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This thesis presents how a natural language task can be accessed through the use of nat-

ural language processing engine in an easy way. So far the access to the task of part-of-

speech tagging and other tasks has been going through the engine command line inter-

face, which demands both knowledge and experience in scripting and programming. 

Moreover, manual work had also been required to prepare the input data in order to be 

fed into the engine. At the same time all the output files from the task and engine have 

been handled manually.  

To solve these issues, both the OpenNLP engine and its part-of-speech tagging task are 

integrated into a web interface that can be used by individuals that possess little or no 

technical knowledge. Furthermore, the system also guides the users through a process 

where they can input their data and it will automatically be processed and prepared for 

further use. After that they can follow the rest of the task and use the engine. At various 

points of the usage, the data is saved so that it can be used later to continue the process 

from wherever it was stopped. The data files are stored and organized on a server, 

which helps reusability. At the same time, the structure of the system is easy to extend 

with other language processing tasks and engines according to future needs. Last but not 

least, the current implementation makes the whole interface accessible from different 

locations and is quite portable. No graphical user interface details for the system will be 

presented in this thesis.  

The resulting interface provides for ease of use, access, and expandability. Some chal-

lenges in the future include increased complexity of the system because of different 

tasks and engines. Moreover, certain parts of the process and the structure of the imple-

mentation could be improved.  
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1. INTRODUCTION 

Many of the methods that can be used to process natural languages can be accessed 

through the so called natural language processing engines. The problem is that for one 

to use many of the engines one needs at least some scripting and programming skills. 

Because of this, the obstacles for using the engines are increased substantially for some 

general users, for instance, linguists. And since it is challenging for such nontechnical 

individuals to interact with scripts or the command line interfaces of the engines, there 

is a need for software that follows one of the machine learning paradigms and allows 

natural language processing. Another issue is that the natural language data that is used 

with the engines usually needs to be processed manually by the users. This can be a 

hard and long process, especially, if one works with large amounts of data.  

To solve those issues, an application was developed that targets nontechnical users. It 

allows the users to use the engines and tasks by following a flexible process that can be 

paused and continued. This can, of course, be achieved without any programming skills. 

The application also processes and stores the natural language data, used as an input, 

automatically.   

The rest of this thesis has the following structure: there is an introductory chapter to the 

machine learning model that is used in the process of the application and a chapter on 

the details of natural language processing. The latter one explains the background on 

some of the machine learning and statistical approaches that will be used in the soft-

ware. After that, there is a part that presents the OpenNLP engine [32], which uses the 

mentioned approaches, and how its tasks can be accessed. The next chapter shows how 

the process in the application is divided into different stages and what their inner work-

ings are. The next part, presents one of the possible ways of how expandability of the 

application can be achieved, with various natural language processing tasks and en-

gines. And last there are two chapters that evaluate various aspects of the interface and 

its current structure, and how some of the issues that are present now could be solved in 

the future. 
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2. ACCESS TO TASKS OF NATURAL LAN-

GUAGE PROCESSING   

 

Important parts of natural language processing are the so called natural language pro-

cessing tasks that are approaches of solving some issues in the field. Various parts of 

natural language processing use those tasks to extract some meaning from a text or to 

handle it in different ways [26][35]. Some of the most commonly used tasks include 

part-of-speech tagging, tokenizing, parsing, name finding, and sentence splitting [1]

[35]. The natural language processing engines contain the means of supporting the tasks 

[1][2]. The main focus of this thesis is the part-of-speech tagging task, how it can be 

solved and used through the OpenNLP engine [1]. 

The goal of this thesis is to enable the use and access to certain natural language pro-

cessing engines and tasks without any technical prerequisite knowledge, such as script 

development and command-line interaction with different frameworks. The interface to 

the engines and tasks needs to allow flexibility in the workflow so that the users can 

access their previous uncompleted sessions and continue them without any difficulties. 

The whole interface needs to be easy to expand with any number of engines and tasks 

according to the needs of the users. Furthermore, it is important that the users are able to 

access the engines and tasks from various locations and the structure also needs to be 

portable. The goal of this thesis has been achieved with a web application, which makes 

the interface to the engines both portable and accessible. The main use of the applica-

tion is the creation of models for various natural language processing tasks and their 

subsequent use in different fields of linguistics.  

As far as natural language processing is concerned, part-of-speech tagging is one of the 

basic tasks. This task is often a prerequisite for further development or an improvement 

for other more complex algorithms and methods. A common problem statement that 

illustrates the need for low-cost part-of-speech tagging is the development of a morpho-

logically complete dictionary for a language, e.g., for a spell-checker. In this case, part-

of-speech tagging is necessary either for categorizing an existing corpus of words or for 

developing a morphological analysis tool to ensure completeness of the dictionary. A 

corpus is a large collection of textual data [22]. After this, more information can be ob-

tained by observing the data, say, what are the most numerous parts-of-speech, find im-

portant words by tag (extract all the nouns or verbs), or just making the corpus more 

appropriate for linguistic research. [19] 
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2.1 Processes of creating task models  

The tasks in natural language processing consist of several different stages. There are 

many different paradigms for this process, many of which are based on machine learn-

ing techniques, data mining, and pattern recognition. In a number of them [21][26][35], 

some repetitions in their stages can be seen, more specifically a training stage, which is 

then followed by testing stage. These and some other stages are explained further down. 

Additional stages can be added according to the requirements or if supplementary fea-

tures from the process are needed.   

Training a model for a task prepares it to make predictions based on that task. After-

wards, one can expect the model to behave as accurately as possible according to the 

information deduced from the training data, a corpus, for example. There are different 

forms of training, but here the concepts of supervised and unsupervised training will be 

discussed. These use annotated and unannotated data, resulting in supervised or unsu-

pervised training, respectively [21][29]. In the case of part-of-speech tagging the anno-

tated corpus would contain fully tagged information [1] and the unannotated would be 

regular text [29]. For other supervised tasks the data needs to be formatted according to 

the task or engine requirements.  

Sometimes, the input training data is not organized in the way it needs to be or it con-

tains some noise or unnecessary information, which needs to be filtered [13]. This pre-

processing stage must be done before the training [13]. One could include instance se-

lection into the preprocessing to handle some of the cases mentioned above. It is a tech-

nique, based on data mining, which can be used to lower the levels of noise and extract 

only the most crucial data from the input set [21]. This way the data will be ready for 

the training stage and there will be no mistakes or loss of data [13]. 

The testing stage is there to check how precise the model is and whether it conforms to 

the specifics of the task. There are different techniques used to evaluate the precision, 

which depend on the input data. For example, cross validation splits the training data 

into a large number of groups [21]. All of the groups are used to train the model, except 

for one, which is used to evaluate the model [21]. This process is repeated for every 

specific group and, at the end, the average of the testing scores represents the precision. 

The method to evaluate precision that is used here is to divide the input into two sets, 

training and testing data [19][21]. The proportion between these sets is usually prede-

fined [21], but here there is some flexibility, since the users are allowed to choose the 

proportion between them. At evaluation, the accuracy of the model is calculated by di-

viding the number of correct predictions with the number of total predictions [1]. After 

this stage there are two outcomes, namely, one either continues with any other stage if 
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the results from the testing are satisfactory or goes back to the previous stages because 

of lack of precision of the model. 

 

2.2 The employed process  

In this thesis, a slightly modified version of the abovementioned process is used, which 

can be seen in Figure 1. The first stage is preprocessing where the users supply some 

input data, which is then filtered and prepared for the following stages. Then there is the 

training, where a part-of-speech tagger model is trained from a set of data. The testing 

of the model file finds out how it reacts to the data and what is the accuracy and con-

sistency of its reactions. At the end of the process the users are able to use the model to 

fulfill the natural language processing task on whatever data they want. The last stage 

was added, since it is a relevant one for industrial use.  

 

 

Figure 1. Overview of the process  

 

 

2.3 Constraints 

There were several constraints that were required by the company that financed this 

thesis. One of them was to use the Microsoft based ASP.NET framework. Moreover, 

the code behind had to be developed in C#.  Other two tightly connected constraints 

were to at least implement the OpenNLP engine into the application and to have an ex-

pandable interface to the tasks and engines.  
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3. NATURAL LANGUAGE PROCESSING  

Natural language processing is an area of computer science which is tightly connected 

with many disciplines such as linguistics, machine learning, artificial intelligence, statis-

tics, and information theory, all of which belong to different fields. The main point to-

wards which it strives is making machines understand and analyse natural languages, in 

either textual or verbal form, as well as or maybe even better than any human can.  

