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iABSTRACTWENBO WANG: INDOOR MOBILITY MODELS FOR WIRELESS POSITION-INGTampere University of TehnologyMaster of Siene thesis, 60 pages, 11 Appendix pagesMay 2015Master's Degree Programme in Eletrial EngineeringMajor: Wireless Communiations Ciruits and SystemsExaminers: Assoiate Prof. Elena Simona Lohan and Adjunt Prof. Oana CramariuKeywords: Indoor positioning, mobility model, �ngerprint method, Bayesian estimationIndoor positioning tehnology has beome inreasingly popular in both businessand researh worlds. Several tehnologies have been developed so far and some ofthem are in ommerial use now. However, due to personal privay issues and theomplexity of indoor environment, the data regarding the human mobility patternsare insu�ient. The study of syntheti human mobility models is an importantissue, whih is expeted to shed new light into a myriad of Loation Based Serviesand loation-aware ommuniations. Finding and testing syntheti models abouthuman mobility is an important step ahead and this onstitutes the main fous ofthis thesis. In addition, we also address the issue of indoor positioning via WiFireeived signal strength under various mobility patterns, generated synthetiallythrough a simulator built within this thesis.The thesis starts with a review of four popular syntheti human mobility modelswhih is followed by presenting a new model proposed in this work and denotedas Hybrid Model. Based on the suitability of the models for indoor positioning,the Random Diretion Mobility Model and the newly proposed Hybrid models werehosen for further testing as human mobility models with WiFi-based �ngerprint-ing. We show in detail the indoor senarios haraterization and aordingly wepresent the lassial path loss model. Then, an indoor positioning simulator inlud-ing mobility models is built and an alternative method of evaluating Aess Points(APs) deployment is introdued. In order to explore the positioning auray of theabove two models, a �ngerprinting algorithm with Bayesian ombining is applied.The results are shown in terms of Root Mean Square Error (RMSE) distane error.Finally we onlude that a Hybrid Model has a better positioning auray than aRandom Diretion Mobility Model and that neither of the two models is essentiallya�eted by the veloity range or by the variation of the starting point. We also showhow the noise variane a�ets the positioning results.
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1
1. INTRODUCTION
1.1 MotivationOver the last deade, the development of Global Navigation Satellite System (GNSS)based tehnology has been hanging the world profoundly. With this innovation,many loation-related servies and projets were born, whih reformed and are stillreforming our very lives day by day. Moreover, now when this thesis is being writ-ten, enormous loation-based smart phone appliations and wearable equipment aregiven birth to. However, the GNSS only works outstandingly under outdoor senar-ios, while in indoor situation it is nearly blind beause of the omplexity of buildings(i.e., shadowing and multi-path e�et [9℄), signal physial harateristis (i.e., thesigni�ant attenuation of mirowave through roofs and walls [9℄) et. In addition, asa matter of fat, a large number of people spend most of the hours in a day stayinginside a building, for example, the o�e hours. Therefore, the onept of indoorpositioning is an ative �eld of researh with multiple foreseen appliations.To start with, by reviewing the literature, some of urrent indoor positioning teh-nologies and systems are presented below with a brief introdution:1. Mirosoft RADAR [8℄: A traking system whih uses Wireless Loal AreaNetwork (WLAN) Reeived Signal Strength Indiation (RSSI) tehnology. Ithas low auray level (around 4 m) and low reliability [18℄;2. Ekahau [2℄: A system that an simultaneously traks thousands of deviesusing WLAN RSSI tehnology. It has relative high auray level (up to 1 m)and low ost [18℄;3. Horus [44℄: A system whih uses WLAN RSSI tehnology with the Bayesianestimation method. It has relative high auray level (below 2.1 m) and fairomplexity [27℄;4. COMPASS [24℄: A system whih uses both WLAN and digital ompass toprovide position information. It has relative high auray level (1-2 m) and



1.1. Motivation 2inexpensive ost [18℄;5. Ubisense [4℄: A system whih uses tags attahed on mobiles to transmitUltra-wide bandwidth (UWB) signals to network and performs loalizationbased on the angle of arrival (AOA) or time di�erene of arrival (TDOA)method. It has exellent auray level (below 0.3 m) but high ost [27℄;6. Easy Living [11℄: A system whih uses vision-based tehnology for loal-ization. It has inexpensive ost but low reliability due to dynami hangingenvironment and omplex image proessing. Besides, the available auray isunertain [18℄;7. Fire�y [22℄: An Infrared Radiation -based (IR) motion traking system. Ithas exellent auray level (below 0.003 m) but high ost and wearing-omfortproblems [18℄;8. SpotON [21℄: A well-known Radio Frequeny Identi�ation RFID-based so-lution with Ad Ho manner. It has �exible auray level (depending on theluster size), low ost and medium omplexity [27℄;9. Ative Bat [1℄: A system whih uses ultrasoni tehnology as transmittedmedium to loate users. It has exellent auray level (around 0.03 m) andhigh ost [18℄.Among these solutions, WLAN-based methods have aeptable auray, relativelylow ost, fair omplexity and medium reliability. Besides, the ontinuous growingnumber of personal wireless equipment gives us an opportunity of realizing indoorpositioning through urrent wireless tehnologies (i.e., ellular and WLAN signals[30, 38℄). Thus, the WLAN-based RSSI method is now a feasible and promisingoption for large-sale positioning.In indoor senarios, movement of wireless devies has signi�ant impat on the wire-less environment. To reveal human mobility patterns ould help the researh andimprove positioning methods, and help to optimize the network as well. Conven-tionally, human mobility models are divided into two ategories: trae-based modelsand syntheti models [37℄. Trae-based models are statistial models using real datafrom real life. They guarantee genuine desription of human trajetory. Unliketrae-based models, syntheti models are arti�ial models whih start from someempirial parameter assumptions. However, one one hand, olleting trae data of-ten poses privay issues and ethial problems, and in most ountries it is illegal totouh this line unless the express onsent of the traked users is given; on the other



1.2. Author ontribution 3hand, it is not easy to sample the data in order to meet the indoor positioning a-uray requirement. In this sense, syntheti models are more suitable for large-saleindoor positioning properties study. Therefore, this thesis work is mainly relatedto syntheti models suh as building models, omparisons among models, test ofseleted models with a ertain �ngerprint algorithm et.1.2 Author ontributionIn this work, the following ontribution has been made by the author:1. Review of the solutions for indoor positioning senario where GNSS is notavailable;2. Study and exploration of properties of various ontextual models, suh assupersoni sound positioning system and vision-based positioning system;3. Implementation of four of the most popular syntheti models urrently existingin the literature. In this step, some limitations were added to the models sothat some models are more realisti;4. Comparison of the introdued models from di�erent angles and analysis oftheir pros and ons;5. Proposing a novel model whih attempts to mimi the real indoor humanmovement patterns, the Hybrid Mobility model;6. General desription of the indoor environment and simulation-based modelingof a indoor hannel, inluding path losses and shadowing.7. Testing di�erent mobility models under indoor wireless irumstane using the�ngerprint algorithm and Bayesian estimation;8. Drawing onlusions on the results and presenting an outlook on future devel-opment.In the end of thesis work, the author submitted one publiation as the �rst author,namely: Wenbo Wang, Pedro Figueiredo e Silva and Elena Simona Lohan, 'Inves-tigations on mobility models and their impat on indoor positioning', submitted toMOBIQUITOUS 2015 (JUFO 1 level onferene). The ontent of this publiation isrelated to investigation of urrent human mobility models and explain in detail thereason of proposing the Hybrid Model, and using �ngerprinting algorithm to testthe proposed Hybrid Model and other models found in the literature.



1.3. Thesis organization 41.3 Thesis organizationThere are nine hapters in this thesis, details are as follow:Chapter 2: introdues the onept of ontextual model, and explores the propertiesof it. From a big piture point of view, this hapter desribes the main thesis ideaand whih movement properties an be used to model, whih natural properties anbe used as a medium to model the trajetory of a moving objet.Chapter 3: introdues the urrent four popular syntheti models namely RandomWalk Mobility Model, Random Waypoint Mobility Model, Random Diretion Mo-bility Model and Boundless Simulation Area Mobility Model. Finally we propose anovel indoor human mobility model, namely the Hybrid Model.Chapter 4: In this hapter, the haraterization of indoor senarios is presented.The assumption of human mobility and lassial path loss model are introdued. Inthe end, the proesses of �ngerprinting and estimation method are given.Chapter 5: Matlab simulator is desribed in detail. In this hapter we also givean alternative method of evaluating the APs deployment inside a building. After-wards, the methodology of forming �ngerprint database and the trak database isintrodued.Chapter 6: The simulation-based results are shown. The main performane riteriais the distane root mean square error.Chapter 7: disusses the tradeo�s when designing a positioning algorithm underertain mobility model parameters.Chapter 8: presents some innovative ideas on estimating the angle and veloitybased on RSS information. This work is only in an inipient phase and open issuesare emphasized in here.Chapter 9: presents the main onlusions of this thesis work and future researhdiretions.The logial �ow of the thesis hapters is summarized in Figure 1.1.



1.3. Thesis organization 5

Figure 1.1: The organization of the thesis.



6
2. CONTEXTUAL MODELS ANDUNDERLYING TECHNOLOGIES
Before further studying of human mobility models, investigation of available re-soures used in positioning tehnologies might help to understand better the indoorsenarios. This hapter reviews various tehnologies suh as ultrasound, infraredray, image or eletromagneti wave that are urrently used in loation servies. Inaddition, extra omments are added to disuss the feasibility of utilization of thesemethods in real life.2.1 UltrasoundIn nature, bats use ultrasounds as the means to exeute eholoation ations. Theseations help bats to navigate the forward path and to loate the position of prey inthe night. Inspired by this, people developed similar navigation and position systemsin the last hundred years. Here, an example (Ative Bat) is shown to illustrate thepriniple and �exibility of ultrasound method under indoor positioning senarios[1, 43℄.Ative Bat : The reeivers of ultrasound on the eiling form a grid; a user arryingwireless devie broadasts ultrasound signals ylially; the distane between theuser and reeiver an be measured by the Time Of Arrival (TOA); as in many othersystems the triangulation loation algorithm is applied to ompute the loation ofthe user [18℄.Comment: In essene, this tehnology alulates the distane by measuring theonsumed time of transmitting signals, then the loation is determined by applyingthe triangulation method. Spei�ally, the indoor oordinate initializes after theinstallation of several reeivers on the eiling. Next, the broadasted ultrasoundsignals ativate the reeiver nodes, and through a series of algorithms this systemselets three of the ativated reeivers and omputes the user loation. Moreover,the users an be traked by storing positions of a users' movement trak. Therefore,in this solution, the parameters suh as the speed of ultrasound, the penetrability of



2.2. Infrared radiation 7ultrasound, the interferene level of bakground noise and the auray of reeiverssetup are ruial to the performane.Ultrasound tehnology in loalization has also been in used in Criket [32, 33℄ andSonitor [3℄.2.2 Infrared radiationInfrared radiation (IR) is an invisible radiation with longer wavelength than thevisible light. Nowadays, the IR tehnology is used in a wide range of personalwireless platforms, whih o�er an alternative of ahieving indoor positioning. Thissetion presents the basis of IR-based indoor positioning tehnology via an instaneof Fire�y [22℄.Fire�y : Dozens of tags attahed on the users' body emit in IR, and this radiation isaptured by speial ameras at �xed loation. This system possesses the apabilityof traking users' subtle motions. This motion traker is usually used as an assistantof virtual reality related appliations [18℄.Comment: Generally, the IR-based tehnologies aquire users' loation by observ-ing tiny hanges of the reeived IR. Due to the opyright and ommerial reasons,this Fire�y system has no detailed desription. But from the above information, itis not hard to onlude that IR-based tehnology is restrited by onditions suh asthe intensity of bakground light, the angle of view, the penetrability of IR and theost of the whole system.IR tehnology in loalization has also been used in Ative Badge [19, 42℄.2.3 ImageThe human brain has the ability of determining movements by sensing di�erenebetween two images in the same sene. Similarly, by plaing ameras and a entralproessor, this partiular brain mehanism an be imitated for indoor positioningpurpose. The following example introdues the fundamental of image-based indoorpositioning tehnology.Easy living : Two stereo ameras are set on the eiling of a room, and these two areonneted to a entral proessor. The ation of a user oming into a room triggersthe system and in the meantime the system marks this seond as starting point. By



