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iABSTRACTWENBO WANG: INDOOR MOBILITY MODELS FOR WIRELESS POSITION-INGTampere University of Te
hnologyMaster of S
ien
e thesis, 60 pages, 11 Appendix pagesMay 2015Master's Degree Programme in Ele
tri
al EngineeringMajor: Wireless Communi
ations Cir
uits and SystemsExaminers: Asso
iate Prof. Elena Simona Lohan and Adjun
t Prof. Oana Cramariu
Keywords: Indoor positioning, mobility model, �ngerprint method, Bayesian estimationIndoor positioning te
hnology has be
ome in
reasingly popular in both businessand resear
h worlds. Several te
hnologies have been developed so far and some ofthem are in 
ommer
ial use now. However, due to personal priva
y issues and the
omplexity of indoor environment, the data regarding the human mobility patternsare insu�
ient. The study of syntheti
 human mobility models is an importantissue, whi
h is expe
ted to shed new light into a myriad of Lo
ation Based Servi
esand lo
ation-aware 
ommuni
ations. Finding and testing syntheti
 models abouthuman mobility is an important step ahead and this 
onstitutes the main fo
us ofthis thesis. In addition, we also address the issue of indoor positioning via WiFire
eived signal strength under various mobility patterns, generated syntheti
allythrough a simulator built within this thesis.The thesis starts with a review of four popular syntheti
 human mobility modelswhi
h is followed by presenting a new model proposed in this work and denotedas Hybrid Model. Based on the suitability of the models for indoor positioning,the Random Dire
tion Mobility Model and the newly proposed Hybrid models were
hosen for further testing as human mobility models with WiFi-based �ngerprint-ing. We show in detail the indoor s
enarios 
hara
terization and a

ordingly wepresent the 
lassi
al path loss model. Then, an indoor positioning simulator in
lud-ing mobility models is built and an alternative method of evaluating A

ess Points(APs) deployment is introdu
ed. In order to explore the positioning a

ura
y of theabove two models, a �ngerprinting algorithm with Bayesian 
ombining is applied.The results are shown in terms of Root Mean Square Error (RMSE) distan
e error.Finally we 
on
lude that a Hybrid Model has a better positioning a

ura
y than aRandom Dire
tion Mobility Model and that neither of the two models is essentiallya�e
ted by the velo
ity range or by the variation of the starting point. We also showhow the noise varian
e a�e
ts the positioning results.
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1
1. INTRODUCTION
1.1 MotivationOver the last de
ade, the development of Global Navigation Satellite System (GNSS)based te
hnology has been 
hanging the world profoundly. With this innovation,many lo
ation-related servi
es and proje
ts were born, whi
h reformed and are stillreforming our very lives day by day. Moreover, now when this thesis is being writ-ten, enormous lo
ation-based smart phone appli
ations and wearable equipment aregiven birth to. However, the GNSS only works outstandingly under outdoor s
enar-ios, while in indoor situation it is nearly blind be
ause of the 
omplexity of buildings(i.e., shadowing and multi-path e�e
t [9℄), signal physi
al 
hara
teristi
s (i.e., thesigni�
ant attenuation of mi
rowave through roofs and walls [9℄) et
. In addition, asa matter of fa
t, a large number of people spend most of the hours in a day stayinginside a building, for example, the o�
e hours. Therefore, the 
on
ept of indoorpositioning is an a
tive �eld of resear
h with multiple foreseen appli
ations.To start with, by reviewing the literature, some of 
urrent indoor positioning te
h-nologies and systems are presented below with a brief introdu
tion:1. Mi
rosoft RADAR [8℄: A tra
king system whi
h uses Wireless Lo
al AreaNetwork (WLAN) Re
eived Signal Strength Indi
ation (RSSI) te
hnology. Ithas low a

ura
y level (around 4 m) and low reliability [18℄;2. Ekahau [2℄: A system that 
an simultaneously tra
ks thousands of devi
esusing WLAN RSSI te
hnology. It has relative high a

ura
y level (up to 1 m)and low 
ost [18℄;3. Horus [44℄: A system whi
h uses WLAN RSSI te
hnology with the Bayesianestimation method. It has relative high a

ura
y level (below 2.1 m) and fair
omplexity [27℄;4. COMPASS [24℄: A system whi
h uses both WLAN and digital 
ompass toprovide position information. It has relative high a

ura
y level (1-2 m) and



1.1. Motivation 2inexpensive 
ost [18℄;5. Ubisense [4℄: A system whi
h uses tags atta
hed on mobiles to transmitUltra-wide bandwidth (UWB) signals to network and performs lo
alizationbased on the angle of arrival (AOA) or time di�eren
e of arrival (TDOA)method. It has ex
ellent a

ura
y level (below 0.3 m) but high 
ost [27℄;6. Easy Living [11℄: A system whi
h uses vision-based te
hnology for lo
al-ization. It has inexpensive 
ost but low reliability due to dynami
 
hangingenvironment and 
omplex image pro
essing. Besides, the available a

ura
y isun
ertain [18℄;7. Fire�y [22℄: An Infrared Radiation -based (IR) motion tra
king system. Ithas ex
ellent a

ura
y level (below 0.003 m) but high 
ost and wearing-
omfortproblems [18℄;8. SpotON [21℄: A well-known Radio Frequen
y Identi�
ation RFID-based so-lution with Ad Ho
 manner. It has �exible a

ura
y level (depending on the
luster size), low 
ost and medium 
omplexity [27℄;9. A
tive Bat [1℄: A system whi
h uses ultrasoni
 te
hnology as transmittedmedium to lo
ate users. It has ex
ellent a

ura
y level (around 0.03 m) andhigh 
ost [18℄.Among these solutions, WLAN-based methods have a

eptable a

ura
y, relativelylow 
ost, fair 
omplexity and medium reliability. Besides, the 
ontinuous growingnumber of personal wireless equipment gives us an opportunity of realizing indoorpositioning through 
urrent wireless te
hnologies (i.e., 
ellular and WLAN signals[30, 38℄). Thus, the WLAN-based RSSI method is now a feasible and promisingoption for large-s
ale positioning.In indoor s
enarios, movement of wireless devi
es has signi�
ant impa
t on the wire-less environment. To reveal human mobility patterns 
ould help the resear
h andimprove positioning methods, and help to optimize the network as well. Conven-tionally, human mobility models are divided into two 
ategories: tra
e-based modelsand syntheti
 models [37℄. Tra
e-based models are statisti
al models using real datafrom real life. They guarantee genuine des
ription of human traje
tory. Unliketra
e-based models, syntheti
 models are arti�
ial models whi
h start from someempiri
al parameter assumptions. However, one one hand, 
olle
ting tra
e data of-ten poses priva
y issues and ethi
al problems, and in most 
ountries it is illegal totou
h this line unless the express 
onsent of the tra
ked users is given; on the other



1.2. Author 
ontribution 3hand, it is not easy to sample the data in order to meet the indoor positioning a
-
ura
y requirement. In this sense, syntheti
 models are more suitable for large-s
aleindoor positioning properties study. Therefore, this thesis work is mainly relatedto syntheti
 models su
h as building models, 
omparisons among models, test ofsele
ted models with a 
ertain �ngerprint algorithm et
.1.2 Author 
ontributionIn this work, the following 
ontribution has been made by the author:1. Review of the solutions for indoor positioning s
enario where GNSS is notavailable;2. Study and exploration of properties of various 
ontextual models, su
h assupersoni
 sound positioning system and vision-based positioning system;3. Implementation of four of the most popular syntheti
 models 
urrently existingin the literature. In this step, some limitations were added to the models sothat some models are more realisti
;4. Comparison of the introdu
ed models from di�erent angles and analysis oftheir pros and 
ons;5. Proposing a novel model whi
h attempts to mimi
 the real indoor humanmovement patterns, the Hybrid Mobility model;6. General des
ription of the indoor environment and simulation-based modelingof a indoor 
hannel, in
luding path losses and shadowing.7. Testing di�erent mobility models under indoor wireless 
ir
umstan
e using the�ngerprint algorithm and Bayesian estimation;8. Drawing 
on
lusions on the results and presenting an outlook on future devel-opment.In the end of thesis work, the author submitted one publi
ation as the �rst author,namely: Wenbo Wang, Pedro Figueiredo e Silva and Elena Simona Lohan, 'Inves-tigations on mobility models and their impa
t on indoor positioning', submitted toMOBIQUITOUS 2015 (JUFO 1 level 
onferen
e). The 
ontent of this publi
ation isrelated to investigation of 
urrent human mobility models and explain in detail thereason of proposing the Hybrid Model, and using �ngerprinting algorithm to testthe proposed Hybrid Model and other models found in the literature.



1.3. Thesis organization 41.3 Thesis organizationThere are nine 
hapters in this thesis, details are as follow:Chapter 2: introdu
es the 
on
ept of 
ontextual model, and explores the propertiesof it. From a big pi
ture point of view, this 
hapter des
ribes the main thesis ideaand whi
h movement properties 
an be used to model, whi
h natural properties 
anbe used as a medium to model the traje
tory of a moving obje
t.Chapter 3: introdu
es the 
urrent four popular syntheti
 models namely RandomWalk Mobility Model, Random Waypoint Mobility Model, Random Dire
tion Mo-bility Model and Boundless Simulation Area Mobility Model. Finally we propose anovel indoor human mobility model, namely the Hybrid Model.Chapter 4: In this 
hapter, the 
hara
terization of indoor s
enarios is presented.The assumption of human mobility and 
lassi
al path loss model are introdu
ed. Inthe end, the pro
esses of �ngerprinting and estimation method are given.Chapter 5: Matlab simulator is des
ribed in detail. In this 
hapter we also givean alternative method of evaluating the APs deployment inside a building. After-wards, the methodology of forming �ngerprint database and the tra
k database isintrodu
ed.Chapter 6: The simulation-based results are shown. The main performan
e 
riteriais the distan
e root mean square error.Chapter 7: dis
usses the tradeo�s when designing a positioning algorithm under
ertain mobility model parameters.Chapter 8: presents some innovative ideas on estimating the angle and velo
itybased on RSS information. This work is only in an in
ipient phase and open issuesare emphasized in here.Chapter 9: presents the main 
on
lusions of this thesis work and future resear
hdire
tions.The logi
al �ow of the thesis 
hapters is summarized in Figure 1.1.



1.3. Thesis organization 5

Figure 1.1: The organization of the thesis.



6
2. CONTEXTUAL MODELS ANDUNDERLYING TECHNOLOGIES
Before further studying of human mobility models, investigation of available re-sour
es used in positioning te
hnologies might help to understand better the indoors
enarios. This 
hapter reviews various te
hnologies su
h as ultrasound, infraredray, image or ele
tromagneti
 wave that are 
urrently used in lo
ation servi
es. Inaddition, extra 
omments are added to dis
uss the feasibility of utilization of thesemethods in real life.2.1 UltrasoundIn nature, bats use ultrasounds as the means to exe
ute e
holo
ation a
tions. Thesea
tions help bats to navigate the forward path and to lo
ate the position of prey inthe night. Inspired by this, people developed similar navigation and position systemsin the last hundred years. Here, an example (A
tive Bat) is shown to illustrate theprin
iple and �exibility of ultrasound method under indoor positioning s
enarios[1, 43℄.A
tive Bat : The re
eivers of ultrasound on the 
eiling form a grid; a user 
arryingwireless devi
e broad
asts ultrasound signals 
y
li
ally; the distan
e between theuser and re
eiver 
an be measured by the Time Of Arrival (TOA); as in many othersystems the triangulation lo
ation algorithm is applied to 
ompute the lo
ation ofthe user [18℄.Comment: In essen
e, this te
hnology 
al
ulates the distan
e by measuring the
onsumed time of transmitting signals, then the lo
ation is determined by applyingthe triangulation method. Spe
i�
ally, the indoor 
oordinate initializes after theinstallation of several re
eivers on the 
eiling. Next, the broad
asted ultrasoundsignals a
tivate the re
eiver nodes, and through a series of algorithms this systemsele
ts three of the a
tivated re
eivers and 
omputes the user lo
ation. Moreover,the users 
an be tra
ked by storing positions of a users' movement tra
k. Therefore,in this solution, the parameters su
h as the speed of ultrasound, the penetrability of



2.2. Infrared radiation 7ultrasound, the interferen
e level of ba
kground noise and the a

ura
y of re
eiverssetup are 
ru
ial to the performan
e.Ultrasound te
hnology in lo
alization has also been in used in Cri
ket [32, 33℄ andSonitor [3℄.2.2 Infrared radiationInfrared radiation (IR) is an invisible radiation with longer wavelength than thevisible light. Nowadays, the IR te
hnology is used in a wide range of personalwireless platforms, whi
h o�er an alternative of a
hieving indoor positioning. Thisse
tion presents the basis of IR-based indoor positioning te
hnology via an instan
eof Fire�y [22℄.Fire�y : Dozens of tags atta
hed on the users' body emit in IR, and this radiation is
aptured by spe
ial 
ameras at �xed lo
ation. This system possesses the 
apabilityof tra
king users' subtle motions. This motion tra
ker is usually used as an assistantof virtual reality related appli
ations [18℄.Comment: Generally, the IR-based te
hnologies a
quire users' lo
ation by observ-ing tiny 
hanges of the re
eived IR. Due to the 
opyright and 
ommer
ial reasons,this Fire�y system has no detailed des
ription. But from the above information, itis not hard to 
on
lude that IR-based te
hnology is restri
ted by 
onditions su
h asthe intensity of ba
kground light, the angle of view, the penetrability of IR and the
ost of the whole system.IR te
hnology in lo
alization has also been used in A
tive Badge [19, 42℄.2.3 ImageThe human brain has the ability of determining movements by sensing di�eren
ebetween two images in the same s
ene. Similarly, by pla
ing 
ameras and a 
entralpro
essor, this parti
ular brain me
hanism 
an be imitated for indoor positioningpurpose. The following example introdu
es the fundamental of image-based indoorpositioning te
hnology.Easy living : Two stereo 
ameras are set on the 
eiling of a room, and these two are
onne
ted to a 
entral pro
essor. The a
tion of a user 
oming into a room triggersthe system and in the meantime the system marks this se
ond as starting point. By



