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ABSTRACT 
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STENROOS, CHRISTIAN: Properties of icephobic surfaces in different icing 
conditions 
Master of Science Thesis, 108 pages 
October 2015 
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Examiners: Prof. Petri Vuoristo, Dr. Heli Koivuluoto 
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Icing inflicts serious problems for different branches of industries by decreasing effi-

ciency, productivity and safety. Aviation, off-shore platforms, sea vessels, power net-

work and wind power suffer from the problems that icing causes. Ice accretion causes 

external loads on the structures, which can collapse structures or danger the safety. For 

example ice accretion on the aircraft wing decreases its lifting abilities and may result 

the loss of controlling. Typically ice is hard to remove from the surface. Therefore many 

methods have been developed in order to melt or detach accreted ice from the surface. 

The most commonly utilized methods are based on electrothermal heating, where inter-

face between ice and substrate is heated until the ice detaches. Also de-icing chemicals 

are used on roads and airplane wings.  

 

These abovementioned methods are not environmentally friendly options and therefore 

different types of coatings for anti-icing solutions have been studied in the literature. 

Fluorine and silicone containing polymer coatings have been showed to offer icephobic 

properties. Furthermore superhydrophobic coatings have been studied due to their water 

repellency and low ice adhesion strengths have been discovered. However superhydro-

phobic coatings will lose their performance in different icing conditions, which is why it 

is crucial to study the formation mechanisms of different ice types. Large number of 

factors such as water droplet size, temperature and wind speed has an effect on icing, its 

harshness and formation of different ice types. Moreover, influence of different proper-

ties on ice adhesion has similar complexity than icing event. Wetting behaviour, surface 

roughness, surface chemistry and icing conditions have an effect on ice adhesion 

strength.  

 

The primary aim of this thesis was to study the effect of different icing conditions on the 

formation of different ice types and furthermore their effect on ice adhesion strength. 

Ice accretions were performed in the icing wind tunnel in nine different icing condi-

tions. Ice adhesion strength of variety of coatings and surfaces was evaluated with cen-

trifugal ice adhesion test. It was discovered that ice adhesion strength is influenced by 

the ice type, wetting behaviour and surface chemistry. Nevertheless correlation between 

ice adhesion strength and the influencing factors needs to be further studied.  
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TIIVISTELMÄ 
 
TAMPEREEN TEKNILLINEN YLIOPISTO  
Materiaalitekniikan koulutusohjelma 
STENROOS, CHRISTIAN: Jäänestopinnoitteiden ominaisuudet eri jäätymisolo-
suhteissa 
Diplomityö, 108 sivua 
Lokakuu 2015 
Pääaine: Pinnoitustekniikka 
Tarkastajat: Prof. Petri Vuoristo, TkT Heli Koivuluoto 
Avainsanat: Jäätyminen, jäänesto, jäätyyppi, jään adheesio, pinnoitteet 
 
Jäätyminen aiheuttaa vakavia ongelmia eri teollisuuden toimialoille vähentäen hyö-

tysuhdetta, tuottavuutta ja turvallisuutta. Ilmailu, öljyn porauslautat, merialukset, säh-

köverkosto and tuulivoima kärsivät erityisesti ongelmista, joita jäätyminen aiheuttaa. 

Jään kertyminen aiheuttaa rakenteiden kuormittumista, mikä voi romahduttaa rakenteita 

tai vaarantaa turvallisuutta. Esimerkiksi jään kertyminen lentokoneen siipeen heikentää 

sen nostokykyä ja voi aiheuttaa koneen ohjauksen menettämisen. Tyypillisesti jäätä on 

hankala irrottaa pinnoilta. Tämän vuoksi useita eri menetelmiä on kehitetty sulattamaan 

tai irrottamaan kertynyt jää pinnoilta. Yleisimmin hyödynnetyt menetelmät perustuvat 

sähkötermiseen lämmityselementtiin, mikä perustuu jään ja pinnan välisen rajapinnan 

lämmittämiseen kunnes jää irtoaa pinnasta. Lisäksi jäänpoistokemikaaleja on käytetty 

teillä ja lentokoneen siivillä.  

 

Edellä mainitut menetelmät eivät ole ympäristöystävällisiä vaihtoehtoja and sen johdos-

ta erityyppisiä pinnoitteita on tutkittu kirjallisuudessa. Fluoria ja silikonia sisältävät po-

lymeeripinnoitteet ovat osoittaneet jäänesto-ominaisuuksia. Lisäksi superhydrofobisia 

pintoja on tutkittu laajalti niiden veden hylkimisominaisuuksien takia, ja on havaittu 

matalia jään adheesiovoimia. Kuitenkin superhydrofobisten pintojen suorituskyky heik-

kenee merkittävästi eri jäätymisolosuhteissa. Useat eri tekijät, kuten pisarakoko, lämpö-

tila ja tuulen nopeus vaikuttavat jäätymiseen, sen rankkuuteen ja eri jäätyyppien muo-

dostumiseen. Lisäksi jään adheesion vaikuttavien tekijöiden lukumäärä on yhtä moni-

nainen kuin jäätapahtumaan vaikuttavien tekijöiden määrä. Kastuvuuskäyttäytyminen, 

pinnankarheus, pintakemia ja jäätymisolosuhteet vaikuttavat jään adheesiovoimaan.  

 

Tämän diplomityön päätavoite on tutkia eri jäätymisolosuhteiden vaikutusta eri jää-

tyyppien muodostumiseen ja jään adheesiovoimaan. Jään kerrytykset suoritettiin jäätä-

vässä tuulitunnelissa yhdeksässä eri jäätymisolosuhteessa. Eri pintojen jään adheesio-

voima mitattiin sentrifugaalisella jään adheesiotestillä. Jäätyypin, kastumiskäyttäytymi-

sen ja pintakemian havaittiin vaikuttuvan jään adheesiovoimaan Korrelaatio jään ad-

heesiovoiman ja siihen vaikuttuvien tekijöiden välillä vaatii silti lisätutkimusta.  
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TERMS AND THEIR DEFINITIONS 
 

Definitions: 

accretion   ice or snow build up on structure 

anti-icing process that prevents ice formation over the protected 

surface 

Cassie-Baxter wetting state, where air is entrapped between the surface 

asperities and water droplet i.e. water droplet is resting on 

the top of asperities 

de-icing   removal of accreted  ice or snow from a surface 

glaze    transparent, dense ice formed in high LWC icing events 

icephobic   surface property that minimizes ice adhesion 

instrumental icing  period during which ice remains on the structure 

mixed    ice type between rime and glaze ice.  

peltier ice adhesion measurement technique, where molded ice 

columns are pushed with the constant rate until ice de-

taches 

rime white, feathery, porous ice type, formed in low LWC ic-

ing events 

Wenzel   wetting state, where water droplet fill the surface texture 

zero degree cone test ice adhesion measurement technique, where ice is molded 

on the pile which is pushed until ice detaches.  

 

Greek symbols: 

α    original phase 

β    new forming phase 

Δg is volumetric phase change free energy of water-ice trans-

formation 

ΔH    volumetric latent heat from freezing event 

∆𝜇𝐼𝑤    chemical potential difference between ice and water 

ή1    collision efficiency of supercooled water droplets 

ή2    sticking efficiency of supercooled water droplets 

ή3    accretion efficiency of supercooled water droplets 

θ    contact angle 

𝜈𝑖    molar volume of ice phase 

𝜎𝑖𝑤    interfacial energy between ice and water 

τ    maximum shear stress,  

ω    angular velocity 

 

Latin symbols 

A    cross-sectional area/ area of ice 

f(θ)    catalytic factor 
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F    force 

Fwater    flow rate of water 

hnozzle    spraying height 

m    mass 

N    nucleant surface 

Pair    pressure of compressed air  

Pwater¨    pressure of water 

r    radius 

Ra    average roughness 

Rz    mean peak to valley height of roughness profile 

Sa    average height of surface (area) 

Sz    maximum height (area) 

t    time 

Tm    melting point of ice 

Tw    water droplet temperature 

Twater    the temperature of water at the nozzles  

V    wind speed 

w    liquid water mass/unit volume 

𝑊ℎ𝑒𝑡
∗     maximum work for heterogeneous nucleation 

𝑊ℎ𝑜𝑚
∗     maximum work for homogeneous nucleation 

 

Materials and chemicals: 

Al    mirror-polished aluminum tested in this thesis 

Aerosil R805   silicon dioxide, SiO2, silica 

C2H2O4   oxalic acid 

C3H8O3   glycerol 

CeO2    cerium dioxide, ceria 

DMPA    dimethylolpropionic acid 

FAS-13   1H,1H,2H,2H -perfluoroethoxysilane 

FAS-17   1H,1H,2H,2H -perfluorodecyl-triethoxysilane 

F-Clean   EFTE, copolymer of tetrafluoroethylene and ethylene 

FeCl3    iron (III) chloride 

Fluorolink
®

S10   α,ω- triethoxysilane terminated polyfluorinated polyether 

Fluorotelomer V  halfly triethoxysilane terminated fluorinated polyether 

GPTMS   (3-glyxidylpropyl)trimethoxy silane 

HCl    hydrochloric acid 

H2SO4    sulphuric acid 

H3PO4    phosphoric acid 

HVIC 1547   silicon rubber 

IPDA    isophorone diamine 

NH4HCO3   ammonium bicarbonate 

R2180    silicone elastomer (Nusil technology LLC) 
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RTV11 room temperature vulcanized silicone rubber  

(GE Bayern Silicones) 

RTV silicon rubber  room temperature vulcanized silicon rubber 

PAA    aminoterminated polyacrylate 

PC    polycarbonate 

PDMS    poly(dimethylsiloxane) 

PEG    polyethylene glycol 

PEMA    poly(ethyl methacrylate) 

PE-PP-copolymer  copolymer of polyethylene (PE) and polypropylene (PP) 

PEPE    polyfluorinated polyether 

PMMA   poly(methyl methacrylate) 

POSS    polyhedral oligomeric silsesquioxanes 

PP    polypropylene tape tested in this thesis 

PSS    sulfonated polystyrene 

PTFE    polytetrafluoroethylene 

PU    polyurethane 

PU-paint   commercial polyurethane paint tested in this thesis 

PVDF    polyvinylidene fluorinde 

SH1    F-containing superhydrophobic hybrid coating, Millidyne 

SH2    superhydrophobic coating, Ultra Ever Dry® 

TEOS    tetraethylotrhosilicate 

TiO2    titanium dioxide, titania 

Zonyl 8470   Perfluoroalkyl methacrylic 

ZrO2    zirconium dioxide, zirconia 

 

Abbreviations: 

AFM    atomic force microscope 

ARF    adhesion reduction factor compared to aluminum 

ESEM    environmental scanning electron microscope 

DRIE    deep reactive ion etching 

IEA    International Energy Agency 

ISO    International Organization for Standardization 

LWC    liquid water content, typically associated  

MVD    mean volume diameter 

PECVD   plasma enhanced chemical vapor deposition 

PIID    plasma immersion ion deposition 

RTV    room temperature vulcanized 

SEM    scanning electron microscope 
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1 INTRODUCTION 

Icing inflicts serious problems for different branches of industry in the cold and moun-

tainous parts of the world. It has been reported that icing causes decreased efficiency, 

safety hazards and structure failures in Scandinavia, Alps, Northern America, Russia, 

Japan, China and even in South Africa. [1,2,3,pp.2–3] In addition icing has caused seri-

ous issues for aviation, which had led into fatal incidents. [4,5] Ice accretion on the air-

plane wing decreases its lifting abilities, which may result loss of flight control. [6] Be-

sides the aviation, icing causes serious issues for other branches of industries. On the 

wind turbine blades accreted ice changes the aerodynamic performance of blade and 

increases loads of the structure, which require standstills that decrease productivity of 

the turbine. [7,8] Increased loads due to ice accretion may also collapse engineered 

structures. [3,p.83, 9–11] The most distinct incident related to icing was observed in 

Canada in January 1998, where ice storm created heavy freezing rain events causing 

wide destruction on different structures of power network. In total 1,300 high voltage 

transmission line towers and 35,000 distribution line structures were collapsed or de-

stroyed due to high ice loads. [3,p.83,9] As a result of this catastrophe over two millions 

people suffered from power outage for weeks and the economic losses were considera-

ble. [9] 

 

Clearly icing possesses life-threatening issues and may results substantial economic 

losses. Therefore variety of techniques has been introduced to aid ice removal from the 

surfaces. The basic method that has been utilized to protect surface from icing is based 

on the electrothermal heating elements, which will melt the interface between ice and 

substrate facilitating the ice removal.[8,12] Pneumatic boots have been applied on the 

airplane wings, which performance is based on change of profile shape that results 

cracking of the ice. Chemicals have been also applied on the surface to melt ice or 

snow, typically from the airplane wings. Drawback of the chemicals is that they contain 

harmful chemicals and offer only temporary protection.  

 

Coatings have been presented to offer environmentally friendly option, because no ex-

ternal energy is needed and coatings can be tailored to be free of harmful chemicals. 

Different coating strategies have been presented, which can be roughly divided into 

polymeric coatings containing fluorine or silicone compounds and superhydrophobic 

polymer composite coatings. Their performance as icephobic coatings is based on the 

hydrophobicity, which is achieved with the proper surface chemistry and roughness. 

Future aim is to be able to prevent ice formation on the structures.  
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The aim of this thesis is to study icephobic performance of different type coatings rang-

ing from superhydrophobic to polymer surfaces. Their properties are evaluated in the 

different icing conditions. Ice accretions are performed in the icing wind tunnel in nine 

different icing conditions. Ice adhesion strengths are measured with the centrifugal ice 

adhesion test. The effect of different icing conditions on the icephobic performance of 

the coatings is inadequately studied in the literature. Therefore, the main goal of this 

thesis is to study the effect of icing conditions and ice type on the ice adhesion strength. 

The secondary aim is to evaluate the effect of surface properties (wettability and surface 

roughness) on the ice adhesion strength. In addition, the performance of icing wind tun-

nel is discussed in this thesis. 

 

The icing issues in different branches of industry are evaluated in Chapter 2, which 

works as a motivation for icing prevention and mitigation. The origin of the icing event 

is discussed in Chapter 3, where ice formation and severity of icing are evaluated. In 

addition, classification and characteristics of different ice types are discussed in Chapter 

3. Methods against icing are stated in the Chapter 4, where different coating strategies 

and materials are widely expressed. Chapter 5 presents research methods and materials 

used in this thesis. The results and discussion are in Chapter 6, where wetting behavior, 

surface roughness, ice accretion, ice adhesion results and their connections are analyzed. 

Finally conclusions and future recommendations are presented.  
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2 ICING ISSUES  

Engineered structures in the cold climate regions are prone to icing, which causes sever-

al problems for different branches of industries. It has been reported that the icing has 

induced severe problems in the Scandinavia, Northern-America, Northern Russia and 

also in some parts of Asia, for example in Japan and China. [2,13] The altitude is also 

great factor in icing event, which is why the icing is a common phenomenon in the 

mountain areas or in the aviation. The accreted ice causes increased loads on the struc-

tures, which can lead to failures in the materials structure or in the worst case the col-

lapse of the whole structure. These failures inflict serious safety problems for example 

in the aviation and transportation industry. [3] 

 

The icing on the different engineered structures inflicts also other troubling issues than 

increased loads. Accreted ice can decrease dramatically the functionality of different 

structures, for example accreted ice drastically weakens the performance of aircraft 

wing [6]. The decreased performance also affects negatively the safety aspects of differ-

ent devices. For example the accreted ice on the aircraft wings has led to many fatal 

accidents. Also the working conditions can be dangerous due to ice loads, for example 

superstructure icing in the sea vessels hinders the navigation of the ships and also the 

working environment of the crew on the deck. [14] One of the major issues is related to 

decline of the productivity in different energy production facilities. For instance ice ac-

cretion on the wind turbine blades affect the aerodynamic functioning of the blade and 

may lead to standstill of the whole turbine in order to prevent larger damages. These 

standstills will naturally decrease the efficiency of the wind turbines. [7,15] 

 

In this chapter, the main fields that are suffering from the problems caused by icing are 

presented. These fields include aviation, offshore and marine operations, energy produc-

tion and also tall structures. In these subchapters the icing problems are evaluated and 

also some of the countermeasures against the icing are described. More thorough de-

scription of the methods and strategies against the icing are presented in Chapter 4  

2.1 Aviation 

Aviation industry has been used as a typical example of industry, which has battled with 

icing issues. Problems are related to two different cases in-flight icing and ice or snow 

accretion at the airports. These problems have caused many accidents during the past 

decades and some of them have also led to the fatal incidents. According to American 

Safety Advisor 12 % of all flight accidents were due to the icing weather conditions, 
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which 92 % where happening in-flight. [6] Anti- and de-icing systems, such as pneu-

matic boots and piccolo tube heating system, have been developed to prevent the ice 

accretion, but as the statistics show these systems have failed to demonstrate proper 

level of functionality. [6,16,pp.26–29] 

 

In-flight icing on the airplane wings can happen in several ways.[6,16,pp.13–14] Firstly 

the ice accretion can occur before the anti- and de-icing systems are switched on, when 

the ice accretion is observed by small accretions on the leading edge. The more severe 

icing is occurring, when airplane encounters high liquid water content (LWC) clouds, 

which cause runback ice and ridge formation on wing as illustrated in Fig. 1. [18] These 

ice accretions can be located on the different parts of the wing. This type of icing is con-

sidered to be the most dangerous type on the wings, because it dramatically changes the 

aerodynamic profile of the wing and decreases its lifting ability. The third category con-

tains irregularly shaped glaze ice accretion on the random parts of the wings. [6,17] 

These ice shapes are formed in the longer contacts with icing conditions. The frost for-

mation on the ground during long standstills is the last category. Formed frost is usually 

dealt by spraying de-icing chemicals on the wings, but untreated it can decrease the lift-

ing ability of the wings. [6] 

 

 

Figure 1. Heavy in-flight icing on the airplane wing. [18] 

Failure in de-icing actions can lead to disaster as happened with Continental Airlines 

Inc. flight 1713, which was designated to fly from Denver, Colorado to Boise, Idaho. 

The flight was scheduled flight and the de-icing actions were performed properly before 

the departure. The delay between the actual take-off time and de-icing was 27 minutes. 

Shortly after the take-off the plane started to rotate and the flight crew lost the control of 

the plane leading to uncontrolled crash. The crash site is presented in Fig. 2 [19]. This 
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accident caused the loss of 28 lives, because the deicing actions were insufficient to 

prevent icing on the wings of the airplane. Also the investigators stated that delay be-

tween the take-off and de-icing was too long. [4] 

 

 

Figure 2. Crash site of the Continental Airlines Inc. Flight 1713. [19] 

Icing can also inflict severe problems during the flight as the Simmons Airlines Ameri-

can Eagle flight 4184 demonstrated. The airplane encountered icing conditions at 2400 

meters. The ice was accreted in the form of ridge on the wing. The location of the ac-

creted ice was behind the de-icing boots, which made removal attempts pointless. The 

aileron hinge were frozen in the reversal direction, which caused plane to lose flight 

control and crashed causing 68 people to lose their lives. [5] The remainders of the 

wreckage are shown in Fig. 3.[20]  

 

 

Figure 3. Crash site of Simmons Airlines American Eagle flight 4184. [20] 
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As these cases point out the ice accretion the aircrafts possess real thread, which should 

be encountered by proper actions. De-icing at ground has been performed by spraying 

chemicals, usually ionic glycol based salts, on the wings as showed in Fig. 4. [21] This 

method has its vulnerabilities, because it will only remove the accreted ice and snow 

and offers protection only for short time as the Continental Airlines Inc. accident 

showed. More permanent solution is needed to prevent this sort of disasters.  

 

 

Figure 4. De-icing of the airplane with de-icing chemicals. [21] 

During the flight, pneumatic boots have showed that they indeed can offer de-icing op-

tion on the wing. Although this system has its drawback, because it only offers the ice 

removal for the protected part of the wing i.e. the leading edge. The others parts of the 

wing are vulnerable for the for example the runback icing or ridge formation. 

[16,pp.27–28] The runback ice on the wing can also be very harmful, because in the 

worst case it can decrease lift by 80 % significantly reducing aerodynamic performance. 

[6] 

2.2 Offshore and marine 

Icing causes serious problems for marine and offshore industries and its impact has in-

creased due to opening Northern Sea Route through the Arctic Ocean.[12,14,22,23] 

Northern sea route is now accessible for longer period in the summer months (from June 

till October), which has increased the marine traffic in the shipping lane. [24] Icing on 

sea vessel hinders the working conditions that ships’ crews are facing. Accreted ice 

loads can form large and heavy structures on the ships superstructure, which possess a 

real threat on safety working conditions. Also the heavy loads can change the center 

mass point of the ships, which severely affect the maneuverability of the vessel. [14,22] 

The different devices, such as navigation and communication equipment, on the super-
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structure of the sea vessels are prone to icing as Fig. 5a) indicates. In addition, the ac-

cess on the life boats can be hindered due to ice formation. These ice loads are tradi-

tionally removed manually by the crew, but the removal is challenging and can in the 

worst case lead to injuries due to falling ice. Heavily iced ship’s deck is presented in 

Fig. 5 b). [14,23]  

 

 
Figure 5. Effect of severe icing on sea vessels’ structures. a) Superstructure icing is 

covering the radar and communication antennas of the small ship [12] and b) heavy 

icing of the deck. [25] 

Different forms of the icing can occur in the seas. The traditional atmospheric icing 

produces glaze ice from freezing rain or drizzle and rime ice from the fogs and clouds 

containing supercooled droplets. Sea spray icing can be paralleled with other atmos-

pheric icing due to its similar icing event. Sea sprays are typically formed by waves 

contacting different structures (sea vessel’s hull, offshore platforms in the sea), which 

can deliver droplets on the superstructure of the vessel or platform causing superstruc-

ture icing. Icing due to sea sprays is considered to possess the greatest threat in marine 

and offshore operations [12,22] Figure 6 describes icing rates at the starting point of 

Northern sea route, based on data from the years 1979-2011. [22] 

 

Figure 6. Icing rates. during the winter months (December, January, February, March) 

based on data from 1979-2011. [22] 

Anti- and de-icing actions at the offshore platforms and marine vessels have been usual-

ly dealt by the crew, which manual de-ices accreted ice or snow with varying tools (etc. 

hammers, bats). This sort of de-icing is ineffective, personnel costs are relatively high 
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and also it has been reported to lead into accidents. [12] Anti- and de-icing methods 

would significantly reduce the safety risks on the functional areas of the off-shore plat-

forms and the sea vessels’ decks. It is also vital to guarantee the proper functioning of 

the communication and navigations systems, which are vulnerable for icing. [12,14]  

2.3 Energy production 

Icing produces substantial problems for different energy production techniques mostly 

due to decreased efficiency and functionality. Icing is considered as a problem in wind 

turbines, hydroelectric turbines and gas turbines, of which the icing on the wind turbine 

has been experienced to cause the biggest difficulties. [15] Due to great literature impact 

of the icing issues of wind turbines, this chapter is focused on the icing problems occur-

ring in wind turbines. The heavy ice accretion on the wind turbine blades are presented 

in Fig.7 and Fig.8 [7,26] 

 

 

Figure 7. Iced up wind turbine blade. [26] 

Wind turbines can face harsh conditions, such as erosion, icing, temperature variations, 

during their operating lifetime. These turbines are often located in coasts, mountains or 

even off-shore, which makes them prone to different meteorological events like icing. 

