
MIKKO ERONEN
IMPLEMENTATION OF DATA SYNCHRONIZATION OVER A
CHALLENGED NETWORK
Master of science thesis

Examiner: Professor Jarmo Harju

Examiner and topic approved by
the Council of the Faculty of Com-
puting and Electronic Engineering
on 24 August 2015

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
ERONEN, MIKKO: Implementation of data synchronization over a challenged
network.
Master of Science Thesis, 48 pages, 7 Appendix pages
August 2015
Major: Communication Networks and Protocols
Examiner: Professor Jarmo Harju
Keywords: Internet of things, Challenged network, Mining equipment.

This thesis is related to the trend of the industrial internet of things. There exists a fair
number of product and service examples where a manufacturer has a need for usage
data harvesting. The gathered usage data can be used, e.g., in product development. In
this thesis the product is mining equipment and its maintenance.

Sending the data straight from the mining equipment to the manufacturer is problem-
atic, since mines often lack Internet connection. In some cases mines have local area
networks, but in other cases those are not available. The only method of gathering the
data can be transportating via USB flash drives or similar. The way the data is moved
with the flash drive from the mining equipment to a location with Internet connection is
called aided mine network. This location can be, e.g., an office building near the mining
area. The core problem of the thesis is the gathering, moving, and synchronization of
the usage data using the aided mine network.

In this thesis, a plan to implement the gathering of the data is developed. The solution
is called DATAMiNe, i.e., Data Aggregation Through Aided Mine Network. The net-
work consists of three parts. The parts are a Manager, an Edge Relay, and a Data Ag-
gregator.

DATAMiNe's architecture is designed so that it supports an easy replacement of the
aided mine network. Replacement can be a local area network, or an integrated Internet
connection in the mining equipment. A communication protocol between the Manager
and the Edge Relay is designed so that it supports the special needs of the aided mine
network.

The development of DATAMiNe starts with an initial plan, which bases on the min-
ing equipment manufacturer's vision, and use cases about unified data gathering into a
single Data Aggregator. DATAMiNe is developed by ordinary software design methods,
by programming a proof of concept test software, and finally by verifying a protocol
with the Spin tools. With Spin, it is possible to formally check the interaction between
connected state automata. All development steps play a part towards the next imple-
mentation phase. That is, the production implementation. The verification model forces
attention to the details that otherwise would be ignored in the design phase. The test
program implementation helps to choose the cost effective ways in the design.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan diplomi-insinöörin tutkinto-ohjelma
ERONEN, MIKKO: Toteutus datasynkronisaatiosta haasteellisen verkon ylitse.
Diplomityö, 48 sivua, 7 liitesivua
Elokuu 2015
Pääaine: Tietoliikenneverkot ja protokollat
Tarkastaja: professori Jarmo Harju
Avainsanat: Teollinen Internet, rajoitteinen verkko, kaivoskoneet.

Tämä diplomityö on linjassa teollisen internetin trendien kanssa. On olemassa lukuisia
esimerkkejä tuotteista ja palveluista, joita halutaan kehittää niiden käytöstä kerätyn
datan perusteella. Diplomityössä tämä tuote on kaivoskone ja sen huolto.

Tiedon lähettäminen suoraan kaivoskoneesta valmistajalle on ongelmallista, sillä
kaivoksissa ei usein ole internetyhteyttä. Joissain tapauksissa kaivoksista saattaa löytyä
langaton lähiverkko, mutta toisinaan sellaisen pystyttäminen ei ole kannattavaa. Ainut
järkevä tapa hakea käyttödataa kaivoskoneista saattaa olla tiedon siirto muistitikulla.
Diplomityössä kutsutaan avustetuksi kaivosverkoksi (englanniksi aided mine network)
tapaa, jolla siirretään dataa muistitikulla kaivoskoneelta Internet-tiedonsiirron
mahdollistavaan paikkaan. Tällainen paikka voi olla esimerkiksi kaivosalueen
läheisyydessä oleva toimisto, johon tulee internetyhteys. Diplomityön ydinongelma on
datan kerääminen, siirto ja synkronointi kaivoskoneista valmistajan tietokantaan
käyttäen avustettua kaivosverkkoa.

Diplomityössä kehitetään suunnitelma datankeruun toteuttamiseksi. Ratkaisua
kutsutaan DATAMiNeksi eli datan koostamiseksi avustetun kaivosverkon kautta
(englanniksi Data Aggregation Through Aided Mine Network). DATAMiNe koostuu
kolmesta osasta. Osat ovat manageri (englanniksi Manager), reunaviestijä (englanniksi
Edge Relay) ja keruukanta (englanniksi Data Aggregator).

DATAMiNen arkkitehtuuri on suunniteltu siten, että se tukee avustetun kaivosverkon
helppoa korvaamista langattomalla lähiverkolla tai suoralla internetyhteydellä
kaivoskoneeseen. Tiedonsiirtoprotokolla managerin ja reunaviestijän välillä on luotu
sellaiseksi, että se palvelee avustetun kaivosverkon tarpeita.

DATAMiNen kehitystä edistetään osin ohjelmistosuunnittelun, osin testiohjelman
toteutuksen perusteella. Testiohjelman lisäksi DATAMiNen protokolla verifioidaan
käyttämällä Spin–sovellusta. Sovelluksen avulla voidaan tarkastaa tilakoneiden
keskinäistä vuorovaikutusta toisiinsa formaalisti.

DATAMiNen kehitys alkaa suunnitelmasta, jonka lähtökohtana ovat kaivoskoneiden
valmistajan toiveet ja käyttötapaus datan keräämisestä yhteen tietokantaan. Suunnitelmaa
hiotaan osin tekemällä testiohjelma, osin verifioimalla osasien välistä tiedonsiirtoa.
Molemmat tavat jalostavat alkuperäistä suunnitelmaa. Verifiointimallin kehittäminen
pakottaa vastaamaan kysymyksiin, jotka helposti tulee muuten suunnitelmavaiheessa
ylenkatsottua, ja testiohjelman implementaatiotyö auttaa valitsemaan kustannustehokkaat
menetelmät. Diplomityön lopussa todetaan, että DATAMiNe on valmis oikeaa
implementaatiota varten.

IV

ACKNOWLEDGEMENTS

This M.Sc. thesis would not have been possible, if not for the brilliant supervisors, Prof.
Jarmo Harju, and Dr. Juhana Helovuo. Their guidance and perseverance was, and is
well appreciated. Without such assets, this thesis would not be anywhere near as good as
it is now. I humbly want to thank my supervisors for their laborious efforts.

Thanks also go to my employer, Atostek Ltd. which played big role in establishing
the topic of the thesis. Atostek also provided me time for writing the thesis, not to men-
tion the positive push by all the colleagues.

I would like to thank the department of pervasive computing and the whole staff of
TUT. The whole campus and its people forms unique compound of sense of community
and learning. This thesis ends my journey in the academic field, at least for now. I'm
very happy, that the time I spent studying at university degree, was specifically at TUT.

Special thanks go to Mr. Väinö Halla-aho and M.Sc. Jussi Suomi who contributed to
my career choice, during, and after upper secondary school. I thank these people for in-
fluencing me at the pivot points of my life. Without them, I most probably would not be
here, where I am now.

Finally, I would like to thank my family and my girlfriend. My parents, Mr. and Mrs
Risto and Anneli Eronen for my personal traits of intent and ambition. B.Sc. Elina
Lukkarinen for her limitless support for me. Your indirect influence has been at least as
prominent to my graduation as my own direct actions.

Tampere, August 24th, 2015

Mikko Eronen

V

CONTENTS

1 Introduction..1
1.1 Motivation for the development...2
1.2 Target environment...2
1.3 DATAMiNe..3
1.4 The structure of this thesis..3

2 Background..5
2.1 Data synchronization..5

2.1.1 Middleware and rule base...6
2.1.2 Secured message digest and synchronization through SQL

transactions...7
2.1.3 OMA DS and Huffman encoded data transmissions........................7
2.1.4 Correctness versus availability, and optimistic versus pessimistic

strategies...7
2.1.5 Tombstones and reconciliation...8

2.2 Challenged network and other special conditions..9
2.3 Protocol engineering...9
2.4 Validation and verification...11
2.5 Selecting a cloud provider for Data Aggregator...12
2.6 Data security...13
2.7 Industrial Internet and the prospective evolution of IoT............................13

3 Design overview...15
3.1 Data..16
3.2 Software components...18
3.3 Protocol functionality and logic...20

4 Concept testing and Verification..25
4.1 Used techniques..25
4.2 Used technologies...26
4.3 The Spin model checker...26
4.4 Proof of concept implementation...27
4.5 Verification...29

4.5.1 Overview of the meta model..29
4.5.2 Manager state machine...33
4.5.3 Edge Relay state machine...35
4.5.4 Flash drive state machine...37

5 Results and analysis...40
5.1 General design of DATAMiNe...40
5.2 Proof of concept...40
5.3 Verification results based on PROMELA model..41

VI

5.4 Applicability...42
5.5 Further development objectives...42

6 Conclusions..44
References...46
APPENDIX A : PROMELA model...49
APPENDIX B : Spin Command prompt output..54

VII

LIST OF TERMS, SYMBOLS AND
ABBREVIATIONS

Aggregator A computer software that aggregates a specific type of
information from multiple online sources.

DATAMiNe Data Aggregation Through Aided Mine Network. The system
developed in this thesis.

F# Programming language developed by Microsoft. F# supports both
functional and imperative programming techniques.

GUI Graphical User Interface. Way of using computers via graphical
interface elements, such as icons.

Huffman encoding Type of optimal prefix code. An algorithm for finding such an
optimal prefix code was developed by David A. Huffman.

IDE Integrated development environment. An intergrated collection of
programming tools that enables design and implementation of a
program.

IoT Internet of Things. Network of physical things that communicate
with various network actors on their own.

iSpin Graphical user interface for Spin. ISpin is written with Tcl/Tk.

PaaS Platform as a Service. A category of cloud computing services
that deliver applications over the Internet.

PROMELA Protocol Meta Language. Verification modelling language
introduced by Gerard J. Holzmann.

SLA Service Level Agreement. A contract that defines a service level
from a service provider to a customer.

Sneakernet Transfer of electronic information by moving removable media
physically.

Spin Verification tool for analysing the logical consistency of
concurrent systems in formal manner. Uses PROMELA.

Tcl Tool Command Language. Interpreted programming language by
John Oustenhout.

Tcl/Tk Combination of Tcl and Tk as a GUI tool kit.

Tk TCL add on, designed for creating graphical user interfaces.
Library includes widgets, e.g., windows, buttons and lists.

WPF Interface rendering system developed by Microsoft. It uses XML
to define and link interface elements in GUI.

XML Extensible Markup Language. Document encoding language.

.NET Software framework developed by Microsoft. .NET libraries
include, e.g., database connectivity and cryptography features.

1 INTRODUCTION 1

1 INTRODUCTION

This thesis covers an implementation plan for gathering, aggregating, and synchronizing
of work machine data that can be later used in business development. General outline of
the problem is that a mining equipment manufacturer wants to gather usage data from
the machines they have sold to their customers. This thesis aims to pave the way to-
wards a more efficient data gathering. This document is part of a work that also includes
protocol verification and a proof of concept implementation. This chapter presents the
preliminary use case, the motivation for the development of this kind of system, and the
structure of the thesis.

Figure 1 illustrates how the data gathering scheme works. Usage data is synchron-
ized between mining equipment and manufacturer's data aggregator. Regardless of the
customer, usage data is gathered to the same place. Additionally, the synchronization
process guarantees that manufacturer's information about the equipment is up to date as
long as the communication is uninhibited. The manufacturer can use the gathered data
in its analysis, e.g., in research and development, or problem diagnosis.