2.4. Other eletromagneti waves 8omparing the di�erene between two lose frames, the system analyzes the urrentloation of the user [18℄.Comment: This tehnology relies basially on image proessing and it has theadvantage of not only loating the user, but also apturing the image of eah usermovement with a ertain time preision. However, the disadvantage is quite obvi-ous: proessing onsiderable images requires substantial onsumption of power andenergy resoure. Additionally the analysis of images might be a�eted by the lightintensity.Image-based tehnology in loalization has also been explained and developed in[15, 25, 31℄.2.4 Other eletromagneti wavesUnlike the indoor positioning solutions mentioned above, using eletromagnetiwaves as medium to ahieve loation servies is a very popular way. Partiularly,RFID, UWB and WLAN based indoor positioning tehnologies are one of the mostative researh areas. Given that this thesis mainly investigates the performane ofhuman mobility models under WLAN situation, the disussion below fouses on theWLAN-based indoor positioning tehnology mainly.RADAR: Three transmitters are set up at the beginning and the �ngerprints gridis formed thereby. An user arrying a wireless devie moves inside the overage oftransmitters signals. Considering that the strength of signals is inverse proportionalto the distane between a transmitter and the user's devie, the loation of the useran be omputed through the triangulation loation method [18℄.Comment: This might use a mahine learning proess. The �ngerprints grid on-sists of reeived signal strength(RSS) at eah point whih is measured as the trainingsequene and the oordinates of eah measured point. Afterward the positioning op-eration an be regarded as an estimation proess.
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3. USER MOBILITY MODELS
3.1 OverviewBefore attempting to mimi human mobility patterns, we must �nd proof that hu-man mobility has patterns to follow. In referene [17℄, the authors traked 100,000anonymous mobile phone users' loation for six month. After modeling of numer-ous statistial data and appropriate saling upon the model, they onluded thatindividual movement patterns have signi�ant similarity. This onlusion, from thestatistial point of view, gives a strong support to syntheti models.This hapter is omposed of two parts: a literature survey of human mobility modelsand a newly proposed human mobility model. In Setion 3.2, we begin with themost widespread human mobility model namely the Random Walk Mobility Model.Later by adding one property to the Random Walk Mobility Model, we desribethe seond model, the Random Waypoint Mobility Model, in Setion 3.3. In orderto overome weak points of the Random Waypoint Mobility Model, a third modelalled Random Diretion Mobility Model is illustrated in Setion 3.4. In Setion 3.5,an ideal model namely the Boundless Simulation Area Mobility Model is given todesribe the Random Walk Mobility Model from the mobile point of view. Last butnot least, in Setion 3.6 we present our proposed model, the Hybrid Model whihis built to approah the real senarios of human mobility inside buildings. Figure3.1 shows the apaity of eah model of desribing various movements. Beausethe Boundless Simulation Area Mobility Model is an alternative interpretation ofthe Random Walk Mobility Model, the Boundless Simulation Area Mobility Modelwill not be shown separately in Figure 3.1. The Hybrid Model inludes featuresoriginated from the Random Waypoint Mobility Model and the Random DiretionMobility Model, thus the irle of the Hybrid Model has overlaps with the abovetwo models.In Setion 3.4 and 3.6, a hypothesis is posed for later study (i.e., di�erent rangeveloities might have in�uene on the behavior of models under indoor senarios).Besides, in these two setions, a Gaussian-like distribution is widely used for gen-erating parameters suh as veloities, moving time and pause time. In the Hybrid
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Figure 3.1: Capaity of various movements.Model, a third dimension, namely the hight dimension, is introdued to mimi thesenario inside a building. It is to be noted that the above-mentioned notions, whowill also appear in the rest of this hapter, will be explained in more detail in Chapter4.Notie: First, onsidering the fat that people have far greater displaement mov-ing on the horizonal plane than the vertial plane, and that 2-D models have lessomputational omplexity than 3-D models, the investigation of urrent models fo-uses on the 2-D models. In the proposal part, we disuss 3-D models, by taklingalso some new angles in 3-D modeling that have not been disussed yet in the liter-ature. Seondly, besides the above models, there are still other models, suh as theGauss-Markov Mobility Model, a model whih ontains knowledge of past loation,veloities and angles [26℄. However this thesis only disusses memoryless models andespeially, the proposed Hybrid Model.3.2 Random Walk Mobility ModelIn 1905, when Einstein studied Brownian motion he revealed the relationship be-tween the jump size and the time interval. That is, in other words, he mathemat-ially desribed the Random Walk Mobility Model for the �rst time [13℄. In thismodel, it is supposed that all the parameters are in the state of pure randomization.To be spei�, a mobile starts from a random point with a random veloity, a ran-dom diretion and a random moving duration. After one moving duration expires,



3.2. Random Walk Mobility Model 11this mobile hooses another random veloity, another random diretion and anotherrandom moving duration then it repeats the above proess.In pratie, the RandomWalk Mobility Model is often simulated in two implementedtypes: �xed duration and �xed displaement [12℄. In the �xed duration ase, weassume that eah moving duration is onstant, while the veloity and diretion arerandom. In a mathematial way, this assumption an be expressed as follows:
{

xn+1 = xn + vncosθn∆t

yn+1 = yn + vnsinθn∆t
(3.1)Correspondingly, in the �xed displaement ase, it is assumed that eah displaementfor every resolution time interval is onstant, while the diretion is random, and thateah step onsists of a random number of above-mentioned time interval. Similarly,the mathematial expression is given by:

{

xn+1 = xn +∆dcosθnkn

yn+1 = yn +∆dsinθnkn
(3.2)In both eq. ( 3.1) and ( 3.2), (xn, yn) is the urrent position, (xn+1, yn+1) is theposition of next state, θ is a random angle between heading diretion of mobile andhorizontal ounterlokwise, v is a random salar veloity, ∆t is a onstant durationfor eah step, ∆d is a onstant displaement for eah time interval, kn is equal to

∆tn/τ and ∆tn ia a random duration for eah step, τ is a onstant resolution timeinterval.
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(b) Fixed displaement for eah stepFigure 3.2: Simulation of one mobile trak using 2-D Random Walk Mobility Model,the green irle represents the starting point and the red one represents the terminal point,eah solid blak point represents the sampled loation data.



3.3. Random Waypoint Mobility Model 12In Figures 3.2(a) and 3.2(b), the initial position of the mobile is (150, 150). InFigure 3.2(a), the total simulation time is 100 seonds, for eah step the mobilehas 1 seond movement duration, veloities and angles are uniformly distributed inthe interval [0, 6](unit : m/s) and [−π, π](unit : rad) respetively. Figure 3.2(b)gives a simpli�ed example, the simulation has total 100 steps and for eah step theduration only ontains 1 time interval, in other words, kn equal to 1. The �xeddisplaement for eah resolution time interval is 1.5 meters, and the angles followsthe same distribution as Figure 3.2(a).Disussion: From the point of view of mimiking human movement patterns, theRandom Walk Mobility Model shows redundany desription, suh as sharp turns(i.e., big dynami angle range within short time), fast-hanging and large range ofveloities and boundless area (i.e., neglet of obstales in real life). As a ommonsense, human beings turn sharply with extremely low probability, and blokingobjets, suh as the sea and trees in the nature and buildings in the metropolis,are inevitable. In indoor senarios, bloking objets are doors, walls and furniture.And Guinness reords [5℄ of human running speed evidently prove the impossibilityof random veloity for human beings. When reduing the duration for eah step, amobile modeled with a RandomWalk Mobility Model (espeially �xed displaement)will roam around the initial position. This harateristi �ts the senario of people ino�e hours (i.e., ative in the small area) to some extent. Therefore, the RandomWalk Mobility Model is ubiquitous, it ontains the real human mobility patternspart whilst the redundanies part. All these onsiderations make this model toogeneri to �t restraints1 of the indoor positioning.3.3 Random Waypoint Mobility ModelThis model is rather similar to the Random Walk Mobility Model, with the maindi�erenes that in the Random Waypoint Mobility Model there is a pause timeparameter [23, 28, 29, 41℄.Just like the Random Walk Mobility Model, when implementing a simulation of thismodel, we have to ontrol ertain random variables. Thus, there are two ategoriesfor implementation of the Random Waypoint Mobility Model as well: �xed durationand �xed displaement. In addition, if we simply plot a simulation of one mobiletrak using 2-D Random Waypoint Mobility Model on x-y plane, the mathematialexpressions for this simulation are as the same as the setion 3.2. Figures 3.3(a),3.3(b) show one possible result of simulation for eah ondition:1details about restraints of indoor senarios will be narrated in Chapter 4.
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(b) Fixed displaement for eah stepFigure 3.3: Simulation of one mobile trak using 2-D Random Waypoint Mobility Model,the green irle represents the starting point and the red one represents the terminal point,di�erent olor of solid points represent the pause time.In Figures 3.3(a) and 3.3(b), the initial position of the mobile is (150, 150). InFigure 3.3(a), the simulation inludes 100 steps, for eah step the mobile has 1seond movement duration, veloities and angles are uniformly distributed in theinterval [0, 8](unit : m/s) and [−π, π](unit : rad) respetively. Figure 3.3(b) is still asimpli�ed example and most of the parameters are the same as Figure 3.2(b) exeptthat eah displaement for a time interval is 3 meters.Disussion: As said in the disussion part of setion 3.2, the ability of a mobileroaming around a ertain loation for a long period indiates that this model ismore suitable to model genuine human movement patterns than the Random WalkMobility Model. Even though this model is a boundless model2, the features suhas the pause time are good to model the human mobility indoors. Therefore, weadd this feature in the proposed model, Hybrid Model.3.4 Random Diretion Mobility ModelIn the Random Walk Mobility Model and Random Waypoint Mobility Model, themobile an move within a small area, a large area, or both, suessively, dependingon how the parameters are set. Due to this unertainty, both these two models fail tosimulate senarios suh as people mopping the �oor, people touring in the exhibitionet. To overome the high density of mobile loation over partial area, the RandomDiretion Mobility Model was introdued in [35℄. Sine then, the Random DiretionMobility Model was also used in [14, 16, 36℄. In this model, a mobile moves within a2boundless models are not suitable for indoor positioning purpose, details will be presented inChapter 4.



3.4. Random Diretion Mobility Model 14restrited area, it starts from a random point inside this area with random diretionand random veloity, until it touhes the boundary of the area it will not hangeveloity and diretion.In the pratial simulation of this model, we inrease the sampling frequeny andlimit the upper bound of the veloity in order to derease the displaement foreah step. There is a boundary ambiguity problem from the point of the view ofthe mobiles. This happens beause in the implementation of this model we used aretangle simulation area and a mobile moving within the retangle area, the mobilehas the possibility to move to the orner or the boundary. Imaging that the mobileis going to touh the orner or the boundary at a moment, then at the next moment,from the point of the view of the mobile, the mobile only knows that the positionof itself is outside the retangle area. Here the mobile does not know where it goesthrough the boundary. This happens beause in the disretely olleted data, thepositions of a trak of a mobile is atually not ontinuous. Hene the boundaryambiguity, in brief, is the issue of the unknown positions where the mobiles gothrough the boundary or orner.

