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Drones and Unmanned Aerial Vehicles (UAVs) are being given more and more at-

tention. Drone research focuses on autonomous capabilities, �ight dynamics and

gathering data with speci�c sensors. However, there is very little focus on drones

carrying radio interfaces for other purposes than communicating with a ground sta-

tion and it's surprising because of of ubiquitous characteristics of both of these

technologies.

This project is about equipping a quadcopter drone with a Software De�ned Radio

and a small, single-board computer to process the signal and location data. The

ultimate goal is to create a modular platform for di�erent, task-speci�c, UAVs and

software capable logging and processing the RF data. As an intermediate point for

that goal and the purpose of this thesis, we've created a system that can easily be

used to �y around an area and log the power of a GSM pilot carrier. The data is

logged together with the precise geographical location so that the data from a log�le

can be used to create an easy to read heatmap of the carrier's coverage.
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1. INTRODUCTION

1.1 Unmanned Aerial Vehicles

Until recently, UAVs (Unmanned Aerial Vehicles) have had a rather fearful repu-

tation for being used as 'sky assassins' and 'spies' of the military. It was a well-

deserved reputation because, like with many other technology, the military with it's

non-pro�t oriented budgeting model is a early adopter. For the �rst part of the

2010s, every time something bad happens around the world, the news would greet

us with headlines having words 'drone' and 'air-strikes' next to each other.

However, the drone technology has advanced beyond the domain of multi-million

dollar military sponsored projects. Civilian applications are more and more common.

A whole new class of drones has evolved over the last decade - the Micro Air Vehicles

(MAV). it encompasses a whole range of miniature, �ying vehicles that have been

around for a while now. However, but there is one section of it that's a fresh blow

and is commonly referred as 'drones' - the multi rotors. These devices use 3 or

more, vertically aligned brushless engines and movement is achieved by creating a

di�erence in thrust on motors on the opposite sides of the frame resulting the MAV

tilting and creating sideways acceleration 1.1. The thrust regulation needs to be

very precise and can't be done without a micro-controller. To perform the most

basic of operations, the microcontroller needs some basic sensors like a gyroscope

and accelerometer.

The �rst quadcopters were built around Arduino platform, so they already had a

surplus of processing power and compatible with many more sensors than just the

essentials. From here on, achieving autonomous �ight was just a matter of adding

additional sensors and programming the software to use them. This trend still

continues today and as the sensors grow in numbers, so does the processing power

needed to make e�ective use of them. As of today, widely available drones use

dedicated Flight Management Units (FMUs) that come with all the basic sensors

integrated on one board and a further support for the most common sensor buses

like CAN or I2C.
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Figure 1.1 Quadrotor principle of opertaion

Drones are already commonly used for crop management, wildlife protection, 3D

mapping, search and rescue operations, archaeological sites surveillance, crowd mon-

itoring, police investigations, Amazon prime air, drug delivery in remote regions.

This list just keeps on growing. According to a report recently published by Aerospace

Industries Association UAVs are projected to contribute 89 billion USD to GDP over

the next 10 years in US alone[4].

Drones carry a variety of sensors. Part of them is used to gather data about drone's

surroundings and there are sensors that collect useful data. By far, the most popular

one is a simple camera. Aerial photography provides a lot of useful information and

using a done is very cheap compared to a satellite or a helicopter. There is, however,

an area that hadn't been given the attention it deserves - the Radio Frequency

domain.

There are very little projects that would make use of RF-enabled drones for com-

munication purposes. We will take a look at the most notable examples in the next

chapter.

1.2 Software De�ned Radio

Software De�ned Radio has been around for a few decades now. Similarly to drones,

it started as a large-budget military project and slowly made way into our homes.

SDR rede�nes the way we think of radio. The hardware of an SDR is similar to tra-

ditional radio, except at the moment when we get the signal down to baseband, it's

being sampled by and ADC converter and the components found further down the

datastream are replaced by a programmable Digital Signal Processor (DSP). Tasks

traditionally done in hardware like �ltering, modulation, coding or equalization are



1.3. Task statement: combining UAV and SDR 3

now performed by a DSP. With the passage of time and increase in processing

power, this technology is slowly making entrance to consumer electronics. It's not

uncommon to see one DSP GSM/UMTS/LTE baseband processor in mobile phones

[17]. However, it's only in recent years when truly open-source PC-based SDRs are

outshining obscure, proprietary undocumented DSP chips.

1.3 Task statement: combining UAV and SDR

Omnipresent wireless networks don't surprise anyone these days. If anything - it's

the lack of such that causes both surprise and customer dissatisfaction. Maintaining

coverage over large areas is a cumbersome task. RF equipped drones can be a valu-

able tool when dealing with wireless networks. Such device could actively search

for a signal or a source of interference. The possible application list extends when

we consider not only a receiver, but also a transmitter, thus allowing for two way

communications. A drone could act as a mobile sink collecting data from Wireless

Sensor Networks (WSNs) or temporarily replace a broken node. As it often happens

with new technologies, they also pose whole new layer of security issues as they can

be used for less than legal activities like remotely jamming wireless signals or per-

forming untraceable man in the middle attacks. Combining these two technologies

opens a world of new, yet untapped research opportunities.

Because this is a relatively new area, in this thesis we tackle the simplest case

scenario where we want to gather data about the coverage of a cellular network.

Commercially available quadcopters are already designed to have onboard space

and the necessary power surplus to carry payloads. In our case, the payload will be

a Single Board Computer (SBC) and an SDR hardware. Both SDR and FMU are

connected to the SBC via USB. The task of the SBC is to:

• access the positioning data from the FMU

• access the signal data sampled by the SDR radio

• create a log consisting of a series of geographical location and the power of the

signal at that location

After performing the measurements, we want to convert the results to a human-

friendly form, by display them on a Google maps layer.
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2. BACKGROUND INFORMATION

Just as Telecommunication is a multidisciplinary domain encompassing electrical

engineering, computer science, signal processing and many more so does this project.

With a little bit of robotics, software engineering and lots of di�erent hardware it's

a hodgepodge of technologies. In this chapter we want to explore some of them to

have a clearer picture of how all the parts of hardware and software operate together.

2.1 GSM

One of the key characteristic why GSM was selected as a target to be measures was

the very narrow bandwidth it uses relative to other widely used wireless standards. A

GSM frequency channel occupies only 200kHz. Table 2.1 shows a brief comparison of

bandwidth used by some wireless technologies. It is noteworthy that the bandwidths

tend to increase as new technologies emerge. Large bandwidths pose a problem for

SDRs because the hardware required to capture them grows more complex and more

expensive.

Higher bandwidths also cause a problem due to the limitations of the interface

connecting the SDR to the computer. Following the Nyquist sampling theorem, the

sample rate should be twice the highest frequency of the analog signal. Table 2.1

lists common wireless technologies and the minimum throughput required to capture

them. Last, but not least - these huge amounts of data require hardware capable

of processing it, especially since most radio technologies are time-critical and the

processing has to be done in real-time.

More bandwidth directly translates into more cost in terms of transfer rates, pro-

cessing power and money. But that is not all. Achieving mobility puts constraints

on size, weight and power consumption. Having all that in mind, GSM with it's

narrow channel bandwidth was an ideal technology to tackle �rst.

The full GSM speci�cations with all the extensions cover roughly about 1000 pages.

