This allows the saving of the open
document and the underlying hierarchy into a location determined by the user.

The library group includes tools related to the IP-XACT library. The group offers tools
for defining the library folders used in Kactus2, as well as checking the integrity of the
libraries. The paths are set through selecting folders in the library configuration tool.
The selected folders and the contained sub-folders are then searched for xml-files con-
taining IP-XACT components. The library paths can also be re-searched for xml-files
containing any components.

The generator tools are located in the generation group. The generator group is not visi-
ble in Figure 2.3 because the user cannot generate any files when no component has
been selected. The contents of this selected component or design determine what gener-
ators are currently usable. Kactus2 contains two types of generators: built-in Kactus2
generators and separate plugin generators. Kactus2 generators are useful for every user,
while plugin generators provide additional generators, which can be disabled and ena-
bled depending on the requirements of the user.

The diagram tools are part of the design editor. For more information on design editor,
see section 2.4. These tools are used for defining and expanding the design diagram.
New draft components and interfaces can be created for the top component and inter-
connections between interfaces can be formed.

11

The configuration tools group provides tools for managing the currently selected com-
ponent or design. In Kactus2 version 2.8, the view configuration tool is the only availa-
ble configuration tool. It allows the configuration of the views used by the generators
through selecting a different set of active views from the currently selected ones. The
generators automatically use a contained view configuration instead of the currently
selected one.

The workspace tool allows creation of new workspaces, changing the current workspace
and deleting a workspace. Kactus2 contains two workspaces, default and design. Work-
spaces are used to define a working environment. When a workspace is changed or
Kactus2 is shut down, the state of the active workspace will be stored in the settings file
of Kactus2.

The actions of the protection group are related to the status of Kactus2, defining wheth-
er the user can make modifications to the currently open document or not. The editor
locking is used to prevent user errors which, according to Nielsen, contribute to the usa-
bility of the application [25]. The protection status of the currently open document is
visible in the protection tool’s icon. A red, closed lock depicts a locked document while
a green open lock depicts a document available for modifying.

The system group contains tools for the Kactus2 as a system. The actions within this
group allow the changing of the overall settings of Kactus2 and accessing the Kactus2
help files. An exit button is included for a safe shutdown of the application.

2.3 Component editor

The component editor allows the editing of a selected IP-XACT component. A view of
the memory maps editor contained within the component editor is displayed in Figure
2.4. The editable sections of the component depend on the component editor visibility
settings. When the component editor is opened, general information along with a pre-
view image of the component is shown to the user and the context help window displays
the help file related to the currently open editor.

The component editor consists of two main views, the component editor tree and the
editor view. The former shows the currently visible, editable sections of the component.
Some of these sections, like the Memory maps of a component contain sub-sections,
with their own editors. Opening a sub-section expands the component editor tree, as is
shown in Figure 2.4. Selecting any of the sections opens up the editor view. The editor
view contains information of the editable section, and allows the creation and editing of
the parts belonging to the selected component item.

12

Figure 2.4 Component editor.

In addition to the two main views, some editors make use of a third view to display da-
ta, as shown in Figure 2.4. The third view is situated on the right side of the component
editor interface. In version 2.8 of Kactus2, only the General and Memory maps editor
use the third view, with the general editor showing a preview image of the edited com-
ponent, while the memory maps editor shows a visualization of the contained memory
maps and their associated address blocks, with registers of each address block and fields
of every register.

Kactus2 extends the IP-XACT standard to accommodate elements from the newer 2014
IP-XACT standard and prepare Kactus2 for the transition from the older 2009 version to
the 2014 version. These include the addition of isPresent expression fields for registers
and fields, and the addition of module parameters to the views of a component [4].

2.3.1 Memory maps editor

The memory maps editor allows the management of Memory Maps and Memory
Remaps. Memory maps are part of the IP-XACT standard and contain information re-
garding the memory locations within a component, address blocks contained within
each memory map, registers located within each address block and fields of all the reg-
isters. As shown in Figure 2.4, in addition to the name and description, the editable
fields of a memory map are Address Unit Bits (AUB), slave interface binding and
remap state.

13

AUB defines the amount of data bits for address increments in a memory map. By de-
fault, the memory maps are byte addressable, meaning the AUB is 8 bits. Usually the
AUB is given as a multiple of 8, e.g. 8, 16, 32. Changing the AUB of a memory map
affects the base address and range of the containing address blocks and the offset of the
registers within the address blocks.

Slave interface binding describes the slave interface that has been bound to this memory
map and used for accessing it. The memory maps editor does not allow the selection of
this binding, but the interface can be bound in the bus interface editor of a slave bus
interface.

In addition to editing memory maps, the memory maps editor allows the managing of
memory remaps. The memory remaps are conditional re-mappings, and are constructed
as child items under their containing memory map, as seen in Figure 2.4. Memory
remaps and the associated remap states were implemented in version 2.8 and their im-
plementation is further explained in section 5.4.

The memory maps editor does not allow editing of AUB for memory remaps, because
they use their parent memory maps AUB for the address increments. Instead, the
memory remaps can change their assigned remap state, which describes the state when
the memory remap becomes active. The remap states are managed in the component
remap state editor. The remap state for a memory map is labeled as default, describing
the memory map as the default remapping, when none of the assigned memory remaps
are active. The default remap state of a memory map cannot be changed.

Each of the memory maps and memory remaps contains an editor for address blocks.
Register editors are located within each of the address blocks and a field editor is locat-
ed within each register. These editors can be accessed through the component editor tree
by expanding the memory maps and their contents. Besides offering an editor for edit-
ing the contained items, the editors offer the possibility to edit the currently selected
memory map item.

2.3.2 Views editor

This editor focuses on the IP-XACT views that are separated into hierarchical and non-
hierarchical, flat views. A hierarchical view contains references to a hardware design
configuration and design. A component utilizing an active hierarchical view is consid-
ered a hierarchical component. A hierarchical view references a top-level implementa-
tion view.

Views contain parameters and more specific module parameters. These are designed to
help define the view, further increasing the re-usability of a component when imple-

14

mented as a component instance. The module parameters are a Kactus2 extension to the
IP-XACT standard.

One component can contain multiple views, which is useful in creating reusable com-
ponent instances for a design, when differently behaving instances are required of the
same component. Any of the views can be selected as the currently active view for the
instance. For example, two instances of the same component are used in a design, with
one of them using a hierarchical view, and the other a flat view. The hierarchical com-
ponent instance can then contain child components of its own.

The views of a component are extended by using software and system views. These
contain information regarding a software or system used in the component. The soft-
ware views are associated with components containing CPUs and define application-
independent software. As with software views, system views are also associated with
components containing CPUs, with a difference in having a hierarchical reference to a
system design that defines the mapping of software to hardware. There can be multiple
system or SW views for a component, with a multiprocessor SoC being an example of
such a component.

2.4 Design editor

The design editor is displayed in Figure 2.5. It shows a hierarchical view of the hard-
ware or software components instances located within a design [2]. The main design
view, show in the center of Figure 2.5, displays the area available for the design. In ad-
dition a list of context specific editors is shown. These editors consist of a component
instance details editor, an ad-hoc-visibility editor, a design configuration details editor,
an interface editor and a connection editor.

The structure of the design view is constructed from columns determining what compo-
nent instances can be placed in each column, e.g. bus components to one column and
hardware components to other. These columns can be filled with component instances
created from the available components. Each component instance contains the bus inter-
faces contained within the component from which the instance is constructed from.

The context sensitive editors are not allowed to make changes to the component refer-
enced by the component instance. The modifications are made to the component in-
stances, not the underlying component. This is to ensure that a component referenced by
two different component instances is structurally the same.

15

Figure 2.5 Design editor.

Component instance details editor describes information of the component instance and
the component referenced by the instance. Of notable importance is the configurable
values editor, which displays the parameters contained within the component and the
currently selected active view of the selected component instance. The displayed pa-
rameters can be given new values, thus specifying a component instance. The expres-
sions created within the configurable element editor can refer to other configurable ele-
ment values, not the parameter values of the contained component.

Ad-hoc visibility editor determines the visibilities of the ad-hoc ports of the selected
component instance. Usually only bus interfaces are visible in a component instance,
but determining an individual port as an ad-hoc makes it visible in the design editor.
The ports themselves cannot be edited in the ad-hoc visibility editor.

Design configuration details editor allows the selection, creation and deleting of design
configurations. Through this editor, the active views of the component instances located
within the design can be changed. The design configuration details are always visible in
the design editor, regardless of the selected item.

The interface view editor contains information regarding the currently selected bus in-
terface. The editor describes the bus type, the bus abstraction type used in the interface,
along with the name, description and the interface mode currently active for the bus

16

interface. The interface view also contains a list of port mappings, describing the logical
and physical names of each port.

The connection editor becomes active when an interconnection is selected within the
design. The connection view contains information of the interconnection between two
component instance interfaces. It displays the bus and bus abstraction type used in the
currently selected connection, the connected interfaces of the connected component
instances, the name and description of the connection and a list of the connected physi-
cal ports. The list of connected ports is made using the ports mapped in the connected
bus interfaces.

2.5 Generators

Generators are used in Kactus2 to create files for documentation, simulation and im-
plementation [2]. The generators are context sensitive, with the available generators
determined by the contents of the currently open document. The activated generator
reads the required data from the component or design and generates the file associated
with the generator function.

