
SAMI TURUNEN
PRODUCTIZATION OF AN HTML5 AGENT FRAMEWORK
Master of Science Thesis

Examiner: professor Kari Systä
Examiner and topic approved in
research council meeting of
Computing and Electrical
Engineering 5th of May 2014

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
TURUNEN, SAMI: Productization of an HTML5 agent framework
Master of Science Thesis, 58 pages, 0 Appendix pages
March 2015
Major: Software engineering
Examiner: Professor Kari Systä
Keywords: Mobile Agents, productization, installation guide, programming guide

Mobile agents are autonomous software programs, which can move in network and
gather information, communicate with each other, and change information. Migration
means that mobile agents transfer from one computer system to another. Agents have a
state that contains variables and functions which are needed to run agent. State contains
also information about the execution state of the agent.
Productization is about making software easy to use trough installation instructions,
configuration scripts, and end user documentation. The purpose of this work was to
prepare the agent platform for publishing. This thesis presents installation instructions
for the agent platform. A configuration script have been made for changing the URLs
used by the applications. Programming guide helps novice user to develop mobile agent
applications with the agent platform. To make publishing easier, open source licenses,
software hosting facilities, and data management systems have been studied.

III

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Tietotekniikan koulutusohjelma
TURUNEN, SAMI: HTML5 agenttisovelluskehyksen tuotteistaminen
Diplomityö, 58 sivua, 0 liitesivua
Maaliskuu 2015
Pääaine: Ohjelmistotuotanto
Tarkastaja: Professori Kari Systä
Avainsanat: Liikkuvat agentit, tuotteistaminen, asennusohje, ohjelmointiohje

Liikkuvat agentit (mobile agents) ovat autonomisia ohjelmia, jotka liikkuvat
tietoverkossa ja keräävät tietoa, kommunikoivat toisten agenttien kanssa, ja vaihtavat
tietoa. Termi siirtyminen (migration) tarkoittaa mobiiliagenttien siirtymistä yhdestä
tietokonejärjestelmästä toiseen. Agenteilla on tila, joka sisältää muuttujat ja funktiot,
joita tarvitaan agentin suorittamiseen. Tila sisältää myös tietoa agentin suorituksen
tilasta.
Tuotteistaminen tarkoittaa tuotteen tekemistä helppokäyttöiseksi asennusoppaiden,
konfigurointiskriptien, ja loppukäyttäjälle suunnatun dokumentaation avulla. Tämän
työn tarkoituksena oli valmistella agenttialusta julkaisua varten. Tämä opinnäytetyö
esittelee asennusohjeet agenttialustalle. Työssä on kirjoitettu konfigurointiskripti
agenttisovellusten käyttämien URLien vaihtamista varten. Ohjelmointiopas auttaa
kokematonta käyttäjää kehittämään mobiiliagenttisovelluksia agenttialustan avulla.
Julkaisun helpottamiseksi open-source lisensseihin, ohjelmistojen isännöintipalveluihin,
ja tiedonhallintajärjestelmiin on tutustuttu.

IV

PREFACE

I started to study the agent platform on spring 2014. I began by studying mobile agents
and reading the agent platform code. I wrote installation guide mostly in June.
Programming guide, configuration script, and configuration-file modifications were
done in autumn.

I want to thank my supervisor Kari Systä for reading and commenting the thesis and
giving technical guidance.

In Tampere, on the 5th of February, 2015

Sami Turunen

V

INDEX

1 Introduction..1
2 Mobile Agents..2

2.1 General information about Mobile Agents...2
2.1.1 Mobile agents...2
2.1.2 Migration..3
2.1.3 Mobility models of Aglets and Grasshopper....................................5
2.1.4 Kalong mobility model...6

2.2 Examples of Mobile Agent platforms..7
2.2.1 Radigost..7
2.2.2 Telescript..7
2.2.3 Grasshopper..8
2.2.4 Tracy toolkit..8

2.3 Communication..8
2.4 Security...10

3 HTML5 Mobile Agents..11
3.1 Introduction..11

3.1.1 Reference models for mobile agents..12
3.1.2 HTML5 agents and mobile agent models.......................................13
3.1.3 Architecture..14

3.2 Agent server...15
3.3 Agent-to-agent communication..16
3.4 Configuring HTML5 agents...16
3.5 Gmonitor..17

4 Open Source...18
4.1 Open Source Licenses..18
4.2 Choosing a license..19

4.2.1 Making money from Open Source...20
4.2.2 The free rider problem..20
4.2.3 Motivations for sharing Open Source software..............................21
4.2.4 Out-Licensing...21

4.3 Things to consider when applying an open source license........................22
4.4 Open Source Software Hosting Facilities..23
4.5 Data management systems...24
4.6 An example: CoRED and GitHub..24
4.7 AVAA open-access publishing platform...25

4.7.1 IDA Storage Service...25
4.7.2 Comparing AVAA and IDA with data management systems..........26

4.8 Proposal for license and publishing platform...26

VI

5 Productization..27
5.1 Introduction..27
5.2 Installation..27
5.3 Configuration..28
5.4 Software productization process..29

6 Installation Guide...31
6.1 Unpacking files...31
6.2 Preparations for testing the installation..31
6.3 Fitting agent platform to own environment..32
6.4 Node.js installation...34
6.5 Starting the servers manually...34
6.6 Starting the servers by using a script file...35
6.7 Testing the installation with gmonitor..36
6.8 Automatizing Node.js installation..38
6.9 Automatizing the changing of URLs..38
6.10 Removing hard-coded server port number-values.....................................40

6.10.1 parsePort-function..40
6.10.2 serverPort-functions..41

7 Programming Guide...42
7.1 Generic agent class...42

7.1.1 Functions..42
7.1.2 Variables...43

7.2 Application agent...43
7.2.1 Compulsory functions for application agent..................................43
7.2.2 Additional compulsory functions for application agent.................43

7.3 Creating an example agent application..44
7.4 Adding new values and functions to Count-agent......................................47
7.5 Getting the communication working..50

7.5.1 Sending information from agent to another agent..........................50
7.5.2 Receiving information from Count-agent.......................................52

8 Evaluation..54
9 Conclusions..56
References...59

1 INTRODUCTION 1

1 INTRODUCTION

The purpose of this work was to study productization and prepare a mobile agent
platform for publishing by writing installation and programming guides for the
platform. Open Source licenses were studied. Software hosting facilities were searched
and data management systems for source code publishing were studied.

The initial version of the agent platform described in this thesis was made by
professor Kari Systä at Tampere University of Technology on spring 2012. Version used
in this thesis is a second iteration of agent platform that was made by Laura Järvenpää
on spring 2013.

Problems for this thesis were: What is productization and especially installation and
configuration during productization? How to write a good installation guide: How to
make installation of the agent platform easier? How to write a good programming
guide: How to make programming agent applications with the agent platform easier?
What kind of open-source licenses are there and what are their biggest differences?
Where to publish mobile agent platform source code?

Chapter 2 contains general information about mobile agents and examples of mobile
agent platforms. Mobility models, communication, and security of mobile agents are
briefly described. Chapter 3 gives an overview of mobile agent platform used in this
thesis. Chapter 4 contains information about open-source licenses, software hosting
facilities, and source code publishing places. Chapter 5 describes terms related to
productization and gives an example of software productization process. Chapter 6
contains installation instructions for the agent platform, and a description of an
installation- and a configuration-script for the platform. Chapter 7 describes the most
important functions and variables of generic and application agent. This chapter also
includes a tutorial for creating a simple agent application. Chapter 8 is for evaluation of
the installation- and programming guides. Chapter 9 is for conclusions.

2 MOBILE AGENTS 2

2 MOBILE AGENTS

2.1 General information about Mobile Agents

This chapter is mostly based on the book Mobile Agents: Basic Concepts, Mobility
Models, and the Tracy Toolkit [1].

2.1.1 Mobile agents

Just like any computer program, a software agent performs tasks given by user in a
restricted environment. The software agent can be a program, component, or object
(objects are passive while agents are active). Software agents are autonomous, they have
own plan that is generated in accordance with the user given task. No user confirmation
is needed every step. Software agents communicate with other agents. Agents react on
environment changes, identified events shown by sensors. Agents are initiative and plan
actively.

Characteristics of mobile software agents are: Agent knows its owner (the user who
starts the Agent), his or her preferences and learns by communicating with its owner.
Itinerant agents search network efficiently by moving in network to service or
information provider. Agents can work asynchronously while the user is offline. Agent
reports results of its work to user trough different communication channels. It can
suspend execution on arbitrary point and transfer itself to another computer system.
This is called migration. At destination computer system agent's execution is resumed.
Mobile agents can be considered as additional design paradigm, supplement of
traditional techniques.

Mobile agents:

• Are used in wide area and heterogeneous networks where assumptions of reliability
of computers or security of network can't be made.

• Migration is initiated by agent or the programmer of agent, not operating system
or middleware.

• Migration is done to access resources available only at other servers.

• Can migrate more than once. This is called multi-hop ability.

2 MOBILE AGENTS 3

State means information about the execution state of the agent. The execution state
can be information from within the underlying (virtual) machine about call-stack,
register values, and instruction pointers. Agent server or agency means execution
environment for agents. Agency:

• Provides agents services, communication, and migration to other agencies.

• Controls execution of agents and protects against malicious agents.

A mobile agent toolkit [1] is a specific project or product. Examples of mobile
agent toolkits are IBM aglets, IKV Grasshopper, and Tracy.

Reasons to use mobile agents are [1]:

• Task delegation, which helps to avoid the information overload, because user can
focus on other things while agents perform tasks for user.

• Asynchronous processing. Mobile agents are not dependent on network connections.
Network connection is only needed for the first migration. This ensures that agents
can be started from mobile devices that offer only limited bandwidth.

• Adaptable service interfaces. Mobile agents offer a chance to design a client-driven
interface that is optimized for the client, but also adaptable to different server
interfaces.

• Code-shipping versus data-shipping. Instead of transferring data to the client
(data-shipping), it can be transferred to the location of the data (code-shipping) by
means of mobile agents. Only the relevant data is sent back to the client. This
reduces network traffic and saves time.

Benefits of mobile agents listed in [5] are:

• Mobile agent can reduce network load by preprocessing sensor data.

• Agents overcome network latency.

• Agents encapsulate protocols; agents are good tools for introducing new protocols
or data formats.

• Agents execute asynchronously and autonomously. There is no need to generate
network traffic for every execution.

Domains where agents are noticed useful are electronic commerce and information
retrieval. One advance of agents is that they can filter sensor data. [1]

2.1.2 Migration

Migration means transferring mobile agent from one computer system to another. As
compared to the client-server applications migration saves network bandwidth by
moving the code close to the data. Mobile agent is executed as part of the mobile agent

2 MOBILE AGENTS 4

server software. It controls execution of agents and provides functionality for agent
communication, agent control, security, and migration. In Mobile Agents-book [1]
mobile agent server is called agency. Agency that holds the agent's code is code server,

which usually is the home agency. Mobile agents consist of code, data(variables), and
execution state. Mobile Agents-book names current agency as sender agency, S and
other agency as receiver agency, R. The migration protocol defined in the book has six
steps (see the figure 2.1):

• S1: Suspend the execution thread, initialize the migration process.

• S2: Capture agent's data and execution state. Serialization of the current state of all
variables. Current values are written to an external persistent representation, which
can be a memory block or a file. Agent's state is stored in same place. Outcome is a
serialized agent, a flat byte stream.

• S3: Transfer the agent: Serialized agent is transferred to the receiver agency using a
migration protocol.

Figure 2.1: Migration process [1]

2 MOBILE AGENTS 5

• R1: Receive the agent: Serialized agent is received using a migration protocol.
Receiver agency checks whether the agent can be accepted based on the information
about the owner and the sender agency.

• R2: Deserialize the agent: Variables and the execution state are restored from the
serialized agent.

• R3: Start agent execution in new thread. Receiver agency starts a new thread of
control. The agent's code is needed to do this. Also the code has to be transferred to
the receiver agency. It can be loaded from the agent's home agency or its code
server. [1]

2.1.3 Mobility models of Aglets and Grasshopper

Mobility model [1] defines three views on migration issues:

• 1. User's view: How migration is initiated.

• 2. Agent's view: How data and code are relocated in the network.

• 3. Network's view: How code and data are transferred over the network.