In this chapter we will go through a small section of the air interface which is relevant

to the work presented in this thesis.
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Bandwidth
Required throughput

@ 12 bits/samp
GSM 200 kHz 4.8 Mbit/s
WCDMA 5 MHz 120 Mbit/s
LTE up to 20 MHz 480 Mbit/s
802.11a/b/g 20 MHz 480 Mbit/s
802.11ac up to 160 MHz 3840 Mbit/s
802.11ad 2.16 GHz 51.84 Gbit/s
802.16 up to 20 MHz 480 Mbit/s

Table 2.1 Comparison of wireless technologies in terms of channel bandwidth

2.1.1 Multiple Access

GSM utilizes a combination of Time, Space and Frequency Division Multiple Access

techniques (TDMA, SDMA and FDMA respectively). First, the 900 or 1800 MHz

band is split to 200kHz channels (FDMA) that operate independently of each other.

SDMA is achieved by distributing these frequencies among Base Transmission Sta-

tions (BTS) in a way that adjacent cells don't use the same frequency in order to

avoid interference at the cell's edge. Furthermore, each 200kHz carrier is split in

time into 8 slots. This combination of TDMA and FDMA is illustrated in �gure

2.1. When initiating a connection, the Mobile Station (MS) will have an uplink and

downlink carrier/timeslot assigned to it.

Figure 2.1 visualization of FDMA and TDMA combination
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2.1.2 Pilot signal

Figure 2.1 depicts a multiple access scheme used in GSM. However to make the

illustration clearer, it assumes that all the frequencies and timeslots have a signal

present. This is rarely the case as networks are designed to be able to handle tra�c

with very low blocking probability during rush hours. Outside the rush hours, most

of the channels remain unused.

Every BTS has one frequency channel in the downlink portion of the spectrum where

the signal is constantly present. This frequency is referred to as 'pilot', 'broadcast' or

'carrier'. When the MS powers on, it's �rst task is to locate the broadcast frequency

and tune into it. The broadcast channel supplies the MS with all the information

about the BTS necessary to join and maintain the network connection; starting

from synchronization in frequency and time domain, ending at authentication and

encryption details.

Because the pilot signal is constantly transmitting, it is the frequency channel that

our SDR needs to measure to provide us with valuable data to determine the link

quality.

2.1.3 Bursts

A single carrier frequency is sub-divided into 8 time slots that are shared between

users. Each timeslot lasts exactly 3/5200 seconds (roughly 576.7 µs). Timeslots are

left unused when there are no users to utilize them. However, when a transmission

occurs, the slot is �lled with a burst. Bursts are shorter than slots by roughly 8.25

bits of guard period to account for spread of MS in space because singals from MS

further away from the BTS take longer to arrive.

GSM is a standard with a long history. The �rst commercial networks date back

to early '90s. Since then, many amendments and improvements have been made to

keep it up to date. In practice, the waveforms we observe today vary very much

from the ones in the early implementations. As a result, there are many types of

bursts. We would like to focus only on the ones relevant to the work done and most

commonly present in a broadcast channel. These would be Frequency, Normal and

Synchronization bursts. Their structure can be seen on Figure 2.2.

As the name suggest, Normal bursts are the most commonly seen in GSM. They are

used to carry user data. Both the Frequency and Synchronization bursts are found

only in the downlink of the carrier signal and are used to achieve synchronization in
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(a) Normal burst

(b) Frequency burst

(c) Synchronization burst

Figure 2.2 di�erent types of GSM bursts[2]

frequency and time, respectively. Figure ?? presents a waveform of a burst found in

the broadcast channel captured using RTL-SDR.

Figure 2.3 GSM burst seen under an oscilloscope

2.1.4 Modulation

Contrary to what many sources cite, GMSK (Gaussian Minimum Shift Keying) is not

the modulation scheme for GSM. It is the original scheme that GSM standard started

with, but a captured burst can be modulated using any of the following: GMSK,

AQPSK, QPSK, 8-PSK, 16QAM or 32QAM depending on the type of channel[1].

However, for the purpose of backwards compatibility with the earlier standards, the

carrier is GMSK modulated and we will focus on that.
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GMSK is a variation of MSK where the NRZ (non-return to zero) encoded signal

is passed through a Gaussian �lter. The advantage of this technique is improved

spectral e�ciency at the cost in increasing ISI (Inter-Symbol Interference). This

was a very appealing trade-o� as frequency licensing is very expensive.

2.2 Software De�ned Radio

Since the dawn of wireless communications radios were fully implemented in hard-

ware. There was a good reason for it - for most of that time the term 'software'

remained unde�ned and even after that was overcome we didn't have enough power

at our disposal to process even the simplest of signals.

Unsurprisingly, the driving force behind the �rst working implementation of an

SDR was the US military. During the Gulf War, it became apparent that the

current communication system had it's shortcomings. Air force, ground forces, the

navy and military satellites all operated using di�erent radio technologies. There

were a total of 15 mutually exclusive wireless technologies in use and thus making

communication between them di�cult. At the time, long-range transceivers were

bulky and simply carrying 15 di�erent radios wasn't a viable option. This is how the

SPEAKeasy program came to life [15]. It's result was a recon�gurable radio that

could operate from 2MHz to 2GHz and could communicate with all the wireless

technologies employed by the military at the time.

The idea behind SPEAKeasy was to split the traditional all-hardware radio design

into two parts. Hardware part was reduced to a minimum and used to transmit/re-

ceive the signal and perform A/D, D/A conversions (Digital to Analog and Analog

to Digital). Traditionally hardware tasks such as modulation, channel coding and

source coding were left to a multi-purpose, easily recon�gurable DSP processor.

SPEAKEasy was the �rst working implementation of an SDR.

More than 2 decades later SDR hardware is commercially available for as low as

20USD for receiver-only solutions.

As of now, smart devices have separate radios for every technology, but only one

is in use at a time. This is a waste of resources. Commonly available, cheap SDR

hardware opens the doors to the future of wireless communications - Cognitive

radio. Cognitive transceivers are SDR radios that are aware of the changing medium

properties and can adapt to it by adapting it's parameters such as the modulation

scheme, bandwidth or symbol duration to provide the best possible quality of service.
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Figure 2.4 SPEAKeasy functional block diagram[15]

2.3 Drones in Telecommunications

Today, drones are at peak of their development. It's the hot, new technology at the

'rapid improvement' phase of the S-curve of technology development cycle (Fig.

2.5). It's the time when giants of the industry like Google or Amazon are heavily

investing in research and development to create a viable commercial model. As im-

provements are made, drones are becoming more agile, autonomous, power e�cient

and safe. As a consequence of that - also more and more popular. Not so long

ago we had to order the drone used for research from the USA. Today, the local

electronics store sells lightweight quadcopters as toys.

UAV usage in telecommunications is a huge area for innovation and, as the following

pages will show, it's not exclusive to big-budget military or commercial deployments.

In this chapter we would like to have a glimpse at how drones are making a slow,

yet steady entry into the world of telecommunications. Even over the period of the

work done on this thesis, a lot of innovations have been made.

2.3.1 WASP

WASP stands for Wireless Aerial Surveillance Platform. It was a side hobby for

two security engineers: M. Tessy and R. Perkins. The project was showcased at

DEFCON 19, a hacking conference in 2011 [14]. They have re-purposed a fuselage of

an old military target practice drone to host an SDR and an Single Board Computer
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Figure 2.5 S-curve of technology adaptation

(SBC) running Backtrack - a security oriented Linux distribution. It is a hacking

UAV designed to exploit security vulnerabilities in wireless systems. The drone has

also a 4G internet connection to o�oad some of computation-heavy work such as

brute-force password cracking onto a powerful backend computer. WASP can target

Wi-Fi, Bluetooth and GSM networks for both cracking and impersonating a trusted

internet access network to intercept transferred data.