2.4. Other ele
tromagneti
 waves 8
omparing the di�eren
e between two 
lose frames, the system analyzes the 
urrentlo
ation of the user [18℄.Comment: This te
hnology relies basi
ally on image pro
essing and it has theadvantage of not only lo
ating the user, but also 
apturing the image of ea
h usermovement with a 
ertain time pre
ision. However, the disadvantage is quite obvi-ous: pro
essing 
onsiderable images requires substantial 
onsumption of power andenergy resour
e. Additionally the analysis of images might be a�e
ted by the lightintensity.Image-based te
hnology in lo
alization has also been explained and developed in[15, 25, 31℄.2.4 Other ele
tromagneti
 wavesUnlike the indoor positioning solutions mentioned above, using ele
tromagneti
waves as medium to a
hieve lo
ation servi
es is a very popular way. Parti
ularly,RFID, UWB and WLAN based indoor positioning te
hnologies are one of the mosta
tive resear
h areas. Given that this thesis mainly investigates the performan
e ofhuman mobility models under WLAN situation, the dis
ussion below fo
uses on theWLAN-based indoor positioning te
hnology mainly.RADAR: Three transmitters are set up at the beginning and the �ngerprints gridis formed thereby. An user 
arrying a wireless devi
e moves inside the 
overage oftransmitters signals. Considering that the strength of signals is inverse proportionalto the distan
e between a transmitter and the user's devi
e, the lo
ation of the user
an be 
omputed through the triangulation lo
ation method [18℄.Comment: This might use a ma
hine learning pro
ess. The �ngerprints grid 
on-sists of re
eived signal strength(RSS) at ea
h point whi
h is measured as the trainingsequen
e and the 
oordinates of ea
h measured point. Afterward the positioning op-eration 
an be regarded as an estimation pro
ess.
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3. USER MOBILITY MODELS
3.1 OverviewBefore attempting to mimi
 human mobility patterns, we must �nd proof that hu-man mobility has patterns to follow. In referen
e [17℄, the authors tra
ked 100,000anonymous mobile phone users' lo
ation for six month. After modeling of numer-ous statisti
al data and appropriate s
aling upon the model, they 
on
luded thatindividual movement patterns have signi�
ant similarity. This 
on
lusion, from thestatisti
al point of view, gives a strong support to syntheti
 models.This 
hapter is 
omposed of two parts: a literature survey of human mobility modelsand a newly proposed human mobility model. In Se
tion 3.2, we begin with themost widespread human mobility model namely the Random Walk Mobility Model.Later by adding one property to the Random Walk Mobility Model, we des
ribethe se
ond model, the Random Waypoint Mobility Model, in Se
tion 3.3. In orderto over
ome weak points of the Random Waypoint Mobility Model, a third model
alled Random Dire
tion Mobility Model is illustrated in Se
tion 3.4. In Se
tion 3.5,an ideal model namely the Boundless Simulation Area Mobility Model is given todes
ribe the Random Walk Mobility Model from the mobile point of view. Last butnot least, in Se
tion 3.6 we present our proposed model, the Hybrid Model whi
his built to approa
h the real s
enarios of human mobility inside buildings. Figure3.1 shows the 
apa
ity of ea
h model of des
ribing various movements. Be
ausethe Boundless Simulation Area Mobility Model is an alternative interpretation ofthe Random Walk Mobility Model, the Boundless Simulation Area Mobility Modelwill not be shown separately in Figure 3.1. The Hybrid Model in
ludes featuresoriginated from the Random Waypoint Mobility Model and the Random Dire
tionMobility Model, thus the 
ir
le of the Hybrid Model has overlaps with the abovetwo models.In Se
tion 3.4 and 3.6, a hypothesis is posed for later study (i.e., di�erent rangevelo
ities might have in�uen
e on the behavior of models under indoor s
enarios).Besides, in these two se
tions, a Gaussian-like distribution is widely used for gen-erating parameters su
h as velo
ities, moving time and pause time. In the Hybrid
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Figure 3.1: Capa
ity of various movements.Model, a third dimension, namely the hight dimension, is introdu
ed to mimi
 thes
enario inside a building. It is to be noted that the above-mentioned notions, whowill also appear in the rest of this 
hapter, will be explained in more detail in Chapter4.Noti
e: First, 
onsidering the fa
t that people have far greater displa
ement mov-ing on the horizonal plane than the verti
al plane, and that 2-D models have less
omputational 
omplexity than 3-D models, the investigation of 
urrent models fo-
uses on the 2-D models. In the proposal part, we dis
uss 3-D models, by ta
klingalso some new angles in 3-D modeling that have not been dis
ussed yet in the liter-ature. Se
ondly, besides the above models, there are still other models, su
h as theGauss-Markov Mobility Model, a model whi
h 
ontains knowledge of past lo
ation,velo
ities and angles [26℄. However this thesis only dis
usses memoryless models andespe
ially, the proposed Hybrid Model.3.2 Random Walk Mobility ModelIn 1905, when Einstein studied Brownian motion he revealed the relationship be-tween the jump size and the time interval. That is, in other words, he mathemat-i
ally des
ribed the Random Walk Mobility Model for the �rst time [13℄. In thismodel, it is supposed that all the parameters are in the state of pure randomization.To be spe
i�
, a mobile starts from a random point with a random velo
ity, a ran-dom dire
tion and a random moving duration. After one moving duration expires,



3.2. Random Walk Mobility Model 11this mobile 
hooses another random velo
ity, another random dire
tion and anotherrandom moving duration then it repeats the above pro
ess.In pra
ti
e, the RandomWalk Mobility Model is often simulated in two implementedtypes: �xed duration and �xed displa
ement [12℄. In the �xed duration 
ase, weassume that ea
h moving duration is 
onstant, while the velo
ity and dire
tion arerandom. In a mathemati
al way, this assumption 
an be expressed as follows:
{

xn+1 = xn + vncosθn∆t

yn+1 = yn + vnsinθn∆t
(3.1)Correspondingly, in the �xed displa
ement 
ase, it is assumed that ea
h displa
ementfor every resolution time interval is 
onstant, while the dire
tion is random, and thatea
h step 
onsists of a random number of above-mentioned time interval. Similarly,the mathemati
al expression is given by:

{

xn+1 = xn +∆dcosθnkn

yn+1 = yn +∆dsinθnkn
(3.2)In both eq. ( 3.1) and ( 3.2), (xn, yn) is the 
urrent position, (xn+1, yn+1) is theposition of next state, θ is a random angle between heading dire
tion of mobile andhorizontal 
ounter
lo
kwise, v is a random s
alar velo
ity, ∆t is a 
onstant durationfor ea
h step, ∆d is a 
onstant displa
ement for ea
h time interval, kn is equal to

∆tn/τ and ∆tn ia a random duration for ea
h step, τ is a 
onstant resolution timeinterval.
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(b) Fixed displa
ement for ea
h stepFigure 3.2: Simulation of one mobile tra
k using 2-D Random Walk Mobility Model,the green 
ir
le represents the starting point and the red one represents the terminal point,ea
h solid bla
k point represents the sampled lo
ation data.



3.3. Random Waypoint Mobility Model 12In Figures 3.2(a) and 3.2(b), the initial position of the mobile is (150, 150). InFigure 3.2(a), the total simulation time is 100 se
onds, for ea
h step the mobilehas 1 se
ond movement duration, velo
ities and angles are uniformly distributed inthe interval [0, 6](unit : m/s) and [−π, π](unit : rad) respe
tively. Figure 3.2(b)gives a simpli�ed example, the simulation has total 100 steps and for ea
h step theduration only 
ontains 1 time interval, in other words, kn equal to 1. The �xeddispla
ement for ea
h resolution time interval is 1.5 meters, and the angles followsthe same distribution as Figure 3.2(a).Dis
ussion: From the point of view of mimi
king human movement patterns, theRandom Walk Mobility Model shows redundan
y des
ription, su
h as sharp turns(i.e., big dynami
 angle range within short time), fast-
hanging and large range ofvelo
ities and boundless area (i.e., negle
t of obsta
les in real life). As a 
ommonsense, human beings turn sharply with extremely low probability, and blo
kingobje
ts, su
h as the sea and trees in the nature and buildings in the metropolis,are inevitable. In indoor s
enarios, blo
king obje
ts are doors, walls and furniture.And Guinness re
ords [5℄ of human running speed evidently prove the impossibilityof random velo
ity for human beings. When redu
ing the duration for ea
h step, amobile modeled with a RandomWalk Mobility Model (espe
ially �xed displa
ement)will roam around the initial position. This 
hara
teristi
 �ts the s
enario of people ino�
e hours (i.e., a
tive in the small area) to some extent. Therefore, the RandomWalk Mobility Model is ubiquitous, it 
ontains the real human mobility patternspart whilst the redundan
ies part. All these 
onsiderations make this model toogeneri
 to �t restraints1 of the indoor positioning.3.3 Random Waypoint Mobility ModelThis model is rather similar to the Random Walk Mobility Model, with the maindi�eren
es that in the Random Waypoint Mobility Model there is a pause timeparameter [23, 28, 29, 41℄.Just like the Random Walk Mobility Model, when implementing a simulation of thismodel, we have to 
ontrol 
ertain random variables. Thus, there are two 
ategoriesfor implementation of the Random Waypoint Mobility Model as well: �xed durationand �xed displa
ement. In addition, if we simply plot a simulation of one mobiletra
k using 2-D Random Waypoint Mobility Model on x-y plane, the mathemati
alexpressions for this simulation are as the same as the se
tion 3.2. Figures 3.3(a),3.3(b) show one possible result of simulation for ea
h 
ondition:1details about restraints of indoor s
enarios will be narrated in Chapter 4.
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(b) Fixed displa
ement for ea
h stepFigure 3.3: Simulation of one mobile tra
k using 2-D Random Waypoint Mobility Model,the green 
ir
le represents the starting point and the red one represents the terminal point,di�erent 
olor of solid points represent the pause time.In Figures 3.3(a) and 3.3(b), the initial position of the mobile is (150, 150). InFigure 3.3(a), the simulation in
ludes 100 steps, for ea
h step the mobile has 1se
ond movement duration, velo
ities and angles are uniformly distributed in theinterval [0, 8](unit : m/s) and [−π, π](unit : rad) respe
tively. Figure 3.3(b) is still asimpli�ed example and most of the parameters are the same as Figure 3.2(b) ex
eptthat ea
h displa
ement for a time interval is 3 meters.Dis
ussion: As said in the dis
ussion part of se
tion 3.2, the ability of a mobileroaming around a 
ertain lo
ation for a long period indi
ates that this model ismore suitable to model genuine human movement patterns than the Random WalkMobility Model. Even though this model is a boundless model2, the features su
has the pause time are good to model the human mobility indoors. Therefore, weadd this feature in the proposed model, Hybrid Model.3.4 Random Dire
tion Mobility ModelIn the Random Walk Mobility Model and Random Waypoint Mobility Model, themobile 
an move within a small area, a large area, or both, su

essively, dependingon how the parameters are set. Due to this un
ertainty, both these two models fail tosimulate s
enarios su
h as people mopping the �oor, people touring in the exhibitionet
. To over
ome the high density of mobile lo
ation over partial area, the RandomDire
tion Mobility Model was introdu
ed in [35℄. Sin
e then, the Random Dire
tionMobility Model was also used in [14, 16, 36℄. In this model, a mobile moves within a2boundless models are not suitable for indoor positioning purpose, details will be presented inChapter 4.



3.4. Random Dire
tion Mobility Model 14restri
ted area, it starts from a random point inside this area with random dire
tionand random velo
ity, until it tou
hes the boundary of the area it will not 
hangevelo
ity and dire
tion.In the pra
ti
al simulation of this model, we in
rease the sampling frequen
y andlimit the upper bound of the velo
ity in order to de
rease the displa
ement forea
h step. There is a boundary ambiguity problem from the point of the view ofthe mobiles. This happens be
ause in the implementation of this model we used are
tangle simulation area and a mobile moving within the re
tangle area, the mobilehas the possibility to move to the 
orner or the boundary. Imaging that the mobileis going to tou
h the 
orner or the boundary at a moment, then at the next moment,from the point of the view of the mobile, the mobile only knows that the positionof itself is outside the re
tangle area. Here the mobile does not know where it goesthrough the boundary. This happens be
ause in the dis
retely 
olle
ted data, thepositions of a tra
k of a mobile is a
tually not 
ontinuous. Hen
e the boundaryambiguity, in brief, is the issue of the unknown positions where the mobiles gothrough the boundary or 
orner.

