

LETICIA TRINIDAD VALDERAS RODRÍGUEZ

A COMPILER FRAMEWORK FOR A COARSE-GRAINED RE-

CONFIGURABLE ARRAY

Master of Science Thesis

Examiners: Prof. Jari Nurmi
 Dr. Waqar Hussain

Examiners and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 6th May 2015

ii

i

ABSTRACT

LETICIA TRINIDAD VALDERAS RODRÍGUEZ: A Compiler Framework for a
Coarse-Grained Reconfigurable Array
Tampere University of Technology
Master of Science Thesis, 55 pages
June 2015
Master’s Degree Programme in Information Technology
Major: Electronics Engineering
Examiner: Prof. Jari Nurmi
 Dr. Waqar Hussain

Keywords: Compiler, CGRA, MVM, RPN, Place and Route, SCREMA, COFFEE
RISC, CREMA

The number of transistors on a chip is increasing with time giving rise to multiple de-

sign challenges. In this context, reconfigurable architectures have emerged to provide

high flexibility, less power/energy consumption yet while delivering high performance

levels. The success of an embedded architecture depends on powerful compiler support.

Current studies are focused on developing compilers to reduce the designer’s effort by

introducing many automation related features. In this thesis work, a compiler frame-

work is presented for a scalable Coarse-Grained Reconfigurable Array (CGRA) called

SCREMA.

The compiler framework presented in this thesis replaces the exiting GUI compiler with

an added feature of automatic placement and routing. The compiler receives a Reverse

Polish Notation (RPN) description of the target algorithm by the user. It extracts the

computational information from the RPN description and performs placement and rout-

ing over the CGRA template. The first configuration stream generated by the compiler

is the main processing context. Furthermore, if additional configuration patterns have to

be designed, the compiler framework gives the possibility to implement them in two

different design paradigms: a preprocessing context and a canonical context. Pre-

processing context is used to align the data into a CGRA to facilitate post-processing.

Canonical context allows the user to perform additions in sum-of-products related algo-

rithms.

The compiler framework has been tested by implementing real integer Matrix-Vector

Multiplication (MVM) algorithms. Specifically, the tested MVM orders are 4
th

, 8
th

, 16
th

and 32
nd

on the CGRA sizes of 4x4, 4x8, 4x16 and 4x32 PEs, respectively. All the im-

plementation are based on the RPN description of 4
th

-order MVM. Other than imple-

menting 4
th

-order MVM, the rest of tested MVM algorithms need preprocessing and

canonical contexts to be designed and implemented. The user effort which was needed

to Place and Route (P&R) an algorithm manually on SCREMA is now reduced by using

this compiler framework as it provides an automatic P&R mechanism.

ii

PREFACE

The work presented in this thesis is conducted at the Department of Electronics and

Communications Engineering, Tampere University of Technology, Finland.

I am deeply grateful to Dr. Waqar Hussain for proposing this interesting subject and for

his consistent support, guidance and motivation during the implementation of this work.

Sincere acknowledgement goes also to Prof. Jari Nurmi for accepting me and supervis-

ing this thesis. I thank M. Sc. Sajjad Nouri for helping me from the beginning to the end

of this project.

I would like to express my deepest gratitude to my parents, Maria Josefa and Asterio for

their constant support, patience and love. Without their strength and effort, I had not

come until here. Special thanks to my sister and friend, Rebeca, for listening to me and

providing me her advices. I thank to the rest of my family for believing in my possibili-

ties and encouraging me in my whole life.

I would like to thank my best friends, Saez, Laura, Dakas, Castro, Andy y Pedro for

their time, friendship, advices and support. I am also grateful to my Rolix girls, Conchi

and Maria for all the relaxed days that have helped me to continue fighting to be here.

I am also thankful to my high school friends, Leti, Mire and Sara, for still remembering

all the good days we had at Lázaro Cardenas.

I cannot forget to Noemí, Alex, Inés, Fer, Lamas, Lallana, Merino, Ana, Olalla, Sandra,

Dani Martinez, Serrano, Lucas, Sergio, Cristobal, Pablo, Velasco, Carazov, Nacho, Ra-

mirez, Lalo, Antonio, Maria, Marta, Ainara, Carlos Lopez, Carlos Martinez and Luis for

their company during the last six years at Universidad Politécnica de Madrid, Spain.

Finally, I thank to my new family and friends, Tano, Diane, Victor, David, Pedro, Sergi,

Charlotte, Sebastian, Alejandro, Alba, Romain, Ursules, Pedro Juan, Edu, Carmen,

Laura, Enrico Manuzzato, Enrico Mosconi, Maxime and Pedro portugués.

Tampere, June 2015

Leticia Trinidad Valderas

Rodríguez

iii

iv

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 3

2.1 CoDe-X Compiler .. 3

2.2 DIL compiler .. 3

2.3 DRESC Compiler ... 4

2.4 RaPiD-C Compiler ... 5

2.5 XPP-VC Compiler.. 5

3. THE COFFEE RISC PROCESSOR ... 7

4. THE SCALABLE CGRA TEMPLATE ... 11

4.1 The existing GUI-based Compiler ... 12

4.1.1 CGRA Parameter File .. 13

4.1.2 Configuration Header Files .. 18

5. DESIGN AND IMPLEMENTATION OF AUTOMATIC COMPILER 20

5.1 Reverse Polish Notation ... 20

5.2 Matrix-Vector Multiplication ... 20

5.3 Top-level module ... 21

5.4 Information Processing .. 24

5.5 Context Implementation ... 29

5.6 Mask Delivery .. 38

6. TESTING AND EVALUATION ... 43

6.1 4
th

-Order MVM .. 43

6.2 8
th

-Order MVM .. 46

6.3 16
th

-Order MVM .. 51

6.4 32
nd

-Order MVM.. 51

7. CONCLUSIONS ... 53

7.1 Future work .. 54

v

LIST OF FIGURES

Figure 3.1 Interfacing the COFFEE RISC core [12]... 8

Figure 3.2 COFFEE RISC Core pipeline [12] .. 9

Figure 4.1 Design blocks defined at compile-time using a set of parameters [6] 12

Figure 4.2 PE Core Template [6] .. 13

Figure 4.3 Graphical User Interface to design new context .. 14

Figure 4.4 Binary fields in the configuration words ... 19

Figure 5.1 Compiler Dataflow .. 21

Figure 5.2 Elements of SCREMA template .. 22

Figure 5.3 Example of the information process for MVM algorithm. 24

Figure 5.4 Enumeration of the memory banks and the PE of the first row.................... 26

Figure 5.5 First step of information function .. 27

Figure 5.6 Different arrays which save information related to the operations and

operands ... 27

Figure 5.7 Third step of schedule function where the operands are placed in the

local input memory. ... 27

Figure 5.8 First step in the processing function for MVM algorithm 29

Figure 5.9 Second step in the processing function for MVM algorithm 29

Figure 5.10 Implementation of second addition when MVM is processed 29

Figure 5.11Explanation of the calculation of the best PE ... 31

Figure 5.12 The identifier number for each PE... 33

Figure 5.13 Implementation of the mainContext function using MVM for a 4x8

PE CGRA .. 36

Figure 5.14 Implementation of canonical context in a 4x8 PE CGRA using a 4x4

PE CGRA template.. 37

Figure 5.15 Example of pre-processing context ... 38

Figure 5.16 Example of a matrix generated with parameters function and the

different kinds of data. ... 39

Figure 5.17 Example of a matrix generated with mask function and the different

kinds of data .. 40

Figure 6.1 The two context of 4
th

–Order MVM in 4x4 PE CGRA 44

Figure 6.2 Terminal results of 4
th

 Order MVM in 4x4 CGRA 45

Figure 6.3 Terminal results of 4
th

 Order MVM in 4x8 CGRA 45

Figure 6.4 The contexts of 8
th

–Order MVM in 4x4 PE CGRA 47

Figure 6.5 Terminal results of 8
th

 – Order MVM in 4x4 PE CGRA............................... 48

Figure 6.6 The context of 8
th

-order MVM in 4x8 PE CGRA ... 49

Figure 6.7 The context of 16
th

-order MVM in 4x8 PE CGRA 50

file:///C:/Users/Leti/Downloads/Valderas_20072015.docx%23_Toc425621380

vi

LIST OF TABLES

Table 4.1 Interconnections between PEs in CREMA [6] ... 15

Table 4.2 Possible functionalities of each PE with their related identifier 17

Table 5.1 Different connection cases considering one operand is in the memory

and the PE is in the first row ... 34

Table 5.2 Different connections considering that one operand is not in the

memory and the PE is in the third row .. 34

Table 5.3 Different data saved into contextPE array .. 41

vii

LIST OF SYMBOLS AND ABBREVIATIONS

ADRES Architecture for Dynamically Reconfigurable Embedded System

ALE-X Arithmetic and Logic Expressions for Xputers

ASIC Application-Specific Integrated Circuit

BP Bank Position

CCB Core Configuration Block

CGRA Coarse-Grained reconfigurable architectures

CISC Complex Instruction Set Computer

DIL Data-flow Intermediate Language

DPSS Data-Path Synthesis

DRESC Dynamically Reconfigurable Embedded System Compiler

DSP Digital Signal Processing

FireTool FIeld programming and REconfiguration management Tool

FPGA Field Programmable Gate Array

FU Functional Unit

GP-REG General Purpose REGisters

MOVTI MOVe To Immediate

MVM Matrix-Vector Multiplication

NML Native Mapping Languag

NPL Native Mapping Language

NRE Non-Recurring Engineering

NRE Non-Recurring Engineering

PCB Peripheral Control Block1

PE Processing Element

PEP PE Position

rDPA Data-Path Array

RF Register Files

RISC Reduced Instruction Set Computer

RPN Reverse Polish Notation

SCREMA Scalable Coarse-Grain Reconfigurable Array with Mapping Adaptiveness

VLIW Very Long Instruction Word

XPP eXtreme Processing Platform

1

1. INTRODUCTION

Currently, the use of embedded systems and applications has been continuously increas-

ing at the exponential pace. Applications such as streaming audio/video, image pro-

cessing and interactive services demand high performance and use of sophisticated al-

gorithms. This demand is shadowed by the tradeoff between constraints and perfor-

mance. Constraints include design costs, time-to-market, non-recurring engineering

(NRE) costs, etc., whereas efficiency can be related to performance, power dissipation

and some other high level metrics, e.g., W/Hz. [1]. The two most used approaches for

implementation are software running on a general purpose processor and hardware in

the form of Application-Specific Integrated Circuit (ASIC) [2]. General Purpose Pro-

cessors (GPPs) are characterized to be flexible enough to perform various applications.