The project utilizes open-source and o�-the-shelf components with a strong focus

on system integration rather than component design. Because it's privately funded

by two engineers, there was an emphasis on the costs. The components of the entire

system cost roughly 6190USD. While it may sound like much on a household budget,

it is scant compared to military or corporate funded projects of similar nature.

2.3.2 Colibrex

Colibrex is a subsidiary of a German telecommunications consulting company - LST-

elecom. It o�ers a wide range of services regarding airborne RF measurements using

UAVs [7]. The drones carry high-end RF measuring equipment and HD cameras to

perform both radiation pattern measurements as well as mast inspections and au-

diting. The company also provides a consulting background to analyse the gathered

data and use it to optimize the antennas for maximum coverage and correct any

possible installation faults.

The exact speci�cations, capabilities and hardware used by the drones are not pub-

licly disclosed.
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Figure 2.6 WASP system topology[14]

Figure 2.7 Colibrex UAV[7]

2.3.3 Atmospheric Satellites

Titan Aerospace (recently acquired by Google), a company originating from Mori-

arty, USA has presented a prototype of an atmospheric satellite at the 2013 AUVSI

(Association for Unmanned Vehicle Systems International). It is a high altitude

(20km) UAV plane designed to run on solar power and stay airborne for as long
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as 5 years at a time. It's called an atmospheric satellite because it's capable of

performing many tasks satellites do at a fraction of their costs. However, unlike a

satellite they can safely come back to earth for maintenance and upgrades.

Solara 50 is 15m long and has 50 meter wingspan. All of it's surface is covered in

photovoltaic cells to produce kilowatts of energy during the daytime, part of which

is stored in Li-Ion cells for night time operation. It o�ers a payload of 32kg. The

larger version, Solara 60 is projected to o�er a payload of 100kg.

Flying at 20km of altitude gives Solara a line of sight view of an 45000 square

kilometers which is roughly an area the size of Estonia and an equivalent of about

100 GSM base stations. Just like satellites a few decades ago, Solara opens up a

world of possibilities for wireless communications.

Figure 2.8 Solara 50, source: IEEE Spectrum

2.3.4 Phantom Eye

In some ways Phantom Eye similar to Solara atmospheric satellites. However, there

are few key di�erences between them. Phatom eye is a high altitude long endurance

craft (HALE) which means it's more of a traditional aircraft design. Unlike Solara,

it's powered by liquid hydrogen and weighing at 4,5 tonnes. It comes pre-equipped

with 500kg of basic communications equipment and on top of it can carry 200kg of

payload. This comes the expense of cruise time being reduced to about 4-5 days. It's

a military vehicle designed to provide intelligence and communication capabilities

in combat zones and emergency situations. As such, it's also much faster cruising

speeds than Solara.[8]
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Figure 2.9 Boeing Phantom Eye UAV[8]

2.4 GNURadio

In traditional sense, when we talk about radio interfaces, we know that we're talking

about hardware. However, in case of SDRs, the hardware described in section 3.2.2

is mainly an Analogue to Digital Converter (ADC) and all the signal processing is

done in software.

On GNURadio's website we can �nd this short description:

GNU Radio is a free and open-source software development tool kit that provides

signal processing blocks to implement software radios. It can be used with readily-

available low-cost external RF hardware to create software-de�ned radios, or without

hardware in a simulation-like environment. It is widely used in hobbyist, academic

and commercial environments to support both wireless communications research and

real-world radio systems.

As the name suggests, GNURadio is part of the GNU Project. Following the GNU

project philosophy, it's free software which means users are free to run it, share it,

study it and modify it under the GNU General Public License (GPL). 10 years ago,

Eric Blossom, head of the project, wrote this simple de�nition:

"GNU Radio is a free software toolkit for building software radios" [5]. However,

over the past decade, it has evolved to accommodate a much broader spectrum of

utility.

GNURadio was originally designed with recon�gurable software radios in mind, but

it is also well suitable for simulations, signal processing or protocol engineering. It

has been �rst released in 2001 and is constantly in development to keep up with
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the technological advances of our times. The project has also spawned the USRP

(Universal Software Radio Peripheral) - the �rst generation of a�ordable (sub 10000

EUR) SDR hardware.

2.4.1 GNURadio structure: Python, SWIG and C++

C++ programs run compiled to native machine code. C++ gives the programmer

a lot of control and direct access to memory resources. As a consequence - a well

written C++ code can be rapidly executed and be very memory e�cient. The

downside of this approach is that writing code is more complicated and having more

control means a higher error chance thus coding takes longer. C++ code can also

be convoluted and di�cult to understand for third parties.

To contrast all that - Python is on the opposite side of the spectrum. It's a high-level

programming language designed with code readability in mind. Many features such

as memory management and data types are of no concern to the coder. The trade

o� for Python is sacri�cing performance over simplicity and code readability.

GNURadio's structure takes the best of the two worlds. It has a highly modular

design where parts of code are treated as black boxes with clearly de�ned outputs

and inputs and a scheduler manages execution of these blocks. All of the code

that performs time-critical signal processing and the scheduler are written in C++.

Recon�gurability of an SDR re�ects in re-usability of the code. In GNURadio ter-

minology, the reusable 'black boxes' of code are called blocks . There is a block that

interfaces the SDR hardware and acts as a signal source or sink, some sink blocks

act as GUI, there are blocks that deal with modulation and many more. Before a

signal is fed to the transmitter or becomes human readable, it has to pass through

many blocks. The way these blocks are connected has a negligible impact on the

performance of the system so that part is done using Python to facilitate repid cre-

ation of GNURadio applications. Python can also be used to quickly write simple

blocks for when performance is not critical. This means that all of the C++ classes

have their Python counterparts.

The interconnection of two unrelated programming languages is made possible by

SWIG (Simpli�ed Wrapper and Interface Generator). Similarly to the other tools

used, SWIG is an open source software. As the name suggest, it generates the 'glue

code' that enables calling the C/C++ functions from a large number of scripting

languages (Python, JavaScript, Perl...).

GNURadio comes pre-equipped with a lot of blocks and many more are available
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from 3rd party sources so for most SDR applications it's enough to connect existing

blocks. SWIG greatly simpli�es this process while keeping the performance up to

par.

2.4.2 The �owgraph

A GNURadio �owgraph is a graph describing the data �ow of a GNURadio applica-

tion. SWIG makes a great job at simplifying the creation of GNURadio applications,

but the code is very repetitive and, even with comments, di�cult to understand with

no programming knowledge. However, as of version 3.2, GNURadio also comes with

a GUI (Graphical User Interface) called GNURadio Companion (GRC) that lets the

user create SDR applications based on �ow graphs. It provides an abstraction layer

where blocks are 'black boxes' with input and output. We will have a closer look at

the companion in the following pages.

Blocks

Figure 2.10 shows a �owgraph of a simple mono FM radio receiver. As stated

before, blocks perform signal processing. For the sake of readability and modularity

- ideally one block performs one operation, but the speci�cs are up to the author of

the block and, while it's not recommended, it's possible to write an entire application

as one block. Let us take a closer look at the blocks we see in the example.

Sources and Sinks

A source block is any block that has only output ports. It it's not necessarily

an interface to a radio. A source block can be a signal generator or a �le input.

Similarly, a sink is any block that has only input ports. The example shows 2 sink

blocks: one interfacing the audio card and one being a GUI element that displays the

audio signal in frequency domain. The example graph has one source and two sinks.

The source is an RTL-SDR interface. The sinks are an interface to the audio card

and a GUI element that displays the signal in the frequency domain as it appears

at the output of the RTL-SDR.
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GUI elements and programming-speci�c blocks

Some blocks aren't related to signal processing. These can be subdivided in two

categories: programming speci�c blocks and GUI elements.