Figure 3.4: Simulation area of Random Diretion Mobility Model.In Figure 3.4, a mobile moves from the area D to the area B, there are severalpossibilities. For example, the mobile moves through the area C then ends into thearea B, or the mobile moves to the orner and through the orner, ends into thearea B, or the mobile passes through the area A then stops inside the area B. Dueto the disrete positions data of a trak, we only know the position of the n-th pointand the position of the next point. The point of the intersetion with the boundaryis given by the estimation. In brief, the point of intersetion is not absolute, whihintrodues unertainty to the Random Diretion Mobility Model.As it was written in the Chapter 1, the movements of wireless devies arried byhumans in�uene the WLAN environment. Here, in order to explore in what degree



3.4. Random Diretion Mobility Model 15the movements of devies in�uene the WLAN environment, we use the hypothesisthat the di�erent set of mobile speed ranges might have distinguishable impat onthe behavior of measurements under wireless irumstane. Figure 3.5 illustratesone example by simply dividing models into large range veloity and small rangeveloity.
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(a) Large veloity range (0.5m/s to 3m/s)
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(b) Small veloity range (0.89m/s to 1.083m/s)Figure 3.5: Simulation of one mobile trak using 2-D Random Diretion Mobility Model,the green irle represents the starting point and the red one represents the terminal point,eah solid blak point represents one touh of the boundary.In both Figures 3.5(a) and 3.5(b), the starting point is (24.3716, 14.3716) (unit : m),the simulation area is 50 × 50 (unit : m) , the angles follows a uniform distribu-tion in the interval [−π, π] (unit : rad), the veloities are modeled aording to aGaussian-like3 distribution shown in Figures 3.6(a) and 3.6(b), respetively for largeveloity range and small veloity range. The small veloity range in this thesis is
(0.89m/s to 1.083m/s) [7, 40℄. We onsider the elderly people ase as the refereneof the small veloity. By simply extending the range of elder speed, for example,
(0.5m/s to 3m/s) is used as the omparison veloity range (i.e., the large veloityrange).Disussion: the Random Diretion Mobility Model has boundaries, whih makes ita good andidate for studying indoor senarios with urrent indoor positioning teh-niques. Moreover, regarding the approximately even spread of mobile's positions,this model an be used to test to what extension a weak signal may impat on theWLAN-based indoor positioning tehnologies.3Gaussian-like distribution will be detailed in Chapter 4.
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(a) Large Range Veloity Distribution: PDF ofGaussian-like Distribution for 2-D Random Di-retion Mobility Model (b) Small Range Veloity Distribution: PDF ofGaussian-like Distribution for 2-D Random Di-retion Mobility ModelFigure 3.6: The bar �gure is the statistial performane of used veloities, the red lineis the theoretial Gaussian distribution with the mean value and standard deviation of theveloity samples.3.5 Boundless Simulation Area Mobility ModelImaging that we are mobiles, moving in the Boundless Simulation Area makes nodi�erene from moving in the Random Walk Mobility Model. In this model, weuse a retangle area to form a doughnut-like 3-D objet. In the Figure 3.7(a), byoiniding AB and CD, and then oiniding ⌢

AC and ⌢

BD, we get a doughnut-likearea shown in Figure 3.7(b).
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(b) a doughnut-like areaFigure 3.7: The left plot shows a retangle plane, and the right-hand plot shows a 3-Darea formed from left �gure.In this model, a mobile starts from a random position with random veloities, ran-dom diretions and random moving duration. One it touhes the boundary, it



3.6. Hybrid Model (proposed) 17jumps immediately from urrent boundary to the opposite edge by using the thirddimension. One example of simulation is shown in Figure 3.8:
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Figure 3.8: Simulation of one mobile trak using Boundless Simulation Area MobilityModel, the green irle represents the starting point and the red one represents the terminalpoint, the purple © represents going out and the blue × represents going in.In Figure 3.8, the starting point is (3, 3), the simulation area is 5 × 5(unit : m),the number of total simulation steps is 500, the veloities and angles follow a uni-form distribution in the interval [0.5, 0.8](unit : m/s) and [−2π, 2π](unit : rad)respetively.Disussion: The Boundless Simulation Area Mobility Model is just a hypothesisthat a mobile an use the higher dimension to ontinue its random walk. Whenapplying this into indoor senarios, it is obvious that human beings annot jumpinstantly from one edge to the opposite edge. Therefore, this model is not suitablefor simulating indoor senarios.3.6 Hybrid Model (proposed)When we attempt to use a new syntheti model to desribe human mobility patternsunder indoor irumstane we assume, given that the existene of Random DiretionMobility Model, two restrition for indoor senarios: �rstly, this model should havea boundary in order to model obstales (i.e., walls and doors in the building) in



3.6. Hybrid Model (proposed) 18daily lives, and seondly, the density of human historial plane positions should notbe distributed ompletely even over the whole simulation area. This is based on thefat that out of the 24 hours in a day people are either in o�e hours or sleeping,and that an even density ase is inluded in Random Diretion Mobility Model. TheHybrid Model ombines an analogous reation mehanism from Random DiretionMobility Model when a mobile touhes boundaries and a pause time whih is a goodfeature of the Random Waypoint Mobility Model.In detail, the pause time here is used to model the state of rest (e.g., after moving,people sit down for a while), and the reation mehanism in the Hybrid Model isto simulate the time when people hit or approah obstales. In setion 3.4, welearned from the one possible expression of reation mehanism, in the RandomDiretion Mobility Model, that a mobile does not hange its state until it touhesthe boundary. Though this reation already re�ets the obstrution in real life, itis nevertheless rather improbable, beause human will move away before hitting theobjet. So the nearest distane between the boundary and the mobile is added andde�ned by a random variable in the proposed model. The input and output variablesof this model are de�ned by the Table 3.1.Table 3.1: the input and output variables of Hybrid ModelInput Outputsimulation area
(xi, yi, zi)

number of �oorsheight of eah �oorstarting pointveloityanglemoving timepause timeminimum distane to thenearest boundaryA mobile moves from a random starting point within the prede�ned simulationarea, and it has a random veloity, an angle, a moving time, a pause time and aminimum distane to the nearest boundary. When the moving time expires it seletsanother veloity, angle and moving time, after this it holds still and waits the pausetime to run out. While the mobile is moving, this model heks whether the distanebetween the mobile and the nearest boundary reahes a random prede�ned minimumdistane or not. And if the situation is that the mobile reahes the nearest distanebut the moving time or pause time is still on, this mobile will hange its anglewithin a proper range and maintain the previous state exept angles. Moreover,



3.6. Hybrid Model (proposed) 19this model is simply adding third dimension to mimi real indoor senario, and thisthird dimension is generated by an algorithm that will be detailed in Chapter 4.One instane of simulation is illustrated in Figure 3.9.

Figure 3.9: Simulation of one mobile trak using 3-D Hybrid Model (small veloityrange), the red solid point represents the starting point and the olor of eah point representsheight in this simulated building, the violet and green faets represent the simulated �oors.In the simulation shown in Figure 3.9, the simulation area is 50 × 50(unit : m),the starting point is (0, 0, 0), the veloities basially follow the distribution showedin Figure 3.6(b), the angles follow a uniform distribution in the interval [0, 2π](unit :
rad), the moving time follows a Gaussian-like distribution in the interval [3, 10](unit :
second) showed in Figure 3.10(a), the pause time follows a Gaussian-like4 distribu-tion in the interval [0.5, 30](unit : second) showed in Figure 3.10(b), the nearestdistane follows the uniform distribution in the interval [0.5, 20](unit : meter).

(a) PDF of the moving time (b) PDF of the pause timeFigure 3.10: PDF of the moving time and pause time.



3.7. Summary 20Disussion: We mentioned in Setion 3.4 that the Random Diretion Mobility Modelgives a mobile hanes to over every inh of simulation area with small time on-suming. Aording to this harateristi, the Random Diretion Mobility Model isused to desribe senarios suh like traks of leaners inside a building. However,the Random Diretion Mobility Model is not suitable to mimi the indoor o�esenarios, whih is a ommon ase in the daily lives. Beause in the o�e senarios,a mobile is supposed to onsume most of time inside a spei� area. We an seefrom Figure 3.9, the Hybrid Model has the nonuniform distribution of positions ofusers. This feature �ts the assumption of indoor o�e senarios, whih makes theHybrid Model a andidate for the simulation of indoor o�e senarios. In addition,the Hybrid Model has advantages suk like the minimum distane to the nearestboundary and the pause time, these advantages make the Hybrid Model beomeintelligent. But it annot be denied that these advantages inrease the omplexityof the Hybrid Model.3.7 SummaryThis hapter starts by reviewing existing literature [12, 13, 14, 16, 28, 29, 35, 36, 41℄followed by presenting the main ideas behind the Random Walk Mobility Model(Setion 3.2), the Random Waypoint Mobility Model (Setion 3.3), the BoundlessSimulation Area Mobility Model (Setion 3.5) and the Random Diretion MobilityModel (Setion 3.4). The presentation of the models is followed by demonstratinga feasible implementation method for eah model. In Setion 3.6, we propose a newmodel based on two assumptions and indoor senarios harateristis.The purpose of studying existed syntheti models and proposed models is to providehuman mobility raw data for further simulation based researh of indoor positioningmethods. Hene the disussion about feasibility of urrent models in indoor senariosis the main interest in this hapter. Table 3.2 lists the omparison among all themobility models studied in this thesis.
4RWMM: Random Walk Mobility Model.5RWPMM: Random Waypoint Mobility Model.6RDMM: Random Diretion Mobility Model.7in the later simulation, the Random Diretion Mobility Model is modi�ed to be a 3-D model,details see Chapter 4 and Chapter 5.8BSAMM: Boundless Simulation Area Mobility Model.9HM: Hybrid Model.
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Table 3.2: Summary and omparison of modelsModels Boundary Pause Time 3-D Model Suitable forIndoor Se-nario Spei�ed FeatureRWMM4 No No No No Generi Model with largeredundant desription, be-ause all parameters in thismodel are random it an-not be fully simulated.RWPMM5 No Yes No No A pause time is introdued.RDMM6 Yes No Yes7 Yes A boundary onept is in-trodued and as well asa reation mehanism afterthe user reahed a bound-ary.BSAMM8 No No No No An idealisti model on-ept, it simulates RandomWalk within a limited area.HM9 Yes Yes Yes Yes It omprehends most fea-tures from the other 5models (above-mentioned)and it mimis the unevenlyspread of human positionsin indoor situation.



22
4. INDOOR SCENARIOS
4.1 OverviewIn Chapter 3, we disussed urrent popular syntheti models and we proposed anew model. In this hapter we also present the omplexity of indoor senarios, theassumptions on human mobility patterns, and the path loss propagation models.This hapter inludes the prerequisite knowledge for testing models by using the�ngerprinting method in Chapter 5, and gives a thorough disussion of the mattersin Chapter 3, suh as the algorithm of generating the third dimension, the way offorming a Gaussian-like distribution and the indoor requirements.4.2 Indoor environmentIndoor senarios usually refer to the spae inside a building. It is known that satellitebased positioning systems are vulnerable inside buildings (Chapter 1), Here, weexplain brie�y how the indoor environment di�ers from the outdoor one.In the indoor environment, the eletromagneti signals might be weakened in variousways. The indoor struture is more omplex than the outdoor area. For example,there might be multiple ubiles in a ommon o�e, whereas outside area is normallyopen ground. Nowadays the indoor struture tends to be more and more ompli-ated than ever. Multi-path interferene is one of the main fators that severelydegrade the performane of ommuniations and loations. Buildings now are madeof the onrete materials. The onrete has a strong ability to absorb eletromag-neti energy. And as a simple rule, the higher frequeny a signal has, the weakerpenetrability it possesses. Aording to this priniple and to the building materials,and given the fat that the radio frequeny and mirowave frequeny are main-streams of ommuniations, it is obvious that eletromagneti signals su�ers loss inindoor senarios.