However, it does not provide fast execution time and high performance. ASICs are de-

signed for a specific application, consuming less power and providing a high perfor-

mance as they are custom-tailored. Reconfigurable architectures take the advantages of

the two mentioned approaches and provide high performance for various applications

along with flexibility. They can be classified in three groups according to their level of

granularity: Fine-grained, Middle-grained and Coarse-grained. Fine-Grained reconfigu-

rable architectures consist of functional units interconnected by a programmable net-

work. These functional units implement low-level bit-oriented logic functions [3]. Field

Programmable Gate Array (FPGA) belongs to such reconfigurable systems. Middle-

Grained consists of configurable cells with a granularity level of equal to or less than 8-

bits. They are mostly found integrated with microprocessor cores [3]. Coarse-Grained

Reconfigurable Arrays (CGRAs) are composed of an array of functional units and stor-

age resources. The functional units are designed to execute word-level or subword-level

operations like additions and subtractions [1]. These reconfigurable architectures pro-

vide a drastic reduction of configuration memory and configuration time, as well as a

diminution of the placement and routing problem. For that reason, various platforms

using template-based CGRA have been designed; very popular since the last decade [1].

It should be noticed that the architectural specifications, computational model and de-

signed tools diverge from one CGRA to another.

One of the first CGRA was Xputer architecture [3]. It consists of a reconfigurable Data-

Path Array (rDPA) organized as a uniform two-dimensional array of ALUs. Another

CGRA is RaPiD composed of a three integer ALUs, multipliers, six general-purpose

datapath registers and three RAM blocks [4], whereas PiPeRench [3] is composed of

reconfigurable pipelines stages called hardware stripes. Each of these hardware stripes

has an array of Processing Elements (PEs) with registers and ALUs. Architecture for

Dynamically Reconfigurable Embedded System (ADRES) is another CGRA. It consists

of two major components, a Very Long Instruction Word (VLIW) processor and a re-

2

configurable array [1]. Another CGRA is BUTTER [5], which is 4x8 matrix of PEs

with a 32-bit datapath. It works with general purpose Reduced Instruction Set Computer

(RISC) processor. Since CGRAs contain high computational parallelism and through-

put, they occupy an area of few million gates. In this context, a Scalable Coarse-Grained

Reconfigurable Array with Mapping Adaptiveness (SCREMA) template was developed

to generate applications-specific accelerators for optimal resource utilization was

providing scalability [6]. Using SCREMA, the user can instantiate only those resources

that are required by a specific set of applications.

One of the most important challenges of designing a reconfigurable architecture is relat-

ed to its programing and compilation. Programming CGRAs are highly dependent on

the structure and the granularity. In an ideal CGRA compiler, the user does not program

in complex low-level programming. Compilation environments for reconfigurable sys-

tems span from manual placement and routing (P&R) tools to automatic design flow

from high-level programming languages, such as C.

The target of this research work is to design and implement a compiler framework for

SCREMA, to replace the existing manual P&R Graphical User Interface (GUI) tool.

Such tool would be time consuming for the user if the size of the CGRA is extra large

and there is large amount of computational information. The implemented compiler will

automatically place and route the operations over the matrix of PEs and generate output

configuration packages needed to create the SCREMA template. The input source is a

Reverse Polish Notation (RPN) file with the description of the target algorithm. From

this file, the main processing context will be created by the compiler. The compiler

framework implements two important dataflow graphs to perform a broad range of sum-

of-products related algorithms. The compiler framework has been tested and evaluated

specifically for integer Matrix-Vector Multiplication (MVM) algorithms.

This thesis work is organized as follows. Chapter 2 discusses some of the related CGRA

compiler frameworks. The architecture of platform which is composed of a RISC core

and a CGRA is explained in Chapters 3 and 4, respectively. The design and implemen-

tation of the compiler is explained in Chapter 5 and the results from the Matrix Vector

Multiplication are discussed in Chapter 6. In Chapter 7, conclusions and future work

are presented.

3

2. LITERATURE REVIEW

Compiler environments of CGARs differ by the approach used for technology mapping,

placement and routing. The characteristics of each compiler depend on the constraints

and specifications of the reconfigurable architecture. The primary works regarding

compiler design can be found for FPGA. In this case, compilers analyze a hardware

descriptive text, i.e, VHDL or Verilog, and synthesize it for the FPGA device. In case of

CGRAs, the compilers use only high-level programming languages, e.g., C. The follow-

ing examples are the most important and relevant academic work for CGRA compilers.

2.1 CoDe-X Compiler

CoDe-X compiler is used to map a C-like code, called X-C, into Xputer hardware [7].

Xputer is one of the first CGRA. It consists of two-dimensional array of arithmetic and

logic reconfigurable units. There are three kinds of interconnections between them [3]:

nearest neighbors, row/column back-buses and one global bus. The architecture is char-

acterized for providing high area effectiveness. The input source for the compiler is X-

C. The input program is divided by using the compiler which applies a number of loop

parallelization transformations. In the next step, the compiler creates a description for

each division using Arithmetic and Logic Expressions for Xputers (ALE-X) which will

be synthesized using a Data-Path SyntheSis (DPSS). ALE-X can be generated automat-

ically from the input code or it can be made manually. DPSS generates an assembler file

for the configuration of the target architecture. Moreover, DPSS has a data scheduler

which is responsible for organizing the operation to be mapped in the architecture. Fi-

nally, after scheduling and with the help of a mapper, placement and routing is per-

formed. Furthermore, the array configurations and corresponding controllers are also

generated.

2.2 DIL compiler

DIL compiler has been designed to map the input source to PipeRench architecture [8].

In this case, the compiler uses a Data-flow Intermediate Language (DIL) as an input

source. The compiler is responsible for scheduling, placement and routing.

PipeRench is a template-based, pipelined reconfigurable architecture since it consists of

virtual pipeline stages implemented as hardware stripes [9]. There can be several pro-

grammable PEs that can be found in each stripe. Each PE is composed of a number of

ALUs, pass registers and several control logic units. Each ALU has three inputs; two

4

inputs for data and the other one is used as control input. Three types of connections can

be found inside this reconfigurable architecture. One of them is between two stripes, the

other one is between a stripe and some of their PEs, and the last connection is pass-

register interconnect, where each register can transfer information to the other registers

[9].

DIL [3] is a hardware independent high-level language which is also similar to Silage

[10] and behavioral Verilog. It can be used to describe the algorithms for reconfigurable

architectures. DIL has the C-operators and allows the programmer to manipulate arbi-

trary the width of integer values to guarantee that no information loss happens due to

the overflow or type-conversions.

The first step is reading the specification of the target architecture. Then, the function

and module techniques are performed in the input source to facilitate further analysis.

During the synthesis process, the compiler constructs a graph whose structure is hierar-

chical acyclic and the nodes represents operations, I/O ports and delay-registers. After

generating the graph, the compiler performs placement and routing over the graph, to

generate the virtual hardware stripes [3]. In those processes, the compiler uses a deter-

ministic linear-time greedy algorithm based on list scheduling [3]. This compiler has

excellent compilation speeds and produces optimal hardware utilization.

2.3 DRESC Compiler

Dynamically Reconfigurable Embedded System Compiler (DRESC) [1] is a compiler

designed for ADRES. This compiler maps the intensive loops parts of the C program to

the reconfigurable architecture while the rest of the code is executed by VLIW proces-

sor. An intermediate representation is used to implement the scheduling process, and

then, a novel modulo scheduling algorithm is employed to perform a combination of

scheduling, placement and routing.

ADRES is composed of a VLIW processor and a reconfigurable array. The reconfigura-

ble array consists of two dimensional array of functional units (FUs) which are respon-

sible for executing a set of operation. The storage elements are Register Files (RFs) and

memories blocks. Each FU can perform fixed-point operations. ADRES template is

defined using an XML-based architecture specification language which is generated by

DRESC compiler [3].

DRESC compiler accepts a C language program as input source. The first step is identi-

fying the loops which will be mapped into the two dimensional array of FUs. Then, an

intermediate representation is generated using a VLIW compiler framework called IM-

PACT. The representation is called Lcode and it is used to execute the scheduling pro-

cess. A novel modulo scheduling algorithm is developed by the program and the archi-

tecture representation as input sources. It is a software pipelining technique which at-

5

tempts to schedule an iteration of a loop and determine which of the FUs will perform

each operation. Finally, the placed and scheduled operations are implemented [1]. The

objective of this compiler is to provide high-performance using all the family of

ADRES architectures

2.4 RaPiD-C Compiler

RaPiD [4] architecture is a reconfigurable pipelined datapath architecture that uses RaP-

iD-C compiler to map a high-level hardware description. This compiler needs RaPiD-C,

as a C software language to implement an application over the reconfigurable system. It

also requires the user collaboration to specific parallelism, data movement and data par-

titioning across the multiple elements of the RaPiD architecture [3]. The compiler pro-

cess is composed of four steps [4]: netlist generation, dynamic control extraction, in-

struction stream/decoder generation and I/O address generation.

RaPiD [4] is a coarse-grained field-programmable architecture that enables pipelined

computational structures to be built from an array of arithmetic units, registers and

memories. It consists of functional units such as ALUs, multipliers, General Purpose

REGisters (GP-REGs) and RAMs. The large numbers of functional units are spread

across a field-programmable segmented bus structure.

The application description is given in RaPiD-C language, which consists of multiple

loops, one for each stage of the application. The programmer has to design the code

paying attention to the architecture characteristics, for instance, to the number of func-

tional units and the available memory. From the RaPiD-C language, specific operations

are assigned to a specific stage at a specific time. One operation is performed by each

pipeline stage in each cycle [4].

During the netlist generation process, the compiler instantiates registers for variables,

ALUs for adds (and also other operations), multipliers for multiplication and multiplex-

ers for if-then-else statements [4]. Once the netlist is generated, the compiler executes

dynamic control extraction process. All the multiplexers are gathered in a lager multi-

plexer, depending on the size of the reconfigurable architecture. The compiler also real-

izes the same operation for the functional units. The compiler then extracts the address

and instructions generated to control transfers values between stages [3]. The compiler

is specifically designed for RaPiD, however it can be used in different technologies

such as FPGAs or ASICs.

2.5 XPP-VC Compiler

The eXtreme Processing Platform (XPP) [10] uses XPP-VC compiler to map a C code

into the reconfigurable architecture. The compiler flow consists of a preprocessing and a

6

dependence analysis of the input code followed by a temporal partitioning of each task,

Native Mapping Language (NPL) generation and the final placement and routing.

The XPP technology is provided with development tool suite consisting of a placer, a

router, a simulator and a visualizer [10]. The architecture is characterized by two-

dimensional array of PEs, internal memories and interconnection resources. The PEs

executes arithmetic and logic operations, comparisons and special operations as coun-

ters. It should be noted that the output of each PE can be considered as the input source

of another PE.

The input source of the compiler is a C code without structures, floating-point data,

pointers, irregular control flow, recursive and system calls [10]. The user can provide a

file where the parameters of the architecture and the external memories are defined. A

preprocessing step is required by the compiler to transform the code into a program

which facilitates the next steps. In the temporal partitioning, the code is divided into

tasks that will be transformed to a Native Mapping Language (NML) reconfiguration

code. After that, the NML module is placed and routed over the architecture. Finally,

the configuration data and the binary codes are generated.