Programming speci�c blocks add a little bit of programming functionality. These

include variables for values that are used in many blocks such as sample rate, Python

imports and the Options block that sets up some initialization parameters for the

GNURadio application.

GUI blocks are used to build a graphical representation of the data like an oscillo-

scope, FFT or waterfall displays. There re also blocks that create sliders or textboxes

that allow to tweak the applications parameters such as tuning the frequency during

the runtime.

Data �ow

From GR manual: "GNU Radio was originally a streaming system with no other

mechanism to pass data between blocks. Streams of data work well for samples,

bits, etc., but can lack for control and meta data." Streams are a basic data �ow

mechanism in GR. They can be compared to a water stream - they continuously

�ow in one direction, down the �ow chart. As the GNURadio project evolved to

support higher levels of abstraction such as PDUs and error checking, this was not

enough and two more data �ow mechanisms were added.

Stream tags are a mechanism to pass metadata between blocks. A stream tag can be

attached to a single sample in a stream and propagate with it down the �owgraph.

A good example of stream tags is tagging a beginning and an end of a GSM burst

to avoid processing samples that carry no data and having to locate the bursts in

every block.

The last method of passing data is message passing. Unlike streams, messages are

asynchronous and event-driven. While streams are limited to carrying just samples,

messages can carry all sorts of data or even a lot of di�erent data �elds thus making

them very good for datagrams and PDUs.
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Data types

One particularly important aspect to keep in mind are the data types. Because

GR is a versatile tool, it supports many data types commonly found in C/C++

such as int, �oat, byte and complex of various sizes to �t any SDR needs. To make

this possible, most of the blocks are C++ templates and the data types have to be

speci�ed upon initialization. It is also important to have matching I/O data types

when connecting two blocks.

GNURadio does have one non-standard data type of it's own - polymorphic type

(PMT). From GNURadio manual: Polymorphic Types are opaque data types that

are designed as generic containers of data that can be safely passed around between

blocks and threads in GNU Radio. They are heavily used in the stream tags and

message passing interfaces.[6]

PMT in GNURadio can represent the following:

• Boolean values of true/false

• Strings (as symbols)

• Integers (long and uint64)

• Floats (as doubles)

• Complex (as two doubles)

• Pairs

• Tuples

• Vectors (of PMTs)

• Uniform vectors (of any standard data type)

• Dictionaries (list of key:value pairs)

• Any (contains a boost::any pointer to hold anything). . .

Because these are opaque containers, the programmer needs to make sure that the

PMTs are formed correctly between the block that generate them and the blocks

that receive them. All these concepts are relatively new to GNURadio and are still

under development and standardization.
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Figure 2.10 GNURadio �ow graph: mono FM radio receiver

2.4.3 GNURadio Companion

GNURadio Companion (GRC) is GNURadio's GUI for creating SDR aplications.

It's a WYSIWYG (what you see is what you get) editor that generates the python

code that glues all the blocks together and is the actual GNURadio application.

GRC provides a higher layer of abstraction that lets separate GNURadio from pro-

gramming skills. Some programming paradigms such as utilization of variables or

passing Python functions as initialization parameters to blocks can still be used.

It doesn't provide the same degree of freedom as writing the code yourself, but

it's su�cient for the vast majority of applications. More importantly, it provides a

great way of visualizing the �ow chart making it much easier to understand than

the Python code.

In terms of GRC, certain programming-speci�c elements such as variables, Python

imports or application GUI are also represented as blocks even though they don't

take part in the �ow of data.
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2.4.4 Example GRC �owgraph

Figure 2.10 presents an example GRC �owgraph of a simple mono FM radio receiver.

The 'Options' block speci�es that this SDR will use Python WX GUI. Other GUI

options are QT and CLI (Command Line Interface - no GUI). There are two WX

GUI blocks. One is a slider used to tune the radio and the other is an FFT sink

showing the spectrum of the signal as it is captured by the hardware. The resulting

application can be seen on Figure 2.11. Following the data �ow, we can see the

source block interfacing the hardware radio. A low pass �lter removes out of band

signals. The WBFM Receiver block demodulates the FM signal. Another low pass

�lter removes the stereo component. The Rational Resampler decimates the signal

to be �t for playback. Finally, the signal reaches an audio sink that interfaces the

sound card.

Figure 2.11 mono FM radio receiver, GUI

2.5 MAVLink protocol

From MAVLink's website[10]

textit"MAVLink is a very lightweight, header-only message marshalling library for

micro air vehicles.

It can pack C-structs over serial channels with high e�ciency and send these packets

to the ground control station. It is extensively tested on the PX4, PIXHAWK, APM

and Parrot AR.Drone platforms and serves there as communication backbone for

the MCU/IMU communication as well as for Linux interprocess and ground link

communication."
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MAVLink it de facto a standard when it comes to Micro Air Vehicles and open

source. It was �rst released in 2009 by Lorenz Meier, the man behind PX4 project.

Today it comes in a few di�erent �avours as some autopilots add some messages

that are speci�c for them, but the packet structure (Fiure 2.12) never changes.

Figure 2.12 Structure of a MAVLink packet

The protocol is released under LGPL licence so libraries in C and Python are freely

available and can be easily modi�ed to suit any particular use.

2.6 Google Maps API

Google Maps API is written in JavaScript and o�ers a wide a array of tools to

represent geographical data. Unfotunately, Google's heatmap API doesn't take the

data values of the data points. It only visualises the concentration of the data point

on a map ie. The more data points in an area, the warmer the color. Because of

lack of tools, the map had to be constructed from scratch using 'Polygon' object

from Google maps api. The script divides the area into squares, calculates the

average value of data points within a square and converts that value into decibels.

Subsequently, these values are normalized to (0,1) and assigned a color from a red-

blue gradient which is displayed on the polygon.
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3. THE PROPOSED SYSTEM

To put it in the simplest terms possible - the idea is to strap a computer and a radio

onto a small, �ying machine. First part of challenge is to �nd the components that

are capable of working together as one mechanism. The second, even bigger part it

to make them work with each other and produce a desired output.

Some of the solutions and commercial applications have more capabilities than the

project discussed in this thesis. It is worth noting these projects have had extensive

budgets and took years of development by teams of skilled professionals. While it's

inspired by already existing projects, especially WASP, this project is not meant to

compete with them, it's more of a proof of concept intended to showcase that thanks

to the advancements in technology, open-source and open-hardware architectures

similar projects are possible on a household budget.

Figure 3.1 Proposed system topology
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Another aspect that was kept in mind was modularity and compatibility. Because

the equipment is lightweight and power e�cient, it can be used in conjunction with

any type of UAV that supports the MAVlink protocol and is capable of carrying

about 100g of payload. For development purposes we used a large, heavy-lift general

purpose quadcopter drone, but the equipment can easily be moved onto something

more aerodynamic like a plane drone to cover larger areas or a blimp to stay airborne

and operational for longer periods of time or simply a smaller quadcopter that would

make it possible to manoeuvre in obstacle �lled areas without causing damage.

Figure 3.1 showcases the hardware connections between the system's components.

We will go through them in more detail in the following pages.

3.1 Open Source

As it was shown in the previous chapters, there are similar projects out there, but

they all consist of extensive budgets and years of development and teams of skilled

professionals. All of these are beyond the scope of a master thesis and the solution

was to tap into the work of other people that has been made freely available for

everyone to use. Almost all of the components used are open architectures.

