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Indoor positioning technology has become increasingly popular in both business
and research worlds. Several technologies have been developed so far and some of
them are in commercial use now. However, due to personal privacy issues and the
complexity of indoor environment, the data regarding the human mobility patterns
are insufficient. The study of synthetic human mobility models is an important
issue, which is expected to shed new light into a myriad of Location Based Services
and location-aware communications. Finding and testing synthetic models about
human mobility is an important step ahead and this constitutes the main focus of
this thesis. In addition, we also address the issue of indoor positioning via WiFi
received signal strength under various mobility patterns, generated synthetically

through a simulator built within this thesis.

The thesis starts with a review of four popular synthetic human mobility models
which is followed by presenting a new model proposed in this work and denoted
as Hybrid Model. Based on the suitability of the models for indoor positioning,
the Random Direction Mobility Model and the newly proposed Hybrid models were
chosen for further testing as human mobility models with WiFi-based fingerprint-
ing. We show in detail the indoor scenarios characterization and accordingly we
present, the classical path loss model. Then, an indoor positioning simulator includ-
ing mobility models is built and an alternative method of evaluating Access Points
(APs) deployment is introduced. In order to explore the positioning accuracy of the
above two models, a fingerprinting algorithm with Bayesian combining is applied.
The results are shown in terms of Root Mean Square Error (RMSE) distance error.
Finally we conclude that a Hybrid Model has a better positioning accuracy than a
Random Direction Mobility Model and that neither of the two models is essentially
affected by the velocity range or by the variation of the starting point. We also show

how the noise variance affects the positioning results.
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1. INTRODUCTION

1.1 Motivation

Over the last decade, the development of Global Navigation Satellite System (GNSS)
based technology has been changing the world profoundly. With this innovation,
many location-related services and projects were born, which reformed and are still
reforming our very lives day by day. Moreover, now when this thesis is being writ-
ten, enormous location-based smart phone applications and wearable equipment are
given birth to. However, the GNSS only works outstandingly under outdoor scenar-
ios, while in indoor situation it is nearly blind because of the complexity of buildings
(i.e., shadowing and multi-path effect [9]), signal physical characteristics (i.e., the
significant attenuation of microwave through roofs and walls [9]) etc. In addition, as
a matter of fact, a large number of people spend most of the hours in a day staying
inside a building, for example, the office hours. Therefore, the concept of indoor

positioning is an active field of research with multiple foreseen applications.

To start with, by reviewing the literature, some of current indoor positioning tech-

nologies and systems are presented below with a brief introduction:

1. Microsoft RADAR [8]: A tracking system which uses Wireless Local Area
Network (WLAN) Received Signal Strength Indication (RSSI) technology. It

has low accuracy level (around 4 m) and low reliability [18];

2. Ekahau [2]: A system that can simultaneously tracks thousands of devices
using WLAN RSSI technology. It has relative high accuracy level (up to 1 m)
and low cost [18];

3. Horus [44]: A system which uses WLAN RSSI technology with the Bayesian
estimation method. It has relative high accuracy level (below 2.1 m) and fair

complexity [27];

4. COMPASS [24]: A system which uses both WLAN and digital compass to

provide position information. It has relative high accuracy level (1-2 m) and
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inexpensive cost [18];

5. Ubisense [4]: A system which uses tags attached on mobiles to transmit
Ultra-wide bandwidth (UWB) signals to network and performs localization
based on the angle of arrival (AOA) or time difference of arrival (TDOA)
method. It has excellent accuracy level (below 0.3 m) but high cost [27];

6. Easy Living [11]: A system which uses vision-based technology for local-
ization. It has inexpensive cost but low reliability due to dynamic changing
environment and complex image processing. Besides, the available accuracy is

uncertain [18];

7. Firefly [22]: An Infrared Radiation -based (IR) motion tracking system. It

has excellent accuracy level (below 0.003 m) but high cost and wearing-comfort

problems [18];

8. SpotON [21]: A well-known Radio Frequency Identification REID-based so-
lution with Ad Hoc manner. It has flexible accuracy level (depending on the

cluster size), low cost and medium complexity [27];

9. Active Bat [1]: A system which uses ultrasonic technology as transmitted
medium to locate users. It has excellent accuracy level (around 0.03 m) and
high cost [18].

Among these solutions, WLAN-based methods have acceptable accuracy, relatively
low cost, fair complexity and medium reliability. Besides, the continuous growing
number of personal wireless equipment gives us an opportunity of realizing indoor
positioning through current wireless technologies (i.e., cellular and WLAN signals
[30, 38]). Thus, the WLAN-based RSSI method is now a feasible and promising

option for large-scale positioning.

In indoor scenarios, movement of wireless devices has significant impact on the wire-
less environment. To reveal human mobility patterns could help the research and
improve positioning methods, and help to optimize the network as well. Conven-
tionally, human mobility models are divided into two categories: trace-based models
and synthetic models [37|. Trace-based models are statistical models using real data
from real life. They guarantee genuine description of human trajectory. Unlike
trace-based models, synthetic models are artificial models which start from some
empirical parameter assumptions. However, one one hand, collecting trace data of-
ten poses privacy issues and ethical problems, and in most countries it is illegal to

touch this line unless the express consent of the tracked users is given; on the other
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hand, it is not easy to sample the data in order to meet the indoor positioning ac-
curacy requirement. In this sense, synthetic models are more suitable for large-scale
indoor positioning properties study. Therefore, this thesis work is mainly related
to synthetic models such as building models, comparisons among models, test of

selected models with a certain fingerprint algorithm etc.

1.2 Author contribution

In this work, the following contribution has been made by the author:

1. Review of the solutions for indoor positioning scenario where GNSS is not

available;

2. Study and exploration of properties of various contextual models, such as

supersonic sound positioning system and vision-based positioning system;

3. Implementation of four of the most popular synthetic models currently existing
in the literature. In this step, some limitations were added to the models so

that some models are more realistic;

4. Comparison of the introduced models from different angles and analysis of

their pros and cons;

5. Proposing a novel model which attempts to mimic the real indoor human
movement patterns, the Hybrid Mobility model,;

6. General description of the indoor environment and simulation-based modeling

of a indoor channel, including path losses and shadowing.

7. Testing different mobility models under indoor wireless circumstance using the
fingerprint algorithm and Bayesian estimation;

8. Drawing conclusions on the results and presenting an outlook on future devel-

opment.

In the end of thesis work, the author submitted one publication as the first author,
namely: Wenbo Wang, Pedro Figueiredo e Silva and Elena Simona Lohan, ’Inves-
tigations on mobility models and their impact on indoor positioning’, submitted to
MOBIQUITOUS 2015 (JUFO 1 level conference). The content of this publication is
related to investigation of current human mobility models and explain in detail the
reason of proposing the Hybrid Model, and using fingerprinting algorithm to test
the proposed Hybrid Model and other models found in the literature.
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1.3 Thesis organization

There are nine chapters in this thesis, details are as follow:

Chapter 2: introduces the concept of contextual model, and explores the properties
of it. From a big picture point of view, this chapter describes the main thesis idea
and which movement properties can be used to model, which natural properties can

be used as a medium to model the trajectory of a moving object.

Chapter 3: introduces the current four popular synthetic models namely Random
Walk Mobility Model, Random Waypoint Mobility Model, Random Direction Mo-
bility Model and Boundless Simulation Area Mobility Model. Finally we propose a

novel indoor human mobility model, namely the Hybrid Model.

Chapter 4: In this chapter, the characterization of indoor scenarios is presented.
The assumption of human mobility and classical path loss model are introduced. In

the end, the processes of fingerprinting and estimation method are given.

Chapter 5: Matlab simulator is described in detail. In this chapter we also give
an alternative method of evaluating the APs deployment inside a building. After-
wards, the methodology of forming fingerprint database and the track database is

introduced.

Chapter 6: The simulation-based results are shown. The main performance criteria

is the distance root mean square error.

Chapter 7: discusses the tradeoffs when designing a positioning algorithm under

certain mobility model parameters.

Chapter 8: presents some innovative ideas on estimating the angle and velocity
based on RSS information. This work is only in an incipient phase and open issues

are emphasized in here.

Chapter 9: presents the main conclusions of this thesis work and future research

directions.

The logical flow of the thesis chapters is summarized in Figure 1.1.
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2. CONTEXTUAL MODELS AND
UNDERLYING TECHNOLOGIES

Before further studying of human mobility models, investigation of available re-
sources used in positioning technologies might help to understand better the indoor
scenarios. This chapter reviews various technologies such as ultrasound, infrared
ray, image or electromagnetic wave that are currently used in location services. In
addition, extra comments are added to discuss the feasibility of utilization of these

methods in real life.

2.1 Ultrasound

In nature, bats use ultrasounds as the means to execute echolocation actions. These
actions help bats to navigate the forward path and to locate the position of prey in
the night. Inspired by this, people developed similar navigation and position systems
in the last hundred years. Here, an example (Active Bat) is shown to illustrate the
principle and flexibility of ultrasound method under indoor positioning scenarios
[1, 43].

Active Bat: The receivers of ultrasound on the ceiling form a grid; a user carrying
wireless device broadcasts ultrasound signals cyclically; the distance between the
user and receiver can be measured by the Time Of Arrival (TOA); as in many other
systems the triangulation location algorithm is applied to compute the location of
the user [18].

Comment: In essence, this technology calculates the distance by measuring the
consumed time of transmitting signals, then the location is determined by applying
the triangulation method. Specifically, the indoor coordinate initializes after the
installation of several receivers on the ceiling. Next, the broadcasted ultrasound
signals activate the receiver nodes, and through a series of algorithms this system
selects three of the activated receivers and computes the user location. Moreover,
the users can be tracked by storing positions of a users’ movement track. Therefore,

in this solution, the parameters such as the speed of ultrasound, the penetrability of
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ultrasound, the interference level of background noise and the accuracy of receivers

setup are crucial to the performance.

Ultrasound technology in localization has also been in used in Cricket [32, 33] and
Sonitor [3].

2.2 Infrared radiation

Infrared radiation (IR) is an invisible radiation with longer wavelength than the
visible light. Nowadays, the IR technology is used in a wide range of personal
wireless platforms, which offer an alternative of achieving indoor positioning. This
section presents the basis of IR-based indoor positioning technology via an instance
of Firefly [22].

Firefly: Dozens of tags attached on the users’ body emit in IR, and this radiation is
captured by special cameras at fixed location. This system possesses the capability
of tracking users’ subtle motions. This motion tracker is usually used as an assistant

of virtual reality related applications [18|.

Comment: Generally, the IR-based technologies acquire users’ location by observ-
ing tiny changes of the received IR. Due to the copyright and commercial reasons,
this Firefly system has no detailed description. But from the above information, it
is not hard to conclude that IR-based technology is restricted by conditions such as
the intensity of background light, the angle of view, the penetrability of IR and the

cost of the whole system.

IR technology in localization has also been used in Active Badge [19, 42].

2.3 Image

The human brain has the ability of determining movements by sensing difference
between two images in the same scene. Similarly, by placing cameras and a central
processor, this particular brain mechanism can be imitated for indoor positioning
purpose. The following example introduces the fundamental of image-based indoor

positioning technology.

FEasy living: Two stereo cameras are set on the ceiling of a room, and these two are
connected to a central processor. The action of a user coming into a room triggers

the system and in the meantime the system marks this second as starting point. By
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comparing the difference between two close frames, the system analyzes the current

location of the user [18].

Comment: This technology relies basically on image processing and it has the
advantage of not only locating the user, but also capturing the image of each user
movement with a certain time precision. However, the disadvantage is quite obvi-
ous: processing considerable images requires substantial consumption of power and
energy resource. Additionally the analysis of images might be affected by the light

intensity.

Image-based technology in localization has also been explained and developed in
[15, 25, 31].

2.4 Other electromagnetic waves

Unlike the indoor positioning solutions mentioned above, using electromagnetic
waves as medium to achieve location services is a very popular way. Particularly,
RFID, UWB and WLAN based indoor positioning technologies are one of the most
active research areas. Given that this thesis mainly investigates the performance of
human mobility models under WLAN situation, the discussion below focuses on the

WLAN:-based indoor positioning technology mainly.

RADAR: Three transmitters are set up at the beginning and the fingerprints grid
is formed thereby. An user carrying a wireless device moves inside the coverage of
transmitters signals. Considering that the strength of signals is inverse proportional
to the distance between a transmitter and the user’s device, the location of the user

can be computed through the triangulation location method [18].

