
NGUYEN KHAC HIEU
REVIEW OF SYSTEM DESIGN FRAMEWORKS

Master of Science thesis

Examiner: Prof. Timo D. Hämäläinen
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 9th September 2015

i

ABSTRACT

NGUYEN KHAC HIEU: Review of System Design Frameworks
Tampere University of Technology
Master of Science thesis, 88 pages
September 2015
Master’s Degree Programme in Electrical Engineering
Major: Wireless Communication Systems and Circuits
Examiner: Prof. Timo D. Hämäläinen
Keywords: System design framework, SoC, Methodology, Synthesis

In the last decade, the enormous development of the semiconductor industry with
ever-increasing complexities of digital embedded systems and strong market compe-
tition with fast time-to-market and low design cost demands have imposed serious
difficulty to a conventional design method. Therefore, there emerges a new design
flow named model-based system design, which is based on high-level abstraction
models, heavy design automation, and extensive component reuse to increase pro-
ductivity and satisfy the market pressure.

This thesis presents reviews of ten high level academic system design frameworks
and tools that have been proposed and implemented recently to support the model-
based design flow, namely System-on-Chip Environment (SCE), Embedded Sys-
tem Environment (ESE), Metropolis, Daedalus, SystemCoDesigner (SCD), xPilot,
GAUT, No-Instruction-Set Computer (NISC), Formal System Design (ForSyDe),
and Ptolemy II. These tools are then compared to each other in various aspects
comprising objective, technique, implementation and capability. Following that,
three design flow frameworks, including ESE, Daedalus, and SystemCoDesigner, are
experimented for their real usage, performance and practicality.

The frameworks and tools implementing the model-based design flow all show promis-
ing results. Modelling tools (ForSyDe, and Ptolemy II) can sufficiently capture a
wide range of complicated modern systems, while high-level synthesis tools (xPilot,
GAUT, and NISC) produce better design qualities in terms of area, power, and cost
in comparison to traditional works. Study cases of design flow frameworks (SCE,
ESE, Metropolis, Daedalus, and SCD) show the model-based method significantly
reduces developing time as well as facilitates the system design process. However,
most of these tools and frameworks are being incomplete, and still under the exper-
imental stage. There still be a lot of works needed until the method can be put into
practice.

ii

PREFACE

The work of this Thesis has been carried out at the Faculty of Computing and
Electrical Engineering, at Tampere University of Technology in Finland.

First and foremost, I would like to gratefully thank my supervisor Prof. Timo D.
Hämäläinen for giving me an opportunity to work on the topic, and for his patient
guidance and invaluable feedback during my thesis study.

Many thanks to all my friends here in Tampere who have spent more than two
memorable and enjoyable years with me. Thank you for your help, sharing and
precious friendship.

Finally, I also would like to express my profound gratitude to my parents and my
special one for their love, support and understanding during my Master study.

Tampere, September 2015

Nguyen Khac Hieu

iii

TABLE OF CONTENTS

1. Introduction . 1

1.1 Background . 1

1.2 Thesis Outline . 2

2. System-on-Chip Design . 4

2.1 System Design Terminology and Concept 4

2.2 Development of System Design methodology 5

2.3 Model-based design methodology . 8

2.3.1 Application modeling . 9

2.3.2 Platform Definition . 9

2.3.3 Mapping . 10

2.3.4 Evaluation and Refinement . 11

2.3.5 Implementation . 12

3. System design framework review . 14

3.1 The System-on-Chip Environment . 14

3.2 Embedded System Environment . 21

3.3 Metropolis . 26

3.4 Daedalus . 28

3.5 SystemCoDesigner . 34

3.6 No-Instruction-Set Computer . 38

3.7 xPilot . 43

3.8 GAUT . 45

3.9 Formal System Design . 46

3.10 Ptolemy II . 49

4. System design framework comparison . 54

4.1 Comparing metrics . 54

4.2 Tools and framework comparison . 55

5. Experimentation . 66

iv

5.1 ESE . 66

5.2 Daedalus . 71

5.3 SystemCoDesigner . 75

6. Conclusions . 81

Bibliography . 83

v

LIST OF FIGURES

2.1 System design methodologies . 6

2.2 System design schedules . 7

2.3 Model-based design steps . 8

2.4 An example application model . 9

2.5 An example platform model . 10

2.6 An example mapping description . 11

2.7 A system TLM . 12

2.8 A cycle-accurate implementation . 13

3.1 System-on-Chip Environment GUI 14

3.2 SCE general design flow . 15

3.3 SCE architecture . 15

3.4 SCE refinement-based design flow . 17

3.5 Baseband example refined models . 19

3.6 Baseband example Pin-accurate model 20

3.7 Embedded System Environment GUI 22

3.8 ESE Environment . 22

3.9 ESE front-end . 23

3.10 ESE back-end . 23

3.11 MP3 Decoder and mapping decision 24

3.12 Comparison between manual design and ESE 24

3.13 Development time . 25

LIST OF FIGURES vi

3.14 Metropolis framework . 26

3.15 Three processes communicate through a medium modeled by Metropo-
lis metamodel . 26

3.16 Architecture metamodel . 27

3.17 Daedalus framework . 28

3.18 Sesame model layers . 29

3.19 ESPAM HW and SW implementation 31

3.20 Structure of CC and CB . 32

3.21 Point-to-Point network implementation 32

3.22 Procees network model of Motion JPEG 33

3.23 Daedalus result comparison . 33

3.24 SystemCoDesigner flow . 34

3.25 Actor-oriented model . 35

3.26 Actor HW implementation . 35

3.27 Motion-JPEG block diagram . 37

3.28 NISC design flow . 38

3.29 NISC architecture . 39

3.30 NISC control word . 39

3.31 IP block diagram and its GNR description 41

3.32 CW with dictionary compression . 42

3.33 xPilot design flow . 44

3.34 Distributed register-file micro-architecture 44

3.35 ForSyDe system model . 47

3.36 Basic process constructors . 48

vii

3.37 ForSyDe signal . 48

3.38 Process implementation . 49

3.39 A model in Ptolemy . 49

3.40 Ptolemy GUI Vergil . 50

3.41 The gas-powered generator top model 51

3.42 The SDF Controller model . 51

3.43 The FSM Supervisor model . 51

3.44 The Generator model . 52

3.45 Result of the model . 53

5.1 ESE GUI . 67

5.2 JPEG encoder . 68

5.3 JPEG encoder implementations in ESE 69

5.4 M1 statistic performance graphs . 70

5.5 M3 statistic performance graphs . 71

5.6 Sobel filter . 72

5.7 Platform and mapping description . 73

5.8 Sobel PPN visual representation . 73

5.9 Statistic information . 74

5.10 SystemCoDesigner main tools . 76

5.11 H264 video codec . 77

5.12 Total design point after 6 iterations 79

5.13 Latency, power, and area reports of Pareto design points 79

viii

LIST OF TABLES

1.1 SoC Consumer Design Productivity Trends 1

3.1 Baseband modeling and simulation result [44]. 21

3.2 Baseband communication network . 21

3.3 MP3 decoder generation and simulation time 25

3.4 TLM estimation error . 25

3.5 Simulation and board implementation result 28

3.6 Resource utilization of design using 4 MicroBlaze processors 34

3.7 Processing Time . 34

3.8 Design space exploration . 38

3.9 Design space exploration . 38

3.10 MicroBlaze and simple NISC . 42

3.11 Comparison between MicroBlaze and simple NISC 43

3.12 Compasion between MicroBlaze, NISC-based MIPS, and NISC MP3
decoder customized datapath . 43

3.13 xPilot Implementation reports . 45

3.14 GAUT Implementation report . 46

3.15 SystemC implementation of ForSyDe 49

4.1 Framework summaries . 58

4.2 Framework resources . 59

4.3 Comparison of purposes and targets 60

4.4 Comparison of architecture exploration and model accuracy 61

ix

4.5 Comparison of case study . 62

4.6 Comparison of model and design language 65

5.1 Design results . 70

5.2 Feasible mappings of fundamental H264 video coder blocks 78

5.3 Attribute of PE components . 78

5.4 Attribute of buses . 78

5.5 Pareto design points mapping . 80

x

LIST OF ABBREVIATIONS AND SYMBOLS

API Application Programming Interface
ASIC Application-Specific Integrated Circuit
CE Communication Element
CPU Central Processing Unit
CT Continuous Time
DCT Discrete Cosine Transform
DMA Direct Memory Access
DRAM Dynamic Random Access Memory
DSP Digital Signal Processor
DT Discrete Time
FIFO First In First Out
FPGA Field Programmable Gate Array
FSM Finite State Machine
GUI Graphic User Interface
HAL Hardware Abstraction Layer
HDL Hardware Description Language
HIBI Heterogeneous IP Block Interconnection
HW Hardware
IC Integrated Circuit
IP Intellectual Property
KPN Kahn Process Network
MoC Model of Computation
MPSoC MultiProcessor System-on-Chip
OS Operating System
PE Processing Element
PN Processing Network
QoS Quality of Service
RAM Random Access Memory
RISC Reduced Instruction-Set Computer
ROM Read-Only Memory
RTL Register Transfer Level
RTOS Real-Time Operating System
SDF Synchronous Data Flow
SoC System-on-Chip
SRAM Static Random Access Memory
SW Software

xi

TLM Transaction Level Model
VHDL VHSIC Hardware Description Language
XML Extensible Markup Language

1

1. INTRODUCTION

1.1 Background

Due to the rapid growth of semiconductor technology, especially in scaling feature
of IC fabrication, and endlessly increasing demand of computation power, energy
reduction, compactness, and reliability for implementing new complex applications,
many systems has recently been built around a single chip called SoC, which includes
highly integrated IP-blocks (multiple processors, HW accelerators, memory,...) and
complicated interconnection. The system complexity, together with rising time-to-
market pressure, now presents a great challenge, which is seemed infeasible for the
current design techniques.

A 2011 report of the International Technology Roadmap for Semiconductors (ITRS)[4],
shown in Table, predicted that the total logic size of SoC would be almost triple in
this year 2015, in comparison to the year 2011, and could reach up to more than 38
times in 2026. The report also expected a percentage of design reuse would be 78%
and 98% for year 2015 and 2026, respectively. Even with the enormous design reuse
rate, the report showed that the productivity must be about 16 and 25 times higher
in 2026 for new design and reused design to catch up to the manufacturing. This
situation requires fundamental change in the design method, in which design should
be carried out at higher abstraction level, and automation should be extensively
utilized.

Table 1.1 SoC Consumer Design Productivity Trends [4].

Years 2011 2013 2015 2017 2019 2021 2023 2025 2026
SoC-CP Total logic size (nor-
malized to 2011) 1 1.79 2.96 4.70 7.45 11.65 19.56 31.23 38.10

Required % of resuse design 54% 62% 70% 78% 86% 92% 95% 97% 98%
Require productivity for new
design (normalized to 2011) 1 1.6 2.5 3.72 5.51 8.17 13.34 20.89 16.48

Require productivity for
reused design (normalized to
productivity for new design
2011)

1 1.6 2.5 3.72 5.51 8.17 13.34 20.89 25.24

1.2. Thesis Outline 2

Model-based design methodology has been introduced as a solution to the design
challenges. In this design flow, application and platform are modeled at high-level
abstraction level for analysis and exploration, then are gradually refined to lower-
level implementation with pre-designed components. The methodology demands
new, highly automatic frameworks and tools to efficiently bridge the gap between
the high-level abstraction and the implementation. Numerous academic researches
have been conducted on this, and several approaches have recently been proposed
and implemented. Some present unified design environments, which cover the whole
design flow from modelling, simulation, synthesis, or even verification ([44], [2],
[7], [52]). Others focus on one specific aspect of the design steps, like high-level
synthesis, which automatically generate HW and SW implementations from abstract
models ([30], [16], [10]), or syntax and semantic of languages and rules for high-level
modeling and simulation ([47], [23]).

This Thesis presents and compares ten promising academic high-level system design
frameworks and tools, namely System-on-Chip Environment (SCE), Embedded Sys-
tem Environment (ESE), Metropolis, Daedalus, SystemCoDesigner (SCD), xPilot,
GAUT, No-Instruction-Set Computer (NISC), Formal System Design (FSD), and
Ptolemy II. The comparison is done on objectives, implementations, techniques,
and capabilities of each framework and tool. Three design flow frameworks includ-
ing ESE, Daedalus, and SystemCoDesigner are then chosen for experimentation to
experience their real usage, performance and practicality. ESE is tested with JPEG
encoder, Daedalus with Sobel filter, and SystemCoDesigner with H264 video codec.
The thesis intends to provide a general view of currently existing high-level sys-
tem design frameworks and tools, which can help designers choose the proper ones
for their purposes as well as give developers ideas and directions for future tools
development.

1.2 Thesis Outline

The second chapter provides background knowledge about system design. It intro-
duces several commonly used terminologies and concepts, and presents a trend of
design methodology to give a reason about the emergence of a new model-based
design flow. The design steps of this new method are then given in details.

Chapter 3 shows reviews and summaries of ten academic system design frameworks
and tools supporting the new model-based design flow, while Chapter 4 categorizes
and compares them with several pre-defined metrics.

The following chapter presents the experimentation of three chosen design flow

1.2. Thesis Outline 3

frameworks, namely ESE, Daedalus, and SCD. It provides practical, detailed infor-
mation about each framework structure, installation, and usages, and performance.

Chapter six gives a conclusion for the Thesis.

4

2. SYSTEM-ON-CHIP DESIGN

This chapter presents terminologies and concepts used in SoC design, developing
trend of system design techniques, and a detailed design flow of the most mod-
ern design method - model-base design. The requirement of frameworks and tools
support is also highlighted along the design steps.

2.1 System Design Terminology and Concept

The terminologies and concepts frequently used throughout the following chapters
are listed below:

• IP: a pre-designed, pre-verified, reusable, and well-documented HW or SW
design block with well-defined functionality and interface.

• System: an integrated entity of many interacting components to perform a
predefined behavior.

• System-on-Chip: an electronic system formed by integrating distinct elec-
tronic components on a single chip. SoC contains HW IP-blocks and intercon-
nections between them. IP-blocks can be processors, on-chip memories and
memory controllers, interface for communication, Analog-to-Digital/Digital-
to-Analog conversion, or accelerators (video encoder, graphics processor). In-
terconnection can include buses, bridges and routers.

• Platform: a SoC with specific HW IP-blocks and SWs that can be used to
implement some applications. The platform can be changed in software (pro-
grammable platform) or hardware (configurable platform) to satisfy particular
purposes.

• Model of Computation: There are several definitions of MoC [37, 39]. Ba-
sically, MoC is an abstracted, formal description of a system’s behavior. It
usually includes objects (pieces of behavior), and composition rules (object
interactions and ordering of events). MoC has formal definitions and seman-
tics for functionality, order of execution, and separation of computation and

2.2. Development of System Design methodology 5

communication. Common MoCs include KPN, Dataflow (DF), Finite State
Machine, Statecharts, Discrete Event.

• Mapping: to specify implementation of an application or a part of its (tasks)
on a particular ready-made component.

• Synthesis: to create an implementation by combining low level components
or changing structure of a general purpose component.

• Scheduling: to specify orders and timings of tasks and communication exe-
cutions.

• Design Space Exploration: all the possible combinations between compo-
nent allocation, mapping and scheduling are analyzed regarding some selected
objectives (cost, performance, power) to determine the most suitable design
implementation.

• Register Transfer Level: a behavioral abstraction, in which time accuracy
is clock cycle, system is described by register-transfer components, and com-
munication unit is digital signal (0 or 1).

• Transaction Level Model: a behavioral abstraction, in which time accu-
racy is approximate timing, system is described by processes and channels,
communication unit is data transfer event called transaction.

2.2 Development of System Design methodology

A system design flow consists of both HW and SW development with a repetitive
sequence of specification, implementation, verification and testing processes. The
traditional method depicted in Figure 2.1(a) is hardware-based approach. A plat-
form is usually specified first with types of components and communication archi-
tecture regarding application features and desired requirements (performance, cost,
power). Decisions made during this stage are mainly based on designer’s experience
and an application profile. The platform may be an update of a legacy design with
added components to support the new application. The platform is then realized
and verified by HW engineers at low RTL model to create a board, which is de-
livered to SW developers for board support packages (BSP) development (drivers,
firmware). Finally, the application is ported into the board with BSP to create a
product prototype. This design flow experiences long developing time due to a se-
quentiality and dependency of HW and SW developments, as shown in Figure 2.2.
Any change or error occurs on the late design stage may involve modification of all

2.2. Development of System Design methodology 6

(a) Board-based system design flow

(b) Virtual-based platform system design flow

TLM
Gen. TLM

ASIC/
FPGA
Tools

Board
+ BSP
+ App

SW Gen.

HW Gen.
Prototype

Platform

C/MoC

Application
Developer

SW Decisions

HW Decisions

(c) Model-based system design flow

Figure 2.1 System design methodologies [25].

the previous stages, which cost enormous time and effort. Moreover, the separation
between HW and SW cause poor interaction and understanding between the two
teams, which can lead to wasted-time arguments and non-optimal final designs.

A solution to the shortcomings in the traditional board-based methodology is pre-
sented in a virtual-based platform design process. As illustrated in Figure 2.1(b),
in this methodology, instead of a board, a model of platform called virtual platform
is first developed and provided for SW development. Because the model is imple-
mented at a higher level than RTL with many detailed platform features abstracted
away, less time and effort are required to develop it than a concrete board. A vir-
tual platform usually contains programmable models of processors and functional
models of HW components. SW and HW can now be developed in parallel, which
results in better interaction between them and shorter overall developing time. The
virtual-based platform design flow, however, still contains a couple disadvantages.
The additional work of virtual platform modeling as well as HW and SW develop-
ment are mainly done manually, which is time-consuming and error-prone. Besides,
there is still no quantitative evaluation method for platform definition, and newly
rising multi-processor platforms may require old applications to be rewritten to fully
take advantage of their computing power.