Figure 1: mining equipment usage data is gathered into manufacturer's data sink.

1 INTRODUCTION 2

1.1 Motivation for the development

Industries will continue to adopt techniques related to the internet of things. In his art-
icle, Chris Preimesberger predicts industrial IoT to take the spotlight in the year 2015.
[3] Buzzwords like machine learning and advanced analytics are engaging because tech-
nical solutions for thorough data gathering have ripened enough and because business
intelligence has been seen as an advantage in competition. "Enterprises that know their
customers and potential customers will know success." [24]

However, value-added services cannot work without data synchronization. [2] A data
synchronization scheme that gathers mining equipment use data from the field is a pre-
liminary step in order to make more advanced analysis on customer behaviour and ma-
chine usage. A moderate use for the data is to, e.g., predict customer's maintenance
needs, or to assist in remote troubleshooting. In this sense, the data aggregator in Figure
1 can be seen also as manufacturer's IoT data sink. One of the core tasks in this thesis is
the development of an aggregation and synchronization scheme that can be used as a
basis for future implementations. The thesis tries to prepare the data gathering so far
that production implementation can be started.

1.2 Target environment

The preliminary use case is that mining equipment sometimes works outside of the In-
ternet perimeter, as illustrated in Figure 2. In such a case, data from the equipment is
carried out from the mines inside flash drives by human operators. However, some
mines are equipped with WLAN connections. Additionally, some equipment operate
above ground and they are equipped with internet connections via, e.g., a 3G modem. In
this thesis, the scope is focused on the scenario where the mining area is outside of the
Internet perimeter, since it is the more challenging one.

If the equipment operates without internet connections, the operators must carry the
data in flash drives somewhere, where an internet connection exists. Usually this place
is an office building near the mine. There an operator can upload the data from the flash
drive into the manufacturer's cloud service. Substituting data networks with human op-
erators brings in many problems.

Mining sites are placed around the globe. Usually, these sites are in remote areas
with limited infrastructure. The global aspect is one of the reasons why a cloud platform
is considered as the final destination for the synchronizable data. Buying PaaS also re-
leases the manufacturer from the burden of maintaining its own data centre.

1 INTRODUCTION 3

1.3 DATAMiNe

The main content of this thesis is the design and implementation of a data aggregation
system which is called Data Aggregation Through Aided Mine Network, abbreviated as
DATAMiNe. DATAMiNe is currently on the proof of concept level. It carries out data
synchronization from mining equipment database to another database, where the latter
represents a data aggregation end point. In the solution's name, the mine network is said
to be aided. That refers to the possible human operator, which can replace the lack of
mine network infrastructure.

DATAMiNe software is implemented in the F# programming language. The core
functionality is an application layer data synchronization protocol. In its current state,
the synchronization works only upstream, i.e., from mining equipment to data aggreg-
ator.

1.4 The structure of this thesis

Chapters two through four discuss the development and implementation of the proof of
concept software. Chapter two focuses on what are the main problems and related tech-
nologies in the development. Chapters three and four tell how a DATAMiNe software is
designed, implemented, and how the designed protocol is verified.

Figure 2: Underground mines can be out of conventional network range.

1 INTRODUCTION 4

Chapters five through six discuss evaluation, results and further development. In
Chapter five the proof of concept implementation is assessed, protocol verification res-
ults are discussed, and future plans are introduced. Chapter six summarizes the results,
and some key development ideas.

2 BACKGROUND 5

2 BACKGROUND

It has been predicted that curiosity towards industrial IoT increases [24]. Enterprises
want to know their customers since it is seen as a part of successful business. Topics like
advanced analytics and machine learning can lead to better services, but the prerequisite
is that the data is gathered from existing customers. Mining equipment vendors are not
idle bystanders in reforming their business models.

The general problem in this thesis is how to gather data from mining equipment so
that the vendor can use the data for product and service development. Initial goals,
placed by the orderer of this work, were comparison of data synchronization algorithms
and comparison of cloud service providers. More precisely, the thesis will concentrate
on techniques that relate to data synchronization, transmission protocols, and also a con-
cise assessment on how to choose between said cloud service providers.

A unique aspect of this problem set comes from the use case where mining equip-
ment cannot be connected to the Internet. There already exist many platforms that can
be used for the synchronization between the cloud and a computer that is directly con-
nected to the internet. In DATAMiNe, synchronization must be done even if the time
between messages is very long, or the network is unreliable.

2.1 Data synchronization

Data synchronization is not a new problem but it is still significant. The reason for syn-
chronization is often the same as with replication: fault tolerance in the case of storage
location unavailability [27]. Synchronization solutions have become a necessity with
consumer mobile devices [2]. Heavy industry will need the same kind of solutions in the
near future. Many enterprises, universities, and government departments have built their
information systems to be standalone. Problems emerge when operations are being
streamlined and dynamic updating of the data among the dispersed databases is not pos-
sible [17]. Another use case is the synchronization between web services and mobile
devices. Those devices need to run local databases in order to achieve stable data pro-
cessing in case the connection to the server-side database is lost. [3] The fundamental
problem is the same when we want to gather use data from client instances into the
manufacturer's aggregation database. The synchronization problem should not be mixed
up with database consolidation or system integration problems. Data synchronization
does not demand that the data storages are the same in composition.

2 BACKGROUND 6

Data synchronization is a process where the data in one storage is convoyed to an-
other as an identical copy. It can be seen as a treatment process to maintain data consist-
ency [17]. Data synchronization can be divided into two categories: file synchronization
and database replication. [5] The synchronization scheme can be tweaked towards cer-
tain goals. For example, data that is synchronized does not have to be the whole content
of the storage. Synchronized storages can be arranged into some hierarchical structure,
or into a more decentralized structure. Synchronization groups can be static or very
fluid.

Generally, synchronization needs to be seamlessly integrated, it has to have error re-
covery and collision detection. Synchronization should also be customizable when
needed. These aspects are listed by Coleman relating to the needs of the user. [5] On the
other hand, Albright argues that “Synchronization succeeds when it disappears”, mean-
ing that best case for the user is when he or she need not pay any attention to the syn-
chronization process. [2]

2.1.1 Middleware and rule base

When looking for general approach to data synchronization, the following example ex-
ists: In their conference paper [17] “Research for a Data Synchronization Model Based
on Middleware and Rule Base.”, JianJun and XiangYun present their model of generic
synchronization model for databases. Its three main components are a working file, a
rule base and a middleware.

The working file consists of information about database connection parameters, syn-
chronization timing and frequency parameters, and data security parameters. The rule
base is an aggregation of synchronization rules, including data transformation, filtering,
and mapping rules. The middleware uses a synthesis of working file and rule base in-
formation. It has a multi-tier architecture with the following tiers

1. Data access module.
2. Data capture module.
3. Data conversion module.
4. Data transmission module.
5. Security verification module.

The middleware captures the needed data from several sources and forms an XML file,
which can be transmitted to the target database. The source can be a single database or a
set of databases.

2 BACKGROUND 7

2.1.2 Secured message digest and synchronization through SQL
transactions

One example of database synchronization is the following. In the conference paper “An
efficient database synchronization algorithm for mobile devices based on secured mes-
sage digest.” [3] Balakumar and Sakthidevi suggest using only standard SQL queries in
the synchronization transactions. This is to create a more general and compatible data
synchronization solution compared to most database vendor tools which usually work
only with a certain product.

The authors' implementation of this algorithm is called Improved Synchronization
Algorithms based on Message Digest (ISAMD). ISAMD does not rely on timestamps
when deciding which version of data is correct. Instead, it needs an extra table on each
database. That extra table holds columns for primary keys from data tables, relating val-
ues, an inconsistency flag, and a mobile device identification code.

2.1.3 OMA DS and Huffman encoded data transmissions

Open Mobile Alliance (OMA) is an acknowledged forum for mobile service enablers.
[21] OMA DS is a platform-independent data synchronization standard formerly known
as Synchronization Markup Language (SyncML)

Kee-Hyun and Ju-Geon try to optimize transmission packet content in their paper
“Efficient Transmission Method for Mobile Data Synchronization Based on Data Char-
acteristics” [18]. The Basis is that Open Mobile Alliance Data Synchronization (OMA
DS) encodes its elements by XML or WBXML. WBXML is WAP Binary XML, which
was originally developed together with Wireless Application Protocol (WAP) to provide
a more compact presentation of XML. The paper's authors use modified Huffman en-
coding instead, and achieve good results.

2.1.4 Correctness versus availability, and optimistic versus pessimistic
strategies

Details of a problem often dictates the software's behaviour. To decide appropriate
guidelines in software behaviour, it is not trivial to scale requirements and implications
for correctness. In their very fundamental paper “Sacrificing serializability to attain high
availability of data in an unreliable network” [9], Fischer and Michael state that con-
straints on availability are a way to protect consistency. However, availability is a prin-
cipal reason for deciding to replicate data in the first place. Serializability means that the
same transaction sequence results always the same outcome. “The results of transactions
should be the same as if they had been performed on some serial order.” Serializability
ensures the consistency of the database. Availability dictates that every node can work
on their local copy of a data even when the network fails. Serializability on the other
hand allows only one such node to work after network failure. Work over data must be
balanced between serializability and availability.

2 BACKGROUND 8

In another paper titled “Consistency in Partitioned Networks” [8], Davidson, Garcia-
Molina, and Skeen expand on what is the relation between consistency and availability.
In their terminology, words “correct” and “consistent” are interchangeable.

The topic is reflected on a situation where synchronizable data is scattered over mul-
tiple nodes in a network. Nodes can each make changes to the data. Network is then par-
titioned. A partitioned network here means that some nodes can be temporarily discon-
nected. In such a situation data consistency becomes problematic to maintain.

Authors introduce concepts of optimistic and pessimistic strategies in synchroniza-
tion. Synchronization strategy is pessimistic when system sets data unavailable due to a
possible inconsistency. Absolute correctness demands that only one instance works on
the data in case of partitioning. Constraints are an easy way to achieve consistency, but
often unavailability is unacceptable. Compromising constraints and keeping them ef-
fective at the same time requires extended knowledge of the handled information and its
nature. At the other end of the spectrum is an optimistic strategy. Optimistic strategy
does not limit availability and therefore conflicts on the data can occur.

Authors also give some guidelines on how to choose between strategies mentioned
above. For example, if network failures exist over long periods of time, a pessimistic
strategy is a better choice than an optimistic one. If the transactions are short and the
work load variance is small, an optimistic strategy works better.

2.1.5 Tombstones and reconciliation

Synchronization solutions that enable data object modification from multiple nodes,
need to consider situation where synchronization is slow and alterations are made virtu-
ally simultaneously. In his paper titled “A Java Framework for Mobile Data Synchroniz-
ation” [4] Cohen writes about a peer-to-peer synchronization framework for mobile
devices written in Java. The implementation makes synchronization decisions or recon-
ciliation based on data object history. Each synchronizable data object has history in-
formation, which is carried within. When a data object is altered somewhere in the net-
work, new versions of the data object are created. A conflict emerges if two changes
into same data object have been made and if they have versions neither of which is later
than the other.

Tombstones are data objects that are deleted in some but not in all synchronization
nodes. Tombstones are necessary because without them a synchronization process may
try to update an object that does not exist any longer. However, accumulating tomb-
stones can become a problem. Algorithms that rely on informing all synchronization
nodes in order to remove the tombstones are not well suited for weakly connected mo-
bile devices.

2 BACKGROUND 9

2.2 Challenged network and other special conditions

One could see cloud as a simple answer to the synchronization problem. However, com-
munication between mining equipment and the edge of the Internet falls outside of any
cloud perimeter. Even when using a cloud as data sink or data aggregator, the chal-
lenged nature of a network between the cloud and mining equipment needs some separ-
ate solution from a general cloud solution.