Comment: This might use a machine learning process. The fingerprints grid con-
sists of received signal strength(RSS) at each point which is measured as the training
sequence and the coordinates of each measured point. Afterward the positioning op-

eration can be regarded as an estimation process.



3. USER MOBILITY MODELS

3.1 Overview

Before attempting to mimic human mobility patterns, we must find proof that hu-
man mobility has patterns to follow. In reference [17|, the authors tracked 100,000
anonymous mobile phone users’ location for six month. After modeling of numer-
ous statistical data and appropriate scaling upon the model, they concluded that
individual movement patterns have significant similarity. This conclusion, from the

statistical point of view, gives a strong support to synthetic models.

This chapter is composed of two parts: a literature survey of human mobility models
and a newly proposed human mobility model. In Section 3.2, we begin with the
most widespread human mobility model namely the Random Walk Mobility Model.
Later by adding one property to the Random Walk Mobility Model, we describe
the second model, the Random Waypoint Mobility Model, in Section 3.3. In order
to overcome weak points of the Random Waypoint Mobility Model, a third model
called Random Direction Mobility Model is illustrated in Section 3.4. In Section 3.5,
an ideal model namely the Boundless Simulation Area Mobility Model is given to
describe the Random Walk Mobility Model from the mobile point of view. Last but
not least, in Section 3.6 we present our proposed model, the Hybrid Model which
is built to approach the real scenarios of human mobility inside buildings. Figure
3.1 shows the capacity of each model of describing various movements. Because
the Boundless Simulation Area Mobility Model is an alternative interpretation of
the Random Walk Mobility Model, the Boundless Simulation Area Mobility Model
will not be shown separately in Figure 3.1. The Hybrid Model includes features
originated from the Random Waypoint Mobility Model and the Random Direction
Mobility Model, thus the circle of the Hybrid Model has overlaps with the above

two models.

In Section 3.4 and 3.6, a hypothesis is posed for later study (i.e., different range
velocities might have influence on the behavior of models under indoor scenarios).
Besides, in these two sections, a Gaussian-like distribution is widely used for gen-

erating parameters such as velocities, moving time and pause time. In the Hybrid
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Random Direction Mobility Model

Random Waypoint Mobility Model

Hybrid Model

Random Walk Mobility Model

Figure 38.1: Capacity of various movements.

Model, a third dimension, namely the hight dimension, is introduced to mimic the
scenario inside a building. It is to be noted that the above-mentioned notions, who
will also appear in the rest of this chapter, will be explained in more detail in Chapter
4.

Notice: First, considering the fact that people have far greater displacement mov-
ing on the horizonal plane than the vertical plane, and that 2-D models have less
computational complexity than 3-D models, the investigation of current models fo-
cuses on the 2-D models. In the proposal part, we discuss 3-D models, by tackling
also some new angles in 3-D modeling that have not been discussed yet in the liter-
ature. Secondly, besides the above models, there are still other models, such as the
Gauss-Markov Mobility Model, a model which contains knowledge of past location,
velocities and angles [26]. However this thesis only discusses memoryless models and

especially, the proposed Hybrid Model.

3.2 Random Walk Mobility Model

In 1905, when Einstein studied Brownian motion he revealed the relationship be-
tween the jump size and the time interval. That is, in other words, he mathemat-
ically described the Random Walk Mobility Model for the first time [13]. In this
model, it is supposed that all the parameters are in the state of pure randomization.
To be specific, a mobile starts from a random point with a random velocity, a ran-

dom direction and a random moving duration. After one moving duration expires,
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this mobile chooses another random velocity, another random direction and another

random moving duration then it repeats the above process.

In practice, the Random Walk Mobility Model is often simulated in two implemented
types: fixed duration and fixed displacement [12]. In the fixed duration case, we
assume that each moving duration is constant, while the velocity and direction are

random. In a mathematical way, this assumption can be expressed as follows:

{ Tpi1 = Tp + vyc080, At (3.1)

Yni1l = Yn + Upsi00, Al

Correspondingly, in the fixed displacement case, it is assumed that each displacement
for every resolution time interval is constant, while the direction is random, and that
each step consists of a random number of above-mentioned time interval. Similarly,

the mathematical expression is given by:

{ Tni1 = Tpn + Adcost, k, (3.2)

Yni1 = Yn + Adsinb, k,

In both eq. ( 3.1) and ( 3.2), (z,,y,) is the current position, (Z,41,Yns1) is the
position of next state, 6 is a random angle between heading direction of mobile and
horizontal counterclockwise, v is a random scalar velocity, At is a constant duration
for each step, Ad is a constant displacement for each time interval, k, is equal to

At, /T and At, ia a random duration for each step, 7 is a constant resolution time

interval.
175 (O starting point 175 O starting point
QO terminal point QO terminal point
170 : 170
165 165
160 160 :
E 155 : v X, E 155 .
> " >
150} AR 150
145 145
140 : 140
135 . 135
130 130
130 140 150 160 170 130 140 150 160 170
x [m] x[m]
(a) Fixed duration for each step (b) Fixed displacement for each step

Figure 3.2: Simulation of one mobile track using 2-D Random Walk Mobility Model,
the green circle represents the starting point and the red one represents the terminal point,
each solid black point represents the sampled location data.
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In Figures 3.2(a) and 3.2(b), the initial position of the mobile is (150,150). In
Figure 3.2(a), the total simulation time is 100 seconds, for each step the mobile
has 1 second movement duration, velocities and angles are uniformly distributed in
the interval [0, 6](unit : m/s) and [—7,7|(unit : rad) respectively. Figure 3.2(b)
gives a simplified example, the simulation has total 100 steps and for each step the
duration only contains 1 time interval, in other words, k, equal to 1. The fixed
displacement for each resolution time interval is 1.5 meters, and the angles follows

the same distribution as Figure 3.2(a).

Discussion: From the point of view of mimicking human movement patterns, the
Random Walk Mobility Model shows redundancy description, such as sharp turns
(i.e., big dynamic angle range within short time), fast-changing and large range of
velocities and boundless area (i.e., neglect of obstacles in real life). As a common
sense, human beings turn sharply with extremely low probability, and blocking
objects, such as the sea and trees in the nature and buildings in the metropolis,
are inevitable. In indoor scenarios, blocking objects are doors, walls and furniture.
And Guinness records [5] of human running speed evidently prove the impossibility
of random velocity for human beings. When reducing the duration for each step, a
mobile modeled with a Random Walk Mobility Model (especially fixed displacement)
will roam around the initial position. This characteristic fits the scenario of people in
office hours (i.e., active in the small area) to some extent. Therefore, the Random
Walk Mobility Model is ubiquitous, it contains the real human mobility patterns
part whilst the redundancies part. All these considerations make this model too

generic to fit restraints® of the indoor positioning.

3.3 Random Waypoint Mobility Model

This model is rather similar to the Random Walk Mobility Model, with the main
differences that in the Random Waypoint Mobility Model there is a pause time
parameter [23, 28, 29, 41].

Just like the Random Walk Mobility Model, when implementing a simulation of this
model, we have to control certain random variables. Thus, there are two categories
for implementation of the Random Waypoint Mobility Model as well: fixed duration
and fixed displacement. In addition, if we simply plot a simulation of one mobile
track using 2-D Random Waypoint Mobility Model on x-y plane, the mathematical
expressions for this simulation are as the same as the section 3.2. Figures 3.3(a),

3.3(b) show one possible result of simulation for each condition:

!details about restraints of indoor scenarios will be narrated in Chapter 4.
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(a) Fixed duration for each step (b) Fixed displacement for each step

Figure 3.3: Simulation of one mobile track using 2-D Random Waypoint Mobility Model,
the green circle represents the starting point and the red one represents the terminal point,
different color of solid points represent the pause time.

In Figures 3.3(a) and 3.3(b), the initial position of the mobile is (150,150). In
Figure 3.3(a), the simulation includes 100 steps, for each step the mobile has 1
second movement duration, velocities and angles are uniformly distributed in the
interval [0, 8](unit : m/s) and [—m, |(unit : rad) respectively. Figure 3.3(b) is still a
simplified example and most of the parameters are the same as Figure 3.2(b) except

that each displacement for a time interval is 3 meters.

Discussion: As said in the discussion part of section 3.2, the ability of a mobile
roaming around a certain location for a long period indicates that this model is
more suitable to model genuine human movement patterns than the Random Walk
Mobility Model. Even though this model is a boundless model?, the features such
as the pause time are good to model the human mobility indoors. Therefore, we
add this feature in the proposed model, Hybrid Model.

3.4 Random Direction Mobility Model

In the Random Walk Mobility Model and Random Waypoint Mobility Model, the
mobile can move within a small area, a large area, or both, successively, depending
on how the parameters are set. Due to this uncertainty, both these two models fail to
simulate scenarios such as people mopping the floor, people touring in the exhibition
etc. To overcome the high density of mobile location over partial area, the Random
Direction Mobility Model was introduced in [35]. Since then, the Random Direction

Mobility Model was also used in [14, 16, 36]. In this model, a mobile moves within a

2boundless models are not suitable for indoor positioning purpose, details will be presented in
Chapter 4.
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restricted area, it starts from a random point inside this area with random direction
and random velocity, until it touches the boundary of the area it will not change

velocity and direction.

In the practical simulation of this model, we increase the sampling frequency and
limit the upper bound of the velocity in order to decrease the displacement for
each step. There is a boundary ambiguity problem from the point of the view of
the mobiles. This happens because in the implementation of this model we used a
rectangle simulation area and a mobile moving within the rectangle area, the mobile
has the possibility to move to the corner or the boundary. Imaging that the mobile
is going to touch the corner or the boundary at a moment, then at the next moment,
from the point of the view of the mobile, the mobile only knows that the position
of itself is outside the rectangle area. Here the mobile does not know where it goes
through the boundary. This happens because in the discretely collected data, the
positions of a track of a mobile is actually not continuous. Hence the boundary
ambiguity, in brief, is the issue of the unknown positions where the mobiles go

through the boundary or corner.

A (n+1)-th point i B

. /]

n-th point

Figure 3.4: Simulation area of Random Direction Mobility Model.

In Figure 3.4, a mobile moves from the area D to the area B, there are several
possibilities. For example, the mobile moves through the area C then ends into the
area B, or the mobile moves to the corner and through the corner, ends into the
area B, or the mobile passes through the area A then stops inside the area B. Due
to the discrete positions data of a track, we only know the position of the n-th point
and the position of the next point. The point of the intersection with the boundary
is given by the estimation. In brief, the point of intersection is not absolute, which

introduces uncertainty to the Random Direction Mobility Model.

As it was written in the Chapter 1, the movements of wireless devices carried by

humans influence the WLAN environment. Here, in order to explore in what degree
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the movements of devices influence the WLAN environment, we use the hypothesis
that the different set of mobile speed ranges might have distinguishable impact on
the behavior of measurements under wireless circumstance. Figure 3.5 illustrates
one example by simply dividing models into large range velocity and small range

velocity.

O starting point O starting point
QO terminal point 50 QO terminal point
track track
boundary boundary

50

40 40

30 30

y[m]
y[m]

20 20

10 10

0 10 20 30 40 50 0 10 20 30 40 50
x[m] x[m]

(a) Large velocity range (0.5m/s to 3m/s) (b) Small velocity range (0.89m/s to 1.083m/s)

Figure 3.5: Simulation of one mobile track using 2-D Random Direction Mobility Model,
the green circle represents the starting point and the red one represents the terminal point,
each solid black point represents one touch of the boundary.

In both Figures 3.5(a) and 3.5(b), the starting point is (24.3716, 14.3716) (unit : m),
the simulation area is 50 x 50 (unit : m) , the angles follows a uniform distribu-
tion in the interval [—m, 7| (unit : rad), the velocities are modeled according to a
Gaussian-like? distribution shown in Figures 3.6(a) and 3.6(b), respectively for large
velocity range and small velocity range. The small velocity range in this thesis is
(0.89m/s to 1.083m/s) |7, 40]. We consider the elderly people case as the reference
of the small velocity. By simply extending the range of elder speed, for example,
(0.5m/s to 3m/s) is used as the comparison velocity range (i.e., the large velocity

range).

Discussion: the Random Direction Mobility Model has boundaries, which makes it
a good candidate for studying indoor scenarios with current indoor positioning tech-
niques. Moreover, regarding the approximately even spread of mobile’s positions,
this model can be used to test to what extension a weak signal may impact on the

WLAN-based indoor positioning technologies.