2.2. Development of System Design methodology 7

(a) Board-based design schedule

(b) Model-based system design flow

Figure 2.2 System design schedules [35].

To overcome these issues, a new design methodology introduced recently has com-
pletely re-defined the system design flow. The main idea of this methodology is to
raise design work to higher abstraction level, and extensively exploit automation
and design reuse to increase productivity and design quality.

The model-based methodology, depicted in Figure 2.1(c), employs both high-level
models of functionality and platform for system development. An application mod-
eled with appropriate MoCs is combined with a platform model to create an inter-
mediate executable system model, usually TLM, which can be evaluated through
simulation. The design decision can now be made with certain confidence based on
a numerical result rather than experience. This evaluation model of a system also
opens a capability of early design space exploration, in which many implementation
alternatives can be estimated with much less time and effort. Well-defined semantic
TLM can also be gradually refined down to final implementation with SW and HW
generated from component libraries. Application modelling, TLM creation and re-

2.3. Model-based design methodology 8

finement, and HW and SW generation all require supports from various high level
frameworks and tools.

2.3 Model-based design methodology

The detailed design steps of model-based methodology, depicted in Figure 2.3, in-
clude 5 main processes,namely application modeling, platform definition, mapping,
evaluation and refinement, and implementation.

Specification

Instruction set simluator

Mapping

Mapping
description

Implementation

HW/Interface
generation

SW
generation

HW
library

Application modeling

Application
model

Platform definition

PLatform
model

Evaluation and Refinement

TLMs

SW
library

Binary
Image

HDL code

RTL simulator Board

Final Product

System synthesis

Optimization/Exploration

Figure 2.3 Model-based design steps.

2.3. Model-based design methodology 9

2.3.1 Application modeling

The application modeling specifies a functionality of a system using well defined
MoCs. A heterogeneous model with a combination of various MoCs is usually re-
quired to sufficiently describe real complex systems. Modeling languages are often
C/C++ or its subsets and variants. The choice of MoCs and language mainly de-
pends on the application domain, support of available design tools, and existing
models. There is distinguish separation between computation and communication
in the application model. Data processing units are described by processes, which
transfer data to each other via channels or shared variables. This separation is
beneficial because it provides flexibility for distributing processes of an application
on a multi-core platform, and enables independent development, modification, and
optimization of computation and communication architecture. Application model is
untimed. Sometimes, an application model is executed with instrumentation codes
or a profiling tool to obtain computation timing estimation of each process, which
is later served as a judgement for mapping decisions.

Figure 2.4 An example application model described in Process State Machine (PSM) MoC
with 4 processes P1, P2, P3, P4. Pairs of P1-P2 and P2-P4 communicate via channel C1
and C2, respectively, while P3 and P2 share data via variable v1 [35].

2.3.2 Platform Definition

Platform definition is to choose applicable components, which provide services to
carry out execution of a desired application. The components are HW parts (pro-
grammable processors, HW IP, buses, memories,...) and SW parts (OS) selected
from libraries. Each component is often associated with high level model specifying
functionality and several attributes such as computation or communication delay,
area, power for mapping and evaluating. The platform model describes a structure
of a system including allocated components and connections between them. It is

2.3. Model-based design methodology 10

usually written in a declarative language like XML. The initial platform definition
is usually simple and incomplete, and more detailed implementation will be added
or generated through a sequence of decisions during the following developing stages.

Figure 2.5 An example platform model is composed of a memory, 2 processors CPU1,
CPU2 and a HW as a PEs, two bus segments connected via a bridge, and a arbiter for
controlling a shared bus. Each processor contains OS for multitask scheduling [35].

2.3.3 Mapping

Application model and platform model must be combined to form an unified model
of a system. The combination is specified by a mapping description, in which ele-
ments of the application model are partitioned into components of a platform model.
Processes are mapped to PEs (programmable processors or HW IPs), channels are
mapped to CEs comprised of buses, arbiters, bridges, and variables are mapped
to memories. Multiple processes can be mapped into one processor with support
of scheduling mechanism (OS or static scheduling), and multiple channels can be
mapped to a shared bus with support of arbitration. Some mapping restrictions are
usually taken into account during this step. A restriction can be feasible mapping
components of each process, a restricted number of mapped processes of a processor,
or a limited address space of a bus.

2.3. Model-based design methodology 11

Figure 2.6 An example mapping description, in which variable v1 is mapped into Mem,
P1 and P2 are mapped into CPU1, P4 into CPU2, and P4 into HW IP. Channel C1 is
mapped into a route based on shared bus 1, channel C2 into a route through bus 1 and bus
2 via bridges [35].

2.3.4 Evaluation and Refinement

Given the application model, platform definition with associated component models,
and mapping description, a high level executable model of a system - TLM - can be
generated. It is a timing-estimated model, which provides a fast simulation speed
while still maintains sufficient accuracy for system evaluation. TLM plays a main
role in the model-based system design methodology. It provides the estimation of
various metrics (performance, power, area) for system optimization and exploration,
and is a main subject of system development.

Metric estimation of a TLM is compared against specified system requirements.
These typically are real time constraints of automotive, and streaming multimedia
systems, or power and area utilization constraints of portable devices. Any unsat-
isfied constraint requires modification back on previous design steps, such as choos-
ing different components in platform definition, or changing the mapping scheme,
or even editing application behavior. Due to high level developing environment,
changes are effortless and quickly visible on the system model for further evalua-
tion.

Platform definition and mapping process are often done manually, depending on
experience of designers or legacy designs. However, due to the complexity of modern
systems, the design space is usually enormous with thousands of feasible alternatives.
Therefore, it is almost impossible to achieve the optimal design through brute-force
work. There is a necessity for automatic tools, which can iterate the sequence of
evaluation-allocation-mapping to figure out the best design solution. Those tools

2.3. Model-based design methodology 12

usually employs heuristic algorithms, which use profiling of an application model and
attributes of component models to generate Pareto-optimal design points regarding
multiple desired constraints. Designers now have only few best choice for further
investigation.

System development in model-based methodology is a sequence of TLM refinements.
The latter model is refined from the previous ones, down to lower abstraction level
with more detailed implementation, reflecting a more accurate model of a system.
The TLM transformation mostly occurs at communication modeling with more net-
working layer added after each refinement.

TLM generation and refinement is expected to be implemented automatically in
model-based methodology. Therefore, the semantics of TLM is required to be clear
and well defined. Besides, this also can enable automatic synthesis from TLM to
implementation with HW RTL description and compilable SW code, and formal
verification through the whole design flow. TLM is commonly written in system
level design languages like SpecC or SystemC.

Figure 2.7 A system TLM [35].

2.3.5 Implementation

Final TLM will be synthesized to cycle-accurate implementation model. The syn-
thesis process includes SW synthesis, and HW and Interface synthesis.

SW synthesis is composed of application code generation and HW-dependent code
generation. The application written in system-level design languages of TLM is
converted to C code. The suitable functions or data structures implementing data
transfers between processes of application also are generated. HW-dependent SW

2.3. Model-based design methodology 13

including drivers, RTOS, communication scheduling, control and synchronization
mechanism are extracted from the SW libraries. HW-dependent SW generation
also creates build and configuration files for correctly compiling and linking SW to
the platform. All the codes are then compiled into binary images.

HW implementations are usually described in HDL codes. Some component are
designed and verified in advance, and only needed to be allocated from the HW
library. Others need to be generated on-the-fly by high-level synthesis tools, which
convert an application behaviour in C into RTL description. HW synthesis also
generate the connections and interfaces between components.

The generated binary images and HDL description are ready for final cycle-accurate
simulation in an instruction set simulator and a RTL simulator, or to be implemented
on a prototyping board. If everything is satisfied, a final product is released to the
market.

Figure 2.8 A cycle-accurate implementation is synthesized from TLM [35].

14

3. SYSTEM DESIGN FRAMEWORK REVIEW

The model-based design methodology requires support and automation of frame-
works and tools for various tasks of its design steps. These include high-level mod-
eling and simulation, system TLM synthesis, model refinements, high-level HW
synthesis and SW generation. This chapter presents reviews of promising design
frameworks and tools been recently developed in academia for the purpose of full
realization of the model-based design flow.

3.1 The System-on-Chip Environment

Figure 3.1 System-on-Chip Environment GUI [44].

The System-on-Chip Environment (SCE) is the system-level design framework de-
veloped at the Center for Embedded Computer Systems, University of California,
Irvine. SCE follows the Specify-Explore-Refine principle, covering the communica-
tion and computation refinement steps of model-based system design flow.

3.1. The System-on-Chip Environment 15

As illustrated in Figure 3.2, starting with the specification model describing a sys-
tem functionality written in SpecC, the SCE automatically generates a sequence of
TLMs, namely architecture, scheduling, network and communication, based on var-
ious decisions made by users through successive design steps. The final TLM model
is then synthesized to a cycle-accurate implementation model, which is composed of
HW RTL descriptions in Verilog and target processor binary images of the SW.

Figure 3.2 SCE general design flow [44].

Model Refinement

Intermediate SIRDatabase
SIR

Model n SIR

Model n+1 SIR

Synthesis Plugin

GUI

Design decisions

Component Import

Shell Scripting

Design data

Project
XML

SpecC Compiler

Model Verification

SpecC
source

SpecC Compiler

Profiling

Design decisions

Design data

Estimation

Import Export

Exec

SpecC
source

Import Export

Simulate

Exec

Simulate
Shell
Scripts

Figure 3.3 SCE architecture [44].

SCE architecture is described in Figure 3.3, including:

• Graphical User Interface: several displays, dialogs, menus and toolbars, which
facilitate the design process as well as provide visuality for analyzing estimation
result (Figure 3.1).

3.1. The System-on-Chip Environment 16

• Scripting Interface: own Python interpreter based shell with several command-
line utilities, which provide full access and control to the SCE design flow with
opportunities for automation via scripts or Makefiles.

• Simulation: all models in SCE are written in SpecC, which can be executed
using SpecC compiler and simulator.

• Profiling: linear time re-targetable profiling tool, which supports multiple lev-
els and metrics estimation. Profiling result can also be back-annotated into
the output model of refinement.

• Databases: include PEs, CEs, operating system models, buses and other com-
munication protocols, which are used for exploration and refinement stages.
Custom IPs and SW components are also available for synthesis. All these
components are SpecC objects.

• Model Generation and Refinement: several refinement tools (architecture re-
finement, OS refinement, network refinement, communication refinement, and
SW and HW synthesis) are used to automatically generate output models
reflecting the decisions made in the input models.

• Verification: formal Model Algebra based verification tool is available.

SCE implements the top-down refinement-based design flow from the abstract spec-
ification to implementation model, as illustrated in Figure 3.4. The design steps
include:

• Architecture Exploration: an input is specification model. Components (pro-
cessors, memories) are allocated from the databases to form a desired archi-
tecture. The processes and variables are then mapped to allocated PEs and
memories. Channels are implemented in PEs as client-server, remote proce-
dure calls. The output model is automatically generated by an architecture
refinement tool.

• Scheduling Exploration: processes of processors are scheduled using abstract
RTOS model written on top of SpecC. This supports task management, real-
time scheduling, preemption, task synchronization, and interrupt handling.
The output model is also generated automatically by a scheduling refinement
tool.

• Network Exploration: network topology is defined, and communication chan-
nels are mapped to bus networks and allocated CEs (bridges, transducers,...).

3.1. The System-on-Chip Environment 17

A refinement tool generates the output model with communication protocol
top layers in each PE and CE.

• Communication Synthesis: communication in the input model is a set of logical
links. Bus parameters (address, interrupt assignment) are assigned by users
in this step. A communication refinement tool generates an output model, in
which low-level communication layers in PEs and CEs are inserted to imple-
ment synchronization, addressing, and media access. The output model can
be pin-accurate model (PAM) or fast-simulating TLM.

• RTL Synthesis: all or parts of the design can be synthesized to RTL descrip-
tions in Verilog. A RTL-specific profiling tool is also available for analyzing
delay, power, variable lifetime.

• SW Synthesis: ANSI-C code generated from the high-level design language
is compiled and linked to selected RTOS on each processor to form a binary
image. The binary can be used for cycle-accurate instruction-set simulation
or implementation on real HW.

Architecture model

Specification model

Architecture Exploration

PE Allocation

Beh/Var/Ch Partitioning

Scheduled model

Scheduling Exploration

Static Scheduling

OS Task Scheduling

Network model

Network Exploration

Bus Network Allocation

Channel Mapping

Communication model

Communication Synth.

Bus Addressing

Bus Synchronization

PE
Database

CE
Database

Bus
Database

OS
Database

G
U
I
/
S
c
ri
p
ti
n
g

TLM

RTL Synthesis

Datapath Allocation

Scheduling/Binding

SW Synthesis

Code Generation

Compile and Link

RTL
DB

SW
DB

Implementation model

Verilog
Verilog
Verilog

Binary
Binary
Binary

Figure 3.4 SCE refinement-based design flow [13].

3.1. The System-on-Chip Environment 18

SCE has been used to design a mobile phone baseband platform comprised of JPEG
encoder and voice encoder/decoder (vocoder) subsystem [44]. The specification
model of the system in Figure 3.5(a) describes two subsystems containing nested
and pipelined task loops communicating via abstract message-passing channels. The
JPEG encoder sends messages to the vocoder via the Ctrl channel.

After Architecture Exploration and Scheduling Exploration steps, JPEG encoder
is partitioned to the ColdFire processor and the HW IP running DCT sub-task,
whereas concurrent speech encoding and decoding sub-tasks of the vocoder are im-
plemented on the DSP with OS layer. Additional custom HW coprocessor performs
heavy-processing codebook search sub-task of the encoder. Besides, there are DMA
for transferring images from camera to shared memory Mem, and a custom HW
I/O processor for buffering and framing vocoder speech and bit streams, as shown
in Figure 3.5(b).

The network is divided into two separate segments in network exploration step,
one for the JPEG encoder subsystem and one for the vocoder subsystem. These
two segments are statically routed via the transducer Tx - Ctrl. The details of the
network are listed in Table 3.2. The output models include TLM (Figure 3.5(c)) for
fast simulating and pin-accurate model (Figure 3.6) for further implementation.

The result of the design is summarized in Table 3.1. Refined models are generated
for a whole system, and for each subsystem separately. A test-bench contains si-
multaneously encoding and decoding 163 frames of speech while encoding 30 116x96
pixels JPEG pictures, and is simulated on 2.7GHz Linux workstation. The table
shows that all of the models are generated using automatic refinement tools within
only a few seconds, about 2.25 seconds on average. The accuracies of the models
converge through the design flow. There is no significant difference between the per-
formance from the scheduled model to the RTL-C model in both subsystems with
about 3.6% at worst in the JPEG encoder and around 6.7% in the vocoder.

3.1. The System-on-Chip Environment 19

(a) Specification model

(b) Scheduled Architecture model

(c) Network model

(d) Transaction level model (TLM)

Figure 3.5 Baseband example refined models [44].

3.1. The System-on-Chip Environment 20

F
ig

ur
e

3.
6

B
as

eb
an

d
ex

am
pl

e
P
in

-a
cc

ur
at

e
m

od
el

[4
4]

.

3.2. Embedded System Environment 21

Table 3.1 Baseband modeling and simulation result [44].

ColdFire subsystem DSP subsystem System

Model LOC
Simul.
time

JPEG
delay

LOC
Simul.
time

Vocoder
delay

LOC
Simul.
time

Refine.
time

Specification 1,819 0.02s 0.00ms 9,736 1.31s 0.00ms 11,481 2.25s
Architecture 2,779 0.03s 9.66ms 11,121 1.21s 8.39ms 13,866 2.56s 4.27s
Scheduled 3,098 0.02s 22.63ms 13,981 1.20s 12.02ms 17,020 2.00s 2.46s
Network 3,419 0.02s 22.63ms 14,319 1.22s 12.02ms 17,658 2.03s 1.24s
TLM 5,765 1.04s 24.03ms 15,668 27.4s 13.00ms 21,446 92.3s

1.02s
PAM 5,916 14.2s 24.02ms 15,746 34.8s 13.00ms 21,711 2,349s
RTL-C 7,991 14.9s 23.48ms 23.661 147s 12.88ms 33,511 2,590s

Table 3.2 Baseband communication network [44].

Channel
Network Link
Routing Addr. Intr. Medium

imgPam linkDMA 0x00010000 int7

cfBus
stripe[] Mem 0x0010xxxx -
hData

linkDCT 0x00010010 int1
dData

Ctrl
linkTx1 0x00010020 int2
linkTx2 0xB000 intA

dspBus

inframe linkSI 0x800x
intB

outparm linkBO 0x950x
indata

linkHW 0xA000 intD
outdata
inparm linkBI 0x850x

intC
outframe linkSO 0x900x

3.2 Embedded System Environment

Embedded System Environment (ESE) is a product of the Center for Embedded
Computer Systems, University of California, Irvine, and being developed as a suc-
cessor of SCE. ESE follows the model-based design methodology, supporting auto-
matic TLM generation and HW and SW synthesis. ESE is composed of two main
parts, namely the front-end and the back-end, as illustrated in Figure 3.8.

The ESE front-end detail described in Figure 3.9 generates automatically SystemC
TLM from system specification for fast and early design evaluation. The input appli-
cation is a set of concurrent C/C++ processes communicating to each other using

3.2. Embedded System Environment 22

Figure 3.7 Embedded System Environment GUI.