 A network described as challenged can be reduced to a sneakernet if an underground
WLAN is not installed. There are successful examples of how to install wireless local
area networks into mines [12] [28], but not all mining companies invest into WLAN in-
frastructures. For this reason, the use case on which the implementation introduced in
this thesis is built for, expects the mining equipment to be unreachable by any internet
services. Supplementing a method of delivering data between mining equipment and the
Internet has been transporting flash drives with the operators, hence the sneakernet. This
method must be sufficient for data synchronization also.

Human error brings new layers to the problem, since latency can extend even into
weeks, flash drives can be lost, or they can change arriving order during the transporta-
tion. By data transfer terms, these circumstances can result in a large packet loss rate
and long delays.

2.3 Protocol engineering

Protocol is originally a diplomatic term but in communication technology it portrays a
specification for network communication. A protocol can describe low-level details
linked with some type of physical transmission, or it can describe high-level informa-
tion such as the possible set of messages between network nodes [6]. Therefore, com-
munication protocol engineering can be about creating a set of rules that defines viable
messages and error handling, in order to enable robust information sharing between two
or more separate entities in a network.

Entities in a network have shared connection over a medium that can be anything
physical and modulatable. On top of connectible medium, layers of protocols can be es-
tablished. Two popular protocol layer models are OSI model and TCP/IP stack model.
Figure 3 shows how the two models map to each other. TCP/IP model is less detailed
than the OSI model but it is more usable when working with the hugely popular TCP/IP
suite, which is the foundation of the modern Internet.

2 BACKGROUND 10

As with software engineering, protocol engineering also benefits from building
higher level abstractions on top of each other. In protocol layer models the communica-
tion abstraction level rises when moving from Physical or Network Interface layer up
towards the Application layer. A higher abstraction system means that it needs services
from a lower layer systems to operate, but that it can implement a more advanced ser-
vice.

Considering general approach to the protocol engineering, John Spragins lists seven
aspects or problems to consider. [26]

• Resolving incompatibilities of equipment
• Coordination of sender and receiver
• Maximizing reliability and freedom from errors
• Optimizing performance
• Minimizing cost
• Network management

These problems can be encountered at different stages of design. Classifying the prob-
lems is good way to form mental image of mutual traits in protocol design.

Figure 3: Popular protocol layer models, OSI and TCP/IP. Level of abstraction rises
towards higher tier layers.

2 BACKGROUND 11

Protocols that operate in multi-agent environments and often only above Transport
layer, are called interaction protocols. The purpose of an interaction protocol is to en-
able agents to complete their tasks through exchange of information, co-operation and
coordination. Interaction protocol engineering is based on communication engineering
but it is more specialised on its field of problems. [16] Marc-Philippe Huget and Jean-
Luc Koning suggest a process for interaction protocol design, which is similar to the
waterfall model [25] in software engineering. The model consists of five steps that must
be walked through: Analysis, Formal Description, Validation, Protocol Synthesis and
Conformance Testing. Figure 4 illustrates the suggested model.

This model is more rigid than the continuous integration models often used in mod-
ern software development, but that is well justified. Traditionally, continuous integration
and rapid deployment have not been included in protocol engineering toolbox. Protocols
are often seen as a critical links between systems, and therefore deployment of an insuf-
ficiently validated protocol can halt production and cost great amounts of money.

2.4 Validation and verification

Because protocols can act in critical roles in systems, it is natural that the protocols must
be tested before putting them into the production. Central tools for this are verification
and validation. Both are tools to confirm that a software fulfils the desired functionalit-
ies. In literature, it is not always clear what an author means precisely when using these
two terms. For the sake of accuracy, the terms are defined here.

Figure 4: Marc-Philippe Huget's and Jean-Luc Koning's suggestion for interaction
protocol design stages.

2 BACKGROUND 12

Haikala defines the terms as follows [11]. In verification, the software is tested
against specification, i.e. “are we building the product right”. Validation on the contrary,
tests the software against its purpose, i.e. “are we building the right product”. Verifica-
tion can be defined easier, its scope does not have to cover the whole system, and it can
often be executed in separated parts. The value that the verification creates, depends
highly on the specification and its quality. For example, poorly defined terms can make
the verification impossible. Validation is executed on more complete software in more
authentic environment. This makes validation more thorough, but also more laborious
operation. In Haikala's book, verification is done after every phase in the software de-
velopment process. Validation is reserved for end phases, although, validations can be
executed earlier with, e.g., prototypes.

2.5 Selecting a cloud provider for Data Aggregator

DATAMiNe's Data Aggregator needs a platform. Cloud services are an attractive solu-
tion since they offer automatic scalability and outsourced hardware maintenance. Costs
for provisioning new hardware can be lower and unplanned disruptions to the live ser-
vices can become rarer due to seamless relocation [22]. The service prices are kept low
by offering large volumes [19], and customer interfaces are often web pages, providing
automated set of services. Besides the obvious advantages of cloud computing, one
should consider a few aspects of the market.

Today, there are many players on the cloud provider market. In the future, the market
may become an oligopoly of a few big players, but the consolidation of the market dom-
inance will take time [10]. Currently, no single company has the advantage over the
market [13]. In this situation, deciding on which provider might be the best, can be very
complicated. Wayne Pauley tries to solve this problem in his article “Cloud Provider
Transparency: An Empirical Evaluation” [23]. Pauley's method of assessment is to use
data from published web sources. He scores the cloud providers by use of standards,
best practices, policies, procedures, and contractual service level agreements (SLA).
Also, his preassessment includes a question whether or not each cloud provider has over
five years of experience from the market. In the assessment, Savvis, Terremark and
Microsoft were scored highest with their cloud products.

If a company plans to use a cloud service for an extended period of time, choosing
the provider should be done so that the migration effort from one provider to another
will be kept minimal. Otherwise, cloud provider should be trustworthy to continue their
business. Assessing provider's services is problematic in the same way than assessing
cloud provider's business in general, and it is particularly hard in a relatively new mar-
ket [10]. Other strategy can be to avoid vendor locking and look for providers with open
APIs, or to make sure that migrating the data and porting applications can be done when
needed [22].

2 BACKGROUND 13

Pauley's cloud provider assessment takes service level agreements into consideration.
However, it does not consider whether or not the customer can enforce those agree-
ments. Bernt Ostergaard points out in his article “How to select the best hybrid cloud
provider for your firm” [22] that "for the customer it is safer to store data with a well
funded provider with the resources to make your SLA guarantees enforceable." In other
words, when running into problems in the quality of cloud service, financially sound
provider is more likely to be able to reimburse the resulting losses.

2.6 Data security

Data security should be considered when talking about systems that handle confidential
or otherwise valuable data. With the DATAMiNe use case, there are multiple critical
points that need special attention.

One such point is the human factor that is necessary when moving flash drives in and
out of a mine. In their article “Surviving Attacks in Challenged Networks” [7] Cucurull
et al. propose a security framework for disaster situations where cryptographic methods
are energy-wise too expensive and trust establishments are too hard to achieve. Even
though the environment in DATAMiNe's case is not a disaster area, trust establishments
cannot be used there either. Especially the human element in taking the flash drives in
and out from the mine can be seen problematic. The assisted network can be seen com-
parable to a hastily formed network (HFN). The suggested framework in the article
bases on observations which can be used to detect, diagnose, and finally mitigate un-
wanted behaviour inside the network.

From equipment user's point of view, there is a possible information security hazard
in sending out distinctive mining machine use data. For example, with services like
Dropbox, one should be advised not to share their business critical information [20].
Things like these should be paid attention to in DATAMiNe.

2.7 Industrial Internet and the prospective evolution of IoT

As industrial Internet of Things applications are taken increasingly into use, the private
players on the field try to guarantee the longevity of their business. Industrial Internet
Consortium or IIC for short, is a joint forum for promoting best practices, as well as ac-
celerating growth of IoT in industrial use cases. [1] Their vision is to combine the In-
formation Technology or IT, with Operational Technology or OT. OT being, e.g., tradi-
tional industrial production facilities.

2 BACKGROUND 14

IIC has released Industrial Internet Reference Architecture document which tries to
“initiate a process to create broad industry consensus to drive product interoperability
and simplify development of Industrial Internet systems that are better build and integ-
rated with shorter time to market, and at the end better fulfil their intended uses.” The
main points of the document are stakeholder viewpoints and their relation to security is-
sues. Listed viewpoints are the following:

• Business Viewpoint that considers business vision, values and objectives.
• Usage Viewpoint that considers activities of human or logical users.
• Functional Viewpoint that considers components, their interrelation and struc-

ture.
• Implementation Viewpoint that considers technologies needed to implement

components.
Throughout the document, topics are mirrored with the viewpoints. Security is one of

the main concerns and that is justified by the fact that OT security often relies on phys-
ical security, isolation of the system and the obscurity of proprietary communication
protocols. Industrial Internet systems, on the other hand, are often connected, distrib-
uted, and deeply integrated with enterprise systems. The document argues that security
cannot be treated as a separate concern.

The Industrial Internet Consortium tries to avoid fragmentation and a loss of interop-
erability in the IoT market in the future. It is not yet certain whether or not the market
acknowledges the IIC's vision. [1]

3 DESIGN OVERVIEW 15

3 DESIGN OVERVIEW

With DATAMiNe, the preparatory work before synthesis of the results is twofold. After
the initial analysis of the concept, test program is created to act as the proof of concept.
Additionally, the protocol used in the aided network is verified formally. Figure 5 illus-
trates the idea.

The synthesis in Figure 5 does not mean the same thing as in the Huget's and Kon-
ing's Protocol Synthesis stage [25]. In their model, the Protocol Synthesis means imple-
mentation of a protocol. In Figure 5, the synthesis means the composition of the lessons
learned during the creation of the proof of concept and the interaction protocol verifica-
tion.

The general guidelines for the DATAMiNe concept come straight from customer re-
quirements and the use case. The proof of concept software's aim is to be able to operate
in the use case scenario. The proof of concept nature affects how different aspects are
emphasized in this stage.

One emphasized aspect is to minimize the data that might be left in portable drives.
Portable drives are necessary when substituting WLAN or Ethernet but due to human
error data might be left lingering in those drives. This can happen e.g. if a drive has
been lost, changed, or abandoned without proper reformatting and overwriting. Data left
lingering into the transport medium is rarely considered a problem in data communica-
tion but when the medium is a mass storage device, obvious problems arise, e.g., the
data can fall into wrong hands.

Figure 5: The approach to develop DATAMiNe includes proof of concept and
interaction protocol verification.

3 DESIGN OVERVIEW 16

Another emphasized point is data security. Unauthorized access to flash drives is
easy. Even if a flash drive is not misplaced, a human transporting the drive might not be
authorized to read the data, and therefore it must not be in plain text.

Relating to networking views in the mining industry [12] [28], the messaging
paradigm must be such that it abides to developing data communication networks. In
practice, when new mining equipment are expected to work with, e.g., WLAN or 4G,
DATAMiNe should drop the flash drive aided data transportation. However, the target is
not to do this dynamically. Rather, DATAMiNe should be configurable in this aspect.
Another configurable aspect should be whether the synchronization should be triggered
by polling, or triggered programmatically from other parts of the system beside
DATAMiNe.