3Gaussian-like distribution will be detailed in Chapter 4.
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Figure 3.6: The bar figure is the statistical performance of used velocities, the red line
is the theoretical Gaussian distribution with the mean value and standard deviation of the
velocity samples.

3.5 Boundless Simulation Area Mobility Model

Imaging that we are mobiles, moving in the Boundless Simulation Area makes no
difference from moving in the Random Walk Mobility Model. In this model, we
use a rectangle area to form a doughnut-like 3-D object. In the Figure 3.7(a), by
coinciding AB and C'D, and then coinciding AC and Bb, we get a doughnut-like
area shown in Figure 3.7(b).
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(a) a rectangle area (b) a doughnut-like area

Figure 3.7: The left plot shows a rectangle plane, and the right-hand plot shows a 3-D
area formed from left figure.

In this model, a mobile starts from a random position with random velocities, ran-

dom directions and random moving duration. Once it touches the boundary, it
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jumps immediately from current boundary to the opposite edge by using the third

dimension. One example of simulation is shown in Figure 3.8:

starting point
terminal point
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Figure 3.8: Simulation of one mobile track using Boundless Simulation Area Mobility
Model, the green circle represents the starting point and the red one represents the terminal
point, the purple O) represents going out and the blue X represents going in.

In Figure 3.8, the starting point is (3, 3), the simulation area is 5 x 5(unit : m),
the number of total simulation steps is 500, the velocities and angles follow a uni-
form distribution in the interval [0.5,0.8](unit : m/s) and [—27,27|(unit : rad)

respectively.

Discussion: The Boundless Simulation Area Mobility Model is just a hypothesis
that a mobile can use the higher dimension to continue its random walk. When
applying this into indoor scenarios, it is obvious that human beings cannot jump
instantly from one edge to the opposite edge. Therefore, this model is not suitable

for simulating indoor scenarios.

3.6 Hybrid Model (proposed)

When we attempt to use a new synthetic model to describe human mobility patterns
under indoor circumstance we assume, given that the existence of Random Direction
Mobility Model, two restriction for indoor scenarios: firstly, this model should have

a boundary in order to model obstacles (i.e., walls and doors in the building) in
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daily lives, and secondly, the density of human historical plane positions should not
be distributed completely even over the whole simulation area. This is based on the
fact that out of the 24 hours in a day people are either in office hours or sleeping,
and that an even density case is included in Random Direction Mobility Model. The
Hybrid Model combines an analogous reaction mechanism from Random Direction
Mobility Model when a mobile touches boundaries and a pause time which is a good
feature of the Random Waypoint Mobility Model.

In detail, the pause time here is used to model the state of rest (e.g., after moving,
people sit down for a while), and the reaction mechanism in the Hybrid Model is
to simulate the time when people hit or approach obstacles. In section 3.4, we
learned from the one possible expression of reaction mechanism, in the Random
Direction Mobility Model, that a mobile does not change its state until it touches
the boundary. Though this reaction already reflects the obstruction in real life, it
is nevertheless rather improbable, because human will move away before hitting the
object. So the nearest distance between the boundary and the mobile is added and
defined by a random variable in the proposed model. The input and output variables
of this model are defined by the Table 3.1.

Table 3.1: the input and output variables of Hybrid Model

Input Output
simulation area
number of floors
height of each floor
starting point
velocity (T4, iy 2i)
angle

moving time

pause time

minimum distance to the
nearest boundary

A mobile moves from a random starting point within the predefined simulation
area, and it has a random velocity, an angle, a moving time, a pause time and a
minimum distance to the nearest boundary. When the moving time expires it selects
another velocity, angle and moving time, after this it holds still and waits the pause
time to run out. While the mobile is moving, this model checks whether the distance
between the mobile and the nearest boundary reaches a random predefined minimum
distance or not. And if the situation is that the mobile reaches the nearest distance
but the moving time or pause time is still on, this mobile will change its angle

within a proper range and maintain the previous state except angles. Moreover,
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this model is simply adding third dimension to mimic real indoor scenario, and this
third dimension is generated by an algorithm that will be detailed in Chapter 4.

One instance of simulation is illustrated in Figure 3.9.

height [m]

y[m] xqm]

Figure 3.9: Simulation of one mobile track using 3-D Hybrid Model (small velocity
range), the red solid point represents the starting point and the color of each point represents
height in this simulated building, the violet and green facets represent the simulated floors.

In the simulation shown in Figure 3.9, the simulation area is 50 x 50(unit : m),
the starting point is (0,0, 0), the velocities basically follow the distribution showed
in Figure 3.6(b), the angles follow a uniform distribution in the interval [0, 27](unit :
rad), the moving time follows a Gaussian-like distribution in the interval [3, 10](unit :
second) showed in Figure 3.10(a), the pause time follows a Gaussian-like* distribu-
tion in the interval [0.5,30](unit : second) showed in Figure 3.10(b), the nearest

distance follows the uniform distribution in the interval [0.5, 20](unit : meter).

I simulated distribution .02 I simulated distribution
theoretical Gaussian PDF theoretical Gaussian PDF
= = = = = = = = = =

3 4 5 6 7 8 9 10 0 5 10 15 20 25 30
Moving time [s] Pause time [s]
(a) PDF of the moving time (b) PDF of the pause time

Figure 3.10: PDF of the moving time and pause time.
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Discussion: We mentioned in Section 3.4 that the Random Direction Mobility Model
gives a mobile chances to cover every inch of simulation area with small time con-
suming. According to this characteristic, the Random Direction Mobility Model is
used to describe scenarios such like tracks of cleaners inside a building. However,
the Random Direction Mobility Model is not suitable to mimic the indoor office
scenarios, which is a common case in the daily lives. Because in the office scenarios,
a mobile is supposed to consume most of time inside a specific area. We can see
from Figure 3.9, the Hybrid Model has the nonuniform distribution of positions of
users. This feature fits the assumption of indoor office scenarios, which makes the
Hybrid Model a candidate for the simulation of indoor office scenarios. In addition,
the Hybrid Model has advantages suck like the minimum distance to the nearest
boundary and the pause time, these advantages make the Hybrid Model become
intelligent. But it cannot be denied that these advantages increase the complexity
of the Hybrid Model.

3.7 Summary

This chapter starts by reviewing existing literature [12, 13, 14, 16, 28, 29, 35, 36, 41|
followed by presenting the main ideas behind the Random Walk Mobility Model
(Section 3.2), the Random Waypoint Mobility Model (Section 3.3), the Boundless
Simulation Area Mobility Model (Section 3.5) and the Random Direction Mobility
Model (Section 3.4). The presentation of the models is followed by demonstrating
a feasible implementation method for each model. In Section 3.6, we propose a new

model based on two assumptions and indoor scenarios characteristics.

The purpose of studying existed synthetic models and proposed models is to provide
human mobility raw data for further simulation based research of indoor positioning
methods. Hence the discussion about feasibility of current models in indoor scenarios
is the main interest in this chapter. Table 3.2 lists the comparison among all the

mobility models studied in this thesis.

ARWMM: Random Walk Mobility Model.

SRWPMM: Random Waypoint Mobility Model.

SRDMM: Random Direction Mobility Model.

"in the later simulation, the Random Direction Mobility Model is modified to be a 3-D model,
details see Chapter 4 and Chapter 5.

SBSAMM: Boundless Simulation Area Mobility Model.

9HM: Hybrid Model.
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Table 3.2: Summary and comparison of models

Models Boundary | Pause Time | 3-D Model | Suitable for | Specified Feature
Indoor Sce-
nario
RWMM* No No No No Generic Model with large
redundant description, be-
cause all parameters in this
model are random it can-
not be fully simulated.
RWPMM?® | No Yes No No A pause time is introduced.
RDMMS® Yes No Yes” Yes A boundary concept is in-
troduced and as well as
a reaction mechanism after
the user reached a bound-
ary.
BSAMM?® | No No No No An idealistic model con-
cept, it simulates Random
Walk within a limited area.
HM? Yes Yes Yes Yes It comprehends most fea-

tures from the other 5
models (above-mentioned)
and it mimics the unevenly
spread of human positions
in indoor situation.
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4. INDOOR SCENARIOS

4.1 Overview

In Chapter 3, we discussed current popular synthetic models and we proposed a
new model. In this chapter we also present the complexity of indoor scenarios, the
assumptions on human mobility patterns, and the path loss propagation models.
This chapter includes the prerequisite knowledge for testing models by using the
fingerprinting method in Chapter 5, and gives a thorough discussion of the matters
in Chapter 3, such as the algorithm of generating the third dimension, the way of

forming a Gaussian-like distribution and the indoor requirements.

4.2 Indoor environment

Indoor scenarios usually refer to the space inside a building. It is known that satellite
based positioning systems are vulnerable inside buildings (Chapter 1), Here, we

explain briefly how the indoor environment differs from the outdoor one.

In the indoor environment, the electromagnetic signals might be weakened in various
ways. The indoor structure is more complex than the outdoor area. For example,
there might be multiple cubicles in a common office, whereas outside area is normally
open ground. Nowadays the indoor structure tends to be more and more compli-
cated than ever. Multi-path interference is one of the main factors that severely
degrade the performance of communications and locations. Buildings now are made
of the concrete materials. The concrete has a strong ability to absorb electromag-
netic energy. And as a simple rule, the higher frequency a signal has, the weaker
penetrability it possesses. According to this principle and to the building materials,
and given the fact that the radio frequency and microwave frequency are main-
streams of communications, it is obvious that electromagnetic signals suffers loss in

indoor scenarios.
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4.3 Assumptions about human mobility

After the brief introduction of indoor characteristics, this section mainly discusses
the algorithms that are used to generate the height dimension and the Gaussian-
like distribution. But first of all, some assumptions on selecting appropriate human
mobility models are necessary. In this thesis, the most important property of a
mobility model is to have a boundary. From Chapter 3, the only models which
satisfy the boundary conditions are the Random Direction Mobility Model and the
Hybrid Model. Other requirements of an indoor human mobility model differs from
models to models. For example, the Hybrid Model is assumed to mimic the indoor
office scenarios, thus it is supposed to fulfill the requirement that a mobile in the
model has a nonuniform distribution of positions. Another example is the Random
Direction Mobility Model, it is assumed that a mobile in the model has the trend

to uniformly distribute the positions of a track.

4.3.1 The third dimension

In Chapter 5 simulation tracks from Random Direction Mobility Model and Hybrid
Model have a third dimension. Here we will reveal the generator of this third
dimension. In the height dimension generator, parameters such as the time of each
step, the starting point of the third dimension and the minimum and maximum
value of the third dimension are taken into consideration when we form the third

dimension raw data.

In this generator, due to the lack of raw data from the real life, we simulate the
third dimension increment by assuming it random and uniform. After the initial
input variables are given, function rand creates a large number of candidate third
dimension increments'®. Then according to the condition if the third dimension
value is larger than the maximum value (i.e., moving out the ceiling of building) or
smaller than the minimum value (i.e., moving into the ground), the third dimension
generator decides whether discarding this increment or not. Finally the output are
the z values that satisfy the conditions. Figure 4.1 shows an example of third

dimension value distribution.

1%the number of this increments value should be large enough, so that after discarding some
of values, we still have the same number of third dimension value as the number of other two
dimension values. In this work we use 100 times of needed amount.
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Figure J.1: The third dimension distribution: PDF of uniform distribution for the third
dimension value, there are three floors and three meters for each floor in the simulation.

4.3.2 Gaussian-like distribution

When using models to mimic human mobility patterns, not all of parameters should
be distributed uniformly. In this thesis, the parameters such as the velocities, the
moving time and the pause time follow Gaussian distribution. With 100% confi-
dence level the confidence interval of Gaussian distribution function is (—o0, +00),
however, this high confidence level is unnecessary in the practical simulation. The
Gaussian-like distribution function is based on the standard normal distribution, it
uses 95% confidence level'! corresponding to confidence interval [—1.96,1.96]. We
assume the frequency of observing parameters is 95%, and in order to simplify the

simulation, the values with 5% probability will not appear in the simulation.
In detail:
1. We use the function randn to generate 10 times of the numbers of needed vari-

ables. Because the function randn generates the standard normal distribution

(i.e., the mean value equals to 0, the standard deviation equals to 1.), within

1 As this design is for the simulation purpose, 95% confidence level is common [34, 10, 6] and
high enough for this simulation, therefore in this function we use 95% confidence level and this
parameter is able to be modified.
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the interval [—1.96,1.96], the confidence level is 95%;

2. The generator abandons some variables by determining whether the generated

variables are within the interval [—1.96,1.96];
3. The generator preserves the needed quantity of variables from step 2;

4. By comparing [—1.96,1.96] with the target interval, the generator adjusts the
samples inside [—1.96, 1.96] in order to fit the target interval, the target interval

here refers to the desired sample space interval.