Figure 3.8 ESE Environment [21].

simple methods read(data ptr, data length)/write(data ptr, data length) of which
detailed implementations are created by ESE. The processes and communicating
methods are mapped to allocated PEs and configured channels, respectively. A PE
can be a processor, a pre-designed IP, or a custom HW model, which lately can be
synthesized using third party high-level synthesis tools (NISC, Forte). A channel
can be chosen amongst FIFO, asynchronous or synchronous transfer. RTOS model
can be selected in a processor to handle task scheduling. Component allocation and
platform mapping are done using the GUI. ESE uses LLVM operations to estimate

3.2. Embedded System Environment 23

System Definition

PE/RTOS
Models

Timing
Estimation

Bus/Bridge
Models

TLM Generation

Application Platform

Timed Application

SystemC TLM

Figure 3.9 ESE front-end [25].

execution time of the application [1, 34]. A PE model contains delay cost of each
LLVM operation along with a data-path, and stochastic delay of memory access
and branch prediction. The LLVM-compiled version of a program code is used for
computation timing estimation, which then is annotated into the processes to cre-
ate timed application model. The timed application model then is combined with
transaction delays of bus models, scheduling delays and inter-process communication
delays of OS models to generate the final SystemC timed TLM (TTLM). In TLM,
the application is modeled as sc_thread, OSes are modeled as sc_modules, which
support several POSIX methods, the PEs are modeled as sc_modules, buses are
modeled as sc_channels using Universal Bus Channel (UBC) template [2], which
provides functions for routing, synchronization, arbitration and data transfer, mem-
ories are modeled as arrays inside sc_module, and bridges are modeled as FIFO
channels sc_process.

Figure 3.10 ESE back-end [25].

The ESE back-end includes SW synthesis, HW synthesis (C-to-RTL) and Interface
synthesis, as shown in Figure 3.10. In SW synthesis, a program is compiled to specific
target processor using chosen compiler and library. RTOS model is replaced by

3.2. Embedded System Environment 24

selected RTOS. Address range for SW programs and data memories are also assigned.
HW models are replaced by pre-designed IPs or synthesized to Verilog by high-
level HW synthesis. In Interface synthesis, synchronization in UBC is implemented
using polling, a CPU interrupt, or an interrupt controller, arbiters and bridges
are automatically-synthesized or extracted from library, communications in SW are
replaced by RTOS functions, and communications in HW are implemented using
generated DMA controllers. The final result of the ESE is the CAM with SW binary
images and HW Verilog RTL codes, which are ready for simulation or prototyping.

Figure 3.11 MP3 Decoder and mapping decision [1, 2, 3].

MP3 decoder is used as a case study in ESE [1, 2, 3]. Its general processes are
described in Figure 3.11 with two intensive computing tasks IMDCT36 and DCT32.
Four platform alternatives are chosen, including pure SW implementation on the
Microblaze processor M1, Microblaze and custom left channel DCT HW M2, custom
left DCT and IMDCT HW M3, and custom left and right DCT and IMDCT HW
M4. Generation and simulation time of SystemC TLMs are described in Table 3.3.

(a) Area (b) Performance

Figure 3.12 Comparison between manual design and ESE [21].

3.2. Embedded System Environment 25

The designs are automatically generated in tens of seconds. The TLM simulation
time is also in order of seconds in comparison with couple of hours in cycle-accurate
simulation. The accuracy comparison results between board prototype and TLMs
with various cache configurations are shown in Table 3.4, in which the average error
is only around 7% and around 19% in the worst case. It also shows the effect of
different configurations of SW and HW models on the accuracy of generated TLMs.
The final implementation result on FPGA board in Figure 3.12 shows that ESE
consumes fewer FPGA slices and more BRAMs than the manual design, and there is
no significant difference in execution time between these two. ESE shows comparable
design quality as the manual work, while provides remarkable productivity gain in
development time, as illustrated in Figure 3.13.

Table 3.3 MP3 decoder generation and simulation time [2].

Design Timed TLM Generation Timed TLM Sim CA Sim
M1 31s 1s 16h
M2 50s 22s 18h
M3 47s 25s 18h
M4 71s 36s 18h

Table 3.4 TLM estimation error [2].

Cache Size M1 M2 M3 M4
0K/0K 6.27% 9.00% 18.18% 18.61%
2K/2K 6.68% -7.16% -15.79% -9.35%
8K/4K 4.74% 9.13% -1.66% -0.18%

16K/16K -13.83% 4.66% 2.63% 3.65%
32K/16K -13.89% -8.29% 1.57% 2.29%

Figure 3.13 Development time [21].

3.3. Metropolis 26

3.3 Metropolis

Figure 3.14 Metropolis framework [25].

Metropolis is the platform-based design framework developed by University of Cal-
ifornia, Berkeley in collaboration with several other universities and companies.
Metropolis includes metamodel language for functionality and architecture specifi-
cation, and set of simulation, and verification tools, as shown in Figure 3.14.

Figure 3.15 Three processes communicate through a medium modeled by Metropolis meta-
model [7].

In Metropolis metamodel, system functionality is described as a concurrent process,
which implements sequential programs called threads. Processes communicate to
each other via port interfaces connected through objects called media, as shown in
example in Figure 3.15. The communicating methods are declared in port interfaces
and defined in the media, which allows any media with compatible methods can
connect to the ports. This shows the separation between communication and com-
putation in the metamodel. The architecture is modeled like the functionality, but
with additional objects called quantity managers. A quantity manager manages the

3.3. Metropolis 27

Figure 3.16 Architecture metamodel [7].

access to shared resources of the architecture (CPU, bus,...) , and annotate several
performance quantities such as time, power,... Simple example of an architecture
model is shown in Figure 3.16.

The metamodel specification can be converted to Abstract Syntax Tree, which then
is synthesized to SystemC language for simulation. Formal verification including
Linear Temporal Logic (TTL) and Logic of Constraints (LOC) are supported with
LOC checker and SPIN model checker. HW synthesis can be implemented using the
third-party xPilot synthesis tool.

Metropolis 2 has been currently under development with three main improved fea-
tures, namely pre-designed IP importation, non-functional and behavior separation,
and structured design space exploration. GUI running under Eclipse is also in
progress.

One study case of Metropolis is Motion-JPEG (MJPEG) [22] implemented with
MicroBlaze processor as a computation unit and Fast Simplex Link as a commu-
nication element. The application and architecture are modeled using Metropolis
metamodel. The MJPEG is composed of Preprocessing (P), DCT (D), Quanati-
zation (Q), Huffman Encoding (H), and Table Modification (TM) tasks, which are
partitioned in 4 different platform models. The result in Table 3.5 shows the ex-
ecution time difference between simulation and real board implementation. The
difference is about 8% on average and 25% at worst. Area and max frequency from
synthesis are also reported.

3.4. Daedalus 28

Table 3.5 Simulation and board implementation result [9].

Model Simulation Cycles Real Cycles Max MHZ Execution Time Area (slices)
M1 228356 (25%) 304585 101.5 0.0030s 4306
M2 145659 (6%) 154217 72.3 0.0021s 4927
M3 145414 (1.2%) 147036 56.7 0.0026s 7035
M4 144432 (<1%) 143335 46.3 0.0031s 9278

3.4 Daedalus

Pµ

Pµ Pµ FPGA

specification

specification

specification
System−leve

MemMem

−

Gate−level

RTL

Xbar

HW IP

V
a
lid
a
tio
n
 /
 C
a
lib
ra
ti
o
n netlist

Platform
in VHDL
IP cores Auxiliary

filesprocessors
C code for

in XML
Platform spec.

in XML Network in XML
Kahn Process

Automated system−level synthesis:

RTL synthesis: commercial tool, e.g.

Mapping spec.

System−level architectural exploration: Sesame

ESPAM

Xilinx Platform Studio

Parallelization
KPNgen

Sequential
program in C

Models
RTL

Models

High−level

IP Library

Figure 3.17 Daedalus framework [41].

Daedalus is an integrated tool-flow environment developed under cooperation be-
tween University of Amsterdam and Leiden University, focusing on streaming multi-
media application. The design flow of Daedalus illustrated in Figure 3.17 comprises
of three separate main tools, namely PNgen, Sesame and ESPAM, which together
facilitate and automate the system design process.

The PNgen [57] is a parallelization tool based on Compaan [38, 46, 54] research
project of systematic and automatic network process derivation. It efficiently con-
verts a sequential application to a parallel process network, which offers effortless,
apparent and potentially automatic mapping to heterogeneous and multiprocessor
platforms. The input of PNgen is C/C++ application constrained in form of Static
Affine Nested Loop Programs (SANLP), and the output is the special subset of KNP
model named Polyhedral Process Network (PPN). PNgen is optimized from Com-
paan to achieve potentially fewer channels and processes, potential replacement of

3.4. Daedalus 29

reordering channels with FIFO channels, and compiled-time FIFO size determina-
tion. Different equivalent PPNs with various levels of parallelism can be generated
for design space exploration.

Figure 3.18 Sesame model layers [42].

Sesame [42] is a design framework supporting high level modeling and simulation,
performance evaluation, and automatic design space exploration. Sesame maintains
there model layers as shown in Figure 3.18, including:

• Application model: is specified in PPN with concurrent processes commu-
nicating through FIFO channels. The leaf computation code of the process
is implemented in C/C++ language while the control codes (loop, data flow
control) and interfaces as well as the structure of the network are described
by XML-based Y-chart Modeling Language (YML)[15]. An example of a pro-
cess can be viewed in Figure 3.19(a). Each process contains a list of legal
mapping PEs and a computation requirement while each channel contains a
communication requirement. These requirements are demanding workloads of
computation and communication to mapped components. The workload is
presented by traces of application events, which are generated when executing
a process to posteriorly drive the associated mapped component in an archi-
tecture model. The events include communication events read and write and
computation events execute.

3.4. Daedalus 30

• Architecture model: describes a general structure of a platform including al-
located PEs and their connections. Components in the architecture model are
coded in Perl or SystemC with support of add-on library SCPEx (SystemC
Pearl Extension), while the structure is described in YML. The architecture
model is used to simulate performance of an application based on events issued
by the application model. A description of an architecture structure in YML
is illustrated in Figure 3.19(b).

• Mapping layer: is an intermediate layer, which supports the mapping mecha-
nism between application model and architecture model. The layer contains
virtual processors and FIFO channels, which are mapped to application pro-
cesses and channels, respectively. The mapping is unique and can be automat-
ically created from the application model. The mapping layer helps schedule
and forward various computation and communication events from the appli-
cation model to the architecture model in a way that can prevent deadlock
happen. The relationship of components between the mapping layer and the
architecture model is changeable depending on design purpose. The mapping
layer evolves along with the refinement of the architecture model to model
more grained events for accurate reflection of the detailed platform implemen-
tation, while the application model remains unchanged.

With these modeling layers, Sesame can perform high-level and mixed-level sim-
ulation for early performance evaluation. Besides, automatic design space explo-
ration can be implemented with enhanced Strength Pareto Evolutionary Algorithm
(SPEA2) [58] to find the Pareto-optimal solutions corresponding to the best mapping
between application and platform in terms of performance, power, and cost.

ESPAM [50] is a high-level SW/HW synthesis tool, which handles detailed imple-
mentation of a design. The input of ESPAM is platform specification including the
general structure of the platform (allocated PEs and connections between them),
the process network application model, and the mapping description between them.

In HW part, ESPAM elaborates and implements the communication channels and in-
terfaces of the platform. ESPAM currently support only pre-designed programmable
processors, and only automatically generates custom HW descriptions for interfaces
and supporting components of the communication network. ESPAM proposes its
own set of components including Communication Memory(CM), Communication
Controllers(CC) for implementing communication structure compatible with a pro-
cess network application model. CM is assigned to each processor in the platform,
and is designed as a FIFO buffer memory, which only its own processor can write to

3.4. Daedalus 31

main()void {

read(p2, in_0, sizeof(myType));
compute(in_0, out_0);

<fromPort name = "p1" />

<toPort name = "p2" />

name = "p2" />direction = "in"<port

name =<process >"B"

<process_code name = "compute" >
<arg name = "in_0" type = "input" />

name = "out_0" type = "output" /><arg

<par_bounds matrix = "[1,0,−1,384;"

1,0, 1, −3]"/>

5

15

20

25

1

5

10

15

write(p1, out_0, sizeof(myType));
}

}

void

for
int *isEmpty = port + 1;

// reading is blocked if a FIFO is empty
while
(byte* data)[i] = *port; // read data from a FIFO

(int i=o; i<length; i++)

}

(*isEmpty){ }

read(byte *port, void *data, int length)

void write(byte *port, void *data, int length)

for
int *isFull = port + 1;

// writing is blocked if a FIFO is full
while

(int i=o; i<length; i++)

(*isFull) { }
port = (byte data)[i]; // write data to a FIFO

}

{

{

}

25

20

}

name = CH2<channel >

<toProcess name = "B" />

<fromProcess />

</channel

name = "A"

. . .

10

1

</port

</port

<var name = "out_0"

<var name = "in_0"

/>type = "myType"
<port name = "p1" direction = "out" />

type = "myType" />

</loop
</process_code

</process >

<loop parameter = "N" >index = "k"
<loop_bounds

/>

matrix = "[1, 1,0,−2;"
1,−1,2,−1]"

for (int k=2; k<=2*N−1; k++){

{

{

(a) Application description and its implementation

<port name = "IO1"/>name = "uP1"<processor </processor>>
<port name = "IO1"/>name = "uP2"<processor </processor>>
<port name = "IO1"/>name = "uP3"<processor </processor>>
<port name = "IO1"/>name = "uP4"<processor </processor>>

name = "CB" type = "Crossbar"><network

name = "IO4"/><port
name = "IO3"/><port
name = "IO2"/><port

<port name = "IO1"/>

<link name = "BUS1"/>
name = "CB"<resource <port name = "IO1"/>
name = "uP1"<resource <port name = "IO1"/>

name = "BUS2"/>
<resource <port name = "IO2"/>

name = "uP2"<resource <port name = "IO1"/>
name = "CB"

name = "BUS3"/>
<resource <port name = "IO3"/>

name = "uP3"<resource <port name = "IO1"/>
name = "CB"

<resource <port name = "IO4"/>
name = "uP4"<resource <port name = "IO1"/>
name = "CB"

CC1

uP1 uP3

uP2 uP4

CC2

MEM2 CM2

MC2 CC4

CM4 MEM4

MC4

1

10

20

15

5

25

30 </platform>

name =<platform "myPlatform">

</network>

</link>

</link>

<link

</link>

<link

</link>

<link name = "BUS4"/>

CM1MEM1

MC1 CC3

CM3 MEM3

MC3

CB

(b) Platform description and its implementation

Figure 3.19 ESPAM HW and SW implementation [50].

and other processors can read from. CC acts as an interface between processor bus
and the main bus, and controls access to the CM. Processors transfer data using
blocking read/write methods, in which each processor writes to its own CM until
the buffer is full and reads from other CMs unless the bus resource is not available
or the desired buffer is empty. A main bus can be a shared bus or use ESPAM
special component named Crossbar Bus (CB). Crossbar Bus implements fast and
simple uni-directional connections between CCs with 32-bit width for one direction
and two status signals. CB switches to connect two CCs based on round-robin
scheduling. The structure of both CC and CB are illustrated in Figure 3.20. Be-
sides, a point-to-point network can be created with each uni-directional channel is
implemented by a CM, as shown in Figure 3.21.

In SW part, ESPAM converts YML description of an application into a C/C++

3.4. Daedalus 32

Figure 3.20 Structure of (a) CC and (b) CB [50].

CC CC

CC

A

Legend:

MC

CC
MEM

CM

− Memory Controller

− Communication Controller
− Communication Memory

− Program and Data Memory

DATA BUS
MEM MC

uP2

CM

DATA BUS
MEMMC

uP3

C

CH3

B

DATA BUS
MEM MC

uP1

CH2 CH1

CMCM

C
p2p1

CH2
B

p1
CH3

p1

p2p2

A

CH1

Figure 3.21 Point-to-Point network implementation [50].

code plus the blocking read/write function implementation and memory map of the
platform. For the case when multiple processes are mapped to a single processor,
ESPAM statically schedules the processes in the generated C/C++ code instead
of using RTOS. The implementations of HW and SW in ESPAM are illustrated in
Figure 3.19(b).

The output of ESPAM contains elaborated description of platform topology in-
cluding detailed communication implementation, the RTL-level description of HW
components and program codes for every processors in the platform. The ESPAM
output can be further imported in other tools for physical implementation. Cur-
rently, ESPAM supports Xilinx Platform Studio (XPS) for FPGA prototyping.

The Motion JPEG (MJPEG) is implemented as a study case for Daedalus [40, 42,
50, 52, 57]. As shown in Figure 3.22, the application model including 8 processes
and 10 channels is automaticall generated from the modified sequential code by
PNgen. The multiprocessor platform is modeled as up to maximum 4 processors,
MicroBlaze and PowerPC tyype combination, crossbar-based communication and
distributed memory. Design space exploration process in Sesame results in 10,148
design points, and 11 which have the best performance in execution of 8 128x128

3.4. Daedalus 33

Figure 3.22 Procees network model of Motion JPEG [42].

frame sequences are chosen for further implementation. The comparison between
the high-level simulation and real implementation on Xilinx Virtex-II FPGA board
is depicted in Figure 3.23(a) and Figure 3.23(b), which shows that the error of the
simulation is around 13% on average and 28% at the worst. Besides, two other
communication types, namely P2P and shared bus, are implemented for 4 MicroB-
laze processors platform. Their performances are compared with the Crossbar-based
platform with single MicroBlaze platform as a reference. Figure3.23(c) shows that
ShB is only 1.42 time faster that the reference, while CB and P2P can achieve up
to 2.6 and 3.75 time faster, respectively. The resource utilization of 4 MicroBlaze
processors platform with different communication types is also listed in Table 3.6,
which shows that the whole system uses around 40% FPGA slices, and efficient
proposed communication method with CM and CC of ESPAM occupied only about
only 5% in both ShB and CB design. The total development time is written in Table
3.7. The most consuming time task of Daedalus is the exhausting design space ex-
ploration in Sesame with 1 hour and 26 minutes, while PNgen takes only 22 seconds
for generating process network and ESPAM spends about 25 minutes to synthesis
the 11 systems.