Figure 3.4: Simulation area of Random Dire
tion Mobility Model.In Figure 3.4, a mobile moves from the area D to the area B, there are severalpossibilities. For example, the mobile moves through the area C then ends into thearea B, or the mobile moves to the 
orner and through the 
orner, ends into thearea B, or the mobile passes through the area A then stops inside the area B. Dueto the dis
rete positions data of a tra
k, we only know the position of the n-th pointand the position of the next point. The point of the interse
tion with the boundaryis given by the estimation. In brief, the point of interse
tion is not absolute, whi
hintrodu
es un
ertainty to the Random Dire
tion Mobility Model.As it was written in the Chapter 1, the movements of wireless devi
es 
arried byhumans in�uen
e the WLAN environment. Here, in order to explore in what degree



3.4. Random Dire
tion Mobility Model 15the movements of devi
es in�uen
e the WLAN environment, we use the hypothesisthat the di�erent set of mobile speed ranges might have distinguishable impa
t onthe behavior of measurements under wireless 
ir
umstan
e. Figure 3.5 illustratesone example by simply dividing models into large range velo
ity and small rangevelo
ity.
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(a) Large velo
ity range (0.5m/s to 3m/s)
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(b) Small velo
ity range (0.89m/s to 1.083m/s)Figure 3.5: Simulation of one mobile tra
k using 2-D Random Dire
tion Mobility Model,the green 
ir
le represents the starting point and the red one represents the terminal point,ea
h solid bla
k point represents one tou
h of the boundary.In both Figures 3.5(a) and 3.5(b), the starting point is (24.3716, 14.3716) (unit : m),the simulation area is 50 × 50 (unit : m) , the angles follows a uniform distribu-tion in the interval [−π, π] (unit : rad), the velo
ities are modeled a

ording to aGaussian-like3 distribution shown in Figures 3.6(a) and 3.6(b), respe
tively for largevelo
ity range and small velo
ity range. The small velo
ity range in this thesis is
(0.89m/s to 1.083m/s) [7, 40℄. We 
onsider the elderly people 
ase as the referen
eof the small velo
ity. By simply extending the range of elder speed, for example,
(0.5m/s to 3m/s) is used as the 
omparison velo
ity range (i.e., the large velo
ityrange).Dis
ussion: the Random Dire
tion Mobility Model has boundaries, whi
h makes ita good 
andidate for studying indoor s
enarios with 
urrent indoor positioning te
h-niques. Moreover, regarding the approximately even spread of mobile's positions,this model 
an be used to test to what extension a weak signal may impa
t on theWLAN-based indoor positioning te
hnologies.3Gaussian-like distribution will be detailed in Chapter 4.
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(a) Large Range Velo
ity Distribution: PDF ofGaussian-like Distribution for 2-D Random Di-re
tion Mobility Model (b) Small Range Velo
ity Distribution: PDF ofGaussian-like Distribution for 2-D Random Di-re
tion Mobility ModelFigure 3.6: The bar �gure is the statisti
al performan
e of used velo
ities, the red lineis the theoreti
al Gaussian distribution with the mean value and standard deviation of thevelo
ity samples.3.5 Boundless Simulation Area Mobility ModelImaging that we are mobiles, moving in the Boundless Simulation Area makes nodi�eren
e from moving in the Random Walk Mobility Model. In this model, weuse a re
tangle area to form a doughnut-like 3-D obje
t. In the Figure 3.7(a), by
oin
iding AB and CD, and then 
oin
iding ⌢

AC and ⌢

BD, we get a doughnut-likearea shown in Figure 3.7(b).
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(b) a doughnut-like areaFigure 3.7: The left plot shows a re
tangle plane, and the right-hand plot shows a 3-Darea formed from left �gure.In this model, a mobile starts from a random position with random velo
ities, ran-dom dire
tions and random moving duration. On
e it tou
hes the boundary, it



3.6. Hybrid Model (proposed) 17jumps immediately from 
urrent boundary to the opposite edge by using the thirddimension. One example of simulation is shown in Figure 3.8:

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

x [m]

y 
[m

]

 

 
starting point
terminal point

Figure 3.8: Simulation of one mobile tra
k using Boundless Simulation Area MobilityModel, the green 
ir
le represents the starting point and the red one represents the terminalpoint, the purple © represents going out and the blue × represents going in.In Figure 3.8, the starting point is (3, 3), the simulation area is 5 × 5(unit : m),the number of total simulation steps is 500, the velo
ities and angles follow a uni-form distribution in the interval [0.5, 0.8](unit : m/s) and [−2π, 2π](unit : rad)respe
tively.Dis
ussion: The Boundless Simulation Area Mobility Model is just a hypothesisthat a mobile 
an use the higher dimension to 
ontinue its random walk. Whenapplying this into indoor s
enarios, it is obvious that human beings 
annot jumpinstantly from one edge to the opposite edge. Therefore, this model is not suitablefor simulating indoor s
enarios.3.6 Hybrid Model (proposed)When we attempt to use a new syntheti
 model to des
ribe human mobility patternsunder indoor 
ir
umstan
e we assume, given that the existen
e of Random Dire
tionMobility Model, two restri
tion for indoor s
enarios: �rstly, this model should havea boundary in order to model obsta
les (i.e., walls and doors in the building) in



3.6. Hybrid Model (proposed) 18daily lives, and se
ondly, the density of human histori
al plane positions should notbe distributed 
ompletely even over the whole simulation area. This is based on thefa
t that out of the 24 hours in a day people are either in o�
e hours or sleeping,and that an even density 
ase is in
luded in Random Dire
tion Mobility Model. TheHybrid Model 
ombines an analogous rea
tion me
hanism from Random Dire
tionMobility Model when a mobile tou
hes boundaries and a pause time whi
h is a goodfeature of the Random Waypoint Mobility Model.In detail, the pause time here is used to model the state of rest (e.g., after moving,people sit down for a while), and the rea
tion me
hanism in the Hybrid Model isto simulate the time when people hit or approa
h obsta
les. In se
tion 3.4, welearned from the one possible expression of rea
tion me
hanism, in the RandomDire
tion Mobility Model, that a mobile does not 
hange its state until it tou
hesthe boundary. Though this rea
tion already re�e
ts the obstru
tion in real life, itis nevertheless rather improbable, be
ause human will move away before hitting theobje
t. So the nearest distan
e between the boundary and the mobile is added andde�ned by a random variable in the proposed model. The input and output variablesof this model are de�ned by the Table 3.1.Table 3.1: the input and output variables of Hybrid ModelInput Outputsimulation area
(xi, yi, zi)

number of �oorsheight of ea
h �oorstarting pointvelo
ityanglemoving timepause timeminimum distan
e to thenearest boundaryA mobile moves from a random starting point within the prede�ned simulationarea, and it has a random velo
ity, an angle, a moving time, a pause time and aminimum distan
e to the nearest boundary. When the moving time expires it sele
tsanother velo
ity, angle and moving time, after this it holds still and waits the pausetime to run out. While the mobile is moving, this model 
he
ks whether the distan
ebetween the mobile and the nearest boundary rea
hes a random prede�ned minimumdistan
e or not. And if the situation is that the mobile rea
hes the nearest distan
ebut the moving time or pause time is still on, this mobile will 
hange its anglewithin a proper range and maintain the previous state ex
ept angles. Moreover,



3.6. Hybrid Model (proposed) 19this model is simply adding third dimension to mimi
 real indoor s
enario, and thisthird dimension is generated by an algorithm that will be detailed in Chapter 4.One instan
e of simulation is illustrated in Figure 3.9.

Figure 3.9: Simulation of one mobile tra
k using 3-D Hybrid Model (small velo
ityrange), the red solid point represents the starting point and the 
olor of ea
h point representsheight in this simulated building, the violet and green fa
ets represent the simulated �oors.In the simulation shown in Figure 3.9, the simulation area is 50 × 50(unit : m),the starting point is (0, 0, 0), the velo
ities basi
ally follow the distribution showedin Figure 3.6(b), the angles follow a uniform distribution in the interval [0, 2π](unit :
rad), the moving time follows a Gaussian-like distribution in the interval [3, 10](unit :
second) showed in Figure 3.10(a), the pause time follows a Gaussian-like4 distribu-tion in the interval [0.5, 30](unit : second) showed in Figure 3.10(b), the nearestdistan
e follows the uniform distribution in the interval [0.5, 20](unit : meter).

(a) PDF of the moving time (b) PDF of the pause timeFigure 3.10: PDF of the moving time and pause time.
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ussion: We mentioned in Se
tion 3.4 that the Random Dire
tion Mobility Modelgives a mobile 
han
es to 
over every in
h of simulation area with small time 
on-suming. A

ording to this 
hara
teristi
, the Random Dire
tion Mobility Model isused to des
ribe s
enarios su
h like tra
ks of 
leaners inside a building. However,the Random Dire
tion Mobility Model is not suitable to mimi
 the indoor o�
es
enarios, whi
h is a 
ommon 
ase in the daily lives. Be
ause in the o�
e s
enarios,a mobile is supposed to 
onsume most of time inside a spe
i�
 area. We 
an seefrom Figure 3.9, the Hybrid Model has the nonuniform distribution of positions ofusers. This feature �ts the assumption of indoor o�
e s
enarios, whi
h makes theHybrid Model a 
andidate for the simulation of indoor o�
e s
enarios. In addition,the Hybrid Model has advantages su
k like the minimum distan
e to the nearestboundary and the pause time, these advantages make the Hybrid Model be
omeintelligent. But it 
annot be denied that these advantages in
rease the 
omplexityof the Hybrid Model.3.7 SummaryThis 
hapter starts by reviewing existing literature [12, 13, 14, 16, 28, 29, 35, 36, 41℄followed by presenting the main ideas behind the Random Walk Mobility Model(Se
tion 3.2), the Random Waypoint Mobility Model (Se
tion 3.3), the BoundlessSimulation Area Mobility Model (Se
tion 3.5) and the Random Dire
tion MobilityModel (Se
tion 3.4). The presentation of the models is followed by demonstratinga feasible implementation method for ea
h model. In Se
tion 3.6, we propose a newmodel based on two assumptions and indoor s
enarios 
hara
teristi
s.The purpose of studying existed syntheti
 models and proposed models is to providehuman mobility raw data for further simulation based resear
h of indoor positioningmethods. Hen
e the dis
ussion about feasibility of 
urrent models in indoor s
enariosis the main interest in this 
hapter. Table 3.2 lists the 
omparison among all themobility models studied in this thesis.
4RWMM: Random Walk Mobility Model.5RWPMM: Random Waypoint Mobility Model.6RDMM: Random Dire
tion Mobility Model.7in the later simulation, the Random Dire
tion Mobility Model is modi�ed to be a 3-D model,details see Chapter 4 and Chapter 5.8BSAMM: Boundless Simulation Area Mobility Model.9HM: Hybrid Model.
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Table 3.2: Summary and 
omparison of modelsModels Boundary Pause Time 3-D Model Suitable forIndoor S
e-nario Spe
i�ed FeatureRWMM4 No No No No Generi
 Model with largeredundant des
ription, be-
ause all parameters in thismodel are random it 
an-not be fully simulated.RWPMM5 No Yes No No A pause time is introdu
ed.RDMM6 Yes No Yes7 Yes A boundary 
on
ept is in-trodu
ed and as well asa rea
tion me
hanism afterthe user rea
hed a bound-ary.BSAMM8 No No No No An idealisti
 model 
on-
ept, it simulates RandomWalk within a limited area.HM9 Yes Yes Yes Yes It 
omprehends most fea-tures from the other 5models (above-mentioned)and it mimi
s the unevenlyspread of human positionsin indoor situation.
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4. INDOOR SCENARIOS
4.1 OverviewIn Chapter 3, we dis
ussed 
urrent popular syntheti
 models and we proposed anew model. In this 
hapter we also present the 
omplexity of indoor s
enarios, theassumptions on human mobility patterns, and the path loss propagation models.This 
hapter in
ludes the prerequisite knowledge for testing models by using the�ngerprinting method in Chapter 5, and gives a thorough dis
ussion of the mattersin Chapter 3, su
h as the algorithm of generating the third dimension, the way offorming a Gaussian-like distribution and the indoor requirements.4.2 Indoor environmentIndoor s
enarios usually refer to the spa
e inside a building. It is known that satellitebased positioning systems are vulnerable inside buildings (Chapter 1), Here, weexplain brie�y how the indoor environment di�ers from the outdoor one.In the indoor environment, the ele
tromagneti
 signals might be weakened in variousways. The indoor stru
ture is more 
omplex than the outdoor area. For example,there might be multiple 
ubi
les in a 
ommon o�
e, whereas outside area is normallyopen ground. Nowadays the indoor stru
ture tends to be more and more 
ompli-
ated than ever. Multi-path interferen
e is one of the main fa
tors that severelydegrade the performan
e of 
ommuni
ations and lo
ations. Buildings now are madeof the 
on
rete materials. The 
on
rete has a strong ability to absorb ele
tromag-neti
 energy. And as a simple rule, the higher frequen
y a signal has, the weakerpenetrability it possesses. A

ording to this prin
iple and to the building materials,and given the fa
t that the radio frequen
y and mi
rowave frequen
y are main-streams of 
ommuni
ations, it is obvious that ele
tromagneti
 signals su�ers loss inindoor s
enarios.