With an example, the process of generating Gaussian-like distribution is illustrated.
Assuming we have a sample space (e.g., [—2,2]), we want to pick samples from the
space (i.e., [—2,2]) and the picked samples should be Gaussian-like distributed. In
the Gaussian-like generator we used, first we form 10 times of the numbers of the
needed variables by using the function randn, secondly we abandon some variables
that are not within the interval [—1.96,1.96], thirdly we pick needed numbers of
variables after the second step (e.g., one variable is 1.5), fourthly we scale the picked
variables. In the fourth step, we calculate the mean value between the upper bound
and lower bound of sample space, in this case, the mean value is (=2 + 2)/2 = 0,
then we use (2 — ((=2+2)/2))/1.96 = 1.0204 as scale factor to multiple the picked
variables in the third step (i.e., 1.5 x ((2—((—242)/2))/1.96) = 1.5306), finally we
plus the mean value and the result of multiplication (i.e., 1.5306+0=1.5306). Figure
3.6(a), Figure 3.6(b), Figure 3.10(a) and Figure 3.10(b) are generated by the above

algorithm.

4.4 Path loss models

In Chapter 5, we will use indoor fingerprinting method to test the performance of
selected human mobility models. Hereby this section presents the corresponding
fundamental knowledge of path loss model as well as a modified version applied in
indoor scenarios. The traditional path loss model is related with two modeling parts
[38]: Pr,,, namely the ap-th AP transmitted power, and n,,, namely the path loss
coefficient of the ap-th AP.

The RSS in each measurement point is directly related to the Euclidian distance
\/(xl — ZTap)? + (Vi — Yap)? + (2 — 2ap)?, where the (z;,y;,2;) is the position of the

i-th measurement point (i.e., position of the i-th fingerprint) and (Z.p, Yap, 2ap) 1S

the position of the ap-th AP. The Pr,  varies from AP to AP within a certain range,
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and the n,, is simply assumed to be different from AP to AP as well. Then we form
the eq.( 4.1) for fingerprints RSS P, 4,

Piop = PTap — 10n4, log, \/(372 - xap)Q + (yi — yap>2 + (21 — zap)2+77i,ap+£i,ap (4.1)

In this equation, 7;,, is a noise term modeling the shadowing and fading. It is
Gaussian distribution of zero mean and o,, standard deviation (unit: dB). To be
clarified, without abundant database of modeling 7; 4,, we simply assume the vari-
ance o2 is constant. & ,, is to characterize the floor loss parameter, because in a
relative open and multi-floors building ceilings between floors are the main barriers

against the transmission of signals.

Correspondingly, we can derive received signal strength (RSS) at the (z,y,z) po-
sition, (x,y,2) is the position of a mobile in a track. The equation of RSS R,, is

illustrated as below:

Rop = Pr,, — 10n,,logy, \/(x — Tap)? + (Y = Yap)? + (2 = 2ap)? + Nap + Eap (4.2)

The eqgs.( 4.1) and ( 4.2) will be used in Chapter 5 to form the fingerprints training

sequence and to compute the RSS of one mobile in a track'2.

4.5 Indoor fingerprinting

A fingerprinting algorithm is usually used in the indoor positioning technologies
under WLAN environment. It requires that a random location in this indoor area

can hear at least one AP. The process of fingerprinting has two phases:

e A training phase: This is used to form a grid of prior RSS measurements

from all APs in a certain building or region;

e An estimation phase: This focuses on comparing the RSS of a mobile with
training database formed in the training phase; this comparison will provide

an estimate for the mobile location.

12details see Chapter 5



4.5. Indoor fingerprinting 27

We remark that the fingerprint grid is virtual, people cannot actually touch the grid

or see the grid in the air.

4.5.1 Training phase

The purpose of the training phase is to generate a database (i.e., matrix (X, Yi, Zi, Piap))
containing the prior RSS measurement and the position information. In this phase,

we assume the location of APs is fixed.

50

y [m] 0 o

x [m]

Figure /4.2: One possible way to set up fingerprint grid, one x represents a measurement
point in the grid.

The training sequence is de facto a reference data, it includes both the position infor-
mation and RSS information matrix heard from APs. In the fingerprint algorithm,
the location of APs is irrelevant to the whole positioning process but it matters when
some corners of this indoor area cannot hear AP. One of possible fingerprinting grid

13 is shown in Figure 4.2.

4.5.2 Estimation stage

After the training database is formed, the indoor fingerprint positioning environment

is ready. When a mobile moves into this area, the receiver attached on the mobile

13it is only possible in theory, in practice it is almost impossible to collect such nicely uniformly-
spaced fingerprints, some of them will be missing, unless the uniform spacing between points is
very large.



4.6. Summary 28

downloads the prepared database which was generated in the training phase, then it
compares the received RSS vector information with the database. The comparison
can be done for example via Euclidian distances, rank-based or via Gaussian likeli-
hoods. The comparison gives all the candidate positions. Eventually according to a
predefined rule, the receiver sorts this potentials and calculates the final prediction

position of this mobile at that moment.

Firstly a mobile in this fingerprint scenario records all heard RSS value automatically
and it stores them as a vector which includes the ap-th AP and corresponded RSS
value (i.e., [ap; Rap) in the eq.( 4.2)). Secondly, the system applies the Gaussian
likelihood function to estimate the probability of position in the grid. In this step,
the system usually gives more than one candidate position to achieve high accuracy.
Thirdly, by a certain rule the system calculate the position, for example, it calculates
the arithmetic average of the first four high probably candidates as the predicted
position.

The Gaussian likelihood function L; in i-th point is shown below, the agp is the

shadowing variance:

L’l - Z ].Oglo —F€ 20?”’ (43)

/ 2
heard ap 27T0ap

Here we give an example how to apply this equation. Let us assume two fingerprint
points, a: [1,3,7; -30,-70,-56] and b: [1,5,7; -45,-20,-68|, and one track point, m:
[3,7; -60,-70]. The first step is to find the same heard AP for both the fingerprint
and the mobile. In a and m it is 3rd and 7th AP but in b and m it is 7th AP
only. Then by assuming the involved noise is 10 dB and constant, we can get
L, = —-3.07—5.16 = —8.23 for a and m, L, = —0.99 for b and m. Afterwards, by
maximizing the L; (i = a or i = b) we obtain the best candidate in this algorithm,
that is b in this case. This algorithm reveals that even though a mobile shares more
heard APs with some fingerprints than others, these fingerprints might not be the

most optimized solution.

4.6 Summary

At the beginning of this chapter, the indoor was introduced to give an general
perception that indoor scenarios are complex and not applicable for satellite based
positioning system. Then we described and explained how the third dimension

and Gaussian-like distribution are generated. It should be mentioned that the 95%
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confidence level is just an assumption in this thesis work and it is not the focal point,
when there are no more other confidence level provided for comparison. After that,
the prerequisite knowledge for the later chapter, the classical path loss with floor
loss model was presented. In the last part, the notion of indoor fingerprinting was

given in detail.

Eqs. (4.1), (4.2) and ( 4.3) are the most important ones in this chapter and will
be used in Chapter 5 and 6.
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5. BUILT MATLAB SIMULATOR

5.1 Overview

This chapter presents the Matlab simulator built within this thesis work, which
includes mobility modeling and fingerprinting. In Chapter 3, we demonstrated the
results of the implementation through our simulator. Here we focus on how the
simulator is built and furthermore we discuss the simulator of the fingerprinting.

Figure 5.1 shows the used simulators in this thesis work and their relationship

correspondingly.
‘ > RSS
Access Points Path Loss Fingerprinting > estimated positions
+
o Vard Bayesian |
fmse Variance Estimation
- Floor Loss RSS
Mobility Models > 3 Track database 3 RMSE
@ | real positions 1‘
Human Mobility Models
Parameters l I l l
Random Random Blou:ﬂdlgss Random
7 - ) Simulation B Hybrid
Walk Waypoint Ar Direction Model
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Model Model Mg delty Model (proposed)

Figure 5.1: The organization of simulators.

5.2 Access Points setup

In this simulation, it is assumed [y X [y (unit : m) simulation area, N floors in a

building and /3 meters for each floor, C' m? coverage per AP on the horizontal plane
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and [Py, Py] (unit : dB) power range. Specifically, the positions of APs are uniformly
distributed random variables and the power levels of APs are uniformly distributed
random variables within the above range as well. There are two main reasons why
the uniform distribution rather than the Gaussian distribution is selected. First the
uniform distribution is less computation complex than the Gaussian distribution
when they applied in the simulator. Secondly using the uniform distribution the
APs can cover the whole area with smaller number of APs than using the Gaussian

distribution. One example of these parameters is shown in Table

Table 5.1: One example of Access Points parameters

Parameters | Values
Iy (m) 50

ly (m) 50

N 3

lg (m) 3

C (m?) 400
[P1, P] (dB) | [-45,30]

When deploying APs, the rule of thumb is that using relative few APs to cover the
simulation area. From 2-D view the building can be considered as a rectangle area.
Figure 5.2 shows the overlap of the coverage areas of APs on 2-D area, the rectangle
is the simulation area, the circles are the coverage areas of APs. The grass green area
represents the simulation area, the grey areas represent the overlap areas inside the
simulation area, the brown areas represent the overlap areas outside the simulation
area and the coverage areas APs outside the simulation area. With Figure 5.2, we
can simply explain the rule of deploying APs, that the fewer the grey and brown
areas are, the better the deployment is. However, it is not possible to eliminate the
grey areas completely because of the spherical radiation shape of electromagnetic
waves. In 3-D view, the coverage of APs supposes to be spherical shape, thus we

calculate the availability of APs in eq. ( 5.1) using the volume of APs radiation.

Figure 5.3 shows the used deployment in this thesis work. If we assume Figure
5.2 in 3-D, the volume of the cubic simulation area is V... The sum of each AP
coverage is Vium, the substraction between V,,, and V.. might, to some extent,
evaluate the degree of overlap namely coverage margin M operage- In eq. ( 5.1), 74y
is the effective radiation radius of the ap-th AP, (a2, Ymaz, Zmae) 18 the maximum

value of simulation space in three dimension respectively.

"4
Mcoverage = Z §7T7’2p — TmazYmazFmaz (51)

ap=1



5.2. Access Points setup 32

2-D area

Figure 5.2: Principle of APs deployment, the rectangle area is the simulation area, the
circles are the coverage area of APs, the grey areas are overlapped coverage areas.
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Figure 5.3: APs deployment used in this thesis work, the solid color points represent
APs and APs transmitted power are seen in the right-hand side color bar.

In Table 5.2, we show a comparison between two groups: 3 scenarios of simulated
data and 2 scenarios with real-field data. For each group, we illustrate the ratio
between M operage and Viype, ratio between mean number and total number of heard
APs per fingerprint, ratio between median number and total number of heard APs
per fingerprint, standard deviation of AP number per fingerprint. The ratio between
Moverage and Ve intuitively indicates that to what extent the coverage areas of
APs are utilized. The statistics of number of heard APs per fingerprint shows shows
how the number of heard APs per fingerprint varies under a certain deployment or
density of APs. The statistics gives the reference to the preliminary judgement that
whether the deployment is good or not. Usually the larger the mean (or median)
number of heard APs per fingerprint is, the better the deployment is. But when we

consider the cost of the deployment, the mean (or median) number of heard APs
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per fingerprint should not be too large. This happens because the mean number or
median number is proportional to the density of APs.

Table 5.2: Comparison for 8 scenarios of simulated data and 2 scenarios with real-field
data

Parameter Simulated scenarios Real-field data
2dB | 10dB | 40 dB | building 1 | building 2

Meoverage/Veuve |ra- | 4.6168 | 4.6168 | 4.6168 X X

tio]

Mean number/total | 0.7712 | 0.8369 | 0.6911 0.1350 0.1352

number ' [ratio]
Median number/to- | 0.7619 | 0.8571 | 0.7143 0.1303 0.1243
tal number * [ratio]
standard deviation of | 1.7169 | 1.6173 | 2.0255 | 10.8383 19.0334
heard APs number
per fingerprint 4

*Important: Once the deployment of APs is finished, all the following simulation

should use exactly the same deployment and same power level.