0 1
2

3
4

1

2

3
4

0

100

200

300

400

500

600

700

800

M
ill

io
n
s

o
f
C

y
cl

e
s

Number of

MicroBlazes

Number of

processors

Simulation results

(a) Simulation

0 1 2
3

4

1

2

3
4

0

100

200

300

400

500

600

700

800

M
ill

io
n

s
o

f
C

yc
le

s

Number of

MicroBlazes

Number of

processors

Prototyping results

f

rs

(b) Prototyping

0

10

20

30

40

50

60

70

80

M
il

li
o

n
s

 o
f

c
lo

c
k

 c
y

c
le

s

P
2

P

4 Processors

C
B

S
h

B

1

1
.4

2
x

2
.6

0
x

3
.7

5
x

(c) ShB, CB, P2P

Figure 3.23 Daedalus result comparison [52, 50].

3.5. SystemCoDesigner 34

Table 3.6 Resource utilization of design using 4 MicroBlaze processors [40].

Slices 4-input LUT Flip-Flops BRAMS
4 Proc. ShB 3640 (39%) 4722 (25%) 2354 (12%) 85 (60%)
4 Proc. CB 3653 (39%) 4748 (25%) 2357 (12%) 85 (60%)
4 Proc. P2P 3263 (39%) 3929 (21%) 2405 (12%) 88 (62%)

4 CCs 288 (2%) 468 (2%) 116 (1%) -
4 port CB 397 (3%) 587 (3%) 56 (1%) -
4 port ShB 366 (3%) 541 (3%) 47 (1%) -

Table 3.7 Processing Time (hh:mm:ss) [40].

Tool PN Derivation Syst.level DSE RTL conv Physical Impl.
PNgen 00:00:22 - - -
Sesame - 01:26:00 - -
ESPAM - - 00:25:00 -

Xilinx Platform Studio - - - 18:29:00

3.5 SystemCoDesigner

Figure 3.24 SystemCoDesigner flow [36].

SystemCoDesigner is a system level design environment developed at the University
of Erlangen-Nuremberg, German. The environment supports high-level system mod-
eling and simulation, automatic design space exploration with multiple objectives,

3.5. SystemCoDesigner 35

and SW and HW synthesis from abstract model to final implementation.

The design flow of the SystemCoDesigner is illustrated in Figure 3.24. The applica-
tion input of the environment is described in an actor-oriented model using a special
library of SystemC language called SysteMoC [24]. In this model, each concurrent
process is an actor consuming, transforming and producing data tokens, which are
transmitted via extended FIFO channels named SysteMoC FIFO. An actor in Sys-
teMoC includes three main parts, namely port, functionality and communication
behavior. An actor port can be input or output and each is uniquely connected to
only one channel, a communication behavior is specified in a FSM called communi-
cation state machine, and a functionality is a collection of functions activated on the
transition of the communication state machine. The functions are further divided
into an action part, which performs data consuming, transforming and producing,
and a guard part, which together with predicate of number of required input token
and output space form the boolean expression to activate the corresponding com-
munication state transition. An example of a simple process model in SysteMoC
shown in Figure 3.25 includes communication behavior with 2 states, namely start
and write, the transition activation boolean concerning the number of input token
i2(2) and i1(1), and guard gLastP ixel, and two actions fnewFrame and fprocessP ixel.

Figure 3.25 Actor-oriented model [36].

Figure 3.26 Actor HW implementation [36].

3.5. SystemCoDesigner 36

The actors in SysteMoC model are then synthesized to SW and HW implementa-
tions, which are stored in a component library for later use in design space explo-
ration and platform synthesis. The SW is generated by simply converting SysteMoC
code into C++ language [31], while in the HW, SysteMoC actor models are first
transformed into the synthesizable SystemC modules, in which SysteMoC actor
ports are replaced by SystemC signal ports, a communication FSM is converted
into an equivalent code, a functionality is transformed into a SystemC module, and
port accesses are replaced by corresponding function calls, as shown in Figure 3.26.
The SystemC modules are subsequently processed by high-level synthesis tool Forte
Design Systems Cynthesizer and Synplify Pro to create RTL descriptions and gate-
level netlists, respectively. These actor implementations also contain performance
parameters including execution time and cost (areas).

For automatic design space exploration, SystemCoDesigner provides an architecture
template for specifying all possible computation and communication components
used for the desired platform. The computation components can be the HW im-
plementations of actors or programmable processors from the component library,
while communications are selected from another database called a communication
library. The architecture template can be generated automatically with one HW
implementation for each actor and a selected number of chosen processors and their
corresponding communication components. Later changes and modifications can
be carried out by designers. Designers can also create mapping constrains, which
specify legal mapping lists between actors and channels to computation and com-
munication components. SystemCoDesigner performs the design space exploration
process using the multiobjective evolutionary algorithms (MOEA) [49], which re-
sults in an approximation of a set of Pareto-optimal design point in term of latency,
throughput, and HW area. The HW area of a particular platform is an accumula-
tion of allocated component’s, while the timing metric is determined by high-level
simulation using Virtual Processing Components (VPC) framework [51], which need
to compile only one time for a particular architecture template, and then different
allocations and mappings can be configured and loaded at run time, which results
in fast simulation for large design points.

The chosen platform from design space exploration is synthesized down to final
implementation. SystemCoDesigner currently supports MicroBlaze core for a pro-
grammable processor, while the HW modules can be instantiated from actor im-
plementations or pre-designed IPs from the component library. Communication
between HW modules is implemented using FIFO primitives, which can be BRAM
or LUT based, while fast simplex links (FSLs) is deployed for MicroBlaze cores.
A special bridge is used to connect these two buses. Local data transferring in

3.5. SystemCoDesigner 37

a MicroBlaze is implemented by read and write methods to local memory buffer.
Round-robin policy is used to schedule multiple actors mapped to one processor.
The physical implementation can be carried out by Xilinx Embedded Development
Kit.

Figure 3.27 Motion-JPEG block diagram [36].

The Motion-JPEG decoder has been implemented as a case study for SystemCoDe-
signer [32, 36]. A block diagram shown in Figure 3.27 includes 11 main tasks, namely
Parser, Huffman Decoder, Inverse ZRL, DC Decoder, Inverse Quantization, Inverse
Zigzag, IDCT, Dup, Frame Shuffler, YCbCr Decoder, and PPM sink. The JPEG
stream is first analyzed by the Parser block to extract necessary information, then
it is passed through Huffman Decoder, Inverse ZRL, DC Decoder, Inverse Quantiza-
tion for entropy decoding. Then the data is decompressed by Inverse Quantization,
Inverse Zigzag, IDCT. After that, the pixel blocks is re-arranged into raster scan
order by Frame Shuffler, and converted into RGB format by YCbCr. The final result
in Portable Pixmap File is generated by PPM sink.

The chosen architecture template includes 19 HW implementations for every ac-
tor, one MicroBlaze processor, BRAM-based and LUT-based FIFO, FSLs bus and
corresponding interfaces. As shown in Table 3.8, the design space exploration pro-
cess runs for 2 days, 17 hours and 46 minutes, and the average simulation time
for executing Motion-JPEG streams with 4 176x144 pixels QCIF frames is around
30 seconds. The results are 366 optimal design points. The simulation and im-
plementation results of several designs are shown in Table 3.9. The differences in
latency and throughput are claimed to be caused by the schedule overhead and
zero-time simulation of guard evaluation of VPC, while the differences in used area
is due to post-synthesis optimization and configuration of MicroBlaze processors of
a Xilinx tool. However, the results still show acceptable agreement between the
SystemCoDesigner simulation and the actual implementation.

3.6. No-Instruction-Set Computer 38

Table 3.8 Design space exploration [32].

Parameter Value
Evaluated solution 7,600
Optimal solution 366

Total running time 2d17h46min
Simulation time 30.44s/solution

Table 3.9 Design space exploration [32].

Num.of 0 1 8 all
SW actor Sim. Imp. Sim. Imp. Sim. Imp. Sim. Imp.

Latency(ms) 12.61 15.63 25.06 23.49 4,465 6,274 8,076 10,030
Throughput(fps) 81.1 65 40.3 43 0.22 0.16 0.13 0.10

LUTs 44,878 40,467 41,585 35,033 17,381 15,064 2,213 1,893
FFs 15,078 14,508 12,393 11,622 8,148 7,540 1,395 1,086

BRAM/MUL 72 47 96 72 63 63 29 29

3.6 No-Instruction-Set Computer

IDE

Code
Refinement

Application

GUI

Datapath
Refinement

Datapath

Component/
Template
Library

Datapath Generator

NISC Compiler

RTL Generator

Synthesis Backend

RTL

Figure 3.28 NISC design flow [25].

No-Instruction-Set-Computer (NISC) is a special HLS tool-set developed at the
Center for Embedded Computer Systems, University of California, Irvine. The
tool-set implements transformation from a C application to an RTL description of a
custom HW with a special NISC datapath architecture. The tool-set also provides
simulation and debugger supporting for optimization and refinement.

3.6. No-Instruction-Set Computer 39

NISC proposes a special datapath architecture, in which instead of instructions,
components in a datapath are directly controlled by signals called control words
(CWs) generated by a controller every clock cycle. The controller is usually fixed
and composed of Program Counter (PC) register, an Address Generator (AG), and
a Control Memory (CMem) storing the CWs as illustrated in Figure 3.29. A typical
CW, as shown in Figure 3.30, contains control signal values for each component
in the datapath in the fields, and the value can be ’0’, ’1’, or ’x’, which means
’don’t care’ or ’idle’. CW can also have several constant fields carrying constant
data values from the program. The NISC datapath architecture doesn’t require a
complex controller with decoder stage and HW scheduler, therefore offers potentially
better performance, lower area and power consumption than the conventional ones.

offset

status

const

address

C
WP
C CMem

AG
status

B1
B2

ALU Memory

RF

MUL

B3

Controller

Figure 3.29 NISC architecture [30].

Figure 3.30 NISC control word [30].

The NISC design flow shown in Figure 3.28 is composed of three main steps, namely
datapath generation, NISC compilation and RTL generation. Currently, the NISC
tool-set supports an input application in C language with several restricted features
[55] including function pointers, global pointer initialization, standard libraries. Be-
sides, available components in NISC library don’t support double and long types,
and special operations such as floating point operations, and division must be ex-
plicitly supported by the real allocated HW in the datapath.

The NISC datapath can be automatically generated from the application [53], or
manually created via a GUI, or reused from a library. For the automatic datap-
ath generation, an application is first pre-scheduled in As Late As Possible form
from which statistics of every operation (a number of occurrences in each cycle,
data dependency) are extracted to create an initial requirement. This requirement
specifies a datapath architecture, which supports maximum parallelism and is com-
posed of components, which can implement the most operation types. NISC tool-set

3.6. No-Instruction-Set Computer 40

then performs iteration of evaluation, optimization and refinement (allocated com-
ponent reduction) of the generated architecture until the specified performance and
utilization constraints are satisfied. A manually created or pre-designed datapath
architecture can also be automatically optimized based on specific application to
meet chosen constraints [27]. An architecture structure is described in XML-based
Generic Netlist Representation (GNR) [29, 28]. A component in GNR is represented
by component’s type, ports, contained components, and 3 aspects specifying behav-
iors for compiler, simulator and synthesizer. The type can be a basic component
such as register, register-file, bus, mux, tri-state buffer, functional-unit, memory-
proxy, controller, or a container such as module, NiscArchitecture (top container).
Ports are classified as data ports, clock ports, and control ports. A compilation as-
pect describes the relation between component functions and C program, while the
simulation and synthesis aspect describes the simulatable and synthesizable HDL
description of the component, respectively. An example of GNR is shown in Figure
3.31.

Given the datapath architecture, NISC cycle-accurate compiler will transform basic
blocks of the application into CWs [45]. A basic block is a sequence of operations
always executed together, and the compiler will statistically schedule and map op-
erations of a basic block to a component in the datapath to create series of CWs.
As mentioned above, using CWs helps reduce controller complexity and enhance
system performance, but it also results in an enormous code size. NISC solves this
issue using dictionary compression technique [30, 26], in which only a set of unique
CW patterns is stored, and a controller addresses them via the small code lookup
table (codeLUT), as illustrated in Figure 3.32. Two or more dictionaries can be used
for further code size reduction and faster addressing. The extra addressing process
requires only one more clock cycle, which has no much effect on overall performance.

Finally, NISC RTL generator will automatically create the RTL description for
clocks, connections between modules, and connections between modules and a con-
troller from GNR, and combine them with the basic component descriptions and
CWs from the compiler to form the simulatable and synthesizable codes for verifi-
cation and implementation.

Several experiments have been implemented to evaluate the different features of
NISC. Multiple applications including Dijkstra, sha, adpcm_coder, adpcm_decoder,
CRC32 and fixed-point MP3 decoders are implemented in Xilinx MicroBlaze and
simple NISC architecture (with highest optimization) in Figure 3.28, which run at
approximately 100MHz and utilize almost same areas (Table 3.10) [30]. Table 3.11
shows the significant enhancement in NISC performance in comparison with Mi-

3.6. No-Instruction-Set Computer 41

RF

controller

memcomp ALU

In0 In1

Out0

Figure 3.31 IP block diagram and its GNR description [29].

croBlaze, 5.54 times faster on average. However, The NISC without compression
has on average 4 times larger code size as well as occupies more BRAM than Mi-
croBlaze. NISC with one dictionary compression still maintains good performance
while significantly reduces the code size, only around 1.16 times larger than Mi-
croBlaze on average. Besides, the MP3 decoder is also implemented on NISCbased
MIPS processor (NMPIS) and a NISC customized for the application (NMP3) [29].
The result in Table 3.12 shows dominance of NISC-based processors over MicroB-
laze, especially the specifically customized. It also shows the relative relation in size

3.6. No-Instruction-Set Computer 42

(a) Original CWs

(b) One-dictionary compression (c) Two-dictionary compression

Figure 3.32 CW with dictionary compression [30].

between the generated fast simulatable RTL code and the synthesizable one.

Table 3.10 MicroBlaze and simple NISC [30].

Processor Clock Freq. (MHz) # 4-input LUTs
MicroBlaze 100 1581

NISC 100 1576

3.7. xPilot 43

Table 3.11 Comparison between MicroBlaze and simple NISC [30].

Application
MicroBlaze NISC NISC (Compression)

cycles code size cycles code size cycles code size
adpcm coder 256748693 1.956KB 74321930 6.960KB 84251684 2.19KB

adpcm decoder 322766405 1.364KB 63082673 5.075KB 66504319 1.59KB
CRC32 209436647 1.264KB 21901993 2.567KB 26008604 0.80KB
dijkstra 25927532 1.928KB 9764682 9.614KB 10631310 2.52KB

sha 183030479 3.156KB 19282976 14.123KB 18371827 4.12KB
Mp3 2668445 44.62KB 897452 216.659KB 927307 63.08KB

Application
MicroBlaze vs. NISC MicroBlaze vs. NISC Compr.

speedup (x) code size ratio speedup (x) code size ratio
adpcm coder 3.45 5.10 3.05 1.12

adpcm decoder 5.12 2.59 4.85 1.17
CRC32 9.56 2.03 8.05 0.63
dijkstra 2.66 4.99 2.44 1.31

sha 9.49 4.47 2.44 1.30
Mp3 2.97 4.86 2.88 1.41v

Average 5.54 4.01 5.21 1.16

Table 3.12 Compasion between MicroBlaze, NISC-based MIPS, and NISC MP3 decoder
customized datapath [29].

Processor Freq (MHz) Area (%) cycles (Mil.) Speedup Sim. RTL Syn. RTL
MicroBlaze 100 11 2.7 1 - -

NMIPS 70 13 0.92 2.04 1981 22300
NMP3 95 17 0.83 3.1 2490 23500

3.7 xPilot

xPilot is a platform-based behavior synthesis framework developed at University
of California, Los Angeles. xPilot supports automatic high-level synthesis for cus-
tomized HWs and mapping for configurable processors and multi-processors with
high optimization in performance, power and resource utilization.

xPilot design flow is shown in Figure 3.33. The input of xPilot includes applications
describing in synthesizable C or SystemC, and platform descriptions and constraints
specifying high-level resources (functional units, connectors, memories) with their
delay, latency, area, and power specification. The front-end LLVM compiler firstly
converts the application into LLVM intermediate representation, which then is used

3.7. xPilot 44

xPilot

Behavioral
Synthesis

Processor &
Architecture

Synthesis

SSDM

(System Synthesis
Data Model)

SoC

Interface
Synthesis

Analysis

Mapping

Profiling

Processor Cores
+ Executables

Drivers + Glue Logic Custom Logic

xPilot front endxPilot front end

SystemC/CSystemC/C Platform Description &Platform Description &
ConstraintsConstraints

Figure 3.33 xPilot design flow [16].

to construct a xPilot system-level synthesis data model (SSDM). SSDM is a process
network, in which concurrent processes are described in a control data flow graph
(CDFG) and transfer data through ports and channels. The channels can have
several interfaces with various communication protocols. Simulation, profiling and
analysing tools can be performed on the SSDM. The HW/SW mapping is done
manually by designers.

Island B

Island C

Island E

Island F

Island A

Data-Routing
Logic

Local
Register

File
(LRF)

Local
Register

File
(LRF)

FUP MUX

Functional Unit Pool (FUP)

MUL
ALU

ALU’

Island D

Input Buffers

Figure 3.34 Distributed register-file micro-architecture [16].