[8,27] Wind turbines can encounter different types of atmospheric icing depending on 

the conditions. [7,8,15] Different ice types can accrete on the leading edges of the wind 

turbines, and mainly these ice types are formed from in-cloud icing events. In the in-

cloud icing events the clouds and fog containing supercooled droplets will contact with 

turbine blade, and the icing occurs. Depending on the droplet size in the clouds or fogs 

rime or glaze is formed on the leading edge and nearby areas of the blades. [28] In Fig-

ure 8 the rime ice accretion on the leading edge of wind turbine is presented. 
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Figure 8. Severe rime ice accretion on the leading edge of the wind turbine blade. [7] 

Ice formations on the wind turbines inflict severe problems on operation, reduce life 

time and causes power losses. Ice formed the blades and other parts of the turbine caus-

es increased load on the turbine structure, which can in the worst case lead to failing on 

the wind turbine. Ice accretion on the leading edge also affects the aerodynamic perfor-

mance of the wing. Accreted ice changes the aerodynamic balance of the blades, which 

reduces drag coefficient that increases power losses. Even the small ice accretion on 

blade will change the surface roughness of the blade and cause power losses due to 

changed aerodynamic behavior. [7,8,15] 

 

Power losses due to the icing originate from different sources. As mentioned in the pre-

vious chapter changes in the aerodynamic profile of the blade can inflict power losses. 

In some cases the ice formation on the leading edge of the blade can lead to shutdown 

of the whole turbine. [7] This procedure greatly reduces the efficiency of the whole tur-

bine. Standstill time can be reduced by applying the different de- and anti-icing methods 

[8,15], which are more thoroughly discussed in Chapter 4.1. By using de-icing methods 

the accreted ice can be melted during the standstill. Heating resistance based anti-icing 

methods can be operated during turbine operation. [2,8]  

 

One important aspect concerning the icing in wind turbines is ice fall or ice throw risk. 

Different size ice pieces can plunge far away from turbine, which causes risk to nearby 

infrastructure (roads, building, houses). Due to weight and size of shedded ice pieces, 

they can inflict serious damage to people and structures in the nearby areas. Ice falling 

off from turbine also hinders the accessibility of maintaining personnel to wind turbine. 

Proper risk assessment is required in the wind turbine installations. [29] 
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2.4 Power lines 

Different structures of the power network in the cold climates are prone to icing. Over-

head lines, insulators and phase conductors are vulnerable to problems caused by icing – 

flashover due to icing, overloading and ice shedding. In the worst case this can lead to 

power outages, which has a significant socioeconomical impact. [3,30,31] Canada, 

USA, Russia, Norway, Sweden, Iceland, Finland and even China and Japan have re-

ported that icing or snow accumulation on the power lines has caused failures in the 

power distribution systems. [9,30,31] Figure 9 shows the situation, where severe icing 

events can lead. [32] 

 

 

Figure 9. Rime ice accretion on the collapsed overhead line, Ålvikfjellet, Norway. [32] 

Problems that icing causes to power distribution network are substantial both economi-

cally and socially. From the engineering point of view, electrical issues related icing is 

also critical. During the accretion snow and ice act as an insulator between different 

parts of the insulators. Electrical flashover, illustrated in Fig. 10, can occur, when the 

accreted ice or snow layers start to melt. Transformation from solid state to liquid state 

increases highly conductivity of the water layer on the snow or ice, which creates flash-

over on the insulators. These flashovers can create voltage spikes, or even a complete 

loss of power. [3,p.322,33,34,pp.2–3] Ice and snow loads have also a mechanical impact 

on the power lines, which collapse the overhead lines. Ice shedding from the towers and 

other tall structures is considered as problem, because falling ice might damage lines 

and insulators and possess risk if lines or towers are located near roads. [35]  
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Figure 10. Flashover over iced up insulator. [36] 

Overhead lines connect different areas and are often located in the elevated areas. Due 

to large variety of power line locations different ice and snow types can be formed over 

these structures. Overhead transmission lines, conductors and outdoor substations can 

face substantial icing events, as was the case in Canada in January 1998. An ice storm 

created heavy freezing rain events that caused disastrous destruction on the different 

structures of this power network. In total 1,300 high voltage transmission line towers 

and 35,000 distribution line structures were collapsed or destroyed to high ice loads. 

[3,p.83,9] As results of this catastrophe over two millions people suffered from power 

outage for weeks. [9] Figure 11 shows the collapsed towers as a result of this ice storm. 

[11] This underlines the importance of need for the research to find ways prevent or 

battle with the icing issues.  

 

 
Figure 11. Part of the destruction from ice storm in Canada 1998. Collapsed high volt-

age transmission line towers due to heavy ice loads. [11] 
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Power network structures can face both precipitation and in-cloud icing. Precipitation 

icing can occur in the form of freezing rain or as wet snow accumulation. Freezing rain 

occurs usually near northern coastal areas such as Canada, Norway, Island and USA. 

Wet snow accumulation has been reported to cause problems in China, Japan, Iceland 

and other countries in Europa. Wet snow accretion is also problem in countries sur-

rounding the Mediterranean such as Italy, France Slovenia. [3,pp.4–7] In-cloud icing 

produces rime or glaze ice depending on LWC- content in clouds or fog. In-cloud icing 

occurs more likely in the elevated areas or for tall structures. [3,pp.4–7,33] Generally 

rime, glaze and freezing rain have been considered to possess the greatest threat for the 

reliability of transmission lines. [3,p.33] Even so wet snow accretions have led to fail-

ures of transmission line structures in China and in 2008 100km of high voltage trans-

mission was destroyed. [9] In Figure 12, wet snow has collapsed an overhead line in 

Norway [3,p.2]. 

 

Figure 12. Collapsed overhead line due wet snow accretion.[3,p.2] 

Currently there are not any effective methods against icing on power lines. Different 

active methods such as heating based on Joule effect or applications based on de-icing 

chemicals. Both of these methods does not offer effective solution against icing, be-

cause heating based system require high amounts of energy and de-icing chemicals are 

not environmentally friendly. Passive icephobic coatings would offer the best solution, 

because they do not consume energy during their operative life and does not release any 

harmful chemicals into the nature. [34,pp.3–4] 

2.5 Tall structures 

Height has significant effect on icing probability and severity, which has to be consid-

ered in the design of different tall structures such as telecommunication and radio masts, 

wind turbines and tall power line towers.[10,37] In this chapter the focus is on elevated 

radio and telecommunication masts, which are often exposed to harsh atmospheric icing 

conditions. In Figure 13, there is presented the tall structure supporting heavy ice load. 
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Figure 13. Rime ice accretion on the mast. Mast’s height is 127 m and it is located at 

the Ylläs, Finland. [10] 

The main problem in icing of tall structure is related to increased loads on the masts. Ice 

accretion increases total mass that mast’s structure has to support and this needs to be 

taken into an account in the designing stage. [10,37,38] More severe effect on durability 

of the masts is observed, when the winds are ruled in. The accreted ice increases the 

surface area of the mast, which increases the effect of wind loads on the structure. [10, 

37] Ice also interferes the signal transmissions and receptions. The guy wires, that sup-

port the masts, are also prone to icing. Ice accretion on the guy wires causes stretches on 

the cables, which can lead to breakdown of the wire. In addition ice accretions on the 

guy highlights the ice fall or ice shedding risk to nearby surroundings (roads, outdoor 

areas), which might cause the transfer of the mast position [39]. Atmospheric icing 

events can create heavy ice accretions, over 100 kg/m, on the masts, which can lead into 

the collapsing of the whole structure. [10,37,38]  

 

One might expect that catastrophical failures of the tall masts do not happen so often. 

[37] Although during later part of 1990s over 140 radio or telecommunication masts 

collapsed due icing. Many of these failures were related collapsing of the power line 

towers and even the tallest and the most expensive masts did collapse during that peri-

od. [10,38] Economic impact of these failures is quite significant. The cost of the build-

ing of 300 m tall radio and television mast is over 5 M$. During the latter part of 1990s 

23 tall 300m mast collapsed due to icing. [37] 

 

There are not at the moment any anti- or de-icing systems, which could be efficiently 

adapted into the masts. Heating the surface of the mast is not effective way due to high 

surface area of the mast, but passive solution could offer the solution to this problem. 

However the current coating solutions do not offer reliable and cost-effective alterna-

tives for icing prevention or mitigation. Due to lack of effective solutions for tall struc-

tures, the only countermeasures against the icing can be done in structural designing. By 
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properly estimating the ice loads, the structures can be designed to withstand the ice 

masses [38]. ISO 12494 standard “Atmospheric Icing of Structures” classifies accreted 

ice load into the different categories (R1-R10), which can be taken into account in the 

designing stage of the mast. Exploitation of the ISO-12494 standard relies heavily on 

the proper ice detection system, which measures reliably the correct ice loads on the 

structures. [10] Ice classes are further discussed in the Chapter 3.2.  
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3 ICE ACCRETION ON SURFACES 

Atmospheric icing on the surfaces is very complex phenomena and multiple factors af-

fect the accretion process and ice’s behavior on the surface. From climatic point of 

view, several basic processes, water cycle, wind speed, formation of the clouds, precipi-

tation and presence of different phases (vapor, liquid, and solid) of atmospheric water 

influence greatly on the severity of icing, accretion rate and ice type. [3,pp.9–10,28,40] 

Several factors affect also the ice accretion on surfaces, but their connections to ice ad-

hesion are poorly understood. [16,pp.34–35,34,p.15] Surface topography, surface chem-

istry, wetting behavior and ice characteristics, type, temperature and LWC, have been 

reported to have influence on ice adhesion, which adds the complexity of icing on the 

surfaces. [41,42] 

 

Aim of this chapter is to describe icing event and ice accretion on the surface. Hetero-

geneous nucleation theory and ice accretion model are presented in order to offer back-

ground for the accretion process. Icing severity is also evaluated based reports and 

standards. In addition classification and formation of different ice types are discussed.  

3.1 Icing event 

Icing event is form precipitation that occurs in the cold climates and it is also a part of 

hydrological cycle, which is illustrated in Fig. 14. Different stages are involved in the 

hydrologic cycle, i.e. water cycle, which describes the circulation of water from ground 

to atmosphere and back to ground. Water is stored in lakes, rivers, oceans, ground wa-

ter, plants and animals, where it is evaporated by solar radiation into the atmosphere. 

Warming of ground induces phase change of water from liquid into vapor and vertical 

current from the ground to atmosphere. The evaporated water vapor in the atmosphere 

form condensates i.e. clouds due to mixing of air masses that have different humidity. 

When the clouds reach certain humidity value, the precipitation starts.[43] Depending 

on meteorological variables, observed precipitation on the ground is in form of rain, 

drizzle, hail, sleet, freezing rain and snow. [44,45]  
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Figure 14. Hydrologic cycle. [46] 

In order to form ice or snow, the precipitation event should be in the cold climates, 

where temperatures are subzero. It has been reported that the icing occurs in the Scandi-

navia, Central Europe, Northern-America, Northern Russia and also in some parts of 

Asia, for example in Japan and China. Furthermore the altitude also influences on the 

ambient temperature, therefore icing events are common phenomenon in the elevated 

areas such as hills and mountains. Therefore it has been recorded that icing events have 

been occurred in the mountainous area of Spain, Algeria, South Africa, New Zealand 

and Latin America. [3,p.4] 

 

The liquid water in the droplets can be in form of drop, droplet, hail or snow flake. The 

significant factor in the atmospheric icing is super cooling of the water droplets, which 

means that temperature of droplets in the clouds or air is subzero. It is widely accepted 

that the freezing temperature of the bulk water is 0 °C. [16,p.7,34,pp.11–12] Super-

cooled water droplets are in metastable state, which means that they are thermodynami-

cally unstable and can easily change their state from liquid water to solid state i.e. ice. 

[16,p.7] For supercooled water droplets the solid state is the most favorable energy 

state, which means that water molecules tend to arrange in the lattice. Transformation 

from liquid water to ice depends on the presence of the nucleating agents according to 

heterogeneous nucleation theory (discussed in Chapter 3.1.1). [34,pp.11–12,47] If the 

basal plane structure is similar to ice’s structure, it contains the nucleating sites, where 

ice can freeze. In the freezing process of the ice over the nucleating agent, liquid water 

starts to form ice crystals. [16,p.7,34,pp.11–12] The crystal structure of ice is hexagonal 

and crystal growth of ice starts from interface of obstacle surface and droplets outer 

surface in contact with obstacle. [48,49] 
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As underlined before, icing is a very complex phenomenon, and quite large variety of 

meteorological parameters influence on the appearance, properties and accretion rate of 

the ice. The most significant effect on the ice type is originated from the precipitation 

type i.e. droplets size distribution and intensity i.e. liquid water content. 

[3,p.8,40,50,51,52, pp.21–22] In addition the wind and ambient temperature are critical 

factor that influence the appearance of the ice. Wind’s speed, direction and turbulence 

have an impact on the shape of the ice and also on water droplets movements on the 

surface. Temperature has the greatest impact on the supercooling rate of the droplets, 

which determines how rapidly the droplets will cool upon the contact with surface. 

[3,p.8,40,52,pp.21–22]  

3.1.1 Heterogeneous nucleation theory 

Firstly, it is widely accepted that supercooled rain droplet is a heterogeneous systems, 

because it contains solid impurities that can perform as ice nuclei. [53,pp.165–

166,54,55] Even on the laboratory scale it is hard the keep water free from any impuri-

ties.[55] Secondly, it is observed that the rate of ice formation will increase, if the crys-

tal growth occurs on the solid substrate on the ground instead ice growth in the clouds 

[56]. Finally, homogeneous nucleation is rare phenomenon outside of some experi-

mental work performed in the laboratory [55]. Therefore it is reasonable to argue that 

ice nucleation and freezing on the solid surface can be described with heterogeneous 

nucleation theory, which is widely validated in the literature [47,53,p.221,54–60] 

 

Solid surfaces have always defects and sites on their surface, which can act as nucle-

ating agents in ice formation. In this work we assume that freezing event is occurring on 

the planar plane. Therefore, the spherical cap model is applied to describe the droplet’s 

state and shape on the solid surface. [53,pp.172–173] In Fig. 15 the spherical cap model 

is presented, where α can be considered to present water phase and β the new phase i.e. 

ice.  

 

 
Figure 15. Spherical cap model. N stands for nucleant surface, α for original phase, β 

for new forming phase, φ for contact angle and r for critical radius.[53,p.173] 
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According to classical nucleation theory, all nucleation have to overcome an energy 

barrier in order to nucleate [58]. When the energy barrier of heterogeneous nucleation is 

compared to energy barrier of homogeneous nucleation, it can be concluded that the 

energy barrier for heterogeneous nucleation is much smaller compared to homogeneous 

nucleation. [53,p.173,60,61] The reason behind this difference results from effect of the 

solid surface’s nucleation sites. Water droplet’s behavior can be described with contact 

angle, which gives the information about material’s tendency for nucleation with 

water.[53,pp.173–174] In homogeneous system no contact angles exist (there is no solid 

material), whereas in the heterogeneous nucleation contact angle is formed between the 

solid surface and water droplet. Therefore, there have been presented term f(θ) that 

takes account the catalytic effect of solid surface in heterogeneous nucleation. In Equa-

tion 1 there is presented the relationship between the works of forming the heterogene-

ous nucleate and homogeneous nucleate.  

 

𝑊ℎ𝑒𝑡
∗ = 𝑊ℎ𝑜𝑚

∗ 𝑓(𝜃)    (1),[53,p.173] 

 

where the 𝑊ℎ𝑒𝑡
∗  and 𝑊ℎ𝑜𝑚

∗  are the maximum works needed to form ice nucleus from 

liquid water, f(θ) is the catalytic factor that takes account the contact angle. The equa-

tion 1 can be also presented with interfacial energies and chemical potentials as shown 

in Equation 2 and 3: 

 

𝑊ℎ𝑒𝑡
∗ =

16𝜋𝜎𝑖𝑤
3 𝜈𝑖

2

3∆𝜇𝑖𝑤
2  𝑓(𝜃) = 𝑊ℎ𝑜𝑚

∗ 𝑓(𝜃)     (2), [60] 

 

where 

𝑓(𝜃) =
(1−𝑐𝑜𝑠𝜃)2

4
(1 + 𝑐𝑜𝑠𝜃)     (3),[60] 

 

where ∆𝜇𝐼𝑤 stands for the chemical potential difference between ice and water, 𝜎𝑖𝑤 in-

terfacial energy between ice and water, 𝜈𝑖 is molar volume of ice phase and θ stands for 

the contact angle. Coefficient f(θ) can have values between 0 and 1 depending on the 

contact angle. If f(θ) is 1, it represents the homogeneous nucleation. The effect of f(θ) 

on the value of the energy barrier for heterogeneous nucleation is presented in Fig. 16, 

where contact angle is on x-axis and on y-axis is energy barrier for heterogeneous nu-

cleation.  
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Figure 16. Relationship between contact angle and catalytic factor. [53,p.174,60] 

Figure 16 points out the energy barrier for heterogeneous nucleation increases exponen-

tially into to certain value with increasing contact angle. This results lower nucleation 

probability for surfaces with the high contact angles, in other words more energy is 

needed to start nucleation on high contact angle surfaces.  

 

The maximum work required for heterogeneous nucleation correspond the free energy 

barrier for heterogeneous nucleation. The Equation 4 takes role of latent heat and tem-

peratures differences inside droplet into account: 

 

∆𝐺ℎ𝑒𝑡
∗ =

16𝜋𝜎𝑖𝑤
3 𝑇𝑚

2

3∆𝐻2(𝑇𝑚−𝑇𝑤)2 𝑓(𝜃),     (4), [58] 

 

where ∆𝐺ℎ𝑒𝑡
∗  is energy barrier for heterogeneous nucleation, Tm is melting point of ice in 

normal conditions, Tw water droplet temperature and ΔH is a volumetric latent heat 

from freezing event.  

 

Critical radius for curvature of supercooled water droplet on the solid surface can be 

calculated with the equation 5, 

 

𝑟∗ = −
2𝜎𝑖𝑤

∆𝑔
,    (5) [53,pp.221–222] 

where 𝜎𝑖𝑤 is interfacial energy between ice and water and Δg is volumetric phase 

change free energy of water-ice transformation. In order to supercool water to nucleate, 

the critical radius of the droplet should suitable with the defect sizes or cavities on the 

surface i.e. the surface roughness influences on the nucleation according to this theory. 

 

The heterogeneous nucleation theory of ice offers a background for freezing event. 

Theory is applicable on at the pretty static situation, because it does not take a stand for 
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dynamic behavior of the supercooled water droplets. In the real icing event in the na-

ture, the droplets have certain amount of velocity that they will impact on the solid sur-

face. The theory underlines the usage of the hydrophobic materials as icephobic coat-

ings, because hydrophobicity should increase the energy required for nucleation to start. 

[47,59–61] However after ice formed on the surface, nucleation should proceed in ac-

celerated manner. 

3.1.2 Severity of ice accretions 

During the past decades there has been a great interest on modelling the ice accretion on 

different manmade structures. These models have used in the assessment of mechanical 

loads that accreted ice inflicts on the certain structure, which can be taken into account 

in the designing phase. [3,p.8,40,62,63] As discussed previously in Chapter 2, the ice 

storm in Canada gives a perspective how severe destruction and related economic losses 

can occur in severe icing events.  

 

Ice accretion model should describe how main parameters in the icing event have been 

taken into consideration. The main parameters in the icing event, that have influence 

accreted ice’s shape, density and rate of accretion, are LWC of rain, droplet size distri-

bution, temperature, wind speed and direction and in addition relative humidity. [3,p.8, 

40,52,p.40] 

 

Lozowski & Makkonen (2005) [62] state that proper ice accretion model should include 

the following six factors: 

 

1. Consider how air flow goes around the icing obstacle. 

2. Impingement of supercooled droplets. 

3. Internal and external heat load which affect the sticking probability of the drop-

lets.  

4. Behavior of unfreezed liquid on the surface after an impact. 

5. Ice properties; growth direction, shape, density, roughness and icicle formation. 

6. Response of the iced structure i.e. growth, twisting. [62] 

 

Multiple ice accretion models have been presented in literature, which take a stand for 

accretion of different ice types rime, glaze, hoar frost, wet snow and sea spray icing or 

the impact on different engineered structures such as power network lines, wind tur-

bines and tall structures etc. [10,38,62,64–70] For clarity reasons and the scope of this 

thesis, only the Makkonen model is presented, which is widely used in the literature as a 

standard model for ice accretion [62,63,71]. ISO 12494 standard “ Atmospheric icing of 

structure” proposes that Makkonen model [67] can be used to describe ice accretion on 

the cylinder-shaped icing structures. As discussed, the shape of the icing structure has 

an effect on flux dynamics of the air flow, which is why this model does not give accu-

rate estimates for different shaped structures. Formula of Makkonen model is presented 
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in the following at the Appendix C of ISO-12494-standard for accreted ice mass (m) vs. 

time: 
𝑑𝑚

𝑑𝑡
= ή1ή2ή3 ∙ 𝑤 ∙ 𝐴 ∙ 𝑉     (6), [63] 

 

where ή1, ή2, ή3 are correction factors that have value between 0 and 1. These factors 

point out the correct amount of ice accretion that different processes in the icing event 

reduce from the maximum amount. Factor ή1 stands for collision efficiency of the water 

droplets or snow flakes, ή2 describes the sticking efficiency, which is mainly related to 

wet snow growth, ή3 signifies the accretion efficiency, which considers the either dry or 

wet growth of the ice and its impact on the ice accretion load and rate. Liquid water 

mass/unit volume is marked with w, wind speed V and cross-sectional area with A.  

 

Collision efficiency denotes the ratio of water droplet hitting the icing object and its 

value can be considerably less than 1, because the smaller droplet have tendency go 

around the object with air flow’s streamlines. [3,p.87,63] This situation is illustrated in 

Fig. 17. 

 

 

Figure 17. Streamlines of the airflow and possible trajectories of the droplets. [3,p.87] 

The second correlation factor ή2, sticking efficiency, describes the amount of droplets 

that stick and form ice on surface after their collision. In the right conditions it is possi-

ble that the droplet can bounce off from surface. The third factor ή3, accretion efficien-

cy, considers whether the accretion is in dry or wet mode. Dry ice accretion is related to 

formation of rime ice, as illustrated in Fig. 18,a). In dry ice accretion, the accretion effi-

ciency has a value of 1, because all the droplets hitting the surface freeze immediately 

upon the impact. Wet ice accretion is observed in the icing events, which LWC water 

content is high, for example in the freezing rain events. Wet mode of ice formation pre-

sented in Fig. l8b). [3, pp. 88-89] 
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Figure 18. Schematic presentations of ice accretions a) rime ice and b) glaze ice. [3, 

pp. 88–89]  

Makkonen model is an useful tool when assessing to possible ice loads on different 

structures. Although the model relys heavily on avaibility of the meteorological data, 

such as LWC, MVD, temperature, wind speed, which are measured only in the research 

centers. Although lack of observed input data, it is possible to produce quite accurate 

small grid weather forecast, which can be used as input data. [40,52,p.40,62]  

 

Ice accretions models give valuable data, which can used in the assessment of the site’s 

icing conditions. IEA Wind and ISO 12494 have presented tables of icing severity i.e. 

