

TIMO NIKKILÄ

AGILE IN PUBLIC RESEARCH PROJECTS

Master of Science Thesis

Examiner: Professor Kari Systä
Examiner and topic approved by the
Council of the Faculty of Computing
and Electrical Engineering on 9 April
2014

i

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
NIKKILÄ, TIMO: Agile in Public Research Projects.
Master of Science Thesis, 80 pages, 0 Appendix pages
May 2014
Major: Software Engineering
Examiner: Professor Kari Systä
Keywords: agile, team, public research, project management

Public research relies on projects. Knowledge and awareness of project management

have increased in software development in last few decades. At the same time project

management has become one success factor in enterprise world. It is reasonable to

believe that project management is similarly important in public research projects. Agile

is a project management and teamwork methodology used in software development

world. This thesis examines public research projects and the way they are already align

with agile values and the way agile values and techniques might help projects and teams

to improve.

In high level the thesis is divided into two parts. In the literature chapters study agile

values and most general techniques are explored. In the project part a few public

research projects are studied by interviews and free-form talks and by observing how

projects are run.

ii

PREFACE

Professor Kari Systä examined this work.

I thank all the participating projects at Tampere University of Technology and Tampere

University. Furthermore I thank my good friend Heini Kallio who helped me to find out

what I want to study for thesis. I also thank Olli Sorje and Valtteri Pirttilä and all the

other collages who have been teaching me how healthy and fruitful group work is done

in action.

iii

Terms and Definitions

epic Collection of multiple features under the same theme.

on-site customer Customer representative co-located with the team.

product owner Vision owner and customer representative.

time-boxed Allocating fixed time period for planned activity.

TUT Tampere University of Technology

UTA University of Tampere

VTT Technical Research Centre of Finland

iteration The act of repeating a process with the aim of approaching a

desired goal.

sprint iteration Agile practice called iteration.

practice Single practice, such as daily stand-up in agile.

methodology Used collection of practices, such as SCRUM in use.

framework Bare bone set of practices that can be used to implement

methodology. For example SCRUM is a framework.

Team The team means the same as the people working in a project.

iv

Contents

1 INTRODUCTION .. 1

2 THEORETICAL BACKGROUND TO AGILE... 3

2.1 AGILE MANIFESTO AND PRINCIPLES .. 6

2.2 AGILE BUSINESS OBJECTIVES ... 8

2.2.1 Continuous innovation ... 9

2.2.2 Product adaptability .. 9

2.2.3 Improved time to market ... 9

2.2.4 People and process adaptability .. 10

2.2.5 Reliable results ... 10

2.2.6 Do business objectives justify further study ... 11

2.3 CUSTOMER AND VISION .. 11

2.4 CONTINUOUS VALUE ADDING .. 12

2.5 LEAN .. 13

2.6 MANAGERS IN AGILE ... 14

3 AGILE TECHNIQUES ..15

3.1 WORK FLOW VISUALIZATION ... 15

3.2 RETROSPECTIVE .. 17

3.3 RHYTHM .. 18

3.4 ESTIMATION AND PLANNING .. 20

3.5 FACILITIES IN AGILE .. 21

3.6 AGILE AND MAINTENANCE WORK .. 21

3.7 TEAM RULES OF ENGAGEMENT .. 22

3.8 FACILITATION ... 23

3.9 SCORE ... 23

4 THESIS’S APPROACH TO AGILE ...25

4.1 THESIS’S THEORY OF AGILE ... 25

4.2 BLUB PARADOX .. 27

4.3 RIGHTSHIFTING ... 28

4.4 PSYCHOLOGY OF CHANGE RESISTANCE .. 29

4.4.1 SCARF Model .. 29

4.4.2 Fears ... 31

4.4.3 Tricks for Handling Fears .. 31

4.4.4 What People Believe and What Changes Their Mind... 32

4.4.5 Change the System and People Will Follow ... 35

4.5 SOCIAL ASPECT OF PRODUCTIVITY .. 35

4.5.1 The Background of Public Researchers .. 36

4.5.2 Team’s Effect on Learning and Innovation ... 36

4.6 COMPETITION WITHIN THE TEAM ... 38

4.7 MEASURING PERFORMANCE .. 39

5 THESIS’S THEORY OF AGILE IN ACTION ..41

5.1 ITERATIVE .. 41

5.2 REAL TEAM .. 42

v

5.2.1 Self-organization .. 42

5.2.2 Self-discipline ... 43

5.2.3 Co-located .. 44

5.2.4 Collaboration.. 45

5.2.5 Cross-functional ... 45

5.2.6 Right sized .. 46

5.2.7 Focused for Business Value .. 46

5.2.8 Customer involvement ... 47

5.2.9 Transparent .. 47

6 RESEARCH PRACTICES AND MATERIALS ...49

7 RESULTS ...51

7.1 PROJECT ALFA .. 51

7.1.1 Project Initialization ... 51

7.1.2 Teamwork .. 52

7.1.3 Work progress .. 53

7.2 PROJECT BETA .. 53

7.2.1 Project Initialization ... 53

7.2.2 Major Meetings.. 53

7.2.3 Subproject Teamwork .. 54

7.3 PROJECT GAMMA .. 54

7.3.1 Big Picture .. 54

7.3.2 TUT Related Work .. 55

7.4 PROJECT DELTA .. 56

7.4.1 Big Picture .. 56

7.4.2 The Team ... 56

7.5 RESEARCH GROUP EPSILON ... 57

7.5.1 General Discussion ... 57

7.5.2 Project Epsilon One .. 59

7.5.3 Project Epsilon Two .. 59

7.5.4 Epsilon Design .. 59

7.5.5 Epsilon Single ... 60

7.6 SUMMARY OF PROJECTS ... 61

7.7 DISCUSSION ... 62

7.7.1 How Agile They Were? ... 62

7.7.2 Funding and Reasonable Risks ... 62

7.7.3 Students and One Person Projects ... 63

7.7.4 Teams ... 64

7.7.5 Vision and Project Management and Customer .. 65

7.7.6 More on Project Delta .. 67

7.7.7 More on Research Groups Epsilon ... 68

7.8 SOURCES OF ERROR ... 69

8 CONCLUSIONS ...71

9 REFERENCES ..73

10 APPENDICES ..76

1

1 Introduction

Traditionally project work has been done through hierarchical command chains, where

project manager is responsible for the whole and assigns tasks to team members.

Waterfall model is often thought to be a traditional software development model.

Waterfall is a sequential design process, in which development is done through phases

like conception, initialization, design, construction, testing, acceptance testing and

maintenance. This approach might work in some environments such as building houses

or working in assembly line. However, it does not work in inherently complex

industries, such as software development. The more complex your projects are the more

professionalism it takes to build and the more dependent you are on motivation, on

judgment of many and on reasons. The more complex your environment is the more

learning and innovation is required. Interactions drive innovations and learning [2].

Agile has emerged from this ground. Many software teams have succeeded by using

agile. Even more often teams have failed their transition to agile. Most of failed projects

have not been catastrophes, they may even have had some benefits of using agile

practices. However, agile is more values lived well than a collection of principles. Agile

transformation failures are the motivation of this thesis.

Agile was born in a meeting in the year 2001. Representatives from XP, Scrum,

DSDM and Adaptive Software Development in agile held a meeting. They discussed

and examined common ground in all the light weight methodologies used in software

development. Then they labeled those principles as agile. Agile, therefore, is a

collection of often used practices, values and frameworks that have been proven to be

successful with multiple teams and multiple projects. [43] Even though agile was

established over a decade ago, it has numerous definitions [42]. Jim Highsmith

describes an idea and value of light weight methodology: "Both scientific and

management researches have shown that a simple set of rules can generate complex

behaviors and outcomes whether in ant colonies or project teams. Complex rules on the

other hand, often become bureaucratic." [2]

Agile emerged from the software industry. Software aspects can be seen in agile

principles, manifesto and techniques developed under agile. Still, agile is mostly about

human interactions and human attitudes needed for working in a complex environment.

The research world relays heavily on professionalism and intelligent people. Research is

also complex by its nature. You need to be innovative to build theories and you need to

test them and try to learn along the way. There is a good reason to believe that agile

would work in the research world as well. Agile has even been used in research before.

Additionally, there is a Linked In group called Agile Research, where people discuss

2

agile usage in research. Regardless, agile has had niche role in research so far. This

thesis is about to study public research projects: how they are already working aligned

with agile values and how could they improve by using agile.

Frameworks, such as Scrum, XP or Crystal Clear are not described or recommended

by the thesis. Even though it would be much easier to start with a framework, there are

reasons to avoid that approach as well. First, if a group is lacking some traits needed for

agile, such as self-organization, then there is a big risk that installing agile would lead to

chaos [36]. Second, a good coach is extremely important for successful agile

transformation. It is unlikely that public research teams would find and hire a good

coach. Third, the research world is a somewhat different in nature to software

development. The research world also has strong conventions, such as many one person

projects. Agile is not designed for one person projects, but for teams. In this kind of

environment it works better to try to understand the core values of agile and have

repeated baby-step improvements. Many small steps combined make great change.

Some authors warn from making your own agile practices, when you are not familiar

with agile [8].

The thesis is divided into five parts. First part describes agile on a theoretical level.

Second part describes thesis’s viewpoint to agile. This part is very psychological and it

highly respects the fact that agile is mainly about people. Third part describes some

agile practices. It is not a comprehensive list of practices, but a few practices that are

referenced later on. Fourth part describes the bare bones of what it takes to be successful

with agile. Fifth part introduces few public research projects and their project

management.

3

2 Theoretical Background to Agile

Compared to waterfall, agile is a light weight methodology for software development. It

is a transformation from a process based on anticipation, such as waterfall, to a one

based on adaptation [2]. Working with agile is feeling different when there are 500

people doing it, than when there are 5 people doing it. Bigger projects need more

structure [2]. Only small teams are dealt with in this thesis, since the studied public

research projects are all relatively small.

The traditional way of creating software is to have a plan and three constraints: cost,

schedule and scope. If you are able to build accordingly to the plan whiting constraints,

then your project was successful. Otherwise it was not successful. Traditional way to do

software projects is to plan and build. The aim of overwhelming planning is to be more

accurate and to reduce uncertainty and so forth making an accurate budget, scope and

schedule. However, benefits for extra planning start to diminish the more you plan.

Figure 1 illustrates this [10].

Figure 1. Additional estimation effort yields very little value beyond certain point. [10]

4

 The agile way of doing software is to speculate and adapt. Plans are speculations,

which are tested by frequent deployment and feedback. Plans are updated when

something new has been learned about market needs or project progress. Updating plans

based on new information is called adapting. Agile replaces three traditional success

factor constraints (cost, schedule and scope) with value, quality and constraints. Figure

2 shows the classic constraints triangle and how it changes when agile is used. Agile

replaces following a plan and correcting to a plan, with focusing on business value. The

plan is corrected whenever new information is learned about business value. If project

plan is massive and goes into the details, then correcting a plan gets very burdensome.

Agile recognizes this by minimizing upfront planning. The client buys a team to

develop software, because the client has some needs. Agile does not require the client to

know his every need at the beginning of the project. Even with traditional development,

all the real needs cannot be recognized upfront. So creating long and detailed list of

needs upfront is wishful thinking at best. More often they are waste of time and source

of contract negotiation and arguing that leads to missing the business value. Simple

design means valuing adaptation over anticipation [2]. Needs are learned along the way

as the product is developed and tested. Some questions need to be answered beforehand,

such as the feasibility of the project. Agile does not remove this type of planning.

However, agile accepts that even project feasibility decisions can change, when more is

learned during the project. The agile principle of failing fast works here as well. The

sooner it is learned that the project is not feasible, the better. Then sooner the project

can be cancelled, the more time and resources are saved. Project cancellation can be a

reason for celebration. So when traditional project management object change, agile is

fostering changes for delivering business value. The attitude of doing barely enough is

not used only for planning, but all over in agile.

Figure 2. Traditional constrains triangle on the left side. Agile replacement for

traditional triangle is on the right side. [2]

5

Just like any other methodology, agile has its sweet spots. When used correctly in a

sweet spot, agile brings all the value one can get from the framework. The further one

gets from the sweet spot, the less value is achieved. Agile sweet spot is in a complex

environment [34]. Complex environment means environment with characters of both

chaos and order. This kind of environment is called Chaordic. If the working

environment has no chaos, then there is no need to speculate, experiment, and adapt.

Optimization can be used instead. On the other hand, if there is only chaos, then

anything cannot be plan, there is no time or point to speculate or make experiments. If a

solution is experimented now and it works, the same solution tried again ten seconds

later might not work. Future plans are not done in chaotic environment, but events are

reacted to as they happen. To be in a house that is on fire is an example of chaotic

environment. To simplify, there are two sources of chaos in software development:

unknown technology and changes in specifications. Figure 3 illustrates agile sweet spot

whiting these two variables.

Figure 3. Agile works best in a complex environment. Complexity is found between

chaos and simplicity. There are two sources of variability in the figure: Unknown

technology and changes in specification.

 As mentioned before, some planning is always needed. Some projects need more

planning than others. For example, failing to properly design an airplane can lead to the

loss of lives. Loss of lives is not acceptable. Not even when aggressive user testing

improves progress. On the other hand, too much planning on a start-up web service will

lead to running out of money before going live. Thus, planning is a balancing act

between the damage of planning too much and the damage of not planning enough.

Right amount of planning depends on the problem at hand. The more damage is caused

by not enough planning, the more favorable plan-driven development is. The more

6

damage is caused by too much planning, the more favorable is an agile development.

Figure 4 illustrates this.

Figure 4. Different projects call for different amounts of planning. The less damage

from underplanning and the less time and effort invested in plans, the more the situation

favors agile. [7]

 Rest of the chapters describes few key aspects of agile the reader should know before

reading the rest of the thesis. List of agile aspects is not comprehensive, but adequate

for the thesis. First, what are agile business objectives? Agile has no absolute value. It

should be used only if it can deliver enough business value. Chapter Agile Business

Values answer business value issue. Agile manifesto and its twelve principles are what

many consider, the core of agile. The manifesto and the twelve principles are described

in chapter Agile Manifesto and Principles. Agile is passionate about value adding.

Chapters Customer and Vision, Continuous Value Adding and Lean all explore an angle

of adding more value. Finally, the chapter Management in Agile answer the questions

about a manager’s new role in agile.

2.1 Agile Manifesto and Principles

What is agile? This chapter tries to give an answer to that question. Agile manifesto and

its twelve principles were produced when agile was established. The manifesto is the

heart of agile and the principles describe what is behind the manifesto. When you are

new to agile, you start with an agile framework, such as Scrum. You then follow mainly

the framework, not manifesto. While you are gaining deeper understanding, you should

move from framework to manifesto. [31] Agile manifesto:

 “We are uncovering better ways of developing software by doing it and helping others

do it. Through this work we have come to value:

7

 Individuals and interactions over processes and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left

more.“ [33]

 Agile manifesto is rather compact and self-explanatory. Agile does give value to

processes and tools, justified documentation, contracts and plans. However, human

assessment and creating value for customer are valued even more in agile. So, agile

highly values individuals and interactions, working software, customer collaboration

and responding to change.

 Agile manifesto is a high level guideline to agile. Twelve principles go into more

detail and are great guidelines for project management and teamwork. Yet, the twelve

principles are far less known than the manifesto. The twelve principles are only listed

here. This thesis will not clarify their meaning. Reading them through is enough to

understand the rest of the thesis. Twelve principles go as follow:

“We follow these principles:

 Our highest priority is to satisfy the customer through early and continuous

delivery of valuable software.

 Welcome changing requirements, even late in development. Agile processes

harness change for the customer's competitive advantage.

 Deliver working software frequently, from a couple of weeks to a couple of

months, with a preference to the shorter timescale.

 Business people and developers must work together daily throughout the

project.

 Build projects around motivated individuals. Give them the environment and

support they need, and trust them to get the job done.

 The most efficient and effective method of conveying information to and within a

development team is face-to-face conversation.

 Working software is the primary measure of progress.

 Agile processes promote sustainable development. The sponsors, developers,

and users should be able to maintain a constant pace indefinitely.

 Continuous attention to technical excellence and good design enhances agility.

 Simplicity--the art of maximizing the amount of work not done--is essential.

 The best architectures, requirements, and designs emerge from self-organizing

teams.

 At regular intervals, the team reflects on how to become more effective, then

tunes and adjusts its behavior accordingly.”[45]

8

 There is also a draft proposal for agile manifesto and twelve principles for research.

Those were written by Xavier Amatriain [5]. Reader should notice that agile manifesto

and principles have been used countless times and are debated widely across the

software industry. Amatriain’s agile research draft is almost unknown and gone

through almost without public debate. It is still an interesting draft and Amatriain’s

agile research manifesto is shown here:

“We are uncovering better ways of doing research by doing it and helping others do it.

Through this work we have come to value:

 Individuals and interactions over processes and tools

 Real-world working solutions over comprehensive theories

 Commitment and response to social needs over obtaining grants, patents, or

publications

 Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left

more.”[5]

 Amatriain has changed two agile manifesto rules in his manifesto. First, theories are

equated to documentation. When it comes to explorative research, instead of building

comprehensive theories we should take the most important untested part of what we

want to prove and test it in the real world. For example, instead of arguing if Scrum has

it place in research, we should give it a try to see how it works. Second, he claims that

commitment and response to social needs should be more important than obtaining

grants, patents, or publications. This can be an important notion. Patents and

publications are used as important meters of reward in research. If they are not

measuring how well research is serving social needs, then they are source of

dysfunction.

 Amatriain has also developed a Scrum-like agile scientific framework which can be

found from his blog [6]. This framework is not studied in this thesis. However, it is

interesting to read, if the reader is interested in using a Scrum-like framework in

science.