7

3. THE COFFEE RISC PROCESSOR

The compiler framework presented in this thesis work generates CGRA accelerators

using SCREMA template in order to work with COFFEE RISC processor in a proces-

sor/co-processor model. COFFEE and SCREMA generated accelerators interact with

each other using a network of switched interconnections that provide dedicated connec-

tions for fast communication [11].

COFFEE RISC Core [12] is a general-purpose processor which was designed for setting

up embedded systems with a motivation to accelerate the tasks related to telecommuni-

cation and multimedia applications. There are different types of processor cores which

can be classified depending on the instruction types: Reduced Instruction Set Computer

(RISC), Complex Instruction Set Computer (CISC) and Digital Signal Processing

(DSP). RISC and CISC are used to implement general purpose operations. However,

DSP is a core to execute digital signal processing kernels where large numbers of math-

ematical operations have to be performed quickly. The difference between RISC and

CISC is basically the type of instructions. CISC executes complex instructions such as

an arithmetic operation load from memory. Nevertheless, RISC only accesses to the

memory if load or store operations are called. The target of RISC is to perform the in-

structions using fewer cycles per instruction. COFFEE RISC Core was designed by fol-

lowing the RISC philosophy to executing one instruction per cycle. It uses delay

branching with efficient hardware which consists of finding instructions to be placed in

delay slots [12]. The length of a RISC instruction is fixed. RISC instructions contain all

needed information without requiring any access to the memory. Only load and store

instructions access the memory.

The COFFEE RISC Core instruction set architecture incorporates the most common

instructions of a typical RISC core. It has flexibility in its instruction-set which allows

coprocessor support. A hardware support is also placed to give the opportunity to exe-

cute DSP instructions. There are 14 arithmetic instructions, 10-bit field manipulation

instructions, six boolean operation, eight conditional branches, four other jumps and six

shift instructions [12]. In addition, COFFEE RISC is characterized by implementing

real-time operating systems which can be achieved by dividing its mode into user regis-

ter set and supervisor register set.

8

The COFFEE RISC Core can be called load-store machine since memory operands are

saved into registers before any operation [12]. The same occurs with the result of each

operation where the value is saved into a register. To avoid excessive memory traffic, a

large general-purpose register bank is used. This register is divided in two parts, one

part for the user mode and the other for the supervisor mode. Moreover, COFFEE RISC

offers the opportunity to configure it. For that reason, an internal memory mapped con-

figuration register bank called Core Configuration Block (CCB) is provided. A Periph-

eral Control Block (PCB) was designed to configure and communicate with the periph-

eral devices.

The COFFEE RISC core is 32-bit Harvard architecture, where data and instruction

memory can be distinguished from their interfaces. As it can be seen from the interface

of COFFEE RISC Core in Figure 3.1, the memories are interconnected and they allow

accessing them with different memory addressing schemes. The access time to the

Figure 3.1 Interfacing the COFFEE RISC core [12]

9

memory may be reconfigurable using CCB. The PCB module is included to the COF-

FEE RISC Core’s data bus interface.

The COFFEE RISC Core can support four coprocessor interfaces that are attached as

memory interface along with the maximum register bank size of 32 bits [12]. Such co-

processors can interrupt the core by an exception signal. COFFEE RISC core also pro-

vides an internal interrupt and eight different kinds of external interrupts. Those external

interruptions can be from twelve sources if the coprocessor interfaces are not used.

As it can be seen in Figure 3.2, the COFFEE RISC Core has six stage pipelines with a

maximum throughput of one instruction per cycle. The first pipeline stage is called

fetch, where one instruction is fetched from the instruction memory depending on the

pointer of the program counter. The address is checked by the Addr Chek block. During

the decode stage, the instruction is identified and processed for the following stages. In

the third pipeline staged, called execute, the arithmetic and logic operations are per-

formed. Some operations like multiplication need to be executed in two pipeline stages.

For that reason, co-processor stage is provided. After that, if load or store operations are

required, they can be executed in the data memory stage. Finally, in the last stage, the

final data will be written in the destination register of the register file.

Figure 3.2 COFFEE RISC Core pipeline [12]

10

The COFFEE RISC Core is a VHDL description which can be portable between tech-

nologies. For this reason, it has been synthesized for 90 nm low-power ASIC technolo-

gies, considering low supply voltage of 0.95V, high temperature of 125 degree centi-

grade and variations to guarantee high manufacturing processes. The highest frequency

found was 150 MHz [12].

In addition, it was synthesized and P&R on ALTERA EP2S130F1020C4 and Xilinx

XC4VLX160FF1148-11 devices, with different timing constraints. The results show the

difference between the two technologies, in such a way that Altera targets higher densi-

ty and higher operating frequencies, while Xilinx has less power dissipation [12].

The software development tools are designed at Tampere University of Technology,

Finland for COFFEE RISC Core. Several template-based CGRAs have been developed

to work with COFFEE RISC Core, e.g., CREMA, AVATAR and SCREMA. CREMA

is a 4x8 matrix of PEs. AVATAR consists of 4x16 matrix of PEs while SCREMA is a

scalable CGRA to instantiate different sizes of CGRAs chosen by the user. SCREMA

platform will be explained in details in the next chapter.

11

4. THE SCALABLE CGRA TEMPLATE

SCREMA is a Scalable Coarse-Grained REconfigurable Array with Mapping

Adaptiveness [6]. SCREMA was designed to be scalable in both the number of PE rows

and columns to meet the specific performance requirements of an algorithm. SCREMA

is equipped with 32-bit local memories. The mapping adaptiveness consists of tailoring

the array to specific application requirements [6]. A CGRA is composed of a matrix of

interconnected PEs. The functionality and the routing among PEs can be modified by

using the runtime reconfigurability feature of CGRAs. Every PE supports a fixed set of

operations and different interconnections. Specifically, each PE can perform 32-bit inte-

ger or floating point operation in IEEE-754 format [11]. In general, interconnections can

be classified into local, interleaved and global interconnection. A reconfiguration pat-

tern, called context, specifies the operation to be implemented in each PE, as well as the

interconnection. Each application consists of one or more reconfiguration patterns. For

each context, several reconfiguration words are generated. They are stored into the re-

configurable memory of each PE that enables fast switching between contexts. Such

mechanism permits the modification of the functionality and routing which can be per-

formed in one Clock-Cycle (CC) [6].

The CGRA design is realized using a VHDL template which can be generated using

FIeld programming and REconfiguration management Tool (FireTool). Using Firetool,

the user can instantiate manually the functionality and the routing among PEs for each

context. It generates two different files. The first one is a VHDL package based on the

template size. The second one is a set of C header files that contain the operations and

interconnections need to be selected for each context. The content of this thesis is to

provide an automatic approach to generate both files, without using Firetool.

The elements that can be found inside the VHDL package are related to the routing of

PEs, the PE functionality and the reconfiguration infrastructure. Figure 4.1 shows the

last three components.

Each PE has two inputs and two outputs. The data of each input is taken from a multi-

plexer. Each multiplexer is connected to the possible data sources. The selection bits,

defined in the VHDL file will indicate which connection has to be performed by the PE

for each context. Moreover, in the VHDL package, the size of such multiplexer is de-

fined which depends on the number of input sources. For example, if in one application,

one PE is always connected to the same input source, then the multiplexer must not be

used. However, if one PE needs four different connections, a 4-to-2 multiplexer has to

be instantiated.

12

The architecture of the PE is in most part compile-time configurable [6]. The different

elements of the PE core can be seen in Figure 4.2. The configuration of each element

can be found in the VHDL package. The components can be divided in two groups:

functional blocks and reconfigurable control blocks. Functional blocks comprise integer

functional units, such as adder, multiplier, shifter and a memory for LUT logic function

implementation, immediate register and a floating point block. The VHDL file indicates

which blocks have to be instantiated for each context. Reconfigurable control block

consists of a decoder and the output multiplexer. The size of these two elements de-

pends on the number of operation to be performed by each PE.

The configuration words are inserted into the array of PEs using pipelined infrastructure

[13]. Such process consists of injecting the reconfigurable patterns into the array to be

propagated along the horizontal and vertical directions.

4.1 The existing GUI-based Compiler

FireTool is the manual graphical tool used to design the different reconfiguration pat-

terns for the CGRA. This tool consists of several windows. In the first one, the user is

asked to introduce information about the size of the CGRA, the project name and the

directory where the information will be saved. In the second window, the user is al-

lowed to design a new context or to modify an existing one. The buttons to generate the

VHDL package and the C header files are also found in the second window.

Figure 4.1 Design blocks defined at compile-time using a set of parameters [6]

13

 Figure 4.2 PE Core Template [6]

Regarding the design of a context, a user must perform the placement and routing man-

ually by using the graphical interface shown in Figure 4.3. It consists of an array of PEs

where the users are allowed to select the functionality and the interconnection of each

PE input. The user can also activate the use of the immediate register for shift operation.

After configuring one context, the VHDL package and the C header files can be gener-

ated. Once the new reconfiguration pattern is designed, both of the files (VHDL, C

headers) will be updated. The characteristics of each file are explained in detail in the

following subsections.

4.1.1 CGRA Parameter File

It is a VHDL file which is based on the CGRA template configuration. It defines the

architecture of each configuration pattern, i.e., the routing among PEs, the PEs func-

tionality and the reconfiguration infrastructure. The file consists of several parameters.

The description of the most important parameters is presented below:

14

 crema_cfg_ic_depth_A This parameter represent a matrix of the same size as

the size of the CGRA. Each position represents one PE. As it was mentioned in

the Section 4, a PE has two inputs and in each of them, one multiplexer is im-

plemented to select the input source. In this matrix, the select line information of

the multiplexer of the input A is saved.

 crema_cfg_ic_depth_B Its description is same as crema_cfg_ic_depth_A ex-

cept that each position of this matrix saves the selection bit of the multiplexer of

the input B.

 crema_cfg_width The size of this matrix is the same as the size of the CGRA.

This parameter is a matrix of integers that represents the selection bit of the out-

put multiplexer. In this case, the size of the multiplexer depends on the number

of operations that have to be performed by a PE.

 crema_sel_width Each integer in the matrix is related to the output of the PE.

The integers select the multiplexed output of the PEs. The specific value of the

integer depends on the number of functions that a PE processes.

 crema_mux_mask_A This large constant matrix is composed of several

smaller matrices. The value of these smaller matrices is equal to the number of

PE rows in the CGRA that means if there are four PE rows in the CGRA there

will be four groups of small matrices. Every small matrix has to be of the same

size. A non-zero column of these small matrices represent an interconnection

with another PE.