The generators of Kactus2 are divided into two sub groups, Kactus2 generators and
plugin generators. The Kactus2 generators list common, always present generators, use-
ful for synthesis and fast prototyping on FPGA. The plugin generators are extensions to
the Kactus2 generators, performing more specific tasks. Kactus2 compatible plugin
generators can be added and unnecessary generators can be removed. Each plugin gen-
erator contains information on the name, version, vendor and license of the plugin.

2.5.1 Kactus2 generators

Kactus2 generators consist of common generators utilized in synthesis and fast proto-
typing of FPGA. These generators are considered useful for all of the users of Kactus2.
In version 2.8, the common Kactus2 generators consist of the document generator, the
ModelSim generator and the VHDL generator.

The Document generator generates a Hypertext Markup Language (HTML)-type docu-
mentation from the selected component, containing information regarding the IP-XACT
data of the component itself and any component that has a component instance located
within an active hierarchical view of the selected component. For each such component,
a table is created for model parameters, Kactus2 attributes, general parameters, memory
maps, ports, bus interfaces, file sets and views.

ModelSim generator generates a ModelSim makefile, used to compile all the needed
VHDL-files into their respective libraries, so the top component can be simulated.
ModelSim is used as a simulator for both ASIC and FPGA designs [27].

17

The VHDL generator generates a top-level VHDL file from the selected, hierarchical
IP-XACT component [7], which contains information regarding the model parameters
and the ports of the target component. The generator uses the component to create a
structural, top-level entity, which is included in the component’s meta-data. VHDL is
used in synthesis and fast prototyping on FPGA [28].

2.5.2 Plugin generators

Plugin generators are extensions to the common generators of Kactus2, creating more
specific files relating to functionalities not necessarily useful for every user of Kactus2.
This is why all the compatible plugin generators can be added or removed through the
settings menu. Currently Kactus2 supports the following plugin generators: Altera BSP
generator, Makefile generator, MCAPI Code generator, Memory map Header generator,
PADS part generator, Quartus Project generator and Verilog generator.

Creating a plugin generator for Kactus2 has been made relatively simple. Each of the
plugin generators has its own folder in the structure of Kactus2. Within the folders are
plugin-related files for controlling generator procedures. Besides these files, each of the
plugins has functions for examining information regarding the generator. Additionally,
the plugins contain information regarding their structure and other, build-related data.

Verilog Generator version 1.1 generates a top-level Verilog file, a hardware description
language module for the selected hardware component. This file contains information of
the parameters, interfaces, ports connected to the interfaces and ports not found in any
of the interfaces of the component.

Altera BSP (Board Support Package) Generator version 1.0 generates board support for
HW components containing a CPU and at least one SW view. The generated package
contains an implementation of software for a given board that conforms to a given oper-
ating system.

Makefile Generator version 1.0 generates makefiles on all the parsed data of a system
design containing a design configuration. The generated makefiles help with the com-
piling and linking of a program.

MCAPI Code Generator version 1.1 generates MCAPI code templates based on the
metadata of the selected hierarchical SW component containing a system design. As a
message-passing API, MCAPI captures communication and synchronization elements
required for closely distributed embedded systems [29].

Memory Map Header Generator version 1.0 generates C-headers from memory maps of
a component. The generator uses addresses of the memory map’s address blocks and
registers in the memory maps of connected components to create C-headers of local,
global or system memory maps. The outcome of the memory map header generator de-

18

pends on the target of the generation. If there is no design associated with the selected
component, a local memory map header is generated. The local memory map header
contains the address blocks of a local memory map located within an address space. A
register definition is calculated through the use of an address blocks base address and
the offset of a register. If the generator is run for a hardware design, a global memory
map header is generated. This takes into consideration the instances contained within
the design, and the interconnections between the interfaces of the instances. The possi-
ble bridge and channel components between the master interface and the slave interface
are taken into account when calculating the values for the memory map header file.

System designs have their own version of memory map header generation. This file is
created by gathering all the C and C++ files contained within the file sets of the compo-
nents referenced by the instances within the hierarchical system design. The absolute
path of the C and C++ files are included in the generated file, with any duplicates re-
moved.

PADS printed circuit board [30] part generator version 1.0 generates PADS part files
for the selected hardware component containing a chip hierarchy. This generator can
only be run from the component editor of Kactus2. The generated files are used in the
design and layout management of circuit boards.

Altera Quartus Project Generator version 1.0 generates Quartus Project and Settings
files from a hierarchical hardware design containing a design configuration. The
Quartus Settings file takes all the included Verilog, VHDL, Quartus IP (QIP) and Syn-
opsis Design Constraints (SDC) files from component instances located within the hier-
archical design, while the created Quartus Project file contains information related to
the top-entity from which the generator was run from. Both created files are usable in
Quartus2 software.

2.5.3 Source analyzers

Source analyzers analyze the file dependencies of their respective files. The analyzers
are useful in forming dependency chains between the analyzed files. The analyzers con-
tained within Kactus2 are listed in Table 2.1.

Table 2.1 Source analyzers of Kactus2.

Analyzer Function Version
C / C++ Source Analyzer Analyzes the file dependencies from C and C++ files 1.0
Verilog Source Analyzer Analyzes the file dependencies from Verilog files 0.1
VHDL Source analyzer Analyzes the file dependencies from VHDL files 1.0

19

Figure 2.6 Source analyzers in Kactus2 fileSets editor.

Figure 2.6 depicts the results of a file dependency analysis within the file sets editor of
Kactus2. The status column shows whether the file has been changed or not after the
previous dependency analysis: a green circle represents that the file has not been
changed, a yellow circle shows files with changed contents and a red circle depicts files
with changed dependencies. The path column describes the relative path to the folder
containing the files as well as the names of the included files. Filesets column describes
the containing file set of the item within the component.

The dependencies column shows the results of the analysis. The dependencies between
the files are shown with the help of arrows pointing to the files that a specified file
needs. In Figure 2.6, the nios_ii_sdram.v is dependant of all the other files with the ex-
ception of the nios_ii_sdram.qip.

2.5.4 Import Plugins

The import plugins are used in Kactus2 to import various aspects of a Component from
a designated file. These tools provide an easy way to incorporate the IP-XACT standard
used in Kactus2 to the legacy IP-components owned by the user. The import plugins of
Kactus2 are listed in Table 2.2.

Table 2.2 Import plugins of Kactus2.

Import plugin Function Version
Quartus II Pin Import Imports ports from a Quartus pin file 1.1
Verilog importer Parses a Verilog input, setups an RTL view and cre-

ates model parameters and ports from the input
1.2

Verilog include import Parses a Verilog input and creates model parameters
from Verilog defines

1.0

VHDL importer Parses a VHDL input, sets up an RTL view and cre-
ates generics and ports

1.1

20

2.6 Summary

With the tools presented in this chapter, Kactus2 can improve the reusability of IP com-
ponents. The component editor provides functionality for managing the items contained
within a single component, while the design editor helps in constructing hierarchical or
non-hierarchical system designs of component instances. Both of the editors can use the
tools provided by Kactus2.

21

3. DEVELOPMENT ENVIRONMENT

Kactus2 is implemented in C++ using Microsoft Visual Studio 2010 with Qt version
5.2.0 plugin and Visual Assist. Other tools used in the development include Redmine
for project management, SourceForge for source code repository. Various different
tools, such as Microsoft Word, Microsoft PowerPoint and LaTex are used for documen-
tation. Kactus2 runs on Microsoft Windows and Linux.

3.1 Microsoft Visual Studio 2010

Microsoft Visual Studio 2010 version 10.0 Service Pack 1 is an Integrated Development
Environment (IDE), with a set of development tools used to compile C++ in Kactus2.
Visual Studio is used as the main development environment for Kactus2.

The project visualization system of Visual Studio consists of solutions and projects [31],
containing items representing the references, data connections, folders and files that are
used by the software. Multiple solutions can be contained within the solution editor. In
Kactus2, this system is used to contain the IP-XACT models, plugin projects and the
main Kactus2 project in the same solution as different projects for ease of reference.
The projects are displayed in the Solution Explorer, which provides access to the con-
tained files.

Different editors provide the main functionality of the Visual Studio. They are context
sensitive, depending on the file or document being examined [31]. The main editors
used in Kactus2 are the text editor, a basic word processor of the IDE, and the code edi-
tor, providing basic functionality of a source code editor. In addition to these, the help
files of Kactus2 are done using a HTML designer, which shares the basic functionality
of the source code editor. The HTML designer provides additional enhancements need-
ed to support HTML editing. Other editors are provided in the Visual Studio, but they
are not used in Kactus2.

The build and debug tools of Visual Studio allow configurations to the components to
build, the methods for building and the target platform of the build. The compiler of
Visual Studio detects compile-time errors such as incorrect syntax checking and type
mismatches. These errors are then displayed to the user in the output window of Visual
Studio. The debugger of Visual Studio assists in finding and correcting the errors. In the
break mode of the debugger, local variables and other relevant data can be examined.
[31]

22

3.1.1 Visual Assist

Visual Assist is an extension to Microsoft Visual Studio developed by Whole Tomato
Software [32], with a principal idea being in improving the IntelliSense and syntax
highlighting of Visual Studio. Additional enhancements include code generation and
refactoring tools together with configurable features for Visual Studio. The features ease
the use of Visual Studio.