4.3. Assumptions about human mobility 234.3 Assumptions about human mobilityAfter the brief introdu
tion of indoor 
hara
teristi
s, this se
tion mainly dis
ussesthe algorithms that are used to generate the height dimension and the Gaussian-like distribution. But �rst of all, some assumptions on sele
ting appropriate humanmobility models are ne
essary. In this thesis, the most important property of amobility model is to have a boundary. From Chapter 3, the only models whi
hsatisfy the boundary 
onditions are the Random Dire
tion Mobility Model and theHybrid Model. Other requirements of an indoor human mobility model di�ers frommodels to models. For example, the Hybrid Model is assumed to mimi
 the indooro�
e s
enarios, thus it is supposed to ful�ll the requirement that a mobile in themodel has a nonuniform distribution of positions. Another example is the RandomDire
tion Mobility Model, it is assumed that a mobile in the model has the trendto uniformly distribute the positions of a tra
k.4.3.1 The third dimensionIn Chapter 5 simulation tra
ks from Random Dire
tion Mobility Model and HybridModel have a third dimension. Here we will reveal the generator of this thirddimension. In the height dimension generator, parameters su
h as the time of ea
hstep, the starting point of the third dimension and the minimum and maximumvalue of the third dimension are taken into 
onsideration when we form the thirddimension raw data.In this generator, due to the la
k of raw data from the real life, we simulate thethird dimension in
rement by assuming it random and uniform. After the initialinput variables are given, fun
tion rand 
reates a large number of 
andidate thirddimension in
rements10. Then a

ording to the 
ondition if the third dimensionvalue is larger than the maximum value (i.e., moving out the 
eiling of building) orsmaller than the minimum value (i.e., moving into the ground), the third dimensiongenerator de
ides whether dis
arding this in
rement or not. Finally the output arethe z values that satisfy the 
onditions. Figure 4.1 shows an example of thirddimension value distribution.10the number of this in
rements value should be large enough, so that after dis
arding someof values, we still have the same number of third dimension value as the number of other twodimension values. In this work we use 100 times of needed amount.
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Figure 4.1: The third dimension distribution: PDF of uniform distribution for the thirddimension value, there are three �oors and three meters for ea
h �oor in the simulation.4.3.2 Gaussian-like distributionWhen using models to mimi
 human mobility patterns, not all of parameters shouldbe distributed uniformly. In this thesis, the parameters su
h as the velo
ities, themoving time and the pause time follow Gaussian distribution. With 100% 
on�-den
e level the 
on�den
e interval of Gaussian distribution fun
tion is (−∞,+∞),however, this high 
on�den
e level is unne
essary in the pra
ti
al simulation. TheGaussian-like distribution fun
tion is based on the standard normal distribution, ituses 95% 
on�den
e level11 
orresponding to 
on�den
e interval [−1.96, 1.96]. Weassume the frequen
y of observing parameters is 95%, and in order to simplify thesimulation, the values with 5% probability will not appear in the simulation.In detail:1. We use the fun
tion randn to generate 10 times of the numbers of needed vari-ables. Be
ause the fun
tion randn generates the standard normal distribution(i.e., the mean value equals to 0, the standard deviation equals to 1.), within11As this design is for the simulation purpose, 95% 
on�den
e level is 
ommon [34, 10, 6℄ andhigh enough for this simulation, therefore in this fun
tion we use 95% 
on�den
e level and thisparameter is able to be modi�ed.



4.4. Path loss models 25the interval [−1.96, 1.96], the 
on�den
e level is 95%;2. The generator abandons some variables by determining whether the generatedvariables are within the interval [−1.96, 1.96];3. The generator preserves the needed quantity of variables from step 2;4. By 
omparing [−1.96, 1.96] with the target interval, the generator adjusts thesamples inside [−1.96, 1.96] in order to �t the target interval, the target intervalhere refers to the desired sample spa
e interval.With an example, the pro
ess of generating Gaussian-like distribution is illustrated.Assuming we have a sample spa
e (e.g., [−2, 2]), we want to pi
k samples from thespa
e (i.e., [−2, 2]) and the pi
ked samples should be Gaussian-like distributed. Inthe Gaussian-like generator we used, �rst we form 10 times of the numbers of theneeded variables by using the fun
tion randn, se
ondly we abandon some variablesthat are not within the interval [−1.96, 1.96], thirdly we pi
k needed numbers ofvariables after the se
ond step (e.g., one variable is 1.5), fourthly we s
ale the pi
kedvariables. In the fourth step, we 
al
ulate the mean value between the upper boundand lower bound of sample spa
e, in this 
ase, the mean value is (−2 + 2)/2 = 0,then we use (2− ((−2 + 2)/2))/1.96 = 1.0204 as s
ale fa
tor to multiple the pi
kedvariables in the third step (i.e., 1.5× ((2− ((−2+2)/2))/1.96) = 1.5306), �nally weplus the mean value and the result of multipli
ation (i.e., 1.5306+0=1.5306). Figure3.6(a), Figure 3.6(b), Figure 3.10(a) and Figure 3.10(b) are generated by the abovealgorithm.4.4 Path loss modelsIn Chapter 5, we will use indoor �ngerprinting method to test the performan
e ofsele
ted human mobility models. Hereby this se
tion presents the 
orrespondingfundamental knowledge of path loss model as well as a modi�ed version applied inindoor s
enarios. The traditional path loss model is related with two modeling parts[38℄: PTap
, namely the ap-th AP transmitted power, and nap, namely the path loss
oe�
ient of the ap-th AP.The RSS in ea
h measurement point is dire
tly related to the Eu
lidian distan
e

√

(xi − xap)2 + (yi − yap)2 + (zi − zap)2, where the (xi, yi, zi) is the position of the
i-th measurement point (i.e., position of the i-th �ngerprint) and (xap, yap, zap) isthe position of the ap-th AP. The PTap

varies from AP to AP within a 
ertain range,



4.5. Indoor �ngerprinting 26and the nap is simply assumed to be di�erent from AP to AP as well. Then we formthe eq.( 4.1) for �ngerprints RSS Pi,ap:
Pi,ap = PTap

−10nap log10

√

(xi − xap)2 + (yi − yap)2 + (zi − zap)2+ηi,ap+ξi,ap (4.1)In this equation, ηi,ap is a noise term modeling the shadowing and fading. It isGaussian distribution of zero mean and σap standard deviation (unit: dB). To be
lari�ed, without abundant database of modeling ηi,ap, we simply assume the vari-an
e σ2 is 
onstant. ξi,ap is to 
hara
terize the �oor loss parameter, be
ause in arelative open and multi-�oors building 
eilings between �oors are the main barriersagainst the transmission of signals.Correspondingly, we 
an derive re
eived signal strength (RSS) at the (x, y, z) po-sition, (x, y, z) is the position of a mobile in a tra
k. The equation of RSS Rap isillustrated as below:
Rap = PTap

− 10nap log10

√

(x− xap)2 + (y − yap)2 + (z − zap)2 + ηap + ξap (4.2)The eqs.( 4.1) and ( 4.2) will be used in Chapter 5 to form the �ngerprints trainingsequen
e and to 
ompute the RSS of one mobile in a tra
k12.4.5 Indoor �ngerprintingA �ngerprinting algorithm is usually used in the indoor positioning te
hnologiesunder WLAN environment. It requires that a random lo
ation in this indoor area
an hear at least one AP. The pro
ess of �ngerprinting has two phases:
• A training phase: This is used to form a grid of prior RSS measurementsfrom all APs in a 
ertain building or region;
• An estimation phase: This fo
uses on 
omparing the RSS of a mobile withtraining database formed in the training phase; this 
omparison will providean estimate for the mobile lo
ation.12details see Chapter 5



4.5. Indoor �ngerprinting 27We remark that the �ngerprint grid is virtual, people 
annot a
tually tou
h the gridor see the grid in the air.4.5.1 Training phaseThe purpose of the training phase is to generate a database (i.e., matrix (Xi,Yi,Zi,Pi,ap))
ontaining the prior RSS measurement and the position information. In this phase,we assume the lo
ation of APs is �xed.
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Figure 4.2: One possible way to set up �ngerprint grid, one ∗ represents a measurementpoint in the grid.The training sequen
e is de fa
to a referen
e data, it in
ludes both the position infor-mation and RSS information matrix heard from APs. In the �ngerprint algorithm,the lo
ation of APs is irrelevant to the whole positioning pro
ess but it matters whensome 
orners of this indoor area 
annot hear AP. One of possible �ngerprinting grid13 is shown in Figure 4.2.4.5.2 Estimation stageAfter the training database is formed, the indoor �ngerprint positioning environmentis ready. When a mobile moves into this area, the re
eiver atta
hed on the mobile13it is only possible in theory, in pra
ti
e it is almost impossible to 
olle
t su
h ni
ely uniformly-spa
ed �ngerprints, some of them will be missing, unless the uniform spa
ing between points isvery large.



4.6. Summary 28downloads the prepared database whi
h was generated in the training phase, then it
ompares the re
eived RSS ve
tor information with the database. The 
omparison
an be done for example via Eu
lidian distan
es, rank-based or via Gaussian likeli-hoods. The 
omparison gives all the 
andidate positions. Eventually a

ording to aprede�ned rule, the re
eiver sorts this potentials and 
al
ulates the �nal predi
tionposition of this mobile at that moment.Firstly a mobile in this �ngerprint s
enario re
ords all heard RSS value automati
allyand it stores them as a ve
tor whi
h in
ludes the ap-th AP and 
orresponded RSSvalue (i.e., [ap;Rap] in the eq.( 4.2)). Se
ondly, the system applies the Gaussianlikelihood fun
tion to estimate the probability of position in the grid. In this step,the system usually gives more than one 
andidate position to a
hieve high a

ura
y.Thirdly, by a 
ertain rule the system 
al
ulate the position, for example, it 
al
ulatesthe arithmeti
 average of the �rst four high probably 
andidates as the predi
tedposition.The Gaussian likelihood fun
tion Li in i-th point is shown below, the σ2
ap is theshadowing varian
e:

Li =
∑

heard ap

log10





1
√

2πσ2
ap

e
−

(Rap−Pi,ap)
2

2σ2
ap



 (4.3)Here we give an example how to apply this equation. Let us assume two �ngerprintpoints, a: [1,3,7; -30,-70,-56℄ and b: [1,5,7; -45,-20,-68℄, and one tra
k point, m:[3,7; -60,-70℄. The �rst step is to �nd the same heard AP for both the �ngerprintand the mobile. In a and m it is 3rd and 7th AP but in b and m it is 7th APonly. Then by assuming the involved noise is 10 dB and 
onstant, we 
an get
La = −3.07 − 5.16 = −8.23 for a and m, Lb = −0.99 for b and m. Afterwards, bymaximizing the Li (i = a or i = b) we obtain the best 
andidate in this algorithm,that is b in this 
ase. This algorithm reveals that even though a mobile shares moreheard APs with some �ngerprints than others, these �ngerprints might not be themost optimized solution.4.6 SummaryAt the beginning of this 
hapter, the indoor was introdu
ed to give an generalper
eption that indoor s
enarios are 
omplex and not appli
able for satellite basedpositioning system. Then we des
ribed and explained how the third dimensionand Gaussian-like distribution are generated. It should be mentioned that the 95%
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on�den
e level is just an assumption in this thesis work and it is not the fo
al point,when there are no more other 
on�den
e level provided for 
omparison. After that,the prerequisite knowledge for the later 
hapter, the 
lassi
al path loss with �oorloss model was presented. In the last part, the notion of indoor �ngerprinting wasgiven in detail.Eqs. ( 4.1), ( 4.2) and ( 4.3) are the most important ones in this 
hapter and willbe used in Chapter 5 and 6.
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5. BUILT MATLAB SIMULATOR
5.1 OverviewThis 
hapter presents the Matlab simulator built within this thesis work, whi
hin
ludes mobility modeling and �ngerprinting. In Chapter 3, we demonstrated theresults of the implementation through our simulator. Here we fo
us on how thesimulator is built and furthermore we dis
uss the simulator of the �ngerprinting.Figure 5.1 shows the used simulators in this thesis work and their relationship
orrespondingly.

Figure 5.1: The organization of simulators.5.2 A

ess Points setupIn this simulation, it is assumed l1 × l2 (unit : m) simulation area, N �oors in abuilding and l3 meters for ea
h �oor, C m2 
overage per AP on the horizontal plane
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ess Points setup 31and [P1, P2] (unit : dB) power range. Spe
i�
ally, the positions of APs are uniformlydistributed random variables and the power levels of APs are uniformly distributedrandom variables within the above range as well. There are two main reasons whythe uniform distribution rather than the Gaussian distribution is sele
ted. First theuniform distribution is less 
omputation 
omplex than the Gaussian distributionwhen they applied in the simulator. Se
ondly using the uniform distribution theAPs 
an 
over the whole area with smaller number of APs than using the Gaussiandistribution. One example of these parameters is shown in TableTable 5.1: One example of A

ess Points parametersParameters Values
l1 (m) 50
l2 (m) 50
N 3
l3 (m) 3
C (m2) 400
[P1, P2] (dB) [-45,-30℄When deploying APs, the rule of thumb is that using relative few APs to 
over thesimulation area. From 2-D view the building 
an be 
onsidered as a re
tangle area.Figure 5.2 shows the overlap of the 
overage areas of APs on 2-D area, the re
tangleis the simulation area, the 
ir
les are the 
overage areas of APs. The grass green arearepresents the simulation area, the grey areas represent the overlap areas inside thesimulation area, the brown areas represent the overlap areas outside the simulationarea and the 
overage areas APs outside the simulation area. With Figure 5.2, we
an simply explain the rule of deploying APs, that the fewer the grey and brownareas are, the better the deployment is. However, it is not possible to eliminate thegrey areas 
ompletely be
ause of the spheri
al radiation shape of ele
tromagneti
waves. In 3-D view, the 
overage of APs supposes to be spheri
al shape, thus we
al
ulate the availability of APs in eq. ( 5.1) using the volume of APs radiation.Figure 5.3 shows the used deployment in this thesis work. If we assume Figure5.2 in 3-D, the volume of the 
ubi
 simulation area is Vcube. The sum of ea
h AP
overage is Vsum, the substra
tion between Vsum and Vcube might, to some extent,evaluate the degree of overlap namely 
overage margin Mcoverage. In eq. ( 5.1), rapis the e�e
tive radiation radius of the ap-th AP, (xmax, ymax, zmax) is the maximumvalue of simulation spa
e in three dimension respe
tively.