All stored information in these small matrices corresponds with the connection

identifier (See Table 4.1) for the input A of the PE. As it can be seen in Table

Figure 4.3 Graphical User Interface to design a context

15

4.1, each connection is represented by a number. This means that if the input

source of one PE is in the output A of another PE, the connection would be Up

In A and is represented by ‘1’.

 crema_mux_mask_B This large matrix also consists of several smaller matri-

ces, as in the previous case of crema_mux_mask_A. The unique difference is that

the connection identifier for the input B can be stored in each position.

 crema_cell_mask The dimension of this group of matrices is the same as in

the last two cases. As it can be seen in Table 4.2 that an operation to be per-

formed by a PE has an identifier. The operation identifier can be stored in each

position of this group of matrices.

 crema_add The dimension of this matrix is equal to the size of the CGRA.

The binary information saved in each position will indicate if the PE has to per-

form an addition operation.

 crema_sub The characteristics of this matrix are the same as in the last case.

However, the only difference is binary information in the matrix which indicates

if a subtraction has to be performed by each PE.

 crema_mul Each position of this matrix indicates if the PE has performed a

multiplication. The size of the matrix is the same as the size of the CGRA.

 crema_shifter In case, if a shift operation has to be performed by a PE, a bi-

nary parameter ‘true’ will be stored in each position of the matrix.

 crema_ram In this case, each position of the matrix will be will represent a

RAM related operation.

 crema_imm The characteristics of this matrix are the same as the others, but

with a difference that it will indicate if the immediate register has been used by

the PE.

 crema_confup This matrix indicates if the configuration of the above PE has

been used for the reference PE. The dimension is the same as the CGRA.

 crema_word_width_int It indicates the word width of each PE which is equal

to 32 bits.

Table 4.1 Interconnections between PEs in CREMA [6]

Interconnections Interconnections
identifier

Representation

Disconnected 0

Up In A 1

Un In B 2

16

Left Out A 3

Left Out B 4

Up Left In A 5

Up Left In B 6

Up Right In A 7

Up Right In B 8

Loop 9

Interleaved A 10

17

Interleaved B 11

Vertical A 12

Vertical B 13

Horizontal A 14

Horizontal B 15

Table 4.2 Possible functionalities of each PE with their related identifier

Functionality Functionality
identifier

NOP 0

ADD 1

SUB 2

MUL 3

ADDS 4

18

4.1.2 Configuration Header Files

Header files contain different configuration words for each context. Each configuration

file consists of several configuration arrays. The number of configuration arrays is the

same as the total number of contexts needed to be implemented for an application.

The configuration words are represented by eight hexadecimal digits and each number

keeps the information related to the routing and the functionality of each PE. The first

two digits save the PE identifier. Starting from the last significant bit side, the first hex-

adecimal digit saves information about the interconnection of the input A. The infor-

mation related to the interconnection of the input B is saved in the next digit. The next

hexadecimal number is reserved to store the information about the functionality. If the

PE uses the immediate register, one digit is needed to show in which context the imme-

diate register has been used. Generating such configuration words is explained in the

following example.

Figure 4.4 depicts the example, where the configuration words can be seen and are rep-

resented in binary numbers for each context. It can be seen that each group of bits repre-

sent several other routing and operation parameters, as it was mentioned earlier. The

number of bits for the groups called inA, inB and Oper depends on amount of intercon-

nections and different functions to be performed by each PE, respectively.

Suppose that first PE will receive the input sources from three different PEs, both for

input A and input B. To represent three options, two bits are needed. Hence, the selec-

tion bits for each multiplexer will be equal to two. If a PE is supposed to receive data

from only one input source then only one bit would be required. Two bits representing

the routing field inA and inB are shown on the right side of Figure 4.4 as the selection

bits of the multiplexer for each input. Each input source is listed depending on the order

it was used. If one input source is used again in another context, it is codified with the

same number. If we look at Figure 4.4, it is supposed that input A uses the input source

numbered as zero both in the first and fourth context. The same occurs for input B in the

third and fourth context, but in this case the input source is numbered as three.

SUBS 5

MULS 6

SHIFT 7

LOAD 8

STORE 9

MOVTI 10

DELAY 11

UNREGFT 12

19

Then, assume that PE performs four different operations. In this case, the number of

selection bits for the decoder is equal to two since there are four different possibilities.

Each operation will also be represented by two bits called Oper (See Figure 4.4). The

bits for the decoder are also listed depending on the order they are used.

Finally, if a PE needs the use of the immediate register then the bit called imm is used.

If the immediate register is not instantiated then the imm bit is not written in the config-

uration word. To know in which context the immediate register is needed, imm bit will

be 1. As it can be seen in Figure 4.4, the immediate register was only needed in the first

context.

Figure 4.4 Binary fields in the configuration words

20

5. DESIGN AND IMPLEMENTATION OF AUTO-

MATIC COMPILER

The compiler framework replaces the existing GUI tool with an added feature of auto-

matic placement and routing. The input source of the compiler is a Reverse Polish Nota-

tion (RPN) file. Such file is analyzed to extract the computational information and to

generate the main processing context. The user has the possibility of implementing ad-

ditional configuration patterns. Two different design paradigms are provided: pre-

processing context and canonical context.

5.1 Reverse Polish Notation

The input source for the compiler is a RPN sequence related to the equations to be

mapped on the CGRA. RPN is a mathematical notation where each operator is placed

after their operands. This means that instead of writing a+b in general, the RPN is writ-

ten as ab+. Such notation was invented by Burks, Warren and Wright [14]. At the be-

ginning of 1960 it was reinvented by Friedrich L. Bauer and Edsger Dijkstra [14]. They

reinvented it to reduce the memory access time in the computers and to provide higher

performance. RPN is frequently used in computer science, e.g., in Unix pipelines and in

concatenative programming languages based on stacks. A Last-In-First-Out (LIFO) is

needed to process the RPN information. The algorithm followed to process the RPN

information consists of distinguishing between operands and operators. The operands

are store into one LIFO. If one operator is identified, the program pulls the last two

stored operands from the LIFO, produces the operation and pushes the result into the

same LIFO. This algorithm is followed by the compiler as it will be explained later.

5.2 Matrix-Vector Multiplication

The compiler has been tested by Matrix Vector Multiplication (MVM). An N
th

 order

matrix consists of N scalar products between each row of an NxN matrix and a vector.

This process is just the multiplication between one element in the row of the matrix and

another element of the vector which are in the same position. Once all multiplications

have been made, the addition of all results is required. Eq. 5.1 represents an example of

4
th

 order MVM. The result of each row of 4x4 matrix and the vector can be observed in

Eq. 5.2.

21

(5.1)

(5.2)

In order to implement this algorithm on SCREMA template, the RPN sequence of only

p1 is sufficient as p1, p2, p3 and p4 are all identical.

5.3 Top-level module

Compiler design consists of three main steps: information processing, context imple-

mentation and mask delivery. The Figure 5.1 depicts the compiler dataflow. During the

information processing, the RPN file is analyzed to place the operands inside the local

input memory of the CGRA optimizing resources. Within the context implementation

stage, the different contexts are designed. The main processing context is designed from

the RPN file. The rest of contexts are implemented by two different design paradigms

(pre-processing and canonical context). Finally, the VHDL package and C header files

are generated in the mask delivery step.

Figure 5.1 Compiler Dataflow

22

To design the compiler, the SCREMA template has been virtualized. In Figure 5.2, it

can be seen the virtualized elements of SCREMA template: the local input memory, the

local output memory and the PEs.

The design of the compiler consists of several functions which will be explained below.

The main function is responsible for saving the initial information provided by the user

which is in the RPN file, i.e., the project name and the size of the desired CGRA. The

main program also initializes the global variables, executes the rest of the functions and

interacts with the user to design new contexts.

As it was mentioned before, the main function needs to declare all the global variables.

Such variables define the virtualized parts of the CGRA (PEs and local memories), the

VHDL matrices (See Section 4.1.1), LIFOs and their pointers. The VHDL matrices are

represented as arrays. Two CGRA are created: a CGRA template and the CGRA to be

instantiated. The CGRA template is generated from the RPN file. The template design

might be replicated to obtain the CGRA to be instantiated. The template CGRA can

instantiate at maximum sixteen columns of PEs and any number of PE rows based on

the user input. In the design of compiler, a PE is defined as structure, as it can be seen in

the description below. It consists of two strings, inA and inB. The connection identifier

for each input is saved in these strings, respectively. The operation identifier is saved in

the string called operation. The information about the equation executed by the PE is

saved in the info string. ConnnectedPE indicates if that PE has been connected to other

PEs or to the output memory. The PE information for each context is stored in the con-

Figure 5.2 Elements of SCREMA template

23

text array. This array is needed to generate the C header file. Finally, pointerContext is

defined to indicate in how many contexts the PE have been used.

1 typedef struct PE {
2 char inA[3]; //save the connection identifier for InA
3 char inB[3]; //save the connection identifier for InB
4 char operation[3]; //save the operation identifier
5 char info[100]; //store information about the operation
6 int connectedPE;
7 int context[8][9]; //save the values of this PE
8 int pointerContext;
9 }PE;

Program 5.1 PE structure declaration

Both of the input and output local memories of the CGRA are defined in the main func-

tion. The information that will be used by the PEs is saved into the input memory while

the results of the operations to be performed by the CGRA are saved into the output

memory. The size of both memories is two times the number of PE columns of the

CGRA that is being targeted by the compiler.

As it was discussed in section 5.1, the RPN algorithm is based on the use of LIFOs. The

compiler needs five of them to process the information. The compiler reads the RPN file

character by character. When one operand is identified, it is saved into a LIFO called

LIFO1. The compiler repeats the same process until it reads an operator. In that case,

the compiler extracts the two last operands from LIFO1 and it searches for the ideal PE

to place the operation to be performed. If the PE is in the first row of the CGRA, the

result is saved into the LIFO called ROW0. The same occurs with the rest of the results

of the other rows. They will be saved inside of their respective LIFOs. They are called

ROW1, ROW2 and ROW3, respectively. Every LIFO has its own pointer to know the

position for pushing or pulling the data, and also indicates how many values can be

stored in them.

Finally, the number of context is initialized in the main function. This parameter is

needed to know which context is being designed at each moment since that information

is required once the C header file is generated by the compiler.

Inside the main function, several files can be seen. They are required to read the RPN

file and to generate the VHDL package and the also C header file. In particular, file1 is

for saving the RPN file, file2 for creating the VHDL file and file3 for generating the C

header file.

Some functions are executed by the main program: initialization, information, pro-

cessing, mainContext, draw, header, preprocessing and canonical. The VHDL matrices

are initialized by the initialization function. This function is needed to be able to modify

those matrices in other functions. The required information for that function is the size

24

of the CGRA and the VHDL file since the dimensions of the matrices depend on the

size of the CGRA. Information function is used to extract the relevant information of

RPN file and to place the operands inside the input memory. Information function needs

the CGRA template dimensions, the RPN file and the number of operations to be per-

formed by the CGRA. Processing function is responsible for reading the RPN file and

performing the placement and routing in the CGRA template where the size of the

CGRA template and the RPN file will be required. MainContext function replicates the

CGRA designed in processing function depending on the size of the desired CGRA. As

it can been understood, this function requires the dimension of both CGRA template

and the CGRA to be instantiated. Draw is the function for generating the VHDL pack-

age. It reads the data from the VHDL matrices and creates the corresponding file. Head-

er function is responsible for generating the C header file. This function will read the

data from the context array of each PE and design the configuration stream. The input

parameters of this function are the size of the final CGRA, the C header file and the

project name. Two design paradigms are provided: pre-processing and canonical con-

texts. Preprocessing and canonical function will design these two contexts, respective-

ly.