In Table 5.2, 2 dB, 10 dB and 40 dB noise variance are chosen to show the low
noise level, medium noise level and high noise level scenarios respectively. Two
real databases [38, 39] are collected from Tietotalo building (i.e., building 1) and
Sahkotalo building (i.e., building 2) in Tampere University of Technology. Under
the fingerprint algorithm and the Bayesian estimation, in building 1 the positioning
accuracy is around 5 meters and in building 2 the accuracy is approximate 10 meters.
We remark that, due to the irregular shape of building 1 and building 2, the ratio

of Meoverage/Vimin cannot be given.

From the columns of 'Real-field data’ in Table 5.2, we can tell that, the values
of 'mean number/total number’ and 'median number/total number’ are almost the
same for both building 1 and building 2. However the ’standard deviation of heard
APs number per fingerprint’ varies significantly from building 1 to building 2, and
specifically the higher accuracy positioning (i.e., building 1 with around 5 meters
accuracy) comes with lower ’standard deviation of heard APs number per finger-
print’ based on these two real database. In addition, as it was mentioned before, the
building 1 with 0.1350 'mean number/total number’ ratio and 0.1303 'median num-

ber/total number’ ratio achieved 5 meters accuracy under the Bayesian estiamtion,

14 All these three statistics refer to the number of heard APs per fingerprint point. 'mean num-
ber/total number’ is a ratio between the mean value and the total number of heard APs per
fingerprint point, 'median number/total number’ is a ratio between the median value and the
total number of heard APs per fingerprint point, ’standard deviation of heard APs number per
fingerprint’ is the standard deviation of number of heard APs per fingerprint point.
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therefore when these two values of simulation or real deployment are higher than

the corresponding values of the building 1, they are feasible.

In the simulation scenarios, the 'mean number/total number’ ratio and 'median
number/total number’ ratio of all noise circumstances are considerably higher than
those in building 1, and the ’standard deviation of heard APs number per fingerprint’
of all are far smaller than the standard deviation in building 1. Therefore, under the
simulated APs deployment, the high positioning accuracy (i.e., 5 meters accuracy

or a better accuracy) is able to achieve.

Figures 5.3, 5.4, 5.5, 5.6, 5.7 give some statistical information about the relation-
ship between the AP density in a building and achievable positioning accuracy from
fingerprints’ point of view. Among them, Figures 5.3, 5.4, 5.5 present the analysis
of simulated APs deployment, Figures 5.6, 5.7 show the analysis of real APs deploy-
ment. To be specific, in all these 5 group figures the sub-figure a says how many
percentage of total APs an arbitrary fingerprint point can hear. One fingerprint
point can hear more than one, because for each one fingerprint point, it usually can
hear more than one power level, the sub-figures b,c,d give the statistical descrip-
tion of the mean power level, the median power level and the standard deviation
of heard APs power level per fingerprint respectively. We remark that, in the first

three group simulation figures, it is assumed the sensitivity of receivers is -100 dBm.



5.2. Access Points setup

T T T T
Cumulative Distribution Function (CDF)

0.9+ I Probality Distribution Function (PDF) 0.9+ I Probality Distribution Function (PDF)
08t 08
07t 07t

o
>

Probability
o
@
T

o
IS
T

/

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
heard AP/total AP

Ratio between number of heard APs and to-

tal APs per fingerprint point
1 T T T — 1 T T T T —
Cumulative Distribution Function (CDF) Cumulative Distribution Function (CDF)
0.9 I Probality Distribution Function (PDF) 0.9 I Probality Distribution Function (PDF)
08F 08
0.7 0.7

Probability
o o o o
w s » o

o
N

0.1

16 18 20 22 24 26 28
stadnard deviation of APs power level for each fingerprint point [dB]

-

T T .
Cumulative Distribution Function (CDF) -

Probability
o o
o o
T T

o
IS
T

=75 =70 -65 -60
APs mean power level for each fingerprint point [dBm]

35

(b) Mean heard power level per fingerprint point
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Figure 5.4: 2 dB noise level (receivers sensitivity: -100 dBm,).

This case is used to simulate scenarios with low noise power level. It can be simply thought
as ‘'noise free’ situation so that we can consider this one as a reference for further com-
parison. In Figure 5.4(a), most fingerprint points can hear 70% - 85% of total APs, in
Figure 5.4(b), most fingerprint points can hear —75dBm - —70dBm mean power level (the
transmitted power level is —15dBm - 0dBm), in Figure 5.4(c), the standard deviation of
power level from various APs per fingerprint point is around 18 dB, in Figure 5.4(d), most
fingerprint points can hear —80dBm - —75dBm median power level.
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Figure 5.5: 10 dB noise level (receivers sensitivity: -100 dBm,).
This case is used to simulate scenarios with medium noise power level. It can be simply
thought as 'noisy’ situation in the simulation. In Figure 5.5(a), most fingerprint points can
hear 80% - 90% of total APs, in Figure 5.5(b), most fingerprint points can hear —70dBm -
—65dBm mean power level (the transmitted power level is —15dBm - 0dBm), in Figure
5.5(c), the standard deviation of power level from warious APs per fingerprint point is
around 17 dB, in Figure 5.5(d), most fingerprint points can hear —70dBm - —65dBm
median power level. Compared with 2 dB noise level case, this 10 dB one indicates that the
statistics of heard AP power level are proportional to the noise level. Another proof of this
conclusion will be presented in the next group of figures.
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Figure 5.6: 40 dB noise level (receivers sensitivity: -100 dBm,).

This case is used to simulate scenarios with high noise power level. It can be simply
thought as ‘extremely noisy’ situation in the simulation. In Figure 5.6(a), most fingerprint
points can hear 60% - 80% of total APs, in Figure 5.6(b), most fingerprint points can hear
—60dBm - —50dBm mean power level (the transmitted power level is —15dBm - 0dBm), in
Figure 5.6(c), the standard deviation of power level from various APs per fingerprint point
is around 30 dB, in Figure 5.6(d), most fingerprint points can hear —70dBm - —50dBm
median power level. Through simply comparison with the 2 dB and 10 dB figures, it is not
difficult to assess that the standard deviation is proportional to the noise level; moreover
with the increase of the noise level, the number of heard APs, mean and median value of
power level per fingerprint point tends to be larger.
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Figure 5.7: Building 1 with unknown noise level (receivers sensitivity: -100 dBm,).

This case is a statistical modeling of real data collected from building 1. It has better
positioning accuracy under Bayesian estimation method than building 2. In Figure 5.7(a),
most fingerprint points can hear 10% - 20% of total APs, in Figure 5.7(b), most fingerprint
points can hear —80dBm - —76dBm mean power level (the transmitted power level is
unknown, and is estimated with range —15dBm - 0dBm), in Figure 5.7(c), the standard
deviation of power level from various APs per fingerprint point is around 9 dB, in Figure
5.7(d), most fingerprint points can hear —85dBm - —80dBm median power level.
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(b) Mean heard power level per fingerprint point
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point

Figure 5.8: building 2 with unknown noise level (receivers sensitivity: -100 dBm,).
This case 1is a statistical modeling of real data collected from building 2. In Figure 5.8(a),
most fingerprint points can hear 5% - 15% of total APs, in Figure 5.8(b), most fingerprint
points can hear —85dBm - —75dBm mean power level (the transmitted power level is
unknown, and is estimated with range —15dBm - 0dBm), in Figure 5.8(c), the standard
deviation of power level from various APs per fingerprint point is around 12 dB, in Figure
5.8(d), most fingerprint points can hear —90dBm - —80dBm median power level.
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Analysis of Figures 5.3, 5.4, 5.5 reveals that number of heard APs increases when
the noise power level changes from 2 dB to 10 dB and 40 dB, the mean value, median
value and standard deviation of heard power level per fingerprint point grow along
with the increase of noise power level as well. In Figures 5.6 and 5.7, the most
frequent ratio between the heard APs and total APs (i.e., 0.1-0.15 ratio) is smaller
than the most frequent ratio between the heard APs and total APs in Figures 5.3,
5.4 and 5.5 (i.e., 0.6-0.9 ratio). The standard deviation of the heard power level per
fingerprint point in building 1 is smaller than in building 2. The mean value and
median heard power level per fingerprint point in building 1 are stronger than in
building 2. Figures 5.6 and 5.7 describes the characteristics of data collected in real

life scenario, the following analysis of simulated APs deployment is based on them.

Intuitively, from the user point of view, the larger standard deviation of the power
level leads to more distinguishable power gradation, which benefits the estimation
based on distance of power level. Likewise, a high power level means that the
distance between a fingerprint point and an AP is small, which makes the user
receiver more likely to receive as many APs as possible and this is good for achieving

a high accuracy estimation.

However, as seen in Figures 5.6 and 5.7, the standard deviation is inversely propor-
tional to the mean and median value of the heard power level. As a matter of fact,
building 1 (Figure 5.6) has a better estimation accuracy than building 2 (Figure
5.7). Therefore, the standard deviation of heard APs power level per fingerprint
point is inversely proportional to the estimation accuracy. Here, it seems we are
trapped into a dilemma: the tradeoff between the high received signal strength and
the distinguishable power level in a fingerprint point. Because the focus of this thesis
is human mobility models and their behaviors under indoor technology, investiga-
tion on the deployment of APs here is general, the APs deployment will be no more
discussed and left for the further study.

The above is the study of APs from the view of fingerprint points, which gives
statistical description of APs deployment. The following shows the power maps of
fingerprint. Figures 5.9(a), 5.9(b) and 5.9(c) show the fingerprints grid only with
the power level heard from the 6th Access Point under 2 dB, 10 dB and 40 dB noise
level respectively. Here for the cause of plotting the floor as a facet, the sign * shows
the position of AP seems on the second floor, but the x is on the ceiling of the first
floor and there is a wall between the 6th AP and second floor ground. Figures 5.9(d)
and 5.9(e) show the power map and the fingerprint grid of the 16th and 212th APs,

respectively.
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Figure 5.9: One Access Point and corresponded power map. The x represents the real
position of the AP, the O represents the estimated position of AP. In Figure 5.9(a), Figure
5.9(b), Figure 5.9(c), Figure 5.9(d) and Figure 5.9(¢e), the position of the AP is estimated

by eq.( 5.2).
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In Figures 5.9(d) and 5.9(e), the position of the Access Point is estimated by sorting
the fingerprint points position according to the power levels, then applying the
equation below, N, is the first n-th fingerprints positions after sorting (usually we
let n equal to 4.):

N,
- P;
('Tapu yapu zap) = ; Pl TN PNn (xiu Yi, Zi) (52)

In eq. ( 5.2), regarding that the previous step the coordinates of fingerprint points
are already sorted by the heard specific AP power level, we assume that the finger-
print point Py (x1,y1, z1) has the maximum heard power level, P, (23, Y2, 22) has the
second maximum value and so forth. In practice, the value N, is usually equal to 4
so that we can save amount of computing time. In this simulation, we let the value
n equal to 4 and acquire the approximate coordinates of the 163rd AP and 212nd
AP respectively.

5.3 Fingerprints setup

The fingerprints algorithm was introduced in Chapter 4. Here the principle of indoor

fingerprints is not dwelled on, only the design details in this simulation is presented.