DATAMiNe needs two modules that can operate as separate agents. The first one is
called Manager and it works within mining equipment software to generate synchroniz-
ation packets. The second is called Edge Relay and it consumes Manager-generated
packets and uploads them into Data Aggregator. Data Aggregator is the service that
hosts manufacturer's IoT data sink, and it can be considered to be a third module. The
Edge Relay can be placed on the flash drive, where it can run itself with auto run, or it
can be placed beside the mining equipment software and Manager, if an internet con-
nection is available. The Edge Relay can be seen as a mobile middleware, which means,
that it is not tied to any single operation location.

3.1 Data

Target data consists of mining equipment usage data, which is originally written on
databases inside the equipment. DATAMiNe is a system that gathers this data into one
place where it is accessible by the manufacturer. The place where DATAMiNe gathers
the data is generically called Data Aggregator. Within Data Aggregator, there is a data-
base which includes all the mining equipment databases. Each included database has a
state table, which is used to coordinate data that is yet to be synchronized into the Data
Aggregator database. Figure 6 illustrates the composition.

Combined data inside the aggregator database is segregated by individual equipment
identification. Segregation means that the equipment database contents do not mix when
combined. It also means that the aggregator database is slightly different from mining
equipment databases because it needs a structure, which enables the segregation.

3 DESIGN OVERVIEW 17

State of each database includes information about the last batch of synchronization.
State information content is settled to be based on the mining equipment clocks. Basic-
ally, state is designed to be a three-column table within all equipment databases. The
columns are:

1. Equipment identification.
2. Last initiated synchronization timestamp. (Mining equipment database state.)
3. Last successfully ended synchronization timestamp. (Data Aggregator state con-

sidering to this certain equipment database)

This state structure can be used to ensure that only relevant data is sent through the
communication medium at any given time. Using mining equipment's internal clock
brings some risks. For example, if the clock resets for any reason, extra data is bound to
be sent through the communication channels. In earlier stages of DATAMiNe develop-
ment, implementation was tried to be designed without timestamps as suggested by Bal-
akumar and Sakthidevi [3]. It was evaluated however, that advantages were insignificant
compared to the complexity that a design without timestamps required. Data tables
should be marked for synchronization in the endpoint where data is generated, i.e.,
Manager's code. This is the same as filter rules in Jianjun L's and XiangYun Zheng's
model. [17]

Figure 6: Data Aggregator holds database that is supposed to hold all the data of
each equipment database. Each equipment database holds information about
synchronization state.

3 DESIGN OVERVIEW 18

Data that is transmitted over a medium is inevitably morphed somehow. As Kee-
Hyun Park suggested in his article, there are benefits to be gained if the transmitted
packets can be kept compact [18]. However with DATAMiNe, data integrity is more
valuable.

3.2 Software components

Main function of the Manager is to generate synchronization packets. The packets are
consumed by Edge Relay. Edge Relay picks up the packets and uploads them into Data
Aggregator. Protocol wise, DATAMiNe's functionality is limited in OSI model's three
top layers. Figure 7 illustrates the DATAMiNe interaction in OSI model. The OSI model
is used here, because it differentiates between tasks above the Transport layer in a way
that is relevant here.

Up to the Transport layer, DATAMiNe communication is done by a portable flash
drive between Manager and Edge Relay. Between Edge Relay and Data Aggregator, the
same level of communication is done with the TCP/IP suite.

Figure 7: DATAMiNe consists of Manager, Edge Relay and Data Aggregator which
fulfil upper layer roles of the OSI model.

3 DESIGN OVERVIEW 19

Manager uses a file named Dialogue to establish a connection between itself and
Data Aggregator and in the OSI model it fills the Session layer role. Dialogue is trans-
ported with other data in the flash drive. Dialogue is written in XML and it contains a
meta section about active mining equipment. Edge Relay uses Dialogue to make checks.
If certain equipment is not listed in meta section, acknowledgement packets concerning
that equipment instance will not be sent with that flash drive. In Dialogue there is also a
list of update files and a short trace of transactions, where activities concerning that par-
ticular flash drive can be read. The design of Dialogue file is illustrated in Figure 8. Ses-
sion layer between Edge Relay and Data Aggregator covers database connection.

Figure 8: The structure of Dialogue file

3 DESIGN OVERVIEW 20

As seen in Figure 7, the presentation of the database change is update information
when travelling through DATAMiNe communication and manifestation of that update
information is an update script file between Manager and Edge Relay. Edge Relay up-
loads update script file onto Data Aggregator's memory, which handles it as an object.
Originally OSI model's presentation layer was reserved for syntax and semantics map-
pings between formats. The way it is used here is unconventional but useful. Presenta-
tion layer here confirms that the update information can be translated into database
changes.

On the application level, Edge Relay is invisible. Edge Relay just relays the database
changes that are presented as update information from Manager to Data Aggregator.

3.3 Protocol functionality and logic

The protocol between DATAMiNe nodes can be very optimistic when considering
availability versus correctness dilemma. Since data flows only in one direction, syn-
chronization scheme becomes very simple. In many protocols, two channels of commu-
nication can be discovered. The first one is control channel which informs what inform-
ation must be transferred and the second channel is for the actual data transfer [27]. In
DATAMiNe, those two channels exists as well. The control channel's medium is the
Dialogue and the update script files are medium for the data transfer channel.

Figure 9 shows the Edge Relay's logic as a control flow diagram. General guidelines
of this model persist in the proof of concept implementation and the protocol verifica-
tion phase. After initialization, the Edge Relay goes through a polling loop, which aims
for update file upload from flash drive to the cloud Data Aggregator. Polling consists of
two checks. First is internet connection check using ping, second is checking the exist-
ence of uploadable files using the Dialogue. If either of these checks does not produce
beneficial outcome, a wait timer is run.

If the needed prerequisites are fulfilled, the Edge Relay proceeds to upload i.e. im-
port the upload files. After finishing, Dialogue is updated to carry acknowledgement
back to the mining equipment database. After updating the Dialogue, Edge Relay does
garbage collection and removes successfully imported update script files. Next, the loop
is restarted.

3 DESIGN OVERVIEW 21

One restriction of this design is that the flash drive that carries the acknowledgement
must have committed new data to the Data Aggregator. This is because every Dialogue
is always bound to a single flash drive. The Edge Relay cannot relay acknowledgements
without knowing, which equipment the current flash drive is associated to. In other
words, flash drives must be first initiated at the Manager's end point.

Figure 10 Shows the Manager's control flow. The main loop of the Manager starts
with checking the Dialogue for finished transactions. If acknowledgements are found,
the program removes the respective files from a temporary folder where the update
script files are gathered. After this, the Manager checks if new data has been inserted
into the mining equipment's database. If no changes are found, a wait timer is run and
the loop restarts.

When database changes are found, new update scripts are written. New script files
are moved into the temporary folder, and the Dialogue is updated to include the transac-
tion of the new files. Afterwards the loop is restarted.

Figure 9: Edge relay's control flow.

3 DESIGN OVERVIEW 22

Finally, Figure 11 shows how the previously presented Edge Relay and Manager in-
teract, if they both are active simultaneously, in the same device, and host computer is
connected to the Internet. This kind of configuration of DATAMiNe can exist when the
mining equipment is supplied with an Internet connection. The configuration eliminates
the need for flash drives, and therefore the need for aided network as well. The figure
shows that both agent software are polling the same way as they would when separated.
Eliminating the polling would be more efficient, but for its simplicity, minimal config-
urability is devised. One of the few changes that this kind configuration makes, is a re-
location of transaction folder. The folder would normally be located on the flash drive,
but in this case it is on the host computer's hard drive. This configuration is the reason
why files, especially the Dialogue file, must be locked when one agent module is hand-
ling it. Incomplete files cannot be opened for reading or writing by more than one agent
at a time.

Figure 10: Manager's control flow

3 DESIGN OVERVIEW 23

With the aided network the sequence diagram, i.e. Figure 11, would be little differ-
ent. In the diagram, the Edge Relay is started at the same time as the Manager. With the
aided network the activity of the Edge Relay would be restricted only to the moments
when the flash drive visits the host computer with the Internet connection. Also, the ar-
rows pointing from the Manager to the Edge Relay and back would form steeper slopes
in case of the aided network. In other ways, diagram would stay the same.

3 DESIGN OVERVIEW 24

Figure 11: Sequence diagram between Manager, Edge Relay, and Cloud DB

4 CONCEPT TESTING AND VERIFICATION 25

4 CONCEPT TESTING AND
VERIFICATION

This chapter explains how the initial design was put into use in the proof of concept im-
plementation and during the verification phase. What techniques and technologies were
used, and how the design was evolved during the development.

The first two sections include meta information about techniques and technologies
used. Third section talks about a tool called Spin. It is meant to be an introductory in-
formation preceding the verification section. Last two sections introduce the details of
the proof of concept implementation and the verification, respectively.

4.1 Used techniques

As a workflow, the development of DATAMiNe follows quite well Marc-Philippe
Huget's and Jean-Luc Koning's suggestion for interaction protocol design presented in
Section 2.3. Considering verification of DATAMiNe protocol, it would fit into phases
two and three i.e. “Formal Description” and “Validation” respectively. The proof of
concept implementation is disconnected from this workflow since it is parallel to the
verification as Figure 5 in Chapter 3 shows, but it has no formal description and it is not
validation either. Workflow technique in this case would best be described as an ad-hoc
combination of what seems to be essential to build a data synchronization system.

Considering Section 2.4 and difference between verification and validation, it is not
explained why the phase's name is validation and not verification. Marc-Philippe
Huget's and Jean-Luc Koning's paper uses both terms seemingly interchangeably [16].
This thesis uses the term verification when talking about the formal testing, because the
real environment and the formal test environment are arguably very different. However,
arguments exists for using either term.

In addition to the graphs presented in Section 3.3, there is a module graph, Figure 13,
about the proof of concept implementation of DATAMiNe in Section 4.4. Other than
that, there is no technique worth mentioning that is related to the proof of concept.

Protocol verification is done using a formal and exhaustive method. The verification
is machine assisted.

4 CONCEPT TESTING AND VERIFICATION 26

4.2 Used technologies

With the proof of concept implementation, Microsoft Visual Studio 2013 was used as
the integrated development environment (IDE). F# 3.1 was chosen as the programming
language. Target framework was .NET 4.5.2. Windows Presentation Foundation (WPF)
was used in a test user interface. Additionally, a few extensions were used with Visual
Studio. Extensions included Visual F# Power Tools, F# Outlining and Visual F# 3.1.2.
Mercurial was chosen as the version control system.

With the protocol verification, Spin model checker was used. Model was made with
PROMELA and user interface was iSpin.

4.3 The Spin model checker

Spin model checker is a generic modelling and verification system for asynchronous
process systems. Spin can verify interactions between state machines defined with PRO-
MELA. PROMELA (protocol meta language) is a language for building verification
models. It includes primitives for process creation and primitives for interprocess com-
munication [14].

The principal PROMELA developer Gerard J. Holzmann writes that models written
in PROMELA language differ distinctly from models that are written in programming
languages. A verification model represents an abstraction of a design. It leaves out
everything extra. A verification model also often contains features not found in the im-
plementation, such as environmental behaviour or correctness properties. One of the key
elements in Spin and PROMELA are branching blocks, where the course of execution is
decided randomly between multiple possibilities. [14] However, randomizations in these
cases are not purely random. For example, if there are three enabled branches in do-
block, Spin first randomizes if the execution proceeds to the first branch or not. If the
latter is picked, then a second randomization is done between the second and third
branches. In this way the probabilities between the three branches are 50%, 25%, and
25%. [15]

Spin offers features for PROMELA syntax checking, interactive simulation, and veri-
fier generator. Interactive simulation lets the user pick simulation paths by hand. Verifier
generator goes through the whole space of possibilities that can happen in the simula-
tion. In this way the user can be sure that model has been verified completely. If the
Verifier generator comes up with a problem branch in the tree, it will produce a counter-
example that can be run again in the interactive simulator. With these features, Spin can
spot deadlocks, non-progressive loops, and any assertion failures that are expressed with
the PROMELA model. [14]

4 CONCEPT TESTING AND VERIFICATION 27

4.4 Proof of concept implementation

Proof of concept implementation consists of working Manager and Edge Relay mod-
ules, which can be controlled from a shared user interface for testing. The test interface
has buttons for initialization, launching and shutting down the modules. In addition, it
has text area which is filled with actions that different modules and components make.
Figure 12 shows a screenshot of the test user interface.