User's view focuses on phases S1 and R3 of agent migration. Agent can be
immediately started at a remote agency and not at home agency, if other agencies
support this by providing a communication interface for this purpose. Place of code
source (place from which code can be loaded) is in Java CLASSPATH -variable or files
are in the filesystem and parameter is given during creation. Each class file should be
stored separately.

Useful data types for mobile agents are:

• 1. Proxy: Mobile Agents-book[1] names this data type proxy, because there is a
proxy object on each agency that is part of the serialized agent and that is respons-
ible for transparently forwarding modifications to the home agency.

• 2. Static: Static data is nonmobile and remote access is not possible. This data type
is common for files or graphical user interfaces, whenever they are not of type
proxy.

• 3. Moving: Moving data is mobile, and the source has been removed. Data items of
this type no longer exist at sender agency after migration.

• 4. Copying: Copying is mobile, and the source is not removed. This data type is used
for all variables for which the agent has a reference and that are shared with other
agents or the agency itself. Modifications are not visible at the original data item at
the last agency.

Migration strategies are:

2 MOBILE AGENTS 6

• Push-all-to-next: The code of the agent and the serialized agent are transmitted
simultaneously. Connection to the home agency is no longer needed after this one
transmission.

• Pull strategy: No code is transmitted with the data transmission. There must be open
network connection or a fast way to reconnect to the home agency or the last agency
the agent came from.

• Push-all-to-all: The complete code of an agent is sent to all destination platforms
agent is going to visit.

Network's view means all aspects related to data transmission. Agent toolkits are
using different transmission strategies; for example migration protocol based on RMI or
TCP/IP.

 An Aglet [8,9] is a Java agent that can move from host to another and communicate
with other aglets. In Aglets [1] method run starts the agent. Dispatch initiates migration.
Migration strategy is combination of push and pull strategies.

In Grasshopper [1] method live starts the agent. Move initiates migration. When
error occurs, an exception is thrown. Grasshopper uses class loader for pulling, and it
has no push strategy. Agent has a veto right, it has a right to vote against migration.

Transmission aspects: Downloading classes from a nearby server is important,
because shorter distance may improve the time needed for downloading.

Migration strategies: Decision of migration strategy depends on network model
(structure). In homogeneous network pull-per-unit is a good strategy. In heterogeneous
network it is useful to push code in most cases. [1]

2.1.4 Kalong mobility model

Kalong [1] allows agent or it's programmer to define new migration strategies. How
Kalong differs from current mobility models:

• 1. Agents have an external state and code is transmitted in code units

• 2. It has code server agency and mirror agency

• 3. It has new class cache mechanism, it can prevent class downloading or code
transmission

Kalong's functions to get and set data of external state are getData and setData. If
sender agency is remote agency, all data of external state is transferred with agent's
state. loadData and uploadData are functions for loading and uploading data item of an
external state from/to home agency.

Kalong model makes possible less transmission of data items and code. It also
increases security; agent can leave important data items to the home agency until they
are needed. A code unit consist of at least one Java class (a JAR-file). Code base is the

2 MOBILE AGENTS 7

place, where unit can be loaded. Two agents can have different code units even if they
belong to the same type. Things that must be known to be able to download code: 1. To

which code unit does the class belong 2. From which code base the code unit should be
loaded.

Migration process: The parts in which the agent is transmitted are: 1. State, 2. Code
units(Java class files).

Types of agencies:

• Code server agency: Some code units will be stored at the current agency.

• Mirror agency: Keeps information about code and data, can take the role of the
home agency.
Code cache: Basis of classes technique digests or hash values to check whether two

classes are equal. Prevents transmission of identical code units.
When the agent terminates it has to release all code servers to free resources.

2.2 Examples of Mobile Agent platforms

2.2.1 Radigost

Radigost [2] is a multi-agent platform executed inside of the client's web browser.
Radigost is mostly developed in JavaScript and doesn't require third party plug-ins like
Java or Adobe Flash. It requires no additional software packages and can be started out-
of-the-box. Radigost relies on web workers and web sockets. Web workers enable
multi-threading and asynchronous messaging, which means that no timers or scheduling
are needed. Radigost agents interact with host environment trough message exchange or
included listener object. Radigost supports reactive architecture: agent behavior is based
on messages received from the environment or other agents. Each agent has a globally
unique identifier, AID, which is a string value. Agents have a state that can be serialized
into JSON string. Radigost is interoperable: Radigost agent can interact with other
agents in third-party multi-agent platforms. Radigost's runtime performance has been
evaluated with several case studies.

2.2.2 Telescript

Telescript programming language [10] is designed for development of mobile agent
programs. In Telescript places are processes that are inhabited by agents. Telescript
agent needs a ticket containing address of the place to move from place to another.
Ticket also contains definition of how the agent will travel, like the communication
protocol. Agents can communicate with each other in meetings. To meet another agent,
a valid petition has to be presented by the agent initiating the meeting. Agents can be

2 MOBILE AGENTS 8

created and accessed by submitting special HTML forms or following hyperlinks.
Migration is initiated with go-command.

2.2.3 Grasshopper

Grasshopper [28] is a mobile agent development and runtime platform. In Grasshopper
two types of agents are distinguished, mobile agents and stationary agents. The
Grasshopper agency consists of the core agency and one or more places. Core agency
provides a communication, registration, management, security, and persistence services.
A place provides a logical grouping of functionality inside of an agency.

2.2.4 Tracy toolkit

Tracy [1] is a mobile agent toolkit made in Java programming language. Advantages of
Java mentioned in the Mobile Agents-book [1] are that Java is portable, it has security
manager, and it's pointer model doesn't support illegal type casting. Network
programming is supported with RMI, remote method invocation, which helps
implementing simple mobile agent toolkits. Drawbacks of Java are that it is impossible
to obtain execution state of a thread, which means that Java based agents can form only
weak form of mobility. Other drawbacks are the lack of resource control and means to
avoid denial of service attacks.

Tracy has an abstract class Agent and abstract method startAgent. It has a migration
protocol SATP based on TCP/IP. Command go initiates migration. Agent execution is
resumed in receiver agency using Java reflection technique that determines information
about classes, their variables and methods during runtime. All classes whose objects
must be serialized must implement interface java.io.Serializable. Class variables are not
a part of the serialized object. Method name to invoke at destination and classes that
agent might ever use are transferred to the receiver agency. Redundant classes are
deleted from the code closure before the byte code is collected. Code closure consists of
the agent's main class and all the classes that are used for variables, method parameters,
method return values, and all local variables of any class of the code closure. Class is
searched in the agent's code base, which is defined when launching an agent. All class
files are already at the destination agency, so class loader has to look for the byte code
only in a local repository, where the incoming classes are stored.

2.3 Communication

Example case where agent communication [1] is needed, is an application in which
agent arranges a business trip for a human user. Slave agents are specialized agents to
find information about flights, hotels, etc. These specialized agents are instructed by

2 MOBILE AGENTS 9

master agent that communicates to the user and monitors the entire process. All these
agents exchange information about their tasks and intermediate results. The main
problem in getting mobile agents to communicate with each other is how to locate
agents that can move autonomously in network. Locating is important so that agent's

task can be modified and send a termination signal (when its has become obsolete). It
must be possible to detect agents that are orphans to avoid unnecessarily consuming of
resources. Orphan agent's owners are no longer interested of it's result or are not
available because of a host error. Host error can occur when a master agent's agency
crashes.

An energy counter is one solution to avoid unnecessary consuming of resources.
Every agent has certain amount of energy which it consumes. One possibility is that the
energy counter can be decreased after every migration. Counter could also be decreased
for every service access or each message sent. Agent must periodically contact to the
master agent or home agency for a new energy. Otherwise the agent runs out of energy
and must terminate.

Message passing is a type of communication model that allows agents to send
messages to each other. The sender of the message must know the receiver by name and
its current location. Point-to-point is a form of message passing in which a single agent
sends messages to exactly one receiver agent. In multi-point message passing form
group of agents must communicate. It usually uses point-to-multi-point communication
technique, in which sender agent wants to send messages to many or all agents of the
group.

Communication can be either synchronous or asynchronous. In synchronous
communication addresser(sender) blocks it own execution until addressee has answered
with a reply. In asynchronous communication addresser sends a message to the
addressee and continues its own execution.

Second communication model is information space: Agent writes data to information
space and other agents can read it. The most important difference to message passing is
that an agent doesn't have to decide which piece of information must be sent to whom.

Full information approach assumes that every agency knows the current location of
all agents in the system. This approach is good for delivering messages.

In no information approach no agency has a direct knowledge of the current location
of agents. Locating agent for message delivery is difficult. Whether to favor full
information approach or no information approach depends of agent: Is the agent mobile
and does the agent receive a lot of messages. [1]

2 MOBILE AGENTS 10

2.4 Security

Agent can consume resources of the hosting environment. This can lead to situation
where agency can no longer provide it's usual service to the other agents. Agent might
try to gain unauthorized access to the agency. This can be solved using Java sandbox
technique. Agent can attack other agents. In Java this might be avoided by defining
separate class loader to agent.

Malicious agency is an agency that tries to attack mobile agents. Mobile agent must
authenticate on every agency and agency must authenticate to the agent. Agency can
attack to other agencies communication link. It can tamper or delete data of other
agencies. Agency can attack to agent to cause another agency to malfunction. In case of
black box attack agent is executed several times changing input parameters and calls to
services. One solution to avoid attacks is letting agent migrate only to trusted agencies.
Only agents can complain about agencies; agencies have no means to decline a bad
reputation. [1]

Example of malicious host is the host for a shopping agent to find the best airfare for
a flight with a particular route. To make it's own offer to look the best host could erase
information collected by the agent, change agent's route, or terminate the agent. To
solve problems with malicious hosts, contracts between the operators of agent platforms
could be made or trusted third party could supply trusted hardware.

Agents should be prevented from launching denial-of-service attack. Agent should
act only based on information from trusted sources. Agents could be held responsible
for their actions and agent behavior could be monitored and logged. [7]

One way to protect mobile agents is that almost all data stored within agent's state or
data package must have an expiration date, which agencies can verify, and reject the
agent and the agent's data item if necessary. Other way is that when agency has received
agent, it verifies the state appraisal functions. These functions verify specific conditions
or invariants in the agents state. Agent will have a set of privileges for execution in the
agency, or this can result as rejecting the agent. Privileges can be decided based on the
agent behavior at runtime (history based decision). Firewall is needed to examine agent
before it leaves agency, because it could carry a piece of code with it. Only agent
replication can detect an attack and recover the error. [1]

3 HTML5 MOBILE AGENTS 11

3 HTML5 MOBILE AGENTS

Research papers [5,6,56] and thesis work [3] as main references.

3.1 Introduction

The goal of HTML5 as mentioned in [6], is to “allow the development of complete
client-side applications.” HTML5 allows more applications to be run in browser.
Browser is increasingly acting as an application platform and applications can store
their internal state in the server for future use. In HTML5 agent framework, the
executable code can be moved with the internal state of the application. Agents can
continue their execution while being stored in the server, and the running applications
can be later retrieved back to the browser. The agents are implemented as HTML5
applications, and are therefore called as HTML5 agents. [6]

Mobile agent framework used in this thesis consists of HTML agent base class and
agent server. Agent base class works with user interface inside browser or in headless
mode in an application server. [3]

Code-on-demand paradigm [33] is used for getting the static files of the application
when agent travels in network. Agent server represents mobile agent environment in
server side and browser represents mobile agent environment in client side.
Implementation of server side execution environment is done with node.js [29].

Like most HTML5 applications, HTML5 agents are composed of two parts:
1. Description of the user interface in HTML, CSS, and image files.
2. JavaScript files describing the executable content and dynamic aspects of user

interface.
Generic parts of the agent framework are included into one JavaScript class Agent,

and concrete agents are implemented by inhering from this class. Agent can move
between different devices, and it is possible to clone agents to create more instances.
Agents have variable list that contains the state that has been saved and transferred. The
state of the agent is saved during the migration between server and browser.
Serialization is done by constructing a JSON-string that contains the agent description.
Transferring of agent is done by HTTP. [3,5,6]

More detailed information about classes, functions and variables can be found in
chapter 7 Programming guide.

3 HTML5 MOBILE AGENTS 12

3.1.1 Reference models for mobile agents

According to [56], a mobile agent must contain an agent model, a life cycle model, a
computational model, a security model, a communication model, and a navigation
model.

Agent model [56] defines the internal structure of the intelligent agent part of a
mobile agent. This model also defines the autonomy, learning, and co-operative
characteristics of the agent.