”ice classes” of the site, which can be used, depending on the application, to evaluate 

production losses and ice loads that have to be considered in the structural 

design.[2,pp.16–17,63] The crucial factors in these classifications are duration of the 

icing event, its severity and annual frequency of the event. [2,p.20,63]  

 

The IEA Wind ice classification system is applicable for evaluation of icing class of the 

site. By determination of the severity of icing, classification system gives an estimate of 

annual power losses for the wind turbine.[2,p.17] The different ice classes according to 

IEA Wind are presented in Table 1.  

 

Table 1. IEA Wind’s ice classification system.[2]  

Ice class Meteorological 

icing (% of year) 

Instrumental icing 

(% of year) 

Production losses 

(% of annual 

production) 

5 >10 >20 >20 

4 5-10 10-30 10-25 

3 3-5 6-15 3-12 

2 0.5-3 1-9 0.5-5 

1 0-0.5 <1.5 0-0.5 
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Figure 19 shows map of icing severity utilizing the IEA’s ice classes. The in-cloud icing 

data is collected over 20 years from 4000 observation station. As discussed previously 

altitude increases icing severity and this map shows the situation at 350 m.[72] 

 

Figure 19. Icing severity map of the places prone to in-cloud icing.[72]  

Meteorological icing denotes the duration of the icing event i.e. the ice accretion time 

on the wind turbine. Instrumental icing is the time that ice stays on the surface. Ice class 

is measured with icing of the unheated anemometer. The time that anemometer is dis-

turbed by icing corresponds the meteorological icing values. Based on these measure-

ments the production losses can be estimated. [2,p.17] According to IEA’s suggestions 

the anti- or de-icing is cost-effective solution, when ice class of the site is 3 or higher. 

[72] 

 

ISO 12494- standard “Atmospheric icing of structures” has also classified icing severity 

on different structures, such as towers, mast, cables etc. Although it does not concern 

icing of overhead transmission lines, whose withstanding of the ice is evaluated in the 

IEC 60826 “Design criteria of overhead transmission lines”. ISO 12494- standard pre-

sents ice classes for both rime and glaze ice accretion, because their density differs. In 

order to recognize valid ice class for the site, there are options; 1) collect meteorological 

data as an input data for ice accretion model to assess ice loads like in these studies 

[66,73], 2) measure accreted ice masses on the site (kg/m), which were performed for 

example in these studies [10,38]. Ice classes for glaze ice, having the density of ice 900 

kg/m
3
, are presented in Table 2.  
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Table 2. Ice classes for glaze ice (density 900 kg/m
3
). [63] 

Ice class 
Ice thickness 

(mm) 

Masses for glaze ice (kg/m) 

Cylinder diameter (mm) 

10 30 100 300 

G1 10 0.6 1.1 3.1 8.8 

G2 20 1.1 2.8 6.8 18.1 

G3 30 3.4 5.1 11.0 28.0 

G4 40 5.7 7.9 15.8 38.5 

G5 50 8.5 11.3 21.2 49.5 

G6 To be used for extreme ice accretions 

 

Ice class for glaze ice accretion can be determined whether by measuring the thickness 

of accretion or by measuring ice load (weight on distance, kg/m). Class G6 is for ex-

tremely severe icing site. The similar classification for rime ice is presented in Table 3. 

[63] 

 

Table 3. The ice classes for rime. [63] 

Ice class 
Ice mass 

(kg/m) 

Rime diameter (mm) for object diameter of 30 mm 

Density of rime (kg/m
3
) 

300 500 700 900 

R1 0,5 55 47 43 40 

R2 0,9 69 56 50 47 

R3 1,6 88 71 62 56 

R4 2,8 113 90 77 70 

R5 5,0 149 117 100 89 

R6 8,9 197 154 131 116 

R7 16,0 626 204 173 153 

R8 28,0 346 269 228 201 

R9 50,0 462 358 303 268 

R10 To be used for extreme ice accretions 

 

For rime ice it is vital to take on account the role of density on the weight of ice accre-

tion. Wet snow accretions are considered in this table for rime, because its density is in 

same range than rime ice. These classification systems require either reliable meteoro-

logical data for ice accretion models or measurement on the site. Site assessment is a 

critical step when the engineering structures are built in the icing climates 

[2,7,8,52,72,74]. With the proper provision and designing many of the icing issues can 

be hindered, which is a start in the prevention of expensive problems that icing inflicts.  
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3.2 Atmospheric icing types 

Atmospheric icing includes all the meteorological processes where falling supercooled 

rain droplets or wet snow flakes impinge on the structure. As a result of this droplet 

bombardment ice or snow will accrete on the structure.[2, p. 12,3, p. 4,16,28,34, p. 13, 

40,42,45,50,52, p. 13,56,63,70, 75, 76, 77, p. 6] Icing types can be divided into two cat-

egories, precipitation and in-cloud icing, depending on their meteorological conditions 

such as LWC, MVD, and temperature. [3, pp. 4–5, 16, 51, 63, 77, pp. 6–10] The LWC 

content in in-cloud icing is usually low varying between 0.1-0.9 g/m
3
 and high in pre-

cipitation altering between 1-10 g/m
3
. In addition the droplet sizes in the in-cloud icing 

varies between few µm to 50µm and for precipitation icing; freezing drizzle around 100 

µm and freezing rain from 100 µm to several mm. [50] It can be concluded that in-cloud 

icing takes place with the low LWC and small water droplets. Instead precipitation icing 

occurs in events, where the LWC is high and water drops larger. Atmospheric icing 

types can be divided in the different categories based on the formation mechanism and 

droplet size. Precipitation icing is formed from falling droplets or snow flakes and in-

cloud icing is occurring in the clouds or fog contacting with structures. In Figure 20 

classification is illustrated. 

 

Figure 20. Classification of atmospheric icing. 

 

3.2.1 Precipitation 

Precipitation icing can take place with two different ways by freezing rain and drizzle or 

wet snow accretion. In the precipitation icing the droplet size is larger compared to in-

cloud icing and the LWC content is also higher. In other words, in precipitation icing 

falling rain droplets or snowflakes impinge the icing surface and on the contrary in in-

cloud icing microscale droplets in clouds or fog collide with the surface.[8,63] 

 

Emergence of sufficient climatic conditions for precipitation icing starts from creation 

temperature gradient inversion. Typically the temperature decreases with the increasing 
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altitude. However during winter months, this situation is disturbed. Solar radiation heats 

the ground, which gets warmer during the days. When the sun is set, warm ground starts 

to heat air layers above. Although air is not very good heat conductor, which for the air 

layers near the ground remains colder. The air layers in higher altitude are in fact warm-

er, possibly over 0 degrees, than the ground regime. These air layers are described in 

Fig. 21, where falling snow flakes or ice particles from the clouds enter the warm re-

gime (over 0 degrees) and melt into the form of rain drops. Because of the colder air 

layers near the ground, these rain droplets start to cool down i.e. supercool. [3, pp. 4–6, 

44, 45, 77] Supercooled droplets are in metastable state once they hit the surface and 

their state is disturbed which drives the droplets to freeze. [42] 

 

 
Figure 21. The effect of altitude and temperature on precipitation. a) Temperature 

change of precipitation against altitude [44] and b) change of precipitation type with 

decreasing altitude. S stands for snow, WS for wet snow, SL for slush, R for rain and ZR 

for freezing rain. [45] 

Precipitation falling from the sky can be in different forms; rain drops, ice pellet, slush 

or snowflakes depending on the rate of melting on the warm regime, which is visualized 

in Fig. 21. According to form of precipitation, different kinds of accretions are observed 

on the surfaces. When the freezing rain or drizzle is concerned the glaze ice is observed, 

which formed from in wet i.e. high LWC precipitations where the droplet sizes are also 

larger. In formation process, the supercooled rain droplets collide with the surface and 

start freeze upon the contact. Although due to high LWC content, the part of the water 

droplet does not freeze immediately in the impact, but remaining liquid can run along 

the surface and then freeze. [3, 44, 45, 77, p. 7] These kinds of impingements create 

dense, transparent and homogeneous structure, which adheres tightly to surface. Typical 

features of the glaze ice are also formation of the horns and icicle formation due to run-

back water streams on the surface, as presented in Fig. 22. [63] In addition glaze ice’s 

cohesive forces are higher compared to other ice or snow types [42].  
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Figure 22. Illustrations of glaze ice accretions. a) Freezing rain accretion [78] and b) 

transparent glaze ice on tree branch [79]. 

In general the glaze in the freezing rains or drizzles is formed at temperatures ranging 

from -6 - 0°C.[2, p. 12] Even so formation of glaze is possible down to -10°C with any 

wind speeds. Due to the high water content, glaze accretions add mass to icing struc-

tures quite quickly and icing events last usually some hours. Glaze ice can cause severe 

problems to different structures due to its high density and high accretion rate.[34, pp. 

13–14, 52, pp. 13–14, 63] As mentioned in the Chapter 2.4, the worst catastrophe 

caused by freezing rain was recorded in Canada, where thousands of power network 

structures collapsed due to high glaze ice accretions.   

 

As explained before, the precipitation can be occurring with different degrees of melt-

ing. Another precipitation type that inflicts issues for different engineering structures is 

wet snow. Wet snow accretions are formed, when partly melted, high LWC snowflakes 

collide with surface. Typical temperature for wet snow formation is between 0 °C and 

3°C. As described in Fig. 21a) the falling snow or ice particles melt, when they enter in 

to the warm (over 0 °C) zone of the atmosphere.[2, p. 12, 80] Depending on the degree 

of melting rain, slush or wet snow is formed. In the wet snow formation there is only a 

little of melting involved and on the contrary in the freezing rain there is complete melt-

ing in the warmer zone. The accreted wet snow will actually freeze on the surface, when 

temperature falls below 0 °C after accretion event. [2, p. 12, 63, 80, 81] Typically wet 

snow accretions last hours and the precipitation rate is between 2- 5mm/h, but in the 

worst case event can last up to 24 hours and the precipitation rate can doubled compared 

to typical values. [3, p. 140]In Fig. 23 there is presented wet snow accretion on the col-

lapsed overhead line.  
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Figure 23. Wet snow accretion on the collapsed overhead line. [80] 

When comparing the wet snow to dry snow accretion, the key difference is that wet 

snow has very high LWC values [63]. Partial melted, high water containing snowflakes 

are sticking very effectively on the surface and on the top of each other. However the 

mechanical forces the snow are weak due to porous structure.[81] Density of wet snow 

is in a range of 300-600 kg/m
3
 and it is mainly composed of liquid water, ice granules 

and air pockets.[2, p. 12, 3, p. 121] The whole structure is connected together by the 

capillary forces.[3, p. 121] Wet snow accretion cause mainly problems for the overhead 

lines and collapsed structures have been reported in [80, 81]. 

3.2.2 In-cloud icing 

Micron sized droplets and low LWC values are typical characteristics for in-cloud icing, 

which occurs when clouds or fog contacts solid obstacle. Therefore the in-cloud events 

take place at the high altitudes and cold climates. The supercooled droplets will freeze 

upon the contact with the surface, and create either rime or glaze ice depending on the 

droplet size, temperature and LWC.[3, p. 7, 77, p. 8] As described in the freezing rain 

event, glaze ice is formed in the events that have high LWC values and containing large 

droplets. The droplets in the in-cloud icing events are on the tens of microns and in the 

freezing precipitation above 100 microns.[50] Opposite ice type for glaze is rime ice, 

which is formed in the dry in-cloud icing events. Rime ice has a porosity in its structure 

and it can be either soft or hard rime depending on the level of porosity. In addition, the 

last type of ice which can be formed in the in-cloud icing event is hoar frost, which in 

the sublimation process from supercooled water vapor directly into solid ice. Hoar frost 
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is not considered in this thesis, because it is light, low adhesion ice type that does not 

produce any serious problems for majority of structures. The only exception is the over-

head lines, where it can cause inflict corona discharge that produces power losses. [3, p. 

7, 63, 65] The model for hoar frost formation is presented by Makkonen [65]. 

 

The glaze ice formation in the in-cloud icing is rather similar compared to freezing pre-

cipitation. During the contact of water droplet with the surface, the part of the liquid 

droplet does not freeze immediately, but the remaining liquid can run along the surface. 

Finally it will freeze, but the runback water creates typical characteristics such as icicles 

formation and horns i.e. runback ice. Glaze ice is typically formed in the temperatures 

between -6°C - 0°C [2, p. 12, 63], but some authors have claimed that the formation can 

happen temperatures down to -14 °C [56]. Wind speed has also an effect on the for-

mation of certain ice type and the graph for effect of wind speed and temperature in the 

formation of different ice types is presented in Fig. 24 [63]. Droplet size in the in-cloud 

glaze icing is some tenths of micrometers and LWC varies between 1-10 g/m
3
 [50]  

 

Figure 24. The effect of wind speed and temperature in the formation of different in-

cloud ice types. [63] 

Rime ice is generally formed on the elevated and exposed areas such as mountain or hill 

tops. Variety of structures, tall structures and wind turbines, suffers from rime ice accre-

tion, which can last even days. [3, p. 7, 63] In the rime icing event, the droplet size in-

side of the cloud is small and droplet sizes can be as low as few micrometers. The LWC 

is just few tenths of g/m
3
 [50], usually around 0.4 g/m

3
 [16, p. 8]. The rime ice is 

formed in the wide temperature range from -20 °C to 0 °C [2, p. 12], but typically it is 

associated with the colder temperatures below -10 °C [42, 56]. In Fig. 25 there are pre-

sented the rime ice accretions on the mountain tops.  
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Figure 25. Examples of the rime ice accretions, a) Rime accretion on the power net-

work structure Ålvikfjellet, Norway [32] and b) rime accretion on building on the top of 

the Mt. Washington, USA. [82]  

Formation of rime ice differs from other icing due its small droplet size, low 

temperature and low LWC. In the rime icing event small supercooled droplets impigne 

with surface and freeze immediately upon the impact remaining their spherical form. 

This creates air pockets inside structure, which can be observed as a milky, white and 

opaque color. Depending on the porosity level either soft or hard rime is formed. Hard 

rime is formed in the warmer temperatures with higher LWC content, which makes it 

adhere tightly on the surface. Instead soft rime is fragile and does not form strong 

adhesion with the surface. Soft rime has a feathery structure with needles and flakes 

pointing out to wind direction. [63] In the Table 4 there is presented a comparison table 

between all the atmospheric icing types.  

 

There are some variation between different authors for formation temperatures of 

different in-cloud icing types. Acccording to Farzaneh (2008) [3,p.33] only rime ice is 

formed in the in-cloud icing events and temperatures determines whether hard rime or 

soft rime is formed. Soft rime is formed in the colder temperatures [3, p. 33] It is also 

stated by some authors that the rime ice accretion takes place temperatures below the -

10 [42], but some authors claime that rime icing happens temperatures below the -15 °C 

[16, p. 8, 56]. At the very low temperatures, starting from below -20 °C down to -40 °C, 

icing is not relevant phenomena to observe, because the LWC decreases close to zero 

and droplets starts to transform into ice pellets. [8, 16, p. 8, 77, p. 8] The sticking 

capability of the ice pellet is poor and no ice accretion is not formed in the impigment of 

ice pellets.  

 

 

 



 31 

Table 4. Characteristics and properties of the different atmospheric ice type. P stands 

for precipitation icing and I for in-cloud icing. [2, p. 12, 3, p. 33, 16, p. 8, 42, 63] 

Ice 

type 

Icing 

type 

General 

characteris-

tics 

Adhesion/ 

Cohesion 

Density 

(kg/m
3
) 

Tem-

perature 

(°C) 

MVD 

 

LWC 

(g/m
3
) 

Glaze 
P 

transparent, 

dense 
Strong 900 

-10 – 0 
100 µm-

2mm 

up to 

1.2 

I -6 – 0 
30-50 

µm 
1 – 10 

Wet 

snow P 
White, eccen-

tric 

weak (form-

ing), strong 

(freezed) 

300-

600 
0 – 3 

several 

mm 
1 – 10 

Hard 

rime 
I 

Opaque, 

rough 
strong 

600-

900 
-20 – 0 5-30 µm 

around 

0.4 

Soft 

rime 
I 

White, feath-

ery, fragile 

low to me-

dium 

200-

600 
-20 – 0 5-30 µm 

under 

0.4 

 

Glaze and hard rime are the most tightly adhered ice types, which densities are also 

high. These ice types can generate high ice loads on different structures, which can lead 

to severe problems. [2, 63] Wet snow and soft rime have quite similar appearance, but 

there is a significant difference in the LWC values; wet snow has very high and soft 

rime very low values. It can be concluded that the precipitation icing event have high 

LWC and naturally higher droplet size. On the other hand in-cloud icing event have 

lower LWC values and significantly smaller droplet sizes. [50, 77,pp.8-10]  
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4 METHODS AND MATERIALS AGAINST ICING 

Several methods have been developed to prevent or diminish the icing on the different 

structures. There are multiple problems in the different field of industry, but many of 

them have also common problems, where different techniques attempt to offer solu-

tions. The motivation behind the research of the anti- and de-icing methods is to im-

prove safety aspects, operating environment, durability or efficiency. Prevention of the 

disasters, like 1998 ice storm in Canada that collapsed thousands of power network 

structures, is in the center of focus. In the worst case icing can cause the loss of lives, as 

was the case the in 1987 and 1994. [4, 5] 

 

The driving factors behind the rapid increase in the research have been the opening of 

the Northern Sea Route, increase in the wind power production in cold climates and 

long-lasting problems in the aviation, offshore, marine and power networks. Increased 

traffic on the Northern Sea route and altogether of artic region, have risen up the prob-

lems that this challenging environment causes i.e. ice loads and hazardous working en-

vironment.[3, p. 83, 9, 11] At 2013 there was in total 318 GWh installed wind power, of 

which 60 GWh was in cold climates. International Energy Agency (IEA) defines cold 

climate as a climate, where temperatures are subzero and icing is occurring. Many of the 

planned installation are focused on the mountains and uphill areas, where he operating 

conditions are changing swiftly. Operation in the cold climates possesses many chal-

lenges for cost-effectiveness, maintenance and safety. The icing affects greatly on the 

aerodynamic profile of the wind turbine blade, which inflicts extra loads on the blade’s 

structure and also on the rotor. This problem greatly shortens the durability of the 

blades. [2] Due to these challenges and increase in the production, there is clear need to 

research materials and methods to fight against the icing.  

 

Icing is phenomena, which will happen eventually in the right climatic conditions. 

Therefore researchers have had difficulties to find surfaces that would completely repel 

ice nucleation and further on accretion [3, p. 231]. On this account focus of research in 

icing mitigation has been generally divided into two groups de-icing and anti-icing sys-

tems. In the de-icing systems ice is allowed to accrete on the surface and the focus is to 

minimize energy which is needed to detach ice from the surface. Usually ice removed 

periodically with mechanical or thermal systems for example with heating or flexible 

blades. On the other hand anti-icing strategy focuses on to completely avoid or reduce 

the ice nucleation and accretion. [3, 8, 16] 
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These large scale strategies can also be divided into the methods that utilize specific 

techniques. Dividing can be made based on the use of external energy on the surface. 

The systems that exploit external energy from different sources – such as thermal, 

chemical or pneumatic – in the icing prevention are called active methods. Alternatively 

systems that does not exploit external energy, but merely rely on icing mitigation prop-

erties of the surface, are known as passive methods. [8, 16, 41] The classification of 

ways to prevent ice adhesion and accretion is presented in Fig. 26. 

 

 
Figure 26. Collection of strategies and methods for prevention of icing nucleation and 

accretion.  

Prevention of ice accretion can be achieved by following different approaches. The first 

way is to minimize ice adhesion between the ice and surface below it. The second ap-

proach is diminishing ice nucleation and prevention of supercooled droplets to freeze 

upon impact. Third approach is to utilize different methods for example both active 

(heating) and passive (surface treatment) in order to minimize ice nucleation and accre-

tion. [3] 

 

At the moment the research has been focused on the systems that utilize both passive 

and active methods. The reason behind this phenomenon is that passive anti-icing and 

de-icing systems can not alone offer sufficient surfaces that would repel ice 

formation.[8, 16, 41, 83] That is why active systems are used together with passive 

methods.  

 

In this literature review primary attention is concerned to different coatings and surface 

treatments, which are used in the anti-icing solutions. However some of the most inter-

esting active anti-icing and de-icing solutions are presented in order to get better under-

standing of field of icing.  
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4.1 Methods against icing 

Several methods against icing have been applied and studied during the past decades. 

Due to increased activity in the cold climates, have different industries and other in-

stances searched for methods which could help to overcome problems related to icing. 

These methods have been classified in literature different ways, but in this thesis the 

classification has been done according to IEA’s, which first classifies the methods into 

anti-icing and de-icing.[2] Anti-icing means that the method prevents the ice freezing on 

the surface and de-icing means that ice is allowed to accrete on surface before the ice is 

removed. Anti-icing methods will protect systems in manner that they can be running 

during the icing events. Some of de-icing methods require the systems shut down, for 

example the mechanical removal of ice from wind turbine blade. Second stage classifi-

cation is based on energy consumed for ice release in each method and the methods 

have divided into passive and active. Active methods utilize external energy in ice re-

lease or prevention and passive methods does not need any extra energy in prevention or 

releasing of ice.[2] In this chapter the most interesting anti- and de-icing methods are 

presented. Due to large variety of the methods the emphasis in this thesis has been fo-

cused into most interesting methods; which have been utilized in the industry and the 

passive anti-icing methods.  

4.1.1 De-icing methods 

As mentioned before, de-icing systems allow ice to accrete on the surface and the ice is 

removed afterwards [16, p. 26]. De-icing methods can be divided into two different cat-

egories, active and passive, as the Fig. 26 illustrates. The passive de-icing methods are 

presented first and then the active methods.  

 

Because of the ice accretion on the surface, there are not many passive de-icing methods 

that would release ice loads from surfaces. Nevertheless two different methods have 

been proposed. First passive de-icing method is based on flexible blades that would 

shed the accreted ice layer from the blade. Flexible blades have not been widely adapted 

on the wind turbines and the result of its efficiency in operation has not been published. 

The reliability of ice release on thin ice layer may not sufficient, and therefore the re-

maining ice could cause problems on the aerodynamics of blades. [7, 8] 

 

The other passive de-icing system called active pitching has been proposed, but it has 

limited usability and demonstration on its working. The idea behind the active pitching 

is that after the ice has accreted on the blades, they are turned against the sun. Solar ra-

diation should melt the ice away, or at least heat the blade in a manner that it will re-

lease the ice load. This method is at the best only suitable for light icing conditions, and 

it has no evidence about its usability in real icing conditions. [8] 
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Active de-icing methods on the other hand have gained much attention in recent years. 

These active methods can be divided into two classes, mechanical and thermal tech-

niques, based on the form of removal energy. Flexible pneumatic boots are the most 

interesting mechanical method and it is widely applied on the airplane wings, where it 

has been used to remove ice from leading edge of the wing. Pneumatic boots are usually 

air filled and the ice removal happens when these boots are inflated. The change in the 

wing’s profile after inflation can be observed from the Fig. 27, where wing’s profile is 

presented before and after the inflation.[84, p. 14] After the pressurization the ice is 

expected the crack and shatter of the surface.[8, 12, 83] Air flow around the wing the 

removes loosened up ice after the inflation of the boots.[12] However in the glaze ice 

events, the runback ice can be formed behind the leading edge, where it cannot be re-

moved with pneumatic boots. [8, 83]  

 

 
Figure 27. Pneumatic de-icing boots on the aircraft wing. a) uninflated and b)inflated. 