4.3. Assumptions about human mobility 234.3 Assumptions about human mobilityAfter the brief introdution of indoor harateristis, this setion mainly disussesthe algorithms that are used to generate the height dimension and the Gaussian-like distribution. But �rst of all, some assumptions on seleting appropriate humanmobility models are neessary. In this thesis, the most important property of amobility model is to have a boundary. From Chapter 3, the only models whihsatisfy the boundary onditions are the Random Diretion Mobility Model and theHybrid Model. Other requirements of an indoor human mobility model di�ers frommodels to models. For example, the Hybrid Model is assumed to mimi the indooro�e senarios, thus it is supposed to ful�ll the requirement that a mobile in themodel has a nonuniform distribution of positions. Another example is the RandomDiretion Mobility Model, it is assumed that a mobile in the model has the trendto uniformly distribute the positions of a trak.4.3.1 The third dimensionIn Chapter 5 simulation traks from Random Diretion Mobility Model and HybridModel have a third dimension. Here we will reveal the generator of this thirddimension. In the height dimension generator, parameters suh as the time of eahstep, the starting point of the third dimension and the minimum and maximumvalue of the third dimension are taken into onsideration when we form the thirddimension raw data.In this generator, due to the lak of raw data from the real life, we simulate thethird dimension inrement by assuming it random and uniform. After the initialinput variables are given, funtion rand reates a large number of andidate thirddimension inrements10. Then aording to the ondition if the third dimensionvalue is larger than the maximum value (i.e., moving out the eiling of building) orsmaller than the minimum value (i.e., moving into the ground), the third dimensiongenerator deides whether disarding this inrement or not. Finally the output arethe z values that satisfy the onditions. Figure 4.1 shows an example of thirddimension value distribution.10the number of this inrements value should be large enough, so that after disarding someof values, we still have the same number of third dimension value as the number of other twodimension values. In this work we use 100 times of needed amount.
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Figure 4.1: The third dimension distribution: PDF of uniform distribution for the thirddimension value, there are three �oors and three meters for eah �oor in the simulation.4.3.2 Gaussian-like distributionWhen using models to mimi human mobility patterns, not all of parameters shouldbe distributed uniformly. In this thesis, the parameters suh as the veloities, themoving time and the pause time follow Gaussian distribution. With 100% on�-dene level the on�dene interval of Gaussian distribution funtion is (−∞,+∞),however, this high on�dene level is unneessary in the pratial simulation. TheGaussian-like distribution funtion is based on the standard normal distribution, ituses 95% on�dene level11 orresponding to on�dene interval [−1.96, 1.96]. Weassume the frequeny of observing parameters is 95%, and in order to simplify thesimulation, the values with 5% probability will not appear in the simulation.In detail:1. We use the funtion randn to generate 10 times of the numbers of needed vari-ables. Beause the funtion randn generates the standard normal distribution(i.e., the mean value equals to 0, the standard deviation equals to 1.), within11As this design is for the simulation purpose, 95% on�dene level is ommon [34, 10, 6℄ andhigh enough for this simulation, therefore in this funtion we use 95% on�dene level and thisparameter is able to be modi�ed.



4.4. Path loss models 25the interval [−1.96, 1.96], the on�dene level is 95%;2. The generator abandons some variables by determining whether the generatedvariables are within the interval [−1.96, 1.96];3. The generator preserves the needed quantity of variables from step 2;4. By omparing [−1.96, 1.96] with the target interval, the generator adjusts thesamples inside [−1.96, 1.96] in order to �t the target interval, the target intervalhere refers to the desired sample spae interval.With an example, the proess of generating Gaussian-like distribution is illustrated.Assuming we have a sample spae (e.g., [−2, 2]), we want to pik samples from thespae (i.e., [−2, 2]) and the piked samples should be Gaussian-like distributed. Inthe Gaussian-like generator we used, �rst we form 10 times of the numbers of theneeded variables by using the funtion randn, seondly we abandon some variablesthat are not within the interval [−1.96, 1.96], thirdly we pik needed numbers ofvariables after the seond step (e.g., one variable is 1.5), fourthly we sale the pikedvariables. In the fourth step, we alulate the mean value between the upper boundand lower bound of sample spae, in this ase, the mean value is (−2 + 2)/2 = 0,then we use (2− ((−2 + 2)/2))/1.96 = 1.0204 as sale fator to multiple the pikedvariables in the third step (i.e., 1.5× ((2− ((−2+2)/2))/1.96) = 1.5306), �nally weplus the mean value and the result of multipliation (i.e., 1.5306+0=1.5306). Figure3.6(a), Figure 3.6(b), Figure 3.10(a) and Figure 3.10(b) are generated by the abovealgorithm.4.4 Path loss modelsIn Chapter 5, we will use indoor �ngerprinting method to test the performane ofseleted human mobility models. Hereby this setion presents the orrespondingfundamental knowledge of path loss model as well as a modi�ed version applied inindoor senarios. The traditional path loss model is related with two modeling parts[38℄: PTap
, namely the ap-th AP transmitted power, and nap, namely the path lossoe�ient of the ap-th AP.The RSS in eah measurement point is diretly related to the Eulidian distane

√

(xi − xap)2 + (yi − yap)2 + (zi − zap)2, where the (xi, yi, zi) is the position of the
i-th measurement point (i.e., position of the i-th �ngerprint) and (xap, yap, zap) isthe position of the ap-th AP. The PTap

varies from AP to AP within a ertain range,



4.5. Indoor �ngerprinting 26and the nap is simply assumed to be di�erent from AP to AP as well. Then we formthe eq.( 4.1) for �ngerprints RSS Pi,ap:
Pi,ap = PTap

−10nap log10

√

(xi − xap)2 + (yi − yap)2 + (zi − zap)2+ηi,ap+ξi,ap (4.1)In this equation, ηi,ap is a noise term modeling the shadowing and fading. It isGaussian distribution of zero mean and σap standard deviation (unit: dB). To belari�ed, without abundant database of modeling ηi,ap, we simply assume the vari-ane σ2 is onstant. ξi,ap is to haraterize the �oor loss parameter, beause in arelative open and multi-�oors building eilings between �oors are the main barriersagainst the transmission of signals.Correspondingly, we an derive reeived signal strength (RSS) at the (x, y, z) po-sition, (x, y, z) is the position of a mobile in a trak. The equation of RSS Rap isillustrated as below:
Rap = PTap

− 10nap log10

√

(x− xap)2 + (y − yap)2 + (z − zap)2 + ηap + ξap (4.2)The eqs.( 4.1) and ( 4.2) will be used in Chapter 5 to form the �ngerprints trainingsequene and to ompute the RSS of one mobile in a trak12.4.5 Indoor �ngerprintingA �ngerprinting algorithm is usually used in the indoor positioning tehnologiesunder WLAN environment. It requires that a random loation in this indoor areaan hear at least one AP. The proess of �ngerprinting has two phases:
• A training phase: This is used to form a grid of prior RSS measurementsfrom all APs in a ertain building or region;
• An estimation phase: This fouses on omparing the RSS of a mobile withtraining database formed in the training phase; this omparison will providean estimate for the mobile loation.12details see Chapter 5



4.5. Indoor �ngerprinting 27We remark that the �ngerprint grid is virtual, people annot atually touh the gridor see the grid in the air.4.5.1 Training phaseThe purpose of the training phase is to generate a database (i.e., matrix (Xi,Yi,Zi,Pi,ap))ontaining the prior RSS measurement and the position information. In this phase,we assume the loation of APs is �xed.
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Figure 4.2: One possible way to set up �ngerprint grid, one ∗ represents a measurementpoint in the grid.The training sequene is de fato a referene data, it inludes both the position infor-mation and RSS information matrix heard from APs. In the �ngerprint algorithm,the loation of APs is irrelevant to the whole positioning proess but it matters whensome orners of this indoor area annot hear AP. One of possible �ngerprinting grid13 is shown in Figure 4.2.4.5.2 Estimation stageAfter the training database is formed, the indoor �ngerprint positioning environmentis ready. When a mobile moves into this area, the reeiver attahed on the mobile13it is only possible in theory, in pratie it is almost impossible to ollet suh niely uniformly-spaed �ngerprints, some of them will be missing, unless the uniform spaing between points isvery large.



4.6. Summary 28downloads the prepared database whih was generated in the training phase, then itompares the reeived RSS vetor information with the database. The omparisonan be done for example via Eulidian distanes, rank-based or via Gaussian likeli-hoods. The omparison gives all the andidate positions. Eventually aording to aprede�ned rule, the reeiver sorts this potentials and alulates the �nal preditionposition of this mobile at that moment.Firstly a mobile in this �ngerprint senario reords all heard RSS value automatiallyand it stores them as a vetor whih inludes the ap-th AP and orresponded RSSvalue (i.e., [ap;Rap] in the eq.( 4.2)). Seondly, the system applies the Gaussianlikelihood funtion to estimate the probability of position in the grid. In this step,the system usually gives more than one andidate position to ahieve high auray.Thirdly, by a ertain rule the system alulate the position, for example, it alulatesthe arithmeti average of the �rst four high probably andidates as the preditedposition.The Gaussian likelihood funtion Li in i-th point is shown below, the σ2
ap is theshadowing variane:

Li =
∑

heard ap

log10





1
√

2πσ2
ap

e
−

(Rap−Pi,ap)
2

2σ2
ap



 (4.3)Here we give an example how to apply this equation. Let us assume two �ngerprintpoints, a: [1,3,7; -30,-70,-56℄ and b: [1,5,7; -45,-20,-68℄, and one trak point, m:[3,7; -60,-70℄. The �rst step is to �nd the same heard AP for both the �ngerprintand the mobile. In a and m it is 3rd and 7th AP but in b and m it is 7th APonly. Then by assuming the involved noise is 10 dB and onstant, we an get
La = −3.07 − 5.16 = −8.23 for a and m, Lb = −0.99 for b and m. Afterwards, bymaximizing the Li (i = a or i = b) we obtain the best andidate in this algorithm,that is b in this ase. This algorithm reveals that even though a mobile shares moreheard APs with some �ngerprints than others, these �ngerprints might not be themost optimized solution.4.6 SummaryAt the beginning of this hapter, the indoor was introdued to give an generalpereption that indoor senarios are omplex and not appliable for satellite basedpositioning system. Then we desribed and explained how the third dimensionand Gaussian-like distribution are generated. It should be mentioned that the 95%



4.6. Summary 29on�dene level is just an assumption in this thesis work and it is not the foal point,when there are no more other on�dene level provided for omparison. After that,the prerequisite knowledge for the later hapter, the lassial path loss with �oorloss model was presented. In the last part, the notion of indoor �ngerprinting wasgiven in detail.Eqs. ( 4.1), ( 4.2) and ( 4.3) are the most important ones in this hapter and willbe used in Chapter 5 and 6.



30
5. BUILT MATLAB SIMULATOR
5.1 OverviewThis hapter presents the Matlab simulator built within this thesis work, whihinludes mobility modeling and �ngerprinting. In Chapter 3, we demonstrated theresults of the implementation through our simulator. Here we fous on how thesimulator is built and furthermore we disuss the simulator of the �ngerprinting.Figure 5.1 shows the used simulators in this thesis work and their relationshiporrespondingly.

Figure 5.1: The organization of simulators.5.2 Aess Points setupIn this simulation, it is assumed l1 × l2 (unit : m) simulation area, N �oors in abuilding and l3 meters for eah �oor, C m2 overage per AP on the horizontal plane



5.2. Aess Points setup 31and [P1, P2] (unit : dB) power range. Spei�ally, the positions of APs are uniformlydistributed random variables and the power levels of APs are uniformly distributedrandom variables within the above range as well. There are two main reasons whythe uniform distribution rather than the Gaussian distribution is seleted. First theuniform distribution is less omputation omplex than the Gaussian distributionwhen they applied in the simulator. Seondly using the uniform distribution theAPs an over the whole area with smaller number of APs than using the Gaussiandistribution. One example of these parameters is shown in TableTable 5.1: One example of Aess Points parametersParameters Values
l1 (m) 50
l2 (m) 50
N 3
l3 (m) 3
C (m2) 400
[P1, P2] (dB) [-45,-30℄When deploying APs, the rule of thumb is that using relative few APs to over thesimulation area. From 2-D view the building an be onsidered as a retangle area.Figure 5.2 shows the overlap of the overage areas of APs on 2-D area, the retangleis the simulation area, the irles are the overage areas of APs. The grass green arearepresents the simulation area, the grey areas represent the overlap areas inside thesimulation area, the brown areas represent the overlap areas outside the simulationarea and the overage areas APs outside the simulation area. With Figure 5.2, wean simply explain the rule of deploying APs, that the fewer the grey and brownareas are, the better the deployment is. However, it is not possible to eliminate thegrey areas ompletely beause of the spherial radiation shape of eletromagnetiwaves. In 3-D view, the overage of APs supposes to be spherial shape, thus wealulate the availability of APs in eq. ( 5.1) using the volume of APs radiation.Figure 5.3 shows the used deployment in this thesis work. If we assume Figure5.2 in 3-D, the volume of the ubi simulation area is Vcube. The sum of eah APoverage is Vsum, the substration between Vsum and Vcube might, to some extent,evaluate the degree of overlap namely overage margin Mcoverage. In eq. ( 5.1), rapis the e�etive radiation radius of the ap-th AP, (xmax, ymax, zmax) is the maximumvalue of simulation spae in three dimension respetively.