Life cycle model [56] defines the different execution states of a mobile agent and
the events that cause the movement from one state to another. General structure for
persistent process based life cycle is described in figure 3.1.

Life cycle [56,3] starts with a start-state, where the agent is started for the first time.
Then the agent is moved to a running-state, where a persistent process is executed.
Before the migration from one host to another, the inner state of the agent is saved and
the agent enters the frozen-state. After the migration the inner state of the agent is
retrieved and the agent continues execution in the running-state at the point where it left
off. After the execution is finished the agent enters a death-state, where the process is
terminated.

Computational model [56] describes how the execution of a mobile agent occurs
when the mobile agent is in running-state.

Figure 3.1: Persistent process based life cycle [56,3].

3 HTML5 MOBILE AGENTS 13

Security model can be split into two areas: Protection of hosts from destructive
mobile agents and protection of mobile agents from destructive hosts.

Communication model: According to [6], “Communication model defines means
to communicate with the environment and other agents.”

Navigation model [56] discovers all aspects of agent mobility from discovery and
resolution of destination hosts to the manner in which the mobile agent is transported.

3.1.2 HTML5 agents and mobile agent models

HTML5 agent [3] needs the models for the mobile agent. Agent-, life cycle-, and
computational models have complete implementations. Navigation-, communication-,
and security models are on the initial stage.

Agent model [3] includes the management of the inner state of the agent.
Life cycle model [3] (main life cycle of the agent) follows the persistent process life

cycle described in section 3.1.1. During its life cycle, agent may visit several browsers
and agent servers [5]. An example life cycle is described in figure 3.2.

In step 1 (figure 3.2), agent is started in Browser 1 when it is downloaded from its
origin server. Agent is initialized and the execution begins. In step 2 agent is pushed to
agent server, where it can continue its execution. The agent server gets the internal
execution state of the agent and URL to the application code. In steps 3-5 agent moves
from one environment to another preserving its internal state and continuing execution.
In step 6, the execution is terminated. [6]

Figure 3.2: HTML5 agent life cycle [5].

3 HTML5 MOBILE AGENTS 14

The origin server and agent server are HTTP-servers that can be accessed with
HTTP-requests. Agent is fetched for execution with GET and pushed to server with
POST. Because agent can run with or without user interface, the execution part of the
HTML5 agent needs to be separate from the user interface. [5]

Computational model [3] of application needs to be run in both browser and server.
All computation is implemented in JavaScript and the framework is based on event
handlers [6].

Navigation model [3] of the HTML5 agent consists of the configuration-file that is
downloaded with the agent. In the current implementation, navigation model includes
only connections to one agent server and the origin server of the agent. Navigation
model also includes the serialization and transfer management of the agent.

Communication model [3] includes communication with the user, third party
services, agent server, and another agent application. For agent-to-agent
communication, there are three cases [3]:

1. Both agent applications are in separate servers
2. Both agent applications are in agent server
3. One agent is in browser and another is in server
Security model [3] relies in standard security mechanisms of HTML5 applications

in browser.

3.1.3 Architecture

Figure 3.3 describes the basic architecture of an HTML5 agent framework and its
relationship to application specific implementation. Agent part of the architecture
consists of a generic agent and an application agent.

3 HTML5 MOBILE AGENTS 15

In server, the agent can be accessed trough generic interface provided by generic
agent. In browser, the agent can be accessed trough application specific user interface
[3].

3.2 Agent server

Core components of the agent server are a HTTP server and a virtual machine executing
JavaScript [5]. Agent server consist of server, router and handlers. In agent server
dependency injection design pattern [31, 3] is used. The agent server receives the
description of the agent in an HTTP POST request [6]. Then the following steps [6] are
executed:

1. The executable JavaScript-file is downloaded from the origin server of the agent.
2. The required run-time structures are created.
3. The function continueWork() of the downloaded agent is called.
4. A timer to periodically fire work()-function is initialized.

When the agent is running in server, it runs in headless mode and the HTML and
CSS files are not needed. In headless mode, the central components are the JavaScript
files. [5]

Figure 3.3: Basic architecture of framework [3].

3 HTML5 MOBILE AGENTS 16

3.3 Agent-to-agent communication

Real-time agent-to-agent communication [3] is made with node.js [29] module socket.io
[30]. In browser-to-browser messaging, server is always needed. Agents must use
communication component to get connection to the agent server. Agent sends
information in JSON form to agent server, and agent server passes the information to
other agent. Agent-to-agent communication using agent server is described in figure 3.4.

Sender agent and receiver agent must be joined to the same communication
namespace to be able to communicate. [3] Agent-to-agent communication was
demonstrated with an example (see section 7.5) where agent sends counting results data
to another agent.

3.4 Configuring HTML5 agents

Configuration of all HTML5 agents is done by modifying configuration.js-file, which
includes URLs to:

• The origin server of the agent,

Figure 3.4: Agent-to-agent communication [3]

3 HTML5 MOBILE AGENTS 17

• list view of executing agents in server,

• agent server, where agent is uploaded,

• agent server, that agent uses to communicate [3].

The origin server of the agent maintains and serves all the files. All agent
applications have the same origin server. While the agent moves, URL to a resource in
the origin server is usually delivered instead of the actual content. [3,5]

In the list view, a list of active agents is shown. List shows the id, URL, and running
status of agents.

http://localhost:8891/upload sends URLs to agent code and user interface together
with serialized state [5].

In the current implementation, agent server for communication is the same as the
server where agent is uploaded. [3]

User of the HTML5 agent framework can change the configuration URLs with the
help of a configuration script written for this thesis (see section 6.9). There were hard-
coded port number-values in the fileserver.js-, agentserver.js-, and loadserver.js-files.
Modifications to the configuration-file have been done to get the port numbers directly
from configuration URLs (see section 6.10).

ConfigurationClass() -function should be used when referring to the URLs. A
Configuration object can be created by calling constructor configurationClass (which
will create object that includes specified URLs.) [3]

3.5 Gmonitor

Gmonitor.js is an example agent application that monitors load average of a host and
tracks the CPU load of a server machine. In browser, gmonitor shows current load level,
min and max values, and the latest load level history graphically. In server history
information is still collected. Count of taken samples is shown as running status on the
agent server list view. The specialized parts of gmonitor are:

1. Constructor
2. Function continueWork()
3. Function preupload()
4. Function work().
Draw()-function draws the user interface. CreateAgentObject()-function creates

agent. InitExecution()-function creates an agent object and starts the agent execution in
the browser. [3]

In this thesis, Gmonitor was used to test the agent framework installation (see section
6.7).

4 OPEN SOURCE 18

4 OPEN SOURCE

4.1 Open Source Licenses

Open source licenses [26] ensure that software developers can control the terms under
which others can reuse the software they contribute to open source projects. All open
source licenses share the principle that anyone should be able to use, copy, and
distribute source code and the executable software compiled from it.

Bilen [63] divides software developing companies in technology industry to two
groups. The first takes the advantage of open source licenses like Apache [55] and BSD
[64] which allow them to use these open source components to develop their own
proprietary software. The second group of companies, which stick to GPL [65] and
GPL-like licenses, focus on pure open source software development and utilize the full
power of outside-in thinking via communities and networks such as universities or other
companies.

Apache License [17,26], version 2.0 grants a copyright and a patent license from
contributor to users. Redistribution is allowed under following conditions:
1. Recipients of the work must be given a copy of the license
2. Modified files include notices about modification
3. All copyright, patent, trademark, and attribution notices must be retained from the

licensed work, excluding notices that don't belong to any part of derivative work
4. If the work includes “notice” text file, derivative work must include this file

Creating and selling customized versions of Apache is allowed. License doesn't give
permission to use trademarks. No warranty is given and contributors are not liable for
the damages arising as a result of using the work.

The MIT License [17,26] gives no restrictions for dealing with the software. No
warranty is given and authors or copyright holders are not liable. MIT license is GPL
compatible.

GNU General Public License (GPL) [17,18,26,65], version 2.0 allows to distribute
copies of free software, receive source code, change software, or use pieces of software
in new programs. When distributing the copies, all recipients must be given all the
rights that the distributor has. Recipients must receive or have possibility to get the
source code and they must see the license terms. No warranty is given. Copying and

4 OPEN SOURCE 19

distributing is allowed, provided that copies are published with copyright notice and
disclaimer of warranty. Modifying copy of program is allowed under certain conditions:
a) Modified files must have notices that files have been changed and date when changes
have been made.
b) Work that contains any part of the program must be licensed under the terms of this
license.
c) Interactive program should print or display an announcement including copyright
notice, and a notice that there is no warranty and that users may redistribute the program
under the conditions, and tell users how they can view this license.

Granting a sublicense to modify and distribute software to third parties not included
in the license is forbidden. GPL has a Copyleft restriction, which means that it doesn't
allow users to build proprietary software on top of open source foundations. GPL does
the most to ensure that software stays open, while other licenses are more restrictive.

LGPL [26] is a lesser restrictive version of the GPL for use with the code libraries
that are used in precompiled binary form and do not require access to source code.

BSD licenses [26,64] are very permissive licenses. Unlike the GPL, BSD licenses
allow proprietary products to be built and sold from the BSD code without requiring
that the source code be given away. BSD licenses are generally GPL compatible.

The Artistic License (Perl) [26] has several differences (compared) to the Apache
license. The Artistic license allows changes to the source code if:

• User makes these changes in public domain

• Or user uses only modified code within a company or organization.

• Or user renames modified code so that it doesn't conflict with the standard version.

The Artistic License is GPL compatible.
In Mozilla Public License (MPL) [26] modifications must be made freely available

to the developer community. This resembles to the GPL. Larger pieces of software are
not required to make source code available. Developers can improve the open source
code base without giving away their own property. This differs from the GPL. MPL is
not GPL compatible on its own, but there is an effort to relicense all Mozilla code under
a triple license with the GPL and LGPL.

Dual licensing [26] means that sellers offer option of choosing either a GPL option
or more conventional commercial license.

4.2 Choosing a license

In [53], choosing a license is decided based on whether the user wants a copyleft license
or non-copyleft license. Recommended copyleft licenses are the GPL-3.0 [54] or the
AGPL-3.0 [41]. If granting patent rights from contributors to users is important,
recommended non-copyleft license is Apache-2.0 [55]. If not, MIT is very permissive

4 OPEN SOURCE 20

and simple as well as BSD. Apache, MIT, and BSD-licenses are proprietary-compatible
licenses, they allow the covered code to be used in proprietary programs. All these
licenses are widely used and well recognized. People don't have to read the legalese in
order to use the code, because they have already done that. It is easier for people to
entry for this kind of project. Licenses are high quality and revisions of previous
versions of themselves. [53]

According to Rosen [57] for commercial companies the discussion of which open
source license to use often centers one or both of following issues:

1. “How can we make money from distributing this software under an open source
license? In essence, can our license help us sell free software?”

2. “How can we prevent others from making money unfairly from our open source
software? This is the so-called free- rider issue, where licenses reap all the
benefits of others' work with no return obligations.”

4.2.1 Making money from Open Source

Customers are often willing to pay for brand-name software [57], particularly if it
comes with support and other benefits. Names and reputations of the licensors are
excluded from several open source licenses. Licensors can protect their names and
reputations for personal profit. Krishnamurthy [66] introduces three ways on how
distributors can make money:

1. They provide the product on CD rather than as an online download. Most people
don't want to download the product from a web site. There is money to be made selling
the product in CD form.
2. There is money to be made in services such as support for installation and answering
technical questions. The creators of the software can be considered the best suited to
provide support.
3. Distributors can act as application service providers and help their clients get the
latest version of the product as well as updates on the product.

Licensor of open source software is always free to license his or her software under
other terms and conditions. Licensee may contact the licensor to determine if the
software is also available under a different license. [57]

4.2.2 The free rider problem

All licensees are free to copy and create derivative works without payment of royalties
to the licensor. If it is important to discourage free riders who create and distribute
derivative works, then a reciprocal (for example GPL) license is often more effective

4 OPEN SOURCE 21

than an academic (for example BSD) license. “At least with reciprocal licenses,
everyone is a free-rider of everyone else's distributed derivative works, because that
software is licensed under the same license.” To be able to avoid free riders, adopting
one of the non open source licenses should be considered, or try instead to make money
with a proprietary software distribution model. [57] According to Maxwell [62],
increasing the number of potential contributors help to avoid the free rider problem,
because “The larger the group of potential contributors, the better the odds that someone
individuals' personal cost/benefit calculations will lead them to participate and thus
contribute.”