2.2 Agile Business Objectives

 Agile would not be vital methodology if it didn’t bring any business value. This makes

it important to sufficiently define eligible business values of agile: [2]

1. Continuous innovation

2. Product adaptability

3. Improved time to market

4. People and process adaptability

5. Reliable results

9

2.2.1 Continuous innovation

Developing software in today’s complex world requires a mindset that fosters

innovation. There are multiple sources of complexity. Here are a few sources listed:

clients not knowing well enough what they want, developers not knowing well enough

how to build it, changes in business environment and resources and new feedback

changing the requirements. Building software is continuous cycle of learning and

innovating solutions to oncoming challenges. Innovations are generated in culture based

on the principles of self-organization and self-discipline.

 Innovations are important to research projects. For example explorative research

projects start by building a theory and then testing the theory. Building the theory is

complex process. New way of thinking may be needed. New theories are often built up

in human interactions [2]. First they are built and tested through rigorous thinking of

many. When enough confidence has been obtained, a test plan is built, funding

requested and the theory is put to test. Even if test practices may be well defined, all

sorts of challenges occur. Finally, results may or may not confirm the theory. Many

times results points to another direction and new theories are built. This all in mind,

continuous innovation can be seen as business object also in research world.

2.2.2 Product adaptability

The future can be predicted, but it will always surprise us. For some products, changes

in market, technology or specific requirements happen weekly. For other products,

changes happen rarely. Still, changes happen and the product needs to be able to adapt

these changes. The product needs to deliver customer value today and be able to adapt

to tomorrow’s needs. [2]

 Public research projects rarely create a product. Some projects might create a product

as a side effect of testing a theory. Do side effect products have changing business

needs? Do they need to change over time? Is there a maintenance period for side effect

products? Perhaps side effect products do not have to change over time in many cases.

This way of thinking, product adaptability is not always a concern for the research

world. If software development is thought as theory building, then tested program or

product could be thought of as a tested theory [1]. With this analogy, public research

projects do also produce a product. The product is a tested theory. This is an interesting

point of view, but how much can or should researchers try to increase the quality of

theory so that it would be adaptable in the future? Generally simpler theory is better.

The need for product adaptability in research world can be argued either way.

2.2.3 Improved time to market

It is crucial to meet the market window in software development. Tough competition

makes the market window short. Agile improves time to market by increasing focus,

streamlining and skill development. To simplify the meaning of focus is to build the

10

highest business value features first and publish whenever smallest marketable value is

added. Streamlining is to concentrate on value adding activities and eliminating

overhead and compliance activities. Skill development is to improve time to market by

choosing people with right skillset and molding them into productive team. Right

skillsets and gained experience while working and healthy teamwork should improve

skill development. [2]

 It is inarguable that time to market is important for public research projects. There

are many competitive research teams. If two teams are testing the same theory, then

often the one that public first will have they publication published on better papers and

get most of the honor. One might argue that the goal of publish research is not to gain

honor, but to serve public. Still, this reward system is real and it must be accepted that

the research game played aligns with reward rules. Time to market also has a role when

it comes to serving the public. The sooner the research is ready, the sooner its results

can be used. For example, the sooner a new treatment for cancer is ready, the sooner it

can be used to save a life.

2.2.4 People and process adaptability

If we want adaptable products we first need to build adaptable teams that view change

as part of a dynamic environment. Agile encourages teams to think of learning and

adapting as an integral part of delivering value. [2]

 How much do people and processes in public research world need to adapt over

time? Arguably team sizes, roles, techniques, financing models, rewarding systems and

so on are changing over time and new information is coming in all the time. All this

affects how the work should be done. Therefore people should be adaptable. The needed

rate of adaptation is ambiguous. Even if not much adapting is needed, or even accepted

in some cases, better adapting can still have a competitive advantage.

2.2.5 Reliable results

Agile is an explorative process. Because of all the unknown aspects that comes during

the project, agile will not deliver completely pre-specified results, but it will deliver

valuable results – time after time. A repeatable process delivers the same result time

after time when given the same input. A reliable process delivers value within set target

boundaries regardless of the impediments thrown in the way. So agile is reliable, but not

repeatable. [2]

 Research is certainly explorative in its nature and obtaining reliable and valuable

results is a meaningful goal for research. Some research experiments need to be more

repeatable than other. For example, exploratory research does not have much value, if

no one knows how the theory was tested. So, in a way it needs to be repeatable. Agile is

not trying to water all repeatable down. How an experiment was done can still be

described in repeatable way even if the team was solving impediments thrown in the

way in unrepeatable manners.

11

2.2.6 Do business objectives justify further study

Even if it could be study on its own, agile business objects fit rather well for public

research projects. It seems like agile could bring value to public research projects and

thus further studies are legitimated. For those who have tried agile and think it does not

work: it is worth remembering that agile is easily and commonly misinterpreted, and

when done so, business values will not be met.

If programming is viewed as theory building, then there is a strong link between the

research world and software development [1]. Big part of explorative research is

building theories, testing them and then rebuilding those theories, testing them and so

forth. Software development is also about building theories and testing them in a loop.

Viewing programming as theory building makes agile usability studies more attractive

for the research world.

2.3 Customer and Vision

Having a clear vision is crucial for a project to succeed. Creating such a vision is hard

and requires leadership. The absence of clear vision will cause agile projects to spin-off

into endless experimentation. The customer owns the vision and it is crucial that the

vision is made clear to development team. [2] Making the vision clear is an ongoing

process throughout the project. The customer is therefore part of the agile team.

 Creating a shared vision at the beginning of the project might contain creating a

vision box, an elevator statement, a project data sheet and a release plan together with

the team. [2] Following questions should be answered during the visioning phase [2]:

 What is the customer’s product vision?

 What are the key capabilities required in the project?

 What are the project’s business objectives?

 What are the project’s quality objectives?

 What are the project’s constraints (cost, scope, schedule)?

 Who are the right participants to include in the project community?

 How will the team deliver the product (approach)?

 Who is the customer? The classical way of thinking is that the one hiring the team to

work for him is the customer. He has a vision he has hired the team to work on and he

will be using the outcome the team is producing. Some see it differently. They claim

that people are not only hired to work for the buyer. Everyone who is participating in a

project should have willingness to change the world and some idea of where the world

should be going. If the values of a team member and a sponsor are not aligned, then

they should not work together. Agile, done well, cannot be separated form values lived

well [31]. In this way of thinking, all stakeholders are customers [28].

 Whoever the customer is, the vision needs to be clear. In many cases there may not

be a real customer in public research. There are multiple ways to deal with such a

situation. For instance there can be one individual who is ultimately responsible for the

12

vision. The whole team participates, but one person is ultimately responsible. In other

cases there can be a customer team. A team of key participants, such as professor, a

seasoned researcher and an industrial partner are together the vision owners. They make

the vision clear to everyone.

2.4 Continuous Value Adding

The value created is increased through a continuous flow of value [2]. Let us expand on

this, since it is one of the central ideas in agile.

 Imagine a traditional way of creating software, where the whole software is delivered

at once, once everything is complete. If the project lasts a year, then for the first year

money is being spent and no business value is being delivered. For the first year, the

risk is only getting bigger and bigger. See figure 5 - Big Bang. To improve the situation,

created software can be delivered periodically or in other words incrementally. Client is

receiving some value after the first period and some more value after the second period

and so on. In this approach the product starts to pay itself back sooner. In addition,

feedback is received earlier. See figure 5 - Big Increments. Adding value can be

improved by shortening the delivery period. See the figure 5 - Small Increments. Since

the value of the feature is not only proportional to the size of the feature, then even more

optimization can be done. Features are prioritized. Business value is usually the main

factor in prioritization. Business value consists of the financial value, the cost of

development, the amount of significant learning and the amount of risk removed [10].

When highest business value features are done first, then value curve looks like in

figure 5 - Highest Value First.

 Yet another trick to improve value curve is learning. Iterative shortens the feedback

loop and therefore improves feedback. Improved feedback improves learning. [11] The

last trick to improve continuous value adding, is to stop the project when the value

adding curve is too flat. Only 20% of software features are always or often used. Up to

65% of features are rarely or never used. [12]

Figure 5. Improving the value curve. Delivering by small iterations and highest value

first is delivers higher value and faster. [11]

13

2.5 Lean

Lean is not part of this thesis and is therefore described only shortly. Lean can be used

to extend agile. The following lean ideas are explained since they may bring good

supplementary value for public research projects: some aspects of removing waste and

portfolio management. [13]

 Lean has an obsession with removing waste. Any activity that does not deliver value

to the customer is considered waste [2]. Storing intermediated products is waste

according to lean principles. Work should be done just in time when it is needed and the

product should be brought from idea to value as fast as possible [13]. This is done by

removing delays from the process rather than keeping everyone as busy as possible.

[13] Agile implicitly advices commitment deferring, but lean makes commitment

deferring explicit. Decisions should be made at the last responsible moment, no earlier

and no later. [13]

 Portfolio management consists of selecting the most important features from the

most important products to create and enhance [13]. In other words, project portfolios

are idea inventories. The project portfolio includes everything from planning the life

cycle at the very beginning, to the removal of the product at the end of the life cycle.

Ideas often become less valuable over time. Consequently, the key purpose of a

portfolio is to make sure that the highest business value idea is done first and conceived

from idea to value as fast as possible. [13] This directs us to define as small projects as

possible. [13]

 Organization needs to remove delays to deliver quickly. Once major source of delay

is removed, the second major source of delay becomes major source of delay and it gets

the attention it deserves. This mechanism is exposing smaller and smaller delays. So

organizations that deliver quickly expose delays. Delays decrease both effectiveness and

efficiency. When delays are exposed, they are easier to remove. Fewer delays lead to

better time to market. The portfolio minimizes the work in progress. Usually the quality

of the work also improves, since shortening deployment time exposes bad quality, such

as a messy manual deployment process. Shorter cycles are also a good tool for

removing wasteful steps. When focus is on speed, team needs to understand what they

are building and they can therefore avoid building things that are not needed. [13] The

portfolio is a line of sight to business needs. It creates visible representation of business

features with priority and technical effort. [13]

 Portfolio management is closely bound with an organization’s resource management.

Some even say that product focus should be used instead of project focus. This would

encourage staffing for the entire life of the product instead of staffing for the project.

[13] The book Lean-Agile Software Development summaries the problem with many

projects: “When many projects are in process, the contention for resources becomes so

great that projects get scheduled based on recourse available or political clout rather

14

than what would contribute the most value to the business. We’ve seen extreme cases

where it seems that teams don’t even exist; rather, there are several people working on

a project together while they also work on other project with other people. In

organizations like this, creating a business focus is often the impetus for creating

effective teams. Project thinking virtually guarantees inefficient use of personnel.” [13].

Studies have shown that working on multiple projects at the same time, decreases

efficiency significantly [13].

2.6 Managers in Agile

The role of management is important, but different in agile software development than

in waterfall development. In agile, the project leader’s style is leadership-collaboration

rather than command-control. Leading and creating a collaborative work environment is

more difficult and more rewarding than commanding. Agile project leaders are

champions of the vision that has both customer focus and technical focus. They need to

articulate the vision so that everyone understands it, and nurture it so that no one forgets

it. Leaders help the team to deliver by protecting them from distractions, such as

unnecessary compliance work. Leaders are responsible for staff selection, staff

development and ongoing encouragement. They also help to create a safe environment

where collaboration, participatory decision making, interactions, conflict resolutions,

fierce debates and collegial respect can flourish. [2] Facilitation skills are one important

tool for success.

 Project leaders also have responsibilities outside the team. He has to meet with the

customer, executives and other stake holders to set and meet their expectations and to

educate them on how to participate as partners with the team. [2]

15

3 Agile Techniques

It is a general tendency that people have to invent a new solution rather than researching

previous solutions. [7] This chapter introduces a few popular agile practices. The list is

not meant to be a comprehensive collection of agile practices. It is meant to describe

only a few practices that the studied research projects could benefit from implementing.

3.1 Work Flow Visualization

This chapter introduces two tools: First, backlog used for prioritizing, estimating and

planning work. Second, a work flow table for tracking task flow from state Backlog to

state Done.

 Backlog is a commonly used term in agile. Sprint iteration has a backlog and the

product has a backlog. Backlog is a list of epics, features, capabilities or tasks. It is a list

of work items that should be done. Product backlog objective is to expand the product

vision, through an evolutionary requirements definition process, into a product feature

list. [2] Often it is a good practice to sort the table so that the features at the top of the

list possess also the highest value. This way they can be easily selected to be dealt with

next. Figure 6 illustrates product backlog.

Figure 6. Product backlog. An example of a product backlog. The order of the stories

shows priority. The higher in the list, the higher in priority.

16

Sprint iteration backlog contains work selected to be done in sprint iteration. Otherwise

sprint iteration backlog and product backlog are almost equivalent. Figure 7 illustrates

sprint iteration backlogs derived from product backlog at figure 6.

Figure 7. Sprint iteration backlog for the following four sprint iterations. A fairly

detailed backlog for the next sprint iteration. The further in the future the sprint

iteration is, the fuzzier the sprint iteration backlog is.

 A workflow table can have many forms that serve different needs. The Kanban table

is introduced here. Figure 8 shows an example of a Kanban table.

Figure 8. The backlog is an unordered list of identified features. When the team is given

permission to build a feature, the feature is split into tasks and moved to the To Do

state. To Do is an ordered list, so that the highest position has the highest priority. The

In Progress state has work in progress limitation. One team may have a maximum of

three works in progress at one time. The same goes with the Testing state. The Done

17

state shows features that are done and waiting to be delivered to the customer. When

delivered, the task will be removed from the Kanban table.

 The Kanban table limits the work in progress at any given time. Kanban does this by

specifying a slot for each available type of activity and limiting the number of tasks in

slots. For instance “To Do” and “In Progress” are activities in a figure 8. When a task in

one slot is done, the card representing the work is moved to next slot in the workflow.

For instance, a task can be moved from “In Progress” to “Testing” in a figure 8. The

table always represents the current state of work. It also shows both process and status

with minimal effort. [13 p98] Even if Kanban is not time-boxed, the Kanban table or

Kanban table variations can be used in time-boxed development as well.

 It is extremely important to realize that Kanban table should visualize process as it is.

For instance, consider that task X that takes one day to implement, is in progress. Then

the customer decides that feature F with tasks H, M, V, W and E should be done

immediately. At least the following actions can be taken:

1. Leave task X into “In Progress” and move also some task of F to “In Progress”.

2. Move X back to “To Do” and move some task of F to “In Progress”

3. Leave X into “In Progress” and make emergency swim lane for tasks of F. The

emergency swim lane shows everyone that all the other tasks are on hold since

the team is doing emergency work.

 The author’s experience suggests that, if the customer comes up with emergency

work rarely, then options one and two can work nicely. If the customer puts forward

emergency work all the time, then jumping between tasks messes up the workflow and

waters down the whole point of work in progress limitations. In this case the Kanban

table should show the process honestly as it is and some sort of emergency swim lane

visualization should be used. If the Kanban table looks messy, then it is obvious that the

process in use is messy and it should be improved on.

3.2 Retrospective

Retrospective is another agile practice for facing reality: How well the current process

matches to the current and yet ever changing situation [8]? To retrospect is to stop,

reflect last few weeks, planning what could be done better and then trying out few

improvements for next few weeks. Plan of action needs to be made, or nothing will be

changed. Plan of action consists of tasks. Task describes what should get done and who

is going to do that. Wall of the team room is a good place to place the plan of action, so

that it reminds people of what was committed. Retrospective is a tool for the team to

evaluate and making appropriate adaptations in the following four areas [2]:

 Product value: Is value in the form of releasable product, being delivered?

 Product quality: Is the quality goal of building a reliable, adaptable product

being met?

 Team performance: Is the team adapting effectively to changes imposed by

management, customer or technology?

18

 Project status: Is the project progressing satisfactorily within acceptable

constraints?

 Retrospective is usually held between sprint iterations. If sprint iterations are longer

than few weeks, then mid-sprint-iteration retrospectives should be arranged every other

week. [7] Retrospectives can be used for all sorts of milestones, such as project ending

[8].

 Retrospective is one of the few practices that each agile team needs to implement in

one way or other. Retrospective is all about to improvement. Threshold to try new ideas

is smaller, since everyone knows that they are stuck with it for the following two weeks,

no longer. If there is no retrospective culture, then changes may be thought to be eternal,

which makes any changes to be risky.

3.3 Rhythm

Agile software development is commonly done in rhythms. There are rhythms on sprint

iteration, daily stand-up meetings, interactions with customer on story detailing,

releases, waves, constantly thinking, designing, building, testing and reflecting small

increment of work [2]. Release, sprint iteration, and daily stand-up are time-boxed tools

that make the backbone of rhythm. Figure 9 illustrates the relationship between these

rhythms and the duration of rhythms and typical events that ends and starts new cycle of

rhythm.

 Daily stand up is commonly used agile technique. SCRUM version of daily stand ups

are described next. Daily stand up is held preferably at the same time every day. Every

participant is encouraged to answer three questions:

 What did you do yesterday?

 What are you planning to do today?

 What impediments are in the way?

Duration should not exceed 15 minutes. Purpose of daily stand up is to raise the

visibility of each person’s work and ensuring that their work is integrated. Impediments

should not be solved in daily meeting. Impediments can be solved right after daily stand

up. Daily stand up is for team members, not for status check. If status is checked team

member feels pressure to conform to the plan rather than discuss coordination issues.

Daily stand up meeting is a tool for self-organization. It is preferable participants to

stand during the meeting to encourage the brevity. [2]

 Sprint iteration is an important factor of rhythm. Return of investment is increased

through continuous flow of value. End of sprint iteration is the beat in rhythm where

business value gets delivered to customer. The length of sprint iteration is from one to

four weeks. At begin of sprint iteration, customer has created prioritized list of features,

estimated by the team. Then team is choosing top prioritized features, they can

accomplish during next sprint iteration. Team is implementing features during the sprint

iteration. Accomplished features and potentially releasable product is shown to all stake

19

holders at review at the end of the sprint iteration. Feedback is gathered during review.

Retrospective takes place before new sprint iteration planning. [2]

 Release means that product is published to real users. How often release is done,

depends on when customer thinks that enough business value is created for new version.