[84, p. 14] 

Other mechanical methods based on the physical removal of the ice are utilized, when 

different systems like wind turbines are stopped. These methods also require the man-

power and possibly lifting equipment. [85] The most classic way to get rid of ice is re-

move it with hand tools. [12] For example the wind turbine owner Tuulisaimaa, utilizes 

expert climber, who manually remove ice from the blades and other structures, as Fig. 

28 points out. [85] This method consumes a lot of time and efforts, which makes re-

moval costs and standstill costs very remarkable. In addition hand removal of the ice 

can’t be conducted if the weather conditions are harsh. The ice is also typically removed 

manually in sea vessel and offshore platforms. When the ice is removed manually, there 

is always possibility for injuries due to falling ice. [12]  
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Figure 28. Manual ice removal from the wind turbine blade. [85] 

The Swedish owned Alpine Helicopter AB offers an alternative solution for mechanical 

ice removal. The company utilizes helicopter which is spraying hot water to ice on the 

wind turbine blades. Helicopter is capable to carry 900 liters of water at the time and the 

water temperature is around 65 °C. The firm has done some promising field test in Can-

ada. The benefit of method is that it can be used for all turbine types. The main disad-

vantage is that it cannot be utilized if the weather conditions are too harsh. Also its cost-

effectiveness cannot compete with the thermal methods. Helicopter spraying hot water 

to de-ice accreted ice from wind turbine blade is presented in Fig. 29 [86] 

 

Figure 29. Ice removal with hot water sprayed from the helicopter. [86] 

Other methods that are applied at the standstills are thermal methods, which include 

methods based on the heating resistance or warm air blower. These methods can be 

classified into anti-icing methods, if they can be applied during the operation. The heat-
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ing resistance is produced by inserting heating element on the blade’s leading edge. The 

warm air blower, consisting of fan and heating element to heat air, are usually located 

inside the wing or blade. The schematic presentation warm air blower is presented in 

Fig. 30. These methods are based on the melting of the accreted ice via thermal energy, 

which should create water film between the surface and ice. External forces, such as 

centrifugal forces, should be sufficient to detach ice. The melting of the ice into water is 

energy consuming process, although nowadays the thermal efficiency is close to 100 %. 

[8, 41]  

 
Figure 30. The electrothermal warm air based de-icing system. a) is showing the plac-

ing of the system in the wind turbine blade and b) is demonstrating the circulation of air 

inside the blade. [72] 

Heating blades offer an alternative for warm air blowers and the heating blades are ap-

plied inside the blade’s structure in the construction phase. The electrothermal methods 

have given promising results in rime ice detachment, but in the heavy icing environ-

ments this method have failed to produce sufficient heating power [8]. The other disad-

vantage is that the heating element is only applied in to the most critical areas such as 

the leading edge, which makes the other areas vulnerable to runback icing or other 

forms of ice accretion. The accreted ice on the other areas decreases the aerodynamic 

behavior of the blade or wing and also sets extra loads on the structure. [8, 16] 

 

There are also commercial de-icing systems which are based electrothermal origin. En-

ercon utilizes the warm air to melt ice of the blade. Its system includes the fan and heat-

ing element as described in Fig. 30. The heated air is circulated into the most challeng-

ing areas such as the leading edge and back to the fan. [87] The alternative electrother-

mal de-icing system is based on the heating element and Siemens has applied it on its 

wind turbines [2, p. 26].  

4.1.2 Anti-icing 

Anti-icing stand for that normal operations can be conducted and the structures and op-

erative parts remain ice-free. The methods exploiting this strategy can be divided into 

the passive and active methods with the same criteria than the de-icing methods. The 

active methods utilize the same techniques than in electrothermal de-icing. On the other 

hand the passive methods include coatings and chemicals, which are aiming to reduce 

ice adhesion or prevent the ice accretion.  
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The active anti-icing methods are aimed to prevent ice accretion on the protected sur-

face. This goal is achieved by heating the surface during the forecasted icing events. In 

practice this means that the surface needs to be over 0 °C in order to keep water drops in 

liquid form. The placement of electrothermal heating elements is presented in Fig. 31. 

As mentioned in the previous chapter, this produces rivulets due aerodynamic forces, 

which eventually forms runback ice into unprotected area [8, 83]. The runback ice in-

creases the loads that structures should hold. In order to prevent runback ice formation 

the adhesion between the runback ice and the surface should be on the level that aero-

dynamic forces would break ice down.[8, 16, 41]  

 

 

Figure 31. An example of the placement of the heating elements on the leading edges of 

the wind turbine blades. [88] 

 

The properly functioning electrothermal anti-icing system requires working control sys-

tem, which communicates between the heating element and ice detectors to adjust suffi-

cient energy output on the heater. Because increased runtime of the icing prevention 

system, the required amount of thermal energy also increases. IEA (2011) [2, pp.25-27] 

states that the electrothermal anti-icing system consumes < 2 % of annual energy pro-

duction, which is depending on the severity of icing. [2, pp. 25–27] 

 

The different kind of chemicals has been also used to minimize ice adhesion and also to 

melt accreted ice for example from airplane wings and highways. These chemicals in-

clude different sorts of chloride salts, acetate compounds, glycol based solutions and 

some other substances. These chemicals are either sprayed or spread on the protected 

surface. These chemicals will gradual lose their properties, which make them only tem-
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porally option. In many cases the can also corrode the protected surface, for example the 

underlying metallic surface [12, 89].  

 

The most widely used anti-icing chemicals have been chloride salts, where sodium chlo-

ride is the most widely applied on the highways. However it is corrosion inhibitor and it 

has a limited usage on the metallic surfaces. Other chloride salts such as magnesium and 

calcium chlorides are less corrosive, but will remain slippery surface after the snow or 

ice accretion, which limits their utilization on the sea vessels and offshore platforms. 

Acetate based compounds, such as calcium magnesium acetate, potassium acetate and 

sodium acetate, are less corrosive than chloride salts, but they are expensive. The glycol 

based compounds are effective against snow and ice, but they are toxic substances.[12] 

In addition silicone greases and other chemicals contain harmful ingredients, which 

make the use of chemicals debatably due to their harmful impact on the environment. 

[17]  

 

The environmentally friendly, energy saving and safety solution to icing could be found 

from the coatings. The active de-icing and anti-icing methods consume produced ener-

gy, which decreases the efficiency. [8, 60, 83] Mechanical methods do not consume 

excess energy, but the ice fall risks and operations in heights cause major safety risks. If 

these coatings can guarantee the desired level of operation, they would replace other 

anti- or de-icing methods due to reasons mentioned above. The coatings or other surface 

treatments in the anti-icing solution would give a solution, which would respond to 

nowadays green values.  

 

However, the manufacturing of totally ice repelling coatings is very challenging because 

of the complexity of icing. The current research of anti-icing coatings has been focused 

on minimization of ice adhesion of the coatings. The realistic aim in the utilization of 

anti-icing coating is to exploit them together with other anti-icing systems for example 

with the electrothermal methods. The benefit of the coatings would be decreased ice 

adhesion between the surface and ice, which decrease the required heating. The less 

heating output would mean higher efficiency. [3,pp.264-265, 8] 

 

The different approaching in the coating development has been used and the proposed 

materials have been varied from polymer coatings into the superhydrophobic polymer 

composite coatings. The surface roughness combined with the surface free energy has 

been demonstrated to produce superhydrophobic surfaces. The surfaces that have con-

tact angles above 150 ° and small contact angle hysteresis are defined to be superhydro-

phobic. [90] 

 

One major research approach has been the studies of superhydrophobic coatings in the 

prevention icing or minimization of ice adhesion on the surfaces [30, 58, 60, 83, 91, 92]. 

Although there has been opposite opinions on the effectiveness of superhydrophobicity 
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[17, 31, 90, 93], it has been proposed that superhydrophobic surfaces would deteriorate 

during repeated icing/de-icing cycles. The roughness of the superhydrophobic surfaces 

contains two types of roughnesses; microroughness and nanoroughness. Microrough-

ness and combined micro- and nanoroughnesses are illustrated in Fig.32. 

 
Figure 32. Schematic presentation of microroughness and nanoroughness on the top 

the microroughness.  

Microroughness forms the overall topography of the surface and nanoroughness is lo-

cated on the top of microroughness. The forces that hold this structure together are rela-

tively weak and the mechanical interlocking of the ice can damage the asperities of the 

surface. The destruction of the surface roughness will diminish the superhydrophobicity 

of the surface which can increase the ice adhesion considerably. [31, 90, 93] 

 

The best results have been obtained by altering the particle size in the superhydrophobic 

coatings. Cao et al. (2009) [91] have conducted outdoor icing tests in the freezing rain 

with the different particle sizes of the superhydrophobic coatings and discovered that 

the coatings with 50 nm particles actually repealed the accretion of the ice and lowered 

the adhesion between the ice and the coating. [91]  

4.2 Anti-icing coating materials 

The lack of interest on coatings in the icing prevention or ice adhesion mitigation, has 

affected negatively the image of the coatings as passive anti-icing strategy [83]. The 

coatings can offer significant improvements in anti- and de-icing properties compared to 

the materials currently utilized in the different industrial sectors. The anti-icing proper-

ties of various, versatile materials with different combinations have been discussed 

widely in the literature. Different polymeric coatings have been applied on the surfaces 

such as PDMS (poly(dimethylsiloxane)) [9], PSS (sulfonated polystyrene), PAA (ami-

noterminated polyacrylate) [89] and also more traditional polymeric coatings such as 

PMMA and PC have been tested. [94]  

 

The different material approaches on the icing mitigation and decreasing the ice adhe-

sion have been proposed by Arinpour et al (2012) [30], Farhadi et al. (2011) [31] and  

Li et. al (2012) [9], who have used silicone rubber coatings. The other major material 

group, which has been examined, is the fluoropolymers from which the most common 
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material has been PTFE (polytetrafluoroethylene) [1, 13, 75, 95, 96]. Also the fluorina-

tion or silanization have been performed to decrease the surface energy of the coatings. 

However, nowadays the focus of the research has been concentrated on the polymer 

composite coatings. These coatings include different matrix materials such as polymer-

ic, fluoropolymeric or silicone compounds, which are reinforced with ceramic particles 

to improve the mechanical properties and also to give different surface texture for the 

coatings. [30] This chapter is divided into several subchapters by the different material 

approaches presented in the literature.  

4.2.1 Polymeric coatings 

Polymer coatings exhibit interesting and easily accessible choice for icephobic coating. 

The different composition of polymeric coatings has been applied widely in the differ-

ent branches of industries. The conventionally utilized polymers such as PMMA and PU 

do not offer very interesting options for icephobic coatings, because their ice adhesion 

has been demonstrated to be similar to aluminum. [17, 83] Aluminum is not ideal 

icephobic material, because it has a high surface energy value [97]. Also the wettability 

of the aluminum is hydrophilic, which means that water will wet the surface texture. 

During the freezing the water will penetrate on the topography of the surface, which 

increases the ice-surface- contact area that increases the ice adhesion strength. Good 

icephobic coatings have the proper combination of wettability (hydrophobic or superhy-

drophobic), suitable surface roughness and low surface free energy.[41, 98, 99] Several 

explanations have been proposed to explain the high adhesion values for PMMA and 

PU. Antonini et al. (2011) [83] have stated that due to hydrophilicity of polymer coat-

ings, droplet will wet the texture of the surface, which causes the external forces to be 

insufficient to remove water before it freezes. [83] Also other types of pure polymeric 

coatings, like PC, PEMA, PBMA, PSS, PAA and PE-PP-copolymers, have been found 

to provide only slight improvement on the ice adhesion values compared to bare alumi-

num. [83, 89, 92, 94, 100] 

 

Greater interest has been focused on the fluoropolymer coatings, which should provide 

the better surface chemistry compared to traditional polymer coatings. Different authors 

have studied the icephobic behavior of PTFE coatings with the different particles size, 

ranging from nanoscale to microscale. [1, 83, 92, 95, 96] Fluorine containing surfaces 

are low surface-energy materials, which indicate low interaction with water or ice. Low 

interactions between the surface and water lead to hydrophobicity of the surface. Hy-

drophobicity has been discussed to lead icephobicity of the surface due to low interac-

tions. [16, 92, 95]  

 

In addition, other fluorine containing coatings than PTFE have been examined due to 

their low surface energy values. Kulinich (2011) [90] has studied the anti-icing behavior 

of the FAS-17 (1H,1H,2H,2H-perfluorodecyl-triethoxysilane) and Farhadi (2011) [31] 

investigated performance of FAS-13 (1H,1H,2H, 2H - perfluoroethoxysilane). These 
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coatings were produced by first etching the aluminum substrate in 17 % HCl, which 

changed the surface texture of the aluminum plates. After etching the aluminum plates 

were first cleaned with deionized water and dried in air for one hour. Finally the alumi-

num plates were dipcoated in either FAS-17 or FAS-13-solutions. Both of these sub-

stances, FAS-13 and FAS-17, contain highly fluorinate hydrocarbon chains as demon-

strated in Fig. 33. High fluorine content guarantees low interaction with water. In addi-

tion their icephobic performance is great FAS-13 showing 55 kPa and FAS-17 40 kPa 

ice adhesion shear strength values. Ice adhesion strength for mirror polished aluminum 

is ~360 kPa in the centrifugal ice adhesion test. [31, 90] 

 

 

Figure 33. 1H,1H,2H,2H-perfluorodecyl-triethoxysilane. [101] 

Besides, Zonyl 8470 (perfluoroalkyl methacrylic copolymer, DuPont) has been also 

studied in the literature. Zonyl 8470 have been used as low surface energy matrix mate-

rial in the several polymer composite coatings. [31, 90, 102, 103] Also, the fluorinated 

POSS have been presented as a matrix material for some polymer composite coatings 

[92]. The complex structure of fluorinated POSS is presented in Fig. 34. Drawback of 

the fluorine containing coatings is their price and, therefore their amount is wanted to 

keep as low level as possible.  

 

Figure 34. Typical structure of fluorinated POSS. [104] 

The other alternative approach to offer low surface energy material is silicone based 

coatings. Different types of silicon rubber coatings have been widely applied on the 

parts of the power network structures, mainly on the conductors.[3, p. 231, 9] The rea-

son behind application of these coating is related to their self-cleaning and hydrophobic 

properties, which have been found out to mitigate over voltages. [9] Especially room 

temperature vulcanized (RTV) silicon rubber coatings have been discovered to produce 

good icephobic behavior. Bharathidasan et al. (2014) [17] have investigated the ice ad-

hesion strength of two different types of silicone containing compound; R2180 (silicone 

elastomer, Nusil technology LLC, Carpinteria) and RTV11 (RTV silicone rubber, GE 

Bayer Silicones). Both of these coating exhibited exceptional icephobic properties 
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R2180 having the ice adhesion strength 43 kPa and RTV11 25 kPa. The bare aluminum 

has the 1072 kPa ice adhesion strength, which was measured with zero degree cone 

test.[17] The hydrophobic low surface energy materials with the suitable surface rough-

ness provide the proper properties that influences also the on the icephobic behavior. 

[17] The polymeric coatings for ice adhesion minimization are presented in Table 5, 

where commercial name, chemical name, ice adhesion strength. and ARF-values are 

shown. ARF means adhesion reduction factor compared to aluminum and higher ARF-

value indicates better icephobic properties.  

 

Table 5. Collection of polymeric coatings presented in the literature. ARF stands for 

adhesion reduction factor compared to aluminum. 

Commer-

cial name 

Chemical name Ice adh. 

strength 

(kPa) 

ARF Ref. 

PMMA Poly(methyl methacrylate) 463-1535 <1 [17, 83, 94] 

PEMA Poly(ethyl methacrylate) 510 - [94] 

PBMA Poly(butyl methacrylate) 384 - [94] 

PC Polycarbonate 129-400 4,4 [92, 94] 

PU Polyurethane 820 1,4 [17] 

PSS Polystyrenesulfonate -  [89] 

PAA Aminoterminated polyacrylic acid -  [89] 

PDMS Polydimethylsiloxane 291 - [94] 

PTFE Polytetrafluoroethylene 60 20,2 [97] 

PTFE  Polytetrafluoroethylene 

(Superhydrophobic) 

- 3,5 
[83, 105] 

PTFE,  

UF-8TA 

Polytetrafluoroethylene, particle size 0,3 µm - - 
[95] 

PTFE, 

MP-55 

Polytetrafluoroethylene, particle size 4 µm - - 
[95] 

PTFE Polytetrafluoroethylene , particle size 200 nm 209,6 2,4 [1] 

PTFE Polytetrafluoroethylene, particle size 200 nm 100-150  [13, 75] 

F-POSS, 

FL0590 

Trifluoro cyclopentyl polyhedral oligomeric 

silsesquioxanes 

- - 
[92] 

FAS-13  1H,1H,2H,2H-perfluoro-octyltriethoxysilane 55 6,6 [31] 

FAS-17  1H,1H,2H,2H-perfluorodecyl-triethoxysilane 40 9 [90] 

R2180 Silicone elastomer  43 25,2 [17] 

RTV11 RTV silicone rubber  25 43,2 [17, 97] 

HVIC 1547 Silicone rubber  190 1,9 [30] 

F-PU Fluorinated polyurethane 1000 1,2 [97] 

F-RTV SR Fluorinated RTV silicon rubber 401 3 [97] 

F-Clean EFTE, copolymer of tetrafluorethylene and 

ethylene 

150 - 
[23] 

 Fluorosilicone+epoxy+ethyl acetate - - [106] 

 



 44 

Table 5 points out three main categories exist, when the polymeric icephobic coatings 

are concerned. First group consist of engineered plastics, and the second category con-

tains fluorine containing polymers, of which the PTFE is the most widely studied 

icephobic material. Besides some other fluorinated polymers such as triethoxysilanes 

and fluorinated POSS have been introduced in the literature. The third category includes 

silicone containing polymers, of which RTV silicones have been widely applied on the 

power network insulators. As discussed in this chapter, polymeric coatings can offer 

even very good icephobic properties, but some drawbacks exist. Firstly the price of the 

fluorine containing coatings is high [107, pp. 3–5], which can limit their applicability on 

the large surface area applications. In addition, the wear resistance of the purely poly-

meric coatings is limited, and addition of reinforcing particles may improve wear prop-

erties. [27] Therefore enhancement to the icephobic and on other demanded properties 

have been searched by incorporating hard particles into the polymeric matrix. 

4.2.2 Polymer composite coatings 

Given insufficient properties of pure polymeric coatings have many enhancement at-

tempts described in the literature. Polymer composite coatings consist of hard phase, 

which is bind into polymer matrix. Hard phase is typically some oxide ceramic particles 

like titania [30, 31, 103], silica [17, 57, 91, 106, 108, 109], ceria [30, 31], which size 

varies from nanometer size to micrometer size. Materials introduced in Chapter 4.2.1 

have been typically acted as binder matrix. In addition to these binder materials cheaper 

polymer materials such as epoxy and polyester have been included in the polymer com-

posites [8]. Cheaper materials, e.g. carbon black, glass and carbon fibers, have been also 

used to replace more expensive materials like ceria and zirconia [90, 102, 110]. This 

chapter is divided in to three different sections; fluoropolymer composites, silicone-

containing composites and other composites structures.  

 

Different factors, such as surface roughness, wettability and surface energy, have influ-

ence on the ice adhesion strength. It has been proposed that the increasing water contact 

angle should decrease ice adhesion strength. In other words due to high water repellency 

of the superhydrophobic surfaces should have low ice adhesion values and slower ice 

accumulation rate. [30, 58, 60, 83, 91, 92] The opposite opinions that superhydrophobi-

city does not guarantee low ice adhesion strength, have been also widely presented 

based on the frost formation on the surfaces and mechanical interlocking effect.[17, 31, 

90, 93, 111] Chen et al. (2012) [93] tested silicon wafers with the four different wetta-

bilities and the results are presented in the Fig. 35. 
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Figure 35. Ice adhesion strength of four silicon wafers having different wettabilities. 

[93] 

Figure 35 illustrates that superhydrophobicity itself does guarantee low ice adhesion 

values. Instead the water contact angle hysteris (CAH) is more significant in determina-

tion of correlation between wetting behavior and ice adhesion strength. [75, 83, 94] Dy-

namic behavior of water actually has more effect on the ice adhesion values than static 

angles. The droplets’ mobility and repellency is increased when contact angle hysteresis 

is decreased. [75, 94] Meuler et al. (2010) [94] have founded out that ice adhesion 

strength is depended on receding contact angle. Figure 36 shows the dependency be-

tween ice adhesion strength and receding contact angle.[94] Even so some dependency 

can be observed; the values have high variation from the fitting line. Zou et al. (2011) 

[98] have studied the influence of both wetting behavior and surface roughness and 

have discovered that the correlation between water contact angle and ice adhesion 

strength only exist for surfaces having similar surface roughness [98]. 

 

Figure 36. Dependency between ice adhesion strength and receding contact angle. 