4.2.3 Motivations for sharing Open Source software

Maxwell [62] discusses about reasons why people develop and share open source
software. One reason is altruism, the desire to be helpful to the open source community.
Some people rely less on financial rewards than on the positive feelings they get from
helping others. Programmers get the feeling of excitement and accomplishment from
writing a program or solving a difficult problem. A key reason why programmers are
attending to working with shared software is that they are attempting to solve a
technical problem of their own. “If an individual shares code that provides benefits to
others, that individual may benefit, both now and in the future, as others share code that
they have written.” Another reason why individuals participate to open source
development is increased reputation among their peers. This can lead to promotion or
give possibilities to getting a better job offers based on the enhanced reputation. One
reason to participate in open source development is to improve one's programming
skills.

4.2.4 Out-Licensing

Licensors decide what license to use for their open source software. If possible, an
existing template license should be used. Typical considerations when out-licensing
software are [57]:

• The key licensing factor is whether to use a reciprocal (GPL, MPL, CPL [60],
OSL [59]) or an academic (BSD, MIT, Apache, AFL [58]) license. “As a
licensor, do you want to be able to benefit from improvements made by others?
Do you want derivative works created by your licensees to be distributed under
the same license so that you can incorporate their improvements into your own
software?”

• If reciprocal license is selected, consider the scope of reciprocity obligation.
Licenses like GPL contain vague provisions about derivative and collective
works. Licenses like the MPL have a more narrow definition of derivative

4 OPEN SOURCE 22

works, requiring only files that are changed to be distributed under the MPL.
The CPL or OSL leave the term derivative works to be defined by the courts
under copyright law.

• Scope of any patent licenses that will be granted should be considered. Licenses
with explicit patent grants are the Mozilla, CPL, and OSL/AFL licenses. For
these licenses you should decide whether you wish to allow your patents to be
used for creating derivative works. (These licenses have subtly different patent
grants.)

• Are you prepared to grant a warranty of provenance (OSL/AFL licenses, and
similar “representations” in the MPL and CPL licenses), or do you prefer to
disclaim all warranties? (In some countries you may have to accept warranties
regardless of what your license says.)

• Do you want a defense against patent infringement lawsuits and should the
defensive strategy terminate only patent licenses (Mozilla and CPL licenses) or
both copyright and patent licenses (OSL/AFL licenses) for patent infringement
claims? “Is it sufficient to mandate an express condition that the software cannot
be distributed if there is a patent infringement claim against the software (i.e.,
the GPL license)?”

• “Do you want your license to be interpreted under copyright law only (i.e., the
GPL) or under both copyright and contract law (i.e., almost all other open source
licenses)?”

Rosen [57] advices consulting one's attorney before actually crafting or selecting a
license.

4.3 Things to consider when applying an open source
license

Hecker [61] addresses things that company has to do to implement an open source
strategy:

• If your open source product shares a common source code base with others of
your products that will remain proprietary, make sure that open-source
development can proceed without complicating your other internal development
efforts. (This may require licensing considerations and appropriate
modularization.)

• If your product includes technology licensed from the third parties, you must
treat third-party code specially to create a releasable product. Ways are removing
code entirely, seeking permission to include third-party code, or replacing it with

4 OPEN SOURCE 23

open source code providing equivalent or similar functionality. The presence of
third-party technology can also affect on selecting an open source license.

• To ensure that the source code is ready for public distribution, remove or revise
inappropriate language and comments intended for internal viewing only. Bugs
should be searched from the source code and fixed before releasing the source
code. Woods & Guliani [26] address that code should be organized in a way that
invites understanding, and that reveals at least some organization. Code should
be modularized and grouping of the modules together should have considered. A
naming convention should have been rigorously adhered to.

If the code files include code that is already licensed under certain license, like
XMLHttpRequest.js that is licensed under MIT-license, it is important to check that
those licenses are compatible with the chosen license.

4.4 Open Source Software Hosting Facilities

SourceForge [15] is a website for finding, creating and publishing Open Source
software for free. It offers custom project page and download status information.
SourceForge platform is Allura [52], which is released under the Apache license.

Launchpad [16,21] uses Bazaar version control system [51] for code hosting.
Launchpad includes bug tracking, code review, and translation tools. Launchpad source
code is released under AGPL-3.0 [41]. Launchpad offers users possibility to publish
project files for download. At first, the release must be recorded in Lauchpad.

In GitHub [19,20] public repositories are used to share Open Source software.
GitHub offers an option to include a software license when creating a new repository.
GitHub repositories can be accessed from Git [48] and Subversion [50] clients.

Google Code [22] offers project hosting with Git [48], Mercurial [49], and
Subversion [50]. It offers two gigabytes of storage space. Code browsing and code
review tools, issue tracker and project wiki are also included.

BitBucket [23] offers free source code hosting for Git [48] and Mercurial [49]. It
offers free, unlimited private repositories for up to five developers. Features include pull
requests and code reviews.

Codehaus [24] is environment for building open source projects. Codehaus accepts
only projects that have business-friendly licenses. Permitted and prohibited licenses are
listed in licenses page [67]. Projects hosted on the site are selected by reviewers,
existing Codehaus committers.

Gitorius [47] provides free code hosting for open-source projects that use Git [48].
Gitorius is free software licensed under GNU Affero General Public License version 3
[41].

4 OPEN SOURCE 24

4.5 Data management systems

This section introduces publishing systems for open source software. These systems are
presented here as an option for project code hosting places presented in section 4.4.

DSpace [37] is an open source repository application for academic, non-profit, and
commercial organizations building open digital repositories. It is free, easy to install
“out-of-the-box” and customizable to fit the needs of the organization. It preserves easy
and open access to all kinds of digital content including text, images, and datasets.
DSpace's code is currently licensed under the BSD license. DSpace version 4.2 can be
downloaded from the files area in SourceForge [38] or via GitHub [39]. DSpace
documentation is available at Duraspace [40].

CKAN [34] is a data management system that makes data accessible by providing
tools to streamline publishing, sharing, finding and using data. It is aimed at data
publishers wanting to make their data open and available. CKAN is licensed under the
terms of the Affero GNU GPL v.3.0 [41]. CKAN offers several ways for adding and
editing data: Directly via the web interface, using CKAN's JSON API [35], or via
custom spreadsheet importers. Searching includes keyword search, faceting by tags, and
browsing between related datasets. CKAN provides metadata (title, description, license)
for each dataset. It offers geospatial features covering data preview, search, and
discovery. For communicating and collaborating on data, CKAN offers comment and
discussion features, RSS/Atom feeds for changes and revisions, and possibility to
follow these changes. CKAN offers data storage and a resource page for uploading data
resources.

GO Publisher Workflow [36] is an enterprise data publication platform that
supports multiple data delivery types: via the download API, Zip archive, or WebDAV
[72]. GO Publisher Workflow is ideal for exchanging large data volumes using open
standards. Customers can download data using the Download API, fetching it directly
from the database, or GO Publisher workflow can push it to third-party Content
Management System.

4.6 An example: CoRED and GitHub

CoRED [75] is a web editor where multiple people can edit code at the same time. It is
available as open source under Apache 2.0 license. CoRED is developed at Tampere
University of Technology. The Source Code of CoRED [76] is available in GitHub. It is
possible to either clone the Git repository with HTTPS or Subversion, or download the
source code as a zip-package. License text can be viewed from the main page and
source code files including installation instructions can be viewed from cored-folder.

4 OPEN SOURCE 25

According to one of the developers Antti Nieminen, CoRED was published in
GitHub because it is easy to use, well-known, and trusted platform. There has been no
technical problems in publishing. Release hasn't got any attention or gathered outside
participants, but this was not the target of the release. To gather attention and
participants, it would require for example advertising and writing documentation, which
would help getting started. These things haven't been done much in this project.
Although the repository is public, it was meant to be used inside the project.

4.7 AVAA open-access publishing platform

AVAA [68] is presented here as one possible publishing place for open source data.
AVAA is an open-access publishing platform where users, such as research groups can
suggest their own web applications or web page presentations found on the server of
their own organization for publication in the application gallery. The purpose of AVAA
[69] is to: “offer a platform and web-based tools for different disciplines to enhance
accessability of open data.” AVAA portal includes:

• Interfaces and download functionalities for distributing research data.

• Applications for analyzing and visualizing data.

Data that is published via AVAA [69] can be stored to IDA Storage Service [70], or
on the data provider's or owner's own servers. Data and applications-page lists links to
research data and applications. The current applications in AVAA [68] are from different
disciplines, for example atmospheric sciences, geosciences, and language research. With
these applications user can for example download atmospheric data, study spreading of
pollution clouds on a map, or use OpenStreetMap-application trough interface service.
For Geosciences OpenStreetMap-application [71], there is also a link for downloading a
zip-package. There are also links to map-images in several formats including
WMS(Web Map Services), WMTS(Web Map Tile Service), and PNG.

4.7.1 IDA Storage Service

IDA Storage Service [70] is meant for storing data and metadata. The service is
intended for the projects of Finnish universities, universities of applied sciences and
projects of Academy of Finland. Universities and institutions have their own IDA
contact person, who anyone interested in using IDA should contact to. A user permit
application must be submitted to the contact person. Once the institution accepts the
application, it is signed by the IDA contact person and sent to the IT Center for Sciences
(CSC) [73].

4 OPEN SOURCE 26

IDA is based on open source iRODS [74] technology, which supports following
properties [70]:

• Data preservation: storage procedures, virus scans

• Data management: project group distribution, management of copies

• Reporting: project specific reporting on storage space used

• Haka user identification

iRODS is released under a BSD license.
IDA [70] is part of forthcoming long-term data preservation service and guarantees at

least three petabytes in storage capacity. The data owners can decide on openness and
usage policies for their own data. IDA can be used with different user interfaces,
browsers, online directories and command lines. All data stored to IDA must be
described in metadata. Metadata requirements include defining usage rights for the data.
URL-link to the actual license text must be declared as well as URL-links to license
contract document and usage rights description document.

4.7.2 Comparing AVAA and IDA with data management systems

Compared to other data management systems introduced in section 4.5, IDA has clear
instructions for applying user permits. Whereas DSpace is suitable for commercial
organizations, AVAA is more directed for the use of research organizations, like
universities. CKAN's [34] JSON api is used for adding and editing data, and in AVAA
the numerical data can be retrieved in JSON-format. AVAA and CKAN are both aimed
at data publishers wanting to make their data open and available. They also offer tools
to analyze and visualize data, as well as license information. If the data that is published
via AVAA is stored via IDA, then there is the same ability to store metadata that is also
available in DSpace and CKAN.

4.8 Proposal for license and publishing platform

License for HTML5 agent framework should be a copyleft license like GPL-3.0 or
AGPL-3.0. These licenses ensure that the software stays open, and other developers can
make improvements to the framework and develop new applications. Licenses are also
well known, high-quality, and revisions from previous versions of themselves. For
publishing place, GitHub would be suitable, if there is also need to host a project where
framework is further developed. GitHub is very popular with over eight million users
and over nineteen million repositories [77]. If there is no need for project hosting,
CKAN offers good features for publishing, finding, storing and managing data.

5 PRODUCTIZATION 27

5 PRODUCTIZATION

5.1 Introduction

According to [26], productization means making software work for the general case
and making it as easy as possible to use. According to [25] productization is a process
where software is converted for re-use into a product. The target of productization is
configurable application built upon a programming framework. Productized code is
typically easy to install, configure and use. Code is made using coding, file format and
interface standards. According to [11], productization includes technological elements
from designing a product to commercial elements of selling and distributing a product.
Products vary from standard “packaged” software products to customer tailored
software. Examples of packaged software products are word processing packages,
spreadsheets, business software, and operating systems.

Productization tends to came late to open source products. In many projects attitude
towards productization is dismissive. This weakens project's appeal to beginner and
intermediate skill levels in IT departments and other groups. Productization can help
making software available to a larger community. It can reduce the learning curve for
project participants. Lack of productization causes the company support costs or
customer frustration. [26]

5.2 Installation

Work that takes place during productization includes writing installation scripts,
creating graphical configuration tools, and creating engineering and end user
documentation. Installation is the process of fitting software into the environment in
which it will run. For an open source product, installation might mean unzipping the
source code, compiling the program, and then figuring out how to fit it into your
production or development environment. [26]

According to [27] installation precondition verification includes:

• Making sure that you have enough free space for the target application.

• “If your software requires any connections to other entities, check them before you
begin the actual installation.”