The most important features and capabilities are done in early releases. Release plan is

giving overview of what will be released and when. Release plan is important for

multiple reasons, such as for better understanding of project feasibility, mitigation of

risk and give the team a “feel” for the entire project. [2]

Figure 9. Agile rhythm. Release consists of several sprint iterations. Sprint iteration

consists of several one day sprints. All cycles have constant length and different means

of planning.

20

3.4 Estimation and planning

There are multiple levels in planning: day, sprint iteration, release, product, portfolio

and strategy [10]. This chapter focuses mainly on sprint iteration and release planning.

Estimation is kept as a one of the most difficult things programmers must do [8]. One

reason is that programmers do rarely know how they will spend their time. This means

to say, interruptions lengthen the time. Second, programmers do not know and cannot

deal with all the specification details and techniques.

 Story points are used for relative size estimations. Relative sizes are given to features

instead of implementation estimation in time. Small feature is having relative size of

one story point. Around three times bigger feature is having relative size of three story

points. Twice as big feature as three is having either five or eight story points. All

integers should not be used for estimating. With given uncertainties the differences

between ten and eleven makes very little sense, whereas the difference between one and

two makes all the sense. Eleven is only 10 percent greater than ten, but two is 100

percent greater than one. Fibonacci numbers, 1, 2, 3, 5, 8 and so on, could be usable

sequence for estimating relative sizes [10]. The reason for story points is that it is easier

to estimate relative sizes of features than it is to estimate time to build a feature [8]. For

example, how long it takes to build a house? Or when you have already built a house,

then how long it takes to build a house twice as big?

 Velocity is how many story points are done in sprint iteration. Although estimates

are almost never accurate, they are consistently inaccurate. One task takes more than

was estimated and another one less than was estimated. Estimations are consistent in

aggregate. Different set of interruptions occurs during different sprint iterations. Still in

average interruptions tend to be consist from sprint iteration to sprint iteration. [8]

Figure 10 illustrates this.

 Velocity is used to make coarse grained releases plans – the average of story points

delivered per sprint iteration. For sprint iteration planning some suggests that team

commitment should be used instead of velocity. Team commitment planning means,

that the team is choosing as many features, from prioritized list as they believe they can

deliver during next sprint iteration. [10]

Figure 10: Estimating by velocity Deviation from sprint iteration to sprint iteration

does not affect velocity much. One sprint iteration true velocity is bit higher and

another sprint iteration bit lower than statistical velocity. [11]

21

3.5 Facilities in Agile

Facilities are a crucial part of a high performance agile team. Team work in the same

room and the layout should support their work. They are working in an informative

workplace, including information radiators and shared spaces, such as a whiteboards.

 One example of an agile work place is a combination of caves and a commons.

Caves are places for providing some privacy for phone calls, email writing and other

need for separation. The commons are places where team members are intensively co-

located.

 Information radiators communicate information to passersby, so that they do not

have to disrupt team members. Information radiators can also be aid for management to

notice when the team is in need of help. [13] Some say information radiators help team

to focus on the top priority issues. Two characteristics are keys to good information

radiators: The information changes over time and it take very little energy to view the

display. Information radiators should be placed into a densely used public space near

the team. The team room is the best place for information radiators [8]. The entrance of

the team room or hallway is also good. However, a web page is not, since visiting a web

page requires more effort than most people is willing to expend. [7]. The information

should be constantly visible from everywhere in team room [8]. Information radiators

can be used to show for example work breakdown for the next sprint iteration, results of

reflection workshops or user stories in development or in progress [7].

 Information radiators may lead to gaming, in which people are not driven by

business value, but by attempts to improve their position in information radiators. To

prevent this, review the use of information radiators with the team and take old

information radiators down after a sprint iteration or two. Above all, never use

information radiators in performance evaluation or report them outside! [8]

 Whereas information radiators are for the passerby, team members need tools to

improve their communication in everyday work. Team members need to transfer

knowledge and ideas from one to another. A whiteboard is an excellent tool for this.

There should be plenty of whiteboards on the walls in the team room. [8]

3.6 Agile and Maintenance Work

The optimal situation would be that there is no maintenance work or emergency

requests. The team is focused only on one goal. Rather often, the reality is different.

This chapter discusses the question of how to deal with surprising or unscheduled

maintenance work with agile.

 What to do with emergency requests? Remember that the next planning is only a

week or two away. Maybe the changes can wait until that. What if the changes cannot

wait? Responsiveness to business needs is a core agile value. If sprint iterations are

used, then as much work is taken out from sprint iteration as is added. In addition, only

stories that are not started can be replaced. [8]

22

 What if the working environment is too chaotic for sprint iterations? When a great

share of tasks done in a sprint iteration are emergency tasks? When the difference

between planned work and delivered work is significant iteration after iteration? Maybe

a Kanban type approach could be used. The Kanban table is introduced in the chapter

Work Flow Visualization. Priorities can be changed anytime, and whenever an old task

is finished the highest priority new task will be selected.

3.7 Team Rules of Engagement

Every team should have rules of engagement. These are ground rules on how team

members are supposed to treat each other. The rules of engagement should not have too

many rules. Three may be too few and ten may be too much. These rules are owned by

the team. The team participates in developing, adapting and enforcing these rules over

time. These rules should direct conflict and contention in a positive way. [2] The

SCARF model suggests that rules of engagement improve avoid-approach response by

improving fairness [18].

 There is no right set of rules. Each team must find what works best for them.

However, to have an illustration of what these rules could be, look at table 1.

Team Rules of Engagement

Everyone has an equal voice

Attack issues, not people

Respect each other and your differences

Everyone participates into decision making.

Ask help when stuck

Offer help when asked

Table 1. Example set of rules of engagement.

23

3.8 Facilitation

Organizations have a lot of know-how, but they may be inefficient in using and

combining all the know-how they have. Facilitation is a group process toolset for

improving the way people participate and create results together in meetings. The

facilitator does not take part in creating substance. Facilitation is meant to help

especially experts and professionals in low hierarchical organizations. Figure 11 shows

the relationship between facilitator, consultant and coach. Facilitation should answer

these questions: How to start a meeting in a way that people feel safe and willing to

participate? What facilitation practices to use to make different kind of people to

participate and to reach the goal of a meeting? How to end in a way that people

remember what was done and decided and they leave in good mood? [15]

 All leaders should have facilitation skills. It would be good, if the team members also

knew something about it. Facilitation is an extremely important tool. It is mentioned in

this thesis to make the reader aware of its existence. Facilitation is a wide subject. The

reader is advised to explore further sources to gain sufficient understanding of its usage.

Figure 11. Relationship between a facilitator, a consultant and a coach is shown. The

facilitator drives processes, but is not involved in substance. [15]

3.9 SCORE

The University of Maryland has developed a lightweight framework called SCORE for

mentoring doctoral students. SCORE is based on agile. The core idea of the SCORE is

to have two meetings: frequent daily stand up meetings participated by all students and

on-demand research meetings. Daily stand up meetings are not actually held every day,

but they are still called daily stand ups because of likeness with actual daily stand up.

Daily stand ups are held in Maryland on late mornings on Tuesday, Wednesday and

Friday. For more information about daily stand up, read the chapter Rhythm. On-

demand meetings are arranged whenever there is a need for more in-depth, one-on-one

meetings. Daily stand up is a good place to expose need for on-demand meeting. On-

demand meetings are arranged typically on the same afternoon. Maryland University

has been using SCORE since 2006. Following benefits are reported: More efficient time

24

use for faculty, improved productivity for students and improved group identity and

shared knowledge. [14]

 When asked by email if they have tried student teams, the author of SCORE paper

answered as follows: “We find that two-student projects actually work best. Or even

larger projects in which there are sub-projects that students can mostly do on their own,

but contribute to a larger whole. That way, they are always helping each other make

progress, whether a little or a lot. However, sometimes one-student projects are all we

can fund, or the students actually prefer this.”

25

4 Thesis’s Approach to Agile

Rest of the thesis is built upon the author’s theory of how agile should be done. The

rest of the thesis is not an official, well-accepted and theoretically sound approach

into agile. The viewpoint to agile is defined first. Rest of the chapter describes

challenges and opportunities to help succeed with given agile viewpoint. Blub paradox

describes why it is so hard to make a human believe the benefit of any new approach,

such as new viewpoint to agile. The Rightshifting model describes organizational

evolution, which is extremely important, if continuous improvement is valued.

Organization should rightshift, when they improve continuously. The chapter

Psychology of Change Resistance concentrates on people’s urge to maintain the status

quo. It is not possible to improve anything without changing anything. Resistance is a

natural reaction to changes. This must be taken seriously, if one wants to be successful

with changes. The author’s opinion is that it is practically impossible for an

individual employee to change an organization to be agile, even if such attempts are

not that uncommon. Failure risk is very high, even with managers. The chapter

Psychology of Change Resistance is there to justify author’s opinion. Chapter also gives

some tools how to success, if one wants to try anyway. Social Aspect of Learning and

Innovation defines why intensively collaborating small group is better to solve complex

problems than individuals. Competition within the Team and Measuring Performance

describes two common sources of dysfunction to collaboration and continuous

improvement.

4.1 Thesis’s Theory of Agile

Based on the author’s personal experience and what the author has heard, most of agile

transformations fail in becoming agile. Agile transformation failures are the main

motivator to exploring new viewpoints on how to become agile.

 Waterfall is a traditional project management methodology. Waterfall has many

well-known structural drawbacks in complicated projects. These drawbacks are the

same with all projects and teams. For example, a phase exists in which specification is

created. This phase is at the beginning of the project and the client participates in this

phase. Specification phase creates a document that lists all the things the client thinks he

needs. After the specification phase begins the design phase. One or two software

architects create the design of the up-coming software. The end product of the design

phase is another document that is input to the following phase: programming. After

programming, there is testing and after which the client performs acceptance testing.

Accepted acceptance testing is the end of the project. One problem of waterfall is that

the customer participates only at the specification and the acceptance test phases. It is

very common that the program delivered does not meet customer’s needs. Unmet needs

26

are a surprise revealed at the end of project, when everything was meant to be

completed. How could one improve on this issue? If the structural problem is that the

customer is too distant, then the solution is to involve customer more. This example

means to claim that if waterfall has structural shortcomings, then continuous

improvement and use of common sense would fix those problems. Moreover, different

waterfall projects would take different paths in improving, but all projects would be

fixing the same shortcomings with like-minded solutions. At the end, all projects would

be similar. Not the same, but similar.

 Let us recall how agile was established. There were several more or less independent

teams who tried to improve their project management and teamwork in the era of

waterfall. Then seventeen software professionals with a background of successfully

managed projects met each other in the year 2001. Their goal was to find out what was

in common with all their successful projects? Based on that, they created the agile

manifesto and the twelve principles. [43] This thesis uses the theory that continuous

improvement is what took teams and projects from waterfall to agile. On the other hand

many traditional projects have tried to transfer to agile, by having certifications and

education and installing some agile framework, such as Scrum. Often those attempts fail

to be agile. Failed projects are probably not catastrophes. They may have improved their

performance by using agile practices. However, they fail to have full potential of being

agile. What traditional projects and teams need is an approach that changes traditional

values to agile values.

 Is continuous improvement enough? Distributed, unfocused teams are common in

software development and even more common in the studied research projects. Some

studied projects have been trying for continuous improvement. It has been very

dysfunctional, since people were in simultaneously in several projects, belonging into

many functional groups and project staffing was changing too often. The result was too

fuzzy and complicated. If there are no teams and no isolated projects then what should

be improved? Another similar issue is that many organizations and essentially all

studied organizations optimize individual work. By doing this, organizations will find

some local performance maximum. Learning teamwork skills will take time and during

that time performance can drop. If done successfully, the performance of a team

working intensively together can be significantly higher than in a case of individually

optimized work. Third, if the team members are not equal, then improvements are only

the opinions of a few. For example, project manager may consider that team members

cannot be trusted. If the project manager is the ultimate decision maker, then

improvement attempts will be biased and rest of the team may not be committed. Still,

there are many evidences that team can be more than the sum of its parts. The chapter

Team’s Effect on Learning and Innovation offers more information.

27

Following theory is the cornerstone of the thesis:

To be agile, team needs to live out two values:

1. Complicated problems are better solved by small and intensively

collaborating group than by individuals.

2. Continuous improvement.

Every advice and practice and theory written later is done with mindset aligned with

this theory.

4.2 Blub Paradox

This chapter helps the reader to understand that people may not understand you when

you are offering them solutions that requires a new way of thinking. Agile is a new way

of thinking to most.

 Theoretical average powerful programming language is called Blub. Now consider a

programmer using this average language. As long as he is looking down to power

continuum, he knows that he is looking down. Less powerful languages are missing

some features he is used to. A C++ programmer knows that saving bits to register is less

powerful than saving string to variable. When he is looking up the power continuum, he

does not know he is looking up. All he sees is weird language, perhaps similar to Blub,

but with some messy stuff thrown in as well. Blub is good enough for him, since he is

thinking in Blub. Assembly programmer does not necessarily realize he is looking up

the power continuum when he is seeing string saved to C++ variable. You need to have

caution with the opinions of others, because of the Blub paradox. They will likely be

happy with whatever language they happen to be using. [29]

The author of the thesis is a somewhat good programmer. He has rather good overall

comprehension of a few programming languages. He also has a rather good

understanding of the most common best practices. While communicating with people

with different backgrounds, the author’s experiences are aligned with the Blub paradox.

It is apparent that people do not have intuitive skill to recognize the benefits of a new

approach. Instead, people have an intuitive response to defend their habits or at best to

see world through what they know by heart. What else can anyone expect? For example,

try to explain the benefits and the meaning of functional programming to an object

oriented programmer. Or try to explain the benefits and the meaning of object oriented

programming to a functional programmer.

28

4.3 Rightshifting

Rightshifting is an organizational model. It illustrates the evolution of organizational

mindset. Figure 12 illustrates rightshifting. When a new organization is born, it appears

on the far left. Over time, with learning and improving, the organization shifts to the

right. If the organization is continuously improving, it should be continuously shifting

to the right. However, most organizations stop shifting after a while. [27] Continuous

improvement is at the core of the thesis and rightshifting gives a tool to estimate

progress. Rightshifting is also a power continuum. The more on the right the

organization is in rightshifting, the higher it is in a power continuum. Read the chapter

Blub paradox to understand the concept of a power continuum.

Figure 12. Four organizational states of rightsifting. The curve illustrates the

percentage of all organizations at a particular state. [27]

The idea of rightshifting is to name four categories of organizational mindsets and

how effective organization can be with a given mindset. [27]. Ad-hoc state is where

many start-ups are working. There is no process in ad-hoc. One is working without

thinking how it was done before, or how regular tasks should be done. When a start-up

grows towards a corporation, more and more regulations and hierarchies start to appear.

It enters into analytic, or Mechanistic, state. Command and control is descriptive to this

state. Organization is seen as a machine. When the organizational mindset moves on, it

enters the synergistic state. Mindset is transferring from machine to ecosystem.

Synergistic state exemplifies the principles of lean movement. People are respected and

organizations are seen as complex-adaptive-systems. Learning, flow of value and

effectiveness are focused on. The last transformation is from synergistic to chaordic

mindset. Chaordic mindset sees organization as a modern jet fighter that is

aerodynamically too unstable to fly without on-board computers. Jet fighter is so

unstable for the sake of top performance and agility. Bit less unstable and it is too slow

to change is course in time. Bit more unstable and it would crash. Chaordic state means

29

finding a peak performance between orderly working and a chaotic collapse. Charodic

mindset believes that being too organized, structured or ordered often means being too

slow. Opportunities and threats must be dealt with fast. [27] Charodic state does not

need as much coordination as lower levels, since the people are all aware of goals [28].

 Anthropologist skills can be used to find out current states of organization. If people

are talking about rules, regulations and controls then organization is on machine state. If

growth, ecosystem and human relations and interactions are common topics then the

state is synergistic. When the state is defined, it can be used when communicating with

the people in organization. People must be approached at the same or lower level as

where they are as Blub paradox chapter suggests. If organization is at the machine state

then explaining something, such as agile, by human interactions and intrinsic

motivations is not effective. [28]

4.4 Psychology of Change Resistance

SCARF Model discusses threats and rewards and how those interact with human

behavior [18]. SCARF is used as a neuroscientific approach to explain and overcome

change resistance. The rest of the chapter has a psychological approach to change

resistance. While working on this thesis and talking with people, by far the most

common reaction to new ideas was instant resistance. This is not only matter of public

research, but a matter of being human being. Never underestimate the challenges you

will face when changing habits. This chapter concentrates on change resistance and

ways to ease it. Change resistance could be also described as willingness to preserve

status quo.

4.4.1 SCARF Model

SCARF is a rather easy model that helps people to minimize threat-response and

maximize reward-response in social interactions. Firstly, our social behavior is strongly

affected by principles of minimizing threat and maximizing reward. Secondly, brain

networks treat social needs and our primary survival needs much the same way. SCARF

is a model to summarize these two. SCARF tries to give tools to minimize threats and

maximize reward in any situations where people collaborate in groups. The SCARF

model includes five domains of human social experience: status, certainty, autonomy,

relatedness and fairness. [18]

 Status is the relative importance to others. Certainty is being able to predict the

future. Autonomy is to have control over events of one’s own life, such as not being

micromanaged at work. Relatedness is the feeling of cohesion and safety in group.

Fairness is an experience of fair exchanges between people. [18]

 Some events and circumstances are attractive to us and some are frightening to us.

Attractive events and circumstances triggers approach –response and frightening events

and circumstances triggers avoid –responses. Together these two responses are called

approach-avoid-response. Studies show that approach-avoid-response is an involuntary

30

driver of human attention. This means to say that threats and rewards obtain our

attention automatically. Add to this the fact that approach-avoid-responses have huge

impact on cognitive performance and it follows that the avoid-response has a strong

negative correlation. Even if the avoid-response is not an ideal situation, it is a default

situation in many teams. On the other hand approach-response improves ability to

overcome challenging tasks. Studies support the idea that the avoid-response generates

far more arousal in the limbic system, more quickly and with longer lasting effects than

an approach-response. [18]

 Following are some examples. Threat to one’s status activates similar brain network

than a threat to one’s life. When the work or a decision of respected researcher is

questioned there is easily a perception of a status threat. On the other hand, increased

autonomy activates the same reward circuits as receiving a monetary reward. To

increase autonomy, the leader may consciously avoid micromanaging their employees.