Meuler et al. (2010) [94] have fitted the data from other studies [110] as shown in the 

specifications of the symbols.  
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Surface roughness has also an effect on ice adhesion values. It has been demonstrated 

the increasing the surface roughness will increase the ice adhesion values. [97, 112] 

Yang et al. (2011) [97] have studied PTFE surface with different roughnesses, where 

the surface roughness was increased by sandblasting the PTFE surface. As a result of 

sandblasting the ice adhesion strength raised from 60 kPa to 160 kPa in zero degree 

cone test. In addition, they studied the effect of surface chemistry on the ice adhesion 

strength by measuring the surface chemical composition and ice adhesion values for 

PTFE, fluorinated PU and fluorinated RTV silicon rubber. In this study, it was discov-

ered that the higher fluorine content gives lower ice adhesion values. Alternatively 

higher oxygen content increases hydrogen bonding between ice and the surface increas-

ing also the ice adhesion strength. [97] According to studies of Koivuluoto et al (2015) 

[113] and Bharathidasan et al. (2014) [17] the coatings that have similar roughnesses 

can have very different ice adhesion strengths. The results of Koivuluoto et al (2015) 

study are presented in the Fig. 37. For example Koivuluoto et al (2015) measured ice 

adhesion strength for polished aluminum and PTFE having similar roughness, and find 

out that ice adhesion strength were 380 kPa for aluminum and 32 kPa for PTFE. Even 

so the similar ice adhesion strengths (~40 kPa) were measured for two superhydropho-

bic surfaces (SH1 and SH2) having different roughnesses. [113] These findings under-

line that different factors influence significantly on the ice adhesion strength. The ice 

adhesion strength has been discussed to depend on contact angle hysteresis, surface 

roughness and surface chemistry. [17, 41, 97, 113]  

 

Figure 37. Ice adhesion strength plotted against mean surface roughness (Ra). [113] 

Fluorine-containing polymer composite coatings have been used to produce superhy-

drophobic surfaces that have discussed to act also as icephobic coatings [31, 90–92, 

106, 110]. The popular choice for the polymer matrix material has been Zonyl 8470 

(perfluoroalkyl methacrylic copolymer, DuPont). [31, 90, 102, 103, 110] Different types 

of ceramic particles, TiO2, CeO2 and ZrO2, have been added to Zonyl 8470 matrix. All 

of these composite coatings were manufactured by adding oxide ceramic powder in the 

liquid matrix. This suspension was sonicated 30 min prior the Zonyl 8470 addition, 

which after the suspension was stirred for 3 h. Finally coatings were either spincoated or 

sprayed on the aluminum substrates. [31, 90, 102, 103, 110] Besides of the ceramic par-

ticles, the noble nano-Ag particles have been added into the polymer matrix, to give 
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certain morphology for the surface. Nano-Ag suspensions were produced with the same 

manner than ceramic oxide suspensions and nano-Ag coatings were also sprayed or 

spincoated. [102] 

 

As discussed previously the superhydrophobicity is produced when rougher micro-

roughness peak are covered with the nanoroughness peaks and also low surface free 

energy is needed. All of these fluoropolymer composite coatings exhibit superhydro-

phobic behavior, which means static contact angles (CA) over 150 ° and contact angle 

hysteris (remainder of advancing and receding angles, CAH) under 10 °. [31, 90, 102, 

103, 110] However it was observed that spray coating produces high contact angle hys-

teris over 70 °, whereas spincoating produces surfaces with lower CAH (under 10 

°).[102, 103, 110] According to authors the superhydrophobic droplet behavior with the 

low CAH inflicts Cassie-Baxter wetting state, where droplets rest on the top the surface 

asperities, which is illustrated in Fig. 38 a). [31, 99, 103] Zonyl 8470 containing fluoro-

polymer composite coatings showed from 3 to 6 times lower ice adhesion values com-

pared to bare aluminum. The best ice adhesion value of 65 kPa was obtained with Ag-

nanoparticles (80-400nm) [102] and for ZrO2 (20-30nm) [110]. Spincoated ceria (<50 

nm) containing coating showed ice adhesion value of 80 kPa [31] and spincoated titania 

(<50nm) 110 kPa [103]. 3D-surface profile of Zonyl 8470 and titania is presented in 

Fig. 38 b). It is interesting to notice that ice adhesion strength for spray coated titania 

and zirconia coatings is significantly higher – at the same level than aluminum. [103, 

110]  

 

Figure 38. Illustration of schematic Cassie-Baxter wetting state and its connection to 

surface roughness. a) Cassie-Baxter wetting state [114] and b) 3D-optical profile of the 

TiO2-Zonyl 8470 spincoated surface showing both nano- and microroughness asperi-

ties. [103] 

As discussed previously superhydrophobic surfaces have gained some critic of their 

performance as anti-icing coatings. [31, 90, 115–118] Superhydrophobic surfaces have 

been reported to lose their wetting properties in high humidity. [94, 115, 118] In high 

humidity conditions, water can condensate into surface texture of superhydrophobic 

surface.[118] Furthermore in high humidity subzero temperatures frost formation can 

occur on the asperities of surfaces. [119] The frost formation on the superhydrophobic 

surface is illustrated in the Fig. 39. Frost is formed, when supercooled condensate water 
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starts to nucleate and form ice. As can be seen from the Fig. 39 d) the frost does not 

choose the site, where it adheres. Frost accumulation creates hydrophilic spots, which 

increase the ice adhesion strength. [119] 

 

 
Figure 39. Environmental scanning electron microscope (ESEM) images of frost for-

mation on a superhydrophobic surface. a) dry surface and b)-d) snapshots of frost ac-

cumulation. At beginning of frost exposure, the pressure was 100 Pa and the vapor 

pressure was constantly increased until the frost nucleation occurred. The temperature 

was set to -13 °C. [119] 

In addition to the resistance against high humidity conditions the wear resistance of su-

perhydrophobic surfaces is widely discussed in literature. [31, 90, 103, 115, 116] One 

way to evaluate the wear resistance of superhydrophobic surfaces is cyclic icing tests. 

Cyclic tests are performed by first accreting ice on the samples and measuring the ice 

adhesion strength. [31, 90, 103, 115, 116] Number of cycles varies between different 

studies from six icing/de-icing cycles [103] to 30 cycles [115]. During icing/de-icing 

cycles superhydrophobic surfaces will gradually lose their wetting performance. The 

loss of performance is related to gradual destruction of surface texture due to ice re-

lease. According to this model, the sharp asperities of the surface would be destroyed. 

[31, 90, 103, 116] In the Figure 40 schematic model of destruction of asperities is pre-

sented.  
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Figure 40. Schematic presentation of ice on the surface roughness peaks. a) Ice resting 

on the top of the surface peaks and b) destruction of tips of surface asperities. [90] 

The destruction of surface texture can be evaluated by measuring the wetting behavior 

or surface roughness between the cycles. [31, 99, 103, 116] Farhadi et al. (2011) [31] 

have measured both static contact angle and root-mean-square roughness, which both 

are presented in Fig. 41. From the Figures 41 a) and b) it can be seen that the ice adhe-

sion strength increases gradual with increasing number of icing cycles. This increase is 

related to decrease of both static contact angle and surface roughness. These decreases 

indicate the destruction of surface texture of superhydrophobic surface, as shown in Fig. 

41 c). [31] Similar results have been obtained by [99, 103] and [116]. Only Dou et al. 

(2014) [115] have discovered unchanged ice adhesion strengths in cyclic icing test. 
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Figure 41. Cyclic icing results for ceria-Zonyl 8470 (Sample A) and for FAS-13 (Sam-

ple B). In a) and b) the ice adhesion strengths are presented with the open dots and stat-

ic contact angles with filled dots. In c) Root-mean-square roughness is presented for 

samples A and B. [31] 

Dou et al. (2014) [115] have prepared modified polyurethane (PU) surfaces by incorpo-

rating PU anionomer with dimethylolpropionic acid (DMPA) and isophorone diamine 

(IPDA) into aqueous solutions. As results of this polymerization reaction polyurethane 

was chain-extended with IPDA. The particles created in this reaction are presented in 

Fig. 42 a), where the hydrophobic core and hydrophilic corona are illustrated. Curing 

agent and y-butyrolacone were added to PU, and that mixture was spincoated on various 

substrate such as aluminum, stainless steel, ceramic and rubber, to demonstrate coat-

ing’s applicability on different applications. The cyclic ice adhesion test were performed 

for this coating with the home-made apparatus, where ice was formed by molding and 

ice adhesion was measured by pushing the ice block and measuring the shear strength 

with force transducer. The results of cyclic ice adhesion test are presented in Fig.42 

b).[115] Dou et al. (2014) [115] have reported that ice adhesion strength remained un-

changed, 27 ±6,2 kPa, over 30 icing cycles and they justified the low values with pres-

ence of aqueous lubricating layer between the sample’s surface and ice. The aqueous 

lubricating layer is illustrated in Fig. 42 c).  
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Figure 42. Theoretical models aqueous lubricating layer and results of cyclic ice adhe-

sion tests. a) Reaction product core-corona particle, b) results of cyclic ice adhesion 

tests and c) schematic illustration of aqueous lubricating layer. [115] 

Formation of aqueous lubricating layer is related to amide groups on the hydrophilic 

core of core-corona-particle. The bound water is formed over the amide groups, which 

means that few molecules thin layer of unfrozen water that lubricates the interface be-

tween ice and coating. Few molecules thin layer is enough to cover surface roughness, 

hence minimizing the effect of surface defects on ice adhesion. Thickness of lubricating 

layer is controlled by adjusting the amount of DMPA in PU dispersion – the more of 

DMPA the thicker layer. [115] 

 

Other types of fluorine containing polymer matrix have been applied in the composite 

structures. Peng et al. (2012) [120] have studied anti-icing properties of modified PVDF 

(polyvinylidene fluoride). Modification was proceeded by adding ammonium bicar-

bonate (NH4HCO3), which is commonly used as raising or foaming agent to produce 

porous structure in the industrial applications such as plastics and ceramics manufactur-

ing. In this study the porous, superhydrophobic PVDF surface was created and SEM- 

image of the porous surface is presented in Fig. 43. [120] Superhydrophocity was 

achieved with surface roughness and –CF2 groups pointing out of the surface will lower 

the interactions with water. It was observed in this paper that no ice accumulation was 

formed on the modified PVDF surface in the laboratory icing tests, which were con-

ducted by spraying supercooled 1mm sized droplets on the surface for 60min and the 

weight gain was measured. [120] However the situation of accretion could be different 

in outdoor conditions or in the icing wind tunnel.  

 
Figure 43. Structure of porous PVDF surface and ice accretion results. a) SEM-

micrographs of porous PVDF surface and b) ice accretion results of PVDF coating vs. 

uncoated wind turbine blade. [120] 
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Also Ozeki et al. [23] have studied the fluoropolymer composite coatings by testing the 

composition of glass fiber cloth, PTFE and TiO2 combination. They founded out that 

this hydrophilic offers lower ice accretion on the sea ice spraying test. [23] Zou et al.  

(2011) [98] have studied the icephobic performance of multilayer thin films The first 

layer of the coating, silicon doped hydrocarbon was applied on the aluminum substrate 

by PIID (plasma immersion ion deposition) and PECVD (plasma enhanced chemical 

vapor deposition). The role of the first coating layer was to bring thickness and low sur-

face energy characteristics underneath the top coating layer. Fluorinated carbon layer 

10nm layer was applied over 200nm thick silicon doped hydrocarbon layer with DRIE 

(deep reactive ion etching). [109] Zou et al. (2011) [98] founded out that the increasing 

surface roughness also raised ice adhesion values, which also was discovered by Cao et 

al (2009) [91].  

 

Besides the fluoropolymer, silicone containing polymers have been used in the polymer 

composite coatings. PDMS [9, 94, 108, 121], RTV silicone rubber [17, 30, 31] and tri-

ethoxysilanes [122] have been popular choices in the literature. The silicone containing 

polymers offer low surface energy, suitable electrical conductivity and therefore they 

been applied on the conductors, where self-cleaning, low ice adhesion and weathering-

resistance is required. [3, p. 231, 30, 121] 

 

Silicon rubber based polymer composite coatings have been studied in the different pa-

pers. [17, 30, 31] Arianpour et al. (2013)[30] have studied the anti-icing performance of 

silicon rubber coatings with different nanoparticles additives, ceria (<25nm), titania 

(<100nm) and carbon black (42nm) [30]. These coating were produced by spincoating 

the aluminum sheets with suspensions. Suspensions were prepared by adding different 

powder into silicon rubber matrix and mixed magnetic stirrer. Aim of this paper was to 

study hydro- and icephobic properties of doped silicon rubber coatings. [30] Ceria and 

titania doped coatings showed ice adhesion values ~50 kPa and carbon black coatings 

have ice adhesion values of ~75kPa or ~125kPa depending on the concentration of car-

bon black.  [30, 31] The mirror polished aluminum showed ice adhesion strength of 362 

kPa. 

 

Hard phase addition does not always improve icephobic properties. Hydrophilic fumed 

silica nanoparticles (10-15nm) have also been added to RTV silicon rubber, but the ice 

adhesion values were ten times higher (243 kPa) compared to ice adhesion of pure RTV 

silicon rubber (25kPa). The surface profiles of these coatings have been presented in 

Fig. 44. The high ice adhesion values were explained with high surface roughness val-

ues (Ra=4,46), which lead to the situation where water can penetrate between the cavi-

ties of the surface. This incursion of water causes so called mechanical interlocking ef-

fect, which the means that ice can have locking effect between asperities which increas-

es ice adhesion strength substantially. [17] The distance and shape of the asperities i.e. 

surface roughness have a significant effect on the ice adhesion values. [91] 
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Figure 44. 3D-surface profiles of a) R2180+EH5 and b) RTV11+EH5. Rz-values are 

1,62 µm and 4,46 µm, respectfully. [17] 

More complex polymer composite coatings have also been studied. Silica nanoparticles 

have been modified with the fluorine containing polymers like FAS-17 to improve their 

hydrophobicity. [9, 109] These modified silica nanoparticles were embedded into 

PDMS matrix and spray coated on the glass insulators. Modified silica nanoparticles 

were manufactured with sol-gel method. Silica gel was prepared by mix TEOS with 

ammonium hydroxide to obtain polymerization reaction. In order to create surface mod-

ificated silica particles FAS-17 and γ-aminopropyltriethoxysilane were added into silica 

gel. Silica gel was heat treated at 120 °C to get rid of the remaining solvents. Finally 

dried gel was grinded into nanosized silica powder, which mixed PDMS matrix. [9] The 

schematic illustration of the modified silica nanoparticles in the polymeric binder is 

presented in Fig. 45. Li et al. (2012) [9] have discovered that ice accretion on coated 

insulator was decreased compared to RTV silicon rubber coated insulator 

 

 

Figure 45. Schematic illustration of PDMS/modified nanosilica coatings. [109] 

Susoff et al. (2013) [122] produced sol-gel coatings from silica and fluorinated triethox-

ysilicates or PEG (polyethylene glycol). These sol-gel coatings were produced using 

TEOS (tetraethylorthosilicate) and GPTMS ((3-glycidylpropyl)trimethoxy silane) as 

precursors. Different additivities were added two types of fluorinated triethoxysilanes or 

PEG were added to produce polymer matrix. These fluorinated silica sol-gel coatings 

showed 20 times lower ice adhesion values compared to bare aluminum. Although the 

addition of fumed silica particles created superhydrophobic surface, it also increased the 

ice adhesion values over the aluminum ice adhesion strength. [122] Lazauskas et al. 

(2013) [123] have also created sol-gel surface of silica nanocomposites, but observed 
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that superhydrophobic surfaces do not guarantee icephobic properties. Due to destruc-

tion of nanosurface roughness, superhydrophobic surfaces will lose their wetting prop-

erties responsible of water repellency. [123] 

 

Modified silica nanoparticles have also been used in different polymer matrix. Liao et 

al. (2015) [106] have mixed hydrophobically modified fumed silica nanoparticles (15-

25nm) into mixture of different polymer grades.[106] The combination was fluorosili-

cone, epoxy resin and ethyl acetate, which exhibited hydrophobic surface. The addition 

of nanosized fumed silica created micro and nanostructures that combined with suitable 

surface energy inflicted superhydrophobic behavior. In this paper, it was reported that 

the accreted mass of ice was decreased for the superhydrophobic coating compared to 

traditional glass insulator. [106] 

 

Cao et al. (2009)[91] have studied the influence of particle size of hard phase on the 

icing probability [91]. In this research organosilane modified silica nanoparticles with 

different particle size (20nm, 50nm, 100nm, 10µm, 20µm) were prepared by adding 

them into acrylic polymer resin, which was synthesized from styrene, butyl methacry-

late and glycidyl methacrylate. Surfaces having particle size up to 10 µm showed super-

hydrophobic behavior and the best icephobic behavior was observed with particle sizes 

20nm and 50nm. These results were based on laboratory scale icing testing, where su-

percooled water was pour on the tilted samples and icing was visually inspected. Out-

door tests were conducted for the 50 nm silica/acrylic resin coating, and the comparison 

between the untreated aluminum and superhydrophobic coating is presented in Fig. 46. 

[91] 

 
Figure 46. Outdoor tests in the freezing rain for a) untreated aluminum and b) sili-

ca/acrylic resin. [91] 

It can be observed from the Fig. 46 that the aluminum is completely covered in glaze ice 

and on the contrary silica/acrylic resin- coating has only minor accretion on its surface 

and the edges of the plate. The plates were placed outside to wait the freezing rain to 

occur in Pittsburgh, USA in January. [91] Table 6 collects polymer composite coatings 

presented in the literature. 
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Table 6. Collection of polymer composite coatings presented in the literature. WB 

stands for wetting behavior SH stands for superhydrophobic, HP for hydrophobic and 

HF hydrophilic. ARF stands for adhesion reduction factor compared to aluminum. 

Polymer matrix Hard phase WB Ice 

adh. 

(kPa) 

ARF Ref. 

Zonyl 8470 TiO2 (<50 nm) SH 110 3,3 [103] 

Zonyl 8470 ZrO2 (20-30 nm) SH 65-80 4,5-5,5 [90], 

[103], 

[110] 

Zonyl 8470 CeO2 (<50 nm) SH 80 4,5 [31] 

Zonyl 8470 Ag (80-400 nm) SH  5,7 [102] 

Zonyl 8470 Ag (100-600 nm) SH 85 4-4,2 [31], [102] 

PVDF NH4HCO3 SH - - [120] 

Glassfibre+PTFE TiO2 coating HF 350 - [23] 

Silicone-hydrocarbon Fluorinated carbon film HP 160 2,1 [98] 

HVIC 1547 SR CeO2 (<25nm) SH 50 7,2 [30] 

HVIC 1547 SR TiO2 (<100nm) SH 50 7,2 [30], [31] 

HVIC 1547 SR carbon black (42nm) SH 75 4,8 [30] 

R2180, silicone elastomer EH5, hydrophilic fumed 

silica (10-15nm) 

SH 258 4,2 [17] 

RTV11, RTV silicone rubber EH5, hydrophilic fumed 

silica (10-15nm) 

SH 243 4,4 [17] 

PDMS FAS-17 modified nano 

SiO2 

SH - - [9] 

F-POSS SiO2 SH 74 18,3 [92] 

Fluorolink
®
S10 α,ω- triethox-

ysilane terminated polyfluori-

nated polyether  

SiO2 (solgel) HP ~80 20 [122] 

Fluorotelomer V,  halfly trieth-

oxysilane terminated fluorinat-

ed polyether 

SiO2 (solgel) HP 200 8 [122] 

Fluorolink
®
S10 α,ω- triethox-

ysilane terminated polyfluori-

nated polyether (PFPE) 

Aerosil R805, SiO2 SH ~1000 1,5 [122] 

 

Table 6 summarizes the trends in the designing of icephobic polymer composite coat-

ings. Similar polymer matrix materials have been utilized in the composites as listed in 

Table 5. Nanosized silica has been tested in the different matrixes with or without fur-

ther modifications. In addition the different oxide ceramic have been applied in the 

composites.  

4.2.3 Surface treatments 

Different types of surface treatments have been applied to modify surface characteristics 

such as surface morphology and chemistry. There exist variety of methods that can be 
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utilized to produce surface modifications and chemical compound additions on the sur-

face. In this chapter, some methods from the literature are described.  

 

Metallic and silicon surfaces have been modified to obtain micron level textures on the 

surfaces by using laser ablation or lithograph. Charpentier et al. (2013) [89] have ex-

ploited laser ablation technique to engrave certain micron size patterns on surface of the 

316L stainless steel, illustrated in Fig. 47. These created micropillars were functional-

ized with PSS (polystyrenesulfonate) and PAA (Aminoterminated polyacrylic acid). 

Authors have concluded that textured surfaces with the chemical dopants show that 

freezing temperature can be reduced compared to undoped textured surface. This can be 

explained due to higher contact angle, which means that there is less contact area with 

liquid and substrate. Ultimately this leads to situation, where less nucleating agents are 

available at the interface. Trapped air could also work as an insulating layer between 

solid substrate interfaces. In this study it was also discovered that these coatings de-

crease freezing temperature by 7 degrees compared to stainless steel. With surface mod-

ifications water contact angle can be decreased, which also decreases the contact area 

between liquid and surface. The decreased area means less nucleating sites on the sur-

face, which slows down the freezing rate. [89]  

 

Figure 47. Laser ablation and surface modifications. a) Micropillars on the 316L stain-

less steel’s surface manufactured with laser ablation. Functionalization of the textured 

surface by b) PAA and c) PSS. [89] 

Second approach to craft textured surfaces was presented by He et al. (2014) [124], 

whom utilized the lithography technique. They have studied the effect of geometrics of 

the micropillars and also the influence of nanoroughness on the top of the micropillar, 

as illustrated in Fig. 48. Ice accretion was performed by placing 10 µl droplet on the 

surface, which was led to freeze in -15 °C. The ice adhesion strength was measured by 

pushing the droplet with small probe with force transducer. They discovered that the 

application of nanoroughness decreased the ice adhesion (420kPa) compared microtex-

tured surface (1350kPa). It was also concluded that geometry has only little effect on 

the ice adhesion behavior. [124] 
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Figure 48. Lithography crafted a) micropillars and b) nanoroughness on the top of the 

micropillars [124] 

Ruan et al. (2013) [125] have created superhydrophobic surfaces with electrochemical 

anodic oxidation and chemical etching. Electromical anodic oxidation was performed 

with the different sets of chemicals; first including sulphuric acid (H2SO4), oxalic acid 

(C2H2O4) and glycerol (C3H8O3) and the second was performed with phosphoric acid 

(H3PO4). The chemical etching was with iron (III) chloride (FeCl3) and hydrochloric 

acid (HCl) by changing etching times. In this study, it was found out that the freezing 

time was increased for the superhydrophobic surfaces compared to uncoated aluminum 

samples. [125] 

4.3 Summary of the materials and results from literature 

As this Chapter 4 points out, multiple methods have been applied on the different struc-

tures to lower ice adhesion strength. Nowadays many of the methods are classified as 

active techniques, which utilize external energy in the removal of ice or prevention of 

icing. As described previously, heating elements have gained the wide popularity and in 

addition the pneumatic boots are applied in the airplanes. Still in the many cases the ice 

removal is performed manually with hammers and bats. Also some structures do not 

have any ice removal strategy, which is the case with many tall structures and also pow-

er network structures.  

 

As was the case with anti and de-icing methods, also multiple coating materials have 

been proposed in the literature. The most common materials have been fluoropolymers 

like PTFE and silicone based compounds e.g. RTV silicone rubbers. The ice adhesion 

values of these fluoropolymer and silicon rubber coatings have been low, but the draw-

back of these coatings is their mechanical durability. Therefore different ceramic parti-

cles have been added to improve mechanical durability or change the topography of the 

surface. The involvement of nanorough texture combined with low surface energy mate-

rial produces superhydrophobic surfaces. Icephobic behavior of the superhydrophobic 

surfaces is based on high droplet mobility on the surface, which leads to droplets to 

bounce off the surface. Alternatively it is stated that the droplets do not penetrate in the 

valleys of the asperities, but stay on top of the surface. This should in theory lead into 
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the situation, where the contact area between the droplets and surface is lowered, which 

reduces the ice adhesion values. As Tables 7 and 8 point out superhydrophobic coatings 

as the icephobic coatings have been widely studied.  

Table 7. Collection of anti-icing coatings and surface, which are tested with centrifugal 

ice adhesion test. WB stands for wetting behavior, SH stands for superhydrophobic, HP 

for hydrophobic and HF hydrophilic. AFR stands for adhesion reduction factor com-

pared to aluminum.  

Coating WB Ice  

formation 

Ice  

adh. meas-

urement 

Ice 

adh. 

(kPa) 

ARF Ref. 