In Chapter 4, the eq. ( 4.1) was given to calculate the RSS of fingerprint points
by applying classical path loss model with floor losses. The process to form the
fingerprint was given in the same chapter. In this section, some specific issues

related to the process talked above is discussed.
5.3.1 Floor loss

As it was mentioned in Section 4.4, due to the floor ground separating floors, the floor
loss is introduced to describe this attenuation of signals power. In our simulator,
we simply assume that the floor loss is constant and it is equal to 5 dB per floor for
each time penetrating the floor ground. From Figures 5.9(a), 5.9(b) and 5.9(c), it is
evident that the fingerprint points right under the 6th AP and as the same floor as
the AP has larger power levels than the closest ones above the 6th AP but with a
ceiling ground between them. This also points out that signals travelling in the air

has less attenuation than penetrating the obstacles.
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5.3.2 Fingerprint spacing

Speaking about the spacing among fingerprint points, there is always a tradeoff
argument behind it. On one hand, when increasing the spacing between fingerprints,
the accuracy is decreased, on the other hand, a decreased spacing brings higher
computational complexity and it requires larger databases to be stored. Since the
fingerprint grid in our simulator is two dimensional, only on the each floor ground,
a small spacing is beneficial for both the computing and accuracy. Therefore the
spacing is designed as 2 meters and the fingerprint grid is like in Figure 5.10(a),
Figures 5.10(b) and 5.10(c) are presented here as a contrast to give a straightforward

expression of different ways to design fingerprints spacing.

i
o
B
o

® number of fingerprint points is 25 ® number of fingerprint points is 25
9 L] ] [J [J [J 9
8 80 L] L] L] L]
7 L] L] [ ] [ ) [ ] 7
6 6o L] [ ] [ ] [ ]
E 5 L] L] [ ] [ ] [ ] E 5
> >
4 49 L] [ ] [ ] [ ]
3 L] L[] L] L] L] 3
2 20 L] L] L] L]
1 L] L] L] L] L] 1
0 & L L 4
0 2 4 6 8 10 0 2 4 6 8 10
x[m] x[m]
(a) 25 fingerprint points (b) 25 fingerprint points
i & < < 2
® number of fingerprint points is 36‘
9
80 L] ° L] L] °
7
6o L] [ ] [ ] [ ] [ ]
Es
>
49 L] ° [ ] [ ] [ ]
3
20 L] L] L] L] [ ]
1
S S SO S S

x[m]

(c) 36 fingerprint points

Figure 5.10: Some available fingerprint spacing examples, Figure 5.10(a) is the scheme
used in this thesis, Figure 5.10(b) shares the same number of fingerprint points with Fig-
ure 5.10(a), the difference between Figures 5.10(a) and 5.10(b) is that when applying the
estimation algorithm, in Figure 5.10(b), the right area near the boundary may not receive
a good accuracy, 5.10(c) is another way to distribute fingerprint points. All these figures
here are only for examples purpose, the optimization of fingerprint points spacing is not
concerned in this thesis.
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5.4 Track formation

Practically, when users achieve indoor positioning service by applying fingerprint
positioning technology, from users’ point of view the most common parameter which
users received is the changing RSS from various APs. In order to mimic this process,
this section discuss the sampler which extracting data from chosen models and apply
eq. (4.2) to build the track power level database.

5.4.1 Downsampling

In Chapter 3, to avoid simulation errors such as boundary ambiguity problem, the
sampling rate was relative high and may lead to an enormous database size. For
this reason it is however difficult to run the fingerprint method to test models.
Down sampling is thus a necessary pretreatment before the formation of the track
database.
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0.8

10 10 10 10
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(a) Hybrid Model raw data (b) Hybrid Model after down sampling
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y [m] x[m] yim] x[m]

(c) Random Direction raw data (d) Random Direction after down sampling

Figure 5.11: One ezample to show down sampling principle. The number of used samples
in figures is 10001.
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In the example shown in Figure 5.10, the downsampling rate is 100, meaning that
1 sample is kept from every 100 samples, and a total 7201 samples is collected for
every one track. Figure 5.11(a) shows the raw data and correspondingly Figure
5.11(b) shows the data after down sampling. Similarly, Figures 5.11(c) and 5.11(d)
show the raw data and the down sampling data respectively. The process with high
sampling rate building data and down sampling the raw data, in a way, approaches
the real scenarios and avoids distortedly description of human mobility patterns.

The track database is generated based on the data after down sampling process.

5.4.2 Track database

The database is formed by applying eq. ( 4.2), with a 5 dB floor loss attenuation
every time penetrating one floor ground. Inside the database it is organized as the
Table 5.3.

Table 5.3: Organization and design of tracks database

Random Direction Hybrid Model
40 tracks in total 40 tracks in total
= 2 velocity ranges = 2 velocity ranges
x 4 starting points per velocity range | X 4 starting points per velocity range
x 5 tracks per starting point x 5 tracks per starting point

In Chapter 3, the Random Direction Mobility Model and Hybrid Model are simply
separated into two categories, the small range velocity and the large range velocity.
By doing so we assume the possibility that the different velocity range significantly
influences the mobile behavior in the fingerprint method. And this assumption will
be testified in the Chapter 6.

Besides, 4 starting points’ are used to test the effect of various starting points
on the accuracy of fingerprint positioning method. ’5 tracks’ are used to provide
average statistics in order to mitigate bias approximation. In Chapter 6, one more

comparison like noise power level is also added.

5.5 Summary

In this chapter, we started with a discussion on Access Point deployment. The
method discussed in this chapter is simply used to give a general idea about the
feasibility of APs deployment. Meantime, two real-field data collected from building

1 and building 2 were introduced as a reference to evaluate APs deployment in the
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simulation. As an observation result from the two set of real-field data, the standard
deviation of heard APs power level per fingerprint point is inversely proportional
to the power level of heard APs per fingerprint point. Therefore it is concluded
there is probably a tradeoff between standard deviation of heard APs power level
per fingerprint point and power level of heard APs per fingerprint point. Again, this
observation is not the main focus of the thesis, but it is a good beginning for the

future indoor positioning study.

Later in this chapter, some details such as floor loss and spacing were discussed, the

formation of track database was introduced as well.

Through Figures 5.9(a), 5.9(b) and 5.9(c), it was quite obvious to see the effect of
adding floor loss in the simulation. The spacing issue was talked by demonstrating
3 figures with different distribution of fingerprint points; the merits and demerits
were not, discussed here. The APs deployment and fingerprint grid were only for the
testing purpose; once these are set up, they remain the same and are used for all
the test.

The database of user tracks was organized as shown in Table 5.3, through 3 velocity
ranges and 4 starting points. ’5 tracks per starting point’ was used for the purpose

of a less biased approximation.
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6. SIMULATION-BASED RESULTS

6.1 Gaussian likelihood estimation

In the Chapter 4 we talked about Gaussian likelihood function, and we gave the
expression to calculate it. The Gaussian likelihood method, in other words, is a
probabilistic way to describe the distance between two power levels and at the same
time, taking into account the background noise. The Gaussian likelihood method
is the best way to implement the power level distance estimation. Figures 6.1(a),
6.1(b) and 6.1(c) show three alternatives that could use to estimate positions, the

algorithm uses eq. ( 6.2), others see eq. ( 6.1) and ( 6.3).

In the Figure 6.1, all the algorithm are based on Gaussian likelihood. Among them
the principle of algorithm 1 is eq. ( 6.1), algorithm 2 is eq. ( 6.2) and algorithm 3
is eq. ( 6.3).

2 | (Ronw)
Ly = e ip (6.1)
heard ap \% 277-0-‘2”’

1 _\flap=Piap)
Ly = Z log,y | —=—==¢ 208 (6.2)
heard ap \% 271-0-27’
1 (Rap_iz,ap)Q
L= >, ¢ T | Ry~ Pyl (6.3)

/ 2
heard ap 27T0'ap

Obviously, it can be seen from Figure 6.1, the algorithm 2 is the best amongst them.

6.2 Root mean square error

Root Mean Square Error (RMSE) is commonly to evaluate the behavior of esti-

mation algorithms. From Section 6.1, we get the estimated position (Z, g, 2) which
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RMSE [m]
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(c) Average of two models with 3 algorithms

Figure 6.1: Comparison among three estimation algorithms. The range of noise power
level is 10 dBm - 40 dBm.

maximizes the Gaussian likelihood. Then the RMSE value of distance between the

real location and the estimated one can be expressed as follow:

n

RMSE = mean( Z (@ — )2+ (v — 90)* + (21 — 2Z)2)> (6.4)

i=1

From Section 5.4.2, the true location is known in the RMSE computation. It is

assumed that the noise variance of APs keeps constant for each test.

Due to the lack of human mobility data collected in real life, based on Figure 6.2 it is
concluded that the Hybrid Model has a better estimation accuracy than the Random
Direction Mobility Model under fingerprint algorithm and Bayesian estimation. The
most likely reason for this better accuracy is the uneven distribution of mobile

positions in Hybrid Model.

From Figure 6.2, there are no differences among different starting points and dif-
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Figure 6.2: RMSFE versus Noise variance.

In the upper group lines they are RMSE walues of estimation using Random Direction
Mobility Model, in the lower group lines they are RMSE values of estimation using Hybrid
Model. In both these two group lines, there are 4 starting points and 2 velocity ranges.

ferent velocity ranges. Figure 6.3 shows the variation of RMSE value when only
one parameter changes. By comparing Figure 6.3(a) with Figure 6.3(b) and Figure
6.3(c) with Figure 6.3(d), we see that the different velocity range barely influences
the RMSE value. By looking at any curve in Figure 6.3, we can see that the diverse
starting points make negligible difference to the RMSE value. By looking at Fig-
ure 6.2 we could summarize that the Hybrid Model is slightly sensitive to velocity
range. The cause of this might be the uneven distribution issue mentioned before.

In addition, from Figure 6.4 it is clear to see the influence of environment noise in the
RMSE value. Under 10 dB noise condition, the Random Direction Mobility Model
can acquire around 5 meter accuracy with 0.8 probability, and the Hybrid Model
can achieve even higher probability (0.9). However, in the 40 dB noise situation, it
is very difficult for both these two models to achieve relative high accuracy with fair

probability.
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Figure 6.4: RMSE versus Noise. Only 10 dB noise level and 40 dB noise level are given,
which represent the moderate noise level and upper limit noise level.
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To sum up, first of all, the impact of velocity range and starting point on the po-
sitioning accuracy (i.e., the RMSE value under fingerprint algorithm and Bayesian
estimation) can be neglected. Secondly, compared with the Random Direction Mo-
bility Model, the Hybrid Model has better positioning accuracy but it is slightly
sensitive to the velocity range. Last but not least, the environmental noise power
level is crucial to the positioning accuracy and the type of mobility models plays an

important role in the positioning accuracy.
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7. BRIEF STUDY ABOUT VELOCITY AND
ANGLE DEPENDENCIES ON RSS

This chapter is the result of an open-end research so far and it aims at exploring
the properties of RSS and their relationship to the human mobility parameters. In
the current work, when applying fingerprint algorithm we build connection between
RSSs of that moment and the position information. However, due to the extremely
frequent slow movement of human beings inside a space (i.e., office, home etc...),
the velocity is in an actual slow-changing process. Thus, the prediction of the next
move based on historical movements is possible. Therefore the discussion in this

chapter describes a picture of this thought and it gives the conclusions until now.
To start with, the research includes two different directional ways of exploration:
1. Finding the relationship between the velocity and power changing character-
istics;
2. Using the relationship found in step 1 to predict the current position by com-
paring and analysing the power received now and before.
Table 7.1 shows the design of the velocity part, and Table 7.2 shows the design of
the angle part.

Under these design, if we consider a noise free space, the simulation result of velocity

is illustrated in Figure 8.1:

From Figure 7.1(c), it can be concluded that the velocity has impact on the rate of
power level change. From Figure 7.1(c), we can see that the peak value is the same
no matter what the speed is. The velocity parameter determines the time which is

needed by the power level of the mobile to return its starting power level.

Similarly, by following the design in Table 7.2 and assuming noise free simulation

'5Tn the Figure 7.1, we simply take values from 0.80 to 1.10 with 0.05 step [unit: m].
16Tn the Figure 7.2, we take values from 0 to 7/2 with 7/8 step [unit: rad].
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Table 7.1: Velocity simulation design

Parameter Value

simulation area 10x10 2-D [m]

number of AP 1

AP power 0 [dBm]|

AP location (5,5) [m]

path loss coefficient | ny,=2

noise to be defined (Gaussian distribution)
angle /4 [rad]

velocity 0.89-1.08" [m/s]

sampling frequency | 10 [Hz|

track from (0,0) to (10,10) straight [m]
fingerprint spacing=0.2 [m]

Table 7.2: Angle simulation design

Parameter Value
simulation area 10x10 2-D [m]
number of AP 1

AP power 0 [dBm]|

AP location (5,5) [m]

path loss coefficient | ny,=2

noise to be defined (Gaussian distribution)
angle 0-7/2'6 [rad]
velocity 0.9 [m/s]
sampling frequency | 10 [Hz]
fingerprint spacing=0.2 [m]

space, the simulation result figures of angle is given in Figure 8.1. In Figures 7.2(a),
7.2(b), 7.2(c), 7.2(d) and 7.2(e), the blue line represents the track and the green line

represents the changing power along with the change of the mobile position.