Visual Assist improves code generation by providing spell checking and word filling.
Added together with the ability to refactor code, they make code generation faster and
more precise. In general, Visual Assist helps to reduce the complexity and improve the
readability of the code, without affecting its external behavior. Additionally, debugging
time of native C or C++ is shortened using Visual Assist. The Visual Assist Step Filter
and step over methods in argument lists help find possible errors found within the code.
[32]

Visual Assist provides a searchable query to the current solution, called the Visual As-
sist View. This query can be used to search a specific file within the currently open so-
lution faster and easier than navigating the solution explorer. Additionally, the Visual
Assist View can display a list of all the included files of a selected document.

3.2 Qt 5.2.0

QT is a cross-platform application and UI framework used in device creation and appli-
cation development. It is used in many devices and applications [33], such as in the In-
flight Entertainment by Panasonic Avionics, which uses Qt with C++ and QML to en-
hance the in-flight experience. Zühlke uses Qt in their DLC Pro to enable a multi-touch
UI utilizing the Qt API. The cross-platform support and flexibility of Qt are the key
components of the Eykona Wound Measurement tool, developed by The Eykona Tech-
nologies together with the support of Qt Company [34].

In Kactus2, Qt is used as an extensive library to cover different design methods of
cross-platform development for the Microsoft Windows and Linux. Kactus2’s user in-
terface is constructed using the interface libraries provided by Qt. The libraries use the
system’s resources to draw the user interface components. This makes Kactus2 look
more native regardless of the operating system it is being run on.

3.2.1 Model / View / Delegate

Model-view-delegate system is Qts own version of model-view-controller (MVC) para-
digm [33]. An MVC is a framework for separated presentation, a clear division between
the perceived domain objects and the presentation objects of a user interface. The do-

23

main objects cover the model part of the system, while the presentation is made of both
the view and controller models [35].

The model / view / delegate principle has been used in the editable tables of Kactus2.
This principle allows the management of the relationships between data and the way it
is presented to the user and allows greater customization possibilities.

The model of the system contains the dynamically managed data of the items. To locate
an item and access its data within a model, the views and delegates use model indexes,
with the view displaying the indexed data to the user. When an item is edited, the dele-
gate communicates with the model directly using the model indexes, allowing the data
to be represented to the user through tables or editors. [33]

3.2.2 Signals and Slots

The signal & slot system is an observer method used in Qt. The source of the observer
method is replaced by the class emitting the desired signal. The observer itself is re-
placed by the class that connects to this signal via a slot. Both of them are sub-classes of
QObject class.

The signals & slots of Qt help keep the user interface and systems of Kactus2 function-
al. Generally, it is desired to have the user interface components communicate with each
other. This communication can be achieved through signals and their connecting slots.
The signal and slot system helps in the construction of the user interface, when a Qt
widget must be notified of a change in another widget [33].

A signal is emitted when an event takes place. This can be either an inbuilt or custom
event, such as a keyboard button being pressed or an explicitly called emit-function. A
slot is a function that is called when the signal is emitted. The selected signal has to be
connected to the target slot for this slot function to be called. [33]

3.2.3 Creating a tree model with Qt

Tree models are only allowed in Qt as part of a QTreeWidget class. However, if the
need arises to construct a customized tree model, the QAbstractItemModel class can be
sub-classed to form a fully customizable tree model.

24

Figure 3.1 The tree model structure in Qt [33].

Figure 3.1 shows a tree model in Qt. The root item is the parent item of all the items
within the tree. Items A and C are child items of the root item, while item B is a child of
item A. In order to create a tree model from a QAbstractItemModel, the model requires
implementation for the index and parent functions [33]. These two functions govern the
indexing of the tree model, where the parent describes a parent index of an item. The
items under the root start their own sub-trees, with indexing for their child items starting
again from 0, as shown in Figure 3.1. Root items of the tree have an invalid parent,
while child items have the parent index of their parent item. Root items are placed in the
tree first, after which each of the referenced components parameters is checked for the
correct placement within the tree. This creates the desired, expanding tree model.

3.3 Redmine

Redmine is a flexible cross-platform and cross-database project management web appli-
cation, written using a Ruby on Rails framework. Redmine includes the tools required
in project management, such as issue tracking, a roadmap application and monitoring
tools. [36]

The Redmine installed at Tampere University of Technology covers information of the
development of Kactus2 from version 2.3 onward. The Redmine contains information
of the project and links to the installer and source files of Kactus2, located within its
own source repository page. It also functions as a platform for reporting any issues
found by the users. The issues can then be notified to the developers, who can imple-
ment them in the development flow of the application.

Important features of Redmine used in the Kactus2 project are the roadmap, the issue
list and the Gantt chart. The features are used to track the development time used for the

25

different features included within Kactus2. The roadmap visualizes the current time
usage concerning the development of all the versions of Kactus2. The issue list keeps
track of the features still in development, the features required and any bugs found in
the usage of Kactus2. Gantt keeps track of the overall overlapping and time require-
ments of the different tasks.

3.4 Source forge

The code repository of Kactus2 is currently located in Source Forge [37]. Source Forge
is a free web-based open source code repository. It offers a platform for development,
download, review and publishing of open source software. This allows the different
versions of Kactus2 for the supported operating systems to be downloadable from a
single web page.

Source Forge used to contain the project management information of Kactus2. As of
version 2.3, this has been moved to Redmine, due to the better project management fea-
tures found in RedMine.

26

4. REQUIREMENTS

This section describes the issues for the development of version 2.8. The issues of ver-
sions 2.7 and 2.7.x are taken into account if the new issues depend on them. The issues
are created by the Kactus2 development team as well as the user community. Redmine
is used to manage and track all the suggested features and discovered issues.

Version 2.8 focused on parameter usage. In addition to the issues covered here, the ver-
sion included parameter importing, parameter propagation, improving the configurable
element value editor further, hierarchical saving and including model parameters to hi-
erarchical views.

The issues are listed with either of two identifiers: a feature or a bug. A feature de-
scribes a new aspect added to Kactus2, while bug describes an existing feature that does
not work in the expected way. After the identifier, there is an issue automatically gener-
ated in Redmine. The title of the issue is given after the number, describing in short
what the issue is about. The details regarding the implementation of the issues are given
in chapter 5.

4.1 Feature #9: Memory map editor should show the edited
item

The memory map editor is constructed in a way to show information only of the con-
tained parts of the memory map. For example, a memory map editor only displays its
contained address blocks and an address block editor only displays its contained regis-
ters. However, it is required that information regarding the edited item should be made
available to the user [38]. This removes the time for navigating between the different
editors and gives visibility on the current status of the edited component, and according
to Nielsen [25], visibility of the system status increases the usability of the application.

4.2 Bug #121: Show errors is not visible for all library items

Library items in Kactus2 are coloured red if Kactus2 finds errors in the contained IP-
XACT structure. When checking the integrity of the library, the errors found and the
identification of a component is printed in the output of Kactus2 to help the user find
the locations of the errors.

Nevertheless, currently some errors do not change the colour of a component with errors
in the contained IP-XACT structure. This makes the option to show errors in the

27

Kactus2 library unavailable in the context menu of the component. Known cases are
[38]:

· A file in one of the component’s filesets is not found
· A hierarchical reference in a software view is found to be invalid
· A hierarchical reference in a system view is found to be invalid.

It is required that errors relating to the IP-XACT structure of a component are visible
within the IP-XACT library tree of Kactus2.

4.3 Feature #171: parameter usage

This is a general issue, consisting of subtasks of parameter usage. Parameter usage con-
sists of expressions within parameters, formatting the contained expressions, handling
references in parameters, the definition of and references to global component parame-
ters, parameter importing from e.g. Verilog files and design level configuration.

4.3.1 Feature #177: Design level configuration

The design level configurable elements value editor is shown in Figure 4.1. The editor
contains name value pairs of parameters of a component instance. New configurable
element values can be created and the values can be edited.

The parameters are identified by name but they are not guaranteed to match the parame-
ters of the component referenced by the instance. It is required that the configurable
element values need to be fully synchronized with the improved parameter definitions,
and the ability to create arbitrary configurable element values for the containing compo-
nent instance should be removed [38].

The resolve type of the parameter determines its usability in the configurable element
editor [38]. Parameters of resolve value “immediate” or those that have no resolve value
assigned are not editable. However, these are still displayed in the configurable element
editor to show as a possible reference when constructing expressions in the editor. Other
resolve values of parameters, generated or user generated, allow the editing of the con-
figurable element value in the configurable element editor of the component instance.

28

Figure 4.1 Configurable elements editor.

4.4 Feature #180: Signal based configuration

This is a general issue, consisting of dynamically configuring the module and its con-
tents using module inputs. The configuration values affect the register maps of the
module and its bit availability.

For example, an expression within the offset of a register contained within an address
block of a memory map refers to a parameter. This parameter has a resolve value of
“user” and can thus be modified in the configurable elements editor. The user can then
configure the memory maps contained register by giving this parameter a new value in
the configurable element values editor of the component instance.

4.4.1 Feature #192: RemapStates and memoryRemap

Kactus2 is missing the option to create and modify memory remaps and remap states.
These are given as a description of memory map remapping in the IP-XACT. Editors
for both IP-XACT items are required in the component editor of Kactus2 [38]. The
placement of the new editors in the component editor tree is important. With the
memory remaps being a part of the memory maps of a component, they should be
placed in close presence to the memory maps. The remap states are a separate entity
with only the memory maps using them.