5 PRODUCTIZATION 28

Things to consider during the installation process [27]:

• Tell the user how much time the installation process will take.

• Provide the user information about installation progress. This can be provided with
the progress meter or via command-line or user interface.

• Record the operations performed and the actions taken during installation to the log
files. Capture user responses to questions raised by the installation.

• Make the installation process interruptible, with the expect that it will be interrupted
at least once.

• Or make the installation process self-aware, so that it can restart itself if needed.

• Other option is to provide an installation checklist that breaks up installation process
into series of smaller steps.

• Follow platform specific guidelines.

• Avoid asking unnecessary questions.

Postinstallation confirmation [27]

• Verify that the right files were copied to right locations, or execute the installed
software and invoke any number of manual and/or automated tests. Check if the
system is giving the right results. Log the results of postinstallation confirmation.

• Test installation and uninstallation.

• Provide automation scripts for your setup.

5.3 Configuration

Configuration [26] is the process of controlling the software's behavior. Mechanisms
controlling software behavior vary from settings in property files and databases to small
scripts that are executed at predefined points. Mechanisms can be undocumented, or
documentation can be in the form of comments included in property files. The best
programs have interactive environments for changing settings. For open source
software, mechanisms are found more trough trial and error or reading code, rather than
trough some comprehensive documentation.

Beginners need information about what settings are needed to make databases, web-
servers, and network ports to behave properly. For beginner and intermediate level users
the most useful documentation comprises a step-by-step tutorial of how to get a project
running.

Configuration principles according to [27]:

• Something should be a configuration parameter only if the system can't function
without it being set (such as a proxy server). Otherwise, make it a customization
parameter and provide a reasonable default.

5 PRODUCTIZATION 29

• Entities (a human, such as a system administrator; another system; or the system
itself) setting the configuration values need “to know what values to set, how to set
them (including formatting and valid values), why to set them, and their effect on
system operation.” This information should be given in the configuration file, not in
external document.

Configuration parameter heuristics according to [27]:

• Make the configuration parameters easy to change. Store them externally, in a
simple, easily managed nonbinary format.

• “Store all of the data in one location.”

• “Make configuration data easy to capture and forward to technical support.”

• “Make it hard to get the values wrong. If they are wrong, notify the user as soon as
possible and either stop execution or continue with sensible defaults.” Gather log
data while the system is running and offer it to the user. Give the user a possibility to
turn log data on and off while the system is running.

System needs to be configured before it begins execution, and during its operation.
It needs to be clear, is the configuration parameter used only during initialization, or can
it be changed while the system is running.

5.4 Software productization process

Product software is defined in [14] as “a packaged configuration of software
components or a software-based service, with auxiliary materials, which is released for
and traded in a specific market.” In [12] productization is defined as a transformation
process from developing customer specific software to product software. Software
productization process introduced in [12] consists of six different stages (see figure 5.1).

Figure 5.1: Software productization process [12]

5 PRODUCTIZATION 30

In stage 1 company has independent customer driven projects producing software
applications.

In stage 2 features or functionalities are reused across projects. Projects use
standardized features, but the amount of developed customized features is still larger.

In stage 3 the standardized part of the projects is larger than the customized part.
This stage is called product recognition, first step of creating a product. Storing and
managing customer requirements in one central place is important, because satisfying
customers is the main focus of this stage.

In stage 4 product is recognized and product platform is used as a basis. The focus
of satisfying the customers is decreasing and the focus of gaining more market share is
increasing.

Stage 5 is called standardizing product platform: “increasing the set of features that
form a common structure and introduce releases, from which still a stream of derivate
products can be efficiently customized, developed and produced.” Focus starts to
change from customer orientation to market orientation. Customer specific parts can be
created if necessary.

In stage 6a there is a need for customizable part on product. Compared to stage 5,
releases are the same for each customer.

Stage 6b is defined as standard software product. No customized features are
included in product and product is completely configurable. [12]

6 INSTALLATION GUIDE 31

6 INSTALLATION GUIDE

This installation guide is made for Ubuntu 12.04 LTS. Guide is valid for platforms with
64-bit operating system, 2 Gigabytes of memory, and AMD Turion 64 X2 Mobile
Technology-processor. Installation guide was made with a laptop computer.

6.1 Unpacking files

Download LakeusSrc.tar.gz-package and unzip it to new folder. In this example
LakeusSrc-package is downloaded to the home folder (/home/username).

Open terminal window and check (with ls -l) that you have LakeusSrc.tar.gz-package in
your home folder. Extract tar.gz-package:

$ tar -zxvf LakeusSrc.tar.gz

After this command you should have a folder named LakeusSrc in your home folder,
including all agent platform files.

6.2 Preparations for testing the installation

To test the installation of the agent framework with an example gmonitor application on
a local server, the agent must be configured. Configuring the agent is done by
modifying configuration.js-file, which includes URLs to:

• The origin server of the agent,

• list view of executing agents in server,

• agent server, where agent is uploaded. [3]

An example gmonitor application also needs URL to server where agent gets load
average data. Function that returns this URL is called loadavUrl in the configuration-
file.

The origin server of the agent is responsible for maintaining and serving all the
agent platform files. Agent server receives the description of the agent in an HTTP
POST request [6]. In the list view, a list of active agents running in the agent server is
shown. List shows the id, URL, and running status of agents.

6 INSTALLATION GUIDE 32

6.3 Fitting agent platform to own environment

Go to folder where you unzipped LakeusSrc-package and open configuration.js-file.
Modify the return values shown in listing 6.1. You can change different host and port for
each URL (an example is shown in listing 6.1 and concrete values for this example in
listing 6.2.) In this example the new hosts are named myhost1, myhost2, and myhost3.

New ports are port1, port2, and port3. In test configuration all servers are on the same
host, so all hosts are named as localhost. If your servers are running on different
devices, you have to make different configuration for each device (in this case the port
numbers can be the same on each configuration). You can modify the return values of
the following functions:

• listUrl: Returns URL to list view of executing agents in server. Host and port
number are the same as in uploadUrl. /list (HTTP GET) gets a list of active agents as
an HTML-file that can be shown in browser [5].

• uploadUrl: Returns URL to server where agent will be uploaded. The server can
be running on different device than the origin server of the agent. In this case
host part must be modified. /upload (HTTP POST) sends URLs to agent code
and user interface together with serialized state [5].

• applicationUrl: Returns URL to origin server of the agent. Knows the location of
the JavaScript and HTML-files needed to run the agent application.

• loadavUrl: Returns URL to server where agent starts asking load average data. If the
server is on different device, host must be modified. This URL is not part of the
agent platform, and is modified because an example gmonitor application uses it. [3]

More information about these URLs can be found from section 3.3. Script for

changing these URLs from the command line is described in section 6.9. Modifications
that help to change the ports of agent-, file-, and load-servers have been described in
section 6.10.

Listing 6.1: Highlighting the modifiable parts of URL.

LakeusSrc/configuration.js

this.listUrl = function () {
return "http://myhost2:port2/list";

}
this.uploadUrl = function () {

return "http://myhost2:port2/upload";
}
this.loadavUrl = function () {

6 INSTALLATION GUIDE 33

return "http://myhost3:port3";
}
this.applicationUrl = function () {

return "http://myhost1:port1";
}

Listing 6.2: Concrete example of modified values:

LakeusSrc/configuration.js

this.listUrl = function () {
return "http://localhost:8891/list";

}
this.uploadUrl = function () {

return "http://localhost:8891/upload";
}
this.loadavUrl = function () {

return "http://localhost:8892";
}
this.applicationUrl = function () {

return "http://localhost:8890";
}

If you want to test installation with an example gmonitor application, edit script src-
value in gmonitor.html. Modifiable parts are shown in listing 6.3 and concrete example
values in listing 6.4.

Listing 6.3: Highlighting the modifiable parts of URL:

LakeusSrc/gmonitor.html

<script src="http://myhost2:port2/configuration.js"></script>

Listing 6.4: Concrete example value:

LakeusSrc/gmonitor.html

<script src="http://localhost:8890/configuration.js"></script>

Change the original host and port of the URL so that they match the host and port of
your application server. This ensures that the gmonitor application running on browser
can get the configuration.js-file.

http://localhost:8891/list
http://localhost:8890/configuration.js
http://localhost:8890/configuration.js
http://localhost:8890/configuration.js
http://myhost1:8000/configuration.js
http://localhost:8891/list
http://localhost:8891/list
http://localhost:8891/list
http://localhost:8891/list

6 INSTALLATION GUIDE 34

6.4 Node.js installation

Because servers have been implemented with node.js, it must be installed before servers
can be started.

Open new terminal window. Easiest way to open a new terminal window is to press Ctrl
+ Alt + T. To install nodejs manually, do following steps [4]:

1. Install nodejs. It is needed to run agent-, load-, and file-servers:
$ sudo apt-get install nodejs

2. Install curl, which is needed to get npm installation script from npmjs website:
$ sudo apt-get install curl

3. Install Node package manager, which is needed for installing mime- and socket.io-
packages. To install npm, run script npminst.sh from lakeus-folder.
$ sudo ./npminst.sh

Optionally, you can run installer from npmjs web page:
$ curl https://www.npmjs.org/install.sh | sudo sh

4. Install mime-module to nodejs:
$ sudo npm install mime

5. Current agent server also needs socket.io module for messaging with client:
$ sudo npm install socket.io

6.5 Starting the servers manually

If you want to start servers manually, open new terminal window and move to
LakeusSrc-folder. Do following steps:

1. Start fileserver:
$ node fileserver.js

2. Open new terminal window and move to LakeusSrc-folder. Start loadserver:
$ node loadserver.js

3. Open new terminal window and move to LakeusSrc-folder. Start agentserver:

6 INSTALLATION GUIDE 35

$ node agentserverindex.js

Now you should have three terminal windows open, one server running on each.

6.6 Starting the servers by using a script file

Open new terminal window. You can start servers by running the script:

$./start-servers.sh

You can check if the servers are running:

$ ps -ef | grep "node.*server.*.js"

Figure 6.1 shows command-line output when servers are started, and started servers are
listed. The log-files of servers can be found from LakeusSrc/logs-folder. Log-files are
also in html-form: Go to logs-folder and open file index.html with your browser. You
should see a page with links to log-files. Press wanted log-file name to see the contents.
You can also see the log-files by pointing your browser to
applicationURL/logs/index.html.

6 INSTALLATION GUIDE 36

You should have three servers running: fileserver.js, loadserver.js, and
agentserverindex.js. If a server is missing from listing you should check error output
from a server log-file.

6.7 Testing the installation with gmonitor

To test installation of the agent framework with an example gmonitor application (figure
6.2), point your browser to applicationURL + “/gmonitor.html”. In this example it is
http://localhost:8890/gmonitor.html.

Figure 6.1: Starting servers and checking that servers are running

6 INSTALLATION GUIDE 37

Gmonitor starts asking load average data from the loadavUrl that you have defined
earlier. In this example the loadavUrl is http://localhost:8892. When you press upload-
button, the state of the agent is serialized and agent is transferred to the agent server.
Listing 6.5 shows the example of an agent description from the agent_log-file.

Listing 6.5: Example agent description.

LakeusSrc/logs/agent_log_xxxx

{"auri": "http://localhost:8890/gmonitor.js",
 "huri": "http://localhost:8890/gmonitor.html",
 "id": "241594",
 "curi": "",
 "variables": { },
 "memory": {

Figure 6.2: gmonitor application

http://localhost:8892/

6 INSTALLATION GUIDE 38

 "high": 0.98583984375,
 "low": 0.833984375,
 "count": 4,
 "history": [0.984375,0.98583984375,0.90673828125,0.833984375]}
}

An agent description contains the following information [6]:

• auri: “a URL that points to the JavaScript-file of the application.”

• huri: a URL that points to HTML-file, the user interface of the application.

• id: “unique ID of the agent instance.”

• variables/memory: “local state in terms of names and values of local variables.”

In the user interface, a list of active agents is shown. List shows the id, URL, and
running status of agents.

6.8 Automatizing Node.js installation

Node.js installation script does the steps 1-5 defined in chapter 6.4. It installs node.js
and uses npm to install mime- and socket.io-modules. Script is shown in listing 6.6.

Listing 6.6: nodejs_install script.

LakeusSrc/nodejs_install.sh

#!/bin/sh

sudo apt­get install ­y nodejs
sudo apt­get install ­y curl
sudo ./npminst.sh
sudo npm install mime
sudo npm install socket.io

Script can be started from terminal window with ./nodejs_install.sh-command.