Natural languages are one of the forms of communication between humans. The prob-

lem is that humans do not always speak (or write) plainly, which is why it is not easy 

for a machine to understand certain parts of speech and text. Moreover in many lan-

guages there are words that have more than one meaning. And hence many problems 

that arise in natural language processing come from the many levels of ambiguity pre-

sent in languages [26].  

Humans analyse text and speech from different linguistic points of view when dealing 

with languages. When using the multiple levels of processing (syntactical, semantic, 

phonological, or lexical) they gain an insight on the numerous meanings of what is writ-

ten or spoken, the rules that are applied or even what the context of the data is [6][22]. 

According to Liddy [22], in order to make a humanlike system for processing natural 

languages (which so far has not been achieved) one must make a system that uses the 

different linguistic levels as humans do. Moreover, Liddy makes a difference between 

natural language understanding and natural language processing. The understanding 

comes when a machine is capable of several different outcomes when it is given some 

text [22]. First of all the system should be able to paraphrase the data. Second, it should 

translate the text between different languages. Thirdly, it should be able to answer ques-

tions based on the input. And finally it should draw conclusions from what it under-

stood. Natural language processing is actually striving towards natural language under-

standing as its final goal, when a machine will be capable of humanlike level of pro-

cessing when dealing with languages [22]. The foundations of natural language pro-

cessing can be applied to large number of areas such as speech recognition, machine 

translation, artificial intelligence, and text processing. [6][22] 
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3.1 Short history  

Natural language processing started in the late 1940s with the primary area of interest 

being automated translation. Most of it was based on the foundations laid out or con-

nected with cryptography and information theory [22], which were increasingly re-

searched since the beginning of World War II. This was a period plagued by low com-

putational power and storage of the computers [18]. Moreover, much of theoretical basis 

was not developed at all. The translation process was done by converting the words to 

other languages and reordering them so the rules of the output language are preserved 

[18][22]. Hence ambiguity caused many of the problems in natural language processing 

and it still cannot be fully resolved today. Many of the systems of the later period dealt 

with the field of artificial intelligence, while much of the linguistic theory was not used 

at all [18][22]. 

The 1970’s and 80’s were the periods where some of the techniques that were used in 

natural language processing included language generation. This was mostly done by 

predicting an output text based on the input and by drawing conclusions based on the 

supplied text. With the growing power of the technology used, more and more progress 

in the field was also achieved. At this time the use of statistics and probability was on a 

rise since it was noticed that these offered methods of accomplishing some of the goals 

of the field. Another approach that was established at that time was the use of large sets 

of data to train and test the systems in machine translation, something which is still used 

nowadays. [18][22] 

In the 1990’s several factors contributed to the growth of natural language processing. 

One of those was the improvement of hardware which led to better computers with 

greater processing and storage power [18]. Another factor was the concentration on 

smaller natural language processing tasks, a kind of divide-and-conquer approach, and 

the applications of generalisation and abstraction on the data and the tasks [18][22]. 

Also, more and more data was freely available for use on the internet along with the 

creation of new corpora and expanding the old [18][22]. Moreover, more systems were 

made that autonomously handled and extracted the needed data. With the use of statisti-

cal methods it was possible to approach many of the issues met in linguistics like part-

of-speech, word extraction, and word frequency [18][22]. Moreover, since precision and 

correctness were very important, and still are today, evaluation of the performance of 

different natural language processing tasks was also being developed further [18].  

After the year 2000, there has been even further progress in the field of natural language 

processing with the use of better algorithms and methods of handling input data, com-

puters with even better performance than before, and huge amounts of data [18][22]. 

Additionally, more advanced systems and research foundations have also brought better 

results than in the past. These reasons are behind the progress in, say, machine transla-

tion or information retrieval by the search engines, which are able to deal with massive 
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amounts of textual data [5][18]. Despite these we are still discussing mere natural lan-

guage processing and not natural language understanding, which is still the ultimate 

goal of this discipline [5][18][22].  

 

3.2 Task examples and issues 

Let us consider some examples of natural language processing tasks. Tokenization is the 

process of splitting some text into its atomic units, tokens. They mainly include all the 

words that comprise a sentence, although punctuation marks and the rest of the symbols 

are also considered [10][43]. Text parsing, or just parsing, is the task of identifying 

groups of words in a sentence, which are connected through the grammatical structure 

of the sentence [20][40].  

In natural language processing part-of-speech tagging is the process of marking each 

part of the sentence with its part-of-speech [19][42]. Part-of-speech contains a number 

of categories (nouns, verbs, adverbs, etc.) which can be used to label different words 

[19][42]. Through those categories we can learn more about the words themselves and 

their neighbours. For instance, if we consider the words “bank” and “go” in the sentence 

“I will back you up when you go to the bank.”, we know right away that they are a noun 

and a verb respectively. With the help of part-of-speech a difference can be made be-

tween various kinds of words and other parts of the sentence, which in turn can give a 

lot of information about the words that precede or follow [19][42]. That data can later 

be used in other tasks [1].  

However, as was already mentioned, a big problem in part-of-speech tagging is the am-

biguity of words, that is, the tag depends largely on the context of the words. In the ex-

ample: “I will back you up when you go to the bank.” a closer look will reveal that 

some words can be tagged in multiple ways or have more than one meaning. For in-

stance, the part-of-speech for the word “will” can be either a modal verb or a noun, 

“back” can be a verb or a noun, and “up” can be tagged as a particle or a preposition. 

Moreover, what is the actual meaning of “bank”? It is obviously a noun and will be 

tagged as one but it is unavoidable that there is ambiguity. Is it meant as a river bank or 

a building where financial matters are handled? It all depends on the context which can 

be modified by the preceding or following words and even sentences. When a person 

reads the sentence and understands what each of the words mean (depending on the con-

text of their use) they can get the difference between “back” as a verb or a noun and the 

river bank or the other bank, whereas a machine could not because of the multiple inter-

pretations. Some words (like “bank”) can be disambiguated by an automaton using the 

tags of preceding words (“the”, which implies a noun).  But there are others (like 

“back”) that are not so easy to disambiguate since the preceding words are also ambigu-

ous (“will”). Furthermore, there are even other cases where the context is complex and 
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not as clear as in this example. In cases like that, ambiguity can only be resolved with 

semantic knowledge about the whole text [22]. This means that the machine needs to 

understand what is conveyed through the text, like a human would know. The difficultly 

is that no such systems have yet been invented [22]. The above mentioned issues are 

some of the problems that are faced in part-of-speech tagging. [19][26][42] 

 

3.3 Approaches for using natural language processing   

Although there are several different approaches [22] to handle natural language pro-

cessing, its tasks, and its issues, we will focus on the statistical (or probabilistic) method 

since it is the one which is used for the part-of-speech tagging that is part of the follow-

ing chapters. In it, the model for the task is trained on substantial corpora and it learns 

statistically about the rules of the task [3]. Hence, through the probabilistic approach the 

model learns without any linguistic knowledge [3][26].  

Furthermore, there are many statistical methods for using natural language processing 

[22] but, here, only two closely related ones will be considered. The first is based on 

Bayes’ theorem [25][37] and the second is based on machine learning techniques. As 

stated by Ratnaparkhi [35] and Marquez [26], the Bayesian methods make independ-

ence assumptions that are learnt from features that come from whatever training corpus 

is used. In particular, features [25][35] are considered to be binary or Boolean functions 

and hence return one or null (true or false) depending on the case. So, using those func-

tions all the probabilities are attained from the data. 

The second method is based on maximum entropy. According to Ratnaparkhi, the max-

imum entropy framework makes no independence assumptions although it still uses 

corpus data to learn [35], similarly to the previous method. It makes use of algorithms, 

through which features, as above, are formed. In this framework, decision trees keep all 

the knowledge of the model, upon which probabilistic choices on how to handle the data 

are made. The creation of the decision trees is based on rules [25], which will be dis-

cussed later. The machine learning techniques applied are discussed in further detail in 

the following chapters, after a closer look at maximum entropy is taken. [3] 

 

3.4 Maximum entropy  

The principle of maximum entropy is very simple in nature. It says that when faced with 

two (or more) choices for which it is not clear which is more possible to happen, one 

should consider that all the choices have the same probability (uniform distribution) 
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[3][25]. Its main principles, in one way or another, are known to date back to Herodotus 

(fifth century BC) and his work [3].  