Mcoverage =

n
∑

ap=1

4

3
πr3ap − xmaxymaxzmax (5.1)
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Figure 5.2: Priniple of APs deployment, the retangle area is the simulation area, theirles are the overage area of APs, the grey areas are overlapped overage areas.
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Figure 5.3: APs deployment used in this thesis work, the solid olor points representAPs and APs transmitted power are seen in the right-hand side olor bar.In Table 5.2, we show a omparison between two groups: 3 senarios of simulateddata and 2 senarios with real-�eld data. For eah group, we illustrate the ratiobetween Mcoverage and Vcube, ratio between mean number and total number of heardAPs per �ngerprint, ratio between median number and total number of heard APsper �ngerprint, standard deviation of AP number per �ngerprint. The ratio between
Mcoverage and Vcube intuitively indiates that to what extent the overage areas ofAPs are utilized. The statistis of number of heard APs per �ngerprint shows showshow the number of heard APs per �ngerprint varies under a ertain deployment ordensity of APs. The statistis gives the referene to the preliminary judgement thatwhether the deployment is good or not. Usually the larger the mean (or median)number of heard APs per �ngerprint is, the better the deployment is. But when weonsider the ost of the deployment, the mean (or median) number of heard APs



5.2. Aess Points setup 33per �ngerprint should not be too large. This happens beause the mean number ormedian number is proportional to the density of APs.Table 5.2: Comparison for 3 senarios of simulated data and 2 senarios with real-�elddata Parameter Simulated senarios Real-�eld data
2 dB 10 dB 40 dB building 1 building 2

Mcoverage/Vcube [ra-tio℄ 4.6168 4.6168 4.6168 × ×Mean number/totalnumber 14 [ratio℄ 0.7712 0.8369 0.6911 0.1350 0.1352Median number/to-tal number 14 [ratio℄ 0.7619 0.8571 0.7143 0.1303 0.1243standard deviation ofheard APs numberper �ngerprint 14 1.7169 1.6173 2.0255 10.8383 19.0334
*Important : One the deployment of APs is �nished, all the following simulationshould use exatly the same deployment and same power level.In Table 5.2, 2 dB, 10 dB and 40 dB noise variane are hosen to show the lownoise level, medium noise level and high noise level senarios respetively. Tworeal databases [38, 39℄ are olleted from Tietotalo building (i.e., building 1) andSahkotalo building (i.e., building 2) in Tampere University of Tehnology. Underthe �ngerprint algorithm and the Bayesian estimation, in building 1 the positioningauray is around 5 meters and in building 2 the auray is approximate 10 meters.We remark that, due to the irregular shape of building 1 and building 2, the ratioof Mcoverage/Vmin annot be given.From the olumns of 'Real-�eld data' in Table 5.2, we an tell that, the valuesof 'mean number/total number' and 'median number/total number' are almost thesame for both building 1 and building 2. However the 'standard deviation of heardAPs number per �ngerprint' varies signi�antly from building 1 to building 2, andspei�ally the higher auray positioning (i.e., building 1 with around 5 metersauray) omes with lower 'standard deviation of heard APs number per �nger-print' based on these two real database. In addition, as it was mentioned before, thebuilding 1 with 0.1350 'mean number/total number' ratio and 0.1303 'median num-ber/total number' ratio ahieved 5 meters auray under the Bayesian estiamtion,14All these three statistis refer to the number of heard APs per �ngerprint point. 'mean num-ber/total number' is a ratio between the mean value and the total number of heard APs per�ngerprint point, 'median number/total number' is a ratio between the median value and thetotal number of heard APs per �ngerprint point, 'standard deviation of heard APs number per�ngerprint' is the standard deviation of number of heard APs per �ngerprint point.



5.2. Aess Points setup 34therefore when these two values of simulation or real deployment are higher thanthe orresponding values of the building 1, they are feasible.In the simulation senarios, the 'mean number/total number' ratio and 'mediannumber/total number' ratio of all noise irumstanes are onsiderably higher thanthose in building 1, and the 'standard deviation of heard APs number per �ngerprint'of all are far smaller than the standard deviation in building 1. Therefore, under thesimulated APs deployment, the high positioning auray (i.e., 5 meters aurayor a better auray) is able to ahieve.Figures 5.3, 5.4, 5.5, 5.6, 5.7 give some statistial information about the relation-ship between the AP density in a building and ahievable positioning auray from�ngerprints' point of view. Among them, Figures 5.3, 5.4, 5.5 present the analysisof simulated APs deployment, Figures 5.6, 5.7 show the analysis of real APs deploy-ment. To be spei�, in all these 5 group �gures the sub-�gure a says how manyperentage of total APs an arbitrary �ngerprint point an hear. One �ngerprintpoint an hear more than one, beause for eah one �ngerprint point, it usually anhear more than one power level, the sub-�gures b,,d give the statistial desrip-tion of the mean power level, the median power level and the standard deviationof heard APs power level per �ngerprint respetively. We remark that, in the �rstthree group simulation �gures, it is assumed the sensitivity of reeivers is -100 dBm.
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(b) Mean heard power level per �ngerprint point
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(d) Median heard power level per �ngerprintpointFigure 5.4: 2 dB noise level (reeivers sensitivity: -100 dBm).This ase is used to simulate senarios with low noise power level. It an be simply thoughtas 'noise free' situation so that we an onsider this one as a referene for further om-parison. In Figure 5.4(a), most �ngerprint points an hear 70% - 85% of total APs, inFigure 5.4(b), most �ngerprint points an hear −75dBm - −70dBm mean power level (thetransmitted power level is −15dBm - 0dBm), in Figure 5.4(), the standard deviation ofpower level from various APs per �ngerprint point is around 18 dB, in Figure 5.4(d), most�ngerprint points an hear −80dBm - −75dBm median power level.
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(b) Mean heard power level per �ngerprint point
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(d) Median heard power level per �ngerprintpointFigure 5.5: 10 dB noise level (reeivers sensitivity: -100 dBm).This ase is used to simulate senarios with medium noise power level. It an be simplythought as 'noisy' situation in the simulation. In Figure 5.5(a), most �ngerprint points anhear 80% - 90% of total APs, in Figure 5.5(b), most �ngerprint points an hear −70dBm -
−65dBm mean power level (the transmitted power level is −15dBm - 0dBm), in Figure5.5(), the standard deviation of power level from various APs per �ngerprint point isaround 17 dB, in Figure 5.5(d), most �ngerprint points an hear −70dBm - −65dBmmedian power level. Compared with 2 dB noise level ase, this 10 dB one indiates that thestatistis of heard AP power level are proportional to the noise level. Another proof of thisonlusion will be presented in the next group of �gures.
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(b) Mean heard power level per �ngerprint point
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(d) Median heard power level per �ngerprintpointFigure 5.6: 40 dB noise level (reeivers sensitivity: -100 dBm).This ase is used to simulate senarios with high noise power level. It an be simplythought as 'extremely noisy' situation in the simulation. In Figure 5.6(a), most �ngerprintpoints an hear 60% - 80% of total APs, in Figure 5.6(b), most �ngerprint points an hear
−60dBm - −50dBm mean power level (the transmitted power level is −15dBm - 0dBm), inFigure 5.6(), the standard deviation of power level from various APs per �ngerprint pointis around 30 dB, in Figure 5.6(d), most �ngerprint points an hear −70dBm - −50dBmmedian power level. Through simply omparison with the 2 dB and 10 dB �gures, it is notdi�ult to assess that the standard deviation is proportional to the noise level; moreoverwith the inrease of the noise level, the number of heard APs, mean and median value ofpower level per �ngerprint point tends to be larger.
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(b) Mean heard power level per �ngerprint point
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(d) Median heard power level per �ngerprintpointFigure 5.7: Building 1 with unknown noise level (reeivers sensitivity: -100 dBm).This ase is a statistial modeling of real data olleted from building 1. It has betterpositioning auray under Bayesian estimation method than building 2. In Figure 5.7(a),most �ngerprint points an hear 10% - 20% of total APs, in Figure 5.7(b), most �ngerprintpoints an hear −80dBm - −76dBm mean power level (the transmitted power level isunknown, and is estimated with range −15dBm - 0dBm), in Figure 5.7(), the standarddeviation of power level from various APs per �ngerprint point is around 9 dB, in Figure5.7(d), most �ngerprint points an hear −85dBm - −80dBm median power level.
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(b) Mean heard power level per �ngerprint point
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(d) Median heard power level per �ngerprintpointFigure 5.8: building 2 with unknown noise level (reeivers sensitivity: -100 dBm).This ase is a statistial modeling of real data olleted from building 2. In Figure 5.8(a),most �ngerprint points an hear 5% - 15% of total APs, in Figure 5.8(b), most �ngerprintpoints an hear −85dBm - −75dBm mean power level (the transmitted power level isunknown, and is estimated with range −15dBm - 0dBm), in Figure 5.8(), the standarddeviation of power level from various APs per �ngerprint point is around 12 dB, in Figure5.8(d), most �ngerprint points an hear −90dBm - −80dBm median power level.



5.2. Aess Points setup 40Analysis of Figures 5.3, 5.4, 5.5 reveals that number of heard APs inreases whenthe noise power level hanges from 2 dB to 10 dB and 40 dB, the mean value, medianvalue and standard deviation of heard power level per �ngerprint point grow alongwith the inrease of noise power level as well. In Figures 5.6 and 5.7, the mostfrequent ratio between the heard APs and total APs (i.e., 0.1-0.15 ratio) is smallerthan the most frequent ratio between the heard APs and total APs in Figures 5.3,5.4 and 5.5 (i.e., 0.6-0.9 ratio). The standard deviation of the heard power level per�ngerprint point in building 1 is smaller than in building 2. The mean value andmedian heard power level per �ngerprint point in building 1 are stronger than inbuilding 2. Figures 5.6 and 5.7 desribes the harateristis of data olleted in reallife senario, the following analysis of simulated APs deployment is based on them.Intuitively, from the user point of view, the larger standard deviation of the powerlevel leads to more distinguishable power gradation, whih bene�ts the estimationbased on distane of power level. Likewise, a high power level means that thedistane between a �ngerprint point and an AP is small, whih makes the userreeiver more likely to reeive as many APs as possible and this is good for ahievinga high auray estimation.However, as seen in Figures 5.6 and 5.7, the standard deviation is inversely propor-tional to the mean and median value of the heard power level. As a matter of fat,building 1 (Figure 5.6) has a better estimation auray than building 2 (Figure5.7). Therefore, the standard deviation of heard APs power level per �ngerprintpoint is inversely proportional to the estimation auray. Here, it seems we aretrapped into a dilemma: the tradeo� between the high reeived signal strength andthe distinguishable power level in a �ngerprint point. Beause the fous of this thesisis human mobility models and their behaviors under indoor tehnology, investiga-tion on the deployment of APs here is general, the APs deployment will be no moredisussed and left for the further study.The above is the study of APs from the view of �ngerprint points, whih givesstatistial desription of APs deployment. The following shows the power maps of�ngerprint. Figures 5.9(a), 5.9(b) and 5.9() show the �ngerprints grid only withthe power level heard from the 6th Aess Point under 2 dB, 10 dB and 40 dB noiselevel respetively. Here for the ause of plotting the �oor as a faet, the sign ∗ showsthe position of AP seems on the seond �oor, but the ∗ is on the eiling of the �rst�oor and there is a wall between the 6th AP and seond �oor ground. Figures 5.9(d)and 5.9(e) show the power map and the �ngerprint grid of the 16th and 212th APs,respetively.
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5.3. Fingerprints setup 42In Figures 5.9(d) and 5.9(e), the position of the Aess Point is estimated by sortingthe �ngerprint points position aording to the power levels, then applying theequation below, Nn is the �rst n-th �ngerprints positions after sorting (usually welet n equal to 4.):
(xap, yap, zap) =

Nn
∑

i=1

Pi

P1 + · · ·+ PNn

(xi, yi, zi) (5.2)In eq. ( 5.2), regarding that the previous step the oordinates of �ngerprint pointsare already sorted by the heard spei� AP power level, we assume that the �nger-print point P1 (x1, y1, z1) has the maximum heard power level, P2 (x2, y2, z2) has theseond maximum value and so forth. In pratie, the value Nn is usually equal to 4so that we an save amount of omputing time. In this simulation, we let the value
n equal to 4 and aquire the approximate oordinates of the 163rd AP and 212ndAP respetively.5.3 Fingerprints setupThe �ngerprints algorithm was introdued in Chapter 4. Here the priniple of indoor�ngerprints is not dwelled on, only the design details in this simulation is presented.In Chapter 4, the eq. ( 4.1) was given to alulate the RSS of �ngerprint pointsby applying lassial path loss model with �oor losses. The proess to form the�ngerprint was given in the same hapter. In this setion, some spei� issuesrelated to the proess talked above is disussed.5.3.1 Floor lossAs it was mentioned in Setion 4.4, due to the �oor ground separating �oors, the �oorloss is introdued to desribe this attenuation of signals power. In our simulator,we simply assume that the �oor loss is onstant and it is equal to 5 dB per �oor foreah time penetrating the �oor ground. From Figures 5.9(a), 5.9(b) and 5.9(), it isevident that the �ngerprint points right under the 6th AP and as the same �oor asthe AP has larger power levels than the losest ones above the 6th AP but with aeiling ground between them. This also points out that signals travelling in the airhas less attenuation than penetrating the obstales.