5.4 Information Processing

In information processing module, the compiler places automatically the pair of oper-

ands in the input memory. It also performs the placement and routing for the first row of

the CGRA template. Information processing module consists of information and sched-

ule functions

Information function collects the important data from the RPN file to optimize the pro-

cess of placing the operands in the local input memory of the CGRA. In this case, the

compiler keeps an image of the local input and output memory to perform placement

and routing. The compiler needs to know which operations will require the two oper-

ands from the local input memory of the CGRA. Within this step, the compiler will

Figure 5.3 Example of the information processing for MVM algorithm.

25

know if there is enough space in the local input memory to place the operands. Other-

wise, the compiler will indicate a constraint.

First, the compiler places the operands in the local input memory of the CGRA. If two

operations use the same operand, it is placed in the local input memory only once. The

order to place the operands is the order in which they are written in the RPN sequence.

The compiler then reads again the RPN file and searches for the operations which are

required to take both operands from the input memory.

In Figure 5.3, the mentioned process can be seen. The RPN sequence is related to the

MVM algorithm. The sequence consists of a few addition and multiplication operations.

First, the compiler places all the operands in the input local memory of the CGRA. The

operations that have both operands in the input memory are saved into the equation ar-

ray which can be seen on the right side of Figure 5.3. As it can be noticed, this function

would not be needed in the case of MVM since the compiler might just read character

by character and place the operands in the input memory. However, this solutions was

implemented to design a more efficient and general compiler.

This function needs the size of the CGRA, the number of total operations and the RPN

file. The dimensions of the CGRA are required to know if the operands would be placed

inside the local input memory and are also used for executing the next schedule func-

tion. The number of total operations is needed to create the mentioned equation array.

Finally, the RPN file is required to read each character and to identify which of those

are operands or operators.

Schedule is another function inside the information processing module. Basically, this

function calculates which operand is the most used in the global equation. Such operand

is placed inside the local input memory of the CGRA depending on how many times it

is required in the global equation. The compiler then searches for the other operands

(called neighbors) needed to perform the operation. The compiler places them together

in the local input memory of the CGRA. Route function is executed to make a connec-

tion between each PE and each memory bank of the local input memory of the CGRA.

The parameters inside this function represent the dimension of the CGRA template, the

number of operations which require both operands in the memory, the number of oper-

ands which are needed to implement the last operations and the mentioned equation

array.

Inside schedule two different structures can be found. The first one, shown in Program

5.2 and is called data. It saves information about each operand, i.e., how many times it

is required in the equation, the number of the other operands that are used with it (called

neighbors) and the name of these operands. The operations and information that says if

that operation has been analyzed are saved in the second structure (See Program 5.3).

26

Once these structures are defined, the schedule function starts to fill them with equation

array that is provided by information function.

1 typedef struct data{
2 char name; //name of the operand
3 int times; //how many times is used
4 int neighbour; //how many neighbors has
5 char neighborName[numCharacter]; //saved the name of the neigh-

bors
6 }data;

Program 5.2 Definition of data structure

1 typedef struct operations{
2 char e[1][4]; //save the equations
3 int used; //indicates if that operation has been used by PE
4 }operations;

Program 5.3 Definition of operation structure

Before going in more detail about how this function works, it is needed to explain the

considerations that have been taken in account during the design. Due to the constraints

in the hardware structure provided by SCREMA, each PE of the first row can only take

the information from Left Up In A, Left Up In B, Up In A, Up In B, Right Up In A,

Right Up In B (See Table 4.1). Hence, this fact limits the space where to put the oper-

ands inside the local input memory of the CGRA.

If we look at the numeration provided in Figure 5.4, it can be seen that if one operand is

placed in the memory bank number one, it can be used only for PE 0 and PE 1. Howev-

er, if the same operand is placed in the position number three of the local input memory

of the CGRA, it may be used for more number of PEs. The operand which is most used

for operation is placed by the compiler, so that the maximum number of PEs can use it.

Figure 5.4 Enumeration of the memory banks and the PE of the first row

27

If the operand is required three or more times, it will be placed in the memory bank

number three since in that position more PEs may use it, as it was mentioned and con-

sidering the case if the size of the CGRA is 4x4 PEs. If that operand is just needed twice

or once, it will be placed in the memory bank number one.

Once the most frequently used operand is placed, the compiler looks for the other oper-

ands to place the operator in the PEs. First of all, the compiler searches operation that

includes the most frequently used operand. Then it looks for a place inside the local

input memory of the CGRA to place the second operand of same equation. The compil-

er then places the operation in the nearest PE. Route function is executed to place the

Figure 5.5 First step of information function

Figure 5.6 Different arrays which save information related to the operations and operands

Figure 5.7 Third step of schedule function where the operands are placed in the local input

memory.

28

equation in the PE and to implement the interconnections. If all the PEs are occupied,

the compiler stops and indicates accordingly. Once that operation is placed, the PE is

marked as used. When all the operands have been put inside the local input memory of

the CGRA, the schedule function searches if there are other operations without having

been placed in the CGRA. The compiler places the operands of these operations follow-

ing the same steps. At the end it checks if all the operands are placed in the input local

data memory of the CGRA.

In order to understand the mentioned explanation about the information module, one

example is provided to show why this implementation has been designed. In Figure 5.5,

shows the first step followed by the compiler. The compiler reads the RPN sequence

character by character to identify which are the operands and which are the operators.

The compiler then places all the operands in the local input memory of the CGRA. It

saves the operations which take both of the operands from the memory, in the equation

array which is shown on the right side of Figure 5.5. As it can be noticed, the operations

which use ‘e’ and ‘f’ operands are not saved into the array, because one operand will be

taken from the local input memory while the other one will be taken from the output of

one PE.

The next step is shown in Figure 5.6 which consists of saving the information related to

the number of times that one operand is used in the global equation. The names along

with the number of neighbors are also saved into the array which is represented on the

left side of Figure 5.6. In this case, the equation array is modified to indicate if one

equation has been processed by the compiler or not, as it can be seen in Figure 5.6.

The compiler measures the number of times that each operand is used and then depend-

ing on this number the operand is placed in one or in another memory bank, as it was

explained. As it can be seen in Figure 5.6, the operand which is used more times is “a”

and the number of repetitions is equal to three. As it was mentioned, the operands will

be placed depending on how many times operands are used. Since “a” operand is used

three times, it means that it has to be used by three PEs, so it will be placed in the

memory bank number three (See Figure 5.7).

After that, the compiler looks for the other operands (neighbors) are used with “a”. The

first neighbor found is “c”. It is placed to the left of “a” operand in the input memory

(See Figure 5.7). The compiler indicates that the equation “ca+” has been processed.

Then, the compiler searches if there are other operations which use both operands. In

this case “a” and “c” are used only once.

The next operand used with “a” is “b”. It is placed to the right of “a” in the local input

memory of the CGRA (See Figure 5.7). The compiler searches if there are other opera-

tions which use both operands. In this example, it can be seen that there are two opera-

tions which use both “a” and “b” operands. Finally, when all the operations have been

29

put in the CGRA, the compiler checks if all the operands have been placed in the local

input memory, otherwise, it will place them inside the empty memory banks. In this

case “e” and “f” are placed in the local input memory after the last step (See Figure 5.7).

5.5 Context Implementation

Context implementation module consists of functions, i.e., processing, place,

mainContext, preprocessing, canonical and finalPlace functions.

 Figure 5.8 First step in the processing function for MVM algorithm

Figure 5.9 Second step in the processing function for MVM algorithm

Figure 5.10 Implementation of second addition when MVM is processed

30

The main processing configuration pattern is designed inside the CGRA template with

processing and place functions. After all the operands have been placed in the input

local memory of the CGRA, the compiler starts again reading the RPN sequence. It uses

the RPN algorithm, explained in the section 5.1, to process the RPN information. The

compiler then executes place function to make the P&R in the CGRA template. The

result is replicated in the mainContext function to generate the CGRA to be instantiated.

If the information from one PE is not used by another PE, it should be moved to the

mentioned output memory, which represents the virtual local output memory of the

CGRA. The data movement is performed by finalPlace function.

The parameters of processing function are the dimension of the CGRA template and the

RPN file. The LIFOs (LIFO1, ROW0, ROW1, ROW2 and ROW3) and their pointers

are used in this function.

Processing function implements the RPN algorithm (See section 5.1). The compiler

reads the RPN sequence. If it reads an operator, it will look for the two operands of that

operation. The operands will be saved into the LIFOs, starting by LIFO1 then by

ROW0, ROW1 until ROW3. The compiler checks the position of each pointerLIFO to

know where the operands are saved. If one LIFO does not have enough operands to im-

plement the operation, the operands will be moved to other LIFO to be able to perform

the operation.

Processing function starts reading the first character of the RPN file. If it is an operand,

it will be saved into the LIFO1. The compiler continues doing this step until one opera-

tor is read. In that case, the compiler checks in which position is the pointerLIFO1. On

the left of Figure 5.8, the implementation for MVM algorithm can be seen. If the pointer

value is larger or equals to two, it means that there are enough operands to perform the

operation. The compiler pulls the two last operands from LIFO1. It designs the opera-

tion and it verifies if that operation has already been placed in the CGRA. If the two

operands have been pulled from LIFO1, it means that the operation was placed and

routed in the information processing module (See section 0), because both operands are

in the local input memory of the CGRA. If the compiler does not find the operation in-

side the CGRA, it will stop and it will give a comment to the user.

Once the compiler confirms that the operation is placed and routed in the CGRA, it

checks if the operation is a multiplication. After one multiplication, a shift operation

must to be executed in the CGRA. If the operation is a multiplication, a shift operation

will be placed in the PE below (See Figure 5.8).

Finally, the output of the PE must to be pushed in a LIFO, such as the RPN algorithm

was described in section 5.1. The result will be saved depending on the position of the

PE. For example, if the PE is in the second row (See Figure 5.8), the result will be saved

into ROW1 and if it is saved in the third row, the result will be saved into ROW2.

31

Figure 5.11Explanation of the calculation of the best PE

32

The compiler then continues reading the RPN sequence and following the same steps as

it can be seen in Figure 5.9. The result of this operation is also push into ROW1. The

compiler will continue following the same steps until the addition is read.

In Figure 5.10, it can be seen that the compiler starts extracting the operands from

ROW1 since in this case pointerLIFO1 and pointerROW0 are equals to zero.

When the two operands from one operation are not saved into LIFO1, the compiler exe-

cutes place function to implement the placement and routing. Place function searches

for the optimal location of the PE and makes the required connections.