Mcoverage =

n
∑

ap=1

4

3
πr3ap − xmaxymaxzmax (5.1)
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Figure 5.2: Prin
iple of APs deployment, the re
tangle area is the simulation area, the
ir
les are the 
overage area of APs, the grey areas are overlapped 
overage areas.
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Figure 5.3: APs deployment used in this thesis work, the solid 
olor points representAPs and APs transmitted power are seen in the right-hand side 
olor bar.In Table 5.2, we show a 
omparison between two groups: 3 s
enarios of simulateddata and 2 s
enarios with real-�eld data. For ea
h group, we illustrate the ratiobetween Mcoverage and Vcube, ratio between mean number and total number of heardAPs per �ngerprint, ratio between median number and total number of heard APsper �ngerprint, standard deviation of AP number per �ngerprint. The ratio between
Mcoverage and Vcube intuitively indi
ates that to what extent the 
overage areas ofAPs are utilized. The statisti
s of number of heard APs per �ngerprint shows showshow the number of heard APs per �ngerprint varies under a 
ertain deployment ordensity of APs. The statisti
s gives the referen
e to the preliminary judgement thatwhether the deployment is good or not. Usually the larger the mean (or median)number of heard APs per �ngerprint is, the better the deployment is. But when we
onsider the 
ost of the deployment, the mean (or median) number of heard APs
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ess Points setup 33per �ngerprint should not be too large. This happens be
ause the mean number ormedian number is proportional to the density of APs.Table 5.2: Comparison for 3 s
enarios of simulated data and 2 s
enarios with real-�elddata Parameter Simulated s
enarios Real-�eld data
2 dB 10 dB 40 dB building 1 building 2

Mcoverage/Vcube [ra-tio℄ 4.6168 4.6168 4.6168 × ×Mean number/totalnumber 14 [ratio℄ 0.7712 0.8369 0.6911 0.1350 0.1352Median number/to-tal number 14 [ratio℄ 0.7619 0.8571 0.7143 0.1303 0.1243standard deviation ofheard APs numberper �ngerprint 14 1.7169 1.6173 2.0255 10.8383 19.0334
*Important : On
e the deployment of APs is �nished, all the following simulationshould use exa
tly the same deployment and same power level.In Table 5.2, 2 dB, 10 dB and 40 dB noise varian
e are 
hosen to show the lownoise level, medium noise level and high noise level s
enarios respe
tively. Tworeal databases [38, 39℄ are 
olle
ted from Tietotalo building (i.e., building 1) andSahkotalo building (i.e., building 2) in Tampere University of Te
hnology. Underthe �ngerprint algorithm and the Bayesian estimation, in building 1 the positioninga

ura
y is around 5 meters and in building 2 the a

ura
y is approximate 10 meters.We remark that, due to the irregular shape of building 1 and building 2, the ratioof Mcoverage/Vmin 
annot be given.From the 
olumns of 'Real-�eld data' in Table 5.2, we 
an tell that, the valuesof 'mean number/total number' and 'median number/total number' are almost thesame for both building 1 and building 2. However the 'standard deviation of heardAPs number per �ngerprint' varies signi�
antly from building 1 to building 2, andspe
i�
ally the higher a

ura
y positioning (i.e., building 1 with around 5 metersa

ura
y) 
omes with lower 'standard deviation of heard APs number per �nger-print' based on these two real database. In addition, as it was mentioned before, thebuilding 1 with 0.1350 'mean number/total number' ratio and 0.1303 'median num-ber/total number' ratio a
hieved 5 meters a

ura
y under the Bayesian estiamtion,14All these three statisti
s refer to the number of heard APs per �ngerprint point. 'mean num-ber/total number' is a ratio between the mean value and the total number of heard APs per�ngerprint point, 'median number/total number' is a ratio between the median value and thetotal number of heard APs per �ngerprint point, 'standard deviation of heard APs number per�ngerprint' is the standard deviation of number of heard APs per �ngerprint point.
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ess Points setup 34therefore when these two values of simulation or real deployment are higher thanthe 
orresponding values of the building 1, they are feasible.In the simulation s
enarios, the 'mean number/total number' ratio and 'mediannumber/total number' ratio of all noise 
ir
umstan
es are 
onsiderably higher thanthose in building 1, and the 'standard deviation of heard APs number per �ngerprint'of all are far smaller than the standard deviation in building 1. Therefore, under thesimulated APs deployment, the high positioning a

ura
y (i.e., 5 meters a

ura
yor a better a

ura
y) is able to a
hieve.Figures 5.3, 5.4, 5.5, 5.6, 5.7 give some statisti
al information about the relation-ship between the AP density in a building and a
hievable positioning a

ura
y from�ngerprints' point of view. Among them, Figures 5.3, 5.4, 5.5 present the analysisof simulated APs deployment, Figures 5.6, 5.7 show the analysis of real APs deploy-ment. To be spe
i�
, in all these 5 group �gures the sub-�gure a says how manyper
entage of total APs an arbitrary �ngerprint point 
an hear. One �ngerprintpoint 
an hear more than one, be
ause for ea
h one �ngerprint point, it usually 
anhear more than one power level, the sub-�gures b,
,d give the statisti
al des
rip-tion of the mean power level, the median power level and the standard deviationof heard APs power level per �ngerprint respe
tively. We remark that, in the �rstthree group simulation �gures, it is assumed the sensitivity of re
eivers is -100 dBm.
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(d) Median heard power level per �ngerprintpointFigure 5.4: 2 dB noise level (re
eivers sensitivity: -100 dBm).This 
ase is used to simulate s
enarios with low noise power level. It 
an be simply thoughtas 'noise free' situation so that we 
an 
onsider this one as a referen
e for further 
om-parison. In Figure 5.4(a), most �ngerprint points 
an hear 70% - 85% of total APs, inFigure 5.4(b), most �ngerprint points 
an hear −75dBm - −70dBm mean power level (thetransmitted power level is −15dBm - 0dBm), in Figure 5.4(
), the standard deviation ofpower level from various APs per �ngerprint point is around 18 dB, in Figure 5.4(d), most�ngerprint points 
an hear −80dBm - −75dBm median power level.
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(b) Mean heard power level per �ngerprint point
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(d) Median heard power level per �ngerprintpointFigure 5.5: 10 dB noise level (re
eivers sensitivity: -100 dBm).This 
ase is used to simulate s
enarios with medium noise power level. It 
an be simplythought as 'noisy' situation in the simulation. In Figure 5.5(a), most �ngerprint points 
anhear 80% - 90% of total APs, in Figure 5.5(b), most �ngerprint points 
an hear −70dBm -
−65dBm mean power level (the transmitted power level is −15dBm - 0dBm), in Figure5.5(
), the standard deviation of power level from various APs per �ngerprint point isaround 17 dB, in Figure 5.5(d), most �ngerprint points 
an hear −70dBm - −65dBmmedian power level. Compared with 2 dB noise level 
ase, this 10 dB one indi
ates that thestatisti
s of heard AP power level are proportional to the noise level. Another proof of this
on
lusion will be presented in the next group of �gures.
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(b) Mean heard power level per �ngerprint point
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(d) Median heard power level per �ngerprintpointFigure 5.6: 40 dB noise level (re
eivers sensitivity: -100 dBm).This 
ase is used to simulate s
enarios with high noise power level. It 
an be simplythought as 'extremely noisy' situation in the simulation. In Figure 5.6(a), most �ngerprintpoints 
an hear 60% - 80% of total APs, in Figure 5.6(b), most �ngerprint points 
an hear
−60dBm - −50dBm mean power level (the transmitted power level is −15dBm - 0dBm), inFigure 5.6(
), the standard deviation of power level from various APs per �ngerprint pointis around 30 dB, in Figure 5.6(d), most �ngerprint points 
an hear −70dBm - −50dBmmedian power level. Through simply 
omparison with the 2 dB and 10 dB �gures, it is notdi�
ult to assess that the standard deviation is proportional to the noise level; moreoverwith the in
rease of the noise level, the number of heard APs, mean and median value ofpower level per �ngerprint point tends to be larger.
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(d) Median heard power level per �ngerprintpointFigure 5.7: Building 1 with unknown noise level (re
eivers sensitivity: -100 dBm).This 
ase is a statisti
al modeling of real data 
olle
ted from building 1. It has betterpositioning a

ura
y under Bayesian estimation method than building 2. In Figure 5.7(a),most �ngerprint points 
an hear 10% - 20% of total APs, in Figure 5.7(b), most �ngerprintpoints 
an hear −80dBm - −76dBm mean power level (the transmitted power level isunknown, and is estimated with range −15dBm - 0dBm), in Figure 5.7(
), the standarddeviation of power level from various APs per �ngerprint point is around 9 dB, in Figure5.7(d), most �ngerprint points 
an hear −85dBm - −80dBm median power level.
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(d) Median heard power level per �ngerprintpointFigure 5.8: building 2 with unknown noise level (re
eivers sensitivity: -100 dBm).This 
ase is a statisti
al modeling of real data 
olle
ted from building 2. In Figure 5.8(a),most �ngerprint points 
an hear 5% - 15% of total APs, in Figure 5.8(b), most �ngerprintpoints 
an hear −85dBm - −75dBm mean power level (the transmitted power level isunknown, and is estimated with range −15dBm - 0dBm), in Figure 5.8(
), the standarddeviation of power level from various APs per �ngerprint point is around 12 dB, in Figure5.8(d), most �ngerprint points 
an hear −90dBm - −80dBm median power level.
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ess Points setup 40Analysis of Figures 5.3, 5.4, 5.5 reveals that number of heard APs in
reases whenthe noise power level 
hanges from 2 dB to 10 dB and 40 dB, the mean value, medianvalue and standard deviation of heard power level per �ngerprint point grow alongwith the in
rease of noise power level as well. In Figures 5.6 and 5.7, the mostfrequent ratio between the heard APs and total APs (i.e., 0.1-0.15 ratio) is smallerthan the most frequent ratio between the heard APs and total APs in Figures 5.3,5.4 and 5.5 (i.e., 0.6-0.9 ratio). The standard deviation of the heard power level per�ngerprint point in building 1 is smaller than in building 2. The mean value andmedian heard power level per �ngerprint point in building 1 are stronger than inbuilding 2. Figures 5.6 and 5.7 des
ribes the 
hara
teristi
s of data 
olle
ted in reallife s
enario, the following analysis of simulated APs deployment is based on them.Intuitively, from the user point of view, the larger standard deviation of the powerlevel leads to more distinguishable power gradation, whi
h bene�ts the estimationbased on distan
e of power level. Likewise, a high power level means that thedistan
e between a �ngerprint point and an AP is small, whi
h makes the userre
eiver more likely to re
eive as many APs as possible and this is good for a
hievinga high a

ura
y estimation.However, as seen in Figures 5.6 and 5.7, the standard deviation is inversely propor-tional to the mean and median value of the heard power level. As a matter of fa
t,building 1 (Figure 5.6) has a better estimation a

ura
y than building 2 (Figure5.7). Therefore, the standard deviation of heard APs power level per �ngerprintpoint is inversely proportional to the estimation a

ura
y. Here, it seems we aretrapped into a dilemma: the tradeo� between the high re
eived signal strength andthe distinguishable power level in a �ngerprint point. Be
ause the fo
us of this thesisis human mobility models and their behaviors under indoor te
hnology, investiga-tion on the deployment of APs here is general, the APs deployment will be no moredis
ussed and left for the further study.The above is the study of APs from the view of �ngerprint points, whi
h givesstatisti
al des
ription of APs deployment. The following shows the power maps of�ngerprint. Figures 5.9(a), 5.9(b) and 5.9(
) show the �ngerprints grid only withthe power level heard from the 6th A

ess Point under 2 dB, 10 dB and 40 dB noiselevel respe
tively. Here for the 
ause of plotting the �oor as a fa
et, the sign ∗ showsthe position of AP seems on the se
ond �oor, but the ∗ is on the 
eiling of the �rst�oor and there is a wall between the 6th AP and se
ond �oor ground. Figures 5.9(d)and 5.9(e) show the power map and the �ngerprint grid of the 16th and 212th APs,respe
tively.
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ess Point and 
orresponded power map. The ∗ represents the realposition of the AP, the © represents the estimated position of AP. In Figure 5.9(a), Figure5.9(b), Figure 5.9(
), Figure 5.9(d) and Figure 5.9(e), the position of the AP is estimatedby eq.( 5.2).



5.3. Fingerprints setup 42In Figures 5.9(d) and 5.9(e), the position of the A

ess Point is estimated by sortingthe �ngerprint points position a

ording to the power levels, then applying theequation below, Nn is the �rst n-th �ngerprints positions after sorting (usually welet n equal to 4.):
(xap, yap, zap) =

Nn
∑

i=1

Pi

P1 + · · ·+ PNn

(xi, yi, zi) (5.2)In eq. ( 5.2), regarding that the previous step the 
oordinates of �ngerprint pointsare already sorted by the heard spe
i�
 AP power level, we assume that the �nger-print point P1 (x1, y1, z1) has the maximum heard power level, P2 (x2, y2, z2) has these
ond maximum value and so forth. In pra
ti
e, the value Nn is usually equal to 4so that we 
an save amount of 
omputing time. In this simulation, we let the value
n equal to 4 and a
quire the approximate 
oordinates of the 163rd AP and 212ndAP respe
tively.5.3 Fingerprints setupThe �ngerprints algorithm was introdu
ed in Chapter 4. Here the prin
iple of indoor�ngerprints is not dwelled on, only the design details in this simulation is presented.In Chapter 4, the eq. ( 4.1) was given to 
al
ulate the RSS of �ngerprint pointsby applying 
lassi
al path loss model with �oor losses. The pro
ess to form the�ngerprint was given in the same 
hapter. In this se
tion, some spe
i�
 issuesrelated to the pro
ess talked above is dis
ussed.5.3.1 Floor lossAs it was mentioned in Se
tion 4.4, due to the �oor ground separating �oors, the �oorloss is introdu
ed to des
ribe this attenuation of signals power. In our simulator,we simply assume that the �oor loss is 
onstant and it is equal to 5 dB per �oor forea
h time penetrating the �oor ground. From Figures 5.9(a), 5.9(b) and 5.9(
), it isevident that the �ngerprint points right under the 6th AP and as the same �oor asthe AP has larger power levels than the 
losest ones above the 6th AP but with a
eiling ground between them. This also points out that signals travelling in the airhas less attenuation than penetrating the obsta
les.