5.3. Fingerprints setup 435.3.2 Fingerprint spaingSpeaking about the spaing among �ngerprint points, there is always a tradeo�argument behind it. On one hand, when inreasing the spaing between �ngerprints,the auray is dereased, on the other hand, a dereased spaing brings higheromputational omplexity and it requires larger databases to be stored. Sine the�ngerprint grid in our simulator is two dimensional, only on the eah �oor ground,a small spaing is bene�ial for both the omputing and auray. Therefore thespaing is designed as 2 meters and the �ngerprint grid is like in Figure 5.10(a),Figures 5.10(b) and 5.10() are presented here as a ontrast to give a straightforwardexpression of di�erent ways to design �ngerprints spaing.
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number of fingerprint points is 36

() 36 �ngerprint pointsFigure 5.10: Some available �ngerprint spaing examples, Figure 5.10(a) is the shemeused in this thesis, Figure 5.10(b) shares the same number of �ngerprint points with Fig-ure 5.10(a), the di�erene between Figures 5.10(a) and 5.10(b) is that when applying theestimation algorithm, in Figure 5.10(b), the right area near the boundary may not reeivea good auray, 5.10() is another way to distribute �ngerprint points. All these �gureshere are only for examples purpose, the optimization of �ngerprint points spaing is notonerned in this thesis.



5.4. Trak formation 445.4 Trak formationPratially, when users ahieve indoor positioning servie by applying �ngerprintpositioning tehnology, from users' point of view the most ommon parameter whihusers reeived is the hanging RSS from various APs. In order to mimi this proess,this setion disuss the sampler whih extrating data from hosen models and applyeq. ( 4.2) to build the trak power level database.5.4.1 DownsamplingIn Chapter 3, to avoid simulation errors suh as boundary ambiguity problem, thesampling rate was relative high and may lead to an enormous database size. Forthis reason it is however di�ult to run the �ngerprint method to test models.Down sampling is thus a neessary pretreatment before the formation of the trakdatabase.
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(d) Random Diretion after down samplingFigure 5.11: One example to show down sampling priniple. The number of used samplesin �gures is 10001.



5.5. Summary 45In the example shown in Figure 5.10, the downsampling rate is 100, meaning that1 sample is kept from every 100 samples, and a total 7201 samples is olleted forevery one trak. Figure 5.11(a) shows the raw data and orrespondingly Figure5.11(b) shows the data after down sampling. Similarly, Figures 5.11() and 5.11(d)show the raw data and the down sampling data respetively. The proess with highsampling rate building data and down sampling the raw data, in a way, approahesthe real senarios and avoids distortedly desription of human mobility patterns.The trak database is generated based on the data after down sampling proess.5.4.2 Trak databaseThe database is formed by applying eq. ( 4.2), with a 5 dB �oor loss attenuationevery time penetrating one �oor ground. Inside the database it is organized as theTable 5.3. Table 5.3: Organization and design of traks databaseRandom Diretion Hybrid Model40 traks in total 40 traks in total= 2 veloity ranges = 2 veloity ranges
× 4 starting points per veloity range × 4 starting points per veloity range
× 5 traks per starting point × 5 traks per starting pointIn Chapter 3, the Random Diretion Mobility Model and Hybrid Model are simplyseparated into two ategories, the small range veloity and the large range veloity.By doing so we assume the possibility that the di�erent veloity range signi�antlyin�uenes the mobile behavior in the �ngerprint method. And this assumption willbe testi�ed in the Chapter 6.Besides, '4 starting points' are used to test the e�et of various starting pointson the auray of �ngerprint positioning method. '5 traks' are used to provideaverage statistis in order to mitigate bias approximation. In Chapter 6, one moreomparison like noise power level is also added.5.5 SummaryIn this hapter, we started with a disussion on Aess Point deployment. Themethod disussed in this hapter is simply used to give a general idea about thefeasibility of APs deployment. Meantime, two real-�eld data olleted from building1 and building 2 were introdued as a referene to evaluate APs deployment in the



5.5. Summary 46simulation. As an observation result from the two set of real-�eld data, the standarddeviation of heard APs power level per �ngerprint point is inversely proportionalto the power level of heard APs per �ngerprint point. Therefore it is onludedthere is probably a tradeo� between standard deviation of heard APs power levelper �ngerprint point and power level of heard APs per �ngerprint point. Again, thisobservation is not the main fous of the thesis, but it is a good beginning for thefuture indoor positioning study.Later in this hapter, some details suh as �oor loss and spaing were disussed, theformation of trak database was introdued as well.Through Figures 5.9(a), 5.9(b) and 5.9(), it was quite obvious to see the e�et ofadding �oor loss in the simulation. The spaing issue was talked by demonstrating3 �gures with di�erent distribution of �ngerprint points; the merits and demeritswere not disussed here. The APs deployment and �ngerprint grid were only for thetesting purpose; one these are set up, they remain the same and are used for allthe test.The database of user traks was organized as shown in Table 5.3, through 3 veloityranges and 4 starting points. '5 traks per starting point' was used for the purposeof a less biased approximation.



47
6. SIMULATION-BASED RESULTS
6.1 Gaussian likelihood estimationIn the Chapter 4 we talked about Gaussian likelihood funtion, and we gave theexpression to alulate it. The Gaussian likelihood method, in other words, is aprobabilisti way to desribe the distane between two power levels and at the sametime, taking into aount the bakground noise. The Gaussian likelihood methodis the best way to implement the power level distane estimation. Figures 6.1(a),6.1(b) and 6.1() show three alternatives that ould use to estimate positions, thealgorithm uses eq. ( 6.2), others see eq. ( 6.1) and ( 6.3).In the Figure 6.1, all the algorithm are based on Gaussian likelihood. Among themthe priniple of algorithm 1 is eq. ( 6.1), algorithm 2 is eq. ( 6.2) and algorithm 3is eq. ( 6.3).
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 |Rap − Pi,ap| (6.3)Obviously, it an be seen from Figure 6.1, the algorithm 2 is the best amongst them.6.2 Root mean square errorRoot Mean Square Error (RMSE) is ommonly to evaluate the behavior of esti-mation algorithms. From Setion 6.1, we get the estimated position (x̂, ŷ, ẑ) whih
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algorithm 1
algorithm 2: addition in logarithm scale
algorithm 3() Average of two models with 3 algorithmsFigure 6.1: Comparison among three estimation algorithms. The range of noise powerlevel is 10 dBm - 40 dBm.maximizes the Gaussian likelihood. Then the RMSE value of distane between thereal loation and the estimated one an be expressed as follow:

RMSE =

√

√

√

√mean
(

n
∑

i=1

(

(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2
)

) (6.4)From Setion 5.4.2, the true loation is known in the RMSE omputation. It isassumed that the noise variane of APs keeps onstant for eah test.Due to the lak of human mobility data olleted in real life, based on Figure 6.2 it isonluded that the Hybrid Model has a better estimation auray than the RandomDiretion Mobility Model under �ngerprint algorithm and Bayesian estimation. Themost likely reason for this better auray is the uneven distribution of mobilepositions in Hybrid Model.From Figure 6.2, there are no di�erenes among di�erent starting points and dif-
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Figure 6.2: RMSE versus Noise variane.In the upper group lines they are RMSE values of estimation using Random DiretionMobility Model, in the lower group lines they are RMSE values of estimation using HybridModel. In both these two group lines, there are 4 starting points and 2 veloity ranges.ferent veloity ranges. Figure 6.3 shows the variation of RMSE value when onlyone parameter hanges. By omparing Figure 6.3(a) with Figure 6.3(b) and Figure6.3() with Figure 6.3(d), we see that the di�erent veloity range barely in�uenesthe RMSE value. By looking at any urve in Figure 6.3, we an see that the diversestarting points make negligible di�erene to the RMSE value. By looking at Fig-ure 6.2 we ould summarize that the Hybrid Model is slightly sensitive to veloityrange. The ause of this might be the uneven distribution issue mentioned before.In addition, from Figure 6.4 it is lear to see the in�uene of environment noise in theRMSE value. Under 10 dB noise ondition, the Random Diretion Mobility Modelan aquire around 5 meter auray with 0.8 probability, and the Hybrid Modelan ahieve even higher probability (0.9). However, in the 40 dB noise situation, itis very di�ult for both these two models to ahieve relative high auray with fairprobability.
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6.2. Root mean square error 51To sum up, �rst of all, the impat of veloity range and starting point on the po-sitioning auray (i.e., the RMSE value under �ngerprint algorithm and Bayesianestimation) an be negleted. Seondly, ompared with the Random Diretion Mo-bility Model, the Hybrid Model has better positioning auray but it is slightlysensitive to the veloity range. Last but not least, the environmental noise powerlevel is ruial to the positioning auray and the type of mobility models plays animportant role in the positioning auray.



52
7. BRIEF STUDY ABOUT VELOCITY ANDANGLE DEPENDENCIES ON RSS
This hapter is the result of an open-end researh so far and it aims at exploringthe properties of RSS and their relationship to the human mobility parameters. Inthe urrent work, when applying �ngerprint algorithm we build onnetion betweenRSSs of that moment and the position information. However, due to the extremelyfrequent slow movement of human beings inside a spae (i.e., o�e, home et...),the veloity is in an atual slow-hanging proess. Thus, the predition of the nextmove based on historial movements is possible. Therefore the disussion in thishapter desribes a piture of this thought and it gives the onlusions until now.To start with, the researh inludes two di�erent diretional ways of exploration:1. Finding the relationship between the veloity and power hanging harater-istis;2. Using the relationship found in step 1 to predit the urrent position by om-paring and analysing the power reeived now and before.Table 7.1 shows the design of the veloity part, and Table 7.2 shows the design ofthe angle part.Under these design, if we onsider a noise free spae, the simulation result of veloityis illustrated in Figure 8.1:From Figure 7.1(), it an be onluded that the veloity has impat on the rate ofpower level hange. From Figure 7.1(), we an see that the peak value is the sameno matter what the speed is. The veloity parameter determines the time whih isneeded by the power level of the mobile to return its starting power level.Similarly, by following the design in Table 7.2 and assuming noise free simulation15In the Figure 7.1, we simply take values from 0.80 to 1.10 with 0.05 step [unit: m℄.16In the Figure 7.2, we take values from 0 to π/2 with π/8 step [unit: rad℄.