Memory remaps are used as part of a memory map in the IP-XACT standard . The
remaps describe conditional and additional memory map items for the memory map.
The conditions are described by the remap states, with each memory remap containing
one remap state.

The memory remap schema from the IP-XACT standard is displayed in Figure 4.2. The
state refers to the remap state that activates the items located within a memory remap.
The memory remap contains a list of memory map items, address blocks, memory
banks and subspace maps. Name group contains information regarding the identification
of a memory remap, while the isPresent defines the presence of the memory remap in
the containing document.

29

Figure 4.2 IP-XACT memory remap schema [4].

Figure 4.3 Displays the IP-XACT schema for the remap states. The remap state contains
a unique name, contained within a universal IP-XACT element nameGroup, as well as
an optional list of remap ports. The remap ports are selected from a list of ports con-
tained within the component, as displayed by the contained attribute portRef. These
form the condition that activates the remap state. When a remap state is activated, the
memory remap containing the selected state becomes active.

Figure 4.3 IP-XACT remap state schema [4].

30

4.4.2 Feature # 193: Tabs for memory remaps

An editor for the memory remaps is required to be placed near the memory map to
which the remap belongs to. Additionally, the memory map visualization in Kactus2
does not handle the visualization of memory remaps. The memory map visualizer
should draw the memory remaps for easy reference and comparison. [38]

The memory remap editor should be easily distinguished as being connected to the con-
taining memory map. Therefore the placement of the new memory remap editor should
be connected to the memory map containing the remap. This is to be done as a tab for
the memory remaps inside the memory map editor. Thus the memory remaps are close-
ly connected to a memory map, preventing confusion regarding to which memory map
does a memory remap belong to.

4.5 Feature #206: Scrollable ribbon

Kactus2 uses a toolbar ribbon to display the different tools available. The old toolbar
ribbon from version 2.6 is shown in Figure 4.4. The available tools have not changed
between the versions, with the exception of the added view configuration tool and the
hierarchical save tool.

In the version 2.6 toolbar, the icons are small enough to accommodate placing them on
two rows. Additionally, the space reserved for each icon is wide. This is so that the
name of the tool can be displayed below the icon. Overall, this leads to poor use of
space in the tool bar.

The width of the toolbar is set according to the width of the Kactus2’s window. When
the window is too small to display the available tools, the toolbar groups shrink into
smaller, selectable sections. The tools are selectable from the compressed sections. In
Figure 4.4, this is shown for the edit, generation, diagram tools, view and protection tool
groups. While convenient, this hides information regarding the placement of the tools,
which according to Nielsen [25] hinders user friendliness.

To improve the usability of Kactus2, the tool bar ribbon is changed to show icons of all
the currently usable tools. If the icons require more space than is available due to the
size of the current window, the ribbon should become scrollable horizontally. [38]

Figure 4.4 Toolbar of Kactus2 version 2.6.

31

The scrolling should be made available to use with the mouse wheel or by using the left
and right buttons of the contracted ribbon. The buttons should only be visible when the
ribbon is too large to show on the current screen.

4.6 Feature #214: Support parameter IDs in Verilog generation

In the Verilog files generated by the Verilog generator of Kactus2, parameter references
used in the expressions of parameter values are displayed with their respective univer-
sally unique IDs (UUIDs). The UUIDs of the parameters are used as a way to tell pa-
rameters with same names apart, but they are not visible in Kactus2. Since the IDs are
not human readable, they must be converted to the names of the referenced parameters.
The places where the parameter references are not displayed properly are [38]:

· The parameter values for the top component
· Declarations of ports
· The parameter assignments of component instances

4.7 Feature #216: Support parameter IDs in HTML document
generation

The HTML file generated by the document generator of Kactus2 contains information
regarding the selected component. In this generated document, the values in fields that
refer other parameters of the component are shown as the UUIDs of the referenced pa-
rameters.

The UUIDs of the parameters are not human readable and must be converted to parame-
ter names [38]. This conversion must be made in every field where an expression is
possible to be given.

4.8 Feature #217: Support parameter IDs in generated header
files

The generated memory map header files contain defined registers, the register positions
calculated using the connecting master and slave interfaces. However, the calculations
do not account for expressions containing parameter references. Because of this, the
positions containing expressions are calculated wrong, giving false definitions to the
registers in the generated files.

The UUIDs displayed in the generated memory map header files must be converted into
more human readable names of the referenced parameters [38]. The calculation of the
register defines must also be corrected to accept parameter referencing in any part of the
registers definition, such as address blocks base address and the registers offset. Addi-

32

tionally, the calculation of the register definitions in the containing memory map header
files should display information to help in the checking of the register definitions.

4.9 Feature #221: Add a vendor extension for Kactus2 version

Information of the version of Kactus2 used to create a component is not currently avail-
able. This is needed in the future development of an IP-XACT migration tool [38]. The
version information helps in determining the components that are missing some sections
or extensions that are incorporated to the later versions of Kactus2. An example of the
features is the addition of the UUID to new components and parameters created in
Kactus2, which was indoctrinated before version 2.8. With the help of the version
recognition tools, the components and their containing parameters that do not have
UUIDs could be found and possibly given one.

The version number should be made visible in the component’s XML-file. This is to be
an extension to the IP-XACT standard of the component, and so would be best placed in
the vendor extensions of a component.

4.10 Feature #222: Locked column in parameter editor

All the parameters and model parameters of a component contain multiple fields dis-
playing the different aspects of a parameter, causing the parameter editor to become
very wide. A wide editor needs a scrollbar to properly display all of its contents. How-
ever, when the name of the parameter is not displayed, the contents of the editor do not
specify which parameter is currently being edited, thus resulting in confusion and unin-
tentional mistakes in changing the values of a different parameter than the one which
was intended to be changed.

The editor should be made to contain a locked column i.e. a column that is always visi-
ble to the user regardless of the position of the scrollbar. Locking the name column of
the parameter editor ensures that information regarding the edited parameter is always
visible to the user [38], preventing any unwanted changes to the parameters.

The locked column can also be extended to cover other editors. In addition to all pa-
rameter, model parameter, module parameter and view parameter editors contained
within the component editor, the port editor should have the ability to lock the port
number and the name columns.

4.11 Feature #236: Group configurable element values

In the design editor of Kactus2, the configurable element values of a component in-
stance are placed into the configurable elements value editor in a mixed order, affecting
the readability and reuse of the configurable element values. The configurable elements

33

must be grouped according to their location within the referenced component [38]. This
requires the changing of the configurable element editor into a tree model, displaying
the element location as a branch.

Only the common parameters of the referenced component and the parameters of the
currently selected active view of a component instance should be included in the con-
figurable element editor. Using groups in the configurable element editor increases the
cohesion between a component instance and the referenced component.

4.12 Feature #237: Product level view configuration tool

The active views of a design can be configured through the use of a component design
editor. Some of the generators and plugin generators of Kactus2 use the views to gener-
ate their files. However, it is required that the generators can be given another set of
views separate from the active views selected for the component instances in a design.
Thus, a tool for configuring the active views of the selected design is needed [38].

In this new view configuration tool, the hierarchical composition of the design, with the
component instances and their contained hierarchical components should be visible to
the user. The new view configuration should be stored in the design configuration xml-
file referenced by the currently selected active view. In addition to the view configura-
tion editor, the generators that handle views should be modified to take this configura-
tion into account when one exists.

34

5. IMPLEMENTATION

This chapter describes the implementations to fulfil the requirements given in chapter 4.
Optional solutions are given where applicable.

5.1 Memory map editor should show the edited item

The memory map editor is used to edit the contents of a component’s memory maps
with sub-editors for the items contained within the memory map: the address block edi-
tor, the register editor and the field editor. A memory map editor contains the editable
address blocks, an address block editor contains the editable registers and the register
editor contains the editable bit fields.

Figure 5.1 displays the implemented memory map editor. The name group box is placed
to the top left corner of the editor to allow fast access to the identifying elements of the
item being edited, as well as to create consistency between the different editors.

In addition to the name group editor, the memory map editor contains fields for editing
IP-XACT memory map data. These fields are placed near the name group, on the right
column of the editor as seen on Figure 5.1. This ensures that the user connects the fields
to the item being edited. The rest of the available editor space is taken up by the editor
for managing the editable items belonging to the memory map. This is done in each of
the sub-item editors contained within the memory maps editor, i.e. the address block
editor, register editor and the field editor.

Figure 5.1 Memory map editor.

35

Kactus2 is constructed in such a way that all the IP-XACT related information regard-
ing the component is found in one place, in the xml-file of the component. When an
editor is opened, the data contained within it is retrieved from this file. This refreshing
of the editable items helps in keeping the different editors of the same item synchro-
nized.

It is important to keep the consistency of the editors together to increase the usability of
Kactus2. According to Nielsen [25], consistency within different parts of the application
increases recognition and user friendliness. To follow this consistency, the sub editors
of a memory map are changed to look like the upgraded memory map editor, with their
information fields located in two columns above the editor for the contained items.

5.2 Errors are not visible for all library items

Figure 5.2 shows how a component containing errors in its IP-XACT information
should be visible in the IP-XACT library of Kactus2.

IP-XACT library of Kactus2 contains a context menu for each component, through
which the use can access the “Show Errors” functionality. Selecting this gives a list of
all the IP-XACT-related errors found within the component, as displayed in Figure 5.2.

Kactus2 strives to confirm the IP-XACT validity of the components within the given
library paths by examining all the components for errors. Any errors found in the inva-
lid components are displayed in the output window.