The aim of the proof of concept implementation was primarily to show that creation
of data synchronization is relatively easy to do. The core functionality of the software is
to synchronize data from one database to another. Interfacing a cloud service or encryp-
tion was not implemented, although the user interface has encryption related buttons at-
tached.

The inner modules of the proof of concept implementation are presented in Figure
13. The main modules are M and ER i.e. Manager module and Edge Relay module. Ad-
ditionally, Common module is used by both, M and ER modules. Lastly, since the proof
of concept implementation software is also for testing purposes, it needs a GUI, and for
this reason TestForm module exists.

Figure 12: Test user interface for DATAMiNe proof of concept.

4 CONCEPT TESTING AND VERIFICATION 28

Common module has three components, Log, Helpers, and DialogueTools. The Log
component implements logging into external files on a hard drive. The Helpers com-
ponent includes miscellaneous and generally useful functions. The DialogueTools com-
ponent has all the needed functions to edit Dialogue files. Interfaces of these compon-
ents are used by CommonInterface component, which wraps them up as a new interface.
This is shown outside of the module. The Common module is used by all three other
modules.

The ER module includes all functionality that is unique to the Edge Relay. EdgeRe-
laySideDataSync component has most of the functionalities of the module, excluding
communication with Data Aggregator. That is separated into its own component called
UploadTool.

The M module is designed in the same way. ManagerSideDataSync component
handles most of the functionality, excluding communication with the mining equipment
database. That functionality is separated into component SQL.

Figure 13: Inner components and modules of the proof of concept implementation.

4 CONCEPT TESTING AND VERIFICATION 29

The TestForm module does not contain anything but user interface made with WPF.
It uses interfaces of all three other modules.

4.5 Verification

Communication protocol used by DATAMiNe was verified using PROMELA and Spin.
The actual code for meta model can be read from Appendix A. The verification was
done using iSpin, which is graphical user interface for Spin made with Tcl/Tk. Figure 14
shows the edit view in iSpin.

PROMELA was used to model the interaction between Manager and Edge Relay
state machines. In addition to these two state machines, a third was made to simulate the
medium between those two agents, i.e., a flash drive state machine. The flash drive state
machine, however, is not the best description, because the state machine also simulates
the travelling, corruption, and misplacement of the flash drive. This chapter will go
through models of the verified state machines.

4.5.1 Overview of the meta model

 Five different versions were made to test the PROMELA model from different aspects.
The versions were more complicated with each step. Steps included following features.

Figure 14: iSpin GUI

4 CONCEPT TESTING AND VERIFICATION 30

1. Simulated Manager and Edge Relay state machines with one flash drive state
machine moving between them. Running time infinite.

2. As Step one, but running time was limited to a finite length.
3. Multiple flash drives over infinite timespan. Also, adding possibility that flash

drive can be lost forever.
4. As step three, but running time was limited to a finite length.
5. Step four with possibility of data corruption.

Verification covers reliability of protocol between Manager and Edge Relay. Actual
Spin listings from verifications can be found from Appendix B. Verified aspects guaran-
tee the following:

• The protocol does not end up in a non-progressing loop, i.e., live lock.
• Data Aggregator state always progresses forward, i.e., protocol does not end up

in deadlock.
• Data within lost packets are written into the next ones until acknowledgement

has been received from the Edge Relay.
• Corrupted packets are considered as lost.
• Synchronization eventually succeeds as long as there exists a transferring flash

drive and the packets are not infinitely being lost.

This chapter explains the contents of the PROMELA meta model in the final version,
i.e., step 5. Note also that the Appendix A metamodel is from the same step. Preceding
version steps can be deduced as subsets from step 5 functionality. In addition to the state
machines, there exist message channels, message types, and a set of global variables
that map the progression of synchronization. In PROMELA, declarator mtype can
define names of numeric constants. Often these constants are used to differentiate
between interaction packet types or other enumerations. In DATAMiNe verification the
following enumerations were defined.

• DATA
• ACK
• EMPTY
• at_ER
• at_MNGR
• at_BETWEEN

4 CONCEPT TESTING AND VERIFICATION 31

The first three are communication packet types. The rest are simulated locations where
flash drive can exist in any given time during its lifespan. Deciding between these three
locations is a core functionality of the flash drive state machine, which is the same as
FD state machine. Figure 15 illustrates this behaviour. When at_ER or at_MNGR is
picked as simulated location, a flash drive state machine will interact with Manager
state machine, which is the same as MNGR or with Edge Relay state machine, which is
the same as ER respectively.

Figure 15: Randomized location of the simulated flash drive is a key functionality of
FD state machine.

4 CONCEPT TESTING AND VERIFICATION 32

Manager and Edge Relay state machines have two designated communication chan-
nels each. The Manager has its input and output channels, respectively called
MNGR_input and MNGR_output. Edge Relay similarly has its input and output chan-
nels respectively called ER_input and ER_output. Every channel packet is formed in the
same way. First, a packet contains a packet type from mtype, i.e., DATA or ACK.
Second, a packet contains an integer that mirrors the known state of the database in the
endpoint from where the packet originates. This enables the endpoints to acknowledge
each other's database state. Third, a packet contains a Boolean variable that simulates if
the packet is corrupted during transfer. Normally, packet corruption would be noticed by
comparing hash values generated at both endpoints, but in this PROMELA model a
mere Boolean is a sufficient level of simulation.

 Table 1 lists global variables, their initial values, and their purpose. The related ini-
tializations can be found from the code lines 11–18 in Appendix A. These variables con-
trol interaction, accessibility, and the shutdown of the PROMELA model.

Table 1: Global variables of PROMELA model.

Data
type

Variable name Initial
value

Purpose

Byte ER_usb_slot_taken 0 Guard variable to guarantee only one
flash drive accessing Edge Relay

Byte MNGR_usb_slot_taken 0 Guard variable to guarantee only one
flash drive accessing Manager

Boolean MNGR_alive True Variable to map Manager process
existence. Needed in time finity.

Boolean ER_alive True Variable to map Edge Relay process
existence. Needed in time finity.

Integer MNGR_lifetime 0 Variable to map how long Manager has
existed. Needed in time finity.

Integer ER_lifetime 0 Variable to map how long Edge Relay has
existed. Needed in time finity.

Integer lifetime_limit 100 Variable to limit Edge Relay and
Manager existence. Needed in time finity.

Integer FDs_alive 0 Variable that maps how many Flash
Drives exists. Changes when drives are
created or lost.

In PROMELA, all state machines are defined as processes when they are launched.
The same state machine can be launched multiple times with different process identific-
ation number, i.e., _pid. Manager and Edge Relay state machines are modelled so that
only one flash drive can be in interaction with each of them at any given time.

4 CONCEPT TESTING AND VERIFICATION 33

Variables ER_usb_slot_taken and MNGR_usb_slot_taken are used to mark which
flash drive process occupies Manager or Edge Relay process. Marking is done with set-
ting the variable value to respective _pid. When occupation ends, the value is reverted
into its initial value 0.

Booleans MNGR_alive and ER_alive are marked true when Manager and Edge Re-
lay state machine processes are launched. Variables are marked false when their respect-
ive process ends. Values of MNGR_alive and ER_alive are decided based on
MNGR_lifetime, ER_lifetime and lifetime_limit. Each time when either, Manager or
Edge Relay process, interacts with flash drive process, its respective lifetime is incre-
mented. When lifetime goes over lifetime_limit the process in question shuts itself down
and its alive -Boolean is marked false. These five variables configure the longevity of
finite time with steps 2, 4 and 5. Finite lifetime is used to simulate finite operation time
of mining equipment or its database.

FDs_alive is a number that counts running flash drive processes. The variable is in-
cremented when processes are launched and decremented when shut down. Flash drive
processes are shut down if flash drive is lost or the endpoints Manager and Edge Relay
processes have reached the end of their lifespan. FDs_alive is a vital element to decide
when finite time ends in the system where multiple flash drive processes exists.

In addition to the mentioned global variables, each launched process also has internal
variables about their view on the database state on each endpoint. These variables are
MachineState and CloudState. MachineState is increased when Manager process creates
new DATA packet. CloudState is set to an equal value when the DATA packet reaches
Edge Relay process uncorrupted. Following ACK packet enables Manager process to
update its CloudState.

4.5.2 Manager state machine

Manager endpoint of the Spin verification generates DATA packets and consumes ACK
packets. The actual code can be read from lines 214–259 in Appendix A. Table 2
presents the inner variables that are used to track the success of the synchronization.
Figure 16 Illustrates the Manager PROMELA model drawn by iSpin.

Table 2: Inner variables of Manager state machine and their initial values.

Name Type Initial Value Purpose

MachineState integer -1 Presents the amount of made changes in the
simulated database.

CloudState integer -1 Presents the value of last arrived ACK packet.

4 CONCEPT TESTING AND VERIFICATION 34

Figure 16: Manager as PROMELA defined state machine.

4 CONCEPT TESTING AND VERIFICATION 35

With using PROMELA's common functionality, the state machine starts its activity
only when some flash drive occupies the Manager process, i.e., MNGR_usb_slot_taken
is non-zero. First check is comparing MNGR_lifetime to lifetime_limit. If process is not
in the end of its lifespan, input channel MNGR_input is processed instead in case of an
ACK packet. Within input packet processing, the Boolean uc is used to decide if the
packet is corrupted during propagation. Next, Manager goes through a loop which ran-
domizes if new DATA packet into MNGR_output would be created. Probability for new
packet to be created is 50%. Finally Manager releases the occupation by setting the
MNGR_usb_slot_taken to zero. When process lifespan is over, the variable
MNGR_alive is set to false and variable MNGR_usb_slot_taken is set to zero. After this,
process is shut down.

4.5.3 Edge Relay state machine

Edge Relay endpoint of the Spin verification consumes DATA packets and generates
ACK packets. Corresponding lines of code are 261–304, and can be found in Appendix
A. Generally, the structure is very similar to Manager's state machine but it does not
contain the random element in packet generation. Figure 17 illustrates the state machine
logic. Following Table 3 presents the inner variables of Edge Relay state machine pro-
cess.

Table 3: Inner variables of Edge Relay state machine and their initial values.

Name Type Initial Value Purpose

MachineState integer -1 Presents the amount of simulated mining
equipment database changes that are conveyed
to the simulated Data Aggregator.

CloudState integer -1 Presents the amount of database changes in
simulated Data Aggregator.

 Edge Relay state machine activates when MNGR_usb_slot_taken is something other
than zero. In the same way as in Manager state machine, this state machine also shuts
down if its lifespan is over. Shutting down includes appropriate measures, i.e., setting
the ER_usb_slot_taken to zero and setting the ER_alive to false. In functional branch
where lifespan has not ended yet, the first action is to check the input channel ER_input.
Only if DATA packet is found and it is uncorrupted, the process proceeds to update the
CloudState variable. Otherwise, process gives up the control, setting the
ER_usb_slot_taken to zero. After updating the CloudState, an ACK packet is created
with the same CloudState. Afterwards, simulated USB slot is released by setting the
ER_usb_slot_taken to zero.

4 CONCEPT TESTING AND VERIFICATION 36

Figure 17: Edge relay as PROMELA defined state machine.