When boss or a workmate is making someone feel threatened then he is less likely to be

able to solve complex problems and more likely to make mistakes [18].

 Based on SCAFR, how would an old-school boss respond to agile transformation?

Let us say he has 27 years of work experience. Throughout his career he has tried hard

to climb the corporation ladder. He has a strong status that others must respect in order

to work in the organization. He is the one making decisions. He has certainty in a way

that he is the one who will be making the plans for the coming year. He has autonomy.

After all, he is the boss. He does what he thinks he should do. No need to ask

permission. He may not have much relatedness, since he is above others in an

organization hierarchy. He has fairness at least to the extent that he can use his power to

punish what he thinks is bad behavior or reward what he thinks is good behavior. Then

the organization goes agile. What are the SCARF threats the boss is experiencing?

Agile transformation threatens his status. He would not have the same hierarchical

power to make decisions and to give orders. Perhaps he fears that his subordinates will

not respect him anymore or think his is a loser, since power has been taken away from

him. Agile is threating his certainty. He cannot make the plans himself anymore. Not

only that, but new plans are less detailed and for shorter terms that they used to be. It

gets even worse. Plans are less about control and more about motivation or less on rote

and more on reasons. Being a servant leader threats his autonomy. He used to be a boss

who did what he wanted and now he should serve others by motivating them and

removing obstacles. Threat in Relatedness is not necessarily an issue. Is he experiencing

fairness threat? Perhaps he thinks that after serving 27-years and earning to be where he

is, it is unfear that he is losing his power. He is losing at least some of his power to

unilaterally dispense justice. So he will probably need to live with increasing amount of

experienced unfairness. Recall that avoid-response is much stronger than approach-

response and social pain activates the same brain circuits than physical pain. The boss is

in pain! Stress reaction, or avoid-response, decreases his cognitive skills which makes

the situation even worse. The boss is probably fighting hard against the agile

transformation and doing what he can to make it fail! Enforcing SCARF model’s

31

approach-response may ease his pain. Still, transferring to agile is extremely hard to do

successfully with old-school bosses. [44]

4.4.2 Fears

Fear is a natural way for humans to respond to change. The rule of thumb is that people

feel afraid of losing more acutely than they feel the desire to win. This leads to

situations where people prefer to fail conservatively over trying something new to

succeed. [17] On the other hand, people are risk-averse when they are in risk of losing

something and risk-accepting when they are losing something and may have a change to

retain it [7; 17]. So when an organization tries to make a change, those who are afraid of

losing are fighting harder than those who believe they are winning. Quite often settling

the fears of those who are threatened leads to compromises that water down the original

vision. [17]

 Remorse has a stronger correlation with doing something that breaks routines and

failing, than upholding the status quo and failing. The formation of the question can

make a difference. Let us think of an example of organ donation. The rate of organ

donation is higher when people must take an action to prohibit organ donation than

when people must specifically permit organ donation. [17]

4.4.3 Tricks for Handling Fears

Reasonable risks need to be taken or nothing new will ever be created. So, what tricks

are there to overcome the shortcomings of the human mind? The tricks in this chapter

are not silver bullets nor best practices, but general rules.

 Avoiding negative issues is far more important for a good human relationship than

seeking out positive issues [17]. It is said that there should be at least three times more

positive feedback than negative feedback. Seeking ways, such as rules of engagement,

to decrease the amount of negative issues is a valuable tool for improving team work.

 People should be guided by giving them positive feedback. Rewarding good

behavior creates better results than just punishing bad behavior. Of course both have

their strongholds, but for best results, positive feedback should be strongly favored [17]

 Judging more based on approach than result can diminish the effect of hindsight.

When decisions are judged it should be considered what was known when the decision

was made. Even if results were bad the reasons for the decisions might have been

justifiable and vice versa. [17].

 Usually a wider frame works better. What is the chance that changing a single

practice will succeed? If it is 0.55, then would you take that chance? How about if you

have thousand practices to change and each of them has 0.55 probability of success? In

a case of one practice you might win or lose. If you can make thousand profitable bets

then in average you will most certainly win. [17]

 The way you tell it makes the difference. What is the difference between these two

sentences: “He has a 90% chance of surviving” and “He has a 10% chance of dying”.

32

They are telling the same thing, but surviving generates different kind of thoughts and

feelings than dying. Changing discourse can change the viewpoint people are having

[28]. Discourse was chosen between surviving and dying in the previous example. It can

also be chosen between favoring individualism or teamwork. Even stronger feelings can

be evoked by making the story more vivid. In general, the more vivid the image

someone has in their head, the more important they will think the issue is. Think of

these examples: “One child in a million will die because of this medicine” and “The

probability of death caused by this medicine is 0.0001%”. [17]

 New knowledge of lower risks improves human beliefs of benefits, even if nothing

was said about those benefits. New knowledge of benefits also makes risks feel smaller,

even if nothing was said about risks. [17] It follows, that if people are not sure about the

benefits of change, one trick to convince them is by talking about how small the risks

are.

 In a case where more risk taking is needed one may want to try one of these two

tricks: First, phrase the proposition to sound like you are facing high probability to lose

and that is why new working practices need to be tested. Second, if probability of

failure is high, then make it sound like a lottery [17]. It is about trying out and maybe

winning, more than it is playing risky and failing.

4.4.4 What People Believe and What Changes Their Mind

Risks are only one important part of change resistance. Some other aspects of how

humans come to believe what they believe are descripted in this chapter.

 Human have only a certain amount of self-discipline to use. When a person shows

self-discipline in one matter, he is less likely to resist some other temptation. For

example, say person needs self-discipline for two actions in his daily life: to work hard

and to exercise. If he starts to work harder, he probably starts to exercise less. This

phenomenon is significant in many businesses. When people are busy, they will

probably not have enough self-discipline to simultaneously change their habits. [17]

Moreover, when people are stressed, they regress to their old habits. In these

circumstances it is extremely hard for people to change their habits [7].

 Human beings do not suspect their opinions too often. At least it is very rarely

spontaneous. However, in order to believe something a person needs first to think the

claim is true and only then he can try to explore how the claim could be true. He would

try to proof that the claim is true in his mind. [17] To help this happen, one could try to

play co-operative games, such as “Let’s try to think what would need to happen to make

this true!”

 Ones feelings have extremely highly correlated with his beliefs. When people believe

a conclusion to be true, they probably believe the evidence as well. To make the effect

stronger a person is always predisposed to evidence that supports their current beliefs. A

good and believable idea is not the one with the most facts and a rich set of viewpoints,

but the one with the most consistent and vivid story. Knowing too much can even make

33

it harder to have self-confidence, since the story is more complex than it is consistent.

When there are gaps in facts, human subconscious fills these gaps without conscious

thought. So it is natural for a person to feel like he knows everything that is essential.

All this leads to a situation where a person feels too self-confident with his intuitions.

The claim that he likes has no cost and the claim that he opposes has no benefits. He

may adamantly believe in absurd claims, particularly if he is surrounded by like-minded

people. [17]

 The human brain always searches for signs of causality. Of event X being the reason

for effect Y. Often the world is too chaotic for causality thinking to be accurate. It is

rather rare that human beings recognize this. Luck does not fit in with causality. If a

person P creates a web service and it fails, it is easy to see all kinds of reasons for that.

Maybe he did not care for his clients well enough, or the front page was not cool

enough, or the timing was bad or he should have used cloud services and so on. Most of

startups fail. So how likely it is that this person P fails because he had normal luck,

instead of good luck? Why did Google succeed? Were they mostly talented or lucky?

Luck does not fit with causality. People are inclined to see causality even when

circumstances are all about luck. This effect, as well as self-confidence, are enormous

sources of hindsight. Judging by hindsight is less harmful when someone works aligned

with well-established approaches. So hindsight diminishes risk taking and favors

bureaucratic approaches. On the other hand people tend to be optimistic. They have a

vivid image of the best case scenario, but not a comprehensive understanding of how

things can go wrong. Optimism keeps people trying. Optimism compensates for fears.

Research contains lots of adversity and rare success, so it is vital for researchers to be

optimistic. [17]

 Sometimes educating people on baseline probabilities may help people to see over

their consistent story. For instance, if someone was in the process of establishing their

own startup: They can be asked how likely they are to succeed compared to other

startups, given all that is known about their business idea. The answer may be three

times more likely. They can then be informed that in reality around 90% of startups fail.

You may agree that 10% success rate is a baseline and the estimation is extra

information on that. The Bayesian probability can be calculated and the probability of

success would be 0.1 * 3 / (0.1*3 + 0.9*1) = 0.25, which is 25%. People are bad with

probabilities and baselines. [17] Educating tries to overcome that.

 Subconscious replaces difficult questions with easier ones. It enables quick answers

to complicated questions without much knowledge. [17]. For example, if a Finn is asked

how Russia will behave next year, he tends to replace this question with how Russia is

behaving now. Crimea was taken over by Russia around the time that this was written,

how did this event change Finns answer to “How will Russia behave next year?” What

does this matter? Let us think that an organization is trying teamwork, if its employees

agree that it is a good idea. After all, teamwork cannot work, if employees are against it.

Employees may feel like they have all the information they need and no education or

conversation is needed. They already have an opinion. Then instead of answering “How

34

beneficial would teamwork be?” they easily answer to “How much do I enjoy working

intensively with others?” Moreover, replacing questions about future with thoughts

about how things are in the present has a big impact. It is hard to convince a person that

changes need to be taken now, even if there is no vivid pain yet. Think about all sort of

possible environment catastrophes for instance.

 Human beings do not change their behavior based on general information. Not even

if they understand and accept the implications of that general information. People tend

to be bad at statistics. General information is statistical in nature. What helps a person to

change their mind is a vivid example. Our own firsthand experience is even better.

 Humans tend to believe and like things that are cognitively easy. Known things are

easy. The idea of using Windows is easier to most than the idea of using Linux.

Cognitively, it is hard to separate easiness from truthfulness. Factors that make an issue

cognitively effortless are repetition, clear appearance of issue, focused thoughts and

good mood. [17] For example, when there is resistance to using agile, a simple one

afternoon demo may change people’s estimations of its cognitive easiness.

 Ownership increases experienced value [17]. This is no news to agilists, since agile

cannot work without people possessing ownership over their work. An effective, but

difficult trick to make people accept change is to make them owners of that change.

Ownership increases the value, if the owned concept is thought to be using, not trading

[17]. For instance, changing five one Euro coins to one five Euro bill is no problem.

However, changing one’s favorite coffee cup to a new one can pose a problem. Here

money is an instrument of trade where the coffee cup is for use. In agile, people should

have ownership over continuous improvement and business value. They should change

working habits, processes and practices whenever needed. One thing that should not be

owned is ideas. Owning ideas is very detrimental in teamwork. When ideas are owned,

they are not shared. They are not built on top of each other. They are not played around

with. They are not part of a co-operative game, but forts to defend. Ideas should be

traded! In that way they are part of a co-operative game in which innovation and

learning is boosted.

 When change is needed, the vision of success should feel as good as possible. To

make it feel good, the story must be made vivid, consistent and simple enough.

Including probabilities makes stories less vivid, less consistent and less simple.

Moreover, people tend to believe simple language more than complicated language.

Some people like to use sophisticated language, but it may take its toll. Rhymes can be

powerful on summaries to make people buy your idea. [17] Consider these sentences:

“When life gives you a hundred reasons to be sad, show life you have a thousand

reasons to be happy” and “When life gives you a hundred reasons to cry, show life you

have a thousand reasons to smile”.

 The overall impression makes the difference to observer’s feelings and thoughts.

This is called the halo effect. Politicians with a certain type of face get votes easier than

others. [17] It is limited what one can do to the size of one’s chin, but it is possible to

learn to control emotions to make one look positive instead of aggressive. A person can

35

also dress appropriately, learn to use gestures, control one’s voice and tell vivid stories.

A teamwork related question to think about is how much the research world is affected

by the halo effect of geniuses? Well known geniuses, like Einstein, Edison and

Copernicus are not known as team players, but as independent workers.

 Finally, if you want to play dirty, trivial details can make people change their minds

[17]. This practice can easily take its toll on you. It is widely used in software

development and even more commonly in politics. Some use it unintentionally and

some intentionally. Tricking researchers with details may be more difficult than tricking

most people, since researchers are far more accustomed to questioning claims.

 Collaborative engineering recognizes that an individuals’ decision perspective is

dynamic and affected by others. [7] When humans adopt a new viewpoint, they

instantly lose their ability to recall most of the beliefs he had had before that. When

defined well, people do change their beliefs even if they do not acknowledge or

recognize it. [17]

4.4.5 Change the System and People Will Follow

People tend to adjust their habits to align with their company’s way of working. A study

suggests that system causes 95 percent of all changes in habits. The conclusion from

that is that changing the system will cause most people to follow. [30] Cockburn

suggests that people are remarkably capable of acting differently given new motives and

new information [7]. He also writes that the initial reaction of most people is to force

one group’s values on other groups as well [7].To combine these three: Changing the

system means to give new motives and new information. When doing so, a remarkable

portion of people start to change, consequently forcing the rest to change as well.

 Even if it is accepted that the system causes 95 percent of all changes in habit, then

who controls how the system varies? The easiest answer would be the leaders. They do

have power, but not as much as we think or financial magazines and business books,

such as Build to Last, suggest [17]. Competitors, global economy, trends etc. are also

changing the system. All in all, leaders are responsible for changing the system, even if

results are not exclusively in their hands.

4.5 Social Aspect of Productivity

How does learning and innovation change between individual work and work done in

small groups? This is an important question, since public research is largely individual

work. Small groups can solve complicated problems better than individuals. For

example Fabrizio Butera has done much research related this issue [22].

36

4.5.1 The Background of Public Researchers

From the beginning of school life, children are required to demonstrate their learning

through tests done individually. To pass those tests, they practice by doing exercises

individually. Focus is not on helping each other, but on make oneself look good. And

one needs to be impressive, when growing older and applying for academics, such as

secondary education or university. Even being successful is not enough. One needs to

be better than a certain amount of your competitors, or fellow students.

 At the university, an individual is still mainly responsible for their own results, rather

than being a team member. You do your own exercises, your own exams and you study

alone for exams. Even when studying for an exam can be done in teams, it is not

supported or encouraged. The result is that people do not co-operate much to improve

learning. There is some group work at university as well, which is good, but not

sufficient. At this point in their academic career, people tend to not have good team

skills. Group works are full of arguments, compromise and generally split for each

participant to do their part apart from each other. When the pieces are put together,

more arguing and compromising happens. Finally, intellectual demonstrations, such as

a master thesis or a doctoral thesis, are usually done alone. Another aspect of doing it

alone is that copying is seen as bad. You should be as original as possible - doing it all

by yourself. This is the case even if you can save time and get better results by utilizing

someone else’s previous work. What is described here is the viewpoint of the author,

who entered elementary school in Finland in 1990. Similar experiences are had in other

cultures as well [7]. Some suggest that universities should organize more

communication-intensive courses [7]. Group work is good practice, communication-

intensive sounds even better. Perhaps educational institutions should also have

entrepreneurial attitude education? For example, not teaching and examine facts, but

giving an open problem to a group and requiring well-reasoned solutions.

 Some of the university students stay at the university after they graduate. They do

public research and teach new students. Being a researcher is a sort of natural

continuum from studying. As a summation, there is a reason to believe that people in

public research do not fully understand the potential of working in small groups. Read

chapter Blub Paradox, for further reasoning. Advancing agile methods seems to be

driven by industry practitioners, not by academic researchers [42]. This is one factor

that supports the idea that academic culture is not agile at least on purpose.

4.5.2 Team’s Effect on Learning and Innovation

Let us start with the big picture. Communication patterns are usually the most important

factor in both productivity and creative output. Communication patterns are more

important than education or class structure. Income per person grows exponentially as

more people share ideas. So it is sharing ideas, not just contributing more that boost

performance! [38] Sharing more ideas requires better communication!

37

 Innovation and learning can have multiple meanings and multiple purposes. They are

discussed here as tools for overcoming challenges and improving results. The challenge

can be anything, such as a law of physic, domain knowledge, programming paradigm or

a software development project. In a way, the target of innovation and learning is better

problem solving.

 Interaction drives innovation. Innovations emerge from the interaction of diverse

individuals. [2] Teams are used and praised in software development. In a complex

environment one person cannot have all the useful know-how himself. Different team

members have slightly different skillsets. Moreover, team members putting slightly

different viewpoints on the table, can help to better overcome the challenges in hand.

For example, some suggest that teams with fewer than four programmers are less likely

to have all the intellectual diversity they need [8]. There is also evidence that

programming in pairs increases productivity [37]. Free-form socializing has been found

to be more effective way of learning than documents even in less complex or abstract

industries [16]. Natural human interactions seem to be natural way of learning and

tackling complicated challenges for humans. This should not be a surprise for anyone.

Additionally, accomplishing together rewards intrinsically motivated people [7]. When

working well, small groups can increase motivation to face and overcome challenges.

Being successful in overcoming challenges and in producing results builds a more

coherent team [2]. A team that is more coherent motivates people even more, in turn

helping them to build better results and so on.

 The cone of experience, also known as the learning pyramid, is a well-known visual

metaphor for placing learning activities in broad categories based on the extend they

convey the concrete referents of real-life experiences [19]. A simpler and less obscure

description is that the cone of experience illustrates how much a learner can recall,

when different learning practices are used. The idea of the cone of experience is not to

advocate one media and oppose another [19]. A wide-ranging use of different practices

results in the best outcome [19]. The cone of experience is illustrated in figure 13. There

is criticism concerning the cone of experience as well. Mainly about how accurate the

percentages are, how many variables there are when measuring learning and how

learning can be defined and measured by multiple different ways and about different

purposes of learning. [19; 20] Still, the core idea of the cone of experience is helpful.