For behavioural synthesis to customized HW, a sequence of scheduling (assign oper-
ations to control states) and binding (assign operations and variables to functional
units and registers) is performed, which results in a state transition diagram (STG)
and corresponding datapath model. xPilot proposes new system of difference con-
straints (SDC) based scheduling algorithm [20], which can efficiently optimize a
design under various constraints such as resource, frequency, relative timing, longest
path latency and overall latency. xPilot also proposes a distributed register-file
micro-architecture (DRFM) [16] to reduce the interconnection and multiplexing in

3.8. GAUT 45

a binding process. DRFM is composed of several so-called islands, each includes a
local register file, a functional unit pool FUP and data routing logic, as illustrated
in Figure 3.34. The local register file is used to store the local data created by its
own FUP, and the data routing logic is used to route data to and from other islands.
The DRFM-based binding algorithm tries to assign operations and their associated
data differently within one island so that a number of inter-island connections is
minimized. Besides, xPilot also employs a mechanism to recognize repetitive pat-
terns in application code and then optimizes the scheduling and binding process
bases on this for further resource reduction [19]. The RTL description for imple-
mentation and RTL-level SystemC for fast simulation are automatically generated.
For configurable processors, the xPilot code generator can exploit the extensive
application-specific instruction for performance enhancement [17]. For multiproces-
sor system, xPilot can perform optimization for latency and resource usage under
throughput constraint [18].

Several applications with different characteristics are implemented using xPilot in-
cluding purely computation DSP kernel PR and MCM, pure control system CACHE,
MOTION algorithm in MPEG-1 decoder, IDCT, DWT algorithms in JPEG, and
EDGELOOP from H.264 decoder [16]. The designs are implemented on Altera
Stratix FPGAs with Quartus II v4.2, and the reports are shown in Table 3.13. The
comparisons are also made with another academic high-level synthesis tool named
SPARK [11], which shows, on average, about 40% latency improvement and 2 times
more area reduction.

Table 3.13 Implementation reports [16].

Application C lines VHDL lines LE Fmax(MHz)
PR 90 600 1349 178.7

MCM 161 1260 2402 152.6
CACHE 295 1277 371 161.6

MOTION 130 1200 888 161.2
IDCT 236 7388 9351 162.9
DWT 180 1371 1862 147.3

EDGELOOP 329 7296 7440 100.1

3.8 GAUT

GAUT is a high-level synthesis tool developed at Universite de Bretagne-Sud, France.
GAUT generates RTL description from C application under multiple constraints in-
cluding data average throughput, system clock frequency, memory architecture and

3.9. Formal System Design 46

mapping, I/O timing and FPGA/ASIC target technology. The output of GAUT is
a VHDL description for implementation or cycle accurate SystemC for simulation.
A special feature of GAUT is the high optimization in the term of resource uti-
lization for multi-mode or multi-configuration application, which changes behaviors
or characteristics during run-time. The different behaviors of the application are
described by time mutually exclusive tasks explicitly specified by switch-case state-
ments. These tasks can have different throughput constraints. The GAUT joint
scheduling and binding will try to maximize and combine the similarities in control
logic, functional units and memories of these tasks to form a multi-mode architec-
ture with single FSM and shared datapath with minimum allocated computation
and storage elements [10].

The multi-mode architecture of GAUT is tested with several application types in-
cluding single application with various configurations, namely FFT with multiple
points (64, 32, 16, 8), and FIR band-pass filter with multiple taps (64, 32, 16), low-
pass filter with multiple taps (19, 15, 11, 7), two applications in single architecture,
namely a combination of 16 points FFT and IFFT, a combination of 8 points FFT
and IFFT, a combination of LMS16 and 16-taps FIR, a combination of DCT8x8
and matrix multiplication 8x8, a combination of DCT 8x8 and 64-taps FIR. The
results are compared with other approaches, namely Cumulative Architecture (CA)
and SPACT-MR [14]. Table 3.14 shows that, on average, GAUT can reduce about
44% and 21% area in comparison to CA and SPACT-MR, respectively.

Table 3.14 Implementation reports [10].

Application
Area (NAND equivalent) Reduction (%)

CA SPACT-MR GAUT CA SPACT-MR
FFT(64,32,16,8) 781082 524737 350821 55,1 33,1
FIR(64,32,16) 54132 26634 18786 65,3 29,5

FIR(19,15,11,7) 37701 11103 9249 75,5 16,7

FFT16 + IFFT16 118538 109238 81017 31,7 25,8
FFT8 + IFFT8 36033 31545 25561 29,1 7,4
LMS16 + FIR16 51396 38884 36016 29,9 7,4

DCT 8x8 + FIR64 370115 345813 339881 8,2 1,7

3.9 Formal System Design

Formal System Design (ForSyDe) is a high-level modeling and simulation framework
developed at KTH Royal Institute of Technology, Sweden. ForSyDe provides formal,
abstract semantics to specify models of a heterogeneous embedded systems in various

3.9. Formal System Design 47

MoCs. A ForSyDe specification model can be simulated and exported to other tools
for further implementation.

Domain Interface

MoC A

MoC BSignal

Process

(a) Network of Processes

mealySY

Process Constructor

+

Functions

f g +

Variables

v =
mealySY

f g

v

Process

=
zipWithSY

f

delaySY

v

zipWithSY

g

(b) mealySY process constructor

Figure 3.35 ForSyDe system model [6].

A system model in ForSyDe shown in Figure 3.35(a) is composed of a structural
network of concurrent processes communicating using specifically defined signals. A
process can be described by one of four supported MoCs including Untimed/Syn-
chronous Data Flow (SDF), Synchronous (SY), Discrete Event (DE), Continuous
Time (CT), which are sufficient for various domain applications, such as data stream-
ing, control-oriented SW, test-bench, or digital and analog components. A pro-
cess is created only by various abstract blocks named process constructors provided
in ForSyDe library. Each process constructor has specific characteristics (number
of input/output, HW/SW interpretation) and requires different arguments, which
usually are functions and values (initial state, counting number, ...) to create a
process, as illustrated in Figure 3.35(b). Basic process constructors, as shown in
Figure 3.36(a), include mapSY to model combinational process with one input and
one output, zipWithSY to model multiple inputs combinational process, delaySY to
model signal delay, zipSY and unzipSY to combine and separate multiple signals.
Other process constructors can be formed by combining basic ones such as scanlSY
and scanldSY to model finite state machines without output decoder, mooreSY and
mealySY to model Moore and Mealy finite state machine. An example mealySY
constructor is shown in Figure 3.35(b). The signals in ForSyDe are a sequence of

3.9. Formal System Design 48

events, each of which is composed of tag and value, as shown in Figure 3.37. A tag is
used to specify time or order of events, while a value can be any type, or be marked
as absent. Processes with different MoCs are connected by Domain Interface (DI),
directly or through multiple layers.

mapSY
(f)

→
i

→
o

(a) mapSY

zipWithSY m
(f)

→
o→

im

→
i1

(b) zipWithSY

delaySY k
(s0)

→
i

→
o

(c) delaySY

→
o→

im

→
i1 zipSY m unzipSY n

→o1
→on

→
i

(d) zipSY and unzipSY

Figure 3.36 Basic process constructors [47].

e0e1e2e3e4 Event

Value

Tag

t4

v4

t3

v3

t2

v2

t1

v1

t0

v0

Figure 3.37 ForSyDe signal [6].

A model in ForSyDe is formerly implemented by functional language Haskell, but
currently has changed to C++-based class library on top of SystemC language,
where a process is a module with a single process, a signal is a primitive channel, a
process constructor is C++ class template, and so on as shown in Table 3.15. Mod-
els in ForSyDe can be simulated based on the Model of Execution for KPNs with
blocking writes to bounded FIFOs. Abstract semantics are used to implement com-
putation and communication behaviours of process constructors (and corresponding
processes) and DI. A typical implementation of a process contains a init stage for
memory allocation and variable initialization, iteration stage with pred for reading
or updating input values, apply to transform the values based on defined functions,
and prod for writing a result to output and synchronizing with system kernel, and
clean stage for clean up tasks when the process ends. ForSyDe can perform co-
simulation with other foreign components modeled in different SWs and languages
using a special process constructor named Wrapper to wrap the foreign model and
implement communication and synchronization between the foreign simulator and
ForSyDe simulator [6]. ForSyDe model can be transformed into an intermediate rep-
resentation in XML and C++ files, which can be used as an input to other design
tools for further implementation.

3.10. Ptolemy II 49

init
prep apply prod

clean

Figure 3.38 Process implementation [5].

Table 3.15 SystemC implementation of ForSyDe [5].

ForSyDe SystemC
Process instantiated module
Signal channel (sc fifo, etc.)
Process constructor sc module-based class
Function argument std::function object
Initial value argument value passed to class constructor
Polymorphic process and function template class and template function

3.10 Ptolemy II

P4 P3P2 P3P1
A1

A2

A3

A0 D1: director

D2: director

P5
A4

Figure 3.39 A model in Ptolemy [23].

Ptolemy II [23] is a modeling framework developed at University of California, Berke-
ley. Ptolemy II supports modelling and simulating a heterogeneous system composed
of different types of MoCs.

A model in Ptolemy II is a hierarchical structure of concurrent basic blocks called ac-
tors communicating through port interfaces, as shown in Figure 3.39. An actor can
be a leaf node, which actually processes data, or can be a composite one, which con-
tains other actors. Ports can be input, output or both, and each connection between
two ports forms a channel. Each input port is assigned a receiver, which implements
a communication mechanism and can be FIFO queues, mail-boxes, proxies, or ren-
dezvous points. An execution order is only defined locally amongst actors within a
composite actor and controlled by a component called director. To create heteroge-
neous models, which can cooperate multiple MoCs, Ptolemy proposes a mechanism,
in which within each composite actor there is a homogeneous environment associ-
ated with unique MoC called a domain, which contains the corresponding director
and specifies specific receivers for interior actors. Actors can be reused in vari-
ous domains with different scheduling policies and communication methods. The

3.10. Ptolemy II 50

currently well-developed domains in Ptolemy II include continuous-time, dynamic
dataflow, discrete-event, finite state machines and modal model, process networks
with asynchronous message passing, process networks with synchronous message
passing, synchronous dataflow, synchronous reactive, and 3-D visualization.

Figure 3.40 Ptolemy GUI Vergil [43].

Designs in Ptolemy are carried out in GUI called Vergil, which is depicted in Fig-
ure 3.40. Models are formed through drag and drop of various graphical actor
blocks. Ptolemy provides several pre-designed actor categories including sources
(constant value/string, current time, clock, sine wave, ramp, sequence, pulse ...),
sinks (discard, display, plotter ...), and math (add/subtract/multiply/divide, aver-
age, max/min, differential, quantizer ...). Complicated mathematical formulas can
be conveniently constructed in expression blocks. A model can be stored as an class
for later using as instances or modifying to create new subclasses.

3.10. Ptolemy II 51

Figure 3.41 The gas-powered generator top model [43].

Figure 3.42 The SDF Controller model [43].

Figure 3.43 The FSM Supervisor model [43].

A simple example of a gas-powered generator system modeled by multiple MoCs
is shown in Figure 3.41. A top model is a DE model with 3 main blocks, namely
Supervisor, Controller, and Discrete Generator. The Controller drives and regulates
the Generator to generate voltage at a fixed level.The Supervisor controls attachment
and detachment between a load A and the Generator, and protects the load from
over-voltage with a threshold OVT.

3.10. Ptolemy II 52

The Controller, as shown in Figure 3.42, is a SDF model specifying a PID system, of
which input is a difference between a desired voltage 110V and the current Genera-
tor’s output voltage. The Supervisor, as shown in Figure 3.43, is a FSM model. It
is initially in an off stage and changes to an on stage when there is an onOff signal.
When in the on stage, it observes the fault signal, which is activated when the Gen-
erator’s output voltage is above the OVT, to release the load from the Generator
and return to the off stage.

(a) The continuous Generator model

(b) The discrete-extented Generator model

Figure 3.44 The Generator model [43].

The original Generator, as illustrated in Figure 3.44(a), is a continuous model con-
taining a Limiter followed by a feedback system to increase or decrease a voltage V
according to the change of the drive voltage. There is also an expression reflecting
the effect of the load A. The Generator is then connected to other blocks, as shown
in Figure 3.44(b), so that it can be embedded in the top DE model. These blocks
are ZeroOrderHold actors, which hold discrete values constant between consecutive
events, and a PeriodicSample actor, which converts continuous values into discrete
values.

A plot in Figure 3.45 presents a result of the model. At the beginning, the Controller
drives the output voltage to the desired value 110V. After that, the load is connected

3.10. Ptolemy II 53

drive
voltage

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0
x102

0 5 10 15 20 25 30 35 40 45 50 55 60

Voltage and Drive over time

time (seconds)

vo
lta

ge
, d

riv
e

Figure 3.45 Result of the model [43].

at time 15, which causes the output voltage to suddenly drop. The drive voltage
surges to raise the output voltage back to 110V, which consequently causes voltage-
overload at time 24. The Supervisor then disconnects the load, and the Controller
regulates the output voltage back to 110V.

54

4. SYSTEM DESIGN FRAMEWORK

COMPARISON

4.1 Comparing metrics

Various metrics are selected for comparison between all the listed tools and frame-
works:

• Target domain (Table 4.3): describes an aimed architecture of a tool or frame-
work, which can be a uni-processor system containing single processor core
and several peripherals, or a heterogeneous SoC containing different types and
numbers of processors and HW IPs along with complicated communication
topologies and memory hierarchies.

• Purpose (Table 4.3): describes specific capabilities of a tool or framework
within its target domain, which includes modeling, early architecture explo-
ration, simulation and verification, and HW and SW synthesis. Model can be
computation architecture, communication architecture, application or design
constraint. Early architecture exploration can be automatic or manual. HW
and SW synthesis denote the ability to generate from an architecture model
down to HW implementation (HDL description of PE, CE, ...) and from an
application model down to SW implementation (C/C++ code, binary image,
...).

• Architecture exploration (Table 4.4): describes supporting features of frame-
works in the early architecture exploration phase, which includes capabili-
ties to evaluate various component allocation, application mapping, and task
scheduling, as well as metrics for performance estimation of the designs.

• Model accuracy (Table 4.4): describes model accuracy supported by a tool or
framework, which can be time-estimation or cycle-accurate.

• Model and design language (Table 4.6): describes model types and language
used by a tool or framework for system development. Using languages can be
different for an application, a HW component, and a platform structure.

4.2. Tools and framework comparison 55

4.2 Tools and framework comparison

The summaries of all tools and frameworks are shown in Table 4.1. Most of the
projects were started around the early 2000s, and lasting from 5 to 10 years. How-
ever, there are a few, which have remained active with recent publications and
resource updates, namely Daedalus, ForSyDe and Ptolemy II. The developing lan-
guages usually are the common ones like Java, C/C++, and Qt. A GUI is widely
supported amongst these tools and frameworks, fully or partially, except a few like
Daedalus, Metropolis, which depends entirely on scripts and commands for opera-
tion.

These tools and frameworks can be grouped into three categories including design
flow tools (SCE, ESE, Metropolis, Daedalus, SCD), which cover most or almost a
whole system design steps from modeling, exploration, simulation, verification to
implementation, SW and HW synthesis tools (NISC, xPilot, GAUT), which focus
on generating specific SW and HW implementation from application programs, and
modeling tools (ForSyDe, Ptolemy II), which aim to model, simulate and evaluate
applications at the high-level abstraction.

All of the design flow tools support heterogeneous platform development with com-
putation and communication separation in both architecture and application mod-
eling, and design space exploration mechanisms. Noticeably, due to ESPAM com-
ponent limitation, Daedalus is currently restricted to systems with general-purpose
processors only (no customized HW IPs).

Daedalus and SCD, given an initial configuration of available resources and con-
straints, can automatically evaluate numerous design points regarding component
allocation, and task mapping and scheduling to generate the optimal ones in terms
of performance, area, or cost metrics, whereas in SCE, ESE and Metropolis, the
process must be done manually by designers.

Unlike other tools, in which components can be freely chosen and allocated to form
a desired platform, Metropolis design process usually starts with a fixed, predefined
architecture template with some configurable parameters. This, on the one hand,
restricts a design exploration of the tool to mapping process only, but on the other
hand, encourages re-usage of design patterns.

For evaluation of designs, Metropolis and Daedalus cover three metrics including
timing, power, and cost/area, SCD supports less with timing and power, while SCE
and ESE only provide timing estimation. Only SCE and ESE model system at both
TLM and CA abstraction levels, while the remainder support only the former.

4.2. Tools and framework comparison 56

SCE and ESE are fully integrated with tools for HW and SW implementation, which
can gradually refine systems from high-level abstraction models to cycle-accurate
models ready for implementation. In contrast, Daedalus requires all allocated com-
ponents must be pre-designed and available in a library, and it simply generates
trivial glue and interface codes to connect those together. SCD contains only a code
generator while leaving the HW synthesis for a third-party software named Forte
Cynthesizer. Metropolis itself solely features system modeling, simulation and veri-
fication, so it needs to cooperate with other back-end tools for the complete design
flow. SCE and ESE often use RTOSes to manage multiple tasks mapping on a single
PE, while Daedalus prefers to statically schedule them in generated codes, and SCD
uses a simple round-robin mechanism.

Models used amongst these tools and frameworks are varied from process network
PN, PPN to dataflow graph or state machine, which are influenced, more or less, by
target applications (multimedia streaming, automation, control,...). Most require
input applications to be written in a special form (SpecC in SCE, metamodel in
Metropolis, SysteMoC in SCD, SANLP C/C++ in Daedalus), which imposes great
challenge and difficulty for developing new program as well as re-using the old ones.
Moreover, these requirements are not feasible for all applications, which limits the
usage of these tools and frameworks. Only ESE accepts an original C/C++ pro-
gram. SystemC is widely used as the TLM implementation language during the
development, while XML or XML-based languages are used for storing platform
structure information.

Several study cases ((Table 4.5) show that these design flow tools have greatly
reduced the development time, lasting around several hours to a couple days, mainly
due to high automation in many design steps and utilization of high-level abstraction
models with fast simulation time, and effortless adjustment. Furthermore, the design
quality is also guaranteed by accuracy of models, which are shown around 5% to
16% difference compared to real board implementation.