Open source projects come with no price tag, but also with no warranties of any kind

and the support is only as good as the community involved in the project. While it

may not seem so - the latter is not necessarily a bad thing and an active community

will be much more helpful than a person paid to listen to disgruntled customers. A

community embraces the aspect of knowledge sharing and it's key members often

are experts in their �elds.

3.2 Hardware

The hardware part of the project consists of three major components (Fig. 3.2).

At the core there is BeagleBone Black - a Single Board Computer (SBC) acting as

the data sink for the other components. It also performs the signal processing of

the captured samples and logs the results that we are interested in.

Other parts include: a Software De�ned Radio and a Flight Management Unit

(FMU). The former tunes in to the desired frequencies of the RF spectrum and

outputs a sampled signal ready to be processed by the SBC. The latter is a mi-

crocontroller equipped with an array of sensors running a Linux-based Real Time

Operating System (RTOS) dedicated to control the throttle on the drone's engines.
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Figure 3.2 Data�ow between hardware components

It also feeds the current position to the SBC. Other components visible on Fig.

3.1 don't take part in data acquisition or processing, but are used for controlling

and supervising the system. The terminal emulator is an android phone that has

a terminal connection to the SBC and the ground control station supervises all the

FMU functionalities.

3.2.1 BeagleBone Black

Figure 3.3 BeagleBone Black SBC

According to Moore's law [12] of integrated circuits the density of transistors doubles
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every two years. The law held true since 1965 and many consider it equivalent

to processing power doubling every two years. However, it also means that the

performance of a full sized personal computer driven by 300 Watt power supply

from 10 years ago can be delivered today by a tiny board powered by a phone

charger. Since the success of Raspberry Pi, we've seen SBCs proliferate and become

more popular, accessible and a�ordable.

BeagleBone Black (BBB) is an ARM based Single Board Computer (SBC) similar

to Raspberry Pi. Table 3.1 shows technical speci�cations of the BBB. This board

is particularly suitable for signal processing because it's processor includes a NEON

Floating Point Unit accelerator that speeds up �oating point operations. Because we

want the SBC to operate on board of a �ying, battery powered machinery, the weight

and the energy consumption are of signi�cant importance. BeagleBone, weighing at

37g and opertaing at only 2W of power is a great board for this application. Another

strong point of this SBC is it's popularity which results with better support, software

compatibility and a large selection of accessories. The last-mentioned may seem of

little importance, but having a ready-made case that can be easily attached to the

drone's body saves time.

BeagleBone Black speci�cations

CPU
AM335x 1GHz ARM Cortex A8
NEON �oating-point accelerator
2x PRU 32-bit microcontrollers

GPU PowerVR SGX530
RAM 512 DDR3
Storage 4GB �ash + microSD

Table 3.1 BeagleBone Black technical speci�cations

The board requires a 5V DC power supply. The UAV battery is a 4 cell Li-Po with

nominal voltage of 14.8V. The voltage for this type of battery can range from as low

as 12V when discharged to 16.8V when fully charged. To assure a constant power

supply for the BBB, a step down voltage regulator (a.k.a. a buck converter) has

been used (Fig. 3.4). SBC's power consumption is negligible compared to the craft

(2W vs. up to 2.5kW) so it can be safely powered from the same source.

3.2.2 SDR: RTL-SDR

RTL-SDR is a general term referring to a whole family of devices based on the

inexpensive RTL2832 chip manufactured by Realtek [13]. It is actually intended to

ba a part of a DVB-T (Digital Video Broadcast - Terrestial) receiver and was not
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Figure 3.4 Step down voltage converter

intended to be used as an SDR. The is chip responsible for demodulating the signal

and feeding it to USB interface. However, it has a hidden feature that makes it

possible to access raw I/Q samples. Any DVB-T tuner based on that chip can be

used as an SDR after unloading the default kernel driver and replacing it with one

that supports access to the raw I/Q data.

These receivers can cost as little as 20USD. It's not surprising that they can't deliver

the same performance as their much more expansive counterparts but for many

applications they are more than enough. Because it's a�ordability, it became quite

popular. The popularity caused the proliferation of SDR software and growth of

projects such as GNURadio. None of these would see daylight if the access barrier

for this technology was still within the range of a couple thousand EUR. Examples of

existing applications include: tracking maritime boat positions, high quality entropy

source, satellite imagery receiver, triangulating source of a signal and many, many

more.

The speci�c receiver used for this project is Terratec Cinergy T-Stick RC (Rev.3)

3.5. It comes with Elonics E4000 tuner that lets it access frequencies of up to 2.3GHz

without an additional downconverter. Most tuners coupled with RTL2832 tune only

up to 1.7GHz making it impossible to peek at 1.8GHz GSM channels.

It's also worth noting that this is just the hardware part of the SDR. As the name

suggests much of the radio is done in software. Next section will bring a more

in-depth description of the software part of the SDR - GNURadio.
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Figure 3.5 Terratec Cinergy T-Stick RC (Rev.3)

3.2.3 3DRobotics X8 2014

3DRobotics X8 (Fig. 3.6) is an equivalent of a truck in the world of drones. It's

a heavy-lift, high redundancy, high-stability quadcopter capable of ful�lling many

di�erent applications. It has a nominal payload of 800g and 8 electric brushless

motors in an 'X' con�guration. The combined power of the motors is roughly 2.5kW.

8 engines in 'X' con�guration gives additional redundancy as the quad can easily

function with just 4 or even 3 motors. It also translates into higher stability against

wind gusts. The frame and the tall landing gear have plenty of room for additional

components. It's downsides are high power consumption, weight and di�culty to

navigate in tight spaces. Such a large and heavy drone also has more potential for

causing damage.

3.2.4 Pixhawk autopilot

PX4 or Pixhawk is a Flight Management Unit. Similarly to BeagleBone it is an

SBC, but it's custom made for the speci�c purpose of �ight management. Because

it is crucial that all of the operations regarding �ight management are performed in

real time, it is impossible for BeagleBone to handle it as taking just a split second

to write a log �le can result with a crash. To prevent that from happening, Pixhawk

runs NuttX, which is a POSIX compliant Real time Operating System (RTOS).

Pixhawk is both open-source and open-hardware project developed and supported

by the PIXHAWK Project of the Computer Vision and Geometry Lab of ETH

Zurich (Swiss Federal Institute of Technology), the Autonomous Systems Lab and

the Automatic Control Laboratory.

It incorporates a number of sensors like gyroscope, accelerometer or barometer. It
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Figure 3.6 3DRobotics X8 drone, source: 3DRobotics

also has a number of drone speci�c input and output ports like a radio receiver for

remote control, a GPS connector or the telemetry port.

3.2.5 Telemetry and Ground control Station

Figure 3.7 3DRobotics telemetry set

The key advantage of drones is their autonomous mode of operation. However, it's

greatest strength is also it's greatest weakness. The larger the drone, the greater
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potential for damage. A drone should never be left unmonitored. Current US

regulations dictate that autonomous operation is allowed as long as the drone stays

within the line of sight (LOS) of the operator. From the authors experience, even

this can be problematic without an onboard camera. Even while maintaining LOS,

the drone is so small it's impossible to tell it's orientation at a distance exceeding

100m.

In spite of the technology's rapid development, autonomous obstacle avoidance is

still in research and far from a commercial deployment. While manual steering o�ers

a way to pass controls to the drone, telemetry o�ers a bidirectional link to the drone

providing the pilot with much of essential �ight data.

3.2.6 Remote terminal

A problem encountered during the testing phase was the inability to have a real-

time peek at the data being logged. Because the drone had to be detached from

any device that could logon to BBB's console, it was only possible to check the logs

back in the o�ce once the device could be connected to a computer.