5.3. Fingerprints setup 435.3.2 Fingerprint spa
ingSpeaking about the spa
ing among �ngerprint points, there is always a tradeo�argument behind it. On one hand, when in
reasing the spa
ing between �ngerprints,the a

ura
y is de
reased, on the other hand, a de
reased spa
ing brings higher
omputational 
omplexity and it requires larger databases to be stored. Sin
e the�ngerprint grid in our simulator is two dimensional, only on the ea
h �oor ground,a small spa
ing is bene�
ial for both the 
omputing and a

ura
y. Therefore thespa
ing is designed as 2 meters and the �ngerprint grid is like in Figure 5.10(a),Figures 5.10(b) and 5.10(
) are presented here as a 
ontrast to give a straightforwardexpression of di�erent ways to design �ngerprints spa
ing.
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(
) 36 �ngerprint pointsFigure 5.10: Some available �ngerprint spa
ing examples, Figure 5.10(a) is the s
hemeused in this thesis, Figure 5.10(b) shares the same number of �ngerprint points with Fig-ure 5.10(a), the di�eren
e between Figures 5.10(a) and 5.10(b) is that when applying theestimation algorithm, in Figure 5.10(b), the right area near the boundary may not re
eivea good a

ura
y, 5.10(
) is another way to distribute �ngerprint points. All these �gureshere are only for examples purpose, the optimization of �ngerprint points spa
ing is not
on
erned in this thesis.



5.4. Tra
k formation 445.4 Tra
k formationPra
ti
ally, when users a
hieve indoor positioning servi
e by applying �ngerprintpositioning te
hnology, from users' point of view the most 
ommon parameter whi
husers re
eived is the 
hanging RSS from various APs. In order to mimi
 this pro
ess,this se
tion dis
uss the sampler whi
h extra
ting data from 
hosen models and applyeq. ( 4.2) to build the tra
k power level database.5.4.1 DownsamplingIn Chapter 3, to avoid simulation errors su
h as boundary ambiguity problem, thesampling rate was relative high and may lead to an enormous database size. Forthis reason it is however di�
ult to run the �ngerprint method to test models.Down sampling is thus a ne
essary pretreatment before the formation of the tra
kdatabase.
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tion after down samplingFigure 5.11: One example to show down sampling prin
iple. The number of used samplesin �gures is 10001.



5.5. Summary 45In the example shown in Figure 5.10, the downsampling rate is 100, meaning that1 sample is kept from every 100 samples, and a total 7201 samples is 
olle
ted forevery one tra
k. Figure 5.11(a) shows the raw data and 
orrespondingly Figure5.11(b) shows the data after down sampling. Similarly, Figures 5.11(
) and 5.11(d)show the raw data and the down sampling data respe
tively. The pro
ess with highsampling rate building data and down sampling the raw data, in a way, approa
hesthe real s
enarios and avoids distortedly des
ription of human mobility patterns.The tra
k database is generated based on the data after down sampling pro
ess.5.4.2 Tra
k databaseThe database is formed by applying eq. ( 4.2), with a 5 dB �oor loss attenuationevery time penetrating one �oor ground. Inside the database it is organized as theTable 5.3. Table 5.3: Organization and design of tra
ks databaseRandom Dire
tion Hybrid Model40 tra
ks in total 40 tra
ks in total= 2 velo
ity ranges = 2 velo
ity ranges
× 4 starting points per velo
ity range × 4 starting points per velo
ity range
× 5 tra
ks per starting point × 5 tra
ks per starting pointIn Chapter 3, the Random Dire
tion Mobility Model and Hybrid Model are simplyseparated into two 
ategories, the small range velo
ity and the large range velo
ity.By doing so we assume the possibility that the di�erent velo
ity range signi�
antlyin�uen
es the mobile behavior in the �ngerprint method. And this assumption willbe testi�ed in the Chapter 6.Besides, '4 starting points' are used to test the e�e
t of various starting pointson the a

ura
y of �ngerprint positioning method. '5 tra
ks' are used to provideaverage statisti
s in order to mitigate bias approximation. In Chapter 6, one more
omparison like noise power level is also added.5.5 SummaryIn this 
hapter, we started with a dis
ussion on A

ess Point deployment. Themethod dis
ussed in this 
hapter is simply used to give a general idea about thefeasibility of APs deployment. Meantime, two real-�eld data 
olle
ted from building1 and building 2 were introdu
ed as a referen
e to evaluate APs deployment in the



5.5. Summary 46simulation. As an observation result from the two set of real-�eld data, the standarddeviation of heard APs power level per �ngerprint point is inversely proportionalto the power level of heard APs per �ngerprint point. Therefore it is 
on
ludedthere is probably a tradeo� between standard deviation of heard APs power levelper �ngerprint point and power level of heard APs per �ngerprint point. Again, thisobservation is not the main fo
us of the thesis, but it is a good beginning for thefuture indoor positioning study.Later in this 
hapter, some details su
h as �oor loss and spa
ing were dis
ussed, theformation of tra
k database was introdu
ed as well.Through Figures 5.9(a), 5.9(b) and 5.9(
), it was quite obvious to see the e�e
t ofadding �oor loss in the simulation. The spa
ing issue was talked by demonstrating3 �gures with di�erent distribution of �ngerprint points; the merits and demeritswere not dis
ussed here. The APs deployment and �ngerprint grid were only for thetesting purpose; on
e these are set up, they remain the same and are used for allthe test.The database of user tra
ks was organized as shown in Table 5.3, through 3 velo
ityranges and 4 starting points. '5 tra
ks per starting point' was used for the purposeof a less biased approximation.



47
6. SIMULATION-BASED RESULTS
6.1 Gaussian likelihood estimationIn the Chapter 4 we talked about Gaussian likelihood fun
tion, and we gave theexpression to 
al
ulate it. The Gaussian likelihood method, in other words, is aprobabilisti
 way to des
ribe the distan
e between two power levels and at the sametime, taking into a

ount the ba
kground noise. The Gaussian likelihood methodis the best way to implement the power level distan
e estimation. Figures 6.1(a),6.1(b) and 6.1(
) show three alternatives that 
ould use to estimate positions, thealgorithm uses eq. ( 6.2), others see eq. ( 6.1) and ( 6.3).In the Figure 6.1, all the algorithm are based on Gaussian likelihood. Among themthe prin
iple of algorithm 1 is eq. ( 6.1), algorithm 2 is eq. ( 6.2) and algorithm 3is eq. ( 6.3).

L1 =
∑

heard ap





1
√

2πσ2
ap

e
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2σ2
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

 (6.1)
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∑
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∑

heard ap





1
√

2πσ2
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e
(Rap−Pi,ap)
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2σ2
ap



 |Rap − Pi,ap| (6.3)Obviously, it 
an be seen from Figure 6.1, the algorithm 2 is the best amongst them.6.2 Root mean square errorRoot Mean Square Error (RMSE) is 
ommonly to evaluate the behavior of esti-mation algorithms. From Se
tion 6.1, we get the estimated position (x̂, ŷ, ẑ) whi
h
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algorithm 1
algorithm 2: addition in logarithm scale
algorithm 3(
) Average of two models with 3 algorithmsFigure 6.1: Comparison among three estimation algorithms. The range of noise powerlevel is 10 dBm - 40 dBm.maximizes the Gaussian likelihood. Then the RMSE value of distan
e between thereal lo
ation and the estimated one 
an be expressed as follow:

RMSE =

√

√

√

√mean
(

n
∑

i=1

(

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2
)

) (6.4)From Se
tion 5.4.2, the true lo
ation is known in the RMSE 
omputation. It isassumed that the noise varian
e of APs keeps 
onstant for ea
h test.Due to the la
k of human mobility data 
olle
ted in real life, based on Figure 6.2 it is
on
luded that the Hybrid Model has a better estimation a

ura
y than the RandomDire
tion Mobility Model under �ngerprint algorithm and Bayesian estimation. Themost likely reason for this better a

ura
y is the uneven distribution of mobilepositions in Hybrid Model.From Figure 6.2, there are no di�eren
es among di�erent starting points and dif-
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Figure 6.2: RMSE versus Noise varian
e.In the upper group lines they are RMSE values of estimation using Random Dire
tionMobility Model, in the lower group lines they are RMSE values of estimation using HybridModel. In both these two group lines, there are 4 starting points and 2 velo
ity ranges.ferent velo
ity ranges. Figure 6.3 shows the variation of RMSE value when onlyone parameter 
hanges. By 
omparing Figure 6.3(a) with Figure 6.3(b) and Figure6.3(
) with Figure 6.3(d), we see that the di�erent velo
ity range barely in�uen
esthe RMSE value. By looking at any 
urve in Figure 6.3, we 
an see that the diversestarting points make negligible di�eren
e to the RMSE value. By looking at Fig-ure 6.2 we 
ould summarize that the Hybrid Model is slightly sensitive to velo
ityrange. The 
ause of this might be the uneven distribution issue mentioned before.In addition, from Figure 6.4 it is 
lear to see the in�uen
e of environment noise in theRMSE value. Under 10 dB noise 
ondition, the Random Dire
tion Mobility Model
an a
quire around 5 meter a

ura
y with 0.8 probability, and the Hybrid Model
an a
hieve even higher probability (0.9). However, in the 40 dB noise situation, itis very di�
ult for both these two models to a
hieve relative high a

ura
y with fairprobability.
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6.2. Root mean square error 51To sum up, �rst of all, the impa
t of velo
ity range and starting point on the po-sitioning a

ura
y (i.e., the RMSE value under �ngerprint algorithm and Bayesianestimation) 
an be negle
ted. Se
ondly, 
ompared with the Random Dire
tion Mo-bility Model, the Hybrid Model has better positioning a

ura
y but it is slightlysensitive to the velo
ity range. Last but not least, the environmental noise powerlevel is 
ru
ial to the positioning a

ura
y and the type of mobility models plays animportant role in the positioning a

ura
y.
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7. BRIEF STUDY ABOUT VELOCITY ANDANGLE DEPENDENCIES ON RSS
This 
hapter is the result of an open-end resear
h so far and it aims at exploringthe properties of RSS and their relationship to the human mobility parameters. Inthe 
urrent work, when applying �ngerprint algorithm we build 
onne
tion betweenRSSs of that moment and the position information. However, due to the extremelyfrequent slow movement of human beings inside a spa
e (i.e., o�
e, home et
...),the velo
ity is in an a
tual slow-
hanging pro
ess. Thus, the predi
tion of the nextmove based on histori
al movements is possible. Therefore the dis
ussion in this
hapter des
ribes a pi
ture of this thought and it gives the 
on
lusions until now.To start with, the resear
h in
ludes two di�erent dire
tional ways of exploration:1. Finding the relationship between the velo
ity and power 
hanging 
hara
ter-isti
s;2. Using the relationship found in step 1 to predi
t the 
urrent position by 
om-paring and analysing the power re
eived now and before.Table 7.1 shows the design of the velo
ity part, and Table 7.2 shows the design ofthe angle part.Under these design, if we 
onsider a noise free spa
e, the simulation result of velo
ityis illustrated in Figure 8.1:From Figure 7.1(
), it 
an be 
on
luded that the velo
ity has impa
t on the rate ofpower level 
hange. From Figure 7.1(
), we 
an see that the peak value is the sameno matter what the speed is. The velo
ity parameter determines the time whi
h isneeded by the power level of the mobile to return its starting power level.Similarly, by following the design in Table 7.2 and assuming noise free simulation15In the Figure 7.1, we simply take values from 0.80 to 1.10 with 0.05 step [unit: m℄.16In the Figure 7.2, we take values from 0 to π/2 with π/8 step [unit: rad℄.
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ies on RSS 53Table 7.1: Velo
ity simulation designParameter Valuesimulation area 10×10 2-D [m℄number of AP 1AP power 0 [dBm℄AP lo
ation (5,5) [m℄path loss 
oe�
ient nap=2noise to be de�ned (Gaussian distribution)angle π/4 [rad℄velo
ity 0.89-1.0815 [m/s℄sampling frequen
y 10 [Hz℄tra
k from (0,0) to (10,10) straight [m℄�ngerprint spa
ing=0.2 [m℄Table 7.2: Angle simulation designParameter Valuesimulation area 10×10 2-D [m℄number of AP 1AP power 0 [dBm℄AP lo
ation (5,5) [m℄path loss 
oe�
ient nap=2noise to be de�ned (Gaussian distribution)angle 0-π/216 [rad℄velo
ity 0.9 [m/s℄sampling frequen
y 10 [Hz℄�ngerprint spa
ing=0.2 [m℄spa
e, the simulation result �gures of angle is given in Figure 8.1. In Figures 7.2(a),7.2(b), 7.2(
), 7.2(d) and 7.2(e), the blue line represents the tra
k and the green linerepresents the 
hanging power along with the 
hange of the mobile position.From Figure 7.2(g), we 
omprehend that the angle not only determine the peak valueof power level plot but also the time whi
h is needed for power level 
urve return toits starting value. If the simulated area is �xed, there is non-zero probability thatin the angle 
ase the power level 
urve may not return to its starting value. In thissense, the angle parameter mainly determine the peak value.In brief, the velo
ity is strongly related to the time whi
h is needed for the power
urve to return to its starting value. The angle is 
ru
ial to the peak value of thepower level 
urve.
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(
) Comparison among velo
itiesFigure 7.1: Velo
ity study under noise free 
ondition. In the Figure 7.1(a), the blue linerepresents the tra
k and the green line represents the 
hanging power along with the 
hangeof the mobile position. Figure 7.1(b) is the �ngerprint power grid. Figure 7.1(
) lists all theresults in this simulation, re
eived power level 
hanges with the various velo
ities. *note:transmitted power is 0 dBm.
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(b) Angle study (under noise)Figure 7.3: Velo
ity and angle study under slight noise power [2 dB℄ level *note: trans-mitted power is 0 dBm.Figures 7.3(a) and 7.3(b) shows the power level 
urves versus the variation of thevelo
ity and the angle respe
tively. The 
on
lusion we made from the noise free
ase may not be solid when the 
on
lusion is applied to the 2 dB noise power level
ase. Even a low noise level rather destroys these ni
e 
hara
teristi
s and moreinvestigation is needed to draw universal 
on
lusions on the RSS relationship withangles and dire
tions.
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8. DESIGN RECOMMENDATION
As it was said in the Introdu
tion 
hapter, 
onsidering the uplink and downlink inthe wireless network, the in�uen
e between the user devi
es and the a