 What is obvious from figure 13 is that active practices are more efficient in learning

than passive ones. What is not so obvious is that generally more efficient learning

practices involve more active interactions with others. When a team is working well,

team members are using more or less all of the learning practices listed in figure 13,

with the emphasis on active practices. For instance when a team member is facing a

problem he would describe the problem to others. Surprisingly, often one is capable of

figuring out the solution, only by explaining the situation to others.

38

Figure 13. The cone of Experience demonstrates the strength of experience in different

types of learning. The stronger the experience is, the easier it is to remember. [21]

4.6 Competition within the Team

As described earlier, there is a reason to believe that the educational system prepares

people to work solo. As a side effect, it may encourage individuals compete with each

other. What kind of effect does competition between team members have on the

performance of the team?

 There are many reasons to believe that competition decreases performance. For

example using the SCARF model, it could be estimated that competition can increase

status, relatedness and in many circumstances fairness threats. Even the definition states

that “relatedness is a sense of safety with others, of friend rather than foe” [18]. If

competition is causing a threat, then it is likely to also cause more mistakes and to

reduce cognitive performance [18]. Effects of competition in mutual interactions have

been studied a fair amount [23; 24; 25]. These studies confirm that mutual competition

does decrease results. A minor threat such as talking with an expert may cause status

threat and decrease a participant’s ability to think creatively [25]. Studies show that

possession of identical information is detrimental to participant-participant co-operation

[23]. Identical information is fruitful ground for competition. Results are better when a

positive resource interdependence is present. In that situation participants need each

other and co-operation works better. There is so much relevant information in a

complex work environment, such as software development, that people are practically

always having a positive resource interdependency.

39

 Not all think that competition within the team is purely detrimental. Cockburn

suggests that competition can also be used to create better results. The catch is to create

rules so that the competition framework fosters collaboration. For example a team

member may gain points from reviewing code for someone else. [7] Detailed

description of a framework can be found in Cocburn’s book. The framework does not

focus on mutual competition. It focuses on gaining points. So even though it is called a

competition framework, it does not focus on mutual competition within the team. This

is an important distinction. If mutual competition occurs, then gaming would harm

collaboration. For example, one may not offer one's code for review, since the reviewer

could gain points. Caution is advised before using a competitive framework. If a relative

amount of the points gained are used, then there would probably be mutual competition.

4.7 Measuring performance

Performance measurements are widely used. Public research is no exception.

Measurements used in public research are the number of master theses, doctoral theses

and publications as well as the reputation of the papers in which the publications were

published. There may be other performance measurements as well. The reason and

inevitable consequence of performance measurement is that it impacts the work and the

results.

 The rule of thumb is that agile teams should be measured more by how they have

improved than by their performance. High performance is not demanded, it is expected.

High performance is not as much achieving a certain state as it is a journey toward

something better. [31] This is an eternal loop between improving and high performance.

 Studies show that academic researchers are disappointed in the current performance

metrics in Finland. Their experience is that the performance metrics are misguided and

lean toward impolitic results, such as partial optimization, result gaming and increased

bureaucracy. Performance measurements are not encouraging, conversely building up

pressure to publish. Stress to publish increases the amount studies that are valueless but

can be published fast. [32] Another study claims that the race for obtaining funding does

not improve the quality of research in Finland's universities [35].

 Metrics often improve results initially. Those who are being measured learn to work

the metrics at some point. Then, with pressure to improve they are forced to subvert the

intentions to meet the measurement goal. Metrics are always disconnected from the

desired outcome. Over time measured performance keeps going up and true

performance declines. [2] Especially measurement obsession should change from time

to outcome [2].

 Academic metrics tend to favor individual work as discussed in the chapter The

Background of Public Researchers. Agile teams should be responsible for the outcome

as a team. Metrics should be aligned with that. As stated in the chapter Agile Manifesto

and Principles, Amatriain claims that public research should demonstrate more

40

commitment and response to social needs than obtaining grants, patents, or publications.

If this viewpoint is accepted then performance measurement should be aligned with it.

 To summarize the chapter on measurement here are two quotations. First by Jim

Highsmith: “Delegatory agile system measurement should therefore be focused on two

things: determining the value of output delivered to the customer and providing staff

informational measurements with which they can do self-assessments to improve their

own performance” [2]. Second quotation by Rob Austin: “Trust, honesty and good

intentions are more efficient in many social contexts than verification guide and self-

interest" [2].

41

5 Thesis’s Theory of Agile in Action

There are many practices and frameworks in agile. They are general rules that have

been found practical by multiple teams in multiple projects. However, practices should

not be settled on blindly. The bottom line is that only two things are required for agile to

work: real teams and iterations. If these two are done well, then useful methodology

will be found. Some say using general rules practices and frameworks will make

immature agile teams progress faster and safer [8]. Real teams and essence of iterations

are described in this chapter.

5.1 Iterative

Iteration is a central word in agile. For sure it means different things to different people

and in different frameworks. Iterations are linked to product adaptability, improved

time-to-market, people and process adaptability, reliable results and so on [2]. Iterations

give a phase to development, retrospectives, reviews, planning and all other things

teams are doing periodically [8]. Sprint iterations are one form of iterations and they can

be of different lengths. When defined as agile methodologies do, the sprint iterations

take from one week to several weeks. All other periodical practices, such as daily

standup meetings, are also iterative. Iterations should have a constant length.

 What makes iterations so important? First, iterations improve all sort of learning.

Project stakeholders need to learn about updated customer values, technical skills, social

skills, teamwork, market needs, practices, constraints, vision, how to improve

performance, what other team members are doing, what are potentially shippable

features and so on. Iterations are a way to get feedback. The faster the feedback, the

more it helps learning. When hand is put on hot stove, you learn immediately, not to put

hand there, since you get almost instant feedback. Let us imagine a scenario where the

burning sensation would take six months to reach the brain. Now someone puts hand on

a hot stove. After six months he feels a horrible pain. Did he learn not to place a hand

on a hot stove? He did not. Maybe he was watching his favorite TV-show when the pain

hit. His conclusion might be that the TV-show caused the pain and he stops watching it.

The example may feel strange. First, it has nothing to do with software and second it is

counter intuitive and not true for burning sensation to take six months to reach the brain.

The point is that fast feedback is essential for efficient learning. Not placing a hand on a

hot stove is learned fast and well. Learning to develop software is not learned fast and in

many cases it will not be learned well. What would happen to the rate of learning, if

feedback was as fast as with the hot stove? Basically the shorter the iteration is the more

it improves learning. However, iterations that are too short are inefficient as well since

real value needs to be achieved during the iterative period and that takes time. [2]

Second, iterations also force tough decisions [2]. The question of what should be done

42

next is answered after each iteration. Table 2 shows two of the most common agile

iterations and some basic decisions linked with those.

Name of the iteration Typical decisions

Daily standup What tasks will individual do before

tomorrow’s daily standup

Sprint iteration Project can be canceled, if it does not

look so feasible anymore.

 Working processes are improved.

 What to build during next few weeks is

planned.

 To release or not to release

Table 2. Two of the most commonly used agile iterations and decisions linked with

particular iterations.

5.2 Real Team

Real team is a complex term in agile. Attributes like self-directed, self-organized,

technically excellent, co-located, collaborative, cross-functional, right sized, business

value driven, client involved, transparent and focused can be used to describe agile

teams. It is said that self-organizing has no absolute value. If a team is forced to self-

organize, then it will take longer for them to be self-organized. Then what could be

done? Just engage with your team in purposeful dialogue and mutual learning about

how the work should be done. [41] The same applies to all the other real team attributes.

The point is not to implement real team attributes, but to improve continuously. The

meanings of these attributes is discussed next.

5.2.1 Self-organization

Self-organization means that the team is empowered to organize its own everyday work.

A crucial part of organizing one's own work, is that the team makes their own workload

estimations. The team is told what to build, but the team decides how to build it. The

team is therefore not micromanaged by project manager or anyone else.

 There are multiple reasons for self-organization. First, it rewards and motivates

people to have autonomy over their work and results [18; 39]. This helps them to be

more self-disciplined and to take the initiative. Second, in a complex environment there

are too many variables and too much information for any manager to micromanage

successfully. Team members know best how their work should be done. It is natural to

let them make those decisions for themselves. Third, self-organization, with vision and

self-discipline, are the tools that help the team to adapt to changes so that creating

business value is preserved.

43

5.2.2 Self-discipline

Self-discipline is one’s ability to take action regardless of one’s emotional state [9]. For

example, one does not push messy code to the revision control system even when busy.

Here the emotion is “I am in a hurry. No time to refactor that now. The customer will

not notice, if the code is messy, but he will notice, if the feature is not delivered.

Besides, when this messy code kicks back it will be someone else’s problem”. One

knows all the drawbacks messy code has, so the programmer shows self-discipline and

spends enough time on refactoring. This was an easy example to understand and to

agree on for programmers, even though it is not so easy to obey. To work in an agile

environment one must also demonstrate self-discipline by confronting reality through

rigorous thinking, accepting accountability for one’s own work, avoiding victim

mentality, adapting actor mentality and showing interest in developing skills toward

technical excellence [2]

 Self-discipline is far more difficult in human interactions. Yet there are many team

related issues in agile that require self-discipline: responding to criticism in a

constructive way, respecting one's colleagues, being willing to work in a self-organized

environment, taking the initiative to confront others when they are not performing or

behaving according to team rules, directing a conversation toward getting all the

relevant information out on the table without attacking anyone personally.

 Even though human interactions are crucial for successful projects, they are not

sufficient alone, technical knowledge is also required. Technical excellence creates new

opportunities, produces higher quality products that can respond to changing business

needs, shortens time to market and makes estimates more accurate [2]. Developing

technical excellence requires self-discipline.

44

5.2.3 Co-located

Co-located means that the team is situated in the same room. They see each other and

they have information radiators and low-tech, high-touch tools such as whiteboards. The

reason for co-location is to make the teams communication as good as possible [7].

Communication temperature means how much informal emotion rich communication is

used. Hot communication favors physical proximity, three-dimensionality, smell,

kinesthetics, touch, sound, sight, cross-modality timing and low latency. Figure 14

illustrates Effectiveness of different modes of communications. Teams, often

distributed, that use cold communication resort to emails, instant messages, wikis and

all sorts of documents. Warm communication teams resort to face to face

communications at the whiteboard.

Figure 14. The effectiveness of different modes of communication. The temperature

describes the level of informal, emotion rich communication. [7]

 A co-located environment nourishes a low cost of information transferring and a low

cost of lost opportunities [7]. Information transferring cost is a result of two aspects:

First, how long it takes one team member to discover that another team member knows

something useful. Second, how much energy it takes for these two team members to get

together and transfer the knowledge from one to the other. Lost opportunities come

from making poor decisions, because of not asking the question or having conversations

with team members. [7] For example, a team member might think that asking a

complicated question via email is too difficult and end up making a decision based only

on assumption.

 Osmotic communication is a means for low cost information transfer. Osmotic

communication means that the team members are working so close to each other that

they are picking up traces of the ongoing conversations even though they are not

consciously paying attention [7]. Osmotic communication enables intensive team work.

 A “us vs. them” attitude is another source of dysfunction with distributed teams. It

means that each group forms its own community. There is a real risk of confrontation

attitude evolvement between groups. People have a genetic instinct to having different

45

attitudes toward an inner group and an outer group [47]. For instance, you may hear

someone to say: “The project would have met its goal, if only they had done their part”.

A team does not have to be distributed to different countries, time zones or cultures for

an “us vs. them” attitude to emerge. Just working on different floors of a building can

do the trick. [7]

5.2.4 Collaboration

Collaboration involves two or more people jointly producing a result. Highsmith has

written an excellent summarization of the key ingredients of collaboration: “The quality

of results from any collaboration effort are driven by trust and respect, free flow of

information, debate and active participation – bound together by a participatory

decision-making process.”. Participatory decision-making is the heart and soul of

collaboration. Let us imagine there is collaboration within a group. People are driven by

trust and respect. They share all the essential information they have. While they are

intensively taking part in debates, they are still telling their truth rather with compassion

than with constructive criticism. Then at the end, someone makes a unilateral decision

that is put into practice. Would people feel like they should participate next time? There

is no healthy collaboration without participatory decision making!

 Collaboration is important for many reasons. It enforces interactions of diverse

individuals, which drives innovations. Innovations, ideas, are not built and owned by

individuals, but by team. This in general makes innovations better and team members

more committed to try innovations in practice. Collaborative innovation is more about

reconceiving than compromising. Collaboration also improves learning from others and

helps in creating a shared space and shared experiences between team members. [2]

Collaboration should also be fun. Over-seriousness is a warning sign of mediocre

bureaucratic thinking [31].

5.2.5 Cross-functional

Being cross-functional means that the team has all the roles, knowledge and people it

needs to produce business value. Business value delivery is the reason for cross-

functionality. In software development this usually means that the team is consisted of

developers, testers, an agile lead and a client representative. A cross-functional team

creates business value or the team is lost. If the client needs a tool for writing blogs,

then there can be real business value in a feature for editing an old blog, but there is no

real business value in an implemented service interface for HTML GET, POST and

DELETE requests.

 One great aspect of creating business value in cross-functional teams is that the team

members all share the same goal. When functional teams create business value together,

they are practically always having at least some of these: functional managers with

functional agendas, functional reward system, functionally optimized goals and stronger

46

functional identity than team identity. When it is necessarily for people to work jointly

together, they need to have a shared goal [2].

 Collaboration increases knowledge transfer and learning across the team. When the

team is also cross-functional, it makes the team members learn cross-functional skills.

Specialists tend to become generalists in agile teams. When team members are

generalists they can help each other and they are less dependent on a single individual in

a case where he is a bottleneck or leaving the team. One might argue that you need

specialists for the most difficult tasks. It may even be true in some circumstances. It is

particularly true with new agile teams. However, teamwork tends to make learning

faster. Even as generalists, they are still good with problems that need deep

understanding. On the other hand, people can solve difficult problems together in a

cross-functional team. There are evidences that small groups solve complex problems

better than individuals [2; 8; 19].

5.2.6 Right sized

Agile teams are preferred small [2]. There is no rigid maximum number of members,

but some suggest that no more than twelve people should be in the same team [7].

Others say that team size can go up to twenty, as long as it has no more than ten

programmers [8]. If the team becomes too big, then it needs to implement special

practices that are outside the scope of this thesis [7; 8; 2]. Same variance of opinions

goes with lower number and optimal number as well. Some can argue that team size of

four could be considered optimal [7]. Others say that they would not use XP, an agile

framework, with less than five people [8]. Numerous anthropological studies show that

group size from six to eight is ideal for peaceful collaboration in all kind of

environments [26]. Some others claim that natural family size is a good size for a team.

Evolution has made humans tribesmen, who are eager to form fairly closed small

groups – tribes [40]. It is important to notice that agile teams require a relatively high

portion of seasoned members to be efficient. It is said that the ratio of experienced to

beginners should not be lower than 1:5 [7].

 One person projects are problematic. There is no innovation or learning help from a

team. Some suggest that several too small projects can be assigned to one team. The

team then works these projects one at a time. [8]

5.2.7 Focused for Business Value

Agile teams are business value driven. For this to be true, business value should be the

primary measure of success. Business value driven means several things. First, the

feature with the highest business value is done first. Second, new features are delivered

to the customer in a form of a releasable product in a time-boxed fashion. Third, the

project processes within acceptable constraints. Fourth, improved business value is a

valid reason for change in plans. Fifth, the quality must be high enough to make the

product reliable and adaptable. Sixth, adapting the lean principle to minimize the

47

amount of work in progress and shortening throughput time is also a part of being

business value driven. This leads to time to market optimization instead of resource

optimization. [2]

 All agile team members are focused on one and the same project. This helps them to

pull project through as fast as possible, which means fewer intermediate products.

Intermediate products are a waste in lean perspective, so focusing reduces waste. It also

helps them to be a better team, since they all have the same and only the same target –

to deliver the current project.

5.2.8 Customer involvement

The customer is active in agile software development. The customer is usually the

sponsor of the project but also the vision owner. Therefore the customer must accept

accountability for identifying, defining, prioritizing and accepting features [2]. Rest of

the team can and should contribute suggestions and ideas, but the customer has the

ultimate responsibility [8]. The customer must also be available for answering the

questions the team has on a daily basis. Lack of customer involvement will lead to

failure. The more the customer and the development team consider themselves as a

single team, the more successful the project will be [8; 2]. Some even suggest as a rule

of thumb to include one product owner plus two on-site customers for every three

programmers [8].

 The customer may or may not be the real user [8]. Typically the product owner, the

domain experts, the integration designers and the business analysts play the role of on-

site customer [8]. Even if the on-site customer does not necessarily have to be a real

customer, the product owner has to be a real customer with a real product vision. People

are more important than roles, but one needs to be extremely aware and enlightened

before mixing customer roles [2].

5.2.9 Transparent

Agile teams are transparent. All stakeholders have all the information they need and

only the information they need to know about project progress. Moreover, the

information should be in a form that makes it easily perceivable. There are different

stakeholders in a project, who all have different needs. Only transparency needed by the

team and the customer are concerned here. Team members need to track what others are

doing in a team for synchronization and for getting and giving help. A typical tool for

this is a daily standup meeting described earlier. Team members usually want to know

how the project is doing in comparison to the plans that the team has made. Information

radiators are typical tools for this. For example, one glance of a burn down chart can tell

if the sprint iteration is going as it was planned.

 Customer has a good knowledge of what is done and what is in progress, since the

customer is a part of the team. They are seeing what is getting done. Customer knows

what will be done next, or in the current sprint iteration, since the customer has

48

prioritized features and can see the prioritizations and what has been selected into the

current sprint iteration backlog. Finally, all customers and other stakeholders can attend

the sprint iteration preview, where team represents what they have accomplished during

the last sprint iteration. Questions and feedback is asked in these meetings.