Moreover, a parallel can also be made to Occam’s razor, which was first stated by Wil-

liam of Ockham (or Occam) [3]. It is a principle where the simplest solution that solves 

the given problem should be chosen. The original form of the razor is: “Pluralitas non 

est ponenda sine necessitate”, and one of the many translations is: “entities should not 

be multiplied beyond necessity”. [28] 

Maximum entropy was initially developed for use in statistical physics. In this field the 

concept involves finding out the probability distributions of the elements inside a de-

fined system, without presuming more information than what is available at hand [17]. 

Since its conception, maximum entropy has found numerous uses in different fields, for 

example, natural language processing [4][23], biology [34], economics [14], and infor-

mation theory [39].  

 

3.5 Maximum entropy for natural language processing  

According to Manning and Schuetze [25]: ”Maximum entropy modeling is a framework 

for integrating information from many heterogeneous information sources for classifica-

tion”. The heterogeneous information sources may comprise many samples. In the ex-

ample of the part-of-speech tagger that was used previously, the samples can be, for 

instance, all the smaller parts of the sentence that contain the word that is supposed to 

be tagged. The samples are important because they are used in the training of the model 

to teach it the different rules and features. Both the rules and features are created from 

constraints that are learnt from the training data. Through all of them the distributions of 

the probabilities of different outcomes can be calculated within the framework. At the 

end, the outcomes that are chosen are the ones that satisfy the rules and features, and 

through them the constraints [35]. They are the ones that conform to the maximum en-

tropy distribution, that is, that have highest entropy in the probabilities. [3][25]  

Let us try to apply the principle of maximum entropy to a task in natural language pro-

cessing similarly to Berger et al. [3]. First of all, some large input of data, a corpus, 

needs to be assembled that will be used to train a model that will do the task. Moreover, 

let us imagine that there is some word in a certain language, which can have three dis-

tinct tags attached to it according to the input data. Let us imagine the word can be 

tagged as a noun, a verb or an adjective. This will be the first rule (or constraint) upon 

which the model is trained to behave according to, when it encounters the word. Be-

cause of that, it has a very uniform distribution since it allows the same chance to all of 

the three tags. So, all the tags have a 33% chance to be chosen. Let us imagine another 

fact, which can later be noticed from another piece of the training data: noun and adjec-
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tive are preferred most of the time. Because of this second rule the probabilities of those 

two tags go up. Once the training ends, it can be noticed that the model is trained on just 

two rules, for the word that we are considering. Because of the fact that the part-of-

speech tagger was created on the principle of maximum entropy, whenever it will en-

counter the word in some test data, the model will take into account the probabilities 

from the two rules it was trained to use and nothing else. The word will be marked with 

one of the tags that satisfies the rules, and at the same time is as uniform as possible 

[35]. [3]  

But these kinds of statistical rules are not the only ones considered in maximum entropy 

models for natural language processing. Many of them would be tied to various contexts 

such as the order of the words in the sentence or previously assigned tags. Contexts can 

also be used for various other tasks of natural language processing, not just part-of-

speech tagging. [3][35]  

For contexts, let us consider: “I will back you up.” and “He was shot in the back.” The 

word “back” in these two sentences can be tagged with two different tags, verb or a 

noun. So, if a maximum entropy tagger considers the words around “back” it might no-

tice that in the first sentence “back” is preceded by “will” and followed by “you”. If it is 

trained on some data that had similar format then the tag verb would have higher possi-

bility than the others. Or in the second sentence the tagger will notice that the word is 

preceded by “the” which would mean that there is a high likelihood that “back” is a 

noun. [35]  

The above shown examples can be considered a feature (or a feature function) in 

Ratnaparkhi’s approach [35] for handling of natural language processing tasks. They are 

based on the features from the maximum entropy framework. If we use one of the above 

examples for part-of-speech, a feature function would be: if the word that is considered 

is “back” and it is preceded by “the”, return true, otherwise return false. The part of the 

feature that checks if the preceding word is “the” is known as contextual predicate. Fur-

ther concrete examples of a contextual predicates that are used in the approach are “the 

word contains uppercase character” and “the word contains a hyphen”. As it can be ob-

served they are also Boolean in nature. Of course, feature functions and contextual pred-

icates can be created for other natural language tasks, not just for part-of-speech. The 

feature functions, for any task, are chosen to be included in the model during its training 

only if they have been seen at least ten times. In the testing stage, the features along 

with the statistical rules can affect how some words are tagged with their part-of-speech. 

[35] 

However, part-of-speech tagging is only one of the natural language processing prob-

lems that can be at least partially solved with the application of machine learning tech-

niques. While the application that is discussed here is focused on solving the part-of-

speech tagging problem by using maximum entropy from OpenNLP, the infrastructure 
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that is created in the process can also act as the blueprint for other machine learning 

solutions and natural language processing task, such as tokenization and text parsing. 

[19] 

 

3.6 Part-of-speech tagging based on maximum entropy  

Part-of-speech taggers contain two main parts: a model and an algorithm, both of which 

are closely associated [26][35]. Models are created when the tagger is fed input data in 

the training stage. Then, when the tagger is used during testing, the algorithm draws 

conclusions on how to do the tagging based on what the model has learnt [35]. Since 

these two parts are so closely connected and embedded into the tagger together we 

sometimes use the words model and (part-of-speech) tagger interchangeably. There are 

many algorithms on how to apply part-of-speech tags to words in a text. For instance 

one can use Hidden Markov Model tagging, memory based tagger, rule-based tagging, 

or maximum entropy tagging [8][19][26][33][42].   

Let us focus on the maximum entropy tagging, since the OpenNLP tagger is based on 

its principles [15][27]. Because of that, almost all of the methods used in the tagger are 

based on Ratnaparkhi’s [35] maximum entropy tagging. Hence, OpenNLP makes use of 

various rules, features, and contextual predicates that govern the probabilities of differ-

ent words and they are created and chosen during the training stage of the tagger. Like it 

was already mentioned, the number of times a feature is seen is very important for the 

model, since if it appears rarely in the data it may bring inconsistent probabilities and 

hence the model might not be able to predict it well [35]. That is why limits are placed 

on the minimum number of times that they must be seen or they are discarded [35]. 

OpenNLP leaves it to the user to decide what would be the minimum, known as cutoff 

num for part-of-speech, but does not enforce any kind of restrictions on this [1].  

Once the training of the tagger is done, the next stage would be to test it out on some 

data and see how it behaves. If given some text, it works on this sentence by sentence. 

While it goes through a sentence the tagger creates several different probability struc-

tures on how to tag each word in it. The structures are based on the features and rules. 

At the end, the structure with the highest probability, for the sentence, is chosen as the 

most suitable one and the words are tagged accordingly. Moreover, in order to increase 

the correctness of the tags the maximum entropy tagging algorithm uses a so called tag 

dictionary. It contains all the possible tags for each word it has seen in the training 

stage. Let us imagine that the tagger has seen the word “plant” while in training and its 

tags in the dictionary are “noun” and “verb”. So, when it encounters “plant” in testing, 

the only tags that will be contemplated for that specific word are “noun” and “verb”. If 

the word that is considered has not been seen previously, then the tagger will consider 
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all the possible tags for it. OpenNLP also allows the use of tag dictionaries in its work 

and they are implemented on the same principle [1]. [35] 

Part-of-speech taggers based on Ratnaparkhi’s work have been proven to show more 

than 96.5% precision in their work [35]. There are some that even have shown further 

increase over the past years, albeit they have only brought around another per cent on 

top of the past results [24]. Despite these percentages being quite high, they do not real-

istically represent the actual outcomes from some cases of the use of part-of-speech 

taggers. That 97 % is the outcome when tagging each token of a text separately [24]. 