4 CONCEPT TESTING AND VERIFICATION 37

4.5.4 Flash drive state machine

This state machine simulates the challenging communication channel between Manager
and Edge Relay. It is referred here as the flash drive state machine. Simulated situations
include the following.

• Flash drive is transported to Manager endpoint, at_MNGR.
• Flash drive is transported to Edge Relay endpoint, at_ER.
• Flash drive is left somewhere else, at_BETWEEN.
• Flash drive is left somewhere else for too long and it is ultimately lost,

lost_in_time_and_space.
• Flash drive data is corrupted so that the hash value will not match any more,

Boolean intact.
Figure 18 illustrates how the state machine logic works. With each flash drive state ma-
chine process, there are inner variables and they are initialized as follows in Table 4.

Table 4: Inner variables of flash drive state machine and their initial values.

Name Type Initial Value Purpose

FD_state mtype at_BETWEEN Presents the simulated location of flash
drive.

FD_msg mtype EMPTY Presents the current transported packet
type.

MachineState integer -1 Presents the Machine state of the sender

CloudState integer -1 Presents the CloudState state of the
sender

lost_in_time_and_
space

integer 0 Presents the amount of consecutive loops
that the flash drive has been lost.

 The main loop of the state machine activates when at least one endpoint is still alive
and flash drive has not been lost too long i.e. five or more consecutive loops. First, a
simulated place for the flash drive is randomly picked.

When at_BETWEEN is picked, the variable lost_in_time_and_space is incremented.
Additionally, it is randomly decided if the data would be corrupted inside the simulated
payload. Nothing happens if there is no payload packet. Probability of packet corruption
is 25%. Probability for picking the at_BETWEEN in the start of the loop is 50% so the
effective probability for packet corruption at the start is around 13%. Packet corruption
is done by setting the variable intact to false. Probability for picking the at_ER or
at_MNGR is 25%.

4 CONCEPT TESTING AND VERIFICATION 38

Figure 18: Flash drive state machine i.e. medium related events between Manager and Edge Relay.

4 CONCEPT TESTING AND VERIFICATION 39

If the at_ER is picked and if flash drive carries DATA, it is written into ER_input.
After that, ER_usb_slot_taken is set to reflect process _pid and control is given else-
where, i.e., Edge Relay process. When ER_usb_slot_taken is non-zero, Edge Relay state
machine starts working (ER_usb_slot_taken != 0 in Figure 17). In the same way the
flash drive state machine has to wait until Edge Relay state machine returns
ER_usb_slot_taken to zero (ER_usb_slot_taken != (_pid + 1) in Figure 18). Only after
that is done, control is returned to the flash drive state machine process. That is, Edge
Relay returns the control by writing the ER_usb_slot_taken back to zero. Once control
is back, ER_output is read in case there is new ACK packet available. Afterwards, new
iteration starts, and new location for flash drive is randomized. In the beginning of this
loop, if ER_alive is false, the only action is to increment lost_in_time_and_space. This
means that a flash drive state machine process is to be shut down if it does not does not
have access to existing endpoint within certain amount of loops.

If at_MNGR is picked, the process would be much the same as with the at_ER. Dif-
ference is that first, a possible ACK packet is written into the MNGR_input. When con-
trol returns from the Manager process, the MNGR_output would be read in case there is
a new DATA packet. In the beginning of this loop, if MNGR_alive is false the only ac-
tion is to increment lost_in_time_and_space. End condition for the state machine is that
lost_in_time_and_space reaches value five. If a flash drive process is last of its kind to
be alive, it would shut down endpoints if not terminated before.

5 RESULTS AND ANALYSIS 40

5 RESULTS AND ANALYSIS

DATAMiNe tries to solve a problem that is aligned with current trends, but simultan-
eously linked with restricted technical properties of mining environment. DATAMiNe
concept consists of two agents and an interaction protocol implemented within them.
The fundamental idea is to gather usage data from mining equipment into manufac-
turer's cloud Data Aggregator. Often this data must be gathered using flash drives.

This chapter combines core components and findings in this thesis. Main points are
the design, the proof of concept, and the model verification of DATAMiNe.

5.1 General design of DATAMiNe

DATAMiNe synchronization packets contain usage data generated by mining equip-
ment. Data inside those packets is kept concise and non-repetitive by choosing only the
needed changes from mining equipment's database. Decisions are made by timestamp-
ing every line of the database. Data flows only upstream from equipment to the Data
Aggregator, excluding the acknowledge messages. When using flash drives, connection
information and other signalling between mining equipment and Data Aggregator are
collected in separate file called Dialogue which is encrypted, and written in XML. Dia-
logue is transferred alongside the synchronization packets inside flash drives.

Data Aggregation database is an aggregation of all mining equipment databases. Data
from different equipment instances is separated by an extra column in each table. That
column contains equipment identification information. Transmission data that
DATAMiNe generates is encrypted with a symmetrical method.

5.2 Proof of concept

Proof of concept of DATAMiNe contains two pieces of agent software, Manager and
Edge Relay. Basic interaction protocol functionalities were established when doing the
proof of concept implementation. Schemes like selection of new changes at mining
equipment database, and connection signalling through Dialogue were included. The
result was a demo where new changes could be fetched and written into a flash drive
and afterwards that data could be written into another database according to the
DATAMiNe interaction protocol. The proof of concept filled its purpose by showing the
necessary steps to achieve a one-way synchronization scheme.

5 RESULTS AND ANALYSIS 41

Not all the needed functionalities were present in the proof of concept. For example,
integration with existing mining equipment software was not done. In the demonstra-
tion, Manager and Edge Relay were used through a test user interface, which helped to
debug the interaction protocol. Also, information security features like encrypting and
hash value comparison, complete support for all database tables and cloud support were
not implemented.

The development of DATAMiNe benefited from the proof of concept implementa-
tion phase. The crucial advantage was refinement of used design decisions. Prospects
that were deemed to be inconvenient, were substituted with alternatives. For example,
the first vision of detecting new data on mining equipment database, was not to rely on
timestamps. This was because it would also mean reliance to the internal clock of the
mining equipment. However, it came evident that such solution would be overly com-
plicated and the return of investment would be dubious. It is easier to keep the mining
equipment clock running, than implement the necessary extra logic. Consequently, the
timestamps were established. Also in the very begining, commercial solutions, such as
MSSQL Change Data Capture, were inspected relating to the synchronization scheme.
Very soon it became evident, that it was more cost-effective to make custom solution to
use with DATAMiNe. Proof of concept implementation steered the DATAMiNe devel-
opment towards cost-efficiency and practicality.

5.3 Verification results based on PROMELA model

The Spin tool was used to verify in a formal fashion that the DATAMiNe interaction
protocol between Manager and Edge Relay does not produce deadlocks, or contain non-
progress loops. Additionally, it was verified that Data Aggregator was updated only
when new data arrived. Also, random cases of data corruption and flash drive misplace-
ments were not able to break the system. As long as there would be flash drives moving
between the endpoints, the synchronizable data would eventually reach Data Aggreg-
ator.

The main benefit of doing verification on the protocol was not necessarily the veri-
fication result itself, but the required level of detail which was laid by the nature of such
formal presentation. In order to achieve formal verification, the PROMELA models
were specified in high detail. That enforced a lot of decisions that would not have been
made otherwise. One such detail is, how the protocol handles arrivals of obsolete pack-
ets.

PROMELA model must be implemented precisely to gain the benefits from the veri-
fication. The model had also many blind spots. It did not consider any information se-
curity issues or any actors outside of transmissions between Manager and Edge Relay.

5 RESULTS AND ANALYSIS 42

5.4 Applicability

DATAMiNe is not a production-quality solution by any means. Still, the general design,
proof of concept, and interaction protocol verification are usable when building a
DATAMiNe solution into production environment.

Many features were not present in the proof of concept, or in the PROMELA model.
In addition to information security and cloud implementation, sending data as SQL
commands must be reconsidered. Plain SQL commands can produce security risk espe-
cially if symmetric encryption is compromised for any reason. Balakumar and Sak-
thidevi do not address this problem in their article [3] but a risk of injection is imminent.

5.5 Further development objectives

As shown in Figure 5, before production level implementation, synthesis from verifica-
tion and a proof of concept must be created. The synthesis includes all the discoveries
made in DATAMiNe development this far, arranged into some kind of lessons learned.
This thesis' results are the starting point in that synthesis phase. Next, synthesis must be
continued outside this document to initiate product level implementation of
DATAMiNe. One topic that this thesis was unable to answer, was the selection of cloud
service provider for Data Aggregator. Based on Section 2.5, the provider should prob-
ably be one of the big players. Provider should be one with history on the market and
such that has plenty of resources to enforce their SLAs.

Before the production implementation, it could be useful to compare the architecture
of DATAMiNe with the Industrial Internet Consortium's reference architecture [1] for
best practices. This would potentially help tuning the system to be easier to maintain.
The reference architecture was not considered during the thesis work, since the refer-
ence architecture document was not available during that time.

There are also visions of what additional features could be developed, after the cur-
rent set of functionalities are finished. Currently DATAMiNe supports traffic to be syn-
chronized only upstream, i.e., from mining equipment to the Data Aggregator. One pos-
sible way to develop DATAMiNe further, would be enabling downstream synchroniza-
tion as well. This would enable new ways to rapidly deploy new configurations. How-
ever, the downstream path would raise some new questions. If more nodes in a syn-
chronization network are able to make changes, the scheme gets more complicated.
Availability and data consistency, i.e., optimistic versus pessimistic synchronization
strategies should be reconsidered [8] [9].

DATAMiNe could be more versatile in the future. Filtering and selecting of relevant
data can be implemented as a configuration. Data that would be transmitted, would not
have to be database related either. For example, documentation files could be transferred
during other transmissions. Also tombstones, like in Cohen's article [4], could become
relevant if object deletion should be enabled in multiple nodes.

5 RESULTS AND ANALYSIS 43

Further into the future, when DATAMiNe is taken into production, the next logical
step would be the development of a new piece of software, which mines the data in Data
Aggregator. Automatic algorithms could reveal correlation trends between mining ma-
chine use data patterns and maintenance needs. This program would be used directly by
the mining machine manufacturer, and it could be used to improve the services the man-
ufacturer offers.

6 CONCLUSIONS 44

6 CONCLUSIONS

The combination of the DATAMiNe design and verified interaction protocol can be
used to create added value to the mining equipment manufacturer's business. In the near
future, DATAMiNe can be integrated with the rest of the mining equipment software.
The design has been prepared so far that further studying apart from real integration can
be disadvantageous.

Designing an IoT data aggregation system that spreads over the perimeter of the In-
ternet requires special attention. In DATAMiNe, the network is assisted by human work-
ers who transport flash drives in and out from the mine. This is done to connect the min-
ing equipment loosely to the data aggregation network.

The system consists of three pieces of agent software, Manager, Edge Relay and
Data Aggregator. DATAMiNe's use case culminates around Manager and Edge Relay
because those two make the data communication over the assisted mine network. The
protocol used between these two endpoints has to take human error into consideration in
the form of connection incoherency and information security. Data Aggregator is the
component that gathers and maintains the data collection which is aggregated. It is
planned to be hosted as a cloud service.

The design of DATAMiNe was prepared for production implementation by making a
proof of concept implementation software, and by verifying the protocol that operates
over the assisted mine data network. Both ways offered different but complementary
discoveries that improved the original design.

The proof of concept implementation guided the design to be more cost-effective and
the roles and boundaries between Manager and Edge Relay agents grew clearer. Verific-
ation of the protocol forced the designer to take critical details into consideration.