49

6 Research practices and materials

The making of this thesis involved a diverse set of tasks: finding projects to study,

deepening agile knowledge, studying projects and writing the thesis. The first thing to

do was to find public research projects to study. This phase was carried out by sending

emails and by arranging meetings with professors to talk about agile and the reasoning

of this thesis. It is notable that only a relatively small percentage of contacted people

and projects were willing to participate. This may have distorted the overall picture of

the state of public research. The result of the first phase was four projects in Tampere

University of Technology and two co-operative functional research groups with

multiple projects at the University of Tampere.

 The goal was to improve public research project management by giving them new

viewpoints. Not to tell them how to work, but to challenge old habits. The first step

toward the goal was getting to know the projects by way of interviews and observations.

Observing project life at the team room and seeing how meetings were carried out. At

this point the ambitious goal was to see some changes in the projects involved. For

example co-locating a team would be very agile-like change. However, telling others

what to do is not efficient. So the ambitious goal was to see people taking an initiative

over project management and teamwork and making changes on their own. Teams

participated as much as they felt comfortable. No project or team accepted all that was

targeted by the thesis. This was a predictable result, but it was thought to give better

results than trying too hard. The obvious fact is that projects decided how much they

wanted to participate in the thesis and everything that was given was taken. Information

on two of the projects was gathered by interviewing only one project member.

Information on one project was gathered by interviewing two people with additional

opinions from a third person. Information on one project was gathered by interviewing

four people and observing project life and the team room. Information on the two co-

operative groups was gathered by interviews, informal conversations and email-

conversations with multiple people as well as by observing their meetings.

 Interviews were the major tool for information gathering. Even ‘official’ interviews

were free-form. Basically, the structure was as follows: The interviewee told all that

they thought was important while the interviewer wrote down notes and asked

clarifying questions when necessary. When the interviewee reached the end, the

interviewer went through a checklist of questions and asked those questions that were

still unanswered and still seemed important in the given project. Table 3 shows the

question checklist.

50

General questions *Short description of the project?

*What would change?

*What would you retain?

*What are the priorities? What is important to change or

retain and what is not?

Financing *Where the money comes from?

*How is financing related to taking risks? Encouraging?

Rejecting?

Vision *Who is the customer?

*Does the project have a well-known vision? How was

it conceived and retained?

*Who prioritizes what should be done next?

*How is project progress monitored and by who?

*Are visual graphs, charts, workflow diagrams… used?

*Do plans change? How often?

*How are results evaluated?

*How is the project evaluated?

Team *Who work here? Roles, locations?

*Are team members working on this project full time?

*If not co-located, then how is communication handled?

*Is current communication good, sufficient or poor?

*How is atmosphere the here? Amicable? Hostile?

Neutral?

*How much autonomy do you have over your work?

*How easy it is to get help?

Continuous

learning

*How are you executing continuous learning? Technical

excellence?

Project Work *Is there a rhythm to your work?

*How much your work and results are or could be

incremental?

*Are there intermediate results?

*How do you share and store your work? Version

control?

*How much work related to documenting do you have?

*How much project upfront planning do you have?

*How much are you using empirical tests to find out the

best way to solve your problems?

Finally *Is there anything else that is important to know?

Table 3. Check list of questions for interviews. Questions were asked if considered

relevant after a free-form project introduction.

51

7 Results

This chapter presents summaries of interviews and studies of the projects. Anonymity

was promised to interviewees. There is always a risk of distortion, when writing down

comments and making summaries. This chapter is as objective and fair as the author

was able to make it. The projects are named to help later referencing.

7.1 Project Alfa

Project Alfa is a project at TUT. Its domain is software technology.

7.1.1 Project Initialization

When Alfa was established at least the key people knew each other. Perhaps they have

already worked on projects together. Finding partners from industry is an essential part

of current research projects. There is a recognized need to change the initialization

phase. At the moment, when someone has an idea for research, he starts sending emails.

More and more partners emerge. Soon the vision is patchwork quilt of different sites,

institutes and goals. It has been though that workshops and more intensive

conversations may help to clarify the vision, when done at begin of the project.

Nevertheless establishing a clear vision has been difficult.

 A patchwork quilt vision is accepted for financial reasons. Money comes from the

European Union and Tekes. Sites from multiple countries must participate for getting

financing from the EU. Project Alfa has sites from a handful of different countries. The

EU also requires that private industry invest into a project. Tekes has yearly changing

financing themes. New projects need to fit to current themes in order to get money from

Tekes. Tekes also requires that the purpose of a project must be to create a new kind of

business. Creating a new business has higher risk, so Tekes does accept high risk

projects. It is not known whether financing depends on project staffing? If researcher

takes a risk and fails, does it harm the financing of his future projects? Tekes usually

requires that private companies participate in the project. The more financing is

gathered from industry, the more Tekes is usually willing to invest.

 Typically industries invest their human resources to project. Big industrial actors

with vast user base were desired to participate to Alfa. These actors were not found.

 There is one head coordinator and four country coordinators. The Finnish country

coordinator works at VTT. There are three people working on this project at TUT. One

has been taking part in the project for a long time, and one has been there for a while.

The project was launched by four key people. One of them was from TUT, but he has

since switched workplaces. Before the key person left he worked on transferring

information to his replacement. Even so, replacing a key person was far from easy.

52

 The goal is not to have a monolithic result. Building up one united result would be

too difficult to manage and different interests of different actors would be difficult to

merge. Distributed goal is not only a problem, but it possess a risk of a fuzzy or

completely lost overall vision. Producing a product is not the goal. Software is built to

test theories and to answer other research questions in hand. The results need to be

publicly noticeable for credibility and financing. Academic results are measured by the

number of publications and by lessons learned. Learned lessons can be taught to

students, who will take the knowledge with them to the industry in the future.

Sometimes financing is even granted for learning purposes. The higher level goal is to

make Europe a better place. Industrial partners have their own measurements of success,

such as a 20% performance improvement.

 Trying anything wild and risky is rare in public research, therefore showy failures are

rare as well. Current research habits are deep-rooted. It might be difficult to get

financing if these habits are challenged. Practices of measuring success will change over

time, but how and during what span of time is unknown.

7.1.2 Teamwork

The research world never has real teams, from an agile perspective. People in TUT

have their own main responsibilities, but the TUT group is collectively responsible that

work gets done. Work results are reviewed and problems are discussed at least on some

level. However, focus is less than perfect. Team members at TUT are taking part in

educational work and they are also working on another somewhat similar project.

 Substance related communication is unofficial and is done as individuals want it to

be done. There were no signs of information radiators or low-tech high-touch tools in

the room where the TUT members were sitting. Communication between TUT and its

industrial partners is frequent. Communication between TUT and other public

institutions is minor. It was recognized that there is a need for a better discussion forum.

Email is not a good means to have conversation, because sending the frequent emails

having a conversation would require is considered spamming. Some sort of forum might

solve this problem, if people would start using it.

 VTT and TUT have steering group phone calls every few months. Enterprise

representatives may take part in these conference calls. An email list is also used for

communication. The purpose of these communications is to take care of administrative

issues.

 There are multiple means of taking care of international communication. Around

every three months there is email exchange to tackle administrative issues, such as when

the next meeting will be held. These emails are informative in nature, not so much an

invitation to conversation. There are seminars around once a year or a bit more

frequently. Seminars contain coordination, reviewing, auditing, evaluation, problem

discussion and demonstrations to sponsors. After the official part there is always an

unofficial part for unofficial discussion. Every now and then research parties arrange

53

wider scope, multi-project conferences. Even though there are conferences and people

are rather active in participating, not all team members ever meet each other.

 The project connects many people, in multiple countries and sites and the work is

done under the same title. However, it is recognized that there is not that much real co-

operation between sites and better co-operation could improve results. Competition

between research sites can sometimes be a partial reason for lack of co-operation.

7.1.3 Work progress

There are no information radiators or other visual charts to show the state of work. The

level of self-organization is very high. Researchers are individually responsible for

deciding what to do next, even though opinions are changed over prioritization.

 There is no work related rhythm, no iterations. There is an administrative rhythm

orchestrated by reports and weekly meetings and a rhythm orchestrated by educational

responsibilities.

7.2 Project Beta

Project Beta is a project at TUT. Its domain is software technology.

7.2.1 Project Initialization

The goal of the project is to improve continuous value delivery, continuous feedback

gathering and continuous experimenting of the participating companies. In other words,

the purpose of the project is to help companies to make a controlled shift toward agility.

Creating software is important, but not the goal. Testing theory and creating new

business models are important.

 Tekes is financing Beta. SHOK is the financing model used. SHOK allows changes

in plan [4].

 Beta is a four year project that contains software development. The whole project

consists of around twenty organizations and ten research institutions. The project is

highly distributed. TUT have eleven person-years per year. VTT is another important

Finnish partner. The project consists of three rather independent subprojects.

7.2.2 Major Meetings

There are two major meeting cycles. One repetitive meeting is for teams to go through

work related issues. Another repetitive meeting is for the steering group.

 Work related review meeting takes place quarterly with a duration of two days. This

meeting is an extended steering group meeting, with participants from each participating

organization. Subprojects demonstrate the progress of the past three months on the first

day. Things that were done and things that were left out are put on the table. Progress

does not have to follow the plan, but there needs to be some progress. There is a free-

form socializing time for building up team cohesion in the evening. The second day is

54

about planning what should get done during the following three months and what is

already known about that work. This is an important meeting for teams to find common

direction and cohesion. People are behaving amicably and participating even when it is

difficult to leave their daily work to accumulate for two days.

 The steering group gathers monthly. It is the most important decision-making body.

Its meetings resemble daily standup meetings. Questions of how the project is

progressing and whether it is going in right direction are discussed here.

7.2.3 Subproject Teamwork

Subprojects are rather independent business cases. The real work is done in subprojects.

Subprojects have one leading company and possible other member companies and

research institutes. Leading company is responsible for organizing its subproject. Yet

the subgroup is self-organized. In principle Tekes is the client, though of course the

whole of Finnish society benefits.

 Subproject groups have a teleconference every other week. Members at TUT see

each other face to face every week. These meetings needed to be arranged, since people

were not seeing by coincide. Weekly meetings consist of a status check and discussion

of new possibilities. Creating group cohesion is important, especially because the group

is not co-located or focused only on the given project. It is seen as an obvious

drawback that the group is not co-located. Having all team members co-located is not

possible, because the group members have so many other obligations, such as studies

and all sorts of teaching responsibilities. Agile sprints are seen as impractical because of

all the other obligations. Successful teamwork is seen as something to work for.

 When facing a problem, first a group member tries to solve it. If the problem remains

unsolved it is propagated forward one way or another. If problem stays unsolved, it will

be propagated to technical lead. It is also notable that the problems that enterprises may

see as blockers can be seen as a new improved direction for research. Having multiple

organizations makes problem solving and participation decision making more difficult.

 Beta is a new project. Conventions are still being settles on. There are many actors,

so whose tools or visualizers should be used? What rights should external users have

over tools? Who pays for licenses? Who has time to study new tools? These are some

examples of open questions. The tools are not selected yet, but it has been decided that

some sort of confluence and wiki functionalities will be used.

7.3 Project Gamma

Project Gamma is a project at TUT. Its domain is software technology.

7.3.1 Big Picture

Project Gamma is a EUREKA project [3]. Tekes is offering financing in Finland. Tekes

is partially paying the costs of partner companies. Multiple sites from Finland, German

55

and France are taking part in the project. Even if the vision is clear between the sites,

the project is challenged by differing interests.

 France is a big player in Gamma. They have a lot of people and huge companies

involved. The project coordinator is from France and concentrated on France’s goals.

Moreover, Gamma is a continuation to another French project. Germany is participating

with three companies. Finland is participating by a couple of high tech companies as

well as TUT and the University of Helsinki.

 Finnish sites have not co-operated a lot with each other. On the other hand co-

operation has been working well between TUT and foreign partners and especially with

the Germans. Finnish and German sites have positive interdependence. Finns benefit

from German results and vice versa. France and German have major architectural

integration issues about proof of concept. So far this has had no effect on Finnish sites,

but soon it will, if the issues are not resolved.

 Learning from each other is an important motivator to have a project distributed over

multiple countries and sites, not just software development. A highly distributed group

challenges communication. Project personnel try to meet each other three to four times a

year to do planning. A varied number of people participate in these meetings. Demos

and reviews are widely used practices for synchronization and learning. Publications are

the only documents that are not avoided. Retrospectives are not used. Moments of

failure are used to improve processes. The high rate of personnel change gives the

project an extra challenge.

7.3.2 TUT Related Work

There used to be three people working on this project at TUT. Participating people have

been from relatively to extremely experienced researchers. Due to personnel changes

there is only one person concentrating on this project at TUT at the moment. This

person is new, so he needs to spend time on learning. Shortage of human resources is an

identified problem.

 A weekly meeting is the most important mean of communication and co-operation

within TUT. Prioritization of future work is happening in weekly meetings. The same

person is a kind of product owner and scrum master. Business objectives are not as well

defined as in industry so it is considered that the same person having the roles of scrum

master and product owner is not so harmful. If the TUT group acquires any more

members then these roles will be dedicated to different people. Finland sites try to have

regular meetings as well. Meetings are about what has been done lately and what should

be done next. Neither of these meetings is very regular in reality, due to the other

responsibilities the project members have. Meetings make the project work feel slightly

similar to sprint iteration. There were one to three week sprints with German partners.

Retrospectives are not used at this level either. Problems are solved as they are

identifies. No information radiators, nor other visualization were used.

56

7.4 Project Delta

Project Delta is a project at TUT. Its domain is signal processing.

7.4.1 Big Picture

Project Delta is a collection of one person projects. All the projects serve a common

aim. There is a vision owner whose responsibility it is to make sure the one person

projects are all targeting the same goal. Basically Delta is an endless project, since the

end of one subproject is a starting point for another subproject. The vision does not

change over time, but obstacles force a change of course in actions every now and then.

There are two aims in total. The scientific one is to study a certain phenomenon. The

other aim is to help students develop toward excellence. Team members are not fully

aware of the aims.

 Financing comes from the department. Project success is measured by how often

research has been referenced by others and by the esteem of the journals the research is

published in.

7.4.2 The Team

The team consists of the project champion who is the vision owner, a technical lead and

six team members who work on single person projects. Team members are mainly

students and rather new to the project Delta. Delta is a cross-functional project that can

be done incrementally. The project champion encourages team members to study cross-

functional skills. The team members work on project Delta full time, so their focus is

excellent. The team members are co-located and their working phase is intensive. They

even had use of low-tech high-touch tool, namely a whiteboard. There was also work

related communication in the team room. It was recognized that the team is rather new

and things will evolve, but the team members are nevertheless rather happy with their

team. The room was small and air was stale. The mood felt intensive, maybe a bit busy

and joyless. All in all it felt like the project had a rather strong and instant resistance to

new ideas about project management. However, observations are only snapshots in

time, so heavy conclusions cannot be drawn.

 There are lots of students working in project Delta. It has inevitable effects for

project management. One big aim is to make them good researchers. Students are aware

of only the vision of their own subproject. The first task for student is to get familiar

with technology and how the work of others is linked to their work. Understanding the

overall vision becomes important later. When students face a problem, they first try to

solve it themselves. If they cannot, then problem is propagated to the project champion.

It seemed like the project champion was eager to help the team members and would find

the time when a team member needed help. Results are sent to the project champion for

review.

57

 The project champion works on prioritization, estimation and big picture planning

mostly by himself. The students and the other team members can share their opinions

with the project champion. Executed work is slightly path-like: first step X, then step Y,

then step Z and so forth. Result or intermediated result of one subproject is often input

for another subproject. Sometimes a subproject needs to wait on another subproject to

get the input needed. When this happens, people with the extra capacity have other

works to do.

 Delta has some form of retrospective. The number of participants, frequency and

content was dependent on who was asked and the answers were somewhat nebulous.

Whether formal or informal, regular interval or random interval, focused on the team or

the individual, it was consistently stated that there existed a habit of conversation on

how to improve.

7.5 Research Group Epsilon

Research group Epsilon is a collection of two functional research groups at the

University of Tampere. They are nestled under the same label, since they work closely

together. Epsilon’s domain is medical research.

7.5.1 General Discussion

The employees are motivated and committed. They are doing important work in order

to help people. Student/seasoned -ratio is quite high in Epsilon compared to software

companies, but still not exceptional among the studied projects. People are divided into

functional groups. Project groups are gathered from functional groups as needed. Staff

on the project is not co-located and specialists on one field are working only on issues

related to their specialism. No use of low-tech high-touch visual tools can be seen at the

office. One reason for not having co-located teams and visual low-tech tools might be

that some seasoned employees feel like they know how to implement commonly used

tests. No need to get help for solving problems or to transfer knowledge. What to test,

and what the results mean are more challenging questions than how to implement tests.

Human resourcing between projects might be a bit obscure time to time. The same

people may be working on multiple projects with different staffing. One reason is that

breaks, even long ones, are common in this type of research projects. For example,

calculating analyses or peer evaluations or growing cell cultures may take time. So

when one project is on hold, it is convenient to work on another project for a while.

There are numerous smallish projects under a rather wide research domain. Occasional

lack of clear prioritization was recognized. Even if employees are not focused on one

project goal and they are not co-located into the same team room, they are still mainly

in the same building and focused more or less on the same research domain. It is

recognized that narrowing down the research domain of the projects could lead to better

synergy.

58

 Urgency and the everlasting race for funding are shaping their work. It is hard to try

something new and risky and change habits, when people are always busy and when

funding is unsure. Sometimes public funding is too rigid and not well-suited for

explorative type research. Losing financing is not the only reason to hurry. Some other

party publishing before you would collapse the value of your study. One recognized

problem is how long peer evaluations are taking, which is a very Lean-like issue

regarding throughput.