7. Brief study about veloity and angle dependenies on RSS 53Table 7.1: Veloity simulation designParameter Valuesimulation area 10×10 2-D [m℄number of AP 1AP power 0 [dBm℄AP loation (5,5) [m℄path loss oe�ient nap=2noise to be de�ned (Gaussian distribution)angle π/4 [rad℄veloity 0.89-1.0815 [m/s℄sampling frequeny 10 [Hz℄trak from (0,0) to (10,10) straight [m℄�ngerprint spaing=0.2 [m℄Table 7.2: Angle simulation designParameter Valuesimulation area 10×10 2-D [m℄number of AP 1AP power 0 [dBm℄AP loation (5,5) [m℄path loss oe�ient nap=2noise to be de�ned (Gaussian distribution)angle 0-π/216 [rad℄veloity 0.9 [m/s℄sampling frequeny 10 [Hz℄�ngerprint spaing=0.2 [m℄spae, the simulation result �gures of angle is given in Figure 8.1. In Figures 7.2(a),7.2(b), 7.2(), 7.2(d) and 7.2(e), the blue line represents the trak and the green linerepresents the hanging power along with the hange of the mobile position.From Figure 7.2(g), we omprehend that the angle not only determine the peak valueof power level plot but also the time whih is needed for power level urve return toits starting value. If the simulated area is �xed, there is non-zero probability thatin the angle ase the power level urve may not return to its starting value. In thissense, the angle parameter mainly determine the peak value.In brief, the veloity is strongly related to the time whih is needed for the powerurve to return to its starting value. The angle is ruial to the peak value of thepower level urve.
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() Comparison among veloitiesFigure 7.1: Veloity study under noise free ondition. In the Figure 7.1(a), the blue linerepresents the trak and the green line represents the hanging power along with the hangeof the mobile position. Figure 7.1(b) is the �ngerprint power grid. Figure 7.1() lists all theresults in this simulation, reeived power level hanges with the various veloities. *note:transmitted power is 0 dBm.
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(d) The angle is 3π/8
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(f) Fingerprint power grid
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(g) Comparison among angles, the upper andlower one are overlappedFigure 7.2: Angle study under noise free ondition. *note: transmitted power is 0 dBm.
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(b) Angle study (under noise)Figure 7.3: Veloity and angle study under slight noise power [2 dB℄ level *note: trans-mitted power is 0 dBm.Figures 7.3(a) and 7.3(b) shows the power level urves versus the variation of theveloity and the angle respetively. The onlusion we made from the noise freease may not be solid when the onlusion is applied to the 2 dB noise power levelase. Even a low noise level rather destroys these nie harateristis and moreinvestigation is needed to draw universal onlusions on the RSS relationship withangles and diretions.



57
8. DESIGN RECOMMENDATION
As it was said in the Introdution hapter, onsidering the uplink and downlink inthe wireless network, the in�uene between the user devies and the aess points ismutual. The movements of users a�ets the way the mobile reeives and transmitsthe signals. The study of human mobility patterns not only makes ontribution toindoor positioning but it also bene�ts the researh of wireless network. All of thesemotivate us to push the study of human mobility patterns forward.8.1 Complexity and suitability for real-life senariosSpeaking of human mobility models, it is inevitable to disuss the ompromise be-tween how omplex the models ould be and in what degree the models ould de-sribe real senarios.One priority of indoor positioning system is low omplexity, whih is the preonditionof its popularity. Due to many desription of human mobility haraterization, theHybrid Model has higher omplexity than the Random Diretion Mobility Model.This is the main disadvantage of the Hybrid Model.The Hybrid Model oexists with the Random Diretion Mobility Model, beauseeven if the movements of most people inside a building are loser to Hybrid Model,there still are minor ases suh as the leaner inside a building. So under thisonsideration, multiple models are needed to approah the detailed desription ofindoor human mobility patterns. And the unity of diverse models seems unlikely fornow.8.2 Future hallenges and opportunitiesThe indoor positioning has many hallenges now. Positioning is like most other ut-ting edge tehnologies, that people did not realize its potential on�it with ethiissues before it was born. While the onept of indoor positioning is fashionable,people learned from GNSS positioning tehnologies that positioning has possibility



8.3. Future studies 58to violate privay issues et. This obsurely brings obstrution to the developmentof indoor positioning tehnologies, for example, olleting movements data of hu-man beings from real life usually is impossible or at least di�ult. Besides, unlikethe satellite based positioning, in the indoor positioning area the indoor positioningtehnology does not have universal standard until now. The status quo of this areais still lab work [33, 32℄ or business release [42, 19, 20℄ within a small sale. Most in-door positioning projets are business oriented work rather than government leadingprojets. This is another reason why the universal standard of indoor positioningtehnologies is not yet formed.In the meantime, we should also have faith in the future of indoor positioning teh-nologies. With the inreasing requirement of Loation-based Servie (LBS), peoplewill eventually move their fous from outdoor positioning to the indoor positioning.In addition, as a ommon sense, o�e people stay longer inside a building ratherthan outside it, �remen extinguish �re mostly inside a building et. These fatsmotivate the indoor positioning tehnology to make a move forward.Table 8.1: Challenges and opportunitiesChallenges Opportunitiesethial issues in ollet-ing data for human mo-bility models positioning algorithmsenhaned with predi-tive engines based onhuman mobility pat-ternsneed of huge data olle-tion for statistially sig-ni�ant results developing standardsfor indoor positioning
8.3 Future studiesThe indoor senarios are omplex, one or two indoor human mobility models annotpreisely desribe every patterns of human mobility under indoor environment. Thusthe indoor human mobility models still need to be developed. For example, a humanmobility model inside a supermarket.In this thesis, the spaing between �ngerprints are large, whih limits the auray ofpositioning. A method to derease the spaing between �ngerprints and meantime toinrease muh omputation is under development. Reently there are many researhon the predition of human mobility, and in this way the size of �ngerprint grid maybe dereased. This idea gives an alternative to inrease the auray and not tobring too muh burden to the omputation.
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9. CONCLUSIONS
This thesis work presented a investigation of urrent popular human mobility mod-els, proposed a novel model namely Hybrid Model for indoor positioning studyand tested the suitable models (i.e., Random Diretion Mobility Model and HybridModel) with �ngerprint algorithm and Bayesian estimation for the purpose of in-door positioning. In addition, this thesis also brie�y investigated the relationshipsbetween the movement diretion hanges and speeds to the Reeived Signal Strength�utuations.Chapter 1 started with the introdution of the bakground of this thesis work, thenthe author's ontribution and organization of this thesis was listed. In Chapter 2,we reviewed the urrent fashionable indoor positioning tehnologies and ommentedeah tehnology from the point of view of the feasibility and ost. In Chapter3, Random Walk Mobility, Random Waypoint Mobility Model, Random DiretionMobility Model and Boundless Simulation Area Mobility Model were introduedtogether with a disussion on their feasibility in indoor senarios. Then the proposedmodel, whih is used to spei�ally desribe o�e movements of human beings,was given and disussed. In Chapter 3, the details on how to form the abovemodels and the haraterization of Hybrid Model were also inluded. In Chapter4, we talked about various traits of indoor environment and then we explained theassumptions used in the Random Diretion Mobility Model and the Hybrid Model.Then, the lassial path loss model was brie�y expressed. Finally, the �ngerprintproess and the estimation methods were explained. In Chapter 5, the deploymentof Aess Points was detailed and partiularly one possible evaluation method ofAPs setup was introdued there. A method about the relationship between the APdensity and the positioning auray was also introdued. Later on, the �ngerprintsetup and the trak formation were presented. In this trak formation setion,the downsampling onept was disussed by omparing Figure 5.11(a) with Figure5.11(b) (or Figure 5.11() with Figure 5.11(d)). In Chapter 6, it was onluded that,under the �ngerprint algorithm and the Bayesian estimation, the Hybrid Model hasa better positioning auray than the Random Diretion Mobility Model. We alsoshowed that parameters suh as veloity range and the starting point have only atiny impat on the positioning auray (in the thesis, the auray is haraterized



9. Conlusions 60in terms of the Root Mean Square Error value). In Chapter 7 and 8, the hallengesand opportunities in the indoor positioning area were disussed, and at the sametime, part of the urrent work is brie�y introdued to give the readers a general ideaabout future work in this area.
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65APPENDIX A. RANDOM DIRECTIONMOBILITY MODEL SIMULATORThe full version of Matlab simulators used in this thesis will be available athttp://www.s.tut.fi/tlt/pos/Software.htm after September 2015.%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Department of Eletronis and Communiation Engineering %% WANG WENBO - 238970 %% %% random diretion mobility model %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%lose all;lear all;l;%% variables% define x-y planexmax=50;ymax=50;% simulation time%N=10*60*600;N=5e3;% the number of floorsnoOfFloor=3;% the height spaing of floorsfloorHeight=3;%starting point%{
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APPENDIX A. Random Diretion Mobility Model Simulator 66x0=0;y0=0;z0=0;%}temp_3=0:floorHeight:floorHeight*(noOfFloor-1);%{x0=xmax*rand;y0=ymax*rand;z0=temp_3(randi(length(temp_3)));%}% loading predefined starting pointload('para2.mat');% sampling frequenyFs=10;t=1/Fs;% veloity intervalv_max=3;v_min=0.5;%v_min=0.89;v_max=1.083;% generate veloity variables using setVariable funtionv=setVariable(v_min,v_max,'normal',N);% displaement per time [m℄d=v*t;zmin=0;zmax=(noOfFloor-1)*floorHeight;%%{%% 2-Dfigure;%hOut = inout.output();%hOut.figure;% plot the boundaryh4=plot([0 xmax℄,[ymax ymax℄,'r-','linewidth',1.5); hold on;



APPENDIX A. Random Diretion Mobility Model Simulator 67plot([0 xmax℄,[0 0℄,'r-','linewidth',1.5);plot([0 0℄,[0 ymax℄,'r-','linewidth',1.5);plot([xmax xmax℄,[0 ymax℄,'r-','linewidth',1.5);% proesstrae(1,1)=x0;trae(2,1)=y0;% diretionr=-pi+2*pi*rand;ount=1;for n=1:N% starting pointh1=plot(x0,y0,'go','markersize',10,'linewidth',1.5);grid on;% set axis saleaxis('square',[-5 xmax+5 -5 ymax+5℄);trae(1,ount+1)=trae(1,ount)+d(n)*os(r);trae(2,ount+1)=trae(2,ount)+d(n)*sin(r);% if, elseif and else are used to determine if the user ross the boundaryif trae(1,ount+1)<xmax&&trae(1,ount+1)>0&&trae(2,ount+1)<ymax&&...trae(2,ount+1)>0plot(trae(1,ount:ount+1),trae(2,ount:ount+1),'k-',...'linewidth',0.6);ount=ount+1;elseif trae(1,ount+1)>xmax&&trae(2,ount+1)<0trae(1,ount+1)=xmax;trae(2,ount+1)=0;plot([trae(1,ount),xmax℄,[trae(2,ount),0℄,'k-','linewidth',0.6);plot(xmax,0,'ko','markersize',5,'markerfae','k');ount=ount+1;r=setVariable(pi/2,pi,'normal',1);trae(1,ount+1)=xmax+d(n)*os(r);trae(2,ount+1)=d(n)*sin(r);



APPENDIX A. Random Diretion Mobility Model Simulator 68plot([xmax,trae(1,ount+1)℄,[0,trae(2,ount+1)℄,'k-','linewidth',0.6);ount=ount+1;elseif trae(1,ount+1)>xmax&&trae(2,ount+1)>ymaxtrae(1,ount+1)=xmax;trae(2,ount+1)=ymax;plot([trae(1,ount),xmax℄,[trae(2,ount),ymax℄,'k-','linewidth',0.6);plot(xmax,ymax,'ko','markersize',5,'markerfae','k');ount=ount+1;r=setVariable(pi,3*pi/2,'normal',1);trae(1,ount+1)=xmax+d(n)*os(r);trae(2,ount+1)=ymax+d(n)*sin(r);plot([xmax,trae(1,n+1)℄,[ymax,trae(2,n+1)℄,'k-','linewidth',0.6);ount=ount+1;elseif trae(1,ount+1)<0&&trae(2,ount+1)>ymaxtrae(1,ount+1)=0;trae(2,ount+1)=ymax;plot([trae(1,ount),0℄,[trae(2,ount),ymax℄,'k-','linewidth',0.6);plot(0,ymax,'ko','markersize',5,'markerfae','k');ount=ount+1;r=setVariable(3*pi/2,2*pi,'normal',1);trae(1,ount+1)=d(n)*os(r);trae(2,ount+1)=ymax+d(n)*sin(r);plot([0,trae(1,ount+1)℄,[ymax,trae(2,ount+1)℄,'k-','linewidth',0.6);ount=ount+1;elseif trae(1,ount+1)<0&&trae(2,ount+1)<0trae(1,ount+1)=0;trae(2,ount+1)=0;plot([trae(1,ount),0℄,[trae(2,ount),0℄,'k-','linewidth',0.6);plot(0,0,'ko','markersize',5,'markerfae','k');ount=ount+1;r=setVariable(0,pi/2,'normal',1);trae(1,ount+1)=d(n)*os(r);trae(2,ount+1)=d(n)*sin(r);plot([0,trae(1,ount+1)℄,[0,trae(2,ount+1)℄,'k-','linewidth',0.6);ount=ount+1;elseif trae(1,ount+1)>=xmax&&trae(2,ount+1)>=0&&trae(2,ount+1)<=ymaxy=((xmax-trae(1,ount))*trae(2,ount+1)+(trae(1,ount+1)-xmax)*...trae(2,ount))/(trae(1,ount+1)-trae(1,ount));trae(1,ount+1)=xmax;