Compared to the ordinary software development, prototyping and verifying served
DATAMiNe better than continuous integration. Rapid deployment is out of the question
in production environment and strict waterfall process would require too much bureau-
cracy. The way DATAMiNe has been developed this far, is compromise between those
two. As an anecdotal rule of thumb, it is worthwhile to write one version of the program
and learn from it. Afterwards, a better version can be written using the lessons learned.
The first version gives the composer a big picture of the system, the lack of which is the
reason the first version is inadequate in the first place.

6 CONCLUSIONS 45

Data Aggregator was not included into the scope of proof of concept implementation
or the protocol verification. The cloud service provider is yet to be decided but the pro-
vider should be one of the bigger players on the market that have at least few years of
experience and solid monetary basis to compensate if quality of service does not meet
the requirements of the SLA.

46

REFERENCES

[1] Industrial Internet Reference Architecture, 1, Industrial Internet Consortium,
http://www.iiconsortium.org/, 2015, available: http://www.iiconsortium.org/IIRA.htm.

[2] P. Albright, Getting in sync with synchronization, Wireless Week, Vol. 8, No. 28,
2002, pp. 28.

[3] V. Balakumar, I. Sakthidevi, An efficient database synchronization algorithm for
mobile devices based on secured message digest, 2012 International Conference on
Computing, Electronics and Electrical Technologies, ICCEET 2012, 2012, pp.937-942,
2012, pp. 937-942.

[4] N.H. Cohen, A Java Framework for Mobile Data Synchronization, Cooperative
Information Systems, 2000.

[5] M. Coleman, Data synchronization: What to look for, Telemarketing, Vol. 14, No.
3, 1995, pp. 120.

[6] D.E. Comer, Computer Networks and Internets: International Edition, Fifth Edi-
tion ed. Pearson Education, Upper Saddle River, New Jersey, 2009, 599 p.

[7] J. Cucurull, Surviving Attacks in Challenged Networks, IEEE Transactions on
Dependable and Secure Computing, Vol. 9, No. 6, 2012, pp. 917.

[8] S.B. Davidson, Consistency in Partitioned Networks, ACM Computing Surveys,
Vol. 17, No. 3, 1985, pp. 341-370.

[9] M.J. Fischer, Sacrificing serializability to attain high availability of data in an un-
reliable network, 1982, pp. 11.

[10] A. Freyberg, A. Hornigold, A. Willmott, Cloud provider valuations more an art
than a science, Global Telecoms Business, 2011.

47

[11] I. Haikala, J. Märijärvi, 2.3. Laatu, laatujärjestelmä ja laadunvarmistus, in:
Ohjelmistotuotanto, 11 ed., Gummerus Kirjapaino Oy, Jyväskylä, 2006, pp. 48-51.

[12] C. Hargrave O., J.C. Ralston, D. Hainsworth W., Optimising wireless LAN for
longwall coal mine automation, Conference Record - IAS Annual Meeting (IEEE In-
dustry Applications Society), 2005, Vol.1, pp.218-224, Vol. 1, 2005, pp. 218-IAS.

[13] V. Ho, No clear leader among cloud vendors, Business And Economics, United
Kingdom, Singapore, 2014.

[14] G. Holzmann, Spin Model Checker, the: Primer and Reference Manual, First ed.
Addison-Wesley Professional, 2003.

[15] G. Holzmann, Select - non-deterministic value selection. spinroot.com, web
page. Available (referenced 11.05.2015): http://spinroot.com/spin/Man/select.html.

[16] M.P. Huget, Interaction protocol engineering, Communication In Multiagent
Systems, Vol. 2650, 2003, pp. 179-193.

[17] L. JianJun, Z. XiangYun, Research for a Data Synchronization Model Based on
Middleware and Rule Base, Information Science and Engineering, Dec.2009, pp.2998-
3001, 2009, pp. 2998-3001.

[18] P. Kee-Hyun, Efficient Transmission Method for Mobile Data Synchronization
Based on Data Characteristics, Proceedings of the International Conference on IT Con-
vergence and Security 2011, 2012, .

[19] J. McKendrick, Cloud Computing Market May Become An Oligopoly of High-
Volume Vendors, Cloud Computing Market May Become An Oligopoly of HighVolume
Vendors - Forbes, Vol. 2015, No. Forbes, 2013, pp. 13/6/2015. available (referenced
13/6/2015): http://www.forbes.com/sites/joemckendrick/2013/07/11/cloud-computing-
market-may-become-an-oligopoly-of-high-volume-vendors/.

[20] P. Ocenasek, On the Secure and Safe Data Synchronization, Human Aspects of
Information Security, Privacy, and Trust, 2013, .

[21] Open Mobile Alliance, About Open Mobile Alliance, Open Mobile Alliance,
web page. available (referenced 09.06.2015): http://openmobilealliance.org/about-oma/.

48

[22] B. Ostergaard, How to select the best hybrid cloud provider for your firm, Com-
puter Weekly, 2014, pp. 17-19.

[23] W. Pauley, Cloud Provider Transparency: An Empirical Evaluation, IEEE Secur-
ity & Privacy Magazine, Vol. 8, No. 6, 2010, pp. 32.

[24] C. Preimesberger, 10 Big Data Trends Apt to Influence Enterprises in 2015,
eWeek, 2015, pp. 1-1.

[25] W. Royce, Managing the Development of Large Software Systems, Proceedings
of IEEE WESCON 26, August, The Institute of Electrical and Electronics Engineers,
Inc., WESCON 26, pp. 328.

[26] J. Spragins D., J.L. Hammond, Pawlikowski Krzysztof, Telecommunications:
Protocols and Design, in: Addison-Wesley, New York, NY, USA, 1991, pp. 18-24.

[27] S. Tarkoma, Data Synchronization, Mobile Middleware, Chapter 8, p.225-239,
2009, pp. 225-239.

[28] C. Zhu, X. Deng, J. Zhu, L. Li, X. Zeng, H. Yu, S. Zhang, Performance analysis
of wireless local area networks (WLAN) in a coal-mine tunnel environment, Mining
Science and Technology, Vol. 20, No. 4, 2010, pp. 629-634.

49

APPENDIX A : PROMELA MODEL

 001 /* ***PROMELA model presenting DATAMiNe communication.*** */
 002
 003 /* <<Presumptions>>
 004 1) ER always finds internet connection
 005 2) there's only one flashdrive and so, packet numbers are not simulated
 006 3) There is only one available usb slot in ER and MNGR*/
 007
 008 /* -- Global Messagetypes -- */
 009 mtype = { DATA,ACK,EMPTY,at_ER,at_MNGR, at_BETWEEN }
 010 /* -- Global bytes to limit only one flashdrive to be connected on ER and
MNGR at any time -- */
 011 byte ER_usb_slot_taken = 0;
 012 byte MNGR_usb_slot_taken = 0;
 013 bool MNGR_alive = 1;
 014 bool ER_alive = 1;
 015 show int MNGR_lifetime = 0;
 016 show int ER_lifetime = 0;
 017 int lifetime_limit = 100;
 018 int FDs_alive = 0;
 019
 020 /* -- Communication channels for ER and MNGR input/output -- */
 021 /*mtype marks the type of the message, int marks the progression of
changes in DB, bool marks if data has remained intact*/
 022 chan ER_input = [1] of { mtype, int, bool}
 023 chan ER_output = [1] of { mtype, int, bool }
 024 chan MNGR_input = [1] of { mtype, int, bool }
 025 chan MNGR_output = [1] of { mtype, int, bool }
 026
 027 /* <--> Initiation process <--> */
 028 init
 029 {
 030 atomic
 031 {
 032 run FD();
 033 FDs_alive++;
 034 run FD();
 035 FDs_alive++;
 036 run FD();
 037 FDs_alive++;
 038 run FD();
 039 FDs_alive++;
 040 run MNGR();
 041 run ER()
 042 }
 043 }
 044 /* -||- Process for Flashdrive statemachine -||- */
 045 proctype FD()
 046 {
 047 /* -- States for flashdrive -- */
 048 show mtype FD_state = at_BETWEEN;
 049 show mtype FD_msg = EMPTY;
 050 show bool intact = true;
 051 show int MachineState = -1 ;
 052 show int CloudState = -1 ;
 053 int lost_in_time_and_space = 0;
 054 /* begin finite loop that depends on lost_in_time_and_space and ER/MNGR
lifetimes */
 055 end_FD: do
 056 :: (MNGR_alive == false && ER_alive == false) ->
 057 break;
 058 /*if flash drive has been lost extended period of time*/
 059 :: (lost_in_time_and_space >= 5) ->
 060 if

50

 061 :: (FDs_alive == 1) ->
 062 MNGR_lifetime = (lifetime_limit +1);
 063 ER_lifetime = (lifetime_limit +1);
 064 if
 065 :: (MNGR_alive == true) ->
 066 FD_state = at_MNGR;
 067 if
 068 :: (MNGR_usb_slot_taken == 0) ->
 069 MNGR_usb_slot_taken = (_pid + 1);
 070 do
 071 :: (MNGR_usb_slot_taken != _pid + 1) ->
 072 break;
 073 od
 074 :: (MNGR_usb_slot_taken != 0) ->
 075 fi;
 076 :: (MNGR_alive == false) ->
 077 fi
 078 if
 079 :: (ER_alive == true) ->
 080 FD_state = at_ER;
 081 if
 082 :: (ER_usb_slot_taken == 0) ->
 083 ER_usb_slot_taken = (_pid + 1);
 084 do
 085 :: (ER_usb_slot_taken != _pid + 1) ->
 086 break;
 087 od
 088 :: (ER_usb_slot_taken != 0) ->
 089 fi
 090 :: (ER_alive == false) ->
 091 fi
 092 :: else ->
 093 fi
 094 FDs_alive--;
 095 break;
 096 :: ((MNGR_alive != 0 || ER_alive != 0) && lost_in_time_and_space < 5)
->
 097 /*choose FD_state randomly*/
 098 do
 099 :: FD_state = at_BETWEEN ->
 100 break;
 101 :: FD_state = at_ER ->
 102 break;
 103 :: FD_state = at_MNGR ->
 104 break;
 105 od
 106 /* *** Act according to FD_state *** */
 107 if
 108 /*If stick is in Manager slot*/
 109 /*Read all MNGR_output and if it is not empty change FD_msg*/
 110 :: (FD_state == at_MNGR) ->
 111 if
 112 :: (MNGR_alive == 1) ->
 113 lost_in_time_and_space = 0; /*reset lost counter*/
 114 int n = -1
 115 if
 116 :: (MNGR_usb_slot_taken == 0) ->
 117 /* check that usb slot is not occupied*/
 118
 119 if
 120 :: (FD_msg == ACK && MNGR_alive == 1) ->
 121 MNGR_input!ACK(CloudState,intact);
 122 FD_msg = EMPTY;
 123 /* <<>> */
 124 :: else ->
 125
 126 fi;
 127 MNGR_usb_slot_taken = (_pid + 1); /* occupy
usb slot and give turn to MNGR */
 128 do /*wait for the release*/
 129 :: (MNGR_usb_slot_taken != _pid + 1) ->
 130 atomic
 131 {
 132 if