To tackle this, we used a spare TP-LINK TL-WN722N USB wireless card and an

android phone. The Debian distribution on the BBB comes with the wireless driver

already pre-installed. All that was needed to be done was con�guring it to cre-

ate/join an ad-hoc network.

Android has no native support for ad-hoc networking. However, since Android

is an open source project, it is possible to �nd 3rd party �rmware packages that

provide IBSS support and Cyanogenmod is one of them. The device used to emu-

late a terminal was Oneplus One which comes with the only commercial version of

Cyanogenmod and were lucky to have one of these at our disposal. Cyanogenmod

can easily be installed on any rooted Android device.

3.3 LINUX environment

Linux comes in many di�erent �avours. However, this is the case when we're talking

about well-developed platforms such as x86 or x64. The matters complicate when

we're going after ARM architecture as they are not as popular and even if ports

are available, quite often they are still under development and are subject to bugs.

Another important aspect was the availability of libraries. Missing libraries can be

downloaded and installed manually, but GNURadio depends on 47 di�erent ones,
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and making sure that every single one of them is working �ne and dealing with

potential problems is too much work. Luckily, Debian Wheezy 7.6 turned out to

satisfy all the requirements. It's a reliable, mature distribution and it has all the

required libraries in it's repositories.

3.3.1 Debian on BBB

BeagleBone comes with 2Gb internal eMMC RAM storage. It's enough to have a

functioning Debian installation, but after that there is not much space left and it's

nowhere near enough to compile and run GNURadio. To bypass that, the system

was installed on an external microSD card. We've used a 16Gb Class 10 card. There

is a publicly available image containing a precompiled, BeagleBone tailored version

of the system. We need to download and block copy it to an external microSD card.

To do that, the following commands need to be executed on an external machine

(in this case, it was Ubuntu x64 14.04.1 LTS).

~$ wget https ://rcn -ee.net/deb/microsd/wheezy/bone -debian -7.6-console -armhf -2014 -08 -13 -2gb.img.xz

~$ unxz bone -debian -7.6-console -armhf -2014 -08 -13 -2gb.img

~$ sudo dd if=./bone -debian -7.6-console -armhf -2014 -08 -13 -2gb.img of=/dev/mmcblk0

where /dev/mmcblk0 is the desired microSD card.

Once the operation is complete, the card needs to be inserted into BeagleBone's

microSD slot. BBB boots from eMMC by default. To force booting from external

microSD, the 'boot' button has to be held down upon powering up until all 4 LEDs

start �ashing. Once Debian boots up and we log in (default login:password is de-

bian:temppwd), the partition needs to be expanded to encompass the entire card.

The precompiled images comes with a script to support that. The partition can be

grown with the following commands:

$ cd /opt/scripts/tools

$ git pull

$ ./ grow_partition.sh

$ sudo reboot

After that procedure, the partition takes up the entire microSD card and we have

space to proceed with the GNURadio installation.

3.3.2 GNURadio installation

The ARM architecture also poses some problems to the default installation of GNU-

Radio. It is possible to install it from the repositories, but they usually lag behind
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the main branch and message passing mechanism wasn't yet implemented in the

version currently found in the repositories. In this case we've built it from source to

get the latest version. Fortunately there is a shell script automating the downloading

all the components, meeting their dependencies and compiling them:

~$ wget http ://www.sbrac.org/files/build -gnuradio

The downside of the script is that it wasn't created with ARM architecture in mind

and requires some additional editing. As of GNURadio version 7.3.4, additianl ASM

�ags have to be passed to every cmake call:

-DCMAKE_ASM_FLAGS ="-march=armv7 -a -mthumb -interwork -mfloat -abi=hard -mfpu=neon -mtune=cortex -a9"

Without it, there are critical errors during compilation and the build fails. The

script needs to be edited to include these before running it.

3.3.3 Distcc

Compilation of a large project like GNURadio requires a lot of computing power

and can produce critical errors that make it impossible to get it right the �rst

time. Spending hours on an unsuccessful compilation is a waste of time so some

technique of speeding the process up is desirable. Distcc distributes compiling task

across networked computers, leaving only the linking to be done by the thin client.

It's open-source and freely available from the repositories in both x64 and armhf

architectures so it can be installed on both machines using apt-get. It's a versatile

tool, but here we will just go through a very basic con�guration.

BeagleBone thin client

The trick is to use distcc instead of default compilers. The easiest way is to substitute

CMake variables CMAKE_CXX_COMPILER and CMAKE_C_COMPILER. How-

ever, these are de�ned only after running cmake in the CMakeLists.txt �le. A

workaround is needed if we are to automate the process with the build-gnuradio

script. One way of achieving it is to masquerade distcc to be called instead of the

compilers by using symbolic links and adding the path to the links to the beginning

of PATH environment variable.

~$ mkdir .links

~$ cd .links

~$ sudo ln -s /usr/local/bin/distcc gcc
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~$ sudo ln -s /usr/local/bin/distcc c++

~$ export PATH =~/. links /:$PATH

The export command works only for the current session so after relogging the PATH

will be restored to it's original value.

Now, we need to con�gure the IP's of the computers that will perform the compila-

tion.

~$ export DISTCC_HOSTS ="10.42.0.1"

Distcc server

The server used in this work was 4th generation i7 machine running Ubuntu 14.04.1.

Because it's a di�erent architecture, an ARM cross compiler had to be used and

masqueraded with symbolic links to replace the default compilers in order to produce

ARM machine code. After that, distcc can be run and con�gured command line

arguments:

~$ distccd --daemon --jobs 8 --allow 10.42.0.80

This command starts a daemon process in the background with 8 child processes

that listen for incoming compilation requests from 10.42.0.80 (the BeagleBone's IP).

The '�jobs' argument speci�es the number of concurrent processes to run. There

should be one process per CPU core.

3.3.4 Default RTL kernel driver

RTL chips aren't meant to be used as SDR devices and Linux kernels come with

driver that enable DVB-T and FM reception using these devices. That driver needs

to be removed.

~$ sudo modprobe -r dvb_usb_rtl28xxu

unloads the default driver. To make sure that the correct driver is in use, we should

test the reception of samples from RTL-SDR:

~$ rtl_test -t

rtl_test is one of the executables created during the installation of GNURadio.
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Figure 3.8 Android emulating a terminal

To avoid unloading the default driver after every login, it can be blacklisted in

modprobe:

~$ sudo nano /etc/modprobe.d/ban -rtl.conf

blacklist dvb_usb_rtl28xxu

3.3.5 Remote terminal access

To have access to BeagleBone's CLI during tests, an ad-hoc wireless network needs

to be con�gured:

debian@arm :~$ sudo ifconfig wlan0 10.42.1.1

debian@arm :~$ sudo ifconfig wlan0 broadcast 10.42.1.255

debian@arm :~$ sudo ifconfig wlan0 netmask 255.255.255.0

debian@arm :~$ sudo ip link set wlan0 down

debian@arm :~$ sudo iw wlan0 set type ibss

debian@arm :~$ sudo ip link set wlan0 up

debian@arm :~$ sudo iw wlan0 ibss join copternet 2452

Where 'ibss' stands for Independent Basic Service Set, which is another name for

an ad-hoc network and 'copternet' is the BSSID of the network we're creating.

To achieve connectivity on the terminal side, some additional software was installed.