ess points ismutual. The movements of users a�e
ts the way the mobile re
eives and transmitsthe signals. The study of human mobility patterns not only makes 
ontribution toindoor positioning but it also bene�ts the resear
h of wireless network. All of thesemotivate us to push the study of human mobility patterns forward.8.1 Complexity and suitability for real-life s
enariosSpeaking of human mobility models, it is inevitable to dis
uss the 
ompromise be-tween how 
omplex the models 
ould be and in what degree the models 
ould de-s
ribe real s
enarios.One priority of indoor positioning system is low 
omplexity, whi
h is the pre
onditionof its popularity. Due to many des
ription of human mobility 
hara
terization, theHybrid Model has higher 
omplexity than the Random Dire
tion Mobility Model.This is the main disadvantage of the Hybrid Model.The Hybrid Model 
oexists with the Random Dire
tion Mobility Model, be
auseeven if the movements of most people inside a building are 
loser to Hybrid Model,there still are minor 
ases su
h as the 
leaner inside a building. So under this
onsideration, multiple models are needed to approa
h the detailed des
ription ofindoor human mobility patterns. And the unity of diverse models seems unlikely fornow.8.2 Future 
hallenges and opportunitiesThe indoor positioning has many 
hallenges now. Positioning is like most other 
ut-ting edge te
hnologies, that people did not realize its potential 
on�i
t with ethi
issues before it was born. While the 
on
ept of indoor positioning is fashionable,people learned from GNSS positioning te
hnologies that positioning has possibility
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y issues et
. This obs
urely brings obstru
tion to the developmentof indoor positioning te
hnologies, for example, 
olle
ting movements data of hu-man beings from real life usually is impossible or at least di�
ult. Besides, unlikethe satellite based positioning, in the indoor positioning area the indoor positioningte
hnology does not have universal standard until now. The status quo of this areais still lab work [33, 32℄ or business release [42, 19, 20℄ within a small s
ale. Most in-door positioning proje
ts are business oriented work rather than government leadingproje
ts. This is another reason why the universal standard of indoor positioningte
hnologies is not yet formed.In the meantime, we should also have faith in the future of indoor positioning te
h-nologies. With the in
reasing requirement of Lo
ation-based Servi
e (LBS), peoplewill eventually move their fo
us from outdoor positioning to the indoor positioning.In addition, as a 
ommon sense, o�
e people stay longer inside a building ratherthan outside it, �remen extinguish �re mostly inside a building et
. These fa
tsmotivate the indoor positioning te
hnology to make a move forward.Table 8.1: Challenges and opportunitiesChallenges Opportunitiesethi
al issues in 
olle
t-ing data for human mo-bility models positioning algorithmsenhan
ed with predi
-tive engines based onhuman mobility pat-ternsneed of huge data 
olle
-tion for statisti
ally sig-ni�
ant results developing standardsfor indoor positioning
8.3 Future studiesThe indoor s
enarios are 
omplex, one or two indoor human mobility models 
annotpre
isely des
ribe every patterns of human mobility under indoor environment. Thusthe indoor human mobility models still need to be developed. For example, a humanmobility model inside a supermarket.In this thesis, the spa
ing between �ngerprints are large, whi
h limits the a

ura
y ofpositioning. A method to de
rease the spa
ing between �ngerprints and meantime toin
rease mu
h 
omputation is under development. Re
ently there are many resear
hon the predi
tion of human mobility, and in this way the size of �ngerprint grid maybe de
reased. This idea gives an alternative to in
rease the a

ura
y and not tobring too mu
h burden to the 
omputation.
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9. CONCLUSIONS
This thesis work presented a investigation of 
urrent popular human mobility mod-els, proposed a novel model namely Hybrid Model for indoor positioning studyand tested the suitable models (i.e., Random Dire
tion Mobility Model and HybridModel) with �ngerprint algorithm and Bayesian estimation for the purpose of in-door positioning. In addition, this thesis also brie�y investigated the relationshipsbetween the movement dire
tion 
hanges and speeds to the Re
eived Signal Strength�u
tuations.Chapter 1 started with the introdu
tion of the ba
kground of this thesis work, thenthe author's 
ontribution and organization of this thesis was listed. In Chapter 2,we reviewed the 
urrent fashionable indoor positioning te
hnologies and 
ommentedea
h te
hnology from the point of view of the feasibility and 
ost. In Chapter3, Random Walk Mobility, Random Waypoint Mobility Model, Random Dire
tionMobility Model and Boundless Simulation Area Mobility Model were introdu
edtogether with a dis
ussion on their feasibility in indoor s
enarios. Then the proposedmodel, whi
h is used to spe
i�
ally des
ribe o�
e movements of human beings,was given and dis
ussed. In Chapter 3, the details on how to form the abovemodels and the 
hara
terization of Hybrid Model were also in
luded. In Chapter4, we talked about various traits of indoor environment and then we explained theassumptions used in the Random Dire
tion Mobility Model and the Hybrid Model.Then, the 
lassi
al path loss model was brie�y expressed. Finally, the �ngerprintpro
ess and the estimation methods were explained. In Chapter 5, the deploymentof A

ess Points was detailed and parti
ularly one possible evaluation method ofAPs setup was introdu
ed there. A method about the relationship between the APdensity and the positioning a

ura
y was also introdu
ed. Later on, the �ngerprintsetup and the tra
k formation were presented. In this tra
k formation se
tion,the downsampling 
on
ept was dis
ussed by 
omparing Figure 5.11(a) with Figure5.11(b) (or Figure 5.11(
) with Figure 5.11(d)). In Chapter 6, it was 
on
luded that,under the �ngerprint algorithm and the Bayesian estimation, the Hybrid Model hasa better positioning a

ura
y than the Random Dire
tion Mobility Model. We alsoshowed that parameters su
h as velo
ity range and the starting point have only atiny impa
t on the positioning a

ura
y (in the thesis, the a

ura
y is 
hara
terized
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lusions 60in terms of the Root Mean Square Error value). In Chapter 7 and 8, the 
hallengesand opportunities in the indoor positioning area were dis
ussed, and at the sametime, part of the 
urrent work is brie�y introdu
ed to give the readers a general ideaabout future work in this area.
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65APPENDIX A. RANDOM DIRECTIONMOBILITY MODEL SIMULATORThe full version of Matlab simulators used in this thesis will be available athttp://www.
s.tut.fi/tlt/pos/Software.htm after September 2015.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Department of Ele
troni
s and Communi
ation Engineering %% WANG WENBO - 238970 %% %% random dire
tion mobility model %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
lose all;
lear all;
l
;%% variables% define x-y planexmax=50;ymax=50;% simulation time%N=10*60*600;N=5e3;% the number of floorsnoOfFloor=3;% the height spa
ing of floorsfloorHeight=3;%starting point%{

http://www.cs.tut.fi/tlt/pos/Software.htm


APPENDIX A. Random Dire
tion Mobility Model Simulator 66x0=0;y0=0;z0=0;%}temp_3=0:floorHeight:floorHeight*(noOfFloor-1);%{x0=xmax*rand;y0=ymax*rand;z0=temp_3(randi(length(temp_3)));%}% loading predefined starting pointload('para2.mat');% sampling frequen
yFs=10;t=1/Fs;% velo
ity intervalv_max=3;v_min=0.5;%v_min=0.89;v_max=1.083;% generate velo
ity variables using setVariable fun
tionv=setVariable(v_min,v_max,'normal',N);% displa
ement per time [m℄d=v*t;zmin=0;zmax=(noOfFloor-1)*floorHeight;%%{%% 2-Dfigure;%hOut = inout.output();%hOut.figure;% plot the boundaryh4=plot([0 xmax℄,[ymax ymax℄,'r-','linewidth',1.5); hold on;



APPENDIX A. Random Dire
tion Mobility Model Simulator 67plot([0 xmax℄,[0 0℄,'r-','linewidth',1.5);plot([0 0℄,[0 ymax℄,'r-','linewidth',1.5);plot([xmax xmax℄,[0 ymax℄,'r-','linewidth',1.5);% pro
esstra
e(1,1)=x0;tra
e(2,1)=y0;% dire
tionr=-pi+2*pi*rand;
ount=1;for n=1:N% starting pointh1=plot(x0,y0,'go','markersize',10,'linewidth',1.5);grid on;% set axis s
aleaxis('square',[-5 xmax+5 -5 ymax+5℄);tra
e(1,
ount+1)=tra
e(1,
ount)+d(n)*
os(r);tra
e(2,
ount+1)=tra
e(2,
ount)+d(n)*sin(r);% if, elseif and else are used to determine if the user 
ross the boundaryif tra
e(1,
ount+1)<xmax&&tra
e(1,
ount+1)>0&&tra
e(2,
ount+1)<ymax&&...tra
e(2,
ount+1)>0plot(tra
e(1,
ount:
ount+1),tra
e(2,
ount:
ount+1),'k-',...'linewidth',0.6);
ount=
ount+1;elseif tra
e(1,
ount+1)>xmax&&tra
e(2,
ount+1)<0tra
e(1,
ount+1)=xmax;tra
e(2,
ount+1)=0;plot([tra
e(1,
ount),xmax℄,[tra
e(2,
ount),0℄,'k-','linewidth',0.6);plot(xmax,0,'ko','markersize',5,'markerfa
e','k');
ount=
ount+1;r=setVariable(pi/2,pi,'normal',1);tra
e(1,
ount+1)=xmax+d(n)*
os(r);tra
e(2,
ount+1)=d(n)*sin(r);