Figure 5.2 Component with errors in the Kactus2 library view.

36

The IP-XACT standard describes a file as an optional element of a file set. This un-
bounded file or directory contains a name describing the absolute or relative path to the
actual file. According to the semantic consistency rules of the IP-XACT standard, this
name sub-element must result in a string containing a valid uniform resource identifier
(URI). The file validity in Kactus2 checks only for the emptiness of the name element.
In the IP-XACT standard, checking of the existence of the file contained within the
name element requires external knowledge. Since the validity checking in Kactus2
checks for the IP-XACT validity of components without external knowledge, a missing
file is not displayed in the error listing of a component.

Software views and system views are extensions to the IP-XACT model of Kactus2,
and are based on the IP-XACT view. Both have mandatory fields for a hierarchical ref-
erence, which must be a VLNV reference to a system design.

According to the IP-XACT standard, a view can have a reference to a design or a design
configuration, which is inside a view’s instantiations. The instantiations contain compo-
nents, design and design configurations for all views. All the items inside the instantia-
tions have a reference to an IP-XACT item in the form of a VLNV [4].

According to the semantic consistency rules of the IP-XACT standard, a VLNV used to
refer an IP-XACT document must match an existing IP-XACT document. The VLNV
validity checking in Kactus2 only checks that the different VLNV-fields are not empty.
This is why an invalid, non-empty hierarchical reference in a system or software view is
not displayed in the error listing of a component.

However, if a Kactus2 determined mandatory field is given as empty, it will be dis-
played as an error message in the output of Kactus2. This is to tell the user that some-
thing is wrong regarding the inspected component. And although the library itself does
not display any IP-XACT related errors, the component being inspected is colored red.
This is to warn the user of a malfunctioning component. If the component is opened, the
component editor displays all the faulty locations that are found in the component, in-
cluding the missing files and the inappropriate design references in software and system
views.

5.3 Parameter usage

In Kactus2, parameters are utilized in e.g. constructing structures and memory regions.
Parameters can refer other parameters and thus create expressions. However, global
references are not allowed, in order to ensure the reuse of each IP block. Parameters can
be redefined for each instance of a component. This is explained in section 5.3.1. Pa-
rameters contain six different attributes used to define values that a parameter can be
given. [39]

37

Since an IP component can contain thousands of parameters, managing them becomes
an issue. Kactus2 uses an expression editor to control, validate and evaluate parameters
and their contained expressions immediately upon insertion [39].

<spirit:parameter type="int" usageCount="2">
 <spirit:name>port_width</spirit:name>
 <spirit:value spirit:id=
 "uuid_4087e902_e070_460c_b14f_41445660d950">-2
 </spirit:value>
</spirit:parameter>
<spirit:parameter type="real">
 <spirit:name>clk_enable</spirit:name>
 <spirit:value spirit:id=
 "uuid_0e46c746_ce3d_445b_977a_f9737eb3c505">
 uuid_4087e902_e070_460c_b14f_41445660d950**2+4*
 uuid_4087e902_e070_460c_b14f_41445660d950+4
 </spirit:value>
</spirit:parameter>
<spirit:parameter type="int">
 <spirit:name>port_range</spirit:name>
 <spirit:value spirit:id=
 "uuid_c45c68c9_1a57_4be6_a4e6_5e73ea74f197">14
 </spirit:value>
</spirit:parameter>

Program 1. XML showing a parameter containing an expression. [39]

Program 1 displays the XML of the parameters of a component within Kactus2. Three
parameters are given, with parameter clk_enable containing an expression referring pa-
rameter port_width. In the XML file, the references are contained as UUIDs of parame-
ters. When the expressions are displayed to the user the UUIDs are changed to the
names of the corresponding parameters.

During the construction of an expression within a parameter, the expression editor of
Kactus2 offers a list of possible parameter references for an incomplete word, with each
selection consisting of a name-value pair of a parameter. The UUID of the selected pa-
rameter is inserted to the created expression. This is displayed in Figure 5.3.

Figure 5.3 The expression selection.[39]

38

The available list of referable parameters depends on the parameter finder given to the
expression editor. The parameter finder is further explained in section 5.6.

5.3.1 Design level configuration

According to the IP-XACT standard, the configurable element values determine the
configuration for a component instance.

The previous editor allowed arbitrary creation and removing of configurable element
values, which is against the IP-XACT standard. Thus the context menu containing mod-
ifications to the configurable elements was removed from the editor.

Figure 5.4 displays the improved configurable element editor. Regarding the require-
ment 4.3.1, the configurable elements value editor was changed to contain three col-
umns: name, value and default value. The name column displays the name of the refer-
enced component parameter or the location of the parameter within the referenced com-
ponent, the value column displays the current value of the configurable element and the
default value column displays the value of the parameter inside the referenced compo-
nent.

By default, all of the fields located within the editor are non-editable. To allow the edit-
ing of a component parameter, the resolve value of the parameter must be set to “user”
or “generated”. A resolve value of “user” defines the value to be specified by user input,
while a resolve value of “generated” specifies the parameter value as set by a generator.
“Immediate” or unspecified resolve value indicates that the specification of the parame-
ter is made in the containing component.

Figure 5.4 The improved configurable element editor.

It is worth noting that the configurable element values can be given as expressions. As
the expression editor in Kactus2 uses a parameter finder to locate the value associated
with the given parameter name, the configurable element editor requires two expression
editors: one for the default values, to solve references made to component parameters,

39

and the other for the configurable element values, to solve references made to the con-
figurable element values or the parameters of the component referencing the design.

Configured values are stored as vendor extensions inside the design configuration xml-
file referenced by the selected hierarchical view and stored alongside the component
instance to which they belong. The storage format is the referenced ID followed by the
given configurable element value. Only those configurable elements which are given a
new value inside the configurable element editor are saved.

Regarding the requirement 4.11, the configurable elements editor needs to show infor-
mation relating to the placement of the parameter inside the referenced component. This
is to preserve the consistency of the system which, according to Nielsen [25], helps the
user in identifying and relating the parameters to the referenced component. The method
to show the containing component sections was to change the table model into a tree
model. However, Qt does not provide a customizable tree model [33], so one had to be
inherited from QAbstractItemModel class.

5.4 Memory remap and remap states

According to the IP-XACT standard, a memory map can contain memory remaps. The
memory remaps are used to describe additional memory map contained items in a spe-
cific remap state.

To incorporate the new IP-XACT elements, the memory remap and the remap state, the
component editor tree was modified. The memory map editor was modified to contain
the memory remaps, and the remap states editor was placed as its own entity, with the
added option to disable it in the settings, if the user so desires.

Figure 5.5 displays the new combined memory editor. Combing the memory map and
remap editors caused a modification to the structure of the component editor tree re-
garding the memory maps. A new layer was added for the memory remaps between the
memory map and address block layers, enhancing the connection between a memory
map and its memory remaps. A default memory remap was added as a level for the orig-
inal memory map, separating it from the memory maps remaps while keeping them
linked together.

Figure 5.5 The combined editor for memory maps and memory remaps.

40

Figure 5.6 Remap state editor.

Figure 5.6 displays the developed remap state editor. A remap port has a mandatory
value to determine when the selected port activates the remap state. For a vectored port,
this value is given for all the desired indexes of the port. To determine the vectored sta-
tus of a port, the remap state editor calculates the width of the port using the left and
right bounds taken from the xml-file of the containing component. If this width is great-
er than one, the port is vectored and can be given values for each index of the vector. In
Kactus2, giving values for each of the indexes in the port is done by constructing an
array editor for the value. This array editor can be seen in Figure 5.6, opened for the
remap port reset.

The requirement given in section 4.4.2 suggested a separate tab editor within a memory
map. However, this creates unnecessary navigation within the memory map editor,
which is against the desired user experience in Kactus2. A separate tab for memory
remaps was thus rejected.

Another suggestion for the memory remap editor was placing it alongside the memory
maps. In this solution, the memory remaps could be constructed as items belonging to a
selected memory map. Both the memory maps and memory remaps can then be dis-
played alongside each other, making it easier to cross-reference the basic functionalities
of memory maps and memory remaps. This was selected as the method for creating and
modifying memory remaps.

In this solution, new memory remaps can be created through a context menu associated
with a selected memory map. Since this is not immediately obvious, the memory remap
abilities of a memory maps editor are explained in the context help file.

41

Combining the managing of the memory maps and the memory remaps into the same
editor requires reforming the editor from a table view into a tree view. The memory
maps are the child items under the root of the tree, while each memory remap is con-
structed as a leaf node to the containing memory map.

Some of the fields in the memory maps editor are only editable for memory maps, while
others are editable only for memory remaps. The AUB can only be changed for a
memory map, but changing its value causes all the associated memory remaps to change
their AUBs accordingly. A remap state can only be given to a memory remap.
Default is shown as the remap state for a memory map. This can be observed in Figure
5.5. For implementation of a single memory map within a memory map editor, see sec-
tion 5.1.

5.5 Scrollable ribbon

The toolbar used in Kactus2 displays the icons and names of the available tools. If the
window is smaller than the required space of the toolbar, some of the tool groups are
minimized into a selection group, through which the tools can still be accessed.