Basically, place function calculates the position of each operand inside the CGRA and it

calculates the optimal PE to perform the operation. If the ideal PE is occupied, place

function searches for an empty PE. If all of them are used, the compiler stops and fin-

ishes the process.

The parameters of place function are the size of the CGRA template, the operation to be

placed and routed, the LIFO in which processing function is working and the pointer of

that LIFO.

Place function works in a direction depending on if the operands are in the input local

memory or not. If both operands are in the input memory, the compiler calculates the

ideal PE. All memory banks of the local input memory of the CGRA are assigned a

number, as it was explained in section 0. The compiler performs the arithmetic mean of

the two positions to calculate the ideal PE. Otherwise, the compiler performs the follow-

ing Eq. 5.3

(5.3)

Figure 5.11 represents one example to understand this implementation. The operand

called p0 is placed in the memory bank numbered as one and the operand called p1 is

placed in the PE numbered as one. If the Eq. 5.3 is executed by the compiler, the PE

chosen is number five. On the bottom of the Figure 5.11 the routing is represented for

this case.

The second step of place function is to make the interconnections. Each PE is identified

by a number as it can be seen in Figure 5.12. The first option is to consider that the first

operand is in the local input memory and the PE is in the first row. Table 5.1 shows dif-

ferent possible cases. The first column of Table 5.1 represents the number of the Bank

33

Position (BP), the second is the difference between the BP and the PE Position (PEP)

and the third one represents the type of interconnection. If the table is analyzed, it can

be seen that the connection Up In A meets in the same place with the result of BP-PEP

when it is equal to the PEP. From that position, it can be seen that the rule would be the

same for the rest of the connections. For instance, Up Right In B meets when the result

of BP-PEP is equal to the number of the PE plus three.

In the PE numbered as one, the connections Up Left In A and Up Left In B must not be

implemented in the CGRA because of the hardware constraints. When the PE is the last

one in the row, Up Right In A and Up Right In B must not be implemented in the

CGRA. Therefore, place function takes in account these considerations.

If the PE is in another row different from the first one and the connection has to be with

the local input memory, vertical A and vertical B are the only possible connections. If

place cannot realizes the connections, it will stop and finish the execution giving a

comment to the user.

Suppose that the operand is not in the memory. Table 5.2 represents all the possibilities

for the third row of PEs.

Figure 5.12 The identifier number for each PE

34

Table 5.1 Different connection cases considering one operand is in the memory and the

PE is in the first row

BP BP-PEP Connection

0 0 - 0 = 0 Up In A

1 1 - 0 = 1 Up In B

2 2 - 0 = 2 Up Right In A

3 3 - 0 = 3 Up Right In B

4 4 - 0 = 4

5 5 - 0 = 5

6 6 - 0 = 6

7 7 - 0 = 7

BP BP-PEP Connection

0 0 - 1 = -1 Up Left In A

1 1 - 1 = 0 Up Left In B

2 2 - 1 = 1 Up In A

3 3 - 1 = 2 Up In B

4 4 - 1 = 3 Up Right In A

5 5 - 1 = 4 Up Right In B

6 6 - 1 = 5

7 7 - 1 = 6

BP BP-PEP Connection

0 0 - 2 = -2

1 1 - 2 = -1

2 2 - 2 = 0

3 3 - 2 = 1

4 4 - 2 = 2 Up In A

5 5 - 2 = 3 Up In B

6 6 - 2 = 4 Up Right In A

7 7 - 2 = 5 Up Right In B

BP BP-PEP Connection

0 0 - 3 = -3

1 1 - 3 = -2

2 2 - 3 = -1

3 3 - 3 = 0

4 4 - 3 = 1 Up Left In A

5 5 - 3 = 2 Up Left In B

6 6 - 3 = 3 Up In A

7 7 - 3 = 4 Up In B

Table 5.2 Different connections considering that one operand is not in the memory and

the PE is in the third row

PEP PEP-Position Connection

0 0 – 8 = -8 Vertical A

1 1 – 8 = -7

2 2 – 8 = -6

3 3 – 8 = -5

4 4 – 8 = -4 Up In A

5 5 – 8 = -3 Up Right In A

6 6 – 8 = -2

7 7 – 8 = -1

8 8 – 8 = 0 Loop

9

10

11

12

9 – 8 = 1

10 – 8 = 2

11 – 8 = 3

12 – 8 = 4

Horizontal A

PEP PEP-Position Connection

0 0 – 9 = -9

1 1 – 9 = -8 Vertical A

2 2 – 9 = -7

3 3 – 9 = -6

4 4 – 9 = -5

5 5 – 9 = -4 Up In A

6 6 – 9 = -3 Up Right In A

7 7 – 9 = -2

8 8 – 9 = 1 Left Out A

9

10

11

12

9 – 9 = 0

10 – 9 = 1

11 – 9 = 2

12 – 9 = 3

Loop

Horizontal A

PEP PEP-position Connection

0 0 – 10 = -10

1 1 – 10 = -9

2 2 – 10 = -8 Vertical A

3 3 – 10 = -7

4 4 – 10 = -6

5 5 – 10 = -5

6 6 – 10 = -4 Up In A

7 7 – 10 = -3 Up Right In A

8 8 – 10 = -2

9 9 – 10 = -1 Left Out A

PEP PEP-position Connection

0 0 – 11 = -11

1 1 – 11 = -10

2 2 – 11 = -9

3 3 – 11 = -8 Vertical A

4 4 – 11 = -7

5 5 – 11 = -6

6 6 – 11 = -5

7 7 – 11 = -4 Up In A

8 8 – 11 = -3 Up Right In A

9 9 – 11 = -2

35

10

11

12

10 – 10 = 0

11 – 10 = 1

12 – 10 = 2

Loop

Horizontal A

10

11

12

10 – 11 = -1

11 – 11 = 0

12 – 11 = 1

Left Out A

Loop

The algorithm would be changed in the case if the operands are not in the input

memory. The connection Up In A meets the result of the operation when it is equal to -

4, which is equivalent to the number of columns. This pattern is also followed by other

connections. When the PE is the first element of the row, Left Out A cannot be imple-

mented in the CGRA. The same occurs in the last PE of the row. In this case, the con-

nection Horizontal A cannot be implemented in the CGRA because of the hardware

constraints.

There is a special case, in which both operands are in the input memory, and the con-

nections cannot be made since there are not any PEs that can perform such connections.

In that situation, the place function of the compiler uses PEs to move the operands clos-

er and to be able to implement the connections.

At the end of processing function, the compiler executes finalPlace function. It searches

for the PEs which have not been connected to the other PEs or to the local output

memory of the CGRA. FinalPlace moves the result of these PEs to the local output

memory of the CGRA.

As it was mentioned earlier, there is a variable called connectedPE. FinalPlace function

uses connectedPE to know if one PE has been connected to other PEs or to the output

memory. Therefore, finalPlace function verifies that in the PEs that have performed an

operation the value of connectedPE is equal to zero. If connectedPE is equals to one,

finalPlace will search for an empty PE and performs the connection. In the case that the

finalPlace function cannot find one empty PE, the compiler will stop performing P&R

while leaving a comment for the user.

Once the compiler implemented the RPN file inside the CGRA template, mainContext

function can be executed. This function asks the user how many times the CGRA tem-

plate has to be instantiated in the desired CGRA. mainContext function copies the

CGRA template and instantiates it in parallel to the number of times the user has indi-

cated . If the number of replications is larger or smaller than the quotient between the

number of columns of the final CGRA and the number of columns of the CGRA tem-

plate, the compiler comments to the user. After this check, the main processing context

is designed by the compiler.

The implementation of this case by MVM algorithm is depicted in Figure 5.13. The user

wants to implement MVM algorithm on a 4x8 PE CGRA. First, the user will give the

RPN sequence of 4
th

 order of MVM. Once the compiler finishes performing the P&R

on the CGRA template (CGRA on the left in Figure 5.13), it asks the user the dimen-

36

sions of the CGRA to be instantiated. The user indicates 4x8 PE CGRA. The compiler

instantiates the CGRA from the CGRA template which can be seen on the right side of

Figure 5.13.

It was mentioned earlier that after one multiplication the compiler implements a shift

operation which uses the shift amount from the immediate registers inside the PE. For

that reason, one extra context is designed just to load the shift amount into the immedi-

ate registers. The compiler designs this context after the main context and before the

pre-processing or canonical context. immValues function is responsible for generating

this context. It checks the instantiated CGRA to know if there are PEs that have imple-

mented a shift operation. When immValues finds one PE with a shift operation, it saves

the number of such PEs and it continues searching for more PE. Once it finishes in-

specting all the CGRA, it will implement MOVe To Immediate (MOVTI) operation in

the PEs which have performed a shift operation. MOVTI moves the shift amount to the

immediate registers. immValue function then implements a Vertical A connection to

receive the shift amount data from the local input memory. This new context is called

immediate values context.

Once the main processing context and the values context have been implemented by the

compiler, it provides two design paradigms to design new contexts: canonical context or

preprocessing context. Canonical context performs addition operations to add the partial

products in the MVM algorithms. The canonical contexts are designed by canonical

function. It also provides the possibility for the user to change the size of the CGRA

template which allows a large range of design possibilities.

The user can see where the results will be saved in the local output memory of the

CGRA. The user can decide the positions of the output memory that have to be added in

the CGRA. The compiler generates the context and asks from the user if the CGRA

template has to be replicated. . Suppose the user wants to implement an MVM algo-

Figure 5.13 Implementation of the mainContext function using MVM for a 4x8 PE CGRA

37

rithm on a 4x32 PE CGRA. The user selects a canonical context. Since the size of the

CGRA is 4x32 PEs, the number of memory banks in the local input memory of the

CGRA has to be twice the number of PE columns in the CGRA. However, if the addi-

tion follows a symmetrical shape, it may be designed with this option.

Figure 5.14 depicts how canonical function works. Suppose that the instantiated CGRA

is a 4x8 PE CGRA as it can be seen on the left part of Figure 5.14. The results of the

first context are saved in the zeroth, second, fourth, sixth, eighth, tenth, twelfth and

fourteenth memory banks and have to be added. The user will be asked for the size of

the CGRA template. As a response, the user introduces 4x4 PE CGRA, because the re-

sult follows a symmetrical shape. Then, he/she introduces the number of memory banks

to be added, and in this case, the user just introduces 0, 2, 4 and 6. Then, the CGRA

template is replicated twice. In Figure 5.14 several PEs with delays are shown. They are

implemented automatically by this function.

If a larger order MVM is processed over a smaller order (rows x columns) of PEs, then

a preprocessing context is required between a processing context. After a processing

context, the results are stacked on each other in the local output memory and another

context is needed to place the result in an aligned order for further processing. For that

reason a preprocessing context is designed by the compiler. It consists of chained delays

depending on the amount of data to be processed.