NISC and xPilot support both HW and SW synthesis. However, NISC can only
generate code for its own special HW architecture, and SW generation in xPilot is
a part of whole processor-based synthesis. NISC, xPilot and GAUT allow to create
only a single core system implementation. Each of these tools uses different tech-
niques to improve performance and reduce area utilization, namely no-instruction
code and dictionary compression in NISC, distributed register-file micro-architecture
in xPilot, and multi-mode architecture in GAUT. The study cases of these tools in
Table 4.5 show promising results. Most of them accept C or subsets of C language
as inputs.

4.2. Tools and framework comparison 57

ForSyDe and Ptolemy II focus on modeling and simulating applications at high-level
abstraction. Both allow combination of multiple MoCs in a single system model, but
use different mechanisms. ForSyDe uses special components called domain interfaces
to implement connections between different MoCs modules, while Ptolemy separates
them in hierarchical, composite blocks. ForSyDe supports only four MoCs, namely
SDF, SY, DE, and CT, which it believes to be sufficient to model most of application
domains, whereas Ptolemy II develops numerous MoCs like PN, DE, SDF, SE, FSM,
... dedicating to its interested fields. A ForSyDe model is built on top of SystemC
language, whereas Ptolemy’s is described by XML-based form.

For resource availability, there are seven tools and frameworks, namely ESE, Metropo-
lis, Daedalus, SCD, ForSyDe and Ptolemy, publicly publish their software. SCE,
xPilot, GAUT require requests to the developing teams for resources, while NISC
download link is unavailable. Most of the releases of these tools and frameworks
are outdated, back to about five to seven years ago. Only Daedalus, ForSyDe and
Ptolemy are active and recently updated. ESE, and SCD provide pre-built binary
files, while Metropolis, Daedalus, ForSyDe and Ptolemy come with source files.

4.2. Tools and framework comparison 58

Table 4.1 Framework summaries.

Name Developer Impl. Features

SCE
(1997 - 2003) UC Irvine Qt

GUI/Command-line shell
Profiling/Estimation tools
SpecC compiler and simulator
Hardware/Software synthesis
Formal Model Algebra based verification tool
Website: ecs.uci.edu/∼cad/sce.html

ESE
(2001 - 2008) UC Irvine Qt

GUI/Command-line shell
SystemC compiler and simulator
Functional/Timed TLM generation tool
Hardware/Software synthesis
Website: cecs.uci.edu/∼ese/

Metropolis
(2002 - 2008)

UC
Berkeley

Java,
C/C++

Metamodel language
SystemC simulator
Quasi-Static Scheduling
HLOC checker & SPIN interface
Website: embedded.eecs.berkeley.edu/metropolis

Daedalus
(2006 -)

UVA,
Leiden

University
-

Program parallelization
Automatic design space exploration
Hardware/Software synthesis
Website: daedalus.liacs.nl/

SCD
(2003 - 2013)

University
of

Erlangen-
Nuremberg

-

GUI
VPC fast simulation and evaluation
Automatic design space exploration
Hardware/Software synthesis
Website: informatik.uni-erlangen.de/research/
scd

NISC
(2003 - 2008) UC Irvine -

GNR structure CW datapath architecture
Automatic datapath generation
RTL generation
Website: ics.uci.edu/∼nisc/

xPilot
(2003 - 2008)

UC Los
Angeles -

Registerfile microarchitecture (DRFM)
DRFM-based & Pattern-based optimization
Custom HW synthesis
SW synthesis for configurable processors and
multi-processors
Website: cadlab.cs.ucla.edu/soc/

GAUT
(1993 - 2007) UBS Java

GUI
Multi-mode architecture
HW synthesis
Website: hls-labsticc.univ-ubs.fr/

ForSyDe
(1999 -) KTH C/C++

High-level system modelling and simulator
Supported multiple MoCs
Website: forsyde.ict.kth.se/trac

Ptolemy II
(1996 -)

UC
Berkeley Java

GUI
High-level system modelling and simulator
Supported multiple MoCs
Website: ptolemy.eecs.berkeley.edu/ptolemyII/

4.2. Tools and framework comparison 59

Table 4.2 Framework resources.

Name Resource Release date Content

SCE - (1) - -

ESE ese-2.0 2008 Installation file

Metropolis metropolis-1.1.3 2008 Source file

Daedalus

PNgen 2012

Source file
sesame 2014

darts 2012

Espam 2012

SCD scd-0.1 2006 Installation file

NISC - (2) 2008 -

xPilot - (1) - -

GAUT - (1) - -

ForSyDe ForSyDe-SystemC-0.4.0 2014 Source file

Ptolemy II Ptolemy II 10.0.1 2014 Source file
(1)available via request only
(2)empty download link

4.2. Tools and framework comparison 60

Table 4.3 Comparison of purposes and targets.

Target Purpose

U
ni

-p
ro

ce
ss

or
sy

st
em

H
et

er
og

en
eo

us
So

C

C
om

pu
ta

ti
on

A
rc

hi
te

ct
ur

e
m

od
el

lin
g

C
om

m
un

ic
at

io
n

A
rc

hi
te

ct
ur

e
m

od
el

lin
g

A
pp

lic
at

io
n

m
od

el
lin

g

C
on

st
ra

in
t

m
od

el
lin

g

E
ar

ly
A

rc
hi

te
ct

ur
e

ex
pl

or
at

io
n

Si
m

ul
at

io
n

M
ix

ed
-le

ve
ls

im
ul

at
io

n

V
er

ifi
ca

ti
on

SW
sy

nt
he

si
s

H
W

sy
nt

he
si

s

SCE x x x x x M x x x x

ESE x x x x x M x x x

Metropolis x x x x x x M x x x x(1)

Daedalus x x x x x x A x x x x

SCD x x x x x x A x x x(2)

NISC x x x x x

xPilot x x x x x

GAUT x x x

ForSyDe x x x x

Ptolemy II x x x x x

M= Manual; A= Automatic
(1)UCLA’s xPilot tool
(2)Forte Cynthesizer

4.2. Tools and framework comparison 61

Table 4.4 Comparison of architecture exploration and model accuracy.

Architecture exploration Model accuracy

A
pp

lic
at

io
n

m
ap

pi
ng

P
E

al
lo

ca
ti

on

T
as

k
sc

he
du

lin
g

C
om

m
un

ic
at

io
n

sc
he

du
lin

g

C
om

m
un

ic
at

io
n

to
po

lo
gy

M
em

or
y

hi
er

ar
ch

y
&

m
ap

pi
ng

P
er

fo
rm

an
ce

es
ti

m
at

io
n

C
om

m
un

ic
at

io
n

ar
ch

it
ec

tu
re

m
od

el

C
om

pu
ta

ti
on

ar
ch

it
ec

tu
re

m
od

el

SCE x x x x x x T Te, Ca Te, Ca

ESE x x x x x x T Te, Ca Te, Ca

Metropolis x x x x x x T, P, C Te Te

Daedalus x x x x x T, P, C Te Te

SCD x x x x T, C Te Te

NISC Ca Ca

xPilot Ca Ca

GAUT Ca Ca

ForSyDe

Ptolemy II

T=Timing metric; P= Power metric; C= Cost metric

Te= Time-estimation; Ca= Cycle-accurate

4.2. Tools and framework comparison 62

T
ab

le
4.

5
C
om

pa
ri

so
n

of
ca

se
st

ud
y.

A
pp

lic
at

io
n

P
la

tf
or

m
Si

m
.

ti
m

e
Si

ze
D

ev
.

ti
m

e
N

ot
es

SC
E

JP
E

G
en

co
de

r
+

V
oc

od
er

1
C

P
U

,1
D

SP
,1

D
C

T
H

W
,D

M
A

92
.3

s(
1
)

21
,4

45
(1
)(
2
)

8.
99

s(
3
)(
5
)

5.
15

%
av

er
ag

e
pe

rf
or

m
an

ce
di

ffe
re

nc
e

co
m

pa
re

d
to

bo
ar

d
pr

ot
ot

yp
e

E
SE

M
P

3
de

co
de

r

1
M

B
1s

(4
)

-
31

s
7%

av
er

ag
e

pe
rf

or
m

an
ce

di
ffe

re
nc

e
co

m
pa

re
d

to
bo

ar
d

pr
ot

ot
yp

e

1
M

B
,1

D
C

T
H

W
22

s(
4
)

-
50

s(
4
)(
5
)

1
M

B
,1

D
C

T
H

W
,1

IM
D

C
T

H
W

25
s(
4
)

-
47

s(
4
)(
5
)

1
M

B
,2

D
C

T
H

W
,2

IM
D

C
T

H
W

36
s(
4
)

-
71

s(
4
)(
5
)

M
et

ro
po

lis
M

ot
io

n
JP

E
G

M
B

+
F
SL

w
it

h
va

ri
ou

s
ta

sk
sc

he
du

lin
gs

16
5,

96
5(

6
)(
7
)

63
86

(7
)(
8
)

-
8%

av
er

ag
e

pe
rf

or
m

an
ce

di
f-

fe
re

nc
e

co
m

pa
re

d
to

bo
ar

d
pr

ot
ot

yp
e

D
ae

da
lu

s
M

ot
io

n
JP

E
G

V
ar

io
us

co
m

bi
na

ti
on

s
of

M
B

an
d

P
ow

er
P

C
th

ro
ug

h
de

si
gn

sp
ac

e
ex

pl
or

at
io

n

-
-

1h
51

m
22

s(
3
)

13
%

av
er

ag
e

pe
rf

or
m

an
ce

di
f-

fe
re

nc
e

co
m

pa
re

d
to

bo
ar

d
pr

ot
ot

yp
e,

pr
op

os
ed

C
M

&
C

C
co

m
m

un
ic

at
io

n
us

e
5%

of
to

-
ta

l
ar

ea
si

ze
an

d
en

ha
nc

e
sp

ee
d

fr
om

2.
6

to
3.

75
ti

m
es

SC
D

M
ot

io
n

JP
E

G

va
ri

ou
s

co
m

bi
na

ti
on

s
of

M
B

an
d

cu
st

om
H

W
s

of
m

ai
n

ta
sk

s
th

ro
ug

h
de

si
gn

sp
ac

e
ex

pl
or

at
io

n

-
-

2d
17

h4
6s

(3
)

16
%

av
er

ag
e

pe
rf

or
m

an
ce

di
f-

fe
re

nc
e

co
m

pa
re

d
to

bo
ar

d
pr

ot
ot

yp
e

4.2. Tools and framework comparison 63

A
pp

lic
at

io
n

P
la

tf
or

m
Si

m
.

ti
m

e
Si

ze
D

ev
.

ti
m

e
N

ot
es

N
IS

C

ad
pc

m
co

de
r

N
IS

C
ar

ch
it

ec
tu

re
w

it
h

co
m

pr
es

si
on

84
,2

51
,6

84
(6
)

2.
19

(8
)

-
N

IS
C

ar
ch

it
ec

tu
re

w
it

h
co

m
pr

es
si

on
te

ch
ni

qu
e,

on
av

er
ag

e,
is

5.
21

ti
m

es
fa

st
er

an
d

1.
16

ti
m

es
la

rg
er

th
an

M
B

ad
pc

m
de

co
de

r
66

,5
04

,3
19

(6
)

1.
59

(8
)

-

C
R

C
32

66
,5

04
,3

19
(6
)

1.
59

(8
)

-

di
jk

st
ra

10
,6

31
,3

10
(6
)

2.
52

(8
)

-

sh
a

18
,3

71
,8

37
(6
)

14
.1

2
(8
)

-

M
P

3
9,

30
7

(6
)

63
.0

8
(8
)

-

xP
ilo

t

P
R

D
R

F
M

-b
as

ed
ar

ch
it

ec
tu

re

-
13

49
(9
)

-
M

C
M

-
24

02
(9
)

-
C

A
C

H
E

-
37

1
(9
)

-
M

O
T

IO
N

-
88

8
(9
)

-
ID

C
T

-
93

51
(9
)

-
D

W
T

-
18

62
(9
)

-
E

D
G

E
LO

O
P

-
74

40
(9
)

-

4.2. Tools and framework comparison 64

A
pp

lic
at

io
n

P
la

tf
or

m
Si

m
.

ti
m

e
Si

ze
D

ev
.

ti
m

e
N

ot
es

G
A

U
T

F
F
T

(6
4,

32
,1

6,
8)

G
A

U
T

m
ul

ti
-m

od
e

ar
ch

it
ec

tu
re

-
35

08
21

(1
0
)

-

G
A

U
T

,o
n

av
er

ag
e,

re
du

ce
s

42
%

an
d

an
d

13
.5

%
ar

ea
co

m
pa

re
d

to
C

A
an

s
SP

A
C

T
-M

R
ar

ch
it

ec
tu

re
s

F
IR

(6
4,

32
,1

6)
-

18
78

6
(1
0
)

-
F
IR

(6
4,

32
,1

6)
-

18
78

6
(1
0
)

-
F
IR

(1
9,

15
,1

1,
7)

-
92

49
(1
0
)

-
F
F
T

16
+

IF
F
T

16
-

81
01

7
(1
0
)

-
F
F
T

8
+

IF
F
T

8
-

25
56

1
(1
0
)

-
LM

S1
6

+
F
IR

16
-

36
01

6
(1
0
)

-
D

C
T

8x
8

+
F
IR

64
-

33
98

81
(1
0
)

-

Fo
rS

yd
e

-
-

-
-

-
P

to
le

m
y

II
-

-
-

-
-

(1
)

fin
al

T
LM

m
od

e
(2
)

lin
e

of
co

de
(3
)

to
ta

lv
al

ue
(4
)

T
LM

m
od

el
(5
)

m
od

el
ge

ne
ra

ti
on

(6
)

cy
cl

es
(7
)

av
er

ag
e

va
lu

e
(8
)

co
de

si
ze

in
K

B
(9
)

LE
(1
0
)

N
A

N
D

eq
ui

va
le

nt

4.2. Tools and framework comparison 65

Table 4.6 Comparison of model and design language.

MoC
Design Language

Application Component Platform
Structure

SCE PSM SpecC SpecC → Verilog XML

ESE PSM C/C++ → SystemC XML → Verilog XML

Metropolis PN Metamodel Metamodel Metamodel

Daedalus PPN C/C++(1) → YML Perl/SystemC + SCPEx YML

→ VHDL

SCD DDF SysteMoC → SystemC SystemC/XML XML

NISC - C → CW RTL GNR

xPilot SSDM/STG SystemC/C VHDL -

GAUT DFG C VHDL -

ForSyDe Various(2) Haskell/SystemC - -

Ptolemy II Various(3) XML - -

PSM=Program State Machine PN=Process Network DDF=Dynamic Dataflow

PPN= Polyhedral Process Network SSDM=System-level Synthesis Data Model

DFG= Dataflow graph STG=State Transition Diagram
(1)Constrained in form of Static Affine Nested Loop Programs
(2)Synchronous, Untimed/Synchronous Data Flow, Discrete-Event, Continuous Time
(3)Continuous Time, Dynamic Dataflow, Discrete-event, Finite State Machines, Process

Networks, Synchronous Dataflow, Synchronous Reactive, 3-D Visualization, Continuous Time

66

5. EXPERIMENTATION

The experimentation is performed with three design flow frameworks, namely ESE,
Daedalus, and SystemCoDesigner. These tools are experimented for usage, perfor-
mance and practicality.

5.1 ESE

The current version of ESE is ESE 2.0, which was released almost 7 years ago, in
2008. The installation of ESE is simply an extraction of pre-built Linux binary
files along with several supporting packages. The old provided packages contain a
couple bugs and compatible problems. Specifically, ESE 2.0 uses a SystemC 2.2.0
package, which has issues with recent GCC compilers (which has been fixed in
later SystemC version), and a llvm-gcc compiler package, which is defective and
has been deprecated. The tool is pre-built upon these packages, so any attempt
to replace them with up-to-date ones will cause a failure. For error-free execution,
it is recommended to run the tool in already-tested environments including 32 bit
Fedora 3 or RHEL 4.

The released version of ESE is not complete with several features missing. The
tool only supports front-end design with platform modeling, automatic generation
of functional TLM and timed TLM, and simulation. The core of ESE software
includes 4 parts:

• GUI: is shown in Figure 5.1. It provides graphical environment for designers to
perform platform development and application mapping, configure parameters,
invoke other tools to refine the design, and observe statistic figures. The GUI
contains PE Window, which shows various hardware and software component
models for platform development, Channel Window, which organizes allocated
communication buses and channels between processes in PEs, PE Window,
which manages the mapped processes in allocated PEs (source files, process
ports, ...), Main Window, which graphically presents the platform, and Menu
Bar comprises shortcuts for configurations and other tools.

5.1. ESE 67

PE Window

Channel Window

Main Window

Figure 5.1 ESE GUI.

• Database: the current database appears in the GUI includes Processing (ARM9,
Microblaze, pre-designed IMDCT36 and DCT32 IP), Communication(Ethernet,
I2C, CAN, DHB, OPB, AMBA, RS232, CYNWP2P, FSL), Memory (Xilinx
BRAM, ZBT 512Kx32 static RAM), CE (ESE Transducer,AMBA-APB), Soft-
ware (Files system, STDIO and Math library, mb-gcc crosscompiler, Microb-
blaze HAL, Xilkernel OS). However, there are only few that has description
files for TLM model implementation (Microblaze, IMDCT36, DCT32, Ether-
net, I2C, CAN, DHB, OPB, AMBA, RS232, CYNWP2P, FSL, Transducer,
Xilkernel OS). None has a description file for physical implementation.

• tlmgen: a tool generating functional TLM. It replaces simple API functions
in form send(data ptr, length)/recv(data ptr, length), which are used to trans-
fer data between concurrent processes in an application program into corre-
sponding code implementations according to mapped channels. It embeds the
processes into sc_modules, creates code for buses, then combines all into top
module, which is ready for compilation and simulation.