When whole sentences are considered the percentages fall to those around the fifties 

[24]. This is mainly because of the ambiguity that was already discussed and the fact 

that an incorrect tag in one sentence may bring an avalanche of mistakes in the same or 

in the following sentences [24][26]. So, even though some part-of-speech taggers are 

now more powerful than humans at doing the task, they are still far from perfect 

[26][35].   
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4. OPENNLP  

OpenNLP is a natural language processing engine based on machine learning and it was 

created to satisfy the need for high quality framework for the purpose of language pro-

cessing [1]. It allows its users to create models for multiple natural language processing 

tasks [1]. OpenNLP makes use of the maximum entropy framework for some of its 

tasks [27]. [2][32]   

OpenNLP was created in the year 2000 by Jason Baldridge and Gann Bierner. Accord-

ing to one of the web pages about the engine [32]: “OpenNLP, broadly speaking, was 

meant to be a high-level organizational unit for various open source software packages 

for natural language processing; more practically, it provided a high-level package name 

for various Java packages of the form opennlp.*”. It started out as the Grok toolkit [32] 

for natural language processing and offered an interface to the tasks as an OpenNLP 

API (application programming interface) [1][2]. Grok was the one that contained the 

processing functionality and offered the tasks. [32]  

In 2003 the Grok toolkit and OpenNLP became two distinct entities: Grok became 

OpenCCG [32] and henceforth OpenNLP became to exist as its own toolkit, because the 

creators wanted to make a distinction between the two separate functionalities. From 

there on, OpenNLP contains the APIs and the natural language processing functionality 

from Grok. Since then they have had their own development processes. [32] 

OpenNLP supports many natural language processing tasks: part-of-speech tagging, 

chunking, coreference resolution, parsing, named entity extraction, sentence segmenta-

tion, and tokenization, all of which will be explained in this chapter. With these tasks, 

one could build more complex systems, if required. All of the above mentioned modules 

include both APIs and command line interfaces, through which it is possible to train 

and, if required, to evaluate the tasks. OpenNLP contains a large number of auxiliary 

packages, some of which are specific to certain languages, like English or Spanish, 

while others can store language rules. These are only limited to a handful of natural lan-

guages. Other packages can be used to convert a large number of corpora to a format 

offered by OpenNLP. All the examples used in this chapter are taken from the official 

documentation [1] about the engine.  [1][2]  
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4.1 Sentence detector 

The OpenNLP sentence detector allows the users to identify sentences in a text, that is, 

to find the punctuation mark that ends each one of them and modify the text by putting 

each sentence on a separate line. Maximum entropy is used to identify if different punc-

tuation marks are the actual sentence finishers. Hence, the OpenNLP sentence detector 

does not distinguish sentences depending on their contents: everything is based on rules. 

[1] 

If one wants to make an OpenNLP sentence detector, there are several classes in its 

package, the most important one being the class SentenceDetectorME. This contains the 

main functionality for creating a sentence detector model based on maximum entropy. 

Hence, one could use the method train to make a detector for this task. In order to do 

this, the input text needs to be passed as a stream to the function and the factory and 

training parameters set. The factory includes a lot of methods to help the creation of the 

model and extend its functionality, for instance, to create a map for organization of the 

data, find the ends of the tokens, and many getters to return various fields. The training 

parameters, on the other hand, define which algorithm will be used in the training pro-

cess, how to work with the map created from the factory, and how to serialize the mod-

el. [2] 

Besides the training method, the SentenceDetectorME class also contains a number of 

helpful auxiliary functions. One of them is getSentenceProbabilities which returns the 

probabilities of the previous calls to the sentence detector. Other examples are 

sentDetect, which splits a string of text into sentences, and sentPosDetect, which can 

find the first words of sentences. Of these, sentDetect is especially important, since it is 

the function invoked by the model, after its training, to implement the natural language 

processing task on an input string. [2] 

To ease and to improve the work of SentenceDetectorME, some additional classes can 

be used. The class SentenceSample has methods to retrieve documents and sentences 

and to find their starting indexes. On the other hand, SentenceSampleStream makes the 

preparations for the sentences for the previous class. This is done by reading and then 

filtering the samples of text and converting them to objects. One could also use the class 

SDCrossValidator to cross validate the results of the sentence detector. Another evalua-

tor that can be used is the SentenceDetectorEvaluator which, through its method get-

FMeasure, can calculate the precision of the sentence detector model. There is also the 

SentenceModel class used to encapsulate the models and to write the model file. [2]  

Let us briefly consider an example of this task to see how it actually works. If for in-

stance the following text is given as an input to a model:  
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Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29. Mr. 

Vinken is chairman of Elsevier N.V., the Dutch publishing group. Rudolph Agnew, 55 

years old and former chairman of Consolidated Gold Fields PLC, was named a director 

of this British industrial conglomerate.  

the output of the task would be:  

Pierre Vinken, 61 years old, will join the board as a nonexecutive director Nov. 29. 

Mr. Vinken is chairman of Elsevier N.V., the Dutch publishing group. 

Rudolph Agnew, 55 years old and former chairman of Consolidated Gold Fields PLC,        

was named a director of this British industrial conglomerate.”.  

One should note that each sentence in the output is on a new line.  [1] 

 

4.2 Tokenizer 

The OpenNLP tokenizer, as the name suggest, splits whatever text is given to it into 

tokens. The tokens here include words, punctuation marks, and numbers. It first divides 

the text into sentences (using the sentence detector) which are then tokenized. The 

OpenNLP tokenizer has three versions, whitespace, simple, and learnable tokenizer. 

One can also use a detokenizer to return the data to its initial format. [1] 

The main class to train a maximum entropy model for the tokenization task is the To-

kenizerME. It, of course, contains a method for training that needs an instance of To-

kenizerFactory, to set the resources, and TrainingParameters, to regulate the settings of 

the tokenizer. In short, it is very much like the training method for the previous task 

from OpenNLP. Some additional functions of the class are tokenize and tokenizePOS. 

The first one splits whatever input string is given to it into tokens and hence contains 

the main functionality for this task. The second function finds where the tokens start and 

end. The probabilities of the previous uses of this class can be accessed through the 

method getTokenProbabilities. [2]  

There are other useful classes that can be used for achieving greater flexibility with this 

task or can be used in conjunction with the TokenizerME. For instance, there are the 

SimpleTokenizer and WhitespaceTokenizer, that both contain instances of the methods 

tokenize and tokenizePOS. Other examples include the pair DetokenizationDictionary 

and DictionaryDetokenizer that can do the reverse, detokenization. The rest are auxilia-

ry classes that are used for streaming data from files, evaluation the models in different 

ways, or for creating dictionaries. [2] 
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Let us consider an example where the whitespace tokenizer is given the following input:  

Rudolph Agnew, 55 years old and former chairman of Consolidated Gold Fields PLC, 

was named a director of this British industrial conglomerate. 

 The output would then be:  

Rudolph Agnew , 55 years old and former chairman of Consolidated Gold Fields PLC , 

was named a director of this British industrial conglomerate .  

Note that every token (even the punctuation marks) are followed by whitespace. [1] 

The above mentioned tasks can be very useful since many of the other tasks supported 

by OpenNLP need the input formatted in this way. Moreover, the tokenizer can be used 

even if one does not plan to otherwise use the engine, for the simple reason that it is a 

way of preprocessing the data that makes its automated analysis and processing much 

easier. [1] 

 

4.3 Name finder 

The OpenNLP name finder is able to identify numbers and names in a string. Before 

this task can be used, a model for it needs to be trained using some corpora so that it can 

distinguish names from different languages. Moreover, in order for it to work, the two 

previously mentioned tasks should be performed first. [1] 

The main class for the OpenNLP name finder is called NameFinderME. It also includes 

a method train, like all the others, but this one requires different parameters. One of 

them is an AdaptiveFeatureGenerator that creates a ruleset of features for the identifica-

tion of names. The others are the resources for the task, the number of iterations that the 

function will make, and the cutoff. [2] 

NameFinderME contains some other methods. For instance, find creates the name tags 

for a string input and identifies each name with its tag. This is the function that does the 

task over a given input. The method clearAdaptiveData, on the other hand, deletes the 

data gathered from all the previous calls to find and is useful at the end of several se-

quences of data. The class method probs returns the probabilities that were calculated 

for the last use of the name finder. [2] 

Some of the other classes for the OpenNLP name finder differ from those of the other 

tasks (evaluators, stream readers, and cross validators) like NameSample, which con-

tains methods to parse data, extract and store sentences and names, and to get various 

contexts needed for the maximum entropy. Class RegexNameFinder represents a name 
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finder that bases its rules on sequences of regular expressions. It contains its own find 

and clearAdaptiveData methods. [2] 

Let us consider an example of the use of the name finder. If a model of this task is given 

the following text as input:  

Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 . 