Figure 5.15 illustrate a preprocessing context. The length of the delay chain depends of

the amount of data to be processed by an already implemented context. The compiler

asks the user for the length of the delay chain. Once the function knows the number of

delays, it starts checking the positions where the results were saved in the output

memory. For each position, preprocessing function designs the context. It inserts one

Figure 5.14 Implementation of canonical context in a 4x8 PE CGRA using a 4x4 PE CGRA

template

38

delay in each row to move the data until the last row. In the last row preprocessing func-

tion implements the number of delays the user indicated. Notice that the number of de-

lays will be the same for each position of the local output memory.

5.6 Mask Delivery

Mask delivery is responsible for generating the two output files: VHDL file and C

header file. It is composed of several functions, i.e., initialization, parameters, masks,

analyze, draw and header.

 Initialization is a function that is executed by the main program and is responsible for

initializing the parameter-matrices of the CGRA template. This function needs the

number of rows and columns of the CGRA to be instantiated and, also requires the

VHDL file. It executes other functions. The first one is called fputs, and basically, it

prints one value into the file. It writes the constant values of the VHDL file. Parameters

designs the CGRA template parameter matrices (See section 4.1.1). Parameters func-

tion requires the name of the matrix, the number of rows and columns of the final

CGRA, the data to be placed in the matrix and the VHDL file. The compiler designs the

Figure 5.15 Example of pre-processing context

39

rest of matrices executing the mask function. Such function needs the same variables as

parameters function. There are two functions (parameters and mask) to perform the

same work. This is due to the different size of the matrices which means that the data

saved inside them has to be treated in different conditions. In Figure 5.16 and Figure

5.17, they can be seen the small and large parameter-matrices, respectively.

The details related to the parameters and mask functions in the compiler construction

are as follows. The parameter-matrices are represented as two dimensional array due to

they save string values. A string in C language is an array of characters. Each position

of the two dimensional array saves a character array. In parameters function there is a

variable called MaxPosition. It defines the dimension of the small parameter-matrix. In

Figure 5.16, it can be seen that in each row there are the same number of columns as in

the CGRA. If that value is multiplied by the number of rows, the maxPosition is estab-

lished. Inside the function some variables called dataMiddle, dataEndRow,

dataStartRow and dataEnd are declared and initiated. The value of each string is differ-

ent depending on the position of the PE.

Mask function is used to design the parameter-matrices with larger dimension than the

ones explained before. The implementation works as parameters function. In this case,

the matrices are also two dimensional string arrays. The unique difference is that the

sizes of these matrices are bigger. In this case, the maximum number of contexts is tak-

ing in account since it will represent the columns of the matrices. Such value is equal to

16. The calculation of maxPosition can be seen in the Eq. 5.4 which is the result of mul-

tiplying the size of the CGRA by the maximum number of context.

Figure 5.16 Example of a matrix generated with parameters function and the different kinds of

data.

40

 (5.4)

The matrices which will be generated by mask function, have different shapes than the

implemented by parameters function. In this case, they consist of a group of matrices.

The number of matrices in each group depends on the number of rows of the CGRA.

This aspect can be seen in 4.1.1.

Analyze function also belongs to the mask module. It is responsible for reading the data

from the CGRA and modifying the matrices of the VHDL file (See Section 4.1.1) de-

pending on the new and old values. This function is executed every time one context is

designed by the compiler. It needs the dimension of the final CGRA to work correctly.

The implementation of analyze function is divided in four independent steps. The first

one is related to the input A of the PE. Analyze function reads all the PE of the CGRA

to be instantiated and it checks if the value of the input A is different from zero. If the

value is different, it examines if that number is already placed in the cre-

ma_mux_mask_A matrix. In that case, the number is not saved in the matrix, it searches

for an empty place, which means a zero inside the matrix. It then writes the new value

in the matrix. Inside of this steps, crema_cfg_ic_depth_A matrix is also modified de-

pending on the number of different connections are made for each PE, as it was ex-

plained in Section 4.1.1.

Figure 5.17 Example of a matrix generated with mask function and the different kinds of data

41

The second step is the same but with input B of the PE. Therefore, in this case analyze

function checks all the input B of every PE. It modifies crema_mux_mask_B matrix and

crema_cfg_ic_depth_B matrix by the same steps as it was described earlier.

Analyze function also examines the new values related to the operation for each PE. It

searches for new types of connections and it writes them in the crema_cell_mask ma-

trix. It also counts how many different connections are implemented by each PE. De-

pending on these values, analyse function modifies crema_sel_width and cre-

ma_cfg_width matrices. Finally, analyze function modifies crema_mul, crema_add,

crema_shifter, crema_imm and crema_sub writing the binary parameter TRUE in the

positions that represent PE which have performed one of the previous operations.

Draw function is responsible for writing the VHDL file with the data from the matrices.

It needs the dimension of the CGRA to be instantiated. This function is executed just at

the end when all the contexts are designed. Draw function writes the constant values of

the VHDL file, it reads the values saved inside each matrix of the VHDL and it creates

the file with these values.

The last function implemented was header. It consists of reading the configuration of

each PE for each context and generating the C header file by the steps described in Sec-

tion 4.1.2. It is executed by the compiler at the end of all processes. This function needs

the size of the CGRA to be instantiated, the C header file and the project name.

As it was mentioned earlier, each PE has one array called contextPE. It saves the infor-

mation related to each context. The dimensions of the arrays are equal to eight columns

and the number of rows depends on the number of contexts that are implemented by that

PE. The Table 5.3 represents the information saved in each column. The position num-

ber zero represents the number of context. The positions one, two and three represent

the identifier of the connection for each input and the identifier of the operation, respec-

tively. Then, the fourth place saves the code for the input A. The mentioned code de-

pends on the number of different connections that are implemented by that PE. The

sixth and seventh represent the code for input B and the code for the operation to be

performed, respectively. Finally, the last position indicates if such PE in that context

uses the immediate register.

Table 5.3 Different data saved into contextPE array

Position

0

Position

1

Position

2

Position

3

Position

4

Position

5

Position

6

Position 7

Number
of

context

Number
of

Input A

Number
of

Input B

Number of
Operation

Code of
Input A

Code of
Input B

Code of
Operation

Immediate
Register

Used

42

At first, the header function checks in which context the immediate registers are used

and write one in the last column of the contextPE array. Then, depending on the differ-

ent number of connections and operations, the function writes the code for each input

and for each operation in the context array. Finally, it generates the configuration word

by extracting the information from the contextPE array. The configuration word is a

hexadecimal number but the information saved into the contextPE arrays is in decimal

notation. Therefore, header function converts the decimal values to binary digits. When

all the information has been transformed to binary, the function converts the binary dig-

its to hexadecimal representation. Finally, header function will write every configura-

tion word into the C header file.

43

6. TESTING AND EVALUATION

To verify the compiler behavior, different orders of Matrix-Vector Multiplication

(MVM) were implemented on different sizes of CGRA. Specifically, the tested cases

were 4
th

, 8
th

, 16
th

 and 32
nd

 order of MVM on CGRA sizes of 4x4, 4x8, 4x16 and 4x32

PEs. It chapter shows the designed steps and the results for these cases.

6.1 4th-Order MVM

The matrix equation for 4
th

 order of MVM is represented in Eq. 6.1. The partial prod-

ucts p1, p2, p3 and p4 from Eq. 6.1 are shown in Eq. 6.2. To implement these partial

products on SCREMA, the RPN sequence of only one partial product is sufficient. The

RPN is showed in Eq. 6.3.

(6.1)

(6.2)

 (6.3)

Two contexts are needed to implement 4
th

-order of MVM. The first one is the context

which represents the RPN description. The second is the immediate value context. The

approach can be seen Figure 6.1.

The compiler runs by using the following command:

./program 4mvm RPN.txt 4 4

44

Figure 6.1 The two context of 4
th
–Order MVM in 4x4 PE CGRA

This command basically contains the project name, the RPN file and the size of the

CGRA to be instantiated. The computer terminal shows the input memory and CGRA

template. In this test case, the CGRA template coincides with the final CGRA. Then,

the compiler asks the user the number of times to replicate the template. Then, the ter-

minal shows the first main context and the value saved into the output memory. The

compiler asks if the user wants to implement another context. The user must press the

button 0 to finish the program. All the process can be seen in Figure 6.2. The left part of

the figure shows the input memory where all the operands are saved. The right part

shows the PE array. It also represents each PE with the inputs and the operations identi-

fiers. The complier requests user input from an interactive terminal. The input can be

responded with numerics as option.

The previous example was for a 4x4 PE CGRA. If the same algorithm is implemented

for 4x8 PE CGRA, then the interactive terminal can be seen as in Figure 6.3. As it can

be noticed, the solution is the same but the only difference is that the result is on the

half-left of the CGRA and the half-right is not used. The same occurs if 4
th

 order of

MVM is implemented in 4x16 and 4x32 CGRA.

45

Figure 6.2 Terminal results of 4
th

 Order MVM in 4x4 CGRA

Figure 6.3 Terminal results of 4
th

 Order MVM in 4x8 CGRA

46

6.2 8th-Order MVM

The matrix equation for this case is shown in the Eq. 6.4. The equations related to par-

tial products are not represented because of their large length. For that reason, the com-

piler just needs the previous RPN (Eq. 6.3) to implement the main context. In this case

the user will choose the replicate option as it will be shown below.

(6.4)

In Figure 6.5, the different contexts are shown that are needed to implement 8
th

-order of

MVM on a 4x4 PE CGRA. This implementation consists of four contexts: the main

context, the immediate context for shift operations, one preprocessing context with two

delays and one canonical context which adds the memory bank number zero and two.

The terminal results are the same as in the previous approach. The only difference is

that in the main menu, instead of selecting to end the implementation, the user selects a

preprocessing context. When the compiler is designing this context, it asks the user to

introduce the number of delays. To implement one equation of 8
th

-order of MVM on a

4x4 PE CGRA, that equation has to be divided in two partial products (p0 and p1 in

Figure 6.6). For that reason, the user must choose two delays. Once the pre-processing

context is generated, the compiler shows the main menu. In that case, the user must

press 2 to select a canonical context. The canonical context adds the two partial prod-

ucts. During the process of designing a canonical context, the user introduces the size of

the new CGRA instant. In this case, the same can be used, hence, the user will introduce

4 rows and 4 columns. Then, the compiler asks for the identifiers of memory banks that

have to be added by the canonical context. The user introduces number 0 and number 2

because the two partial products are allocated in these memory banks. The user will

press the button “s” to finish. In this test case, it is not needed to replicate the CGRA

template. With these steps, the implementation of 8
th

-order of MVM completes.

47

Figure 6.4 The contexts of 8
th
–Order MVM in 4x4 PE CGRA

48

The new terminal solutions are depicted in Figure 6.5. On the upper side, the results of

implementing a pre-processing context can be seen. Below them, the canonical context

is depicted, where different questions and the respective answers as shown. Finally, the

final result is saved in the output memory. The implementation of the contexts changes

if 8
th

-order of MVM is designed on a different CGRA size. Since the numbers of rows

are not enough to represent all the operations of one equation, the main processing con-

text must to be split in two different contexts. This case occurs when 8
th

, 16
th

 and 32
nd

orders of MVM are implemented in a 4x8 and 4x16 PE CGRA. The solution for 8
th

-

order MVM in 4x8 PE CGRA is show in Figure 6.6.