FAS-17 SH spray icing centrifugal 40 9 [90] 

HVIC1547+ 

CeO2 (<25nm) 

SH spray icing centrifugal 50 7,2 [30] 

HVIC1547+ 

TiO2(<100 nm) 

SH spray icing centrifugal 50 7,2 [30] 

FAS-13 SH spray icing centrifugal 55 6,6 [31] 

Zonyl 

8470+Ag(80-

400nm) 

SH spray icing centrifugal 60 5,7 [102] 

Zonyl 8470+ 

ZrO2 (20-30nm) 

SH spray icing centrifugal 65 5,5 [102] 

F-POSS+silica SH spray icing centrifugal 74 18,3 [92] 

HVIC1547+ 

carbon black 

(42nm) 

HP spray icing  centrifugal 75 4,8 [30] 

Zonyl 

8470+CeO2 

(<50nm) 

SH spray icing  centrifugal 80 4,5 [31] 

Zonyl 8470 + 

ZrO2 (20-30nm) 

SH spray icing  centrifugal 80 4,5 [90] 

Zonyl 8470 + Ag 

(100-600nm) 

SH spray icing  centrifugal 85 4,2 [31] 

PTFE HP spray icing  centrifugal - 3,5 [105] 

Zonyl 8470 + 

TiO2 (<50nm) 

SH spray icing  centrifugal 110 3,3 [103] 

PC HP spray icing centrifugal 129 4,4 [92] 

HVIC1547 HP spray icing  centrifugal 190 1,9 [30] 

PTFE HP spray icing centrifugal 210 2,4 [1] 

Mirror-polished 

aluminum 

HF spray icing  centrifugal ~360 1 [30, 31, 90, 

103, 110] 

Al6061 HF spray icing centrifugal 505 1 [1] 
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Table 8. Collection of coatings and surfaces presented in the literature, which ice adhe-

sion is measured with zero cone degree test or other self-made apparatus. WB stands 

for wetting behavior, SH stands for superhydrophobic, HP for hydrophobic and HF 

hydrophilic. AFR stands for adhesion reduction factor compared to aluminum.  

Coating WB Ice  

for-

mation 

Ice  

adhesion 

meas-

urement 

Ice  

adhesion 

value (kPa) 

ARF Reference 

RTV11 HP molding zero 25 43,2 [17] 

R2180 HP molding zero 43 25,2 [17] 

Fluorolink S10 

+SiO2 

HP molding zero ~80 20 [122] 

Fluorotelomer 

V+silica 

HP molding zero ~200 8 [122] 

RTV11+EH5 

(fumed silica) 

SH molding zero 243 4,4 [17] 

R2180+EH5 

(fumed silica) 

SH molding zero 258 4,16 [17] 

PU HF molding zero 820 1,4 [17] 

Fluorolink 

S10+Aerosil 

R805+silica 

SH molding zero ~1000 1,5 [122] 

F-PU HP molding zero 1000 1,2 [97] 

PMMA HF molding zero 1535 <1 [17] 

Bare Al HF molding zero 1072 1 [17] 

Bare Al HF molding zero 1600 1 [122] 

PDMS HP molding peltier 291 - [94] 

PBMA HP molding peltire 384 - [94] 

PC HP molding peltire 400 - [94] 

PMMA HF molding peltire 463 - [94] 

PEMA HF molding peltire 510 - [94] 

Bare steel HF molding peltier 698 - [94] 

F-Clean HF molding push 150 - [23] 

Glassfiber+PTFE HF molding push 380 - [23] 

Silicon doped  

hydrocarbon 

+fluorinated  

carbon film 

HF freezed 

droplet 

push 160 2,1 [98] 

 

As Tables 7 and 8 show, high fluorine and silicone containing coatings have occupied 

the tops of these tables. Low ice adhesion values have been found in the literature and 
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the best adhesion reduction factor over 43 (compared to aluminum) has been measured 

for RTV11 (RTV silicon rubber coating). The best ARF factor for fluorine containing 

coating has been measured for silica embedded in Fluorolink S10 matrix. In addition, 

R2180 (silicone elastomer) show ARF value of 25,2, which is exceptionally high. Ta-

bles 7 and 8 display that the performance of the superhydrophobic coatings do not reach 

the level of the best polymer coatings. However the ice adhesion reduction factors stay 

between 3,3 and 7,2. Significantly higher values have been obtained for engineering 

plastics such as PMMA, PC and PU, which ice adhesion strength is close to bare met-

als’ ice adhesion. The ice adhesion strength is depended of the measuring method of ice 

adhesion, which is why it varies between different measuring techniques. For aluminum 

the measured ice adhesion strengths vary between ~360 kPa and 1600 kPa.  

 

However, Tables 7 and 8 indicate the great difference in ARF values between different 

ice adhesion measurement techniques. Molding has been used to create on for surfaces 

on Table 8 and on the contrary icing wind tunnel spray icing have been used to accrete 

ice on the coatings in Table 7. Naturally, icings performed in the icing wind tunnel sim-

ulate more accurately real icing event, which were described in Chapter 3. Also the ice 

adhesion measurement techniques in Table 8 involve methods, where ice piece is either 

pushed or pull e.g. the ice block on the surface faces forces from external objects. On 

the other hand in the centrifugal ice adhesion test no external objects are in contact with 

ice block over the surface. Due to similar measurement techniques of ice adhesion and 

ice accretion, Table 7 can be used to compare directly the values measured in this thesis. 

 

Properly functioning icephobic coatings would have great benefits compared to current-

ly utilized anti- and de-icing applications. Icephobic coating would operate without ex-

ternal energy, offer environmentally friendly option and could be modified to multiple 

applications. The present icephobic coatings still have issues with their durability. The 

cyclic ice adhesion tests have showed that at least superhydrophobic surfaces will lose 

their icephobic behavior during the multiple cycles. [75, 90, 99, 103, 115] In order to 

function properly, the icephobic coating should release ice under the influence of exter-

nal forces i.e. wind and gravity. In practice this would mean that ice adhesion strengths 

should be close to zero. This level is not yet been achieved, as Table 7 and 8 point out.  
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5 RESEARCH METHODS AND MATERIALS 

The main goal of this thesis was to figure out how different icing conditions affect icing. 

By characterization of the surfaces and coatings connections between the icing condi-

tion and ice adhesion strengths were studied. The secondary objective was to discover 

limitations of test equipment i.e. how ice accretion of different ice types could be per-

formed in different temperatures. Focus was also to assess the reliability of test equip-

ment, when different ice types were accreted. Ice accretions were performed for all test-

ed samples in nine different conditions and ice adhesion was measured in every condi-

tion. The surfaces were characterized by measuring the wetting behavior i.e. static and 

dynamic contact angles with the water. Also the effect of surface roughness was evalu-

ated with optical profilometer.  

5.1 Contact angle measurements 

Contact angles with the water and wettability measurements were performed with KSV 

CAM2000 equipment (KSV Intruments Oy, Finland). The measurements were conduct-

ed in a conditioned room, where ambient conditions are 23 °C and 50 % relative humid-

ity. In order to analyze the wettability of the samples both static and dynamic angles 

were evaluated. Static contact angles were measured at least from five droplets, which 

were let to settle for 5 seconds. Due to high variety of wettability in the test series, two 

different droplets sizes were used; 5 μl for hydrophobic and 10 μl for superhydrophobic 

surfaces. Larger droplet size for superhydrophobic surfaces was necessary in order to 

prevent droplets to fall off from the sample. Dynamic contact angles were measured in a 

way that droplets were filled up to 30 μl and unfilled back to capillary. Pump rate was 

set to 1 μl per second and the images were taken every second during the measurement. 

Advancing and receding droplets are presented in Fig 49. 

 

 
Figure 49. Example of droplets on superhydrophobic surface in dynamic contact angle 

measurement. a) advancing and b) receding contact angle. [49] 
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5.2 Surface roughness 

Surface properties (surface profile, Ra, Sa values) were analyzed by Alicona Infinite 

Focus G5 optical profilometer (Alicona Imaging GmbH, Germany) with the 20x objec-

tive magnification, resulting in a measurement field size of 0.81 mm x 0.81 mm on the 

xy-plane. Vertical resolution achieved with this magnification is 50 nm. Ra- and Sa-

values were measured from areas as large as possible. 

5.3 Ice accretion 

The ice accretion was performed with small scale icing wind tunnel, which was de-

signed and constructed by Riku Ruohomaa at Tampere University of Technology 

(TUT). [49] Icing wind tunnel is placed in the climatic room, which temperature could 

be controlled, respectively, down to -40 °C. All the in-cloud ice types – rime, glaze and 

precipitation ice – are possible to be produced with equipment that has been discussed 

in the chapter 3. The icing wind tunnel is presented in the Fig. 50 and it is consistent of 

the following parts; 1,1 kW centrifugal fan (Suomen imurikeskus), stabilizing metal 

web, contraction component and nozzle system (Spray Systems ¼ J+SU12) to spray 

distilled water. The equipment is a U-shape and it is placed upside down in order to 

save floor base.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 50. a) Icing wind tunnel, b) nozzle system inside the wind tunnel and c) typical 

set of samples with masks at TUT.  
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The basic idea of wind tunnel is to blow air in to U-turn where the flow is turned 

downwards into to contraction component, which increases the wind speed significantly 

up to 25 m/s. Before the contraction component, there are two nozzles where the dis-

tilled water is led with the separate hoses. Nozzles use compressed air to atomize water 

into to droplets, which volume median radius could be altered between 25-1000 µm. 

This spray jet accelerates due to wind and hits to exposed sample under the contraction 

component. Ice is usually accreted on the 30 mm x 30 mm area defined with masking. 

Masking block dimension are 30 mm x 30 mm x 10mm. The aimed ice height is 10 mm 

and it is inspected visually utilizing the height of masking. In Fig. 50 c) there is present-

ed the typical set of masked samples.  

 

The three different ice types, which were created in this thesis, were rime ice, mixed ice 

and glaze ice. Mixed ice is ice type having density as close as possible to glaze ice’s 

density, but mixed ice does not have any icicles formed, which would change area of 

accreted ice. Mixed ice has been commonly used as standard ice in TUT’s icing labora-

tory. The purpose of accretion of different ice types was discovering the limitation of 

the conditions where all three ice types could be formed. In Figure 51 the three ice types 

are presented.  

 

 

Figure 51. Three different ice types from the previous icing trials The numbers present-

ed in the each blade are the volume median particle sizes for sprayed water droplets.  

The icing tests were conducted by following the test matrix presented in Table 9, which 

also includes the remarks for each ice type at each temperature. The purpose of the tests 

was to be able to form three ice types presented in Fig. 51 at three different tempera-

tures -5 °C, -10 °C and -15 °C. Typically ice accretion at the TUT has been conducted 

at -10 °C and the ice type accreted is mixed test ice, which is illustrated in the middle 

blade in Fig. 51. 

 

In totally this thesis contained ice accretions in nine different conditions, as described in 

Table 9. The ice adhesion strength was measured also in all of these conditions. Results 

are presented in Chapter 6.4  



 64 

Table 9. Test matrix for condition testing. 

Ice type  Temperature 

-5 °C -10 °C -15 °C 

Rime x X x 

Mixed x X x 

Glaze x X x 

 

5.4 Ice adhesion 

In a centrifugal ice adhesion test, the ice-accreted samples (presented in Fig. 52 a) are 

rotated with the constant acceleration until the ice block detaches. The detachment is 

observed with acceleration sensor, which is attached into the protective dome around 

blade. The samples are attached into the blades with screws and the blades are balanced 

to minimize vibration and stress for the servo motor and its axis. The equipment (pre-

sented in Fig. 52 b) is designed and built by Riku Ruohomaa [49] and it is based on 

equipment described by Laforte and Beisswenger [126].  

 

 

 

 

 

 

 

 

 

 

 

 

 

When adhesion area is measured and the speed of rotation at the moment of detachment 

is known, the maximum adhesive shear strength can be calculated. The centrifugal force 

F can be written as shown in Equation 7:  

𝐹 = 𝑚𝑟𝜔2      (7) 

Where m is the mass, r is the radius of rotation and ω is angular velocity. By measuring 

RPM value at the moment of ice release, angular velocity can be calculated. The mass 

of ice block is measured by weighting the sample before and after ice detachment. The 

radius of the rotation is 17 cm, which constant in every test. The shear stress τ can cal-

culated with the Equation 8: 

Figure 52. a) Example of the sample with ice block accreted in the icing wind tunnel 

and b) centrifugal ice adhesion test device.  
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𝜏 =
𝐹

𝐴
       (8) 

where F is centrifugal force and A are of detached ice. After the ice detachment area of 

accreted ice block can be measured. By dividing the centrifugal force with the area of 

detached ice, the ice adhesion shear strength can be calculated. Ice adhesion strength for 

each sample is calculated as an average of five. 

5.5 Materials 

Different type of surfaces and coatings were selected as samples for this thesis. This 

group included samples with different wettabilities, different material groups (polymer-

ic, metallic, polymer composite) and different surface roughnesses. The reason why this 

group of samples was selected is that they should cover as various ice adhesion values 

as possible. The samples used in this test are listed in to Table 10. 

 

Table 10. Samples with descriptions for condition testing.  

Sample code Description 

Al Polished aluminum 

PP Polypropylene tape 

PU-paint Commercial two component polyurethane paint  

SH1 F-containing superhydrophobic hybrid coating, Millidyne 

SH2 Superhydrophobic coating, Ultra-Ever Dry® 

PTFE Teflon tape, Polytetrafluoroethylene tape (3M™ 5490) 

 

Aluminum was selected as a reference material, because it is widely used in the litera-

ture.[1, 17, 30, 31, 90, 97, 99, 102, 103, 105, 116] The behavior of polymer surface was 

also researched, which is why PP and PTFE surfaces were selected. Different types of 

paint coatings are used in wind turbine blades, ships, trains and construction materials, 

therefore polyurethane based paint was chosen. SH1 and SH2 represent superhydropho-

bic coatings, which have been widely tested in the literature.[17, 30, 31, 90, 92, 93] 

PTFE stands for PTFE-tape, which signifies the fluorine containing polymer. Tape form 

was selected, because it is easy to apply new untouched surface for each test.  

 

Tested samples had five parallel samples; except the aluminum had 3 parallel samples 

and PU-paint had four parallel samples. The ice accretions were done previous after-

noon and ice adhesion test were performed next morning. Accreted ice blocks had about 

16 hours to freeze properly. 
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6 RESULTS AND DISCUSSION 

In this chapter the results obtained from this thesis are presented and analyzed. First in 

Chapter 6.1 the wettability results are presented and compared with the literature. Sur-

face roughness measurements with 3D- roughness profiles are illustrated in Chapter 6.2. 

Ice accretion in nine different icing conditions are described in Chapter 6.3. In Chapter 

6.4 ice adhesion test results from nine different icing conditions are evaluated. 

6.1 Wettability 

Wetting behavior of samples was analyzed by measuring static and dynamic water con-

tact angles. Surfaces can be divided into the different categories depending on their wa-

ter contact angle values. Hydrophilic surfaces possess water contact angles below 90°, 

which means that the water will wet surface. This indicates that the water penetrates 

into surface texture, and this state is called Wenzel state. When the water contact angle 

is over 90°, the surface is called hydrophobic. The maximum water contact angle value 

for flat hydrophobic is 120°. [114] In the cases, where the water contact angles are 

above 150 ° and the contact angle hysteresis is below 10°, the surface is called superhy-

drophobic.[31, 90, 92, 100, 120] The corresponding wetting state for superhydrophobic 

surface is named as Cassie-Baxter-state. Wenzel and Cassie-Baxter states are presented 

in Fig. 53. 

 

 
Figure 53. Schematic presentation of different wetting states. a) water droplet on 

smooth hydrophobic surface, b) water droplet in the Wenzel-state and c) water droplet 

in the Cassie-Baxter-state. [114] 

Samples tested in this thesis were preselected to bear different wettabilities. Mirror-

polished aluminum and PU-paint have clearly hydrophilic characteristics having static 

contact angles of 66° and 79°. Contact angle hysteresis describes the droplet mobility on 

the surface and the lower hysteresis the better movement of droplet. Droplet movement 

on the hydrophilic surface is non-existent. In addition PP falls into hydrophilic category 

having static contact angle of 89°. Only hydrophobic sample was PTFE, having 100° of 

water contact angle and hysteresis of 16°. Two hydrophobic samples (SH1 and SH2) 
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had static contact angles over 150° and hysteresis below 10°. SH1 had higher hysteresis 

of 10° compared to SH2, which had extremely low hysteresis of 2°. Water repellency 

and droplet movement on the SH2 was great. The contact angle values with hysteresis 

are presented in the Table 11. 

 

Table 11. Static, advancing, receding and contact angle hysteresis (CAH) of samples. 

Sample Static (°) Advancing (°) Receding (°) CAH (°) 

Al 66 80 20 60 

PU-paint 79 79 20 59 

PP 89 91 52 39 

PTFE 100 108 92 16 

SH1 159 161 151 10 

SH2 165 166 164 2 

 

Measured water contact angles are in line with values presented in the literature. Static 

contact angles measured for aluminum varies between 57° and 83°. [17, 98, 102] Bhara-

thidasan et al. (2014) [17] has measured 67° for static contact angle of aluminum, which 

is consistent with 66° measured in this thesis. [17] High CAH values are characteristic 

for aluminum [102], which means that the droplet movement on the surface is poor 

.Static contact angle for two component PU-paint has been measured as 73° and sliding 

angle over 90°. [17] Static contact angle for PP has been reported 96° and 104° for 

PTFE. [92] These values correspond well the values in Table 12.  

 

Table 12. Comparison of hydrophilic and hydrophobic samples on the values presented 

in literature. Static contact angles, CAHs and surface energies are presented. Wetting 

results obtained in this thesis are bolded and italic.  

Sample Static (°) CAH 

(°) 

Surface energy 

(mN/m) 

Ref. 

Al 66 60 -  

Bare Al 67 - 101,80 [17] 

Mirror-polished Al 57 50 - [102] 

PU-paint 79 59 -  

PU-paint 77 - 86,67 [17] 

PP 89 39 -  

Polypropylene 96 - 30,1 [92, 127] 

PTFE 100 16 -  

PTFE 104 - 20 [92,127] 

 

Two superhydrophobic coatings with different wetting properties were selected in this 

thesis. Droplet movement on SH2 is better compared to SH1, which CAH is higher. 

Surfaces having wetting properties similar to SH1 have been presented in the literature. 
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[30], [102] Arianpour et al. (2013) [30] have measured static contact angle of 150° and 

CAH of 9° for silicon rubber+titania (100nm) coating. Kulinich et al. (2009) [102]have 

studied polymer composite coatings with different hard phase additions. Superhydro-

phobic polymer composite coatings of Zonyl 8470 and Ag-nanoparticles or zirconia 

(20-30nm) have showed static contact angles of 151° and 152°. Ag-nanoparticle coating 

had hysteresis of 9,5° and zirconia composite coating of 7,8°. [102]  

 

Surfaces having wetting properties in line with SH2 have been also studied in the litera-

ture. CAH of 2° indicates very high water repellency. [91, 128] Cao et al. (2009) have 

manufactured coatings with CAH <2° by incorporating different sizes organosilane 

modified silica-nanoparticles in acrylic resin, and found out that 50nm and 100nm silica 

nanoparticles create highly superhydrophobic coatings. [91] Bharathidasan et al. (2014) 

[17] have utilized even smaller silica powder (EH-5, 10-15nm), which was mixed into 

silicone elastomer (R2180) and RTV silicon rubber (RTV11) matrices. Corresponding 

static contact angles and sliding angles for R2180+EH5 and RTV11+EH5 are listed in 

to the Table 13, where SH1’s and SH2’s wetting properties are compared to values in 

the literature.  

 

Table 13. Comparison of the superhydrophobic coatings of SH1 and SH2 with values 

presented in the literature. Static contact angles, CAHs and surface energies are pre-

sented. Wetting results obtained in this thesis are bolded and italic. 

Sample Static (°) CAH 

(°) 

Surface energy 

(mN/m) 

Ref. 

SH1 159 10 -  

Zonyl 8470+ 

Ag (100-600nm) 

151 9,5 - [102] 

Zonyl 8470+ 

Ag (80-400nm) 

153 8,1 - [102] 

Zonyl8470+ 

ZrO2 (20-30nm) 

152 7,8 - [102] 

SR+TiO2 (100nm) 150 9 - [30] 

Zonyl 8470+ 

TiO2 (<50nm) 

152 6 - [103] 

SH2 165 2 -  

Acrylic+organosilane modified 

silica (50nm,100nm) 

~158 2 - [91] 

R2180+EH5 155 2 6,86 [17] 

RTV11+EH5 158 2 5,33 [17] 

 

Interaction between water and surface plays an important role in wetting behavior. Wa-

ter molecule has unique characteristic to form hydrogen bonds with polar molecules on 
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the surface. The hydrogen bonding has the greatest impact on the adhesion of water or 

ice on the surface. [42] More polar surface the higher the intensity of interactions is. 

Furthermore higher interaction between the water molecules and surface are the higher 

sticking between the water and surface is observed. In other words polar surfaces form 

hydrogen bonds with water, which increases surface energy.[17] Higher the surface free 

energy is the lower the contact angles are. Superhydrophobicity is achieved for surface 

having low surface energy i.e. low interactions with water and naturally certain level of 

surface roughness. It has been stated that lower surface energy i.e. water repellency 

should indicate lower ice adhesion values [42, 92, 106]. 

6.2 Surface roughness 

Surface roughness has great impact on the wetting characteristics. [17, 122] Different 

degrees of surface roughnesses can be achieved with different methods, for example 

utilizing etching, sand blasting or different coating methods. Spin- and spray-coating 

techniques have been utilized in the literature, and clear difference in wetting behavior 

has been discovered. [102, 103, 110] Spincoated coatings produce superhydrophobic 

surface with low CAH due to microscale rougher surface compared spraycoated ones. 

On the contrary static contact angles of spraycoated surfaces are over 150°, but CAH 

values are over 50°. [102, 103] Effect of difference between roughnesses of spin- and 

spraycoated surfaces is presented in the Fig. 54. Asperities of spraycoated surface are 

much finer compared to spincoated one, which leads into different wetting states. Su-

perhydrophobic surfaces with low CAH will have similar surface roughness that is pre-

sented Fig. 54 a). On these surfaces the wetting state is Cassie-Baxter, which indicates 

air is entrapped between the surface and droplet. On the contrary on surface that have 

high static contact angles, but high CAH, will be in the mixed Cassie-Baxter and Wen-

zel- wetting state. In the mixed wetting state the droplets will rest deeper in the surface 

texture, which decreases drastically the droplet movements. [103] 

 

 
Figure 54. AFM images of surface roughness profiles of Zonyl 8470+ZrO2 polymer 

composite coatings produced by a) spincoating and b) spraycoating. [110] 
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Surface roughnesses were measured in this thesis with the optical profilometer. Only the 

homogeneous samples PP and PTFE, where left out from this characterization. PP and 

PTFE are in form of tape, which is why surface is smooth and pristine for every icing 

test. Different surface roughness values are presented in Table 14. R-values are meas-

ured from 2D-line and S-values are measured from 3D-area.  

 

Table 14. Surface roughness values measured by optical profilometer. Ra is average 

roughness, Rz is mean peak to valley height of roughness profile, Sa is average height of 

surface area and Sz is maximum height. 

Sample Ra (nm) Rz (µm) Sa (nm) Sz (µm) 

Al 169 1,15 225,24 19,93 

PU-paint 867 5,65 2240 32,49 

SH1 2890 18,62 6840 84,97 

SH2 336 2,78 698 38,75 

 

Based on Table 14, Aluminum has roughness values typical for smooth surface. PU-

paint has rougher surface compared to aluminum. Superhydrophobic surfaces have cer-

tain level of microroughness and additionally nanoroughness over the microroughness 

peaks. Table 14 points out the clear difference between the SH1 and SH2. Rz values of 

these surface display the difference in the kurtosis of surfaces, SH2 having larger dis-

tance from valleys to peaks.  