Mr . Vinken is chairman of Elsevier N.V. , the Dutch publishing group . 

 then the output would be:  

<START:person> Pierre Vinken <END> , 61 years old , will join the board as a nonex-

ecutive director Nov. 29 . Mr . <START:person> Vinken <END> is chairman of Else-

vier N.V. , the Dutch publishing group . [1] 

 

4.4 Document categorizer 

OpenNLP document categorizer orders input data into different groups that need to be 

predefined by the users. A maximum entropy model is required to be trained on some 

data to use the categorizer. The input needs to be divided into the groups that will later 

be used to classify whatever text is given to the model. [1] 

The OpenNLP document categorizer package, besides the various evaluators, stream 

readers, model creators, and sample holders, contains the class DocumentCategoriz-

erME. This class has two important methods: train and categorize. The first one is simi-

lar to the training function for the name finder and takes the same parameters. The se-

cond method does the main functionality, namely, categorizes any given text. Class 

DocumentCategorizerME handles the different categories and results from the input 

texts. For instance, there are methods to return all, some or just the best of the groups of 

results. Their places or their number can also be extracted from the data. The unique 

classes include the BagOfWordsFeatureGenerator and the NGramFeatureGenerator. 

Both of them generate features for the words in a document based on their own princi-

ples. [2] 

Let us consider an example for the document categorizer from OpenNLP, based on a 

Gross Margin category. If the input is the following sentence:  

Major acquisitions that have a lower gross margin than the existing network also had a 

negative impact on the overall gross margin, but it should improve following the im-

plementation of its integration strategies. 
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then it would be put into the category for decreasing gross margin, here named 

GMDecrease. On the other hand, if the input is:  

The upward movement of gross margin resulted from amounts pursuant to adjustments 

to obligations towards dealers. 

then it would be classified as GMIncrease. [1] 

 

4.5 Part-of-speech tagger 

The OpenNLP part-of-speech tagger goes through the input text token-by-token and 

predicting a tag for each one of them based on the maximum entropy part-of-speech 

tagging [15]. Again, it is important to note that the probability of a tag over another de-

pends on the token in question and its context. Any tag dictionaries are purely optional 

and need to be provided by the user. Their use can speed up the algorithm and it can 

also lower the number of incorrectly assigned tags for each token. [1]  

The OpenNLP part-of-speech tagger uses the Penn Treebank set of tags [1] to mark the 

tokens. It is one of the ways used to tag that the words are nouns, verbs, pronouns, etc. 

[36]. A model needs to be trained; the training input needs to be properly tokenized, 

annotated, and formatted, namely, it should contain tokens along with their tags and one 

sentence per line. The format of the tokens required here is token_tag. It is, of course, 

very important that all the tags assigned in the training data are correct. A separate mod-

el needs to be created for every language and appropriate data in the same language 

needs to be used. [1] 

The class POSTaggerME methods return the number of predicted tags, order them, or 

get the probabilities for every tag in a sentence. The method tag, which has several dif-

ferent instances to handle various types of data, performs the tagging on any input that 

is passed. Some methods create part-of-speech dictionaries that can be used in the task, 

such as buildNGramDictionary and populatePOSDictionary, based on their own princi-

ples.  The POSTaggerME also contains a method for training a model and its practical 

use can be seen in the following chapter. [2] 

The OpenNLP part-of-speech task also has some exclusive classes. Class POS-

SampleEventStream has methods for reading objects from the class POSSample. Then 

they can be turned into events and, later, used by the maximum entropy library in the 

training process. [2]  

Class POSDictionary can be used to read tag dictionaries and find out which tags go 

with each word. Its method getTags can be used to return all the tags for a certain word, 
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while put can associate a list of tags with a word. The other methods can be used to ex-

tract the data from the dictionaries in various ways. [2] 

The class DefaultPOSContextGenerator, on the other hand, can through its methods 

produce context for each token that is passed to it. The context is created from the rela-

tion between each separate token and every tag that has been assigned to it in the past. 

This is one of the pieces essential for the maximum entropy framework. [2] 

The OpenNLP part-of-speech task also has an evaluator class, called POSEvaluator, 

which is different from the evaluators for the other classes. Its methods can be used to 

get the number of correctly identified tags and the total number of words that were tak-

en into consideration. This can then be used to calculate the precisions of various tag-

gers created with the other classes. [2]  

An example of the use of the OpenNLP part-of-speech tagger is the following: the input 

sentence is  

Pierre Vinken , 61 years old , will join the board as a nonexecutive director Nov. 29 . 

while the output would be: 

Pierre_NNP Vinken_NNP ,_, 61_CD years_NNS old_JJ ,_, will_MD join_VB the_DT 

board_NN as_IN a_DT nonexecutive_JJ director_NN Nov._NNP 29_CD ._. [1] 

 

4.6 Chunker 

OpenNLP also allows the use of a chunker. Its function is to organize the various syn-

tactical elements of the input text into groups. The chunker first uses a part-of-speech 

tagger to tag the words of a sentence after which they are split into syntactic groups, like 

verbs, prepositions and particles. Of course, the data needs to be properly formatted, and 

in this case every word is required to be in a new line. The word is followed by two 

tags: the first is its part-of-speech tag and the second is a chunk tag. [1] 

The OpenNLP chunker again has classes, similar to those of others: the class 

ChunkerME has methods to train, use it on various types of data, or compute the preci-

sion of previous chunking. Its unique method can return a list of chunks for a sentence. 

[2]  

Consider the following (tagged) sentence:  

Rockwell_NNP International_NNP Corp._NNP 's_POS Tulsa_NNP unit_NN 

said_VBD it_PRP signed_VBD a_DT tentative_JJ agreement_NN extending_VBG 
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its_PRP$ contract_NN with_IN Boeing_NNP Co._NNP to_TO provide_VB structur-

al_JJ parts_NNS for_IN Boeing_NNP 's_POS 747_CD jetliners_NNS ._.  

Then the output of the task would be this:  

[NP Rockwell_NNP International_NNP Corp._NNP ] [NP 's_POS Tulsa_NNP unit_NN 

] [VP said_VBD ] [NP it_PRP ] [VP signed_VBD ] [NP a_DT tentative_JJ agree-

ment_NN ] [VP extending_VBG ] [NP its_PRP$ contract_NN ] [PP with_IN ] [NP 

Boeing_NNP Co._NNP ] [VP to_TO provide_VB ] [NP structural_JJ parts_NNS ] [PP 

for_IN ] [NP Boeing_NNP ] [NP 's_POS 747_CD jetliners_NNS ] ._.  

As it can be noticed the tokens, along with their tags, in the output are grouped using 

square brackets. [1]  

 

4.7 Parser 

OpenNLP contains a parser which divides the input text into tokens which are then 

grouped according to their syntactical relation. At the end of the process, one can also 

choose to print the parse tree on screen if it is needed. When the parser is trained, a part-

of-speech tagger will also be created at the same time so that the text can be parsed and 

tagged at the same time. For more precision this default tagger can be replaced with one 

trained by the user, by using its API, by using the classes from the section about part-of-

speech for OpenNLP. [1]  

The OpenNLP parser has classes and structures for storing parse constituents and re-

trieving various data about them. The class Parse contains methods to handle nodes in 

the parsing sequences, nodes can be added and removed, relations between the nodes 

can be changed, or parts of the structure can be cloned. There are also several functions 

that return different probabilities for the parsing sequences. The method show and oth-

ers like it are used for visualizing the results of the parsing by the essential method 

parseParse. The unique class in the package is Cons, which has methods for storing and 

retrieving the features of the different nodes. [2] 

If the following input sentence:  

The quick brown fox jumps over the lazy dog . 

is used the output from the model would be:  

(TOP (NP (NP (DT The) (JJ quick) (JJ brown) (NN fox) (NNS jumps)) (PP (IN over) 

(NP (DT the) (JJ lazy) (NN dog))) (. .))). [1] 
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The words in the sentence are grouped in a parse structure if they relate to each other on 

a syntactical level. Because of that: The, quick, brown, fox, and jumps are in one group, 

while the, lazy, and dog in another. At the same time all those words also belong to the 

sentence and are in another group for the whole sentence. The tags before the words are 

parts-of-speech. [1] 