APPENDIX A. Random Dire
tion Mobility Model Simulator 68plot([xmax,tra
e(1,
ount+1)℄,[0,tra
e(2,
ount+1)℄,'k-','linewidth',0.6);
ount=
ount+1;elseif tra
e(1,
ount+1)>xmax&&tra
e(2,
ount+1)>ymaxtra
e(1,
ount+1)=xmax;tra
e(2,
ount+1)=ymax;plot([tra
e(1,
ount),xmax℄,[tra
e(2,
ount),ymax℄,'k-','linewidth',0.6);plot(xmax,ymax,'ko','markersize',5,'markerfa
e','k');
ount=
ount+1;r=setVariable(pi,3*pi/2,'normal',1);tra
e(1,
ount+1)=xmax+d(n)*
os(r);tra
e(2,
ount+1)=ymax+d(n)*sin(r);plot([xmax,tra
e(1,n+1)℄,[ymax,tra
e(2,n+1)℄,'k-','linewidth',0.6);
ount=
ount+1;elseif tra
e(1,
ount+1)<0&&tra
e(2,
ount+1)>ymaxtra
e(1,
ount+1)=0;tra
e(2,
ount+1)=ymax;plot([tra
e(1,
ount),0℄,[tra
e(2,
ount),ymax℄,'k-','linewidth',0.6);plot(0,ymax,'ko','markersize',5,'markerfa
e','k');
ount=
ount+1;r=setVariable(3*pi/2,2*pi,'normal',1);tra
e(1,
ount+1)=d(n)*
os(r);tra
e(2,
ount+1)=ymax+d(n)*sin(r);plot([0,tra
e(1,
ount+1)℄,[ymax,tra
e(2,
ount+1)℄,'k-','linewidth',0.6);
ount=
ount+1;elseif tra
e(1,
ount+1)<0&&tra
e(2,
ount+1)<0tra
e(1,
ount+1)=0;tra
e(2,
ount+1)=0;plot([tra
e(1,
ount),0℄,[tra
e(2,
ount),0℄,'k-','linewidth',0.6);plot(0,0,'ko','markersize',5,'markerfa
e','k');
ount=
ount+1;r=setVariable(0,pi/2,'normal',1);tra
e(1,
ount+1)=d(n)*
os(r);tra
e(2,
ount+1)=d(n)*sin(r);plot([0,tra
e(1,
ount+1)℄,[0,tra
e(2,
ount+1)℄,'k-','linewidth',0.6);
ount=
ount+1;elseif tra
e(1,
ount+1)>=xmax&&tra
e(2,
ount+1)>=0&&tra
e(2,
ount+1)<=ymaxy=((xmax-tra
e(1,
ount))*tra
e(2,
ount+1)+(tra
e(1,
ount+1)-xmax)*...tra
e(2,
ount))/(tra
e(1,
ount+1)-tra
e(1,
ount));tra
e(1,
ount+1)=xmax;
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tion Mobility Model Simulator 69tra
e(2,
ount+1)=y;plot([tra
e(1,
ount),xmax℄,[tra
e(2,
ount),y℄,'k-','linewidth',0.6);plot(xmax,y,'ko','markersize',5,'markerfa
e','k');
ount=
ount+1;r=setVariable(pi/2,3*pi/2,'normal',1);tra
e(1,
ount+1)=xmax+d(n)*
os(r);tra
e(2,
ount+1)=y+d(n)*sin(r);plot([xmax,tra
e(1,
ount+1)℄,[y,tra
e(2,
ount+1)℄,'k-','linewidth',0.6);
ount=
ount+1;elseif tra
e(1,
ount+1)<=0&&tra
e(2,
ount+1)>=0&&tra
e(2,
ount+1)<=ymaxy=((0-tra
e(1,
ount))*tra
e(2,
ount+1)+tra
e(1,
ount+1)*...tra
e(2,
ount))/(tra
e(1,
ount+1)-tra
e(1,
ount));tra
e(1,
ount+1)=0;tra
e(2,
ount+1)=y;plot([tra
e(1,n),0℄,[tra
e(2,n),y℄,'k-','linewidth',0.6);plot(0,y,'ko','markersize',5,'markerfa
e','k');
ount=
ount+1;r=setVariable(3*pi/2,5*pi/2,'normal',1);tra
e(1,
ount+1)=d(n)*
os(r);tra
e(2,
ount+1)=y+d(n)*sin(r);plot([0,tra
e(1,
ount+1)℄,[y,tra
e(2,
ount+1)℄,'k-','linewidth',0.6);
ount=
ount+1;elseif tra
e(2,
ount+1)>=ymax&&tra
e(1,
ount+1)>=0&&tra
e(1,
ount+1)<=xmaxx=((ymax-tra
e(2,
ount))*tra
e(1,
ount+1)+(tra
e(2,
ount+1)-ymax)*...tra
e(1,
ount))/(tra
e(2,
ount+1)-tra
e(2,
ount));tra
e(1,
ount+1)=x;tra
e(2,
ount+1)=ymax;plot([tra
e(1,
ount),x℄,[tra
e(2,
ount),ymax℄,'k-','linewidth',0.6);plot(x,ymax,'ko','markersize',5,'markerfa
e','k');
ount=
ount+1;r=setVariable(pi,2*pi,'normal',1);tra
e(1,
ount+1)=x+d(n)*
os(r);tra
e(2,
ount+1)=ymax+d(n)*sin(r);plot([x,tra
e(1,
ount+1)℄,[ymax,tra
e(2,
ount+1)℄,'k-','linewidth',0.6);
ount=
ount+1;elseif tra
e(2,
ount+1)<=0&&tra
e(1,
ount+1)>=0&&tra
e(1,
ount+1)<=xmaxx=((0-tra
e(2,
ount))*tra
e(1,
ount+1)+tra
e(2,
ount+1)*...tra
e(1,
ount))/(tra
e(2,
ount+1)-tra
e(2,
ount));tra
e(1,
ount+1)=x;
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tion Mobility Model Simulator 70tra
e(2,
ount+1)=0;plot([tra
e(1,
ount),x℄,[tra
e(2,
ount),0℄,'k-','linewidth',0.6);plot(x,0,'ko','markersize',5,'markerfa
e','k');
ount=
ount+1;r=setVariable(0,pi,'normal',1);tra
e(1,
ount+1)=x+d(n)*
os(r);tra
e(2,
ount+1)=d(n)*sin(r);h3=plot([x,tra
e(1,
ount+1)℄,[0,tra
e(2,
ount+1)℄,'k-','linewidth',0.6);
ount=
ount+1;enddrawnow;end% ending pointh2=plot(tra
e(1,end),tra
e(2,end),'ro','markersize',10,'linewidth',1.5);legend([h1,h2,h3,h4℄,'starting point','terminal point','tra
k','boundary');xlabel('x [m℄');ylabel('y [m℄');hold off;%title(['Random Dire
tion Mobility Mode','total ',num2str(N),' moves'℄);%}%{%% 3-Dtra
e(3,:) = thirdDi(length(tra
e(1,:))-1,t,z0,zmin,zmax);%%}tra
e_rss=tra
e;save('random_dire
tion_25.mat');%}



71APPENDIX B. HYBRID MODEL SIMULATOR%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Department of Ele
troni
s and Communi
ation Engineering %% WANG WENBO - 238970 %% %% hybrid model - 3D %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
lose all;
lear all;
l
;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Explanation %%In this model, the random dire
tion mobility model and random waypoint %%mobility model are 
ombined, so that it starts moving from (an random %%point in the area), and with (a 
ertain dire
tion and 
hanging velo
ity%%), maintaining this status for (a while), before or tou
hing the %%boundry, 
hanging dire
tion and repeat this a
tion again. %% Note : %% in this model, the normal distribution is used with 
onfident level %%95% to model velo
ity and angles. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% variable% define x-y planexmax=50;ymax=50;% the number of floorsnoOfFloor=3;% the height spa
ing of floorsfloorHeight=3;



APPENDIX B. Hybrid Model Simulator 72% simulation times (pause also 
ounted as 1 time simulation)n=10000;n=2*
eil(n/2);% define the upper and lower bound of velo
ity [m/s℄v_min=0.5;v_max=3;%v_min=0.89;v_max=1.083;% define the upper and lower bound of angle [radian℄r_min=0;r_max=2*pi;% define the move time bound [s℄t_move_min=3;t_move_max=10;% define the pause time bound [s℄t_pause_min=0.5;t_pause_max=30;% define the upper and lower bound of distan
e away from boundry [m℄dist_min=0.5;dist_max=20;%% avariable models using setVariable fun
tionv=setVariable(v_min,v_max,'normal',n/2);r=setVariable(r_min,r_max,'uniform',n/2);t_m=setVariable(t_move_min,t_move_max,'normal',n/2);t_p=setVariable(t_pause_min,t_pause_max,'normal',n/2);dist=setVariable(dist_min,dist_max,'uniform',n);% define the total simulation time [s℄% the first row is move time, se
ond row is pause timet(1,:)=t_m;t(2,:)=t_p;% define the sampling frequen
y [Hz℄Fs=1e2;% define the starting point x-y-ztemp_3=0:floorHeight:floorHeight*(noOfFloor-1);%startP=[0,0,0℄;



APPENDIX B. Hybrid Model Simulator 73%startP=[xmax*rand,ymax*rand,temp_3(randi(length(temp_3)))℄;load('para3.mat');%% pro
ess% initialt=floor(t*Fs);t=[zeros(2,1),t℄;tra
e(1:3,1)=startP;
ounta=1;% for angle purpose
ountb=1;% for dist purposefor p=1:n/2
ount1=sum(t(1,1:p))+1;
ount2=sum(t(1,1:p+1));ang=r(
ounta);for pp=
ount1:
ount2tra
e(1,pp+1)=tra
e(1,pp)+v(p)*
os(ang)/Fs;tra
e(2,pp+1)=tra
e(2,pp)+v(p)*sin(ang)/Fs;temp_3=thirdDi(1,1/Fs,tra
e(3,pp),0,(noOfFloor-1)*floorHeight);tra
e(3,pp+1)=temp_3(2);temp1=tra
e(1,pp+1)+dist(
ountb);temp2=tra
e(2,pp+1)+dist(
ountb);temp3=tra
e(1,pp+1)-dist(
ountb);temp4=tra
e(2,pp+1)-dist(
ountb);if temp1<xmax&&temp3>0&&temp2<ymax&&temp4>0
ontinue;elseif temp1>xmax&&temp4<0ang=setVariable(pi/2,pi,'normal',1);tra
e(1,pp+1)=tra
e(1,pp)+v(p)*
os(ang)/Fs;



APPENDIX B. Hybrid Model Simulator 74tra
e(2,pp+1)=tra
e(2,pp)+v(p)*sin(ang)/Fs;elseif temp1>xmax&&temp2>ymaxang=setVariable(pi,3*pi/2,'normal',1);tra
e(1,pp+1)=tra
e(1,pp)+v(p)*
os(ang)/Fs;tra
e(2,pp+1)=tra
e(2,pp)+v(p)*sin(ang)/Fs;elseif temp3<0&&temp2>ymaxang=setVariable(3*pi/2,2*pi,'normal',1);tra
e(1,pp+1)=tra
e(1,pp)+v(p)*
os(ang)/Fs;tra
e(2,pp+1)=tra
e(2,pp)+v(p)*sin(ang)/Fs;elseif temp3<0&&temp4<0ang=setVariable(0,pi/2,'normal',1);tra
e(1,pp+1)=tra
e(1,pp)+v(p)*
os(ang)/Fs;tra
e(2,pp+1)=tra
e(2,pp)+v(p)*sin(ang)/Fs;elseif temp1>=xmax&&temp4>=0&&temp2<=ymaxang=setVariable(pi/2,3*pi/2,'normal',1);tra
e(1,pp+1)=tra
e(1,pp)+v(p)*
os(ang)/Fs;tra
e(2,pp+1)=tra
e(2,pp)+v(p)*sin(ang)/Fs;elseif temp3<=0&&temp4>=0&&temp2<=ymaxang=setVariable(3*pi/2,5*pi/2,'normal',1);tra
e(1,pp+1)=tra
e(1,pp)+v(p)*
os(ang)/Fs;tra
e(2,pp+1)=tra
e(2,pp)+v(p)*sin(ang)/Fs;elseif temp2>=ymax&&temp3>=0&&temp1<=xmaxang=setVariable(pi,2*pi,'normal',1);tra
e(1,pp+1)=tra
e(1,pp)+v(p)*
os(ang)/Fs;tra
e(2,pp+1)=tra
e(2,pp)+v(p)*sin(ang)/Fs;elseif temp4<=0&&temp3>=0&&temp1<=xmaxang=setVariable(0,pi,'normal',1);tra
e(1,pp+1)=tra
e(1,pp)+v(p)*
os(ang)/Fs;tra
e(2,pp+1)=tra
e(2,pp)+v(p)*sin(ang)/Fs;endend
ounta=
ounta+1;
ountb=
ountb+1;endtm=floor(t_m*Fs);



APPENDIX B. Hybrid Model Simulator 75tp=floor(t_p*Fs);for ppp=1:n/2tra
e_rss(1,1+sum(tm(1:ppp-1))+sum(tp(1:ppp-1)):1+sum(tm(1:ppp))...+sum(tp(1:ppp-1)))=tra
e(1,1+sum(tm(1:ppp-1)):1+sum(tm(1:ppp)));tra
e_rss(1,2+sum(tm(1:ppp))+sum(tp(1:ppp))-tp(ppp):1+sum(tm(1:ppp))...+sum(tp(1:ppp)))=tra
e(1,1+sum(tm(1:ppp)));tra
e_rss(2,1+sum(tm(1:ppp-1))+sum(tp(1:ppp-1)):1+sum(tm(1:ppp))...+sum(tp(1:ppp-1)))=tra
e(2,1+sum(tm(1:ppp-1)):1+sum(tm(1:ppp)));tra
e_rss(2,2+sum(tm(1:ppp))+sum(tp(1:ppp))-tp(ppp):1+sum(tm(1:ppp))...+sum(tp(1:ppp)))=tra
e(2,1+sum(tm(1:ppp)));tra
e_rss(3,1+sum(tm(1:ppp-1))+sum(tp(1:ppp-1)):1+sum(tm(1:ppp))...+sum(tp(1:ppp-1)))=tra
e(3,1+sum(tm(1:ppp-1)):1+sum(tm(1:ppp)));tra
e_rss(3,2+sum(tm(1:ppp))+sum(tp(1:ppp))-tp(ppp):1+sum(tm(1:ppp))...+sum(tp(1:ppp)))=tra
e(3,1+sum(tm(1:ppp)));end%save('hybrid_model_2_35.mat');


	Introduction
	Motivation
	Author contribution
	Thesis organization

	Contextual models and underlying technologies
	Ultrasound
	Infrared radiation
	Image
	Other electromagnetic waves

	User mobility models
	Overview
	Random Walk Mobility Model
	Random Waypoint Mobility Model
	Random Direction Mobility Model
	Boundless Simulation Area Mobility Model
	Hybrid Model (proposed)
	Summary

	Indoor scenarios
	Overview
	Indoor environment
	Assumptions about human mobility 
	The third dimension
	Gaussian-like distribution

	Path loss models
	Indoor fingerprinting
	Training phase
	Estimation stage

	Summary

	Built Matlab simulator
	Overview
	Access Points setup
	Fingerprints setup
	Floor loss
	Fingerprint spacing

	Track formation
	Downsampling
	Track database

	Summary

	Simulation-based results
	Gaussian likelihood estimation
	Root mean square error

	Brief study about velocity and angle dependencies on RSS
	Design recommendation
	Complexity and suitability for real-life scenarios
	Future challenges and opportunities
	Future studies

	Conclusions
	Bibliography
	APPENDIX A. Random Direction Mobility Model Simulator
	APPENDIX B. Hybrid Model Simulator