From Figure 7.2(g), we comprehend that the angle not only determine the peak value
of power level plot but also the time which is needed for power level curve return to
its starting value. If the simulated area is fixed, there is non-zero probability that
in the angle case the power level curve may not return to its starting value. In this

sense, the angle parameter mainly determine the peak value.

In brief, the velocity is strongly related to the time which is needed for the power
curve to return to its starting value. The angle is crucial to the peak value of the

power level curve.
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Figure 7.1: Velocity study under noise free condition. In the Figure 7.1(a), the blue line
represents the track and the green line represents the changing power along with the change
of the mobile position. Figure 7.1(b) is the fingerprint power grid. Figure 7.1(c) lists all the

results in this simulation, received power level changes with the various velocities. *note:
transmitted power is 0 dBm.
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Figure 7.3: Velocity and angle study under slight noise power [2 dB] level *note: trans-

mitted power is 0 dBm.

Figures 7.3(a) and 7.3(b) shows the power level curves versus the variation of the

velocity and the angle respectively. The conclusion we made from the noise free

case may not be solid when the conclusion is applied to the 2 dB noise power level

case.

Even a low noise level rather destroys these nice characteristics and more

investigation is needed to draw universal conclusions on the RSS relationship with

angles and directions.
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8. DESIGN RECOMMENDATION

As it was said in the Introduction chapter, considering the uplink and downlink in
the wireless network, the influence between the user devices and the access points is
mutual. The movements of users affects the way the mobile receives and transmits
the signals. The study of human mobility patterns not only makes contribution to
indoor positioning but it also benefits the research of wireless network. All of these

motivate us to push the study of human mobility patterns forward.

8.1 Complexity and suitability for real-life scenarios

Speaking of human mobility models, it is inevitable to discuss the compromise be-
tween how complex the models could be and in what degree the models could de-

scribe real scenarios.

One priority of indoor positioning system is low complexity, which is the precondition
of its popularity. Due to many description of human mobility characterization, the
Hybrid Model has higher complexity than the Random Direction Mobility Model.
This is the main disadvantage of the Hybrid Model.

The Hybrid Model coexists with the Random Direction Mobility Model, because
even if the movements of most people inside a building are closer to Hybrid Model,
there still are minor cases such as the cleaner inside a building. So under this
consideration, multiple models are needed to approach the detailed description of
indoor human mobility patterns. And the unity of diverse models seems unlikely for

now.

8.2 Future challenges and opportunities

The indoor positioning has many challenges now. Positioning is like most other cut-
ting edge technologies, that people did not realize its potential conflict with ethic
issues before it was born. While the concept of indoor positioning is fashionable,

people learned from GNSS positioning technologies that positioning has possibility
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to violate privacy issues etc. This obscurely brings obstruction to the development
of indoor positioning technologies, for example, collecting movements data of hu-
man beings from real life usually is impossible or at least difficult. Besides, unlike
the satellite based positioning, in the indoor positioning area the indoor positioning
technology does not have universal standard until now. The status quo of this area
is still lab work [33, 32| or business release [42, 19, 20| within a small scale. Most in-
door positioning projects are business oriented work rather than government leading
projects. This is another reason why the universal standard of indoor positioning

technologies is not yet formed.

In the meantime, we should also have faith in the future of indoor positioning tech-
nologies. With the increasing requirement of Location-based Service (LBS), people
will eventually move their focus from outdoor positioning to the indoor positioning.
In addition, as a common sense, office people stay longer inside a building rather
than outside it, firemen extinguish fire mostly inside a building etc. These facts

motivate the indoor positioning technology to make a move forward.

Table 8.1: Challenges and opportunities

Challenges Opportunities
ethical issues in collect- | positioning algorithms
ing data for human mo- | enhanced with predic-

bility models tive engines based on
human mobility pat-
terns

need of huge data collec- | developing  standards
tion for statistically sig- | for indoor positioning
nificant results

8.3 Future studies

The indoor scenarios are complex, one or two indoor human mobility models cannot
precisely describe every patterns of human mobility under indoor environment. Thus
the indoor human mobility models still need to be developed. For example, a human

mobility model inside a supermarket.

In this thesis, the spacing between fingerprints are large, which limits the accuracy of
positioning. A method to decrease the spacing between fingerprints and meantime to
increase much computation is under development. Recently there are many research
on the prediction of human mobility, and in this way the size of fingerprint grid may
be decreased. This idea gives an alternative to increase the accuracy and not to

bring too much burden to the computation.
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9. CONCLUSIONS

This thesis work presented a investigation of current popular human mobility mod-
els, proposed a novel model namely Hybrid Model for indoor positioning study
and tested the suitable models (i.e., Random Direction Mobility Model and Hybrid
Model) with fingerprint algorithm and Bayesian estimation for the purpose of in-
door positioning. In addition, this thesis also briefly investigated the relationships
between the movement direction changes and speeds to the Received Signal Strength

fluctuations.

Chapter 1 started with the introduction of the background of this thesis work, then
the author’s contribution and organization of this thesis was listed. In Chapter 2,
we reviewed the current fashionable indoor positioning technologies and commented
each technology from the point of view of the feasibility and cost. In Chapter
3, Random Walk Mobility, Random Waypoint Mobility Model, Random Direction
Mobility Model and Boundless Simulation Area Mobility Model were introduced
together with a discussion on their feasibility in indoor scenarios. Then the proposed
model, which is used to specifically describe office movements of human beings,
was given and discussed. In Chapter 3, the details on how to form the above
models and the characterization of Hybrid Model were also included. In Chapter
4, we talked about various traits of indoor environment and then we explained the
assumptions used in the Random Direction Mobility Model and the Hybrid Model.
Then, the classical path loss model was briefly expressed. Finally, the fingerprint
process and the estimation methods were explained. In Chapter 5, the deployment
of Access Points was detailed and particularly one possible evaluation method of
APs setup was introduced there. A method about the relationship between the AP
density and the positioning accuracy was also introduced. Later on, the fingerprint
setup and the track formation were presented. In this track formation section,
the downsampling concept was discussed by comparing Figure 5.11(a) with Figure
5.11(b) (or Figure 5.11(c) with Figure 5.11(d)). In Chapter 6, it was concluded that,
under the fingerprint algorithm and the Bayesian estimation, the Hybrid Model has
a better positioning accuracy than the Random Direction Mobility Model. We also
showed that parameters such as velocity range and the starting point have only a

tiny impact on the positioning accuracy (in the thesis, the accuracy is characterized
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in terms of the Root Mean Square Error value). In Chapter 7 and 8, the challenges
and opportunities in the indoor positioning area were discussed, and at the same
time, part of the current work is briefly introduced to give the readers a general idea

about future work in this area.
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APPENDIX A. RANDOM DIRECTION
MOBILITY MODEL SIMULATOR

The full version of Matlab simulators used in this thesis will be available at

http://www.cs.tut.fi/tlt/pos/Software.htm after September 2015

Yot To 1o 1o 1o oo ToTo o o o To ToTo 1o o o ToTo 1o o o To T To o o To T 1o o o To o 1o o o To T o o To T o o o To T o o o To T 1o o T To o o o To T o o o To T o o o

o h
yA Department of Electronics and Communication Engineering yA
% WANG WENBO - 238970 T
h h
yA random direction mobility model pA
to h

Voo oo 1o o 1o o o o oo oo oo o o o o o o o o o To o o o T To T T T oo oo oo o oo o oo o o o o o o Jo o o T o T T T o o o oo oo oo

close all;
clear all;

clc;

%% variables

i define x-y plane
xmax=50;ymax=50;

% simulation time
%N=10%60%600;

N=5e3;

% the number of floors
no0OfFloor=3;

i the height spacing of floors
floorHeight=3;

hstarting point

hi
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x0=0;y0=0;z0=0;
ht

temp_3=0:floorHeight:floorHeight* (noOfFloor-1);

hi

x0=xmax*rand;

yO=ymax*rand;

z0=temp_3(randi (length(temp_3)));
h}

% loading predefined starting point
load(’para2.mat’);

%, sampling frequency
Fs=10;
t=1/Fs;

% velocity interval
v_max=3;v_min=0.5;
%v_min=0.89;v_max=1.083;

% generate velocity variables using setVariable function

v=setVariable(v_min,v_max, >normal’,N) ;

%» displacement per time [m]
d=v*t;

zmin=0;zmax=(no0fFloor-1)*floorHeight;

Wi
hh 2-D

figure;

%h0ut = inout.output();
%h0ut .figure;

% plot the boundary
h4=plot ([0 xmax], [ymax ymax],’r-’,’linewidth’,1.5); hold on;
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plot ([0 xmax],[0 0],’r-’,’linewidth’,1.5);
plot ([0 0],[0 ymax],’r-’,’linewidth’,1.5);
plot ([xmax xmax],[0 ymax],’r-’,’linewidth’,1.5);

% process
trace(1,1)=x0;
trace(2,1)=y0;

% direction

r=-pi+2*pi*rand;
count=1;
for n=1:N

% starting point
h1=plot(x0,y0,’go’, ’markersize’,10,’linewidth’,1.5);grid on;

% set axis scale

axis(’square’, [-5 xmax+5 -5 ymax+5]);

trace(1,count+1)=trace(1l,count)+d(n)*cos(r);

trace(2,count+1)=trace(2,count)+d(n)*sin(r);

% if, elseif and else are used to determine if the user cross the boundary
if trace(l,count+1l)<xmax&&trace(l,count+1)>0&&trace(2,count+1)<ymax&&. ..
trace(2,count+1)>0
plot (trace(1,count:count+1) ,trace(2,count:count+1),’k-7, ...
’linewidth’,0.6);
count=count+1;
elseif trace(l,count+1)>xmax&&trace(2,count+1)<0
trace(1l,count+1)=xmax;
trace(2,count+1)=0;
plot ([trace(l,count) ,xmax], [trace(2,count),0],’k-’,’linewidth’,0.6);
plot (xmax,0,’ko’, ’markersize’,5, markerface’, ’k’) ;
count=count+1;
r=setVariable(pi/2,pi, ’normal’,1);
trace(1,count+1)=xmax+d(n)*cos(r);

trace(2,count+1)=d(n)*sin(r) ;
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plot ([xmax,trace(1l,count+1)], [0,trace(2,count+1)],’k-’,’1linewidth’,0.6);
count=count+1;
elseif trace(l,count+1)>xmax&&trace(2,count+1)>ymax
trace(1,count+1)=xmax;
trace(2,count+1l)=ymax;
plot ([trace(l,count) ,xmax], [trace(2,count),ymax],’k-’,’linewidth’,0.6);
plot (xmax,ymax, ’ko’, ’markersize’,5, ‘markerface’,’k’);
count=count+1;
r=setVariable(pi,3*pi/2,’normal’,1);
trace (1, count+1)=xmax+d(n)*cos(r) ;
trace(2,count+1l)=ymax+d(n)*sin(r) ;
plot ([xmax,trace(1l,n+1)], [ymax,trace(2,n+1)],’k-’,’linewidth’,0.6);
count=count+1;
elseif trace(l,count+1)<0&&trace(2,count+1l)>ymax
trace(1,count+1)=0;
trace(2,count+1)=ymax;
plot ([trace(l,count),0], [trace(2,count),ymax],’k-’,’linewidth’,0.6);
plot (0,ymax, ’ko’, ’markersize’,5, markerface’, ’k’) ;
count=count+1;
r=setVariable(3*pi/2,2*pi, ’normal’,1);
trace(1,count+1)=d(n)*cos(r);
trace(2,count+1)=ymax+d(n)*sin(r) ;
plot ([0,trace(1l,count+1)], [ymax,trace(2,count+1)],’k-’>,’linewidth’,0.6);
count=count+1;
elseif trace(l,count+1)<0&&trace(2,count+1)<0
trace(1,count+1)=0;
trace(2,count+1)=0;
plot ([trace(1l,count),0], [trace(2,count),0],’k-’,’1linewidth’,0.6);
plot (0,0, ’ko’, *markersize’,5, ‘markerface’, ’k’) ;
count=count+1;
r=setVariable(0,pi/2,’normal’,1);
trace(1l,count+1)=d(n)*cos(r);
trace(2,count+1)=d(n)*sin(r);
plot ([0,trace(1l,count+1)], [0,trace(2,count+1)],’k->,’linewidth’,0.6);
count=count+1;
elseif trace(1,count+1)>=xmax&&trace(2,count+1)>=0&&trace(2,count+1)<=ymax
y=((xmax-trace(1l,count))*trace(2,count+1)+(trace(1,count+1)-xmax)*. ..
trace(2,count))/(trace(1l,count+1)-trace(1l,count));