6.9 Automatizing the changing of URLs

change_urls.sh (listing 6.7), is a shell-script for changing configuration URLs to
configuration.js-file from command-line. Script can be started from terminal window
with bash change_urls.sh-command. Script automates changing configuration-file
URLs that was made in chapter 6.3 by changing configuration-file directly in editor.

6 INSTALLATION GUIDE 39

Listing 6.7: change_urls.sh

LakeusSrc/change_urls.sh

#!/bin/sh

Copy configuration.js to backup­file
cp configuration.js configuration_backup.js

Get all URLs from configuration­file
array=($(grep http ./configuration.js | grep ­Eo '["].*["]'))

Get all URL­names from configuration­file
array2=($(grep this. ./configuration.js | grep ­Eo '[.].*[l]'
| tr ­d .))

Splitting array to get only url names
array2=("${array2[@]:0:6}")
#printf "%s\n" "${array2[@]}"
declare ­i j=0

for i in "${array[@]}"
do
 url=$i
 # Saving default URL to new_url­variable
 new_url="$url"
 name="${array2[$j]}"
 # Printing the name of url
 printf "\nSet new $name:\n"
 # Print new line with default url
 read ­i "$url" ­e newline

 #If new line is not empty, new line is saved to new_url­
variable
 if [­n "$newline"]
 then new_url="$newline"
 fi

 # Replace URL with new URL in configuration.js­file
 sed ­e '/'$name'/{ N; s#'$url'#'$new_url'#g }'
"configuration.js" > "configuration.js.tmp" &&
mv "configuration.js.tmp" "configuration.js"

6 INSTALLATION GUIDE 40

j=$((j+1))
done

Configuration-file is stored to backup-file (configuration_backup.js) so that user can
restore it if something goes wrong when setting new URLs. Script finds URLs and
URL-names from configuration.js file using grep. Script stores URLs and URL-names
to arrays. Script goes url-array trough in for-loop and asks user to set new URL. New
URL is changed to configuration-file using sed. If user enters empty line, the old URL is
stored to configuration-file. Sed uses tmp-file to restore changes if changing URL
causes an error.

6.10 Removing hard-coded server port number-values

6.10.1 parsePort-function

As mentioned earlier in section 3.3, there were hard-coded port number-values in the
fileserver.js-, agentserver.js-, and loadserver.js-files. Problem arises in a situation, where
user changes port number of certain configuration URL to configuration file, but doesn't
change port number to server file. If user changes applicationURL port, the port number
should be changed to fileserver.js-file as well. Otherwise application wouldn't start in
browser. To solve this kind of problem, modifications to the configuration-file have
been done to get the port numbers directly from configuration URLs. New parsePort-
function (listing 6.8) is added to configuration-file for parsing agent-, file-, and load-
server ports from URLs.

Listing 6.8: Function for parsing port from URL.

LakeusSrc/configuration.js

this.parsePort = function (url) {
var arr1 = url().split("/");
var arr2 = arr1[2].split(":");
return arr2[1];

}

parsePort-function splits URL into parts using “/”-marks as a delimiter. Split parts
are stored to arr1-array. The part of the URL including host and port divided by “:”-
mark is then split and stored to arr2-array, and second item of array is returned.

6 INSTALLATION GUIDE 41

6.10.2 serverPort-functions

Agent-, file-, and load-servers are calling different function to get the port-value.
These functions are agentserverPort, fileserverPort, and loadserverPort (listing 6.9).

 Listing 6.9 Functions returning server ports.

LakeusSrc/configuration.js

this.agentserverPort = function () {
return this.parsePort(this.uploadUrl);

}

this.fileserverPort = function () {
return this.parsePort(this.applicationUrl);

}

this.loadserverPort = function () {
return this.parsePort(this.loadavUrl);

}

These functions call parsePort-function for getting the port from right URL and
return the result of parsePort-function to servers.

7 PROGRAMMING GUIDE 42

7 PROGRAMMING GUIDE

7.1 Generic agent class

Generic agent [3] is the base class for each agent application. Generic agent should not
be instantiated, because its purpose is to provide the generic parts of the agent to all
agent applications. Inheritance between the generic agent and the application agent is
done by using functional inheritance pattern described in [32].

7.1.1 Functions

Generic agent is responsible for preserving the agent state. Saving inner state of agent is
done using registerVar(variable name) -function. It registers variables to the state of the
agent.

Another function for the state management is:

• setMemory(variable list): Resets the memory of the agent to the given variable
list. Clears all the previously saved memory variables and their data.

Functions for serialization and transfer management:

• serialize(): Returns agent description. This method is for the framework and not
usually called from the application code.

• preupload(): Used when agent needs to do something before the upload. Generic
agent has no implementation for preupload.

• upload(): Calls serialize-function and transfers the agent description to the
server.

Functions for the execution management (of the agent) are:

• continueWork(): Initializes the arriving agent and returns the agent variables and
(memory) in restart of the agent.

• setRunInterval(interval value): Sets the interval in milliseconds for the calls of
work()-function.

• work(): Defines what agent is supposed to do (in defined intervals). Generic
agent has no implementation of work-function.

7 PROGRAMMING GUIDE 43

• setWork(name of work-function): Sets the defined work-function for the agent.
Enables the use of other function name than work. Changing work-function
during the agent execution is possible.

• start(): Starts agent.

• stop(): Stops agent execution.

• getRunning Status(): Gives the status information of agent. Used when agent is
in server.

• isInServer(): Returns true if agent is in server, otherwise returns false.

[3]

7.1.2 Variables

In order to get the agent state private, variables and functions are assigned to members
of that [32]. that is a variable where all the functions and variables that application
agent has access should be saved.

• src contains URL to JavaScript-file, functionality of the application. Src can be
an array of URLs to the JavaScript-files, if the agent consists of multiple files.

• html contains URL to the html-file, user interface of the application, which has
references to CSS-files and other needed files, like image files. [3]

7.2 Application agent

Application agent [3] is a concrete implementation of an application that can travel
between browser and server. Application agent's variable that should include all
variables that are saved to memory so generic agent can find them.

7.2.1 Compulsory functions for application agent

• work(): Things agent needs to do to update it's state, for example query data. (If
work() -function should be changed, agent must be stopped before setWork()
-call and started after setWork() is called.)

• continueWork(): Initializes or resets application specific parts that are not saved
in memory or variable list of an agent. (E.g. Values of drop down menus in
browser). Also setRunInterval()- and start()-functions of the generic agent
should be called in this function. [3]

7.2.2 Additional compulsory functions for application agent

• CreateAgentObject(location of the javascript and html-files of the agent) is a
factory method that creates agent application object without including

7 PROGRAMMING GUIDE 44

application specific code to the agent server. This function is needed in both
browser and server.

• InitExecution() is called in HTML-body, agent is initialized and started before
UI is shown to the user using onLoad()-function. [3]

7.3 Creating an example agent application

When starting to create an application agent, general guidelines introduced in [3]
section 5.1 should be followed. This tutorial explains the steps of creating a simple
agent application that increases index on each call of work-function. Functionality of the
application is written in index_count.js-file and user interface of the application in
index_count.html-file.

Listing 7.1 shows the first steps in creating a constructor: Variable that and a new
instance of Agent-class are created. Application variable index is initialized and saved to
the memory of the agent with registerVar-function.

Listing 7.1: Initializing and registering the agent variables.

LakeusSrc/index_count.js

function Count(src,html){

 var that = new Agent(src,html);

 that.index = 0;
 that.registerVar('index');

In second step (listing 7.2) application specific continueWork-function is extented to
variable that.continueWork is used for initializing the agent. Interval for the calls of
work-function is set in restartWork-function.

Listing 7.2: Extending continue work-function.

LakeusSrc/index_count.js

var agentContinueWork = that.continueWork;

that.restartWork = function(){
 this.setRunInterval(4000);
}

7 PROGRAMMING GUIDE 45

Function work (listing 7.3) for increasing the index is extended to variable that. In
work-function index is increased and printed.

Listing 7.3: work-function.

LakeusSrc/index_count.js

that.work = function(){
 that.index = that.index + 1;
 document.getElementById('index').innerHTML = that.index;
 console.log('Index: ' + that.index);
};

Application uses the same upload-function that is defined in Agent.js-file. Upload-
function is used for serializing agent state and sending it to server. Variable that is
returned in the end of constructor.

After creating a constructor, separate createAgentObject-function is created for
creating new Count-agent. Function is showed in listing 7.4.

Listing 7.4: Creating new Count-agent.

LakeusSrc/index_count.js

function createAgentObject(src, html){
 return new Count(src, html);
}

initExecution-function is created for initializing agent execution. Function creates
src- and html-variables and calls createAgentObject and continueWork-functions.
InitExecution-function is showed in listing 7.5.

Listing 7.5: Initializing agent execution.

LakeusSrc/index_count.js

function initExecution(){
 var src = configuration.applicationUrl() +

"/index_count.js";
 var html = configuration.applicationUrl() +

"/index_count.html";
 agent = createAgentObject(src, html);
 agent.continueWork();

7 PROGRAMMING GUIDE 46

}

Next step is to create index_count.html-file for the user interface of the application.
Application is shown in figure 7.1.

index_count.html-file is shown in listing 7.6.

Listing 7.6: index_count.html.

LakeusSrc/index_count.html

<!DOCTYPE html>
<html>
<head>

<title>Index count</title>
<meta name="viewport" content="width=device­width">

<script
src="http://localhost:8890/configuration.js"></script>

<script>
configuration.downloadAgent("index_count.js")

</script>
<style> h1{font:30px Times New Roman}</style>

</head>

<body onload=initExecution()>

Figure 7.1: Index count

7 PROGRAMMING GUIDE 47

<h1>Index Count</h1>
<div style= height:20px></div>
Index:

<div style= height:40px></div>
<input type='button'
onclick="agent.upload()"
value="upload">

</body>
</html>

In the head tag, configuration.js-file is first downloaded from application server, and
then index_count.js-file is downloaded using downloadAgent-function in the
configuration-file. Agent execution is started by calling initExecution-function. When
user presses upload-button, the upload-function of the agent is called and agent is sent
to the agent server.

7.4 Adding new values and functions to Count-agent

Second example is build using index_count.js-file as a basis of both agent applications.
Purpose of this example is to show how agent-to-agent communication works.
Application that counts compound interest is created (see figure 7.2). It multiplies the
starting value with a certain multiplier and continues to multiply the result value of
previous count on each execution of work-function. Counting is done in phases, because
intermediate results are stored and shown to user.

In section 7.5, communication component is added to counting application for
sending the counting results to receiver agent, which receives the counting results and
shows them to user. Application codes are written in count.js- and receiver.js-files, and
user interfaces in count.html- and receiver.html-files.

7 PROGRAMMING GUIDE 48

New values are added to Count-agent constructor (see listing 7.7):

• Starting value for count,

• multiplier,

• result,

• results-array for storing several intermediate results is created,

• index for count (number of years).

Listing 7.7: New values in Count-agent constructor.

LakeusSrc/count.js

that.startValue = 10;
that.multiplier = 1.2;
that.result = 0.0;
that.results = new Array();
that.index = 0;

that.registerVar('startValue');
that.registerVar('multiplier');
that.registerVar('result');
that.registerVar('results');
that.registerVar('index');

Figure 7.2: Compound interest count user interface

7 PROGRAMMING GUIDE 49

Counting is done by calling multiply-function from work-function. In multiply-
function (listing 7.8) provisional result is multiplied with multiplier and result is stored
to result-variable and results-array. Index is increased by one.

Listing 7.8: Multiply-function.

LakeusSrc/count.js

 // Does the counting and stores results
 that.multiply = function(){

console.log("in multiply");
value = that.result;
if(value === 0){
 value = that.startValue;
}
result = parseFloat(value) * parseFloat(that.multiplier);
// result is the next value to be multiplied

 that.result = result.toFixed(3);
that.results.push(result.toFixed(3));
that.index = that.index + 1;

 };

Work-function (listing 7.9) calls multiply-fuction for counting, updateView-function
for showing results in browser, and sendMessage-function to send result-values.

Listing 7.9: Work-function for Count-agent.

LakeusSrc/count.js

// work­function that calls multiply for counting
// and sendMessage for sending the results.
that.work = function(){

that.multiply();

// Show results in browser
that.updateView();

// For server to show results
console.log(that.result);
console.log(that.results.slice(0,that.results.length­1));

// Sends message to another agent
that.sendMessage();

7 PROGRAMMING GUIDE 50

 };

When the agent is uploaded to server, counting index is shown as a running status.