 

The 3D-surface profiles were also measured. Figure 55 shows the comparison of hydro-

philic surfaces aluminum and PU-paint 3D profile of aluminum surface shows smooth 

surface with only a few microscale scratches. On the other hand, PU-paint is showing 

more uneven surface. When the larger area of PU-paint is explored, it can be seen that 

large areas that are either elevated or shallow. In addition there are circular peaks, which 

are probably agglomerates of PU. PU-paint is only coating that has been applied with 

foam brush when other coatings have been produced by spraycoating. It is clearly visi-

ble that the surface quality of PU-paint is irregular, which partly explains poor droplet 

movement on the surface.  

 

 

Figure 55. 3D-surface profiles of hydrophilic samples; a) aluminum and b) PU-paint.  
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Figure 56 illustrates surface profiles of superhydrophobic coatings SH1 and SH2. Better 

droplet movement was observed with superhydrophobic surfaces. However there were 

great difference in the CAH values of SH1 (CAH 2°) and SH2 (CAH10°), which can be 

explained with presence of different textures on the surfaces. SH1 has much rougher 

topography, whereas SH2 has smoother surface texture. 3D-profile of SH1 shows that 

the elevated areas are surrounded with deep valleys. The poorer droplet movement on 

the SH1 can be explained with the valleys, where water droplets will impinge. The val-

leys and elevated areas also explain the high Rz and Sz values of SH1. On the other hand 

SH2 has a finer roughness on its surface, having only some peaks formed by the ag-

glomerates. These agglomerates do not affect the droplet movement on the SH2. 

 

 

Figure 56. 3D-surface profiles of superhydrophobic samples; a) SH1 and b) SH2.  

 

Surface roughness has been measured for similar materials, which are tested. Roughness 

of bare aluminum has been measured in different publications and values of average 

roughnesses have varied between 0,25-0,3 µm.[17, 122] Ra value of 0,39 µm has been 

also measured for PU-paint. 3D roughness profile of the PU paint is presented in the 

Fig. 57, which is compared to PU-paint measured in this thesis. [17] Similar elevated 

and shallower areas are visible in the Fig. 57 a).  

 

 

Figure 57. Comparison of 3D-roughness profiles of PU-paints. a)PU-paint used in 

Bharathidasan et al. (2014) [17] and b) PU-paint used in this thesis.  
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Kulinich et al. (2011) [103] have measured 3D-roughness profile of similar surface to 

SH2, which are illustrated in Fig. 58. [103] In the both 3D-profiles there is fine micro-

roughness and some higher asperities rising from the surface. Both of these surfaces 

exhibit superhydrophobic characteristics. 

 

 

 
Figure 58. Comparison of 3D-roughness profiles of a) TiO2 (<50nm) + Zonyl 8470 

[103] and b) SH2.  

The role of surface roughness on wettability and ice adhesion strength has been studied 

in the literature. The general finding, that ice adhesion strength increases as the surface 

roughness increases. [56, 97, 98, 122] This effect was demonstrated by roughening alu-

minum samples into different levels of coarseness, of which the ice adhesion strength 

was measured. Also the effect of surface energy combined with surface roughness was 

evaluated. Surface with different coarseness were coated with lower surface energy ma-

terials i.e. fluorine or silicone containing compounds. [98, 122] Susoff et al (2013) [122] 

have exploited fluorine containing sol-gel coatings, which was applied on the surface 

having different degrees of roughness. In Fig. 59, influence of fluorine coating into the 

ice adhesion strength is presented. [122] 
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Figure 59. Influence of fluorine containing to ice adhesion strength for different sam-

ples having different roughness.[122]  

Ice adhesion strength clearly decreases when the 1 µm thick fluorine containing coating 

is applied on the surfaces. It should be noted that the roughness itself also decreases 

when the thin layer of coating is applied. [122] Even so Zou et al. (2011) [98] have dis-

covered that the lowering the surface energy lowers ice adhesion strength.  

6.3 Accretion of different ice types at different tempera-
tures 

Formation of the different ice types is affected by several factors such as droplet size in 

the water spray, temperature and wind speed. The greatest factor that decides the ice 

type is droplet size. Larger droplets typically form glaze ice and smaller droplets can 

create rime ice. [3, p. 8, 40, 51, 52, pp. 21–22, 128] Furthermore the degree of super-

cooling of the droplets is important in the creation of different ice types. When the de-

gree of supercooling is high, rime ice formed due to instant freezing of water droplets. 

On the contrary glaze ice formed in the lower degrees of supercooling, and the droplets 

will form splats when contacting the surface. [3, p. 8, 40, 52, pp. 21–22] Three different 

ice types, rime, mixed and glaze ice, were formed in three different temperatures (-5 °C, 

-10 °C and -15°C). Schematic illustrations of the ice types are presented in Fig. 60.  
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Figure 60. Schematic illustration of ice types accreted in this thesis. The densities of the 

ice types are presented. [63] 

Droplets having median volume diameter close to 25 µm usually form rime ice either 

soft or hard (IEA2, s17). In this test series the aim was create hard rime, which charac-

teristic features are hard surface, opaque and white appearance. Figure 61 show that this 

goal was reached. Rime ice accretion happens usually when the clouds and fogs con-

taining super cooled droplets will contact some physical obstacles. Rime ice is typically 

formed in the temperatures below -10°C. [42, 56]When the rime is formed, water drops 

are supercooled and will freeze instantly when contacting the surface. Due to this kind 

of behavior, water droplets will freeze in spherical form over the surface, which will 

cause relatively porous ice. The porosity in rime ice causes it to lose its transparency 

making it opaque. [2, p. 12, 63] 

 

 

Figure 61. Examples of different accreted ice types in the icing condition testing. The 

ice types are a) rime, b) mixed ice and c) glaze ice. The edges of the glaze ice block 

have been carved with the knife. 

On the other hand, glaze ice formation happens, when the larger drops (around 40 µm) 

will accrete on the surfaces forming dense, clear and tightly adhered ice blocks. The 

glaze ice has also some characteristics features like runback ice and heavy icicle for-

mation due to heavy draining of water streams. The typical features of glaze ice are il-

lustrated in Fig. 62 a). The other ice types accreted on the aerodynamic profile are pre-

sented in Fig. 62. In theory, the ice adhesion of glaze ice should be the highest com-

pared the other ice types. Also its density is around 0.9 kg/m
3
, hard rime’s 0.6-0.9 kg/m

3
 

and soft rime’s 0.2-0.6 kg/m
3
.[63] The mixed ice is something between of the glaze ice 

and rime ice having some features of both classes.  
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Figure 62. Image of three different ice types accreted on the aerodynamic profile. a) 

glaze ice, b) rime ice and c) mixed ice.  

 

Due to the nature of ice adhesion test, ice accretion has some demands that will help the 

test process; minimum amount of runback ice, no icicle formation and composition as 

close to glaze ice as possible. The minimization of runback ice and icicle is done to 

minimize the amount of treatments to accreted ice blocks. For example carving of the 

icicles on the edges of ice block, can cause some tension which can inflict cracks on the 

ice block. Carving is a necessary step, because otherwise the area of ice block could not 

be determined. The reason why the mixed ice has been chosen to be as close to glaze ice 

as possible, is that in theory the glaze ice has the highest ice adhesion value due to dense 

structure [41]. Also the significant factor is type of failure mode. Failure occurs adhe-

sively until the cohesive force of the ice is reached. Typically the tested surfaces and 

coatings are expected to possess low ice adhesion values, which is why the failure mode 

can be anticipated to be adhesive in the most of the cases.  

 

Formation of different ice types in different temperatures is illustrated in the table 15, 

where easiness of accretion and adjustments are presented. The easiness of accretion is 

displayed with different colors; green means easy accretion, blue manageable and red 

unsuccessful accretion. Different adjustment were mandatory, in order to achieve char-

acteristic conditions for formation of different ice types. As discussed previously differ-

ent degrees of supercooling and droplet sizes are needed to create either rime, mixed or 

glaze ice. Generally the supercooling was increased by extending the distance between 

the nozzles and samples or by decreasing the droplet size.  
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Table 15. Test matrix with the annotations. Green color stands for easiness of accre-

tion; red is the limitation for the equipment and blue means that the successful accre-

tion can be achieved by adjusting icing wind tunnel parameters.  

Tem-

pera-

ture 

Ice 

type Rime Mixed Glaze 

-5 °C 

(Additional 

1.2m water 

pipe) 

Difficult and slow 

-Droplets do not su-

percool fast enough  

 Adjustable 

-Height of nozzles 

-Pressure 

Easy and fast 

-Droplets stay 

easily in liquid 

form 

-10 °C Adjustable and slow 

-Increasing pressure 

Normal test ice 

-Standard  

procedure 

Adjustable 

-Pressure  

adjustment 

-15 °C 

(Full insulation 

and heating) 

Easy 

-Droplets supercool 

easily before hitting 

the surface 

Adjustable 

-Height of nozzles 

- increasing water 

flow 

Adjustable 

-Height  

adjustment  

-Pressure min 

 

As stated in Table 15, there have been a lot of differences in ice accretions at different 

temperatures and ice types. The colors for each cell indicate the easiness of the accre-

tion and it can clearly be seen that a lot of adjustments are needed when spraying pa-

rameters are concerned. The most undemanding ice type which can be made with this 

icing equipment is mixed test. This can be explained due to fact that research team has 

been gathered a lot of data related spraying and quality of this ice type. Rime ice accre-

tions are the most challenging due to slow accretion rate, but at -15 °C rime ice accre-

tions were relatively easy due to high degree of supercooling of droplets. Contrary, 

glaze ice is relatively easy to produce, but the edges of ice blocks need to be smooth-

ened with the knife, because heavy icicle formation during the accretion. However, 

some modifications were needed, when the temperature was changed from -10 °C either 

to -5 °C or -15 °C. These adjustments had to be made in order to prevent nozzles from 

freezing.  

 

At temperature -5 °C, sprayed droplets are much warmer than at -10 °C, if adjustments 

are not made. It was observed that temperature of the water flow should be around 3 °C, 

which was the lowest temperature where the nozzles did not freeze. Cooling of the wa-

ter flow the nozzles was done in a simple manner; the water pipes to the nozzles were 

extended. After the testing of different pipe extensions, the 1.2 m extension performed 

the best way. Ice accretion at the -5 °C were the most challenging ones, because close at 

the zero temperature the icing tends to be more pronounced to variations of the accre-

tion parameters. For example the water temperature in the nozzles is only 3 °C, and the 
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smallest variations in the water flow affects a lot of composition accreted ice or can 

even cause nozzle freezing.  

 

The accretion of the different ice types at the -5 °C temperature showed clearly the limi-

tations of the equipment. The glaze was easy to accrete, because the sprayed droplets 

should stay in liquid form when hitting the samples. Due to lower cooling rate, which 

the droplets experience during air flight, droplets will be in liquid form when contacting 

sample surface. Although the lower cooling rate in air flight, makes it harder to produce 

the other ice types, where fast supercooling in the air flight is needed.  

 

The only limitation for the equipment founded in this thesis was the rime ice accretion 

at -5 °C. The ice accretion was performed using the maximum spraying height, air pres-

sure and minimum water temperature to guarantee the maximum cooling for the sprayed 

water droplets. The reason behind this limitation can be found from the cooling rate of 

the droplets. The air flight time is insufficient for the supercooling of the droplets, 

which is why the droplets will hit the target surface and form splats instead of instant 

freezing remaining spherical form. This kind of behavior produces mixed ice instead of 

rime ice, because in order to create rime ice droplets should freeze immediately in con-

tact with the surface. Instantly freezing spherical droplets will create porosity in the 

structure of ice. This result is in the consistent with literature, because rime is typically 

formed in the temperatures below -10 °C. [42, 56] 

 

The ice accretions at the -10 °C were the easiest ones to perform due to previous icing 

experiences at these conditions. Extra adjustments were not needed to make for the wa-

ter pipes. At the -10 °C water temperature in the nozzles is aimed to be around 5-6 °C, 

which is relatively easy to achieve by controlling the pressure of water and the water 

flow. When the targeted water temperature is reached, the different ice types can be 

created by altering the compressed air pressure. The higher compressed air pressure 

atomizes water drops into the smaller droplets, which create porous ice called rime ice. 

On the other hand, lower compressed air pressure does not shatter the water flow so 

much, which keeps the water drop size greater. These larger water droplets form splats 

when hitting the surface and responsible for the creation of the glaze ice.  

 

As the ice accretions at the -5 °C, were the icings at the -15 °C challenging because lack 

of experience at these conditions. Expectations were that nozzles would be very sensi-

tive to freeze over and that the formation of glaze ice would be difficult due to higher 

cooling rate during air flight of the droplets. The freezing problem of the nozzles was 

resolved by applying the full length insulation for the water pipe leading to the nozzles 

and also putting on heating resistor inside the insulation. Cooling rate at these condi-

tions is more rapid than at other test temperatures, and therefore the formation of rime 

ice is easy. The accretion of mixed test and glaze ice is harder to implement, because the 

droplets tend to freeze before hitting the samples’ surfaces. Due to increased cooling 
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rate, the air flight of the droplets was decreased and also the water flow and compressed 

air pressure was adjusted on the optimum level.  

 

However, adjustments did not guarantee the completely expected behavior, especially 

the glaze ice blocks were removed quite easily, when the icicles on the edges of the 

samples were carved with knife. The example of the carved edges of the sample can be 

seen from Fig. 61 c).  

 

The critical factor affecting on the quality and the type of ice are the spraying parame-

ters. The most important spraying parameters are the temperature of water at the nozzles 

(Twater) and pressure of compressed air (Pair). The other parameters that have impact on 

the spraying process and accreted ice are flow rate of water (Fwater), pressure of water 

(Pwater) and spraying height (hnozzle) i.e. the distance between the nozzles and exposed 

samples. The parameters used in this test series are listed in Table 16.  

 

Table 16. Ice accretion parameters used in this study. 

  
Temperature (°C) 

Ice type Parameter -5 -10 -15 

RIME 

Twater (°C) 3.2-3.8 5.6-5.9 9.5-10.5 

Fwater (L/min) 0.125  0.125 0.15 

Pwater (bar) 4.1 3.9 3.6 

Pair (bar) 6.0 5.5 3.5 

hnozzle (m) 1.75 1.50 1.45 

MIXED 

Twater (°C) 3.4-4.1 5.9 9.3-10.7 

Fwater (L/min) 0.125 0.125 0.16 

Pwater (bar) 3.1 2.8 3.4 

Pair (bar) 3.7 3.9 2.5 

hnozzle (m) 1.50 1.50 1.40 

GLAZE 

Twater (°C) 2.2-2.7 5.1-5.4 12.1-12.9 

Fwater (L/min) 0.125 0.125 0.14 

Pwater (bar) 3.0 3.9 3.5 

Pair (bar) 2.7r 2.3 2 

hnozzle (m) 1.50 1.50 1.35 

 

The water temperature at different room temperatures varies from 2.2 °C to 12.9 °C 

which is significant difference. The water temperature can be adjusted by altering the 

flow rate of water and also the pressure of pressurized vessel. The water temperature at 

the nozzles was adjusted on the level, which kept the nozzles open in other words pre-

vented the freezing of the nozzles. The water temperatures for different ice types are 
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consistent at the temperatures of -5 °C and -10 °C, but the temperature of glaze ice ac-

cretion at -15 °C was higher than the other accretion temperatures at -15 °C. There were 

some difficulties to prevent freezing of the nozzles, which is why the water temperature 

was increased. The need for increase can be explained by looking at the other parame-

ters at this accretion; the height of the nozzles was set to 1,35m, which is the lowest 

height where the nozzles can be placed. Also the pressure of compressed air is relatively 

low. These adjustment were mandatory, because otherwise the droplets hitting the sam-

ples were not wet enough which could create normal test ice. As mentioned in the re-

quirements for the formation of glaze ice, droplets should be complete in liquid state 

that these droplets could form splats in the collisions. By using these adjustments, glaze 

ice accretion was done successfully and externally the ice blocks had the characteristics 

of the typical glaze ice – runback ice and icicles. Although the results of this accretion 

will show lower adhesion values compared the other glaze ice values at -5°C and -10 

°C, which could be partly result of these spraying parameters. The lower compressed air 

pressure creates larger droplet size and higher temperature delays freezing time.  

 

As mentioned before, the rime ice accretions were very challenging, because accretion 

took 3-6 times longer than the accretion of the other ice types. High compressed air 

pressures, 6.0 bar and 5.5 bar, were needed to create small droplet size (25µm) and to 

guarantee high cooling rate for droplets in the air flight. Although at the -15 °C, com-

pressed air pressure was 3,5 bar, because the cooling at this temperature is significantly 

higher. If the high compressed air pressures have been used at -15 °C, the result would 

be snow or soft rime instead of rime ice. As can been seen from Table 15, the rime ice 

accretion at -5 °C was not successful and the mixed ice was obtained instead of rime 

ice. Too low or too high cooling rate causes problems in the accretion, which need to be 

overcome by altering the parameters, utilizing extra pipe length or introducing heating 

and insulation in the system. The parameters in Table 16 give the background infor-

mation for the future test and the starting point for further parameter optimization.  

6.4 Results of the ice adhesion tests 

The aim of ice accretion and ice adhesion tests was to analyze the effect of temperature 

and ice type on the ice adhesion values. The ice adhesion tests were done in total for 

nine different sets of samples. The ice adhesions were measured as descripted in Chap-

ter 5.4. At first the results in the different temperatures (in order -10 °C, -5 °C and -

15°C) are presented and the effect of ice type on the ice adhesion strength is discussed. 

Additionally ice adhesion strengths for each ice types are presented. Furthermore the 

correlation between the ice adhesion strength and wettability and surface roughness is 

evaluated. Finally ice adhesion results of this thesis are compared the results presented 

in the literature. Only the results in the literature that utilize similar ice accretion and ice 

adhesion strength measuring techniques are taken into account, because there is huge 

variation between the values of different measuring techniques. Even so some compari-
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son could be done by proportioning ice adhesion strength values to aluminum i.e. utili-

zation of ARF-values. 

 

Ice adhesion strength is normally measured at TUT in -10°C with mixed ice. The for 

selection of -10 °C can be found from literature, where several authors have also meas-

ured ice adhesion strength at -10 °C. [30, 31, 75, 90, 94, 97, 99, 102, 103, 110, 116] At -

10 °C the supercooling rate is high enough in order to guarantee proper supercooling of 

the droplets, which is required in simulation of atmospheric icing conditions. The results 

at -10 °C are presented in the Table 17 and Fig. 63, where ice adhesion strengths for 

samples are presented.  

 

Table 17. Ice adhesion strengths for samples at -10 °C. Values for different ice types 

are presented. Avg means average of ice adhesion measurements and Std stands for 

standard deviation.  

Quantity Sample 

Al PP PU-paint PTFE SH1 SH2 

Rime (Avg) 333 294 248 100 101 66 

Rime (Std) 18 98 74 19 21 37 

Mixed (Avg) 380 38 82 32 46 43 

Mixed (Std) 70 17 7 4 13 - 

Glaze (Avg) 289 108 149 60 68 39 

Glaze (Std) 86 40 27 16 17 26 

 

The order of ice adhesion strength values at -10 °C was as anticipated. Aluminum had 

the highest ice adhesion value with each ice type, which ice adhesion for mixed ice was 

380 kPa. Centrifugal ice adhesion strength has been measured also for mirror-polished 

aluminum in the literature, which has been ~360 kPa. The second highest value was 

measured for PU-paint and third highest for PP, which represent polymeric surfaces. It 

was observed that ice type did affect the ice adhesion strength of PU-paint and PP, 

which had the lowest ice adhesion strength with mixed ice. PP had high variation in its 

values rime ice adhesion was as high as 294 kPa and mixed ice adhesion was only 38 

kPa. PP has untypically low ice adhesion values with mixed ice and further analysis is 

needed in order to understand this behavior. PTFE showed low ice adhesion values for 

all ice types, ranging from 32 kPa to 100 kPa. SH1 had ice adhesion strength between 

46 kPa and 101 kPa. The lowest values were discovered with SH2, which had its high-

est value of 66 kPa in the rime ice test and the lowest value in glaze ice test 39 kPa. 

Overall the ice adhesion tests at -10 °C were successful and same consistence between 

the values of different ice types was discovered.  
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Figure 63. Ice adhesion strength for samples at -10 °C. Different ice types are present-

ed with different colors; blue stands for rime ice, red for mixed ice and green for glaze 

ice.  

Superhydrophobic samples (SH1 and SH2) and PTFE showed low ice adhesion values 

with each ice type, which indicates great icephobic behavior of these surfaces. These 

surfaces have the lowest value with mixed and the highest with rime ice. Rime ice ad-

heres tightly on the surfaces and breaks cohesively due to high porosity. High level of 

porosity decreases the bonding area of frozen droplets, which decreases the cohesive 

strength of ice. Due to tendency for cohesive failures rime ice was difficult to remove 

from the surface. [42] Example of cohesively failure is presented in Fig. 64.  

 

Figure 64. Cohesive failure of the rime ice sample at -10°C. 

Cohesive release for rime ice could be caused by mass difference of rime ice and glaze 

ice blocks. Mass difference was arisen due to due to testing arrangement, where the di-

mensions (height and area) of the accreted ice block were kept constant. The same sized 

rime ice block weights half of the glaze ice blocks weight, which changes forces affect-

ing the ice block during the spinning. Because of the lighter rime ice blocks, there is a 

significant difference between the RPM (measured speed at the moment of ice release) 

values; rime ice has nearly two times higher values than the other ice types (normal test, 
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glaze). Rime ice is expected to have lower cohesive forces in the ice than glaze, which 

is why the fracture happened inside the ice block rather than at the interface between ice 

and substrate. [42] 

 

All but the SH2 did break cohesively in the rime ice adhesion measurements. SH2 have 

a Cassie-Baxter wetting mode, which allows air to be entrapped between ice and surface 

texture, which decreases the ice adhesion strength. In other words, instantly freezing 

droplet will froze on the top of the surface roughness peaks leaving air pockets on the 

ice-surface- interface. This might explain the adhesive failure of SH2 with rime ice and 

also the best icephobic behavior.   

 

Ice adhesion results at the -15 °C are presented in Table 18 and Fig. 65. Rime and 

mixed ice results were in consistence with results at -10 °C, but untypically low values 

of glaze ice adhesion are discussed later. Mixed ice results showed that order of the 

samples was similar to mixed ice results at -10°C. Aluminum had high ice adhesion 

value of 450 kPa and the second the highest value of 98 kPa was measured for PU-

paint. Surprisingly SH1 had the third highest ice adhesion strength of 56 kPa. PP and 

PTFE displayed ice adhesion strengths of 48 kPa and 46 kPa. The lowest value was 

again for SH2, 35 kPa.  

 

Table 18. Ice adhesion strengths for samples at -15 °C. Values for different ice types 

are presented. Avg means average of ice adhesion measurements and Std stands for 

standard deviation.  

Quantity Sample 

Al PP PU-paint PTFE SH1 SH2 

Rime (Avg) 371 230 188 163 124 N.A. 