51

 133 :: (MNGR_alive == false) ->
 134 :: (MNGR_alive == true) ->
 135 if
 136 :: (nempty(MNGR_output)) ->
 137 MNGR_output?
DATA(n,intact);
 138 MachineState = n;
 139 FD_msg = DATA;
 140 :: (empty(MNGR_output))->
 141 fi
 142 fi
 143 break
 144 }
 145 od
 146 :: (MNGR_usb_slot_taken != 0) ->
 147
 148 fi
 149 :: (MNGR_alive == 0)->
 150 lost_in_time_and_space++; /*increment lost
counter*/
 151 fi
 152 /*If stick is in Edge Relay slot*/
 153 /*Write into ER_input if FD_msg is DATA. If so, make ACK
message*/
 154 :: (FD_state == at_ER) ->
 155 if
 156 :: (ER_alive == 1) ->
 157 lost_in_time_and_space = 0;/*reset lost counter*/
 158 if
 159 :: (ER_usb_slot_taken == 0) -> /* check that usb
slot is not occupied*/
 160 atomic
 161 {
 162 if
 163 :: (FD_msg == DATA) ->
 164 ER_input!
DATA(MachineState,intact);
 165 FD_msg = EMPTY;
 166 :: (FD_msg != DATA) ->
 167
 168 fi
 169 ER_usb_slot_taken = (_pid + 1); /*
occupy usb slot and give turn to MNGR */
 170 }
 171 do /*wait for the release*/
 172 :: (ER_usb_slot_taken != (_pid + 1)) ->
 173 atomic
 174 {
 175 if
 176 ::(ER_alive == false)->
 177 ::(ER_alive == true)->
 178 if
 179 :: (nempty(ER_output))
->
 180 ER_output?
ACK(n,intact)
 181 CloudState = n
 182 FD_msg = ACK
 183 :: (empty(ER_output))
->
 184
 185 fi
 186 fi
 187 break
 188 }
 189 od
 190 :: (ER_usb_slot_taken != 0) ->
 191
 192 fi
 193 :: (ER_alive == 0) ->
 194 lost_in_time_and_space++; /*increment lost
counter*/
 195 fi
 196 /*If stick is in In between*/

52

 197 /*Do nothing*/
 198 :: else ->
 199 lost_in_time_and_space++;
 200 do
 201 :: 1 ->
 202 break;
 203 :: 1 ->
 204 break;
 205 :: intact = false ->
 206 /*1/4 propability that packet corrupts if
BETWEEN,that is 1/8 propability (~13%) all together*/
 207 break;
 208
 209 od
 210 fi;
 211 od;
 212 }
 213 /* -||- Process for Manager statemachine -||- */
 214 proctype MNGR()
 215 {
 216 int MachineState = -1;
 217 int CloudState = -1;
 218 /* begin loop */
 219 atomic
 220 {
 221 do
 222 :: (MNGR_usb_slot_taken != 0) ->
 223 MNGR_lifetime++
 224 if
 225 :: (MNGR_lifetime > lifetime_limit) ->
 226 MNGR_alive = 0
 227 MNGR_usb_slot_taken = 0
 228 break
 229 :: else ->
 230 if
 231 :: (empty(MNGR_input)) ->
 232 :: (nempty(MNGR_input)) ->
 233 bool uc = false
 234 int n = 0
 235 MNGR_input?ACK(n,uc)
 236 if
 237 :: (uc == false) ->
 238 :: (uc == true) ->
 239 CloudState = n
 240
 241 fi
 242 fi
 243 do
 244 :: (MNGR_alive == true) ->
 245 MachineState++
 246 MNGR_output!DATA(MachineState,true)
 247 break
 248 :: (MNGR_alive == true) ->
 249 break
 250 :: (MNGR_alive == false) ->
 251 break
 252 od
 253 assert((MachineState >= CloudState))

 254 MNGR_usb_slot_taken = 0
 255 fi
 256
 257 od
 258 }
 259 }
 260 /* -||- Process for Edge Relay statemachine -||- */
 261 proctype ER()
 262 {
 263 show int MachineState = -1;
 264 show int CloudState = -1;
 265 /* begin loop */
 266 atomic
 267 {
 268 do

53

 269 :: (ER_usb_slot_taken != 0) ->
 270 ER_lifetime++
 271 if
 272 :: (ER_lifetime > lifetime_limit) ->
 273 ER_alive = 0
 274 ER_usb_slot_taken = 0
 275 break
 276 :: else ->
 277 if
 278 :: (empty(ER_input)) ->
 279 ER_usb_slot_taken = 0
 280 :: (nempty(ER_input)) ->
 281 bool uc = false
 282 int n = 0
 283 ER_input?DATA(n,uc)
 284 if
 285 :: (uc == false) ->
 286 ER_usb_slot_taken = 0
 287 :: (uc == true) ->
 288 if
 289 :: (n <= CloudState)->
 290 ER_usb_slot_taken = 0
 291 :: (n > CloudState)->
 292 assert(MachineState < n &&
CloudState < n && uc == 1)
 293 MachineState = n
 294 CloudState = n
 295 ER_output!ACK(CloudState,true)
 296 ER_usb_slot_taken = 0
 297 fi
 298 fi
 299 fi
 300 fi
 301 assert(MachineState == CloudState)
 302 od
 303 }
 304 }

54

APPENDIX B : SPIN COMMAND PROMPT
OUTPUT

 001 spin -a DATAMiNe_4_corruptable_finite_without_real_random.pml
 002 gcc -DMEMLIM=1024 -O2 -DXUSAFE -DSAFETY -DNOCLAIM -w -o pan pan.c
 003 ./pan -m10000 -c1
 004 Pid: 2490
 005 Depth= 7170 States= 1e+06 Transitions= 1.38e+06 Memory= 270.398

t= 0.77 R= 1e+06
 006 Depth= 7171 States= 2e+06 Transitions= 2.77e+06 Memory= 476.160

t= 1.56 R= 1e+06
 007 Depth= 7171 States= 3e+06 Transitions= 4.15e+06 Memory= 682.019

t= 2.37 R= 1e+06
 008 Depth= 7171 States= 4e+06 Transitions= 5.54e+06 Memory= 887.879

t= 3.2 R= 1e+06
 009 pan: reached -DMEMLIM bound
 010 1.07365e+09 bytes used
 011 102400 bytes more needed
 012 1.07374e+09 bytes limit
 013 hint: to reduce memory, recompile with
 014 -DCOLLAPSE # good, fast compression, or
 015 -DMA=228 # better/slower compression, or
 016 -DHC # hash-compaction, approximation
 017 -DBITSTATE # supertrace, approximation
 018
 019 (Spin Version 6.4.3 -- 16 December 2014)
 020 Warning: Search not completed
 021 + Partial Order Reduction
 022
 023 Full statespace search for:
 024 never claim - (not selected)
 025 assertion violations +
 026 cycle checks - (disabled by -DSAFETY)
 027 invalid end states +
 028
 029 State-vector 228 byte, depth reached 7171, errors: 0
 030 4661219 states, stored
 031 1788487 states, matched
 032 6449706 transitions (= stored+matched)
 033 303986 atomic steps
 034 hash conflicts: 155749 (resolved)
 035
 036 Stats on memory usage (in Megabytes):
 037 1066.868 equivalent memory usage for states (stored*(State-vector +
overhead))
 038 959.827 actual memory usage for states (compression: 89.97%)
 039 state-vector as stored = 204 byte + 12 byte overhead
 040 64.000 memory used for hash table (-w24)
 041 0.343 memory used for DFS stack (-m10000)
 042 1023.914 total actual memory usage
 043
 044
 045
 046 pan: elapsed time 3.76 seconds
 047 No errors found -- did you verify all claims?
 048 spin -a DATAMiNe_4_corruptable_finite_without_real_random.pml
 049 gcc -DMEMLIM=1024 -O2 -DXUSAFE -DNP -DNOCLAIM -w -o pan pan.c
 050 ./pan -m10000 -l -c1
 051 Pid: 2524
 052 error: max search depth too small
 053 Depth= 9999 States= 1e+06 Transitions= 1.88e+06 Memory= 169.910

t= 0.85 R= 1e+06
 054 Depth= 9999 States= 2e+06 Transitions= 3.76e+06 Memory= 274.793

55

t= 1.71 R= 1e+06
 055 Depth= 9999 States= 3e+06 Transitions= 5.65e+06 Memory= 379.675

t= 2.58 R= 1e+06
 056 Depth= 9999 States= 4e+06 Transitions= 7.53e+06 Memory= 484.461

t= 3.45 R= 1e+06
 057 Depth= 9999 States= 5e+06 Transitions= 9.41e+06 Memory= 589.441

t= 4.33 R= 1e+06
 058 Depth= 9999 States= 6e+06 Transitions= 1.13e+07 Memory= 694.324

t= 5.23 R= 1e+06
 059 Depth= 9999 States= 7e+06 Transitions= 1.32e+07 Memory= 799.207

t= 6.12 R= 1e+06
 060 Depth= 9999 States= 8e+06 Transitions= 1.51e+07 Memory= 903.992

t= 7.1 R= 1e+06
 061 Depth= 9999 States= 9e+06 Transitions= 1.69e+07 Memory= 1008.875

t= 8.06 R= 1e+06
 062 pan: reached -DMEMLIM bound
 063 1.07365e+09 bytes used
 064 102400 bytes more needed
 065 1.07374e+09 bytes limit
 066 hint: to reduce memory, recompile with
 067 -DCOLLAPSE # good, fast compression, or
 068 -DMA=232 # better/slower compression, or
 069 -DHC # hash-compaction, approximation
 070 -DBITSTATE # supertrace, approximation
 071
 072 (Spin Version 6.4.3 -- 16 December 2014)
 073 Warning: Search not completed
 074 + Partial Order Reduction
 075
 076 Full statespace search for:
 077 never claim + (:np_:)
 078 assertion violations + (if within scope of claim)
 079 non-progress cycles + (fairness disabled)
 080 invalid end states - (disabled by never claim)
 081
 082 State-vector 232 byte, depth reached 9999, errors: 0
 083 4574154 states, stored (9.14404e+06 visited)
 084 8070683 states, matched
 085 17214724 transitions (= visited+matched)
 086 611111 atomic steps
 087 hash conflicts: 799747 (resolved)
 088
 089 Stats on memory usage (in Megabytes):
 090 1081.839 equivalent memory usage for states (stored*(State-vector +
overhead))
 091 960.602 actual memory usage for states (compression: 88.79%)
 092 state-vector as stored = 204 byte + 16 byte overhead
 093 64.000 memory used for hash table (-w24)
 094 0.343 memory used for DFS stack (-m10000)
 095 1.032 memory lost to fragmentation
 096 1023.914 total actual memory usage
 097
 098
 099
 100 pan: elapsed time 8.19 seconds
 101 No errors found -- did you verify all claims?
 102
 103

	1 Introduction
	1.1 Motivation for the development
	1.2 Target environment
	1.3 DATAMiNe
	1.4 The structure of this thesis

	2 Background
	2.1 Data synchronization
	2.1.1 Middleware and rule base
	2.1.2 Secured message digest and synchronization through SQL transactions
	2.1.3 OMA DS and Huffman encoded data transmissions
	2.1.4 Correctness versus availability, and optimistic versus pessimistic strategies
	2.1.5 Tombstones and reconciliation

	2.2 Challenged network and other special conditions
	2.3 Protocol engineering
	2.4 Validation and verification
	2.5 Selecting a cloud provider for Data Aggregator
	2.6 Data security
	2.7 Industrial Internet and the prospective evolution of IoT

	3 Design overview
	3.1 Data
	3.2 Software components
	3.3 Protocol functionality and logic

	4 Concept testing and Verification
	4.1 Used techniques
	4.2 Used technologies
	4.3 The Spin model checker
	4.4 Proof of concept implementation
	4.5 Verification
	4.5.1 Overview of the meta model
	4.5.2 Manager state machine
	4.5.3 Edge Relay state machine
	4.5.4 Flash drive state machine

	5 Results and analysis
	5.1 General design of DATAMiNe
	5.2 Proof of concept
	5.3 Verification results based on PROMELA model
	5.4 Applicability
	5.5 Further development objectives

	6 Conclusions