Terminal Emulator for Android by Jack Palevich gives access to UNIX-like Com-

mand Line Interface (CLI and Hacker's Keyboard by Klaus Weidner gives an on-

screen keyboard that includes the keys missing in Android keyboard needed for

navigating the CLI such as Ctrl, arrows or Tab. A screenshot of a working Android

terminal is presented on Fig. 3.8.
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3.4 Frequency correction algorithm

Accurate clocks are expensive. For that reason it's not possible to have a high-

accuracy clock built into an a�ordable SDR hardware. Furthermore, the frequency

error is not a constant and it is highly dependable on environmental factors. The

more expensive radios will have more accurate clocks or bypass that problem by

synchronising to a GPS signal. Mobile stations in a cellular network, for which

a�ordability is all the more of an important factor, are su�ering from the same

problems. Fortunately, GSM has a built in solution for this problem.

GSM has very tight requirements for frequency synchronization. This article [16]

suggests a maximum acceptable frequency mismatch for reliable timing acquisition of

500Hz. The technical speci�cation[3] requires that "the MS carrier frequency shall

be accurate to within 0.1 ppm." This means that at 900MHz band the frequency

mismatch should be less than 90Hz (or 180Hz for GSM1800). Common ppm values

for low-cost crystal oscillators are about 20 - 50 ppm which is 3 ranges higher than

GSM speci�cations meaning an error of 19-40kHz. More speci�cally , the mismatch

for RTL-SDR in an o�ce environment was measured to be roughly 27kHz and for

the more expensive board, USRP B200, the deviation was about 2.7kHz. Both of

them are falling short of the requirements.

GSM has a logical channel dedicated to solving that problem. It's called the Fre-

quency Correction Channel or FCCH for short. Each base station broadcasts a

frequency correction burst on it's pilot frequency. This burst consists of all '0' bits

which, because of di�erential encoding becomes a sequence of alternating '0' and

'1' symbols. After GMSK modulation, these symbols create a sine wave oscillating

precisely at 67.7033kHz. Figure 3.9 depicts the spectrum of a GSM signal at base-

band captured with RTL-SDR. The green line are the peak recorded values. There

is a clear peak at around 40kHz meaning that the frequency correction is roughly

27kHz. When the receiver is out of sync, this burst will have a di�erent frequency

upon receiving it and a frequency correction needs to be applied to shift it to the

original 67.7033kHz.

While the GSM speci�cations clearly describe the FCCH, they leave the detection

method of frequency burst up to the manufacturer of the equipment. For the purpose

of this thesis, we've implemented an algorithm described in this paper[16] with a

few modi�cations. The detection method uses an adaptive line enhancer (ALE) to

identify the frequency burst.
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Figure 3.9 Spectrum of a GSM channel before applying the frequency correction, captured
with RTL-SDR

3.4.1 Adaptive Line Enhancer

ALE ( 3.10) is a type of adaptive �lter which means it's coe�cients are updated as

the signal passes through it. More speci�cally, line enhancement is removing noise

from a signal consisting of one or more sinusoidal waves corrupted by broadband

noise[9]. ALE is a �ler that uses a delayed version of input signal to try to predict

the next samples of the signal. The predicted output is subtracted from the signal

to compute the error function which, in turn is used as feedback to the ALE.

Figure 3.10 Adaptive Line Enhancer[16]
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3.4.2 Detection principle

ALEs are meant to remove wideband noise from a narrowband signal, but we're not

trying to do that. Instead we build on the convergence property of the �lter. When

the signal fed to the predictor is a pure tone, the value of the error function will

signi�cantly drop thus indicating the presence of a tone.

After every iteration, the prediction error e(n) is calculated:

e(n) = x(n+D)− y∗(n) (3.1)

Where ∗ denotes the complex conjugate

and �lter coe�cients w(n) are updated accordingly:

w(n+ 1) = w(n) +G ∗ e∗(n) ∗ x(n) (3.2)

where G is the convergence factor or the step size.

Because the values of samples vary signi�cantly (there is a minimum of 30dB dif-

ference between burst and guard period), we can't e�ectively use the computed

prediction error as a measure of convergence. Instead, we normalize average error

with respect to received power. Average error power is de�ned as:

e(n) = (1− ρ) ∗ e(n− 1) + ρ ∗ |e(n)|2 (3.3)

The function we use to as a measure of the �lter's convergence is de�ned as:

c(n) =
e(n)

F∑
i=0

x(n− i)
(3.4)

Where F is the number of �lter coe�cients used by the ALE �lter.

The convergence factor G 3.2 is a important parameter of the �lter and needs to

be chosen carefully[9]. If it's value is too high, the �lter will diverge. If G is too

low, the �lter will converge too slowly making it di�cult to spot frequency bursts.

According to[9], in order for the �lter to converge, G should not be positive and

smaller than twice the inverse average power of input signal:
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(a) Time domain (b) Time domain (in dB)

(c) Frequency domain

Figure 3.11 Frequency correction burst in time and frequency

0 < G < 2/P (3.5)

3.4.3 Boundry detection

Just as the ALE converges in presence of a pure tone, it also rapidly diverges when

the tone is gone. The end of a frequency burst will always be marked by a steep

increase in the convergence function. Finding that makes it easy to determine the

boundaries of the burst.

3.4.4 Fasle positives

According to the publication[16], FCH detection could be achieved by determining a

threshold level of the convergence function. If the function falls below a certain level,
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it indicate the presence of a frequency burst. However, the convergence function

periodically produces 'false positives' when the function rapidly spikes down towards

'0' just to return to it's average values a few samples later. ALE converging in

presence of a FCH burst and a false positive of the convergence function can be

seen on the �gure 3.12. One possible solution was to tweak the convergence factor.

However, this would smooth the shape of the function and it would make the edge

detection more di�cult. To avoid detecting a false positive, another criterion has

been added.

The algorithm not only checks if d(n) falls below a certain threshold, but also stays

under it for 2/3 of a burst duration in samples. An arbitrary threshold has been

chosen Once a burst has been successfully detected, the iterator moves the equivalent

of 79 time slots.

Figure 3.12 Convergence function, FCH burst detected on the left, false positive on the
right

3.5 The power of a GSM burst

Fig. 3.13 shows the power levels of a GSM burst at the transmitter. We want our

device to be able to distinguish between what is and what isn't a valid GSM burst.

However, while GSM bust is strictly de�ned at a transmitter, there are no standards

on de�ning it's shape at the receiver. Because of the nature of the wireless medium,
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the signals at the receiver di�er signi�cantly from what is transmitted and a lot of

work is put into reconstructing the original signal. To re�ect the signal arriving at

the receiver we had to readjust the mask from the technical speci�cation. In the

detection algorithm, we're retained the 30Db di�erence between and active burst

and a guard period, but 2dB tolerance during the burst period had to be omitted.

Figure 3.13 Power mask of a GSM burst at the transmitter

3.6 The GNURadio application

Fig. 3.14 show the GRC �owchart for the �nal application. Just as presented on the

chart from Fig. 3.2, the blocks can be split into two categories - blocks handling the

sampled signal and the blocks handling the GPS data. To re�ect that, they have

been coded as two, separate GNURadio modules that we will look into.

Two of the blocks present are built-in standard GNURadio blocks. One of them,

the RTL-SDR source, we've covered in previous chapters. The other - Frequency

Xlating FIR �lter serves a few purposes in the �owgraph. First of all it removes the

DC o�set. Because we're using cheap SDR hardware, it introduces a DC component

around the in the center frequency. To remove that, we are receiving a wider band

that is shifter in frequency by 500kHz, the Xlating �lter shifts it back to center

frequency, narrows the spectrum to just 240kHz by decimating the samples and

�lters out the unwanted frequencies from our signal. It also has an input message

port. through which the frequency correction is applied.
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Figure 3.14 GRC application

3.6.1 gr-mavlink

The GPS Message Source and Power Logger blocks are part of this module. As their

names indicate, the former connects to the FMU and acquired the positioning data

and passes it down the �owchart as a message. We can specify the address of the

serial port, it's baudrate and the frequency of messages.