 Retrospective type meetings were tried by one functional group, but it did not work

well. Impediments were solved at the same meeting. Members of many projects were

participating in the same retrospective, so whatever project was gone through, most of

the participants were not involved. In the end this meeting was canceled since it was

inefficient. A second functional group had their one hour status check and problem

solving meeting once a week. Again members of many projects were participating.

There is a clear need for a media for impediments discussion. People participated

surprisingly well during these meetings. Still, no surprise to anyone, that many

participants were quiet most of the time. They may even go to have some coffee and

then come back. Even if the meeting has good value as it is, these symptoms may

suggest that the value could be improved on.

 Strategy day is held once a year. For example, brainstorming has been used to

discover what to study next. Other questions, like where to focus, have been discussed

as well. Overall feeling about the strategy day seems to be good. Some suggest that the

results are either not good enough or not enough action has been taken to make the

strategic day's outcome real.

 Epsilon has no real teamwork culture, but an individual work culture. The situation is

rather typical for the studied projects. Even with project groups, each member has his

responsibilities and the work is done individually. Furthermore, experience from

research world has shown that bigger groups tend to have duller and lamer results than

fierce and stubborn individuals. On the other hand, it feels fair to say that Epsilon, as so

many other organizations, is lacking in good teamwork skills. It can be seen for

example in individuals owning ideas, or human interactions not being seen as a crucial

part of innovations and learning or how the participatory decision making is working.

 The employees’ opinions are divided when it comes to changing the ways people are

working together and the way the projects are managed. Seasoned employees tend to

favor current methods and resist major changes whereas newer employees tend to think

that processes should be improved. For example the following needs for improvement

were raised: feeling alone in a project, need for better communication, projects having a

clear starting point, in progress time and a clear end. Managers of functional groups

seem to be open-minded and eager to hear new viewpoints. On the other hand it looks

like the ideas are not that often tested in practice. With some people it felt like objection

is an instant response to ideas that would change their current habits. However, when

challenged, it was astonishing to see how someone thinks through an idea they are

opposed to and answers more or less the question he was asked. Does not sound much

59

in the land of unicorns, but with humans it is a lot to ask. The author’s opinion,

supported by the chapter What People Believe and What Changes Their Mind, is that

people tend to answer the question “Do I like that”, no matter what was asked.

 Coming chapters describe the studied projects in Epsilon. There are plenty more

projects in Epsilon. Projects described are quite different from each other. Projects are

named Epsilon One, Epsilon Two, Epsilon Design and Epsilon Single.

7.5.2 Project Epsilon One

Depending on how calculation is done, the project has at most seven participants. The

participants also have other projects and they are located on two different floors and

multiple different rooms. So, not co-located, but at the same site at least. Many highly

competent people are taking part in the project.

 The project has a lot of potential. It has highly experienced members and certainly

some good results will come out. When it comes to project management, some feedback

shows that the project has supported rapid occupational learning. Aside from all the

good parts, there are significant challenges with group dynamic. It seems like there is a

shortage of high quality communication, roles are a bit unclear, a shortage in

amicability, rivalry between team members, lack of participatory decision making, idea

ownership and unclear goals and constraints. The project is worked on by professionals,

so it is going toward its goal, but there could be lessons learned for future projects.

 A lot of communication is done via face-to-face talking, but emails are a significant

means of communication as well. There used to be a regular project meeting, but some

felt that it was not useful, so it was discontinued.

7.5.3 Project Epsilon Two

The group has three seasoned members from two disciplines. Two of them are located

in the same room and one is about twenty meters away. The project vision is said to be

clear to all. Analysis, tools and programming languages are all familiar, so getting stuck

or needing help or opinion of others is rare when executing tests. Test results are a focal

point of interest. Sometimes results, intermediated results and their effect on coming

research are discussed with group members or in pairs. Google docs is used to preserve

findings.

 The end result will be from a four to six page long manuscript. Findings need to be

clinical and reasoned. Contacts from scientific magazines evaluate the manuscript. The

more esteemed the publishing magazine is, the more successful the study is considered

to be. The more the articles of a magazine are referenced, the more esteemed the

magazine is considered to be.

7.5.4 Epsilon Design

As reasoned before, small groups can be better than individuals in solving complicated

problems. When it comes to research, deciding what to study and how to study are

60

complicated questions. The design team is not considered a team in Epsilon, but in the

author’s opinion, it has quite a lot of team-like characteristics. The participants combine

their knowledge in order to create something new. Only a few seasoned researchers are

participating in this free-form unofficial undefined talking-talking group.

 What does Epsilon Design do? Someone has an idea that generally emerges from

earlier discussions, readings or other human to human interactions. This is the case even

if the one with the idea does not recognize it, as can be loosely drawn from the chapter

What People Believe and What Changes Their Mind. The idea is played around with in

a design team. For example, the following questions could be answered: Is some other

party studying this? What type of results would we expect to have? Why are the results

important? Precisely what should be studied? Are the prices of some experiments

coming down? Should we find partners? Is this study feasible or not?

7.5.5 Epsilon Single

One person projects were not studied. However, they are so common that many

opinions and experiences were heard. Because they are so common, it seems

appropriate to have a few words about them.

 Particularly students are working on one person projects. Doctoral theses and

master's theses are examples of one person projects. Financing may even force people to

work their one person projects solo, instead of helping each other and working together.

These projects were said to feel lonely. Since the subjects of the projects are not so near

to each other, it is hard to share opinions with other students. When stuck, it takes time

to get help. Often getting help means to arrive at a solution. It is not about having

participating conversation about the solution, which in turn could lead to better learning.

61

7.6 Summary of Projects

Table 4 helps the reader to form an overall view of the studied projects. Table 4

summarizes what was written about Alfa, Beta, Gamma, Delta and Epsilon.

 The projects were rather different from one another. Large tolerances must be

accepted to create a summary table. For example, what is the project team size in

project Beta? Is it the people working at TUT or all the participants? All the participants

were chosen, but other solutions may have been justified as well. How multidisciplinary

a project is or are there lots of students in a project? These are all rather ambiguous

classifications. Classification ambiguousness should be kept in mind when reviewing

table 4.

 Alfa Beta Gamma Delta Epsilon

One

Epsilon

Two

Epsilon

Design

Epsilon

Single

Field Software Software Software Signal

processing

Medical Medical Medical Medical

Use of

retrospectives

No No No Yes No No No -

Project team size > 10 > 10 > 10 Seven At most

seven

Three Around

four

One

Collocated No No No Yes No No No -

At the same site No No No Yes Yes Yes Yes -

Internationally

distributed

Yes Yes Yes No No No No -

Focused No No No Yes No No No -

Very high

student

percentage

No No No Yes No No No Yes

UTA and TUT

personnel

participates

teaching

Yes Yes Yes No No No - -

Has private

partners

Yes Yes Yes No No No - -

Strongly

multidisciplinary

No No No Yes Yes Yes Yes -

Table 4. Summary of projects.

62

7.7 Discussion

This chapter sums up findings. The first subchapter How Agile They Were is the most

important. Rest of the chapters give additional viewpoints to some common issues.

7.7.1 How Agile They Were?

As mentioned in the chapter Thesis’s Theory of Agile, the team needs to live out two

values to be agile:

1. Complicated problems are better solved by small and equal and intensively

collaborating groups than by individuals.

2. Continuous improvement.

 The result is that all studied projects had some co-operation. For example, when one

gets stuck, there is a mechanism to get help. However, none of the studied teams were

working intensively together. They were not actively throwing ideas and building a

shared theory of problem. Actually, none of the studied teams were a real team. They

were more projects staffed by people.

 Only one studied project tried to improve continuously. Even that project did not

have a well-defined way for continuous improvement. Different project members

described slightly different processes. However, it seemed obvious that they do try to

improve their performance continuously.

 If the thesis’ theory to agile is accepted, then public research is not particularly agile.

If agile business objectives are accepted, as described in the chapter Agile Business

Objectives, then public research would gain benefits by being more agile. Public

research should focus more on creating real teams and a solid mechanism for

continuous improvement.

7.7.2 Funding and Reasonable Risks

Public research should refine its relationship with risk and experimenting. Relatively

high risk taking and experimenting should be at the heart of public research. Working

habits should be experimented on as well. The same goes for education. The author’s

understanding is that possible failures and relatively high risks are rather avoided in the

studied projects and in public research in general. If projects or experiments never fail

then not enough risks were taken either. There should be a culture of taking reasonable

risks. Some companies celebrate projects that were terminated. For example Super Cell

is said to do so. Terminated projects prove that risks were taken.

 Participation of privately held companies has a rather big role in public research

nowadays. Using the same approach and mindset with all companies can be inefficient.

See chapters Rightshifting and Psychology of Change Resistance for further reasoning.

Industrial partners were discussed as industrial partners. No differences were made

between different types of industrial partners. So it is unclear whether all industrial

partners are considered more or less the same or is there another reason, such as

63

confidentiality, for the generalization. A big and more bureaucratic corporation will

probably be a big and bureaucratic research partner. A small and adaptive company will

be a small and adaptive partner as well. Different partners have different needs and

therefore the same service does not fit for all. Agile does not work as well with big,

hierarchical and bureaucratic partners as it does with small and entrepreneurial partners.

 Public funding was an issue more or less with all the studied projects. They all had

public financing in one form or another. Almost all projects recognized various

shortcomings with how public financing is distributed. It was also somewhat common

for project personnel to wonder how the funding system could be changed or how to

successfully apply funding in a new way. If risk taking and experimenting are in the

focus of public research then financing should be made supportive. Having public

financing may be cumbersome, if one wants to try out new ways of working. Probably

Blub paradox works here as well. It does not matter how good the idea is if the sponsor

does not understand it. Perhaps the sponsor does not even want to understand it. If

bureaucrats are giving money, then you probably have to be bureaucratic to please

them. A single research team cannot change the way money is given. Working with

rules is always gaming with rules. It is true when considering the likelihood of getting a

speeding ticket and it is true when gaming measurement metrics to get higher bonuses.

Perhaps bureaucratic money can be spent on something that is not bureaucratic, but it

may need sophisticated gaming of the rules. However, at least Tekes is said to accept

risks.

7.7.3 Students and One Person Projects

Students and one person projects are combined under the same chapter since students

are largely working solo. The chapter The Background of Public Researchers delves

deeper into the reasons. Education and public research has an obsession with making

people demonstrate personal accountability even to the point where it has serious

consequences on teamwork skills. This is especially true with students. Students may

not have the experience needed for executing research tests efficiently. Students may be

able to perform less structured brainstorming and visioning to solve non-linear

problems. They should have a more rebellious and ideological attitude to changing the

world. They certainly have more potential for becoming something greater. With or

without this reasoning, it should be a no-brainer why successful student guiding is

socially a key to success. First, not allowing students to participate in visioning may not

be optimal for their growth or for the solution. Students should learn visioning skills and

that ideas are not owned. Perhaps students can be made to participate more by better

facilitation. Second, teaching students to be solo players is harmful for the students and

the society. Small groups are better for learning and innovation as described in the

chapter Social Aspect of Productivity. Agile supports this idea, by requiring real teams.

 What would be a more valuable skill than to have entrepreneurship? Perhaps some

student works, like thesis or courses, could be replaced by start-up type works. The

64

educational focus would not be on theoretical competence or comprehensive

documentation, but on learning what real teamwork is, on thinking outside the box and

on studying something interesting by spike solutions. Especially theoretical and

technical competence is important to learn, but it may be even better learned this way.

There have been start-up-like degrees. For further information or to hear experiences,

contact Saimaa University of Applied Science or ProAkatemia at Tampere. Some

rumors even say that some VTT projects are like start-ups. This section contains lots of

options and no answers. This is well aligned with agile. When dealing with complicated

environments, one solution never works for all. Testing solutions and adapting is the

way to do it.

 Single person projects have their place in education, however when learning and

innovation is needed, the only real amendment to single person projects is to make them

less solo. Paired projects or two one person self-organized projects building one

solution could be examples of improvement. Certainly there is no easy solution and all

the solutions have their real drawbacks. That is life and it goes with all solutions

everywhere.

7.7.4 Teams

There are no real teams in the studied projects. Here are listed common notifications

about teamwork over the studied projects. First, throughput should be focused on more

than workforce utilization. It is better to work one project from start to end and then

move to another project than it is to have multiple projects in progress. Having multiple

projects in progress is almost universal to public research. When multiple projects are

the way of life, it would be better that all participants are focusing on one project at

time. It would be even better if they were co-located as well. For example, people from

TUT and VTT are working on their project for two weeks every three months and when

they do, they are co-located and focused.

 International projects are special cases of distributed projects staffed by people with

different interests and multiple projects. There are lots of dysfunctional characters in

these projects. However, the funding is not the only reason to accept international

projects. There is a great potential of learning from each other and of gaining a new

perspective and synergy. Then how could international projects be improved?

International co-operation should be improved so that people with similar interest could

find each other. How to do this, is way out of the author’s competency. When a project

is so big that there are local teams, then problems diminish. On the other hand the

potential diminishes as well. It would be good for the research, if researchers would

locate to their team. For example researcher from TUT would move to Germany for a

two year project. Life is not only working and often it is hard to leave. Students, on the

other hand, may be doing student exchange. Let us say there is a project that lasts a few

years. It contains three local teams in three countries. Each team has three researchers

and three students. When hired, students may be required to do, let us say, a six month

65

exchange to another project. This would combine local teams, internationalism and

educational purposes.

 Cross-functionality is another aspect of a real agile team. Cross-functional is a term

used in software development. The university world may use the term interdisciplinary.

The meaning and benefits of cross-functional teams can be read from the chapter Cross-

functional. In general, cross-functionality seems to be rather well used in public

research compared to software development. Interdisciplinary could be a great

advantage of public research. Oftentimes universities are interdisciplinary by nature.

Perhaps this could be one viewpoint companies might be willing to invest in. Depends

on the circumstances, but for example anthropology, social psychology and marketing

may all be connected to software development.

 Collaboration is not heavily used in many of the studied projects. For more

information on collaboration, please read the chapter Collaboration. Collaboration

cannot happen, if there are big egos. The essence of an ego is not understated here, but

egos that are too large will not work jointly together. Practicing may help big egos to

work better together. For example pair-programming is said to have this sort of effect.

However, this may be a painful process and if benefits are not clear then why bother? If

big egos must be smoothed over, then threats should be studied beforehand to make the

pain as minor as possible. More information on pains and threats can be found in the

chapter Psychology of Change Resistance. Enjoyment and joyfulness are signs of

collaboration. Based on the author’s limited experience, professors tend to welcome

ideas and criticism more constructively than people on average. A trick that may work

to improve collaborating is to concentrate on performance. Not at any cost, but instead

of worrying who can work with who and who is willing to do what, more effort could

be transferred to concentrating on higher performance. [7]. A trick that may harm

collaboration is to make some team members more important than others. For example,

if you have your name first in the published manuscript, you are more important than, if

your name were fourth in the list. Agile team members should be equal to each other.

For instance, if performance is measured, then team performance should be measured,

not individual performance. Researchers seem to have a very strong sense of self-

discipline. No matter what obstacles are thrown in the way, they keep on trying. In

many cases they also demonstrate very strong self-organizement.

7.7.5 Vision and Project Management and Customer

A project cannot succeed without vision. Vision and agile is discussed in the chapter

Customer and Vision. At least these instances have influence on vision in the studied

projects: EU, Tekes, TUT, University of Tampere, numerous enterprises and researches.

It is said time over time that the goal is not a product, but acquiring new learning and

testing theories. So is there sufficient vision? Who owns it? Who nurtures it, so that

everyone in the project is familiar with the vision? These are questions that the author

does not have an answer to in many cases, since the author does not know these projects

66

in depth. It may be that the vision is too fuzzy and the project is drifting, or it may be

that they all know where to go and a light touch is all that is needed.

 Research departments and centers should also have well-coordinated direction for

research [35]. Having numerous small projects and no obvious client, easily blur the

direction. A project portfolio may be a helpful tool for maintaining well-coordinated

direction.

 Consider the chapter Rightshifting. There are different types of organizations. An

adequate vision sounds and feels different in mechanistic than in chaordic organizations.

Some of the studied projects were mainly in a mechanic state, but some might have

been in a synergistic or even a chaordic state. There are a lot of mechanistic characters

in the research world. The research world is controlled by rules and regulations: peer

evaluations, published in which paper, how many publications, whose name was on

which paper, climb the ladders by doing thesis, get grades and so on. Some groups do

have a strong flavor of mechanistic state. On the other hand, the research world is

labeled by freedom. A single researcher may have a big impact on what to study. They

may have decades of research experience. The language they use may contain rather

open and abstract wondering on greater goals and principles. They may note constrains

and then move on to discuss reasons. When only seeing a snapshot, ad hoc and charodic

may seem the same. Even though it seems obvious that some people in the research

world are beyond mechanistic state. Organization needs to improve continuously to

rightshift.

 Agile promotes short cycles. A shorter cycle improves learning and payback time.

Read chapters Rhythm and SCORE for more information. There are projects as long as

four years in publish research. Agile suggests splitting long projects to value adding

subprojects. For example, one four year project to four one year projects so that the

result of each one year project has value on its own. One good way to shorten a long

project is to make team more focused, as described in the chapters Focused for Business

Value and Lean. Another good way of shortening projects is to end them at some point.

Have an end ceremony so that it is clear the project has ended. It is not too uncommon

that projects never end, but they tend to fade out little by little. To try something wilder,

spike solutions could be a modern way of shortening some projects and of doing

unorthodox research. There has been discussion to the point that to be successful, most

start-ups should publish their product at the earliest moment possible and that the

number of early users is indicative of success. More or less when spike solution is

ready, a lot is done to make many users to try it out. Start-up-like spike solutions would

improve early feedback and if done in a user friendly way, they may make more people

interested in science and in contributing to its progress.

 Retrospective is barely used in public research. It has been tried by some groups.