Figure 5.7 displays the developed replacement for the toolbar. The icons displaying the
names of the tools took up a lot of space in the ribbon. This has been revised by enlarg-
ing the tool icons and removing their names. The names are still visible in the tool tips
of the tools if the user hovers the cursor over one of them. The name was removed to
reduce the screen space required by the toolbar and to emphasize the recognition and
connection of the tool icons and the associated functions. This, according to Nielsen
[25], increases the consistency of the application and provides a more pleasant user ex-
perience.

Minimizing the tool groups into selections provides more space for the tool bar ribbon,
but at the same time causes more navigation within the toolbar. This needles navigation
can be eliminated by removing the group minimizing. Thus the user can always see the
available tools within a group without having to open the tool selection. However, this
creates a new problem with the ribbon: displaying all the available tools requires a lot of
horizontal screen space. This can be solved by allowing the tool ribbon to scroll left and
right.

Figure 5.7 Scrollable toolbar.

The scrolling can be achieved through the use of the mouse wheel, or by using the two
buttons placed on the sides of the ribbon, as shown in Figure 5.7. The scrolling of the

42

ribbon is achieved by catching the mouse wheel events. This is then translated as hori-
zontal movement of the scroll bar with a calculated step provided by the movement of
the mouse wheel.

It is possible that the user cannot, or does not wish to use the mouse wheel to scroll the
toolbar. To accommodate this situation, two buttons are situated in the left and right
sides of the toolbar. The buttons scroll the toolbar respectively left and right by the
amount needed to show the next tool bar group. The buttons are enabled only when the
width of the scrollbar exceeds the width of the window and the corresponding button is
disabled if the tool bar is scrolled all the way to the last group on either side of the
toolbar.

5.6 Parameter ID support

The introduction of expressions and parameter referencing to values introduced prob-
lems to the generators of Kactus2. Parameter referencing is achieved through the use of
UUIDs of the parameters. The IDs are not human readable, so the preferred way is to
change them into the names of the referenced parameters, thus requiring changes to the
handling of parameters in all of the affected generators.

The basic structure for incorporating parameter references to a generator is to add an
expression formatter class. This class replaces ID references found in the given expres-
sion with name references using a parameter finder class. The parameter finder handles
the finding of parameters within a specified structure. The parameter finder is divided
based on where the parameter references are found. This parameter finder division is
shown in Figure 5.8.

The ComponentParameterFinder finds parameters from the currently active component.
All of the parameter IDs in the currently examined expression are checked for a match-
ing parameter name. It is used in forming expressions within a single component.

Figure 5.8 Class diagram of the ParameterFinders used in ExpressionFormatter.

43

ListParameterFinder finds parameters from a given list used to define the group of
available parameters. This is used in the expression editors of the configurable values of
a configurable elements editor.

MultipleParameterFinder finds parameters using multiple parameter finders. It is used in
the file import tool and the component instance editor. In the file import tool it is used
to find parameter values from the current component and the parameter values of the
imported component. In the component instance editor it is used to contain finders for
the configurable element values and the parameter values of the component containing
the design housing the component instance.

TopComponentParameter finder finds parameters from the top component of a hierar-
chical view. Unlike the component parameter finder, this parameter finder locates only
the view parameters and module parameters related to the currently active view. It is
used together with a component parameter finder to form a multiple parameter finder
for the configurable element editor.

All of the parameter finders use a given ID to find the desired parameter. The expres-
sion formatter then uses this name to change the referenced IDs into the names of the
referenced parameters, thus displaying the expressions in a more human readable way.

5.6.1 Verilog Generator

To find the references made in the generated Verilog file, an expression formatter con-
taining a component parameter finder is used. The parameter finder helps in the format-
ting of all the expressions used in the parameter values together with the left and right
bounds of ports contained within the component.

In addition to the parameters and ports of the top component, the Verilog generator lists
the connections, the connected interfaces and the default values of ports. The default
values of the ports are formatted using component parameter finders created for each of
the components.

5.6.2 HTML Document Generator

As the file generated by the document generator can consist of multiple components, an
expression formatter factory is used. This allows the dynamic creation of expression
formatters using component parameter finders. The finders are then assigned a compo-
nent referenced by the component instance in question. The selected finder is used in
formatting the expressions in the component referenced by a component instance and
the configurable element values of the component instance.

44

5.6.3 Memory map Header Generator

The memory map header generator is divided into three modes: the local, the global and
the system memory map header generators. These three modes differ in their handling
of memory map header generation, although the basic operating principle is the same.

The local memory map header generator generates a memory map header for a single
component, with a component parameter finder used for the expression formatter. The
generator takes the address blocks used in the local memory maps of the contained ad-
dress spaces. The address blocks with usage value “reserved” or “memory” are defined
with start and end locations. With a usage value of “register” or “undetermined”, the
registers belonging to the address block are defined.

A global memory map header generator generates header files for each connected mas-
ter interface belonging to the component instances of the design involved in the genera-
tion. Each of the files contains the definition of the registers associated with the slave
interface that the master interface is connected to, taking into account any bridge or
channel components between the two interfaces.

The system memory map header generator generates header files for each component
instance in a system design. The files contain the C and C++ files contained within the
file sets of the target component referenced by the component instance.

5.7 Locked column in parameter editor

A locked column depicts a column, which stays visible to the user regardless of the cur-
rent position of the scrollbar. This helps in crowded tables to recognize which item the
user is currently editing.

By default, Qt does not provide this kind of functionality in tables. The solution pre-
sented in Figure 5.9 is based on an existing example in the documentation of Qt [33]. It
involves two views of the same table with one view stacked on top of the other. One
view contains the desired locked columns, while the other contains the rest of the table.
This creates an illusion of a table with one column locked in place.

45

Figure 5.9 Table view with a locked column.

Moving between the two tables can be accomplished via capturing the key events relat-
ed to both tables. After capture, the event is passed to the other table if the current selec-
tion is in the locked column or the column next to it. After the event is passed, the other
table can then place the selection in the correct position within its own table.

An alternative solution to the locked column is given in Figure 5.10. Instead of having
the two table views with one on top of the other, the views are set side by side. A small
separator is placed between the views for visual identification and to allow the size of
the views to be changed. This solution gives the user the impression of a locked column.

Figure 5.10 Alternative locked column.

46

Both of the approaches achieve the locked column effect. However, of them contain
issues regarding the selection model of a view. The view with the locked column must
change selection to the one containing the rest of the model when the selection moves
from the locked column to the right. The same applies when changing selection to the
left in the view containing the rest of the model. In addition, selecting items from both
of the tables causes problems. If the selection is begun in the top view, no selection can
be made on the view behind, because the views are constructed as separate entities and
thus do not have a common focus.

A third solution for the locked column is displayed in Figure 5.11. It incorporates a re-
markably different approach compared to the solutions presented above. Instead of hav-
ing two views showing different parts of the model, only one view is used. The scrollbar
hides and reveals the columns that are not currently visible by examining its current
position. This creates a scrolling view with the selected column locked in place.

This approach eliminates some of the problems of selection, but incorporates new ones,
mainly related to the correct scaling of the scrollbar and the selection of multiple fields.
The scrollbar scaling compared to the diminishing table is easily solved through setting
the step of the scrollbar to accommodate the size of the table.

Selecting multiple fields moves the viewport of the table. If the view is moved off
screen, the locked column will disappear from view, which is not desirable. Since the
behavior of the scrollbar has been changed, a similar multiple selection is needed to get
the disappeared columns to reappear.

Figure 5.11 Another alternative locked column.

5.8 Product level view configuration tool

The designed view configuration tool is displayed in Figure 5.12. The left column dis-
plays VLNV of the component referenced by the instance with an icon displaying
whether the selected view for the component is hierarchical or non-hierarchical. A hier-
archical column can be expanded to show all the component instances contained within
its design. The middle column displays the instances located within the design associat-

47

ed with the selected views. The right column displays the currently selected view for the
component instance. Only the values in the view column are editable in the view con-
figuration tool.

Figure 5.12 View Configuration Tool.

The view configuration tool allows a selection of views to be used in the generators of
Kactus2. A view can be selected through the right column, from which a list of views is
made available. The selectable views are contained within the component referenced by
the component instance. If the selected view is hierarchical, the icon on the left column
is changed to show this and all the component instances located within the design con-
nected to the view are placed under the component instance. If no view is selected, or a
non-existing view is selected, the text is coloured red.

The save button allows the currently selected configuration to be stored in the vendor
extensions of the design configuration referenced by the view. The button is enabled
only when the selected view configuration is valid, i.e. all the component instances have
a valid view selected.

When the tool is activated, it checks for any existing view configuration. If a view con-
figuration is found, it constructs the tree according to it. The stored view configuration

48

can be removed through the use of the clear button, enabled only when a view configu-
ration exists in the referenced design configuration.

The view configuration tool can be used either in a design or a component. In a design,
the tool constructs a hierarchical tree consisting of the currently active view in the de-
sign editor. When it is used in a component, the tool shows only the component with no
view selected. The user can then select the view for the top component and if the select-
ed view is hierarchical, a hierarchical tree is constructed.

To accommodate the new view configuration tool, the tool bar ribbon is extended to
contain a new group, the Configuration tools. This group will be used to contain tools
related to configuring the generator related specifics of the selected component, compo-
nent instances or design. In version 2.8, only the view configuration tool is located with-
in the group.

View configurations can be used in the generators supported by Kactus2. If a running
generator finds a stored view configuration in the design configuration, the generator
will use the views contained within it instead of using the currently selected active
views of the design. In version 2.8, Quartus Project generator has been modified to ac-
cept the new view configurations.