 

4.8 Coreference resolution 

The task called coreference resolution links multiple mentions of an entity in a docu-

ment together [1]. The OpenNLP implementation is currently limited to noun phrase 

mentions only [1]. This has four packages: 

coref, with classes to train a model, create discourse models, handle discourse enti-

ties and elements, create coreference resolution for Treebank parsers, and 

read/write of various types of data; [2] 

mention, with classes to control, generate, make context for, and find mentions,  or to 

handle dictionaries and to parse the data; [2] 

resolver, with classes for resolution approaches needed, some employing maximum 

entropy, by identifying proper nouns, plural and singular nouns, pronouns, and 

appositives; [2] 

sim, to identify the similarity between mentions with classes to enumerate, model, 

and store genders, numbers, and semantic types, class Context to create context 

for mentions based on the above types, and MaxentCompatibilityModel to create 

a maximum entropy models for mentions. [2] 
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5. CREATING A PART-OF-SPEECH TAGGER 

WITH OPENNLP  

 

The goal of the thesis is to make matters easier for the users when interacting with natu-

ral language processing engines, like OpenNLP, and to allow them to use the different 

tasks, like part-of-speech tagging, that are supported by the engines. The users need to 

supply some input, which is then used by the engine to make a model for a specific lan-

guage and task. The parts of the application that interact with the user data are shown in 

Figure 2 as stages. Most of them are based on the approach of creating natural language 

processing models, which was shown earlier. Moreover, since OpenNLP only supports 

this, the supervised method of training is used for the part-of-speech task, not the unsu-

pervised one [1].  

 

 

Figure 2. The interaction between all the elements in the environment 
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The stages are the ones that verify and handle the information in several ways to make 

sure that the engine receives what it needs. The input data needs to be properly format-

ted and the words need to be correctly tagged with their part-of-speech.  

The OpenNLP part-of-speech tagging task was the only one implemented, even though 

the sentence detector and the tokenizer are the base for the other more complex tasks. 

This was because all the data that was provided for the tagging was properly formatted. 

Also one should note that the API, and not the command line interface for the part-of-

speech tagging, was used since the intention was to use the tagger in a web application. 

[1]  

 

5.1 Flexibility in the process 

The part-of-speech tagging process (Figure 3) in the application is to some extent 

straightforward. If the users only use the application to preprocess their data then to 

train a model from it, test the model, and, at the end, use it, then the process is direct. 

But this is not true if the users had to stop in the middle due to some unforeseen event. 

That is why the users need some flexibility, that is, they need to have multiple entry and 

exit points in the flow. So the users can start or pause at any of the stages and continue 

to the following ones.  

One example scenario where the pausing could prove useful would be if a model was 

trained and tested, but it showed poor results. Then this process can be paused by jump-

ing to the training stage, where an older model is loaded, and it is tested with the data 

from the paused process. If the results are satisfactory the process can continue to the 

use a model stage. The entering and continuing is handled by the users through the user 

interface of the application.  

The problem that is usually faced with these kinds of flexible processes is to balance the 

freedom of the user with some restrictions. The latter are needed so that the code knows 

where the user entered or exited and what conditions were met when the action hap-

pened.  
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Figure 3. The stages of the process with the inputs and outputs 

 

The users were restricted by making the input files, for all the stages, requirements to 

start them. So, to enter the training stage the preprocessed data file must first be provid-

ed, if one does not come directly from preprocessing. Moreover, the application follows 

the progress of the users by marking which stages of the process were already complet-

ed. This was done by saving the physical address of some of the output files, which are 

used as input in later stages. Those files include: the preprocessed data file, the two test-

ing files, and the model file (marked with bold outline in Figure 3). Moreover, every 

output file can only come from a certain stage of the process, which means that every 

one of them is unique, hence making the processes of marking and checking the entry 

requirements easy.  

Whenever the users enter a stage of the process there are two possibilities: they either 

came from the previous stage or jumped directly to where they are now. In the first case, 

they have already satisfied all the requirements and can freely use the functionality of 

the stage. In the other, the users have skipped at least one of the stages in the processes. 

Because of that, they are missing one or more input files and they do not to satisfy all 

the requirements in the stage where they end up. This is not a big problem, though, 

since they can freely load files from the server or from their local machine into the 

software to fulfill the entry requirements.  
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5.2 Server file selection and directory structure population  

To allow file selection from the server, a tree structure was developed that will list the 

required folders that are present on the server. The folders are organized in four levels: 

username folders, language folders, task folders, and directories that hold all the files. 

The username folders are needed because each user should be able access all the data of 

other users. Language and task directories are needed because the number of languages 

and tasks will be greater than one. The last set of folders is there for better organization 

and easier access of input and output files for the code. It contains a directory for every 

stage in the process. Also all the four levels of directories are, of course, created for 

each user and each subsequent level is contained within the previous one. 

There are several issues that need to be considered and solved with the tree. First of all, 

its algorithm should not list the fourth level of directories or any of the files inside since 

this will overcrowd the tree and cause confusion. Merely selecting the task directory 

should be enough to fulfill the entry requirements of any stage. Another problem was 

that some of the files may not exist because of the flexible nature of the whole process. 

This means that there may be empty folder branches which should be filtered out. For 

example, if user2 (in Figure 4) never managed to create a model file then his/her branch 

for Indonesian should not be included in the tree. On the other hand, user3 has model 

file for Indonesian so that branch will be shown. Furthermore, the tree should only con-

tain the folders that have files which are connected with the particular stage of the pro-

cess.  
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Figure 4. Example of the tree structure for the folders on the server 

 

The algorithm shown in Program 1 takes into account all of the above restrictions and 

problems. It goes through the four levels of folders and even though the last level of 

folders is not shown to the users it is still useful for better organization. The algorithm 

checks if the needed files, whose number dependents on the particular stage, are present 

inside. If so, the three parent folders (username, language, and task) will be included in 

the tree. Furthermore, the algorithm only looks into the folders on the fourth level which 

are relevant for the particular stage. For instance, the testing folder is not connected to 

the training stage so it and the files inside will not be considered.  
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The code in Program 1 seems a bit complicated because it also needs to handle some 

special cases. Sometimes it is necessary to exclude whole branches (from one of the 

usernames down to a task folder) if they do not have any files that fit the requirements 

(for example, the whole branch for user2 in Figure 4). On occasion, the whole tree 

might not contain any files and then none of the branches satisfy the requirements. Be-

cause of that, the whole tree needs to be empty. 

Another problem, which appeared from the iterative nature of the algorithm and how it 

was constructed, was that it would always consider the same username or language 

folders as different. As a result there would be several copies of the same username, for 

example user1, as different nodes in the tree, which is, of course, wrong. That is the 

algorithm had to include some kind of temporary memoization for already added folders 

so they will not be duplicated. The code shown in Program 2 solved the problem with 

the same node appearing multiple times, by making sure that each node does not already 

exist in the tree before it is added to it.  
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foreach (var user_directory in directoryInfo.GetDirectories()) 
//user directories  
{ 
   foreach (var lang_directory in user_directory.GetDirectories()) 
   //language directories  
   { 
      foreach (var task_directory in lang_directory.GetDirectories()) 
      //task directories  
      { 
        foreach (var directory in task_directory.GetDirectories()) 
        //directories under the tasks 
        { 
          if (directory.Name == required_folder) 
          //find the required folder 
          { 
             FileInfo[] files_in_dir = directory.GetFiles(); 
             CheckSuitableNodes(user_directory, lang_directory, 
                task_directory, ref user_text, ref users,  
                ref languages, ref languages_text, directoryNode, 
                ref files_in_dir, required_folder); 
           } 
        } 
     } 
  } 
} 
 

Program 1. The first part of the code that populates the tree for the folders 
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    TreeNode user_directoryNode = new TreeNode(user_directory.Name); 
    TreeNode lang_directoryNode = new TreeNode(lang_directory.Name); 
    TreeNode task_directoryNode = new TreeNode(task_directory.Name); 
     