APPENDIX A. Random Diretion Mobility Model Simulator 69trae(2,ount+1)=y;plot([trae(1,ount),xmax℄,[trae(2,ount),y℄,'k-','linewidth',0.6);plot(xmax,y,'ko','markersize',5,'markerfae','k');ount=ount+1;r=setVariable(pi/2,3*pi/2,'normal',1);trae(1,ount+1)=xmax+d(n)*os(r);trae(2,ount+1)=y+d(n)*sin(r);plot([xmax,trae(1,ount+1)℄,[y,trae(2,ount+1)℄,'k-','linewidth',0.6);ount=ount+1;elseif trae(1,ount+1)<=0&&trae(2,ount+1)>=0&&trae(2,ount+1)<=ymaxy=((0-trae(1,ount))*trae(2,ount+1)+trae(1,ount+1)*...trae(2,ount))/(trae(1,ount+1)-trae(1,ount));trae(1,ount+1)=0;trae(2,ount+1)=y;plot([trae(1,n),0℄,[trae(2,n),y℄,'k-','linewidth',0.6);plot(0,y,'ko','markersize',5,'markerfae','k');ount=ount+1;r=setVariable(3*pi/2,5*pi/2,'normal',1);trae(1,ount+1)=d(n)*os(r);trae(2,ount+1)=y+d(n)*sin(r);plot([0,trae(1,ount+1)℄,[y,trae(2,ount+1)℄,'k-','linewidth',0.6);ount=ount+1;elseif trae(2,ount+1)>=ymax&&trae(1,ount+1)>=0&&trae(1,ount+1)<=xmaxx=((ymax-trae(2,ount))*trae(1,ount+1)+(trae(2,ount+1)-ymax)*...trae(1,ount))/(trae(2,ount+1)-trae(2,ount));trae(1,ount+1)=x;trae(2,ount+1)=ymax;plot([trae(1,ount),x℄,[trae(2,ount),ymax℄,'k-','linewidth',0.6);plot(x,ymax,'ko','markersize',5,'markerfae','k');ount=ount+1;r=setVariable(pi,2*pi,'normal',1);trae(1,ount+1)=x+d(n)*os(r);trae(2,ount+1)=ymax+d(n)*sin(r);plot([x,trae(1,ount+1)℄,[ymax,trae(2,ount+1)℄,'k-','linewidth',0.6);ount=ount+1;elseif trae(2,ount+1)<=0&&trae(1,ount+1)>=0&&trae(1,ount+1)<=xmaxx=((0-trae(2,ount))*trae(1,ount+1)+trae(2,ount+1)*...trae(1,ount))/(trae(2,ount+1)-trae(2,ount));trae(1,ount+1)=x;



APPENDIX A. Random Diretion Mobility Model Simulator 70trae(2,ount+1)=0;plot([trae(1,ount),x℄,[trae(2,ount),0℄,'k-','linewidth',0.6);plot(x,0,'ko','markersize',5,'markerfae','k');ount=ount+1;r=setVariable(0,pi,'normal',1);trae(1,ount+1)=x+d(n)*os(r);trae(2,ount+1)=d(n)*sin(r);h3=plot([x,trae(1,ount+1)℄,[0,trae(2,ount+1)℄,'k-','linewidth',0.6);ount=ount+1;enddrawnow;end% ending pointh2=plot(trae(1,end),trae(2,end),'ro','markersize',10,'linewidth',1.5);legend([h1,h2,h3,h4℄,'starting point','terminal point','trak','boundary');xlabel('x [m℄');ylabel('y [m℄');hold off;%title(['Random Diretion Mobility Mode','total ',num2str(N),' moves'℄);%}%{%% 3-Dtrae(3,:) = thirdDi(length(trae(1,:))-1,t,z0,zmin,zmax);%%}trae_rss=trae;save('random_diretion_25.mat');%}



71APPENDIX B. HYBRID MODEL SIMULATOR%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %% Department of Eletronis and Communiation Engineering %% WANG WENBO - 238970 %% %% hybrid model - 3D %% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%lose all;lear all;l;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Explanation %%In this model, the random diretion mobility model and random waypoint %%mobility model are ombined, so that it starts moving from (an random %%point in the area), and with (a ertain diretion and hanging veloity%%), maintaining this status for (a while), before or touhing the %%boundry, hanging diretion and repeat this ation again. %% Note : %% in this model, the normal distribution is used with onfident level %%95% to model veloity and angles. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% variable% define x-y planexmax=50;ymax=50;% the number of floorsnoOfFloor=3;% the height spaing of floorsfloorHeight=3;



APPENDIX B. Hybrid Model Simulator 72% simulation times (pause also ounted as 1 time simulation)n=10000;n=2*eil(n/2);% define the upper and lower bound of veloity [m/s℄v_min=0.5;v_max=3;%v_min=0.89;v_max=1.083;% define the upper and lower bound of angle [radian℄r_min=0;r_max=2*pi;% define the move time bound [s℄t_move_min=3;t_move_max=10;% define the pause time bound [s℄t_pause_min=0.5;t_pause_max=30;% define the upper and lower bound of distane away from boundry [m℄dist_min=0.5;dist_max=20;%% avariable models using setVariable funtionv=setVariable(v_min,v_max,'normal',n/2);r=setVariable(r_min,r_max,'uniform',n/2);t_m=setVariable(t_move_min,t_move_max,'normal',n/2);t_p=setVariable(t_pause_min,t_pause_max,'normal',n/2);dist=setVariable(dist_min,dist_max,'uniform',n);% define the total simulation time [s℄% the first row is move time, seond row is pause timet(1,:)=t_m;t(2,:)=t_p;% define the sampling frequeny [Hz℄Fs=1e2;% define the starting point x-y-ztemp_3=0:floorHeight:floorHeight*(noOfFloor-1);%startP=[0,0,0℄;



APPENDIX B. Hybrid Model Simulator 73%startP=[xmax*rand,ymax*rand,temp_3(randi(length(temp_3)))℄;load('para3.mat');%% proess% initialt=floor(t*Fs);t=[zeros(2,1),t℄;trae(1:3,1)=startP;ounta=1;% for angle purposeountb=1;% for dist purposefor p=1:n/2ount1=sum(t(1,1:p))+1;ount2=sum(t(1,1:p+1));ang=r(ounta);for pp=ount1:ount2trae(1,pp+1)=trae(1,pp)+v(p)*os(ang)/Fs;trae(2,pp+1)=trae(2,pp)+v(p)*sin(ang)/Fs;temp_3=thirdDi(1,1/Fs,trae(3,pp),0,(noOfFloor-1)*floorHeight);trae(3,pp+1)=temp_3(2);temp1=trae(1,pp+1)+dist(ountb);temp2=trae(2,pp+1)+dist(ountb);temp3=trae(1,pp+1)-dist(ountb);temp4=trae(2,pp+1)-dist(ountb);if temp1<xmax&&temp3>0&&temp2<ymax&&temp4>0ontinue;elseif temp1>xmax&&temp4<0ang=setVariable(pi/2,pi,'normal',1);trae(1,pp+1)=trae(1,pp)+v(p)*os(ang)/Fs;



APPENDIX B. Hybrid Model Simulator 74trae(2,pp+1)=trae(2,pp)+v(p)*sin(ang)/Fs;elseif temp1>xmax&&temp2>ymaxang=setVariable(pi,3*pi/2,'normal',1);trae(1,pp+1)=trae(1,pp)+v(p)*os(ang)/Fs;trae(2,pp+1)=trae(2,pp)+v(p)*sin(ang)/Fs;elseif temp3<0&&temp2>ymaxang=setVariable(3*pi/2,2*pi,'normal',1);trae(1,pp+1)=trae(1,pp)+v(p)*os(ang)/Fs;trae(2,pp+1)=trae(2,pp)+v(p)*sin(ang)/Fs;elseif temp3<0&&temp4<0ang=setVariable(0,pi/2,'normal',1);trae(1,pp+1)=trae(1,pp)+v(p)*os(ang)/Fs;trae(2,pp+1)=trae(2,pp)+v(p)*sin(ang)/Fs;elseif temp1>=xmax&&temp4>=0&&temp2<=ymaxang=setVariable(pi/2,3*pi/2,'normal',1);trae(1,pp+1)=trae(1,pp)+v(p)*os(ang)/Fs;trae(2,pp+1)=trae(2,pp)+v(p)*sin(ang)/Fs;elseif temp3<=0&&temp4>=0&&temp2<=ymaxang=setVariable(3*pi/2,5*pi/2,'normal',1);trae(1,pp+1)=trae(1,pp)+v(p)*os(ang)/Fs;trae(2,pp+1)=trae(2,pp)+v(p)*sin(ang)/Fs;elseif temp2>=ymax&&temp3>=0&&temp1<=xmaxang=setVariable(pi,2*pi,'normal',1);trae(1,pp+1)=trae(1,pp)+v(p)*os(ang)/Fs;trae(2,pp+1)=trae(2,pp)+v(p)*sin(ang)/Fs;elseif temp4<=0&&temp3>=0&&temp1<=xmaxang=setVariable(0,pi,'normal',1);trae(1,pp+1)=trae(1,pp)+v(p)*os(ang)/Fs;trae(2,pp+1)=trae(2,pp)+v(p)*sin(ang)/Fs;endendounta=ounta+1;ountb=ountb+1;endtm=floor(t_m*Fs);



APPENDIX B. Hybrid Model Simulator 75tp=floor(t_p*Fs);for ppp=1:n/2trae_rss(1,1+sum(tm(1:ppp-1))+sum(tp(1:ppp-1)):1+sum(tm(1:ppp))...+sum(tp(1:ppp-1)))=trae(1,1+sum(tm(1:ppp-1)):1+sum(tm(1:ppp)));trae_rss(1,2+sum(tm(1:ppp))+sum(tp(1:ppp))-tp(ppp):1+sum(tm(1:ppp))...+sum(tp(1:ppp)))=trae(1,1+sum(tm(1:ppp)));trae_rss(2,1+sum(tm(1:ppp-1))+sum(tp(1:ppp-1)):1+sum(tm(1:ppp))...+sum(tp(1:ppp-1)))=trae(2,1+sum(tm(1:ppp-1)):1+sum(tm(1:ppp)));trae_rss(2,2+sum(tm(1:ppp))+sum(tp(1:ppp))-tp(ppp):1+sum(tm(1:ppp))...+sum(tp(1:ppp)))=trae(2,1+sum(tm(1:ppp)));trae_rss(3,1+sum(tm(1:ppp-1))+sum(tp(1:ppp-1)):1+sum(tm(1:ppp))...+sum(tp(1:ppp-1)))=trae(3,1+sum(tm(1:ppp-1)):1+sum(tm(1:ppp)));trae_rss(3,2+sum(tm(1:ppp))+sum(tp(1:ppp))-tp(ppp):1+sum(tm(1:ppp))...+sum(tp(1:ppp)))=trae(3,1+sum(tm(1:ppp)));end%save('hybrid_model_2_35.mat');
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