The Power Logger block listens for incoming messages on the 'gps' port while simul-

taneously keeping track of all the values arriving on the other port. Once a message

arrives on the 'gps' port, the block writes the coordinates and an arithmetic average

of all the values that arrives on the 'power' port since the last 'gps' message.

3.6.2 gr-gsm_measure

This module contains the blocks used in analysing the GSM bursts. By far the most

complex of all - the GSM Synchronise block locates the frequency bursts, computes

it's FFT and the frequency correction, which is sent to the Frequency Xltaing FIR

�lter.

The burst_slicer_cc block locates burst boundaries and packs samples of a single

burst into a message. Lastly, the burst_to_power block calculates the average

power of a received burst and passes it in a message as a �oat to the logging block.
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3.6.3 Addidtional Python modules

Libraries in terms of python Python are referred to as 'modules'.

Since accessing MAVLink data is not performance critical, we've used the pymavlink

Python module providing an API to access all the information that is made available

by the autopilot. Pymavlink is openly available on github[11]. Pymavlink module

has dependencies of it's own and requires pyserial module to function properly.

These two modules need to be present and their location has to be added to the

PYTHONPATH environment variable for Python to make use of them.
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4. TESTING SCENARIOS AND NUMERICAL

RESULTS

The results are logged in a �le for further analysis. Each lines consists of 2 integers

and a �oat and corresponds to a single measurement. The integers represent latitude

and longitude. One can notice that the values extend way beyond (-90, 90) and (-

180, 180). That is because they would otherwise have to be converted to �oats and

Pixhawk natively represents them as integers to avoid all of the problems commonly

associated with �oats. To get a more readable version of the coordinates, we need

to divide them by 10000000.

614503225 ,238564281 ,1 .23053

614503218 ,238564281 ,1 .23053

614503212 ,238564280 ,1 .23659

614503207 ,238564279 ,1 .21532

614503199 ,238564277 ,1 .24606

614503194 ,238564276 ,1 .26538

Power is represented in linear scale. It's important to remember that these numbers

are not Watts. Since the measuring equipment is low-cost and not designed for

measurements, the units are arbitrary. The device can be calibrated using a more

precise and professional equipment. However, we convert these units to Decibels.

Because what we're really interested to see is the di�erence of signal levels, even an

uncalibrated device still provides us with meaningful data.

4.1 Graphical representation

A log�le with thousands of lines of numbers is less than an optimum representation

of the gathered data. Not only it is impossible to see all of it at once, but a series

of numbers is meaningless. We are not good at reading data from large strings of

numbers. The log�le isn't worth much until we have a way of representing it as an

human-readable. Because this it geographical data, the best way of representing it

is to put it on a map. Google maps API has been used to create a JavaScript to
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present the dataset in a user-friendly way.

4.2 X8 and university's surroundings

Appealing as it may seem, using the drone for testing purposes was less than conve-

nient. There is a lot of downtime between �ights to charge the batteries. The drone

and the RC transmitter are bulky and heavy to carry in and out of the building.

X8 is a big, heavy lift drone and navigating it through closed spaces is dangerous

and illegal without proper training. The university and it's surroundings are rather

crowded areas. In fact, the as the lawmakers are gaining on the technology and

regulations are enforced, many countries require a license to �y a drone of this size.

Another downside of a general purpose drone is the battery lifetime which is about

15-20 min, the large scale test took roughly 30 minutes. Having all that in mind,

the tests were performed with the engines o�.

4.3 Small scale test

For the initial tests, we've wanted a small scale test that was easy to perform, in

a space that was relatively easily accessible and could be easily repeated. We also

wanted to do them in a where we already know what kind of results to expect.

The �rst tests were performed around one of the university's buildings - Sahkotalo.

Because it is a tall, 4-�oor building , we expected to see the carrier being strong on

the side of the building facing the BTS and weak on the opposite one and in the

inner courtyards. We've picked the strongest carrier we could �nd to measure.

The results can be found on Figure 4.1. It can be clearly seen how the building

shadows the signal. The picture even gives us a pretty good idea about the origin of

the signal. Because it's a small area, the GPS inaccuracies start becoming apparent

at this scale. To keep the map easy to read, the area around the building has been

divided into squares and each square represents the average power within it's area.

The map represents little under 3000 measurement points.

4.4 Large scale test

Once the small scale test was successfully completed, we could proceed to gather

data over larger areas. We've put the drone inside a car, under the rear window so

it could have a clear view of the sky. The antenna has a magnetic base so it was
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Figure 4.1 Graphical representation of the results, AFRCN 93: 956,3MHz

very easy to install on the roof of the car. Unlike the previous test case, at this scale

the GPS is pretty accurate so there was no need to divide the test area. The results

can be seen on the Figure 4.2. The �gure represents around 8500 measurements.

Because we've covered a much larger area, we've also reached a point where we

could no longer distinguish the signal from noise. To be more speci�c this is de�ned

as when the power gap between the active burst and the guard period is less than

30dB. This is represented by black color on the map. Similarly to the previous case,

we've selected the carrier signal that was the strongest at out starting location. It's

the small area where the signal is marked red. To the left of that place, there there

is a residential area with a lot of tall buildings. We can see that the range of the

signal is much smaller than to the right, where there is only single-family 1 or 2
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Figure 4.2 Graphical representation of the results, AFRCN 75: 950MHz

�oor houses or forest. The place to the far right is an industrial area with a few

medium sized buildings and a few warehouses spread around it - As expected - not

much attenuation can be seen from there.
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5. CONCLUSIONS

In this thesis we have presented a device capable of performing remote, airborne RF

measurements. It consists of a quadcopter with a GPS enabled FMU, BeagleBone

Black SBC and an RTL-SDR based radio. In spite of minor drone issues, the project

had reached it's goals.

The original idea of this project was to create a system working as a 'black box'

where we have a set of geographical coordinates at the input and a map showcasing

the strength of an RF signal of our interest at the output.

While we have to admit that we are not quite there yet, not all is lost. We are

close. Obstacle avoidance is still a one of the primary areas of drone research.

Unfortunately, improvements in that aspect are way beyond a scope of a master

thesis nor were they the focus of this project and we couldn't make any improvements

on that. Perhaps in a year or two we will start seeing systems that are not just

autonomous, but autonomous and safe.

The drone we've had at our hands made it di�cult to use the project in a useful

scenario. X8 is designed for wide, open space areas. RF data collected from such

areas isn't very useful because we already have reliable mathematical models for

that and data collected from above the treetops isn't of much interest. It is also

problematic to navigate without proper training and an onboard camera. However,

the drone itself is just a small part of this project. All of the components can

be removed and easily attached onto another drone and will work without any

additional setup as long as the FMU supports the MAVLink protocol.

This, relatively simple project is just the tip of the iceberg for both SDR and UAV

applications in telecommunications. Both of these technologies are under develop-

ment and are yet to evolve into more capable versions of what we have at our hands

now - Cognitive radio and environment aware drones. Both of them present many

interesting challenges for development.

Possible future research in the direction set by this thesis would include expanding

the measurement capabilities to include other wireless technologies, decoding the
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GSM signals to gain access to the data it carries. Only with the hardware set-up

presented over here, the possibilities seem endless. The list grows exponentially

when we consider the possibility of installing a transceiver to be able to send signals

instead of just receiving it. There are many SBC boards available on the market.

Some of them even carry multi-core x86 or x64 CPUs so with enough payload we

can also have a plentiful increase in processing power.
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