7.5 Getting the communication working

Currently it seems that the working version of socket.io npm package is 0.9.4.
Open terminal window. Install socket.io and socket.io-client:

$ sudo npm install socket.io@0.9.4
$ sudo npm install socket.io-client@0.9.4

When the agent server is started from terminal, text “socket.io started” should be
shown. CommunicationUrl in configuration.js-file should be set as
"http://myhost:myport", where myhost is the hostname of your agentserver and myport
is the port number of your agentserver.

In this example the communicationUrl is "http://localhost:8891".
CommunicationUrl must be configured to ensure that the communication component
communicates with the agent server. Communication component should be required at
the beginning of agentserver_handlers.js-file. The beginning of the file should include
the line:

var CommComponent = require("./communication.js").CommComponent;

Without requiring the communication component, uploading agent won't work.

7.5.1 Sending information from agent to another agent

Information sending from agent to another agent is made using the communication
component. At first, communication component is required from communication.js-file
at the beginning of count.js-file. Then a new CommComponent-variable is initialized in
Count-agent constructor (listing 7.10). Callback-function is given as a parameter, so that
communication component can provide the received information to Count-agent.
Namespace where communication component will be connected is set as “count” by
calling the setNameSpace-function. After that connection to the agent server is
initialized and communication namespace is created by calling the initIO-function.

Listing 7.10: Creating and initializing communication component.

LakeusSrc/count.js

7 PROGRAMMING GUIDE 51

 that.commComponent = new CommComponent(function(message) {
//alert(message);

});
that.commComponent.setNameSpace("count");
that.commComponent.initIO();

Counting parameters and results are send to receiver agent by calling sendMessage-
function of communication component (listing 7.11). One array for all values is created,
and another array for counting parameters. Then counting parameters are added to
parameters-array. Parameters- and results-arrays are added to allData-array, which is
passed as a parameter to sendMessage-function.

Listing 7.11: Calling sendMessage-function.

LakeusSrc/count.js

 that.sendMessage = function(){
var allData = new Array();
var parameters = new Array();

parameters.push(that.startValue);
parameters.push(that.multiplier);
parameters.push(that.index);

allData.push(parameters);
allData.push(that.results);

that.commComponent.sendMessage(allData);
 };

In count.html-file, socket.io from agent server must be included, because
communication component requires socket.io-client to be able to work. Communication
component from file communication.js must also be included. Files are included as
script src-values:

<script src="http://localhost:8891/socket.io/socket.io.js"></script>
<script src="http://localhost:8890/communication.js"></script>

These lines are located between the <head>-tags in the count.html-file.

7 PROGRAMMING GUIDE 52

7.5.2 Receiving information from Count-agent

New Receiver-agent (figure 7.3) is created for receiving results from Count-agent.

When creating new communication component (listing 7.12), callback-function is
given as a parameter. Inside callback function the received message is stored to local
msg-variable and shown in console and user interface. When receiver-agent is at server,
received result is shown as a running status.

Listing 7.12: Creating communication component

 LakeusSrc/receiver.js

 that.commComponent = new CommComponent(function(message){
that.msg = message;
console.log(message);
that.updateView();

 });
 that.commComponent.setNameSpace("count");
 that.commComponent.initIO();

Figure 7.3: Message receiver user interface

7 PROGRAMMING GUIDE 53

Setting namespace and initializing connection are done same way as in Count-agent
constructor. Namespace must be the same as the namespace set to Count agent, so it is
set to “count”.

8 EVALUATION 54

8 EVALUATION

This chapter contains an evaluation of installation and programming guides based on
installation and configuration principles and general user manual and technical writing
guidelines. According to [27] the most useful form of documentation for beginner and
intermediate level users is a step-by-step tutorial of how to get a project running. This
principle has been followed in chapter 6 and 7 by writing them in tutorial form.

Things that entities (a human, such as a system administrator; another system; or the
system itself) setting the configuration values must know are [27]:

• What values they can set,

• how they can set the values,

• why they have to set the values,

• and how the values effect on system operation.

Installation guide's section 6.3 explains user what kind of URLs there are and what is
their purpose. Then an example is shown where the configuration URLs are changed
directly to the configuration-file.

From the installation principles described in section 5.2, only the one that advices to
provide information about installation process to the user realizes, because node.js
installation informs user what is being done by printing information to the terminal
window. From the postinstallation configuration principles, the one that tells to execute
installed software realizes, because in the installation guide the user is advised to test
the installation of the agent framework with an example gmonitor application.

Following the configuration parameter heuristics described in chapter 5.2, the
configuration parameters have been made easy to change by providing a configuration
script for changing the URL-values from command-line. If user enters empty line,
previous URL is stored to configuration-file. This configuration script is only meant to
be used before the system is running. Scripts that enable configuration changes while
the system is running could also be made. Graphical user interface for changing
configuration, or ability to easily change configuration files by defining agent manifest
files mentioned in [3] would be even better than the command-line based configuration.

In [42] a list of techniques is presented that might help writers to engage their
audience. One advice for the writer is to “Be sure the sense of a paragraph does not rely
on its title.” This advice is important, because some of the readers might skip over
subtitles, headings and introductions. In this thesis, the first paragraphs of the

8 EVALUATION 55

installation and programming guides explain the mission of the chapter, so chapters are
not relying on their title.

Ganier [43] gives design principles for improving procedural instructions. One of
them is to use clear, precise and prominent headings to facilitate comprehension and
execution of the instructions. In installation and programming guides headings are
mostly named by the task or subject (class, filename) which is explained in the chapter.

Execution of the action is easier if the presentation order corresponds to the
execution order [43]. The installation guide follows this advice by processing things in
same order they should be executed. The execution steps should be numbered and
presented in a vertical sequence to improve readability of the instructions and to allow
users to find specific information more quickly [43]. In the installation guide, node.js
installation instructions as well as instructions for starting the servers follow this advice.

In [44], using a conversation style and active verbs in user manuals is recommended
to make the sentences simpler and shorter, define the responsibility of the action, and
make the text more interesting. This advice has been followed in chapter 6 (in sections
6.1-6.7).

Using graphics, numbered or bulleted lists, charts, or tables instead of text is
recommended where practical. Reason to use graphics, lists, charts, or tables is
mentioned in [44]: “These consolidate related information in a logical format and
reduce the amount of text a reader must digest.” In chapter 6, both numbered and
bulleted lists have been used when describing the configuration URLs and explaining
node.js installation steps. In chapter 7, functions and variables are presented as bulleted
lists. Sommerville [45] advices that facts should be presented in a list rather than in a
sentence.

Kennedy [46] advices to get to the point and avoid wordiness and repeating same
things many times. Installation steps are explained in a very simple, short way in the
installation guide. Installation guide introduces two ways for installing node.js and
starting the servers. That's why user can skip some parts of the installation guide, and
that's why some things like opening a new terminal window must be repeated many
times.

9 CONCLUSIONS 56

9 CONCLUSIONS

This thesis provided basic information about mobile agent platforms and a short
description about the agent platform used in this thesis. The term productization was
explained, and especially installation and configuration principles during productization.
A software productization process was also briefly described.

Main purpose of this work was to prepare a mobile agent platform for publishing by
writing an installation and a programming guide for the platform. Open source licenses
were studied, as well as open source software hosting facilities and data management
systems. Productization in this thesis included installing the agent platform: Unpacking
code, installing node.js and npm-modules, and configuring URL-values in
configuration-file. These steps were then documented to the installation guide. Starting
agent servers and installation testing with an example gmonitor application were
explained. A script for node.js installation was made, as well as a script for changing
URLs easily from command-line. Script-files are described in listing 9.1.

Listing 9.1: Script-files

Filename Purpose of file

nodejs_install.sh Installs node.js. Installs mime- and
socket.io-modules to node.js.

change_urls.sh User can modify configuration URLs from
command line and changes are made
directly to the configuration-file.

New functions were added to the configuration-file to offer port numbers of servers
directly from the configuration-file instead of having hard-coded port-number values in
each server file. Server-files were modified to call these functions. Communication
component variable was included to agentserver_handlers.js-file. All modified files are
listed and modifications are explained in listing 9.2.

Listing 9.2: Modified files
Filename Modifications Purpose of modifications

agentserver_handlers.js Included communication
component-variable.

Getting agent-to-agent
communication working

9 CONCLUSIONS 57

when one of the agents is
uploaded to agent server.

configuration.js Added new parsePort-
function that parses agent-,
file-, or load-server ports
from configuration URLs.

Getting server port directly
from configuration URL.

configuration.js Added new serverPort
-functions to get agent-,
file-, or load-server ports
from configuration-file.

Functions that agent-, file-,
and load-servers can call to
get the port-number from
configuration URL.

agentserver.js Calls agentserverPort-
function of configuration-
file to get the port directly
from configuration URL.

Removed hard-coded
agentserver port number.
Agentserver port must be
changed only to
configuration-file.

fileserver.js Calls fileserverPort-
function of configuration-
file to get the port directly
from configuration URL.

Removed hard-coded
fileserver port number.
Fileserver port must be
changed only to
configuration-file.

loadserver.js Calls loadserverPort of
configuration-file to get the
port number directly from
configuration URL.

Remover hard-coded
loadserver port number.
Loadserver port must be
changed only to
configuration-file.

Classes and variables for generic and application agent were introduced in the
programming guide. Examples for creating an agent application and using agent
functions were presented. Communication component usage was described with an
example, where agent sends counting results data to another agent. New files created for
the examples are described in listing 9.3.

Listing 9.3: New code files

Filename Purpose of file

index_count.js Example agent application that counts index. Getting
started with coding agent application with the agent
platform.

index_count.html User interface of index_count-application.

count.js Example agent application that counts compound interest
and sends counting results to receiver-agent. Trying
agent-to-agent communication using communication

9 CONCLUSIONS 58

component.

count.html User interface of count-application.

receiver.js Example agent application that receiver counting results
from count-agent application and shows results in user
interface.

receiver.html User interface of receiver-application.

Installation and programming guides were evaluated based on installation and
configuration principles and general user manual and technical writing guidelines.

59

REFERENCES

[1] Braun, P. Rossak, W. Mobile Agents: Basic Concepts, Mobility Models, and the
Tracy Toolkit, 2005. Science Direct E-book, pp. 7-213.

[2] Mitrović, D., et al., Radigost: Interoperable web-based multi-agent platform. J. Syst.
Software (2014), http://dx.doi.org/10.1016/j.jss.2013.12.029.

[3] Järvenpää, L. Development and evaluation of HTML5 agent framework. Master of
Science Thesis.

[4] GitHub. Istalling Node.js via package manager. [WWW]. [Referred 28.5.2014].
Available: https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager.

[5] Järvenpää, L et al. Mobile Agents for the Internet of Things. IEEE, 2013.

[6] Systä, K., Mikkonen, T., Järvenpää, L. HTML5 Agents – Mobile Agents for the
Web. Springer-Verlag Berlin Heidelberg, 2011.

[7] Borselius, N. Mobile Agent Security. Electronics & Communication Engineering
Journal, October 2002.

[8] Aglets. [WWW]. [Referred 24.6.2014]. Available: http://aglets.sourceforge.net/.

[9] Wong, D et al. Java-Based Mobile Agents. Communications of the ACM, March
1999/Vol. 42, No. 3.

[10] Dömel, P. Mobile Telescript Agents and the Web. Compcon '96. Technologies
for the Information Superhighway, Digest of Papers, 1996, pp. 52-57.

[11] Hietala, J., Kontio, J., Jokinen, J., Pyysiainen, J. Challenges of Software Product
Companies: Results of a National Survey in Finland. 10th International Software
Metrics Symposium, 2004, pp. 232–243.

60

[12] Artz, P., Van De Weerd, I., Brinkkemper, S., Fieggen, J. Productization:
Transforming from Developing Customer-Specific Software to Product Software.
Lecture Notes in Business Information Processing, 2010, Vol.51, pp. 90-102.

[13] Meyer, M.H., Seliger, R. Product platforms in software development. Sloan
Management Review vol. 40, 1998, pp. 61–74.

[14] Xu, L., Brinkkemper, S. Concepts of product software. European Journal of
Information Systems vol. 16, no. 5 (Oct 2007), pp. 531-541.

[15] SourceForge. [WWW]. [Referred 9.8.2014]. Available: http://sourceforge.net.