    //if the username hasn’t appeared previously                                               
    if(!user_text.Contains(user_directoryNode.Text)) 
    { 
       user_text.Add(user_directoryNode.Text); 
       users.Add(user_directoryNode); 
       directoryNode.ChildNodes.Add(user_directoryNode); 
       //if language appears for the first time 
       if (!languages_text.Contains(lang_directoryNode.Text)) 
       { 
          languages_text.Add(lang_directoryNode.Text); 
          languages.Add(lang_directoryNode); 
          user_directoryNode.ChildNodes.Add(lang_directoryNode);                                              
          lang_directoryNode.ChildNodes.Add(task_directoryNode); 
       } 
       else//if the language was already seen 
       { 
          int temp_index_lang=  
             languages_text.IndexOf(lang_directoryNode.Text); 
          TreeNode temp_node_lang=(TreeNode)languages[temp_index_lang];                                                 
          temp_node_lang.ChildNodes.Add(task_directoryNode); 
       } 
    } 
    else//if the username has appeared previously 
    { 
        int temp_index = user_text.IndexOf(user_directoryNode.Text); 
        TreeNode temp_node = (TreeNode)users[temp_index]; 
        //if language appears for the first time  
        if (!languages_text.Contains(lang_directoryNode.Text)) 
        { 
           languages_text.Add(lang_directoryNode.Text); 
           languages.Add(lang_directoryNode); 
           temp_node.ChildNodes.Add(lang_directoryNode);               
           lang_directoryNode.ChildNodes.Add(task_directoryNode); 
        } 
        else// if the language was already seen 
        { 
           int temp_index_lang =  
              languages_text.IndexOf(lang_directoryNode.Text); 
           TreeNode temp_node_lang =   
              (TreeNode)languages[temp_index_lang]; 
           temp_node_lang.ChildNodes.Add(task_directoryNode); 
        } 
     } 
   
 

Program 2. The second part of the code that populates the tree for the folders 
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5.3 Preprocessing of the input files 

Preprocessing is the preliminary stage and the place from where one starts whenever a 

new model needs to be made. The first thing that the users need to do is to decide if the 

optional tag validation will be done. If so, this needs a file that contains all the tags 

which are stored by the software for later verification. Whether tag validation is done or 

not, the next step is to upload the actual input files. These files contain the material from 

which the model learns how to do the part-of-speech tagging and the test data at the 

same time. In this case, they always contain at least the word (or punctuations like 

commas, semicolons, and periods), an underscore, and two tags on each line.  

 

Let us consider an example, in Indonesian and without any noisy data, from one of the 

input files that were used: 

 

1 Untuk  _ ADP ADP  

2 mengembangkan _ VERB  VERB  

3 batik  _ NOUN NOUN  

4 Jombang _ NOUN NOUN  

5 , _ . .  

6 berbagai _ ADJ ADJ  

7 usaha  _ NOUN NOUN  

8 dilakukan _ VERB  VERB  

9 oleh _ ADP ADP  

10 Ibu _ NOUN NOUN  

11 Hj _ NOUN NOUN  

12 . _ . .  

13 Maniati _ NOUN NOUN  

14 . _ . .  
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The words form a sentence when read in vertical order. The input files must have this 

format for any language and the information contained within must be correct. The ac-

tual number of input files is irrelevant as seen in Figure 5.  

Once the files are uploaded, if the user chose to do the tag validation the software will 

check if all of them contain only the tags that were stored previously. If any of the files 

do not conform to this rule, then they are rejected and will not be considered in the pro-

cess at all. The software then creates a temporary file, opens a stream for writing to it 

and goes through all the input files. The needed information is extracted from the files 

and all of it is stored into the temporary file.  

 

 

Figure 5. Overview of data preprocessing 

 

 

Then the users are required to enter a percentage (Figure 5) that will represent how 

much of the data from the temporary file will be for testing purposes; the rest will be for 

training. The code calculates the number of sentences that will go into the file for test-

ing, based on the percentage, and extracts them in a random manner and places them in 

a file called test file with tags. For example, if 20% of the data is chosen for testing, out 

of 1000 sentences, 200 random sentences will go into the test file. Afterwards, each of 

the test sentences is also stripped of its tags and copied to another file, called test file 

without tags. Both of those files will later be used in the testing stage, one to be marked 

by the tagger and the other to validate the results. The sentences that remain in the tem-

porary file are transferred to the file that will be used in the training stage, called pre-
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processed data file. Once the three output files are created (Figure 5), the temporary file 

is deleted since it is no longer needed.  

 

5.4 Training a part-of-speech model 

 

Training is the stage of the process where, the software will try to use the OpenNLP 

engine to create a model from one of the output files from the previous stage, the pre-

processed data file. For a visual representation of this stage see Figure 6. The main 

functionality for this stage is mostly written in Java since its purpose is to invoke the 

functionality from the engine.  

 

 

Figure 6. Overview of training 

 

The contents of the preprocessed data file are then read and passed to OpenNLP. Other 

elements that are passed to the engine include type of model to create, that maximum 

entropy needs to be used, that the task is part-of-speech, and factory parameters that are 

needed for the procedure [1][2]. Their use can be observed in Program 3. After this, all 

the data needs to be written to the model file, which is the output from this stage.  
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5.5 Testing a model 

Testing examines how the model, created in the previous stage, fares when used on un-

annotated data. There are three input files used here from the preceding stages: test files 

with and without tags, from the preprocessing stage, plus the model file from the train-

ing stage.  

By loading the model, the process is able to create a part-of-speech tagger that contains 

all the knowledge contained within. The tagger will be doing the central job in this 

stage, which is the identification of the part-of-speech tags for the words, when the data 

from the test file without tags is given to it.  
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//read the training data 
dataIn = new java.io.FileInputStream(path_to_train_data); 
 
//open the needed streams 
ObjectStream lineStream = new PlainTextByLineStream(dataIn, "UTF-8"); 
ObjectStream sampleStream = new WordTagSampleStream(lineStream); 
 
//initialize the required parameters for the model 
TrainingParameters trainParams = new TrainingParameters(); 
trainParams.put("model", ModelType.MAXENT.name()); 
 
//train the model 
model = POSTaggerME.train("id", sampleStream, trainParams, null, null);  
 
//write the data to the model file 
OutputStream modelOut = null; 
modelOut= new BufferedOutputStream(new FileOutputStream(path_to_model)); 
model.serialize(modelOut); 
 

Program 3. A part of the code of the function that trains the model 



33 

 

The prediction is done sentence-by-sentence, while the validation word-by-word. The 

test file with tags is used to check the validity of the annotation and to calculate the pre-

cision of the tagger. This is done by comparing how each word is tagged in sentences 

from the two test files (Program 4). If the two tags are the same then the tagger was cor-

rect (which adds one to the accuracy), if they are not equal then the tagger made a mis-

take (that adds zero to the accuracy). Then the precision is calculated by dividing the 

accuracy by the number of words that were tagged. The outputs from this stage of the 

process are the precision of the tagger and a log files where the users are able to get the 

results and to compare all the right and wrong tags (Figure 7).  
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while ((line_no_tags = read_no_tags.ReadLine()) != null 
&&(line_with_tags = read_with_tags.ReadLine()) != null) 
//read until the EOF 
{ 
   string predictTags = tagger.tag(line_no_tags); 
   //predict the tags for a sentence 
   predictTags = predictTags.Replace("/", "_"); 
   //replace the tag marker from OpenNLP with ours 
   string[] wordsInPredictTags=predictTags.Split(' ','\t','\n'); 
   //split the line into words 
   string[] wordsInFileWithTags= 
   line_with_tags.Split(' ','\t','\n'); 
 
   for(int i = 0; i < wordsInPredictTags.Length; i++) 
   {//output the results to a file 
      write_log.Write(wordsInPredictTags.ElementAt(i)+"========="                                                
        +wordsInFileWithTags.ElementAt(i)+"\r\n"); 
 
      //check the validity of the predicted tags 
      if (wordsInPredictTags.ElementAt(i).Equals 
         (wordsInFileWithTags.ElementAt(i))) 
      {//if the tag is correct 
         wordAccuracy.add(1);//add 1 to the accuracy 
      } 
      else 
      {//if the tag is not correct 
         wordAccuracy.add(0);//add 0 to the accuracy 
      } 
   } 
} 
  

Program 4. A part of the code of the function that tests the model 
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Figure 7. Overview of testing 

 

5.6 Using a model 

In a production run the model will be used on some new data since the testing stage has 

been satisfactorily completed. This data can be anything: random sentences from the 

internet, online articles, or eBooks, as long as the users gather all that data into one file. 

Its name can be either extensionless or with the .txt extension.  