• tlmest : a tool generating timed-TLM. It first invokes a LLVM compiler to con-
vert the functional TLM into LLVM Intermediate Representation (IR) code
(or LLVM operations) in CDFG form. After that, with a performance at-
tribute (in clock cycle) of each LLVM operation and transfer in description
files of components, the tool estimates and annotates delays into the code,
then converts it back to C program by LLVM code generation and wrapped it
with SystemC to create timed TLM.

5.1. ESE 68

ESE claims to accept common C/C++ applications with no special requirement.
However, there may be hidden compatible necessity for LLVM infrastructure used
during the timed-TLM generation. ESE was tested with fairly complex and state-
of-the-art video encoder named Kvazaar, which resulted in unknown error during
the time estimation phase, probably because of incompatibility.

JPEG encoder application is implemented using ESE 2.0. The general block diagram
of JPEG encoder is shown in Figure 5.2. The encoder first reads the BMP image
and divides it into block of 8x8 pixels. These blocks then undergo the 2 dimensional
Discrete Cosine Transform (DCT) to convert from the spatial domain to the spectral
domain where information can be processed for compression. After that, the DCT
data is rounded by quantization matrix, and then re-arranged to form a zigzag
sequence containing coefficients from low to high value by the zigzag block. Finally,
the coefficients are coded using the Entropy Encoder, in which Run-Length Encoding
(RLE) algorithm and Huffman encoding are applied. The output is the compressed
image JPEG file. The designs are tested using the 640x480 BMP image input file.
The output files are compared with a golden file for correction.

Figure 5.2 JPEG encoder.

Each block is implemented in independent C process communicating to each other
via send/recv API functions mentioned above. The application is implemented in 3
platforms including:

• M1 (Figure 5.3(a)): pure software implementation on a single Microblaze pro-
cessor. The processes transfers data via the FIFO memories with blocking
read and write methods. The Microblaze includes the Xilkernel ROST imple-
menting round-robin scheduling policy.

• M2 (Figure 5.3(b)): a platform includes 5 Microblaze processors, each imple-
ments one separate process. These processors connect to the Open Peripheral
Bus (OBP) with interrupt synchronization. The processes communicate via
uni-directional process-process message passing channels. The transducer re-
solves the traffic on the bus with round-robin scheduling policy.

• M3 (Figure 5.3(c)): the platform includes 4 processors MicroBlaze, and one

5.1. ESE 69

DCT hardware acceleration. The HW component is connected to the Dou-
ble Handshake Bus (DHB), while the processors are connected to the Open
Peripheral Bus (OBP). Both buses support interrupt synchronization. The
transducer is required to transfer data between these two buses. It acts as a
only slave on the two bus, and implements the round-robin scheduling pol-
icy. The communication channels between processes are also uni-directional
process-process message passing channels.

(a) Platform M1

(b) Platform M2 (c) Platform M3

Figure 5.3 JPEG encoder implementations in ESE

The platform creations are simple and straightforward. The components are selected
in the database, then dragged and dropped in the Main Window. The port and
connection are easily made by few clicks. Process mapping is also facilitated by the
GUI. Noticeably, ESE require all the code files must reside in one folder. Sub-folder
containers or externally included files are unaccepted. Therefore, code flatten pro-
cedure must be done before mapping processes into the components. Each process
is then assigned ports and channels, which are mapped to corresponding send/recv
API functions. tlmgen and tlmest are then invoked to generate functional TLM
and timed-TLM. These models can be simulated with user-configured options. The
statistic graph can be created for each component after timed-TLM simulation to
show execution and communication time of processes and functions associated with
that component, as illustrated in Figure 5.4 and Figure 5.5. However, because each
graph can show only one level, it is quite inconvenient to have a total view of highly
hierarchical program with many levels of sub-functions.

5.1. ESE 70

The generation time of the functional TLM is quite fast, just a couple seconds, while
simulation time is less than 1 seconds. Timed TLM is more complicated, but also
takes in order of seconds for generation and simulation. The execution time esti-
mated in clock cycles in Table 5.1 shows the significant performance enhancement
from the simple platform M1 to the complex M3 with HW acceleration. The com-
putation graph of M1 in Figure 5.4 confirms that DCT is the heaviest computing
process, while the graphs in Figure 5.5(a) and Figure 5.5(b) show the bus traffic in
OBP and DHB bus of M3 with round-robin scheduling. The total time spend on
DCT IP also shown in Figure 5.5(c).

Table 5.1 Design results.

Estimation Cycle
M1 2498088297 cycles
M2 531868634 cycles
M3 348062080 cycles

(a) Total execution (b) Computation

Figure 5.4 M1 statistic performance graph.

5.2. Daedalus 71

(a) Communication in OPB bus (b) Communication in DHB bus

(c) Execution time in DCT HW accel-
eration

Figure 5.5 M3 statistic performance graph.

In conclusion, the current version of ESE with easy usage and high automation
does show competent results of one approach for front-end system design processes.
However, due to incompleteness, obsolete and faulty, this is more merely suitable
for demonstration than for any practical usage.

5.2 Daedalus

Daedalus is composed of several individual parts. The experimentation uses the
newest versions, which are released around the year 2012 - 2013. Noticeably, the
Sesame component currently has not been completed and publicly provided. Daedalus
provides separate source code for each part, and a script file for automatic installa-
tion of the whole tool chain (with Sesame excluded). Although being released only
couple years ago, several packages used by Daedalus are outdated, which imposed
incompatibility problems in installation process. The framework is tested on Linux
Mint 17.1, Centos 6.6, and Ubuntu 12.04, and only properly installed and executed
on the last one.

PNgen part includes several tools (c2pdg, pn, pn2adg, ...) to convert forward and

5.2. Daedalus 72

backward amongst multiple model forms (SANLP, PDG, PPN, ...). ESPAM part
includes espam tool, and SystemC library and simulator to generate timed-TLM files
for simulation and project file for implementation (currently only Xilinx Platform
Studio (XPS) project). Unfortunately, there is no detailed document about usage,
requirement, options and constraints of these tools. Besides, The Daedalus doesn’t
provide a database of components in the installation. Only limited components are
separately available in a sample application.

Daedalus doesn’t provide GUI environment, so all development steps are done
through commands and scripts. The most challenging part of Daedalus is that
it requires programs to be specified in SANLPs form, which is not feasible for all
applications and imposes difficulty on old code usages. This is also a constraint
of applying Daedalus. Moreover, due to non-GUI environment, a platform struc-
ture and mapping descriptions must be manually written. Daedalus currently has
not provided clear and complete guide for these. Given an application, platform
structure and mapping descriptions, development process is highly automatic with
invocation of a chain of tools to generate SystemC Timed-TLM or project files.

The experimentation of Daedalus is done with the simple application Sobel filter.
The application includes five separate processes, as shown in Figure 5.6. The input
image is first read into the program, then is applied gradient filter twice in different
directions. The absolute value is computed and the result image is generated.

ND_3

Abs

ND_1

Gradient-x

ND_2

Gradient-y

ND_0

Image
Reading

ND_4

Image
Writing

Figure 5.6 Sobel filter.

The program is mapped into two different platforms:

• M1: includes only one MicroBlaze processor implementing all processes

• M2: includes three MicroBlaze processors within which processes are dis-
tributed for maximum throughput: ND_0, ND_3, ND_4 are mapped to first
processor, while ND_1 and ND_2, each is mapped to a different processor.
The processors are connected using AXI crossbar switch.

The platform and mapping descriptions are shown in Figure 5.7.

5.2. Daedalus 73

<mapping name="myMapping">

<processor name="mb_1">
<process name="ND_0" />
<process name="ND_1" />
<process name="ND_2" />
<process name="ND_3" />
<process name="ND_4" />

</processor>

</mapping>

<platform name="myPlatform">

< processor name="mb_1" type="MB" data_memory="65536" program_memory="65536">
< port name="IO_1" />
< /processor>

< network name="CS" type="AXICrossbarSwitch">
< port name="IO_1" />
< /network>

< host_interface name="HOST_IF" type="ML605" interface="UART">
< /host_interface>

< link name="BUS1">
< resource name="mb_1" port="IO_1" />
< resource name="CS" p ort="IO_1" />
< /link>

</platform>

(a) Platform and mapping description for M1

<mapping name="myMapping">

<processor name="mb_1">
<process name="ND_0" />
<process name="ND_3" />
<process name="ND_4" />

</processor>

<processor name="mb_2">
<process name="ND_1" />

</processor>

<processor name="mb_3">
<process name="ND_2" />

</processor>

</mapping>

<platform name="myPlatform">

< processor name="mb_1" type="MB" data_memory="65536" program_memory="65536">
< port name="IO_1" />
< /processor>

< processor name="mb_2" type="MB" data_memory="65536" program_memory="65536">
< port name="IO_1" />
< /processor>

< processor name="mb_3" type="MB" data_memory="65536" program_memory="65536">
< port name="IO_1" />
< /processor>

< network name="CS" type="AXICrossbarSwitch">
< port name="IO_1" />
< port name="IO_2" />
< port name="IO_3" />
< /network>

< host_interface name="HOST_IF" type="ML605" interface="UART">
< /host_interface>

< link name="BUS1">
< resource name="mb_1" port="IO_1" />
< resource name="CS" p ort="IO_1" />
< /link>

< link name="BUS2">
< resource name="mb_2" port="IO_1" />
< resource name="CS" p ort="IO_2" />
< /link>

< link name="BUS3">
< resource name="mb_3" port="IO_1" />
< resource name="CS" p ort="IO_3" />
< /link>

</platform>

(b) Platform and mapping description for M2

Figure 5.7 Platform and mapping description.

image: (-1 + 2 * N) image: (1 + N) image: 3 image: (-3 + 2 * N) image: (-1 + N) image: 1 image: (-1 + 2 * N) image: (-2 + 2 * N) image: (-3 + 2 * N) image: 3 image: 2 image: 1

Jx: 1 Jy: 1

av: 1

readPixel

gradient gradient

absVal

writePixel

Figure 5.8 Sobel PPN visual representation.

Three tools from PNgen, namely c2pdg, pn and pn2adg, are sequentially invoked to
convert the program in C SANLPs to XML-based PPN, which is accepted by espam
tool. The resulted PPN can be visually represented, as illustrated in Figure 5.8. The

5.2. Daedalus 74

espam tool then converts the XML-based PPN to the timed-TLM SystemC, which
can be simulated using Daedalus’s simulator tool. As demonstrated in Figure 5.9,
the simulator tool also provides various statistic performance information including
execution time, read/write time, blocking time, utilization, .. of each PE in a
platform.

P_1 finished at 4282087 ns

Statistics:
+---------+--------------+----------------+
| Process | #clocks | Status |
+---------+--------------+----------------+
P_1		
	4282086	Execution
	0	Read
	0	Write
	0	Block on Read
	0	Block on Write
	0	Idle
+---------+--------------+----------------+

+---+
| Computation/Communication Ratio: |
+------------------------------+----------+
| P_1 | inf |
| PPN | inf |
+------------------------------+----------+

+------------------------------+----------+

+---+
| Utilization/Efficiency |
+------------------------------+----------+
| P_1 | 1 |
+------------------------------+----------+
| PPN Utilization/Efficiency: |
+------------------------------+----------+
| PPN | 1 |
| Sources and Sinks excluded | -nan |
+------------------------------+----------+

+---+
| Speed-up and parallelism: |
+------------------------------+----------+
| PPN Sequential/PPN Parallel | 1 |
| Sequential/PPN Parallel | 1 |
+------------------------------+----------+
| Average parallelism | 1 |
| Overlapped execution (only) | 1 |

(a) Statistic information of M1

P_2 finished at 2569825 ns
P_3 finished at 2569826 ns
P_1 finished at 2569831 ns

Statistics:
+---------+--------------+----------------+
| Process | #clocks | Status |
+---------+--------------+----------------+
P_1		
	612966	Execution
	244608	Read
	1467648	Write
	244608	Block on Read
	0	Block on Write
	0	Idle
+---------+--------------+----------------+		
P_2		
	122304	Execution
	733824	Read
	122304	Write
	1591392	Block on Read
	0	Block on Write
	6	Idle
+---------+--------------+----------------+		
P_3		
	122304	Execution
	733824	Read
	122304	Write
	1591393	Block on Read
	0	Block on Write
	5	Idle
+---------+--------------+----------------+

	1591393	Block on Read
	0	Block on Write
	5	Idle
+---------+--------------+----------------+

+---+
| Computation/Communication Ratio: |
+------------------------------+----------+
P_1	0.358
P_2	0.1429
P_3	0.1429
PPN	0.2504
+------------------------------+----------+

+---+
| Utilization/Efficiency |
+------------------------------+----------+
P_1	0.9048
P_2	0.3807
P_3	0.3807
+------------------------------+----------+	
PPN Utilization/Efficiency:	
+------------------------------+----------+	
PPN	0.5554
Sources and Sinks excluded	0.5554
+------------------------------+----------+

+---+
| Speed-up and parallelism: |
+------------------------------+----------+
| PPN Sequential/PPN Parallel | 1.666 |

(b) Statistic information of M2

Figure 5.9 Statistic information.

In conclusion, Daedalus is still in testing phase, so most of the releases are immature
and poor-documented. The wide application of the software is also limited by the
input restriction and non-GUI environment. However, being amongst the most
active projects with recent successive updates, the full and practical version with
theses issues solved can be hoped to be released in the near future.

5.3. SystemCoDesigner 75

5.3 SystemCoDesigner

SystemCoDesigner released its only version 0.1 in 2006. The framework’s developers
provide a pre-built Java program, which can execute properly on various Linux OSes.
The published version isn’t hardly considered a complete design flow framework
because the only function it offers is automatic design space exploration, which is
implemented through three main tools:

• sgEdit (Figure 5.10(a)): provides GUI environment for designers to visually
describe an application and platform via nodes and edges, and specify map-
ping configurations between them. The mapping configurations include a set
of feasible components each process can implement on along with associated
delay, power and area attribute. The output of this process is served as input
for automatic DSE tool.

• systemcodesigner (Figure 5.10(b)): functions as an automatic DSE tool. De-
signers can configure several parameters including settings of the MOE algo-
rithm for automatic exploration (population size, mutation rate, polling delay,
seed, allocation rate,...), a scheduling algorithm for latency evaluation (only
listscheduler supported), a evaluation method for area and power (max, min,
accumulation, product), upper and lower bound constrains for area and power.
The setting of MOEA contains several theory-related fields, which are poorly
documented, and may confuse designers with no knowledge of the algorithm.

• qsView (Figure 5.10(c)): shows all generated design points or only Pareto-
points via several 2D graphs, and details of their mappings.

5.3. SystemCoDesigner 76

(a) Specification Editor sgEdit

(b) Automatic DSE tool systemcodesigner

(c) Result viewer qsViewer

Figure 5.10 SystemCoDesigner main tools.

The framework is experimented with H264 video codec whose block diagrams are
illustrated in Figure 5.11. The available resource is composed of two programmable
processors RISC1, RISC2, one DSP processor, several custom HW components in-
cluding frame memory (FM), dual ports frame memory (DPFM), Huffman coder
(HC), subtractor-adder (SA), DCT/IDCT (DCT), and three bus types fast bus
(FB), medium bus (MB), and fast bus (FB). The feasible mappings along with
associated delays between each fundamental block of the application and each com-

5.3. SystemCoDesigner 77

ponent are shown in Table 5.2, power and area attributes of each component are
shown in Table 5.3, and attributes of bus types are shown in Table 5.4.

Block
Matching

Input

Read
Frame

Loop
Filter

Block
Subtraction

Block
Addition

Store
Frame

DCT Threshold Quantization
Run-length

coding

Output

IDCT
Inverse

Quantization

(a) Coder

Input

Run-length
Decoding

Read
Frame

Loop
FIlter

Inverse
Quantization

IDCT
Block

Addition
Store
Frame

Output

(b) Decoder

Figure 5.11 H264 video codec.

Designers only need to specify values for various parameters in systemcodesigner
tool, and it will automatically generate optimal mappings based on the input spec-
ification file from sgEdit tools. A setting of MOE can be initially chosen with
suggested values from the developers of SystemCoDesigner. Running time of the
framework depends on the configured values, which can vary from a couple of min-
utes to several days. However, the result can be updated after every specified period,
or each iteration, so designers can stop the process if there is an adequately good
result. Total design points after 6 iterations are illustrated via latency vs. sum-area
and sum-power vs. sum-area graphs in Figure 5.12. The red dot are non-dominated
(Pareto) design point up to the current iteration. Reports of latency, area and power
attributes of these Pareto designs are shown in Figure 5.13. The mapping details of
3 designs, which have minimum value of each attributes are listed in Table 5.5.

5.3. SystemCoDesigner 78

Table 5.2 Feasible mappings of fundamental H264 video coder blocks.

Block Comp/Delay Comp/Delay Comp/Delay
Block matching DSP/60 RISC/88

Read frame FM/0 DPFM/0
Store frame FM/0 DPFM/0
Loop Filter HC/2 DSP/3 RISC/9

Block subtraction SA/1 DSP/2 RISC/2
DCT/IDCT DCT/2 DSP/4 RISC/8

Threshold calculation HC/2 DSP/8 RISC/8
Quantization/Inverse quantization HC/1 DSP/2 RISC/2

Block addition SA/2 DSP/2 RISC/2
Run-length coding/decoding HC/2 DSP/8 RISC/8

Table 5.3 Attribute of PE components.

Component Area Power
RISC 150 50
DSP 200 20
FM 20 10

DPFM 40 5
HC 50 3
SA 50 3

DCT 100 5

Table 5.4 Attribute of buses.

Component Area Power Delay
SB 10 5 3 (1)

MB 20 10 2 (1)

FB 30 15 1 (1)

(1) delays of data transfer from Read frame block to block
matching are 9, 6 and 3 for SB, MB and FB, respectively

5.3. SystemCoDesigner 79

(a) sum-power vs. sum-area

(b) latency vs. sum-area

Figure 5.12 Total design point after 6 iterations.