Rime (Std) 98 26 55 18 12 - 

Mixed (Avg) 450 48 98 46 56 35 

Mixed (Std) 92 3 9 8 30 17 

Glaze (Avg) 43 39 73 28 56 50 

Glaze (Std) 16 2 11 - 9 - 

 

The order of the rime ice results deviated from the mixed ice results. Order of the ice 

adhesion values starting from the highest values was following; Al, PP, PU-paint, 

PTFE, SH1 and SH2. Overall the values are relative high due to characteristic cohesive 

failure of rime ice. According to Tarquini et al. (2014) [56]  rime is the hardest to re-

move Failure mode for rime at -15 °C was cohesive over 90% of the samples. Peculiar 

observation was found with SH2 sample, which exhibited extremely low ice adhesion 

strength behavior. In removing of the masking piece the ice was more tightly adhered 

on the PTFE taped surface of masking than on the SH2’s surface, which inflicted the 

removal of the ice from samples surface. Even though the ice adhesion was not able to 

be measured for SH2, its ice adhesion strength is on the low level. As discussed previ-
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ously this might result from the proper level roughness that produces Cassie-Baxter wet-

ting state and high water repellency. 

 

 
Figure 65. Ice adhesion strength for samples at -15 °C. Different ice types are present-

ed with different colors; blue stands for rime ice, red for mixed ice and green for glaze 

ice.  

At -15 °C the supercooling rate was the highest in these conditions testing. Due to in-

creased supercooling it was difficult to prevent excessive supercooling of the droplets. 

In the formation process of glaze ice it is vital to guarantee supercooling of the droplets 

and also remaining of the droplets liquid state during the impact with surface. Values of 

glaze ice adhesion strength are too low compared to values at -10 °C, which results 

from unsuitable supercooling of droplets. The glaze is not typically formed at low tem-

peratures like – 15 °C, rather in temperatures between 0 °C and -10 °C.[63] Even so the 

at -15 °C characteristics of glaze ice were achieved, but the temperature at the start of 

supercooling was overly high  ranging from 12,1-12,9 °C. Due to insufficient supercool-

ing, internal stresses might have been formed in the ice’s structure. These internal 

stresses may inflict microcracks and cracks, which will decrease the ice adhesion 

strength of glaze ice. It should be noted that edges of the glaze ice blocks were carved in 

order to get rid of icicles. This procedure was not optimal, because it can also inflict 

extra stresses inside the ice block. Even so the carving was necessary procedure, be-

cause otherwise the area of the ice block would have been impossible to determine.  

 

As explained in Chapter 6.3, the rime ice accretion was unsuccessful and mixed was 

produced instead of rime. The results of ice adhesion test results at -5°Care presented in 

Table 19 and Fig. 66. The glaze ice accretions were the most successful except the alu-

minum. Overall aluminum has low ice adhesion values at -5 °C compared to for exam-

ple the adhesion values at -10 °C. This kind of behavior could be originated from the 

cleaning procedure and reuse of the samples. The aluminum samples were the only 

ones, which gone through the whole 9 step test series. After each adhesion test the sam-
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ples were cleaned with ethanol and distilled water before the next ice accretion. The 

aluminum samples’ polishing wear out a little bit and a few scratches was formed on the 

surface. Furthermore it is possible that some contamination could have been formed 

over the aluminum samples. Other samples were pristine and were tested only once. 

This has to be taken into consideration, when future test are performed.  

 

Table 19. Ice adhesion strengths for samples at -5 °C. Values for different ice types are 

presented. Avg means average of ice adhesion measurements and Std stands for stand-

ard deviation.  

Quantity Sample 

Al PP PU-paint PTFE SH1 SH2 

Rime (Avg) 101 140 119 17 55 47 

Rime (Std) 88 38 33 2 11 31 

Mixed (Avg) 33 36 98 29 41 20 

Mixed (Std) 10 7 16 3 11 5 

Glaze (Avg) 153 82 138 63 94 69 

Glaze (Std) 118 45 27 24 38 13 

 

If the aluminum and the rime ice results are left out from consideration, there is some 

pattern in the results. If the role of effect of different ice type is concerned, it can be 

observed from Fig. 66 that glaze ice has higher ice adhesion values compared to mixed 

ice results. Momen et al. (2015) [116] have stated that increasing droplet size should 

decrease ice adhesion reduction factor (ARF) proportion to aluminum. Superhydropho-

bic surfaces were compared to aluminum. This is in line with the theory, which states 

that the glaze ice has the highest ice adhesion strength.[41, 42] Arrangement of the 

mixed ice adhesion results is following; PU-paint, SH1, PP, PTFE and SH2. Only the 

difference in the arrangement of glaze ice adhesion results was that PTFE (63 kPa) had 

slightly lower value than SH2 (69 kPa).  

 

Figure 66. Ice adhesion strength for samples at -5 °C. Different ice types are presented 

with different colors; blue stands for rime ice, red for mixed ice and green for glaze ice. 
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Overall ice adhesion results at -5 ° displayed high variations in the values of different 

ice types. For example SH1 had ice adhesion strength 41 kPa for mixed ice and 94 kPa 

for glaze ice. Similar result were found also for SH2, which had ice adhesion strength 

20 kPa for mixed ice and 69 kPa for glaze ice. These variations of superhydrophobic 

surfaces could originate of droplet impingent on the surface. At -5 °C freezing of the 

supercooled droplets is slower compared to colder temperatures, which is why the drop-

lets will stay longer in the liquid state. Due to momentum of droplets impacting on the 

surface, they will fill the surface texture of superhydrophobic surfaces because of de-

layed freezing. [116] If the droplets will fill the surface roughness and freeze, it will 

increase the ice adhesion strength, because ice will anchor on the between the surface 

roughness peaks. This phenomenon is named as mechanical interlocking effect and it is 

widely accepted in the literature. [3, p. 259, 34, pp. 126–127, 75, 93, 95, 98, 115, 130, 

131, p. 20] 

 

The effect of temperature and ice type is illustrated in Figs. 67, 68 and 69. Based on 

these test results different ice types have certain characteristics that have an effect on the 

ice adhesion strength. Figure 67 illustrates mixed ice results and it should be noted that 

aluminum has untypically low value at -5 °C, which probably results from contamina-

tion and wearing of sample. Otherwise there is no clear effect of temperature on the ice 

adhesion values, because values are in line regardless of temperature. Furthermore 

standard deviations of mixed ice are reasonable compared to other ice types, which have 

considerably higher standard deviations. The key benefit for mixed ice is that its failure 

is adhesive in 95% of the tested samples and only aluminum samples detached cohe-

sively because of high ice adhesion strength. Rime ice showed high amount of the cohe-

sive failures and glaze ice had also some tendency to fail cohesively.  

 

Coating/surfaces that have ice adhesion values around 50 kPa can be considered as good 

icephobic coatings. SH1, SH2 and PTFE were clearly in this category as was anticipated 

based on Table 7, where superhydrophobic and fluorine combined coatings have low ice 

adhesion values. Surprisingly PP had also low ice adhesion values, although its rime ice 

adhesion strength was nearly as high as aluminum’s and glaze ice adhesion slightly less 

than PU-paint’s. The reason behind this behavior would require further characterization 

such as surface energy measurements and cyclic ice adhesion tests.  
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Figure 67. Ice adhesion strengths for mixed ice in the different temperatures. Blue color 

stands for -5 °C, red -10 °C and green -15 °C.  

Figure 68 shows ice adhesion strengths for all samples in the different temperature. It 

should be recognized that rime ice results at -5 °C are incomparable to results from oth-

er temperatures, because mixed ice was formed instead of rime ice. Otherwise there is 

consistence between the values of different samples, because ice adhesion values seem 

to correlate quite well with wettability and surface roughness values. Hydrophobic 

(PTFE) and superhydrophobic (SH1 and SH2) have higher water repellency compared 

to other samples, which results lower values. On the contrary increasing hydrophilicity 

increases rime ice adhesion strength. Based on Fig. 68 surface energy has also influence 

on the rime ice adhesion strength. Lower the surface energy is the lower the ice adhe-

sion is. This behavior can be observed, when smooth surface Al, PP and PTFE are com-

pared. Increasing fluorine or silicon content on surface will decrease the surface energy, 

because less hydrogen bonding is taking place between water/ice with the surface. 

[131,p.88, 132] PTFE is low surface energy material (20 mN/m) [131, p.26] and it has 

the lowest ice adhesion strength and aluminum has the highest surface energy (101,8 

mN/m) [17] having also the highest ice adhesion strength. PP has the surface energy 

(30,1 mN/m) between PTFE and aluminum.  
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Figure 68. Ice adhesion strengths for rime ice in the different temperatures. Blue color 

stands for -5 °C, red -10 °C and green -15 °C.  

Ice adhesion strengths for glaze in different temperatures are presented in Fig. 69. Glaze 

accretion at -15 °C were challenging, which lead to low ice adhesion values due to high 

wet content during in freezing of ice. When the freezing ice has more water in it, this 

might lead to development of cracks inside ice’s structure. The best icephobic behavior 

with glaze ice was discovered with PTFE and SH2 that showed ice adhesion values ~50 

kPa. SH1 and PP had slightly increased ice adhesion values compared to mixed ice re-

sults. Increased value of SH1 can be explained with characteristic icing conditions for 

glaze ice. Glaze ice is typically formed in the high humidity conditions, where frost 

formation on the surfaces can decrease droplet movements on the surface. [94, 115, 116, 

118] When the superhydrophocity is lost, the ice adhesion strength also increases.[31, 

90] Furthermore the higher momentum of the droplets causes deeper penetration into 

surface texture and mechanical interlocking effect. [116] Glaze ice should had the high-

est ice adhesion strength and ice adhesion strength should increase with increasing tem-

perature. [42, 56] Glaze ice has indeed higher ice adhesion strength for some of the 

samples (PP and PU-paint), but rime ice had the highest values due partly cohesive fail-

ure of ice.  
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Figure 69. Ice adhesion strengths for glaze ice in the different temperatures. Blue color 

stands for -5 °C, red -10 °C and green -15 °C. 

 

Ice adhesion test results measured in this thesis are comparable with some of the results 

presented in the literature. In Table 7 there are listed ice adhesion values, which are ob-

tained with centrifugal ice adhesion test. In addition the ice accretions have been  done 

in the same manner by spraying microdroplets in icing wind tunnel. Typically glaze ice 

has been tested in the centrifugal ice adhesion measurements. [30, 31, 75, 90, 102, 116, 

133] In Figure 70 the ice adhesion values at – 10 °C are presented as ice adhesion re-

duction factor (ARF), which means that the ice adhesion strength are proportioned to 

aluminum. Values presented in Table 7 can be compared with values presented in Fig. 

70 due to similar test procedures, which includes similar ice accretion process, same ice 

type (glaze) and same adhesion measurement technique.  

 

The glaze ice ARF values have been presented with green color in Fig. 70. ARF-values 

for PU-paint and PP are 1,9 and 2,7, which can be categorized as low values. SH1 has 

ice adhesion reduction factor of 4,3, which is typical value for superhydrophobic coat-

ing having good droplet movement i.e. CAH values lower than 10 °. Zonyl 8470 based 

polymer composite coatings with different hard phases, CeO2 (<50nm) (ARF 4,5) [31], 

ZrO2 (20-30nm) (ARF 4,5) [90] and Ag (100-600nm) (ARF 4,2) [31] have shown simi-

lar ARF-values than SH1. PTFE has ARF-value of 4,7 in this study and slight lower 

value of 3,5 have been presented in the literature. [105] The best ARF-value in this the-

sis is measured for SH2 being 7,4, which represent very good icephobic behavior. Only 

ARF-value of 9 has been measured for polymeric FAS-17-coating. [90] ARF-value of 

7,2 have been discovered for silicon rubber based polymer composite coatings with the 

different hard phase additions, CeO2 (<25nm) and TiO2 (<100nm). [30] 
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Figure 70. Ice adhesion results presented with ice adhesion reduction factors propor-

tion to aluminum. Blue color indicates rime ice ARF-results, red mixed ice ARF-results 

and green glaze ice ARF-results.  

If the ARF values of different ice types are evaluated, it is found that mixed ice had the 

greatest ARF values and rime ice has the lowest reduction factor. ARF values of glaze 

ice are between the rime and mixed ice values. It can be seen that there is quite large 

variation in the reduction factors for different ice types. Samples PP, PTFE and SH1 had 

high reduction factors with mixed ice, which are dramatically dropped with glaze and 

rime ice. Momen et al. (2015) [116] have studied the effect MVD on the glaze ice adhe-

sion strength and discovered that increased droplet size reduces ice adhesion strength. 

Droplet sizes were varying between 40-80 µm. [116] In this thesis droplet size used 

were; 25 µm for rime ice, 31 µm for mixed ice and 40 µm for glaze ice. Effect of drop-

let size cannot be directly evaluated, because three different ice types were created and 

all of them have specific ice formation mechanism. Tarquini et al. (2014) [56] has also 

studied the effect of droplet size on ice adhesion strength and found out that higher 

droplet size decreases ice adhesion strength, which are contravened with results of Mo-

men et al. (2015) [116]. Droplet sizes studied were 20µm, 30 µm and 40 µm. [56] These 

droplet sizes correspond the sizes utilized in this thesis, but no correlation with MVD 

and ice adhesion strength was found. This indicates the clear need for research of ice 

formation mechanism for different ice types and their relation to ice adhesion strength.  

 

The influence of the wetting properties and surface roughness values on ice adhesion 

strength is discussed next. Table 20 presents ice adhesion strengths at -10 °C, wetting 

properties and surface roughness values. Different factors influences on the ice adhesion 

strength. Surface roughness has an important role in water repellency, because superhy-

drophobic surfaces require combined micro- and nanotexture. Furthermore it was found 

out in this thesis that there exist high variations in the surface textures as was the case 

with samples SH1 and SH2. Both superhydrophobic surfaces also show relatively low 

ice adhesion strengths, which underlines the importance droplet movement on the sur-
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face. Even so it should be noted that superhydrophobic surfaces offer only limited 

icephobic solution, because their performance decreases in different icing conditions. 

[56]  

 

Table 20. Ice adhesion strengths, wetting properties and surface roughness values for 

samples at -10 °C. Values for different ice types are presented. Avg means average of 

ice adhesion measurements and Std stands for standard deviation. CA stands for con-

tact angle of water. Ra is average roughness, Rz is mean peak to valley height of rough-

ness profile, Sa is average height of surface area and Sz is maximum height.  

Quantity Sample 

Al PP PU-paint PTFE SH1 SH2 

Rime, avg (kPa) 333 294 248 100 101 66 

Rime, std (kPa) 18 98 74 19 21 37 

Mixed, avg (kPa) 380 38 82 32 46 43 

Mixed, std (kPa) 70 17 7 4 13 0 

Glaze, avg (kPa) 289 108 149 60 68 39 

Glaze, std (kPa) 86 40 27 16 17 26 

Static CA (°) 66 89 79 100 159 165 

Advancing CA (°) 80 91 79 108 161 166 

Receding CA (°) 20 52 20 92 149 164 

CA hysteresis (°) 60 39 59 16 10 2 

Ra (nm) 169,4 - 867,3 - 2890 336,2 

Rz (µm) 1,15 - 5,65 - 18,62 2,78 

Sa (nm) 255,2 - 2240 - 6840 689,1 

Sz (µm) 19,93 - 32,49 - 84,97 38,75 

 

The relationship between ice adhesion strength and CAH is presented in Figs. 71,72 and 

73 for different types of ice. Correlation between CAH and mixed ice adhesion is con-

cerned, it is clear no distinct correlation exist. All the coatings except aluminum have 

ice adhesion strength below 100 kPa, but the CAH values vary a lot. For example PP 

has CAH of 39 ° and ice adhesion comparable to PTFE, which CAH is 16 °. Further-

more aluminum has high ice adhesion strength 380 kPa, but similar CAH values with 

PU-paint, which ice adhesion is 82 kPa. This difference can be partly explained with 

difference in the surface energy values, aluminum having higher surface energy hence 

higher ice adhesion strength.  
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Figure 71. Mixed ice adhesion strength versus CAH.  

Surprisingly rime and glaze ice values against CAH show some correlations, as Figs. 72 

and 73 point out. Group of samples, SH1, SH2 and PTFE, having low CAH i.e. good 

droplet movement on the surface, has also lower ice adhesion values compared to sam-

ples, Al, PP and PU-paint, having higher CAH. If the rime and glaze ice strengths of 

high CAH samples are compared, it seen that rime ice adhesion strengths are signifi-

cantly higher than glaze ice adhesions. Higher values for glaze ice can be explained 

with partly cohesive failure mode. PP has CAH of 39 °, which indicates poor droplet 

mobility on the surface. Due to this low CAH values, relatively high difference between 

glaze and rime ice adhesion values is observed. Rime ice adhesion for PP is nearly 300 

kPa and for glaze just over 100 kPa.  

 

 

Figure 72. Rime ice adhesion strength versus CAH.  
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Group samples having low CAH values, exhibits also low ice adhesion strength with 

both ice types at -10 °C. Arrangement of the samples stays same regardless of accreted 

ice type. The best behavior is observed with the SH2, which also has the lowest CAH 

(2°). SH2 is the only sample, which ice adhesion strength stays ~50 kPa regardless of 

the temperature or the ice type. On the contrary SH1 nearly doubles its ice adhesion 

strength, when glaze ice values are compared to rime ice adhesion values due to higher 

CAH values (10°).  

 

 

Figure 73. Glaze ice adhesion strength versus CAH.  

Mixed ice adhesion results at -10°C are compared with surface roughness quantity of Sa, 

which illustrates the average roughness on the selected area. Surface roughness of PP 

and PTFE haven’t been evaluated, because it is assumed that there are smooth samples 

and applied surface is pristine in every condition test. No pattern between the roughness 

values and ice adhesion strength exist, which was the case with wettabilities. Superhy-

drophobic samples SH1 and SH2 show that the similar ice adhesion strengths can be 

reach, with the varying roughness values. SH1 has relatively high roughness value, be-

cause there are deep canyons, which surround the elevated areas. Deep cavities cause 

droplets to stick, which increase the CAH. However the increased CAH and roughness 

do not have impact on the ice adhesion strength, in the case of SH1. Roughness alone 

does not influence on the ice adhesion strength, because SH2 and Al have both rough-

ness in the nanoscale but their ice adhesion strengths vary a lot, because of different 

surface chemistries. Increased roughness has been demonstrated the increase ice adhe-

sion with similar materials [97,122]. It can be concluded that increasing roughness in-

creases ice adhesion strength, but also the wetting behavior and surface chemistry has to 

be considered.  
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Figure 74. Mixed ice adhesion strength versus Ra, which stands for average surface 

roughness. 

Some conclusions can be drawn based on these results, but one factor alone cannot ex-

plain why ice adhesion values are on the certain level. It can be concluded based on 

discussion presented previously that the ice adhesion strength correlates with following 

listed parameters; 

 

 Wetting behavior 

 Surface roughness 

 Surface chemistry 

 Icing conditions 

 Ice type 

 

Droplet movement and water repellency on the surface decreases ice adhesion strength 

in some icing conditions. However in wet icing events with high wind speeds and high 

droplet sizes, water will wet the texture and form mechanical interlocking effect, which 

increases ice adhesion strength. Surface texture enables the presence of different wetting 

states, such as Wenzel or Cassie-Baxter wetting state. Droplets resting on the top sur-

face asperities will decrease ice adhesion strength in dry icing events, but these surfaces 

will vulnerable to frost formation in high humidity conditions. Decreasing surface ener-

gy will lower the ice adhesion strength, but ice adhesion strength is also strongly related 

to surface roughness. Icing conditions have indeed effect on the ice adhesion strength. 

Superhydrophobic surfaces function well in the dry icing events i.e. rime ice accretions 

showing low ice adhesion strengths (for example SH2), but the values are increased in 

the wet ice formation i.e. glaze ice events due to water penetration and freezing between 

the surface roughness peaks. [116] Ice type has also an effect on ice adhesion values. 

Rime is the most difficult to remove complete from the surface due to cohesive failure 

mode. [42, 56] On the other hand glaze ice has the highest ice adhesion strength and its 
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failure mode is typically adhesive. [134] Effect of listed factors should be further stud-

ied in order understand icing formation process and critical factors affecting on ice ad-

hesion strength.  
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7 CONCLUSION 

Icing causes substantial problems for different field of industries, by decreasing effi-

ciency, safety and usability of operations. Therefore variety of methods has been pre-

sented to deal with issues that icing possesses. Active anti-icing methods are typically 

based on electrothermal heating element, which melts the interface between ice and 

substrate, causing ice to be removed due to external forces i.e. gravity and wind. Avia-

tion industry relies heavily on the de-icing methods, which includes the utilization of 

de-icing chemicals and pneumatic boots. All of these methods are not environmentally 

friendly options, because the energy is consumed to heat protected surface or contain 

harmful chemicals. Therefore, passive icephobic coatings would offer improvement, 

because no external energy is needed and coatings can be tailored to contain environ-

mentally friendly compounds.  

 

Different coating strategies have been utilized. Fluorine and silicone containing polymer 

coatings have been demonstrated to offer good icephobic properties. However superhy-

drophobic coatings have been widely tested due to their unique water repellency proper-

ties and good icephobic coatings have been found out. Even so the wear resistance and 

frost formation will cause these surfaces to lose their icephobic performance. Icephobic 

behavior of different type of surfaces was evaluated in this thesis. Ice was accreted on 

the samples in the icing wind tunnel, in nine different icing conditions. Ice adhesion 

strength of the coatings was measured with centrifugal ice adhesion test. Aim of this 

thesis was to study effect of different icing conditions on ice adhesion strength of varie-

ty of the coatings.  

 

Based on the results obtained in this thesis, icing conditions and ice type have an effect 

on the ice adhesion strength. Rime ice has the highest ice adhesion values and it is the 

hardest to remove from the surface due to cohesive failure of ice. Mixed ice has the 

lowest ice adhesion strength compared to other ice types. On the contrary glaze ice has 

higher ice adhesion strength compared to mixed ice, because in the glaze ice formation 

process droplets have higher inertia and will wet the surface texture. This increases ice-

surface contact area, which further increases ice adhesion strength. Ice adhesion 

strength of different ice types has not been widely studied in the literature, and thorough 

investigations are required.  

 

Ice adhesion strengths were measured for three different ice types (rime, mixed and 

glaze) in three different temperatures (-5°C, -10°C and -15°C). The overall order of the 

samples remained same in every temperature and the order is following starting from 
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the highest value; Al, PU-paint, PP, SH1, PTFE and SH2. Ice type has an effect on ice 

adhesion strengths and order of the samples for rime is changed into; Al, PP, PU-paint, 

SH1, PTFE and SH2. For glaze ice the order is following; Al, PU-paint, PP, SH1,PTFE 

and SH2. It was also noticed that CAH correlates quite well with the ice adhesion 

strengths, because samples with high CAH showed also high ice adhesion values and 

contrary low CAH samples exhibited low ice adhesion strengths. No correlation be-

tween the temperature and ice adhesion strengths was obtained. 

 

Surfaces with good droplet movement on the surface have also lower ice adhesion 

strength. On the contrary poor droplet movement inflicted high ice adhesion values. 

Highly water repelling superhydrophobic coating SH2 showed the best icephobic be-

havior in every icing condition. Other surfaces exhibited variations in ice adhesion 

strengths between the different ice types, and especially glaze ice was the hardest to 

detach from the surface. Surfaces having higher surface energies (Al, PU-paint) also 

showed higher ice adhesion values. 

 

Icing is complex phenomenon, which is influence by many factors such as droplet size, 

temperature and wind speed. There is no clear cognizance about influencing factors on 

the ice adhesion strength. Based on the results from this thesis it can be concluded that 

several properties have influence on the ice adhesion strength. At least water wettability, 

surface roughness, surface chemistry, icing conditions and ice type have an impact on 

the icing and ice adhesion strength.  
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