[16] Lauchpad. [WWW]. [Referred 9.8.2014]. Available:
https://help.launchpad.net/Projects/FileDownloads#Publishing_files.

[17] Open Source Licenses. [WWW]. [Referred 10.8.2014]. Available:
http://opensource.org/licenses.

[18] Choosing Open Source License. [WWW]. [Referred 11.8.2014]. Available:
http://choosealicense.com/licenses/.

[19] GitHub help. Open Source Licensing. [WWW]. [Referred 11.8.2014]. Available:
https://help.github.com/articles/open-source-licensing.

[20] GitHub help. Support for subversion clients. [WWW]. [Referred 11.8.2014].
Available: https://help.github.com/articles/support-for-subversion-clients.

[21] Launchpad software collaboration platform. [WWW]. [Referred 11.8.2014].
Available: https://launchpad.net/.

[22] Google Project Hosting. [WWW]. [Referred 12.8.2014]. Available:
https://code.google.com/projecthosting/.

[23] BitBucket. [WWW]. [Referred 12.8.2014]. Available: https://bitbucket.org/features.

[24] Codehaus. [WWW]. [Referred 12.8.2014]. Available: http://www.codehaus.org/.

[25] YoLinux.com. Software Productization: Software Architecture and Design for
Productization: Description of software architecture, design and concepts to support

http://www.nelliportaali.fi/V/M8HIAIS4YX9N786H8D5KVUERCQTTPAM21AVEE39HYSXNTYHB4K-07135?func=quick-3&short-format=002&set_number=026064&set_entry=000001&format=999#

61

software “productization”. [WWW]. [Referred 7.9.2014]. Available:
http://www.yolinux.com/TUTORIALS/SoftwareArchitecture-Productization.html.

[26] Woods, D. Guliani, G. Open Source for the Enterprise: Managing Risks, Reaping
Rewards. O'Reilly Media, 2005. p. 9, 21,72. pp: 29-44, 105-126.

[27] Hohmann, L. Beyond Software Architecture: Creating and Sustaining Winning
Solutions. Addison Wesley Professional, 2003. pp. 203-234.

[28] An Overview of the Grasshopper Agent Platform. [WWW]. [Referred 24.9.2014].
Available:
http://cordis.europa.eu/infowin/acts/analysys/products/thematic/agents/ch4/ch4.htm#2.

[29] Node.js. [WWW]. [Referred 25.9.2014]. Available: http://nodejs.org/.

[30] Socket.io. [WWW]. [Referred 25.9.2014]. Available: http://socket.io/.

[31] Inversion of Control Containers and the Dependency Injection Pattern. [WWW].
[Referred 26.9.2014]. Available: http://martinfowler.com/articles/injection.html.

[32] Crockford, D. Javascript: The Good Parts. O'Reilly Media, Inc., 2008. 172 p.

[33] Carzaniga, A., Picco, G., P., Vigna, G., 1997. Designing distributed applications
with mobile code paradigms. In Proceeding of the 19th international conference
on Software engineering (ICSE'97), May 17-23, 1997, Boston, Massachusetts,
USA. pp. 22-32.

[34] CKAN – The open source data portal software. [WWW]. [Referred 2.10.2014]
Available: http://ckan.org/.

[35] CKAN Docs: API Guide. [WWW]. [Referred 2.10.2014]. Available:
http://docs.ckan.org/en/latest/api/index.html.

[36] Snowlake Software: Go Publisher Workflow. [WWW]. [Referred 2.10.2014].
Available: http://www.snowflakesoftware.com/products/gopublisher/workflow/.

[37] Dspace – an open source repository application. [WWW]. [Referred 3.10.2014].
Available: http://dspace.org/.

[38] SourceForge: DSpace source code. [WWW]. [Referred 3.10.2014]. Available:
http://sourceforge.net/projects/dspace/files/DSpace%20Stable/4.2/.

[39] GitHub: DSpace source code. [WWW]. [Referred 3.10.2014]. Available:
https://github.com/DSpace/DSpace.

62

[40] Duraspace: DSpace documentation. [WWW]. [Referred 3.10.2014]. Available:
https://wiki.duraspace.org/display/DSDOC4x/DSpace+4.x+Documentation.

[41] GNU Affero General Public License. [WWW]. [Referred 8.10.2014]. Available:
http://www.gnu.org/licenses/agpl-3.0.html.

[42] Delanghe, S. Using Learning Styles in Software Documentation. IEEE
Transactions on Professional Communication, Vol. 43, no. 2, June 2000, pp. 201-205.

[43] Ganier, F. Factors Affecting the Processing of Procedural Instructions: Implications
for Document Design. IEEE Transactions on Professional Communication, Vol. 47, no.
1, March 2004, pp. 15-26.

[44] Webb, Donna, R., (1989). Writing Effective User Manuals: Basic Guidelines and
Tips. Library Hi Tech. Vol. 7. no. 4. pp. 41-47.

[45] Sommerville, I. Software Documentation. [WWW]. [Referred 13.10.2014].
Available: http://www.literateprogramming.com/documentation.pdf.

[46] Kennedy, Patrick, M. Technical Writing Tips. Tech Directions. November, 2004,
pp. 22-23.

[47] Gitorius. [WWW]. [Referred 23.10.2014]. Available: https://gitorious.org/.

[48] Git. A free and open-source distributed version control system. [WWW]. [Referred
23.10.2014]. Available: http://git-scm.com/.

[49] Mercurial source control tool. [WWW]. [Referred 23.10.2014]. Available:
http://mercurial.selenic.com/.

[50] Subversion. [WWW]. [Referred 23.10.2014]. Available:
http://subversion.apache.org/.

[51] Bazaar version control system. [WWW]. [Referred 23.10.2014]. Available:
http://bazaar.canonical.com/en/.

[52] Apache Allura. Forge software for hosting software projects. [WWW]. [Referred
23.10.2014]. Available: https://allura.apache.org/.

[53] Fogel, K. Producing Open Source Software. How to Run a Successful Free
Software Project. [WWW]. [Referred 23.10.2014]. Available:
http://producingoss.com/en/index.html.

[54] GNU GPL, version 3. [WWW]. [Referred 23.10.2014]. Available:
http://opensource.org/licenses/GPL-3.0.

[55] Apache License, Version 2.0. [WWW]. [Referred 23.10.2014]. Available:
http://opensource.org/licenses/Apache-2.0.

63

[56] Green, S. Somers, F. Software Agents: A Review. [WWW]. [Referred 5.11.2014].
Available: https://www.scss.tcd.ie/publications/tech-reports/reports.97/TCD-CS-1997-
06.pdf. pp. 26-39.

[57] Rosen, L. Open Source Licensing: Software Freedom and Intellectual Property
Law. Chapter 10: Choosing an Open Source License. [WWW]. [Referred 11.11.2014].
Available: http://flylib.com/books/en/4.467.1.1/1/.

[58] Academic Free License. [WWW]. [Referred 12.11.2014]. Available:
http://opensource.org/licenses/AFL-3.0.

[59] Open Software License. [WWW]. [Referred 12.11.2014]. Available:
http://opensource.org/licenses/OSL-3.0.

[60] Common Public License. [WWW]. [Referred 12.11.2014]. Available:
http://opensource.org/licenses/cpl1.0.php.

[61] Hecker, F. Setting Up Shop: The Business of Open Source Software. IEEE
Software, January, 1999, pp. 45-51.

[62] Maxwell, E. Open Standards, Open Source, and Open Innovation: Harnessing the
Benefits of Openness. Mit Press Journals, Innovations, 2006, pp. 138-141.

[63] Bilen, C., C. Alavizadeh, Z. Open Source Strategy: A Change of Perception trough
the Lens of Innovation. Master Thesis within Business Administration. March, 2011. pp.
29-30, 41-51.

[64] The BSD 3-Clause License. [WWW]. [Referred 14.11.2014]. Available:
http://opensource.org/licenses/BSD-3-Clause.

[65] The GPL License. [WWW]. [Referred 14.11.2014]. Available:
http://opensource.org/licenses/GPL-2.0.

[66] Krishnamurthy, S. An Analysis of Open Source Business Models. February 2003.
[WWW]. [Referred 14.11.2014]. Available:
http://faculty.washington.edu/sandeep/d/bazaar.pdf.

[67] Codehaus Licenses Page. [WWW]. [Referred 17.11.2014]. Available:
http://www.codehaus.org/customs/licenses.html.

[68] AVAA open-access publishing platform. [WWW]. [Referred 18.11.2014].
Available: https://www.tdata.fi/avaa.

[69] AVAA Pilot portal. [WWW]. [Referred 18.11.2014]. Available:
http://avaa.tdata.fi/web/avaa/etusivu?
p_p_id=56_INSTANCE_WnrBJ3tLtuRh&p_p_lifecycle=0&p_p_state=normal&p_p_m
ode=view&p_p_col_id=column-

64

1&p_p_col_count=1&_56_INSTANCE_WnrBJ3tLtuRh_languageId=en_US.

[70] IDA Storage Service. [WWW]. [Referred 18.11.2014]. Available:
https://www.tdata.fi/ida.

[71] AVAA Data&applications – Geosciences. [WWW]. [Referred 18.11.2014].
Available: http://avaa.tdata.fi/web/avaa/geotieteet.

[72] WebDAV. [WWW]. [Referred 18.11.2014]. Available: http://www.webdav.org/.

[73] CSC – IT Center for Science. [WWW]. [Referred 19.11.2014]. Available:
https://www.csc.fi/home.

[74] iRODS – The Integrated Rule Oriented Data System. [WWW]. [Referred
19.11.2014]. Available: https://irods.org/.

[75] CoRed – Collaborative Coding in the Web for the Web. [WWW]. [Referred
26.11.2014]. Available: http://cored.cs.tut.fi/.

[76] GitHub – CoRed Source Code. [WWW]. [Referred 26.11.2014]. Available:
https://github.com/ahn/cored.

[77] GitHub Press Page. [WWW]. [Referred 4.2.2014]. Available:
https://github.com/about/press.

	1 Introduction
	2 Mobile Agents
	2.1 General information about Mobile Agents
	2.1.1 Mobile agents
	2.1.2 Migration
	2.1.3 Mobility models of Aglets and Grasshopper
	2.1.4 Kalong mobility model

	2.2 Examples of Mobile Agent platforms
	2.2.1 Radigost
	2.2.2 Telescript
	2.2.3 Grasshopper
	2.2.4 Tracy toolkit

	2.3 Communication
	2.4 Security

	3 HTML5 Mobile Agents
	3.1 Introduction
	3.1.1 Reference models for mobile agents
	3.1.2 HTML5 agents and mobile agent models
	3.1.3 Architecture

	3.2 Agent server
	3.3 Agent-to-agent communication
	3.4 Configuring HTML5 agents
	3.5 Gmonitor

	4 Open Source
	4.1 Open Source Licenses
	4.2 Choosing a license
	4.2.1 Making money from Open Source
	4.2.2 The free rider problem
	4.2.3 Motivations for sharing Open Source software
	4.2.4 Out-Licensing

	4.3 Things to consider when applying an open source license
	4.4 Open Source Software Hosting Facilities
	4.5 Data management systems
	4.6 An example: CoRED and GitHub
	4.7 AVAA open-access publishing platform
	4.7.1 IDA Storage Service
	4.7.2 Comparing AVAA and IDA with data management systems

	4.8 Proposal for license and publishing platform

	5 Productization
	5.1 Introduction
	5.2 Installation
	5.3 Configuration
	5.4 Software productization process

	6 Installation Guide
	6.1 Unpacking files
	6.2 Preparations for testing the installation
	6.3 Fitting agent platform to own environment
	6.4 Node.js installation
	6.5 Starting the servers manually
	6.6 Starting the servers by using a script file
	6.7 Testing the installation with gmonitor
	6.8 Automatizing Node.js installation
	6.9 Automatizing the changing of URLs
	6.10 Removing hard-coded server port number-values
	6.10.1 parsePort-function
	6.10.2 serverPort-functions

	7 Programming Guide
	7.1 Generic agent class
	7.1.1 Functions
	7.1.2 Variables

	7.2 Application agent
	7.2.1 Compulsory functions for application agent
	7.2.2 Additional compulsory functions for application agent

	7.3 Creating an example agent application
	7.4 Adding new values and functions to Count-agent
	7.5 Getting the communication working
	7.5.1 Sending information from agent to another agent
	7.5.2 Receiving information from Count-agent

	8 Evaluation
	9 Conclusions