Figure 5.13 Latency, power, and area reports of Pareto design points.

5.3. SystemCoDesigner 80

Table 5.5 Pareto design points mapping.

Block Minimum Latency Minimum Area Minimum Power
Encoder

Block matching DSP DSP DSP
Read frame FM FM DPFM

Block subtraction SA SA SA
Threshold calculation RISC2 HC RISC2

Quantization RISC1 RISC2 RISC2
Inverse quantization DSP RISC2 DSP

Block addition RISC2 SA SA
Store frame DPFM FM DPFM
Loop Filter DSP RISC2 DSP

DCT RISC2 DSP DCT
IDCT DSP DSP DSP

Run-length coding HC DSP RISC1
Decoder

Block addition DSP DSP RISC1
Read frame FM DPFM DPFM
Store frame DPFM FM DPFM
Loop Filter RISC2 DSP RISC1

IDCT DSP RISC2 DSP
Inverse quantization RISC2 RISC2 DSP
Run-length decoding DSP RISC2 RISC2

In conclusion, this release version of SystemCoDesigner framework does well to
demonstrate an application of MOEA in automatic DSE, which is also the only
function it can offer. The release is poorly documented with only short manual on
the main website, and contains confusing MOE settings. Therefore, the framework
is like a testing demonstration, and more feasible for the developers.

81

6. CONCLUSIONS

System design methodology has continually changed to cope with the rapid growth
of the semiconductor industry as well as the increasing demand and pressure of the
market. Starting with a traditional, sequential board-based method with long de-
veloping time, experience-based decision making, poor HW and SW development
cooperation, and time-consuming manual work of most design steps, the design
flow has been evolved to the modern, superior model-based design flow, which gives
a complete solution for those old shortcomings. With the new executable system
model - TLM, the model-based methodology can resolve most of the design work
at the high-level abstraction. The system can be early evaluated through fast sim-
ulation for optimization and modification. Any change in the model is now much
more effortless and immediately visible for further actions. This also enables au-
tomation in numerous design tasks (TLM synthesis, system model refinement, HW
and SW generation,...), which greatly increases productivity and design-reuse, as
well as reduces errors.

The Thesis presents academic frameworks and tools for the realization of the model-
based design flows. For the very first design step - application modeling and simu-
lation task, KTH and UC Berkeley propose ForSyDe and Ptolemy II, respectively.
Both of them provide a heterogeneous modeling environment supporting combina-
tion of multiple MoCs, which is a must for capturing complexity of modern systems.
UC Irvine, UC Los Angeles and UBS provide solutions for high-level HW synthesis
from C application to HDL description in the system implementation step, namely
NISC, xPilot, GAUT, respectively. Each tool carries special features to increase de-
sign quality, like CW datapath architecture and a compression technique in NISC,
DRFM-based and pattern-based optimization mechanism in xPilot, and multi-mode
architecture in GAUT. Other academic researches aim for creating complete, seam-
less design environments with high automation in several main design processes
such as TLM synthesis and evaluation, model refinement, and HW and SW genera-
tion.These are SCE and ESE of UC Irvine, Metropolis of UC Berkeley, Daedalus of
UVA, and SCD of FAU.

The study cases from these design frameworks and tools show promising results.

6. Conclusions 82

The developing time is greatly reduced with system models created, evaluated, and
refined in a couple of hours to a few days. The implementations are also automati-
cally synthesized and generated from libraries in order of seconds. Generated designs
can be optimized with support of several multi objectives exploration algorithms.
The design quality is also guaranteed by the accuracy of high-level system models
estimation, which are shown less than at most 16% in comparison to the prototyping
board.

However, most of the frameworks and tools are incomplete and immature. Numerous
functions are still in a testing stage and only feasible for the developers. The biggest
challenge is the constraint of input format of each tool, which limits the usage of
these frameworks and tools as well as causes difficulty for designers. Besides, the
frameworks and tools are developed independently without any universal standard,
so it is almost impossible to combine them during a design process. The model-
based methodology is quite new, and these are the very first attempts to realize it.
There is still a lot of potential, and many improvements must be made to bring the
methodology into practice.

83

BIBLIOGRAPHY

[1] S. Abdi, “Tlm automation for multi-core design,” in Proceedings of the 2010
Asia and South Pacific Design Automation Conference. IEEE Press, 2010,
pp. 717–724.

[2] S. Abdi, Y. Hwang, L. Yu, H. Cho, I. Viskic, and D. D. Gajski, “Embedded
system environment: A framework for tlm-based design and prototyping,” in
Rapid System Prototyping (RSP), 2010 21st IEEE International Symposium
on. IEEE, 2010, pp. 1–7.

[3] S. Abdi, G. Schirner, I. Viskic, H. Cho, Y. Hwang, L. Yu, and D. Gajski,
“Hardware-dependent software synthesis for many-core embedded systems,” in
Design Automation Conference, 2009. ASP-DAC 2009. Asia and South Pacific.
IEEE, 2009, pp. 304–310.

[4] S. I. Association et al., International Technology Roadmap for Semiconductor
(2011). available at http://public.itrs.net/.

[5] S. H. Attarzadeh Niaki, M. K. Jakobsen, T. Sulonen, and I. Sander, “Formal
heterogeneous system modeling with systemc,” in Specification and Design Lan-
guages (FDL), 2012 Forum on. IEEE, 2012, pp. 160–167.

[6] S. H. Attarzadeh Niaki and I. Sander, “Co-simulation of embedded systems
in a heterogeneous moc-based modeling framework,” in Industrial Embedded
Systems (SIES), 2011 6th IEEE International Symposium on. IEEE, 2011,
pp. 238–247.

[7] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, “Metropolis: An integrated electronic system de-
sign environment,” Computer, vol. 36, no. 4, pp. 45–52, 2003.

[8] M. A. Bamakhrama, J. T. Zhai, H. Nikolov, and T. Stefanov, “A methodology
for automated design of hard-real-time embedded streaming systems,” in Pro-
ceedings of the Conference on Design, Automation and Test in Europe. EDA
Consortium, 2012, pp. 941–946.

[9] M. Burton and A. Morawiec, Platform based design at the electronic system
level. Springer, 2006.

BIBLIOGRAPHY 84

[10] C. Chavet, C. Andriamisaina, P. Coussy, E. Casseau, E. Juin, P. Urard, and
E. Martin, “A design flow dedicated to multi-mode architectures for dsp appli-
cations,” in Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM Interna-
tional Conference on. IEEE, 2007, pp. 604–611.

[11] D. Chen, J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang, “xpilot: A platform-
based behavioral synthesis system,” SRC TechCon, vol. 5, 2005.

[12] W. Chen, X. Han, and R. Doemer, “Multicore simulation of transaction-level
models using the soc environment,” IEEE Design and Test of Computers,
vol. 28, no. 3, pp. 20–31, 2011.

[13] W. Chen, X. Han, and R. Domer, “Esl design and multi-core validation using
the system-on-chip environment,” in High Level Design Validation and Test
Workshop (HLDVT), 2010 IEEE International. IEEE, 2010, pp. 142–147.

[14] L.-y. Chiou, S. Bhunia, and K. Roy, “Synthesis of application-specific highly
efficient multi-mode cores for embedded systems,” ACM Transactions on Em-
bedded Computing Systems (TECS), vol. 4, no. 1, pp. 168–188, 2005.

[15] J. E. Coffland and A. D. Pimentel, “A software framework for efficient system-
level performance evaluation of embedded systems,” in Proceedings of the 2003
ACM symposium on Applied computing. ACM, 2003, pp. 666–671.

[16] J. Cong, Y. Fan, G. Han, W. Jiang, and Z. Zhang, “Platform-based behavior-
level and system-level synthesis,” in SOC Conference, 2006 IEEE International.
IEEE, 2006, pp. 199–202.

[17] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific instruction gen-
eration for configurable processor architectures,” in Proceedings of the 2004
ACM/SIGDA 12th international symposium on Field programmable gate ar-
rays. ACM, 2004, pp. 183–189.

[18] J. Cong, G. Han, and W. Jiang, “Synthesis of an application-specific soft multi-
processor system,” in Proceedings of the 2007 ACM/SIGDA 15th international
symposium on Field programmable gate arrays. ACM, 2007, pp. 99–107.

[19] J. Cong and W. Jiang, “Pattern-based behavior synthesis for fpga resource
reduction,” in Proceedings of the 16th international ACM/SIGDA symposium
on Field programmable gate arrays. ACM, 2008, pp. 107–116.

[20] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm based on
sdc formulation,” in Proceedings of the 43rd annual Design Automation Con-
ference. ACM, 2006, pp. 433–438.

BIBLIOGRAPHY 85

[21] S. A. D. Gajski, ESE Back End 2.0, University of California, Irvine, 2006.

[22] D. Densmore, A. Donlin, and A. Sangiovanni-Vincentelli, “Fpga architecture
characterization for system level performance analysis,” in Proceedings of the
conference on Design, automation and test in Europe: Proceedings. European
Design and Automation Association, 2006, pp. 734–739.

[23] J. Eker, J. W. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,
S. Sachs, Y. Xiong, et al., “Taming heterogeneity-the ptolemy approach,” Pro-
ceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[24] J. Falk, C. Haubelt, and J. Teich, “Efficient representation and simulation of
model-based designs in systemc,” in Proc. of FDL, vol. 6, 2006.

[25] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System De-
sign: Modeling, Synthesis and Verification. Springer Science & Business Media,
2009.

[26] B. Gorjiara and D. Gajski, “Fpga-friendly code compression for horizontal mi-
crocoded custom ips,” in Proceedings of the 2007 ACM/SIGDA 15th interna-
tional symposium on Field programmable gate arrays. ACM, 2007, pp. 108–115.

[27] ——, “Automatic architecture refinement techniques for customizing process-
ing elements,” in Design Automation Conference, 2008. DAC 2008. 45th
ACM/IEEE. IEEE, 2008, pp. 379–384.

[28] B. Gorjiara, M. Reshadi, P. Chandraiah, and D. Gajski, “Generic netlist repre-
sentation for system and pe level design exploration,” in Proceedings of the 4th
international conference on Hardware/software codesign and system synthesis.
ACM, 2006, pp. 282–287.

[29] B. Gorjiara, M. Reshadi, and D. Gajski, “Generic architecture description for
retargetable compilation and synthesis of application-specific pipelined ips,” in
Computer Design, 2006. ICCD 2006. International Conference on. IEEE,
2007, pp. 356–361.

[30] ——, “Merged dictionary code compression for fpga implementation of custom
microcoded pes,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), vol. 1, no. 2, p. 11, 2008.

[31] C. Haubelt, J. Falk, J. Keinert, T. Schlichter, M. Streubühr, A. Deyhle,
A. Hadert, and J. Teich, “A systemc-based design methodology for digital sig-
nal processing systems,” EURASIP Journal on Embedded Systems, vol. 2007,
no. 1, pp. 15–15, 2007.

BIBLIOGRAPHY 86

[32] C. Haubelt, T. Schlichter, J. Keinert, and M. Meredith, “Systemcodesigner: au-
tomatic design space exploration and rapid prototyping from behavioral mod-
els,” in Proceedings of the 45th annual Design Automation Conference. ACM,
2008, pp. 580–585.

[33] J. Henkel and S. Parameswaran, Designing embedded processors: a low power
perspective. Springer Science & Business Media, 2007.

[34] Y. Hwang, S. Abdi, and D. Gajski, “Cycle-approximate retargetable perfor-
mance estimation at the transaction level,” in Proceedings of the conference on
Design, automation and test in Europe. ACM, 2008, pp. 3–8.

[35] T. D. Hämäläinen, “Lecture 2: System design flow,” in System Design. Tampere
University of Technology, 2015.

[36] J. Keinert, T. Schlichter, J. Falk, J. Gladigau, C. Haubelt, J. Teich, M. Mered-
ith, et al., “Systemcodesigner-an automatic esl synthesis approach by design
space exploration and behavioral synthesis for streaming applications,” ACM
Transactions on Design Automation of Electronic Systems (TODAES), vol. 14,
no. 1, p. 1, 2009.

[37] B. Kienhuis, E. F. Deprettere, P. Van Der Wolf, and K. Vissers, “A methodol-
ogy to design programmable embedded systems,” in Embedded processor design
challenges. Springer, 2002, pp. 18–37.

[38] B. Kienhuis, E. Rijpkema, and E. Deprettere, “Compaan: Deriving process
networks from matlab for embedded signal processing architectures,” in Pro-
ceedings of the eighth international workshop on Hardware/software codesign.
ACM, 2000, pp. 13–17.

[39] E. A. Lee and I. John, “Overview of the ptolemy project,” 1999.

[40] H. Nikolov, T. Stefanov, and E. Deprettere, “Systematic and automated multi-
processor system design, programming, and implementation,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 27, no. 3,
pp. 542–555, 2008.

[41] H. Nikolov, M. Thompson, T. Stefanov, A. Pimentel, S. Polstra, R. Bose,
C. Zissulescu, and E. Deprettere, “Daedalus: toward composable multimedia
mp-soc design,” in Proceedings of the 45th annual Design Automation Confer-
ence. ACM, 2008, pp. 574–579.

BIBLIOGRAPHY 87

[42] A. D. Pimentel, C. Erbas, and S. Polstra, “A systematic approach to explor-
ing embedded system architectures at multiple abstraction levels,” Computers,
IEEE Transactions on, vol. 55, no. 2, pp. 99–112, 2006.

[43] C. Ptolemaeus, System Design, Modeling, and Simulation: Using Ptolemy II.
Ptolemy. org Berkeley, CA, USA, 2014.

[44] D. Rainer, G. Andreas, P. Junyu, S. Dongwan, C. Lukai, Y. Haobo, A. Samar,
G. Daniel D, et al., “System-on-chip environment: A specc-based framework
for heterogeneous mpsoc design,” EURASIP Journal on Embedded Systems,
vol. 2008, 2008.

[45] M. Reshadi and D. Gajski, “A cycle-accurate compilation algorithm for custom
pipelined datapaths,” in Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis. ACM, 2005,
pp. 21–26.

[46] E. Rijpkema, E. F. Deprettere, and B. Kienhuis, “Deriving process networks
from nested loop algorithms,” Parallel Processing Letters, vol. 10, no. 02n03,
pp. 165–176, 2000.

[47] I. Sander, “System modeling and design refinement in forsyde,” Ph.D. disserta-
tion, Royal Institute of Technology, 2003.

[48] I. Sander, A. Jantsch, and Z. Lu, “Development and application of design trans-
formations in forsyde,” IEE Proceedings-Computers and Digital Techniques, vol.
150, no. 5, pp. 313–320, 2003.

[49] T. Schlichter, M. Lukasiewycz, C. Haubelt, and J. Teich, “Improving system
level design space exploration by incorporating sat-solvers into multi-objective
evolutionary algorithms,” in Emerging VLSI Technologies and Architectures,
2006. IEEE Computer Society Annual Symposium on. IEEE, 2006, pp. 6–pp.

[50] T. Stefanov, E. Deprettere, and H. Nikolov, “Multi-processor system design with
espam,” in Hardware/Software Codesign and System Synthesis, 2006. CODES+
ISSS’06. Proceedings of the 4th International Conference. IEEE, 2006, pp.
211–216.

[51] M. Streubühr, J. Falk, C. Haubelt, J. Teich, R. Dorsch, and T. Schlipf, “Task-
accurate performance modeling in systemc for real-time multi-processor archi-
tectures,” in Proceedings of the conference on Design, automation and test in
Europe: Proceedings. European Design and Automation Association, 2006,
pp. 480–481.

Bibliography 88

[52] M. Thompson, H. Nikolov, T. Stefanov, A. D. Pimentel, C. Erbas, S. Pol-
stra, and E. F. Deprettere, “A framework for rapid system-level exploration,
synthesis, and programming of multimedia mp-socs,” in Proceedings of the 5th
IEEE/ACM international conference on Hardware/software codesign and sys-
tem synthesis. ACM, 2007, pp. 9–14.

[53] J. Trajkovic and D. Gajski, “Automatic data path generation from c code
for custom processors,” in Embedded System Design: Topics, Techniques and
Trends. Springer, 2007, pp. 107–120.

[54] A. Turjan, B. Kienhuis, and E. Deprettere, “Translating affine nested-loop pro-
grams to process networks,” in Proceedings of the 2004 international conference
on Compilers, architecture, and synthesis for embedded systems. ACM, 2004,
pp. 220–229.

[55] NISC toolset user guide, University of California, Irvine, July 2008.

[56] Embedded System Environment: ESE Version 2.0.0 - User Manual, University
of California, Irvine, Sep 2008.

[57] S. Verdoolaege, H. Nikolov, and T. Stefanov, “Pn: a tool for improved derivation
of process networks,” EURASIP journal on Embedded Systems, vol. 2007, no. 1,
pp. 19–19, 2007.

[58] E. Zitzler, M. Laumanns, L. Thiele, E. Zitzler, E. Zitzler, L. Thiele, and
L. Thiele, “Spea2: Improving the strength pareto evolutionary algorithm,” 2001.

	Introduction
	Background
	Thesis Outline

	System-on-Chip Design
	System Design Terminology and Concept
	Development of System Design methodology
	Model-based design methodology
	Application modeling
	Platform Definition
	Mapping
	Evaluation and Refinement
	Implementation

	System design framework review
	The System-on-Chip Environment
	Embedded System Environment
	Metropolis
	Daedalus
	SystemCoDesigner
	No-Instruction-Set Computer
	xPilot
	GAUT
	Formal System Design
	Ptolemy II

	System design framework comparison
	Comparing metrics
	Tools and framework comparison

	Experimentation
	ESE
	Daedalus
	SystemCoDesigner

	Conclusions
	Bibliography