49

6. ANALYSIS

The development of Kactus2 version 2.8 took approximately 600 hours, and consisted
of about 16000 lines of code. The Gantt chart for the previous version 2.7.x is shown in
Figure 6.1, while the chart for version 2.8 is shown in Figure 6.2. Issues marked in
green have been the main interest in this thesis. The implemented features consisted of
the following:

· Upgrading the memory map editor to display information regarding the item be-
ing edited.

· Incorporating memory remap and remap state editors to the component editor.
· Error correction within the IP-XACT library of Kactus2.
· Upgrading the design level configurable element value editor to allow the edit-

ing of parameters contained within the referenced component.
· Improving the toolbar.
· Adding support for expressions and parameter references to the generators.
· Changing the table editors to accommodate possible locked columns.
· Integrating a version number to the components created using Kactus2.
· Incorporating a product level view configuration tool.

Table 6.1 displays the estimated time used and the estimated lines of code for each im-
plementation. The time estimates are taken from the Rednub page [38]. It can be ob-
served that the new features took more development time compared to improving the
existing ones.

Table 6.1 Estimated time spent for each issue.

Identifier Feature Time
spent (h)

Lines
of code

Feature #9 Memory map editor shows edited item 20 400
Bug #121 Show errors in all library items 4 100
Feature #177 Design level configuration 32 900
Feature #192 RemapStates and memoryRemap 27 1000
Feature #193 Tabs for memory remaps 55 800
Feature #206 Scrollable ribbon 30 300
Feature #214 Support parameter IDs in Verilog generation 5 200
Feature #216 Support parameter IDs in document generation 32 1000
Feature #217 Support parameter IDs in generated header files 37 1300
Feature #221 Vendor extension for Kactus2 version 5 100
Feature #222 Locked column in parameter editor 15 300
Feature #236 Group configurable element values 13 500
Feature #237 Product level view configuration tool 50 1400
Total 325 7400

50

Figure 6.1 Kactus2 Gantt chart for version 2.7.x [38].

51

Figure 6.2 Kactus2 Gantt chart for version 2.8 [38].

52

7. KACTUS2 VERSION 2.8 VERIFICATION

Kactus2 version 2.8 was published on June 15th 2015. This is the latest release version
at the time this thesis was written. In addition to the features covered in chapter 5, the
changes in version 2.8 consist of upgrading the parameter importing from separate files,
upgrading the parameter propagation mechanics, expanding the use of expressions to
memory maps, incorporating hierarchical saving as an option, the addition of module
parameters to the hierarchical views of a component and updating the visualization of
memory maps.

Testing of the developed version has been performed through manual testing as well as
unit testing within Kactus2’s own testing solution, using the Qt testing environment as
its framework. Manual testing is performed through the debugging and testing of the
implemented software. The unit tests are built according to guidelines given in the wiki
Guides for Developers in Redmine [38]. This testing suite was incorporated in version
2.6 of Kactus2. Each of the new features is implemented in a testing solution represent-
ing its functionalities. The solutions can then be run separately or run together as a
group.

The new and improved features incorporated in version 2.8 have been tested using both
of the methods explained above. Despite extensive testing, some of the features contain
minor malfunctioning or missing functions. The features are examined, re-evaluated and
repaired during the transition to the next version of Kactus2.

7.1 Expressions in Kactus2

The system for expressions used in Kactus2 is mostly completed. The expressions work
well for calculations and referencing. However, there are a few issues requiring further
improved. These are mostly related to the editing of the contained expression and the
usage calculation of the parameters involved in the expression.

The expression format used in Kactus2 possesses a minor inconvenience. When an ex-
pression is used to refer a parameter, the parameter gets a signal for increasing its usage
count. When a reference to a parameter is removed from the expression, a signal is
emitted to decrease the usage count. When a field is made possible to accept expres-
sions, the signals must be connected to the parameters.

53

Figure 7.1 The parameter reference tree.

Parameters feature a column for displaying the amount of references made to them as
well as a reference tree for displaying all the fields where the selected parameter has
been referenced. This reference tree is shown in Figure 7.1. The left column of the tree
contains the place of the referencing expression within the tree structure of the compo-
nent editor. The right column displays the referencing expression itself. To fully incor-
porate the expression system to a new field, this tree must also be modified to include
the new expression capable field or fields.

There are still fields in Kactus2 that, according to the IP-XACT standard can accommo-
date expressions. These include fields such as the base address of the master bus inter-
face and the mirrored master bus interface, as well as the range and remap address of a
mirrored slave bus interface. The expressions will be expanded to the fields that are able
to contain them in the future versions of Kactus2.

7.2 Unresolved issues

With the problems in the current version of locked columns, the feature regarding the
locking of a column is still in development. The two alternative solutions presented in
this thesis solve some of the issues, but both of them present new problems of their
own. These issues are explained in section 5.7.

While the view configuration tool is working as expected, currently only one of the
generators makes use of it, the Quartus Project generator. The other generators currently
contained within Kactus2 and the compatible plugin generators do not make use of the
active views of the component instances. However, it is good to keep the view configu-
ration tool in mind when developing and integrating new generators or other methods
for Kactus2.

The memory map header generation for a system design is currently being re-designed.
The idea is to expand the list of files accepted to the generated file, with the system
memory map header generator gathering all the generated memory map header files.

54

The method of searching for the files is still open. In addition, there is an issue regard-
ing the search of a design containing hierarchical component instances which contain
themselves as sub-items. Currently the search is terminated if this is found to occur, and
a warning is given for an incompatible design. Other issues concern the included
memory map header files, and issues involving what to do if a component referenced by
the component instance does not contain a local memory map header file, or if a com-
ponent referenced by the component instance contains a global memory map header file
in addition to the local memory map header file.

Furthermore, the memory map header generation contains issues related to the inclusion
of opaque and transparent bridges within a component design. The bridge components
are used to describe an interconnection between two interfaces within the same compo-
nent. [3] [4]. The transparent bridge is currently supported within Kactus2, while the
opaque bridges are considered as transparent bridges. The implementation for resolving
the opaque bridges is still in development.

The visualization of the memory maps in the component editor of Kactus2 could be
improved further. Currently, the visualization only displays either all the memory maps
of the component, or a single memory remap within a memory map. Improvements to it
would include displaying all the memory remaps along with the memory maps. This
would help in the comparison in the placement of memory map items between memory
maps and memory remaps. The problem regarding this multi memory map –
visualization is centered on the space given for the memory map visualization. As seen
in Figure 2.4, there is limited space available. If the visualization would receive more
space, the memory remaps could be drawn next to their memory maps.

Figure 7.2 A suggestion for memory remap visualization.

55

One option to visualize the memory maps together with the memory remaps would be
to construct the visualization tree in the same manner as the component editor tree con-
structs the memory maps tree. This approach is shown in Figure 7.2. The memory
remaps are constructed under the memory map, with the memory map itself contained
within a default item. In the figure, the dma_rcmp and dma_rdac are memory remaps of
the dma_memmap memory map. The address blocks belonging to each memory remap
are placed under the containing memory remap and the registers are placed under their
respective address blocks.

56

8. CONCLUSIONS

This thesis presented the development methods and features developed for Kactus2 ver-
sion 2.8, and it has been considered a success. Compared to 2.7, 2.8 consists of approx-
imately 20 000 more lines of code. The preliminary version of the Kactus2 expression
editor was further improved and the expression parsing was incorporated to the genera-
tors. Independent industrial users have verified the correctness, completeness and usa-
bility of the new solutions.

The implementation of 2.8 did not face any serious setbacks, although some features
had to be cut off. The system memory map header generation contains some unresolved
issues related to the bridge and channel components.

One of the main intentions of Kactus2 is to provide the best user interface in its class.
According to the industrial users, 2.8 greatly improved the general usability compared
to the previous version.

The user interface of Kactus2 is evolving constantly. New features for improving the
usability are devised when upgrading parts of the old systems or creating and incorpo-
rating new ones. This is to ensure that Kactus2 is the most user friendly open source
tool for SoC and system design.

Although the listed features are developed specifically for Kactus2, it is possible to req-
use them in other IP-XACT based system design tools. Kactus2 is currently using the
1685-2009 IP-XACT standard with extension covering elements from the 1685-2014
standard. In the future, Kactus2 will be changed to fully support the latest IP-XACT
version.

One experimental approach is Kactus3D. Kactus3D offers a three dimensional approach
to the visualization of the SoC designs. A 3D view helps understanding large, hierar-
chical designs, instead of the current design, in which each level is in its own own 2D
view.

57

REFERENCES

[1] R.A. Bergamaschi, J. Cohn. The A to Z of SoCs. IEE/ACM International Con-
ference on Computer Aided Design. 10‒14 Nov. 2002. pp. 791 ‒ 798

[2] A. Kamppi, J-M. Määttä, L. Matilainen, E. Salminen, T.D. Hämäläinen.
Kactus2: Extended IP-XACT metadata based embedded system design environ-
ment. 2012 1st International Workshop on Metamodelling and Code Generation
for Embedded Systems, MeCoEs. 6p

[3] IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating and
Reusing IP within Tool Flows, IEEE Std 1685-2009. The Institute of Electrical
and Electronics Engineers, Inc. 18 Feb. 2010. 373 p.

[4] IEEE Standard for IP-XACT, Standard Structure for Packaging, Integrating and
Reusing IP within Tool Flows, IEEE P 1685/D5, The Institute of Electrical and
Electronics Engineers, Inc., 12 Sep. 2014, 510 p.