Figure 6.5 Terminal results of 8
th
 – Order MVM in 4x4 PE CGRA

49

From the figure, it can be observed that only three contexts are required for the imple-

mentation. The first context is generated from the RPN description of 4
th

-order of

MVM. The solution is replicated to have the main processing context in a 4x8 PE

Figure 6.6 The main processing contexts of 8
th
-order MVM in 4x8 PE CGRA

50

CGRA. From this context, the compiler designs the second context. It consists of mov-

ing the initial data to the immediate registers (immediate value context).

When one row of the first matrix in Eq.6.4 is multiplied with the vector, seven additions

are needed to have one partial product. As it can be seen, those additions cannot be im-

plemented in the first context. For that reason the third context is implemented. In this

case, the user tells the compiler that the next context will be a canonical context. The

canonical template may be for a 4x4 PE CGRA or 4x8 PE CGRA. If the first option is

introduced, the solution must be replicated once.

When this 8
th

-order of MVM is implemented on a 4x16 or 4x32 PE CGRA, the solution

is the same, the only difference is that the PE on the right part will not perform any op-

eration.

Figure 6.7 The context of 16
th
-order MVM in 4x8 PE CGRA

51

6.3 16th-Order MVM

16
th

 order of MVM was implemented for 4x4, 4x8, 4x16 and 4x32 PE CGRAs. All of

the approaches start from a 4
th

-order of MVM description in a RPN file. If the CGRA

sizes other than 4x4 PE CGRA is supposed to be generated from SCREMA template,

the main processing context(s) of 4x4 PE CGRA needs to be replicated in parallel.

When 16
th

-order of MVM is implemented in 4x4 PE CGRA, four contexts are needed.

These four contexts are the same as in the case of 8
th-

order of MVM. The differences

are the number of delays in the preprocessing context and the number of additions. The

number of delays is four because there are four partial products and since the number of

PE columns is equal to four. These four partial products are added in the canonical con-

text.

The other two contexts are one preprocessing and one canonical context. The equation

obtained of multiplying one row of one matrix with the vector is divided into two parts

(partial products), since in this case the number of PE columns is equal to eight. These

two partial products have to be added in the canonical context. However, they are

stacked on each other and hence they cannot be added together without a pre-processing

context. The delay of this preprocessing context is equal to two since there are two par-

tial products. After this context, the results are placed in the position zero and two of the

memory output. These two positions are introduced to the compiler to design the canon-

ical context.

When this order is implemented in 4x16 and 4x32 PE CGRA, only three contexts need-

ed with the same shape as in 8
th

-order of MVM.

6.4 32nd-Order MVM

The implementation of 32
nd

-order of MVM in 4x4 PE CGRA consists of six contexts.

The equation related to the multiplication of a row of matrix with a vector is divided

into eight partial products since the number of columns of CGRA is equal to four. The

addition of these eight partial products cannot be implemented in four contexts. After

implementing the same four contexts as in 16
th

-order of MVM, the partial products are

reduced to two. The compiler must add these two last partial products that are stacked in

the output memory. For that reason, the compiler implements a pre-processing context

and a canonical context.

When 32
nd

-order of MVM is implemented in 4x8 PE CGRA, it can be understood that

the equation is divided into four parts. In this situation, five contexts are needed, the

same as in 16
th

order of MVM in 4x8 PE CGRA. Four delays are introduced by the user

in the preprocessing context. When the canonical context is being designed, there are

52

two options, to implement the additions directly in a 4x8 PE CGRA or to use a CGRA

template of 4x4 PE and then replicate the solution.

Five contexts are needed when 32
nd

-order of MVM is implemented in 4x16 PE CGRA,

because in this case the equation will be divided into two parts. The pre-processing con-

text will have two delays and the canonical context will add these two parts.

In the situation of implementing 32
nd

-order of MVM in a 4x32 PE CGRA, the number

of contexts needed are equal to three. This solution is the same as in the previous cases

in which the order of MVM is the same as the number of PE columns.

53

7. CONCLUSIONS

In this thesis work, a compiler design for a template-based scalable Coarse-Grain Re-

configurable Array (CGRA) called SCREMA is presented. The SCREMA-template

generates application-specific accelerators. This compiler framework replaces the exist-

ing GUI tool for a general case of Matrix-Vector Multiplication (MVM). The compiler

performs automatic placement and routing of different orders of MVM on different siz-

es of the CGRA using the Reverse Polish Notation (RPN) description of the application.

The compiler provides two configuration pattern templates to design other contexts.

The data flow graph of the compiler is composed of three different modules: Infor-

mation Processing, Context Implementation and Mask Delivery. The first module of the

compiler is used to extract the information related to the operations to be performed in

the CGRA. In this step, the operands are placed into the input local data memory of the

CGRA template in a read-frequency priority mechanism.

The configuration patterns which are part of an accelerator design are performed in con-

text implementation module. There are three different contexts that the compiler can

design. The first one is the main processing context designed from the RPN sequence of

the target application. To implement this context a LIFO-algorithm is followed by the

compiler which reads the RPN sequence character by character and stores them in a

LIFO. In the case one operator is read, the compiler extracts the two last operands saved

in the LIFO and generates the operation which is placed in the CGRA. The compiler

finds the optimal PE where to place the operation. It connects automatically the oper-

ands with the PE.

The second context is a preprocessing context. Basically, the compiler designs delay-

chains of different lengths to align the data in the local data memories of the CGRA for

further processing..

The third context template is called canonical context which performs additions of the

products computed by the main processing context.

Mask delivery is related to the generation of the output files. The output files are a

VHDL file and a C header file. The VHDL file contains identifiers of the operations to

be performed by each PE. The identifiers of the interconnection are also written in this

file. The C header file contains the configuration stream related to each context.

54

The compiler framework has been tested for Matrix Vector Multiplication (MVM) algo-

rithms of the orders of 4
th

, 8
th

, 16
th

 and 32
th

 by mapping them on the CGRA of sizes

4x4, 4x8, 4x16 and 4x32 PEs. These cases are designed from 4
th

-order MVM RPN de-

scription used as basis. The compiler generates the first CGRA instance which consists

of 4
th

-Order MVM on 4x4 PE CGRA. The user may replicate such instances in parallel

to make instances for other sizes. When the order of MVM is larger than the number of

rows of the CGRA, extra contexts have to be defined because the partial product of

MVM cannot be added by the main processing context. In such cases, preprocessing

contexts are designed to align the partial product and a posterior canonical context

which adds those products.

7.1 Future work

The large challenge to design a general compiler for SCREMA makes this thesis a first

step towards finding an ideal and optimum compiler. For that reason, numerous projects

can be followed after this work:

 Implement the placement of computational and routing resources using data

structures and algorithms. Those algorithms will have to design one reconfigura-

tion pattern and test if that pattern is the optimal.

 Implement the interaction between the user and the compiler through a graphical

user interface instead of the terminal.

 To give the opportunity to the user to distribute the operands into the input local

memories of the CGRA. To modify the canonical context in the way that it per-

forms other operation instead of only additions.

 This work can be extended for other kernels like Fast-Fourier Transform (FFT).

55

BIBLIOGRAPHY

[1] M. B. J.-Y. M. B. Mei, "ADRES & DRESC: Architecture and Compiler for a

Coarse-Grain Reconfigurable Processors," in Fine- and Coarse-Grain

Reconfigurable Computing, 2007, pp. pp 255-297.

[2] Y. Kim, R. Mahapatra and K. Choi, "Design Space Exploration for Efficient

Resource Utilization in Coarse-Grained Reconfigurable Architectures," Very Large

Scale Integration (VLSI) Systems, IEEE Transactions on (Volume:18 , Issue: 10),

pp. 1471 - 1482, Oct. 2010.

[3] J. M.P.Cardoso and P. C.Diniz, Compilation Techniques for Reconfigurable

Architectures, Springer Science, 2009.

[4] D. C. Cronquist, P. Franklin, S. G. Berg and C. Ebeling, "Specifying and

Compiling Applications for RaPiD," in FPGAs for Custom Computing Machines,

1998. Proceedings. IEEE Symposium on, Napa Valley, CA, 15-17 Apr 1998.

[5] C. Brunelli, F. Garzia and J. Nurmi, "A coarse-grain reconfigurable architecture for

multimedia applications featuring subword computation capabilities," Journal of

Real-Time Image Processing, Vols. Volume 3 Issue 1-2, pp. 21-32, March 2008.

[6] F. Garzia, W. Hussain and J. Nurmi, "CREMA: A COARSE-GRAIN

RECONFIGURABLE ARRAY WITH MAPPING ADAPTIVENESS," in Field

Programmable Logic and Applications, 2009. FPL 2009. International Conference

on, Prague, Czech Republic, Aug. 31 2009-Sept. 2 2009.

[7] J.Becker, R. Hartenstein, M.Herz and U.Nageldinger, "Parallelization in Co-

Copilation for Configurable Accelerators," in Design Automation Conference 1998.

Proceedings of the ASP-DAC '98. Asia and South Pacific, Yokohama, 10-13 Feb

1998.

[8] M. Budiu and S. C. Goldstein, "Fast Compilation for Pipelined Reconfigurable

Fabrics," in FPGA '99 Proceedings of the 1999 ACM/SIGDA seventh international

symposium on Field programmable gate arrays, New York, 1999.

[9] S. C.Goldstein, H. Schmit, M. Budiu, S. Cadambi and M. Moe, "PipeRench: A

Reconfigurable Architecture and Compiler," Computer, vol. 3, no. 4, pp. 70-77,

Apr 2000.

56

[10] J. M.P. Cardoso and M. Weinhardt, "XPP-VC: A C Compiler with Temporal

Partitioning for the PACT-XPP Architecture," in Field-Programmable Logic and

Applications: Reconfigurable Computing Is Going Mainstream, vol. 2438, S. B.

Heidelberg, Ed., Springer, 16 Aug 2002, pp. 864-874.

[11] W. Hussain, T. Ahonen and J. Nurmi, "Effects of Scaling a Coarse-Grain

Reconfigurable Array on Power and Energy Consumption," in System on Chip

(SoC), 2012 International Symposium on, Tampere, 10-12 Oct. 2012.

[12] J. P. Kylliäinen, T. Ahonen and J. Nurmi, "General-Purpose Embedded Processor,"

in Processor Design, S. Netherlands, Ed., Springer, 2007, pp. 83-100.

[13] C. B. a. J. F. Garcia, "A pipelined infraestructure for the distribution of the

configuration bitstream in a coarse-grain reconfigurable array," in Proceedings of

the 4th International Workshop on Reconfigurable Communication-centric System-

on-Chip, Univ Montpellier II, July 2008.

[14] "www.wikipedia.com," [Online].