trace(1,count+1)=xmax;
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trace(2,count+1)=y;
plot ([trace(l,count) ,xmax], [trace(2,count),yl,’k-’,’linewidth’,0.6);
plot (xmax,y,’ko’, ’markersize’,5, markerface’, ’k’) ;
count=count+1;
r=setVariable(pi/2,3*%pi/2,’normal’,1);
trace (1, count+1)=xmax+d(n)*cos(r) ;
trace(2,count+1)=y+d(n)*sin(r) ;
plot ([xmax,trace(l,count+1)], [y,trace(2,count+1)],’k-",’1linewidth’,0.6);
count=count+1;

elseif trace(l,count+1)<=0&&trace(2,count+1)>=0&&trace(2,count+1)<=ymax
y=((0-trace(1l,count))*trace(2,count+l)+trace(l,count+1)*. ..
trace(2,count))/(trace(1l,count+1)-trace(1l,count));
trace(1,count+1)=0;
trace(2,count+1)=y;
plot ([trace(1,n),0], [trace(2,n),y], ’k-",’linewidth’,0.6);
plot(0,y,’ko’, *markersize’,5, ‘markerface’, ’k’);
count=count+1;
r=setVariable(3*pi/2,5%pi/2, ’normal’,1);
trace(1,count+1)=d(n)*cos(r);
trace(2,count+1)=y+d(n)*sin(r) ;
plot ([0,trace(1l,count+1)], [y,trace(2,count+1)],’k->,’linewidth’,0.6);
count=count+1;

elseif trace(2,count+1)>=ymax&&trace(l,count+1)>=0&&trace(1,count+1)<=xmax
x=((ymax-trace(2,count))*trace(1,count+1)+(trace(2,count+1)-ymax)*. ..
trace(1,count))/(trace(2,count+1)-trace(2,count));
trace(1,count+1)=x;
trace(2,count+1l)=ymax;
plot ([trace(l,count),x], [trace(2,count),ymax],’k-’,’linewidth’,0.6);
plot (x,ymax, ’ko’, ’markersize’,5, markerface’, ’k’) ;
count=count+1;
r=setVariable(pi,2*pi,’normal’,1);
trace(1,count+1)=x+d(n)*cos(r);
trace(2,count+1)=ymax+d(n)*sin(r) ;
plot ([x,trace(1l,count+1)], [ymax,trace(2,count+1)],’k-",’1linewidth’,0.6);
count=count+1;

elseif trace(2,count+1)<=0&&trace(l,count+1)>=0&&trace(1l,count+1)<=xmax
x=((0-trace(2,count))*trace(l,count+1)+trace(2,count+1)*. ..
trace(1,count))/(trace(2,count+1)-trace(2,count));

trace(1,count+1)=x;
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trace(2,count+1)=0;
plot([trace(1l,count),x], [trace(2,count),0],’k-",’linewidth’,0.6);
plot(x,0,’ko’, *markersize’,5, ‘markerface’, ’k’);
count=count+1;
r=setVariable(0,pi, ’normal’,1);
trace(1,count+1)=x+d(n)*cos(r);
trace(2,count+1)=d(n)*sin(r);
h3=plot ([x,trace(1l,count+1)], [0,trace(2,count+1)],’k-",’1linewidth’,0.6);
count=count+1;
end
drawnow;

end

% ending point
h2=plot(trace(l,end),trace(2,end),’ro’, ’markersize’,10,’linewidth’,1.5);

legend([h1,h2,h3,h4], ’starting point’,’terminal point’,’track’,’boundary’);
xlabel(’x [m]’);
ylabel(’y [m]’);

hold off;
htitle([’Random Direction Mobility Mode’,’total ’,num2str(N),’ moves’]);

h}

W

%% 3-D

trace(3,:) = thirdDi(length(trace(1l,:))-1,t,z0,zmin,zmax) ;
Tt

trace_rss=trace;

save (’random_direction_25.mat’);

%}
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Tt ToToTo o oo ToTo o o oo To o 1o o o ToTo o o o ToTo Jo o o ToTo o o JoToTo o o o To T o o To T o o o To T o o o To o 1o o ToTa o o o To T To o o To o o o o o

t t
yA Department of Electronics and Communication Engineering yA
% WANG WENBO - 238970 T
h h
b hybrid model - 3D %
t t

Voo oo 1o o 1o o 1o o oo o o o o o o o ol T o o Jo T T o To T T To oo oo oo oo o o o o o o o o Jo o T o T o T o o o oo oo oo o oo o o o o o

close all;
clear all;

clc;

Yoo Toto o ToToTo o To o o ToTo 1o o To o Jo o To o o JoTo o o To 1o o To o o To 1o o o To 1o o ToTo o ToTo o o To 1o o ToTo o ToTo o o To 1o o ToJo o Jo 1o o Jo T 1o o To 1o o
% Explanation yA
%In this model, the random direction mobility model and random waypoint %
Jmobility model are combined, so that it starts moving from (an random 7

Jspoint in the area), and with (a certain direction and changing velocity’%

%), maintaining this status for (a while), before or touching the A
Jboundry, changing direction and repeat this action again. yA
yA Note : .

% in this model, the normal distribution is used with confident level %
%95% to model velocity and angles. yA
ToloTo o ToTo o To o ToTo o To o o To o o To o To o o oo Jo o o o Jo o o o To o o o o Yoo o o o Fo o o To o o o o Fo o Fo o o o o o o o Yoo o o o oo o o o o o

%t variable
% define x-y plane

xmax=50;ymax=50;

% the number of floors
no0OfFloor=3;

i the height spacing of floors
floorHeight=3;
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% simulation times (pause also counted as 1 time simulation)
n=10000;
n=2*ceil (n/2);

% define the upper and lower bound of velocity [m/s]
v_min=0.5;v_max=3;
%v_min=0.89;v_max=1.083;

%» define the upper and lower bound of angle [radian]

r_min=0;r_max=2%pi;

% define the move time bound [s]

t_move_min=3;t_move_max=10;

% define the pause time bound [s]

t_pause_min=0.5;t_pause_max=30;

/» define the upper and lower bound of distance away from boundry [m]

dist_min=0.5;dist_max=20;

%% avariable models using setVariable function
v=setVariable(v_min,v_max, ’normal’,n/2);
r=setVariable(r_min,r_max,’uniform’,n/2);
t_m=setVariable(t_move_min,t_move_max,’normal’,n/2);
t_p=setVariable(t_pause_min,t_pause_max,’normal’,n/2);

dist=setVariable(dist_min,dist_max,’uniform’,n) ;

% define the total simulation time [s]

% the first row is move time, second row is pause time
t(1,:)=t_m;

t(2,:)=t_p;

% define the sampling frequency [Hz]
Fs=1e2;

/» define the starting point x-y-z
temp_3=0:floorHeight:floorHeight* (noOfFloor-1);
%startP=[0,0,0];
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hstartP=[xmax*rand,ymax*rand, temp_3(randi(length(temp_3)))1;
load(’para3.mat’);

%l process

% initial

t=floor (t*Fs) ;
t=[zeros(2,1),t];

trace(1:3,1)=startP;

counta=1;% for angle purpose

countb=1;% for dist purpose
for p=1:n/2

countl=sum(t(1,1:p))+1;
count2=sum(t (1,1:p+1));

ang=r (counta) ;

for pp=countl:count2

trace(1,ppt+l)=trace(1l,pp)+v(p)*cos(ang)/Fs;
trace(2,ppt+l)=trace(2,pp)+v(p)*sin(ang)/Fs;
temp_3=thirdDi(1,1/Fs,trace(3,pp),0, (no0fFloor-1)*floorHeight) ;
trace(3,ppt+1)=temp_3(2);

templ=trace(l,pp+1)+dist(countb);
temp2=trace(2,pp+1)+dist (countb);
temp3=trace(1,pp+1)-dist (countb);
temp4=trace(2,pp+1)-dist (countb) ;

if templ<xzxmax&&temp3>0&&temp2<ymax&&temp4>0
continue;

elseif templ>xmax&&temp4<0
ang=setVariable(pi/2,pi, ’normal’,1);

trace(1,ppt+l)=trace(1l,pp)+v(p)*cos(ang)/Fs;
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end

trace(2,ppt+l)=trace(2,pp)+v(p)*sin(ang) /Fs;
elseif templ>xmax&&temp2>ymax
ang=setVariable(pi,3*pi/2, ’normal’,1);
trace(1,ppt+l)=trace(1,pp)+v(p)*cos(ang)/Fs;
trace(2,ppt+l)=trace(2,pp)+v(p)*sin(ang) /Fs;
elseif temp3<0&&temp2>ymax
ang=setVariable(3*pi/2,2*pi, ’normal’,1);
trace(1,ppt+l)=trace(1,pp)+v(p)*cos(ang)/Fs;
trace(2,ppt+l)=trace(2,pp)+v(p)*sin(ang) /Fs;
elseif temp3<0&&temp4<0
ang=setVariable(0,pi/2, ’normal’,1);
trace(1,ppt+l)=trace(1,pp)+v(p)*cos(ang)/Fs;
trace(2,ppt+l)=trace(2,pp) +v(p)*sin(ang) /Fs;
elseif templ>=xmax&&temp4>=0&&temp2<=ymax
ang=setVariable(pi/2,3%pi/2, ’normal’,1);
trace(1,ppt+l)=trace(1,pp)+v(p)*cos(ang)/Fs;
trace(2,ppt+l)=trace(2,pp) +v(p)*sin(ang) /Fs;
elseif temp3<=0&&temp4>=0&&temp2<=ymax
ang=setVariable (3*pi/2,5%pi/2, ’normal’,1);
trace(1,ppt+l)=trace(1l,pp)+v(p)*cos(ang)/Fs;
trace(2,ppt+l)=trace(2,pp) +v(p)*sin(ang) /Fs;
elseif temp2>=ymax&&temp3>=0&&templ<=xmax
ang=setVariable(pi,2+*pi, ’normal’,1);
trace(1,ppt+l)=trace(1,pp)+v(p)*cos(ang)/Fs;
trace(2,ppt+l)=trace(2,pp) +v(p)*sin(ang) /Fs;
elseif temp4<=0&&temp3>=0&&templ<=xmax
ang=setVariable(0,pi, ’normal’,1);
trace(1,ppt+l)=trace(1,pp)+v(p)*cos(ang)/Fs;
trace(2,ppt+l)=trace(2,pp) +v(p)*sin(ang) /Fs;
end

counta=counta+i;

countb=countb+1;

end

tm=floor (t_mxFs) ;
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tp=floor (t_p*Fs);

for ppp=1:n/2

trace_rss(1,1+sum(tm(1:ppp-1))+sum(tp(l:ppp-1)) :1+sum(tm(1l:ppp)). ..
+sum (tp(1:ppp-1)))=trace(l,1+sum(tm(1l:ppp-1)) :1+sum(tm(1:ppp)));

trace_rss(1,2+sum(tm(1:ppp))+sum(tp(1l:ppp))-tp(ppp) : 1+sum(tm(l:ppp)) ...

+sum(tp(1:ppp)))=trace(l,1+sum(tm(l:ppp)));
trace_rss(2,1+sum(tm(1:ppp-1))+sum(tp(l:ppp-1)) :1+sum(tm(1l:ppp)). ..
+sum (tp(1:ppp-1)))=trace(2,1+sum(tm(1l:ppp-1)) :1+sum(tm(1:ppp)));

trace_rss(2,2+sum(tm(1:ppp))+sum(tp(1l:ppp))-tp(ppp) : 1+sum(tm(1:ppp)) . ..

+sum(tp(1:ppp)))=trace(2,1+sum(tm(1:ppp)));
trace_rss(3,1+sum(tm(1:ppp-1))+sum(tp(l:ppp-1)) :1+sum(tm(l:ppp)) . ..
+sum (tp(1:ppp-1)))=trace(3,1+sum(tm(1l:ppp-1)) :1+sum(tm(1:ppp)));

trace_rss(3,2+sum(tm(1:ppp))+sum(tp(1:ppp))-tp(ppp) : 1+sum(tm(1:ppp)). ..

+sum (tp (1:ppp)))=trace(3,1+sum(tm(1:ppp)));
end

%hsave (’hybrid_model_2_35.mat’);
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