[5] E. Salminen, T.D. Hämäläinen, M. Hännikäinen. Applying IP-XACT in product
data management. 2011 International Symposium on System on Chip (SoC). 31
Oct 2011 – 2 Nov 2011 pp. 86‒91.

[6] Kactus 2 home page. [WWW] [Referenced on 16 Mar. 2015] Available at:
http://funbase.cs.tut.fi.

[7] A. Kamppi, L. Matilainen, J-M. Määttä, E. Salminen, T.D. Hämäläinen, M.
Hannikainen. Kactus2: Environment for Embedded Product Development Using
IP-XACT and MCAPI. 14th Euromicro Conference on Digital System Design
(DSD). 31 Aug 2011 – 2 Sept 2011. pp. 262 ‒ 265

[8] A. Kamppi. Library Management Implementation on Kactus2 IP-XACT tool.
Tampere University of Technology. Dec. 2012. 112 p. Available at:
http://dspace.cc.tut.fi/dpub/handle/123456789/21289

[9] Mentor Graphics Corporation. HDL Designer. WilsonVille, OR, USA. [WWW]
[Referenced on 24 June 2015] Available at:
http://www.mentor.com/products/fpga/hdl_design/hdl_designer_series

[10] Mentor Graphics Corporation. Lockheed Martin Space Systems Company Suc-
cess. WilsonVille, OR, USA. [WWW] [Referenced on 20 Oct 2015] Available
at: https://www.mentor.com/products/fv/success/lockheed_martin_fpga_success

[11] M-Files. [WWW] [Referenced on 25 June 2015]. Available at: https://www.m-
files.com/

58

[12] CSIR. Scineric Workspace. [WWW] [Referenced on 25 June 2015]. Available
at: http://scineric.csir.co.za/

[13] S. Abdi, Y. Hwang, L. Yu, H. Cho, I. Viskic, D. Gajski. Embedded System En-
vironment: A framework for TLM-based design and prototyping. Rapid System
Prototyping (RSP). 21st IEEE International Symposium on Rapid System Proto-
typing. 8‒11 June 2010. pp. 1‒7

[14] Magillem. [WWW] [Referenced on 25 June 2015]. Available at:
http://www.magillem.com

[15] ARM. Socrates Design Environment. [WWW] [25 June 2015]. Available at:
http://www.arm.com/products/system-ip/ip-tooling/socrates.php

[16] Xilinx. Vivado Design Suite. [WWW] [Referenced on 25 June 2015] Available
at: http://www.xilinx.com/products/design-tools/vivado.html

[17] Nivalis Solutions. IP Packager and Design assembly. [WWW] [Referenced on
25 June 2015] Available at: http://nivalissolutions.com/

[18] EDAUtils. IP-XACT solution. [WWW] [Referenced on 25 June 2015]. Availa-
ble at: http://www.edautils.com/ip-xact.html

[19] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose, C. Zis-
sulescu and E. Deprettere. Daedalus: Toward composable multimedia mp-SoC
design. Design Automation Conference 2008, DAC 2008, 45th ACM/IEEE. 8‒13
June 2008. pp 574‒579

[20] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone and A. Sangiovan-
ni-Vincentelli. Metropolis: an integrated electronic system design environment.
Computer, vol. 36, Issue 4. April 2003. pp. 45‒52

[21] C. Haubelt, T. Schlichter, J. Keinert and M. Meredith. SystemCoDesigner: Au-
tomatic design space exploration and rapid prototyping from behavioral models.
Design Automation Conference, 2008, DAC2008, 45th ACM/IEEE. 8‒13 June
2008. pp 580‒585

[22] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludwig, S. Neuendorffer, S. Sachs
and Y. Xiong. Taming Heterogeneity – The Ptolemy approach. Proceedings of
the IEEE, vol. 91, Issue 1. Jan 2003. pp. 127‒144

[23] Synopsys. Corebuilder. [WWW] [Referenced on 25 June 2015] Available at:
http://www.synopsys.com/dw/ipdir.php?ds=core_builder

59

[24] Microsoft. Excel. [WWW] [Referenced on 31 July 2015] Available at:
https://products.office.com/en-us/excel

[25] J. Nielsen. 10 Usability Heuristics for User Interface Design [WWW] [Refer-
enced on 8 June 2015]. 1 Jan 1995. Available at:
http://www.nngroup.com/articles/ten-usability-heuristics/

[26] Kactus2: The Library and VLNV. Tampere University of Technology. 14 Nov.
2013. Available at: http://funbase.cs.tut.fi/doc/Kactus2_vlnv.pdf

[27] Mentor Graphics Corporation. ModelSim. WilsonVille, OR, USA. [WWW]
[Referenced on 15 June 2015] Available at:
http://www.mentor.com/products/fv/modelsim/

[28] IEEE Standard VHDL Language Reference Manual, IEEE Std 1076-2008 (Revi-
sion of IEEE Std 1076 – 2002), The Institute of Electrical and electronics Engi-
neers, Inc. 2009. 626 p.

[29] Multicore Communications API working group [WWW] [15 June 2015] Availa-
ble at: http://www.multicore-association.org/workgroup/mcapi.php

[30] Mentor Graphics Corporation. PADS. WilsonVille, OR, USA. [WWW] [Refer-
enced on 15 June 2015] Available at: http://www.pads.com

[31] Microsoft. Microsoft Visual Studio 2010 [WWW] [Referenced on 16 June
2015]. Available at:
https://msdn.microsoft.com/en-us/library/dd831853%28v=vs.100%29.aspx

[32] Whole Tomato software. Visual Assist [WWW] [Referenced on 16 June 2015]
Available: http://www.wholetomato.com/

[33] Qt. [WWW] [Referenced on 1 Apr. 2015] Available at: http://www.qt.io/

[34] Business Wire. Handheld 3d imaging system for medical applications relies on
Qt Commercial. Virtual-Strategy Magazine, 8 May 2012. [WWW] [Referenced
on 30 June 2015] Available at:
http://www.virtual-strategy.com/2012/05/08/handheld-3d-imaging-system-
medical-applications-relies-qt-commercial#axzz3eXfwTFP9

[35] M. Fowler. GUI Architectures. 18 July 2006. [WWW] [Referenced on 14 Aug.
2015] Available at: http://martinfowler.com/eaaDev/uiArchs.html

[36] Redmine. [WWW] [Referenced on 17 Mar. 2015] Available at:
http://www.redmine.org

60

[37] Source Forge. [WWW] [Referenced on 18 Mar. 2015] Available at:
http://sourceforge.net/

[38] Kactus2 Project Management. [WWW] [Referenced on 29 June 2015] Available
at: http://kactus2.cs.tut.fi/

[39] M. Teuho, E. Pekkarinen, T. Hämäläinen. Semantic analyzing expression editors
in IP-XACT design tool Kactus2. 14th Symposium on Programming Languages
and Software Tools (SPLST). 9 – 10 Oct 2015, Tampere, Finland.

	1. INTRODUCTION
	2. KACTUS2
	2.1 Design principles
	2.1.1 Tools related to Kactus2

	2.2 User interface
	2.2.1 Tools of Kactus2

	2.3 Component editor
	2.3.1 Memory maps editor
	2.3.2 Views editor

	2.4 Design editor
	2.5 Generators
	2.5.1 Kactus2 generators
	2.5.2 Plugin generators
	2.5.3 Source analyzers
	2.5.4 Import Plugins

	2.6 Summary

	3. DEVELOPMENT ENVIRONMENT
	3.1 Microsoft Visual Studio 2010
	3.1.1 Visual Assist

	3.2 Qt 5.2.0
	3.2.1 Model / View / Delegate
	3.2.2 Signals and Slots
	3.2.3 Creating a tree model with Qt

	3.3 Redmine
	3.4 Source forge

	4. REQUIREMENTS
	4.1 Feature #9: Memory map editor should show the edited item
	4.2 Bug #121: Show errors is not visible for all library items
	4.3 Feature #171: parameter usage
	4.3.1 Feature #177: Design level configuration

	4.4 Feature #180: Signal based configuration
	4.4.1 Feature #192: RemapStates and memoryRemap
	4.4.2 Feature # 193: Tabs for memory remaps

	4.5 Feature #206: Scrollable ribbon
	4.6 Feature #214: Support parameter IDs in Verilog generation
	4.7 Feature #216: Support parameter IDs in HTML document generation
	4.8 Feature #217: Support parameter IDs in generated header files
	4.9 Feature #221: Add a vendor extension for Kactus2 version
	4.10 Feature #222: Locked column in parameter editor
	4.11 Feature #236: Group configurable element values
	4.12 Feature #237: Product level view configuration tool

	5. IMPLEMENTATION
	5.1 Memory map editor should show the edited item
	5.2 Errors are not visible for all library items
	5.3 Parameter usage
	5.3.1 Design level configuration

	5.4 Memory remap and remap states
	5.5 Scrollable ribbon
	5.6 Parameter ID support
	5.6.1 Verilog Generator
	5.6.2 HTML Document Generator
	5.6.3 Memory map Header Generator

	5.7 Locked column in parameter editor
	5.8 Product level view configuration tool

	6. ANALYSIS
	7. KACTUS2 VERSION 2.8 VERIFICATION
	7.1 Expressions in Kactus2
	7.2 Unresolved issues

	8. CONCLUSIONS