Oftentimes it has not worked well. Two reasons can be recognized. Retrospective

requires lasting and focused teams in order to work. First, if there is no lasting team,

then there is no continuum. There is no lesson to learn, if the same people are not

participating in retrospective after retrospective and the same people are not trying out

67

what was decided. Second, if there is no focus, then participants are optimizing their

own interests and are not so much interested in others. On the other hand, if participants

are not willing to change their habits, then the retrospectives are not working.

Retrospectives are the minimum amount of iteration every project should have.

 It seems like some people are chronically busy. They are worried about one hour or

even fifteen minutes. Being too busy makes it practically impossible to change habits as

reasoned in the chapter What People Believe and What Changes Their Mind. There

should always be time to discuss new ideas. There should also be time to have breaks

for free form discussion. Informal chit-chat can easily improve overall performance.

Perhaps critical thinking, as valuable as it is, is also researchers’ occupational disease.

Having enough slack time and having enough chit-chat may treat that disease.

 Information radiators and other low-tech high-touch visual tools are barely used in

the studied projects. Tools like the ones described in the chapters Work Flow

Visualization and Facilities in Agile. These tools should be at least tried out to see

whether they provide any help or not. They have proven to be very useful in many

software development projects. There are electronic visualizing tools for distributed

teams.

 Researchers seem not to do maintenance work. However, they do have multiple

responsible, like multiple projects and educational duties. If there is one major project,

then all interruptions may be considered as maintenance work. This may or may not be

a helpful analogy. The chapter Agile and Maintenance Work describes software

development ways of dealing with maintenance work.

 A superior reviewing the results is common with the studied projects. Groups are

small and researchers do not know what the others are doing, so review done by one's

superior can be handy. It is also good practice that results are reviewed somehow.

However, to have only superior review is not an adequate form of feedback and peer

support in many cases.

7.7.6 More on Project Delta

Project Delta seems to have some incredibly agile aspects. Such a situation is not an

outcome of random acts. They must have worked for that. How could it be taken even

further? Delta has a lot of students. Some say that there has to be at least one seasoned

project member for every five juniors in agile. Delta is pretty close to this. It is worth

considering whether the current single person projects are the optimal way of achieving

their greater aims.

 Working toward the same goal and participatory decision making improves

teamwork skills. It improves understanding of the big picture of research and of one's

own field of study. It may increase the feeling of relatedness, which is rewarding based

on SCARF. Self-organizing and participating on estimating and on decision making

would improve autonomy which is also rewarding according to SCARF. On the other

hand, working more closely together may cause status threat or fairness threats as stated

68

by SCARF. Rules of engagement, as described in the chapter Team Rules of

Engagement, are a good tool for dealing with fairness threats. Working toward the same

goal may make sprint iterations possible, which in turn may make incremental value

delivery possible. Furthermore, themes could be chosen for different sprint iterations.

When done so, the result is not little here and little there, but something concrete is

finished at the end of each sprint iteration. There are many question marks and only one

way of finding out how would it work.

 Having that many students working on the project makes things, like participatory

decision making, more complicated. It may even increase the workload of the project

champion in the beginning. If the bigger aim is to teach students to be excellent

researchers, doing a bit of extra work in the present may pay off big time in the future.

Some say that every rule the project manager has is originated from a bad experience.

The rules are what project managers use to avoid bad things happening again. Control

and freedom, rules and trust, are all balancing acts.

 This project team is in need of a better room for working. The current room seemed

to be too small and the air was stale.

7.7.7 More on Research Groups Epsilon

Most of the discussion regarding Epsilon has already been dealt with in other chapters.

This chapter tries to highlight a few issues and gives a few Epsilon tailored suggestions.

 There are functional teams and somewhat intensive co-operation between them. One

solution would be to make one cross-functional team that owns all the small cross-

functional projects. Teamwork on such a team may be easier to improve than multiple

groups of patchwork quilt projects.

 Maryland university has successfully used agile to mentor doctoral students. Their

circumstances are similar to one of Epsilon’s functional teams. How to have enough

time to help students when resources are limited and how to help students to track what

each of them is doing? Epsilon solved this by a status check and a problem solving

meeting. Maryland went a bit further. Please read the chapter SCORE for more

information.

 Epsilon has an unofficial design team called Epsilon Design. Where does Epsilon

Design meetings take place and does it matter? If Epsilon Design were a co-located

team with some students in it, then the students would be a part of research design even

if they are not active. They would be in a team room and they would hear how planning

is done. When they have something on their mind, they would participate. Even if they

are not focused on listening they would still hear something. Everyone in the room

would have a rather good understanding of what is going on. Being co-located would be

a low ceremony way of committing students to research design.

 Implementing an agile framework is not possible in Epsilon. Implementing agile

overnight would probably lead to long lasting chaos. Here are some baby steps toward

agility. These steps are the author’s opinions tailored for Epsilon.

69

1. Small groups are better in solving complex problems than individuals. Small

groups also have the potential to improve innovation and learning as discussed

in the chapter Social Aspect of Productivity. The first step is to find out what is

so complex in our work that it would take a team to solve it? A seasoned

employee would answer this question differently than a junior employee. The

one who is doing the work should answer. For the junior it could be how some

experiments are run.

2. Who wants to do teamwork? If one is definitely opposed to teamwork, then he

should not have to do it.

3. The vision, the answer to question what, needs to be clear to the whole team.

4. The team should be empowered to self-organize, to answer the question how by

themselves.

5. The team should make the rules of engagement. Read the chapter Team Rules of

Engagement.

6. Real teams and iterations are at the core of Agile. Steps from one to five are

about real teams. A minimal way of starting up with iterations is to have a

retrospective every two weeks as described in the chapter Retrospective.

7.8 Sources of Error

Let us start with the author’s know-how. The author has three and half years of

experience with more or less agile projects, but no experience of a truly agile project.

How able is he in recognizing the needs of other projects to be truly agile? The author

has done his best to mend the lack of experience by studying agile a lot and having

many conversations about “true agile”. However, the author has read only pro-agile

books and mainly chit-chated about agile with pro-agile people. There is a reason to

believe that the author’s opinions are biased in favor of agile.

 The practices to gather data for the thesis are error prone. First, only snapshots were

taken. No long term, living with the team through their daily life, was done. Second,

only one person was interviewed in some projects, which makes the result unilateral.

Even if more people were interviewed some people had more time and more opinions,

which also skews the results. Third, questions made were not always open enough.

Especially, when the author did not understand the answer or the interviewee did not

seem to understand the question, the author may have ended up summarizing his own

thoughts and asking close-ended question. When the author noticed this and received

“yes” or “no” answers, the answers were left unnoticed. Still, quality of the questions

had a big impact for sure. Asking truly open-ended question is extremely hard. Fourth,

the author was a stranger to the project teams. He just showed up and started asking

questions. Did the project team members have a real reason to trust the author? There

must have been a lack of trust, which must have caused distortion to the answers. Fifth,

only so very few projects were studied, that no generalizations can be made.

70

 This thesis is focused on offering opinions about teams and project management.

There is never an exact result when dealing with people. People and their living

environments are too complex for that. This does not diminish major sources of error in

used practices. It does highlight the target accuracy. The result is not and is not

supposed to be accurate. The result is supposed to offer viewpoints. Besides you cannot

tell people what to do. They would not act as you told them to. It is better to help them

to demonstrate how the work should be done.

71

8 Conclusions

There is a rather large scale of variation from one project to another, which makes it

hard to have one conclusion true for all. The conclusion is drawn from generalization

within studied projects.

 Researchers carry responsibility over their actions. They are highly capable of doing

individual work. They tend to be intrinsically motivated and to believe that they are

working on something that matters. This is true even when the funding system is

challenging and success measurements would not reflect the core reason of public

research. Public research does not tend to value face-to-face communication or intensive

teamwork nearly as much as agile suggests. Usually they do not have clear a customer

role. Perhaps because of the listed issues, researchers are not focused on just one project

and one goal. Not even close. The more distributed by location and by focus the group

is, the more open-mindedness it seems to have for new ideas. Perhaps the more people

are taking part in education, the more open-minded they are to discussing new ideas?

The more same site, co-located and focused the team is, the less they seem to have a

culture of being open to chat about new ideas. Agile team seems to require focus of a

co-located team and open-mindedness of an unfocused group. The situation is divided

when it comes to being an agile project lead. Project leading was not highly aligned

with agile in cases where project leading was made concrete to the author. In other

cases, based on the information gathered, it is hard to say much about a project leader’s

role. When it comes to the thesis’s theory of agile, public research is not very agile.

There is no intensive teamwork or much continuous improvement.

 Is agile a good fit for public research? Deep down agile is mostly psychology and

group dynamics in a complex environment. Agile is optimized for software

development, but agile-like doctrines can be found in other industries as well. For

example Lean shares pretty similar values to agile. Anthropology and psychological and

social psychology studies explains the human side of agile rather well. Agile is about

gaining competitive advantage by learning and solving problems together and by doing

it fast. Agile is about fears and rewards. It is about accepting complexity, that all things

cannot be foreseen. Military works in a complex or even a chaotic environment so it is

no surprise that many well-known generals have been quoted by agile books when it

comes to planning. On the other hand, high risks and big projects require more structure

and thus are less optimal for agile. High risks and big projects as well as acceptable

risks and small projects happen outside software development as well. Agile is nothing

special and it is mostly not about software, but human beings. What makes agile

remarkable is how well it has been tested in real life over the years. Strongholds and

shortcomings have been exposed. Developing software is very complex and oftentimes

it takes a dedicated team to do it – ground zero for agile.

72

 Agile does not work with victim attitude. Some people behave like they are born

unlucky, like they are victims always finding excuses and blaming others, claiming they

are in an impossible position to make any changes themselves. With them, agile may

indicate problems fast. Agile will not make them work better, at least not without

changing their attitude along the way. Agile would rather make them produce worse

results. This has also been demonstrated in real life. Agile works when there is actor

attitude. When people are intrinsically motivated and when they are brutally honest with

reality and when they demonstrate ruthless self-discipline and want to constantly

improve. Agile works with people who feel like they can and they should and they will

make a difference. There are things that are beyond their reach, but there are always

things to be done. When it comes to having challenges at work, instead of playing the

victim, agilists tend to think there are frankly three options: “Accept it, change it or

leave it [46]”.

73

9 References

[1] Naur P. Computing a Human Activity, Programming as a Theory Building. 1992,

ACM Press. 630 p.

[2] Highsmith J. Agile Project Management. Second edition. US 2010, Pearson

Education Inc. 392 p.

[3] [accessed on 13.4.2014]. http://www.eurekanetwork.org/

[4] Ministry of Employment and the Economy, Finland. 19.4.2013. [accessed on

13.4.2014] http://www.tem.fi/files/36546/SHOK-kehittamislinjaukset_26042013.pdf

[5] Amatriain X. 2009. [accessed on 27.2.2014].

http://xavier.amatriain.net/AgileResearchManifesto/.

[6] Amatriain X. [accessed on 27.2.2014].

http://technocalifornia.blogspot.fi/2008/06/agile-research.html.

[7] Cockburn A. Agile Software Development the Co-operative Game. Second edition.

US 2007, Pearson Education Inc. 467 p.

[8] Shore, J., Warden S. The Art of Agile Development, First edition, Sebastopol CA,

O'Reilly Media Inc, 415 p.

[9] Pavlina S. [accessed on 4.3.2014]. http://www.stevepavlina.com/blog/2005/06/self-

discipline/

[10] Cohn M. Agile Estimation and Planning. US 2006, Pearson Education. 330 p.

[11] Kniberg H. [accessed on 5.3.2014] http://blog.crisp.se/wp-

content/uploads/2013/08/20130820-What-is-Agile.pdf

[12] Johnson J. Build only the Features You Need. XP 2002 Conference.

Standish group study reported at XP2002 by Jim Johnson, Chairman

[13] Shalloway A., Beaver G., Trott J.R. Lean-Agile Software Development Achieving

Enterprise Agility. US 2009, Pearson Education Inc.262 p.

[14] Hickc M., Foster J.S. Adapting Scrum to Managing a Research Group. 2010.

University of Maryland, Department of Computer Science. 9 p. [accessed on 13.4.2014]

http://www.cs.umd.edu/~mwh/papers/score.pdf

[15] Nummi P. Fasilitaattorin käsikirja. Helsinki 2007, Edita Publishing Oy. 126 p.

[16] Brown J.S., Duguid P.The Social Life of Information. First edition. 2000, Harvard

Business Review Press. 336 p.

[17] Kahneman D.Thinking, Fast and Slow. 2013, Farrar and Straus and Giroux. 512 p.

[18] Rock D. SCARF: a Brain-Based model for Collaborating with and Influencing

Others. The NeuroLeadership Journal 2008 Issue 1.

 [19] Molenda M., Kovalichick A., Dawson K. Education and Technology: An

Encyclopedia, .Cone of Experience, 2003.

 [20] Strauss V. Why the ‘learning pyramid’ is wrong. The Washington Post 2013.

[accessed on 13.4.2014] http://www.washingtonpost.com/blogs/answer-

sheet/wp/2013/03/06/why-the-learning-pyramid-is-wrong/

http://www.eurekanetwork.org/
http://www.tem.fi/files/36546/SHOK-kehittamislinjaukset_26042013.pdf
http://xavier.amatriain.net/AgileResearchManifesto/
http://technocalifornia.blogspot.fi/2008/06/agile-research.html
http://www.stevepavlina.com/blog/2005/06/self-discipline/
http://www.stevepavlina.com/blog/2005/06/self-discipline/
http://blog.crisp.se/wp-content/uploads/2013/08/20130820-What-is-Agile.pdf
http://blog.crisp.se/wp-content/uploads/2013/08/20130820-What-is-Agile.pdf

74

[21] The Learning Pyramid. Belmond-Klemme Technology PD Wiki. [accessed on

13.4.2014] https://bkpd.wikispaces.com/04++The+Learning+Pyramid

[22] Butera F. [accessed on 12.3.2014] http://butera.socialpsychology.org/publications

[23] Buchs C., Butera F., Mugny G. Resource Interdependence, Student Interactions

and Performance in Cooperative Learning. Educational Psychology 24(2004)3, p. 291-

314.

[24] Buchs C., Pulfrey C., Gabarrot F., Butera F. Competitive conflict regulation and

informational dependence in peer learning. European Journal of Social Psychology

40(2010)3, p. 418-435.

[25] Butera F., Caverni J.P., Rossi S. Interaction with a high- versus low-competence

influence source in inductive reasoning. The Journal of Social Psychology 145(2005)2,

p. 173-190.

[26] Auriemma A. Why the Best Offices Are Like Jails. The Wall Street Journal 2014.

[accessed on 13.4.21014] http://blogs.wsj.com/atwork/2014/03/28/why-the-best-offices-

are-like-jails/

[27] Marshall B. The Marshall Model of Organisational Evolution. [accessed on

13.4.2014]. http://fallingblossoms.com/opinion/content?id=1006

 [28] Gyllebring T. Introducing Rightshifting – a conversation on work, effectiveness

and joy. Scan Agile Conference, Helsinki 11.11.2013. [accessed on 13.4.2014]

http://vimeo.com/84065968 [12.3.2014]

[29] [accessed on 13.4.2014] http://c2.com/cgi/wiki?BlubParadox

[30] Brodzinski P. Against Rightshifting. 2012. [accessed on 13.4.2014].

http://brodzinski.com/2012/12/against-rightshifting.html

[31] Adkins L. Coaching Agile Teams. US 2010, Pearson Education Inc. 315 p.

[32] Kallio K.M. ”Ketä kiinnostaa tuottaa tutkintoja ja julkaisuja

liukuhihnaperiaatteella...?" - Suoritusmittauksen vaikutukset tulosohjattujen yliopistojen

tutkimus- ja opetushenkilökunnan työhön. Doctoral thesis. 2014. University of Turku,

Department of Accounting and Finance. 341 p.

[33] Sliger M. Broderick S. The Software Project Manager's Bridge to Agility. US

2008, Pearson Education Inc. 353 p

[33] [assessed on 16.5.2014] http://agilemanifesto.org/

[34] Hock D. Birth of the Chaordic Age. First edition. San Francisco 2000, Berrett-

Koehler Publisher. 345 p.

[35] Laurinolli H. Rahoituskilpa ei paranna yliopistojen tuloksellisuutta. Aikalainen

5(2014).

[36] Smith G., Sidky A. Becoming Agile in an Imperfect World. Greenwich CT 2009,

Manning Publications Co. 380

[37] We’re In This For The Money. [accessed on 12.5.2014]

http://geepawhill.org/?p=31

[38] Pentland A. The death of individuality. The New Scientist. 5 April 2014.

[39] Hamilo M. Reilu kapitalismi rikastuttaa. Tiede. 2(2014).

[40] Puttonen M. Moraali koulitaan yhä uudelleen. Tiede. 2(2014).

http://butera.socialpsychology.org/publications
http://vimeo.com/84065968
http://c2.com/cgi/wiki?BlubParadox
http://brodzinski.com/2012/12/against-rightshifting.html
http://geepawhill.org/?p=31

75

[41] Marshall B. Gateway Drug to Synergism. [accessed on 12.5.2014]

http://flowchainsensei.wordpress.com/2012/09/06/gateway-drug-to-synergism/

[42] Laanti M. Agile Methods in Large-Scale Software Development Organizations.

Doctoral thesis. Oulu 2012. University of Oulu, Faculty of Science, Department of

Information Processing Science. 192 p.

[43] Highsmith J. [assessed on 14.5.2014] http://agilemanifesto.org/history.html

[44] Hellström R. Social Neuroscience of Agile Transformations - Team's Gain &

Manager's Pain. Turku Agile Day, Turku 13.5.2014.

[45] [assessed on 16.5.2014] http://agilemanifesto.org/principles.html

[46] Tolle E. The Power of Now: A Guide to Spiritual Enlightenment. 2004, New

World Library. 236 p.

[47] Puttonen M. Poliittinen asenne riippuu geeneistä. Tiede. 5(2014)

http://flowchainsensei.wordpress.com/2012/09/06/gateway-drug-to-synergism/
http://agilemanifesto.org/history.html
http://agilemanifesto.org/principles.html

76

10 Appendices