 

Figure 8. Overview of model use 
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Hence, there are two inputs which are used here (Figure 8), the model file and a file 

with data that is not annotated, which must be in the same language as the input files 

from the preprocessing stage.  

Similarly to testing, the model is loaded into memory, a part-of-speech tagger is initial-

ized based on its knowledge, all the sentences are given to the tagger, word by word, 

and this predicts the tags for each one of them. The resulting data is written to an output 

file where the user can observe the results from the annotation of the input data (Figure 

8).  

This last stage of the process can be especially useful for those users who are very satis-

fied with the high precision of a model that they have created in the past and do not 

want to waste time with the other functionality since their goal has been achieved. The 

production run, like all the stages, can be done countless number of times as long as the 

required model file is somewhere on the server or on the local machine that is being 

used. 
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6. EXPANDABILITY OF THE APPLICATION  

 

One of the main objectives for the software was that it needed to be easy to expand. The 

expandability needs to be satisfied on several different levels: languages, natural lan-

guage processing tasks, and engines.  

 

6.1 Language expandability  

The first level is the ease to create models for different natural languages. One example 

of this would be the possibility for the users to create part-of-speech taggers for English, 

Finnish, German, and other languages.  

It is really important that the users themselves find suitable input files. This could be 

solved with various corpora and Treebanks [36] available on the internet for a large 

number of languages [7][41]. Moreover, any kind of texts on different topics can be 

used as inputs. Once the correct files are given to the software and their language is in-

dicated to the application, the rest is handled by the code automatically.  

Some further checks can be implemented to make the choices for the languages error-

proof. For instance, the software could check if the language in all the input files is the 

same with the one that has been indicated to the software. This could be done with some 

language identification algorithm. Another possible method, that could be implemented, 

would be to extract the language from the files themselves. The language will have to be 

indicated somehow, for instance, by having the language code in the filename. And yet 

another method could use the combination of both mentioned above, that would achieve 

greater automation in the process.  

 

6.2 Task expandability 

The second level of expandability is the number of natural language processing tasks. 

Some additional examples of these would include: named entity recognizer (also known 

as name finder), parser, and grapheme-to-phoneme convertor. Grapheme-to-phoneme 

conversion is used to make predictions on how words are pronounced. All of these are 

recommendations from the users as tasks that could be used in the future to expand the 
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functionality of the software. Moreover, some of the other tasks offered by OpenNLP 

might also be used, although this is not the case with OpenNLP parser. Another engine 

will be used to implement the parsing task.  

One way to make the task expandability possible and easy to apply is make use of in-

heritance, with some of the classes that are already implemented in the code. A base 

class contains a separate abstract method for every stage of the process: preprocess, 

train, test, and use.  These will represent all the common functionality between all the 

tasks. Because of that, each task can have a separate class, all of which are derived from 

the base, and therefore inherit the methods and have distinct implementations for the 

functions. 

All the potential tasks, named entity recognizer, parser, and grapheme-to-phoneme con-

vertor, need a model to be trained and then evaluated. Moreover, depending on the re-

quirements of each task, different forms of preprocessing will need to be implemented. 

Furthermore, with the many different standards for the structure of the data being used, 

the need for extensive preprocessing is quite understandable. Additionally, the stage 

using a model is also needed for the future tasks. Because of these reasons all the clas-

ses for the tasks can safely inherit the common methods from the base class and use its 

original implementations or override them and create new functionality. [1][2][12][31]  

This expandability is also supported by the folder structure, which was discussed previ-

ously. Since every task has a different name from the others and there are no plans to 

have two different implementations of the same task, for instance, from different en-

gines, the current structure can still be used even after extensive expansion of the appli-

cation. Furthermore, some of the potential tasks require part-of-speech tagged data to be 

used along with some additional analysis. An example of this would be the parsing. Be-

cause of that, it represents a good follow up to the already implemented part-of-speech 

tagger.  

 

6.3 Engine expandability  

The third level of expandability is the number of natural language processing engines 

included. One of the original requirements for the software was to include at least two 

of these: OpenNLP and SharpNLP [38]. The integration of OpenNLP was achieved, 

with some challenges along the way, but not so with SharpNLP, although it first ap-

peared that things would be the other way around. This was because OpenNLP is based 

on the Java programming language while SharpNLP is based on C#, and since the soft-

ware for this thesis was done with ASP.NET it was also written in C# [38]. The failure 

to implement the latter engine happened because of the lack of any kind of documenta-

tion about its implementation or use and the lack of support, since the project has been 
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abandoned. Another, smaller problem was that the engine was specifically designed as a 

Windows form application and here it was necessary to integrate the engine into the 

natural language processing application [38]. Some further examples of engines that the 

users would like see integrated in the future would include Maltparser [11] and Pho-

netisaurus [30].   

An approach similar to the one for the tasks can also be used on this level to achieve 

expandability. A base class can be used that will contain abstract methods and proper-

ties, as placeholders, that are common for all the engines. In addition, every new engine 

will have its own separate class, which will inherit from the base one. Hence, each of 

the descendant’s methods will actually interact with the appropriate engine. Moreover, 

they can also have their own implementation of the functions that are inherited from the 

base class. 

This structure goes well hand-in-hand with the fact that all the engines are based on 

diverse programming languages. Maltparser is based on Java [11], while Phonetisaurus 

is based on Python [30]. That is why every class for each engine will have a code that 

interacts with them in a different programming language. Because of these reasons, 

some further libraries and plugins will have to be included and applied, so that these 

engines can be used in the .NET framework and in the application. But with the likes of 

IKVM.NET [9], and IronPython [16], it is very probable that the implementation of the 

engines can be achieved.   

Of course, it should be noted that there is a connection between the structure of classes 

for the engines and the structure of classes for the tasks, as seen in Figure 9. Their rela-

tionship, in this case, is composition, that is, every engine owns its tasks. A concrete 

example of this would be the OpenNLP and its part-of-speech tagging implemented.  
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Figure 9. Classes for tasks and engines 
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7. EVALUATION 

 

Let us take a look at a short summary (in Table 1) of the criteria and how they were 

fulfilled during the development.   

 

Table 1. Criteria and their fulfillment 

Criteria Fulfillment 

No technical prerequisite knowledge 

needed to use the application  

The application handles everything auto-

matically while the process is followed 

Flexibility should be allowed in the work-

flow 

Multiple entry and exit points in the pro-

cess; continuing/pausing of process runs; 

data is automatically saved  

The application should be expandable with 

new tasks and engines 

New tasks and engines can be added to the 

application; supported by both the folder 

and system structure  

The software should be portable The interface is a web application and 

consequently is portable  

The tasks and engines should be accessible 

from various locations 

The interface is a web application and, 

therefore, can be accessed from different 

locations  

 

Therefore, it can be concluded that all the criteria were taken into consideration and 

were used as guidelines while the application was developed. 
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Effects of the constraints  

We also faced some constraints while developing the application, all of which were ex-

ternal. When facing the constraints it was noticed that some of them brought effects to 

the system, several of which had a positive impact on the work while others not so 

much. A number of the effects that are discussed below might also be left for the future.  

One of the effects that could appear from the restriction of using ASP.NET is that the 

application might only be available for use in the Microsoft development environment. 

This includes operating systems, servers, etc.  

Two effects appeared from the implementation of OpenNLP. The first one was the dif-

ficulty of integrating it into the application since the engine was written in Java, that is, 

until IKVM.NET [9] was finally found. This allowed implementing and runing Java 

into ASP.NET back-to-back with C# [9], thus simplifying this project, thankfully. Be-

cause of IKVM it was possible to include the OpenNLP API code in the software and to 

do the functions that accessed the functionality of the engine [9].   

The second effect is that once a model is trained and created from the input files no oth-

er new data can be added to it. For instance, if a part-of-speech tagger is created for 

English, then if it is trained and tested with some data, there is no possibility to retrain it 

with some other data. One would have to gather the input files that were used in the first 

place, add the new input files and train a completely new model. It should be noted that 

the users did not find this much of a problem and, therefore, this issue was left as it is. 

[1][2]  

At the same time, the implementation of engines should not be stopped with OpenNLP.  

The interface should also be expandable. A side effect from the expandability of the 

engines is that the code may become too dependent on and cluttered by the various li-

braries and plugins that might need to be used in the future. This comes from the fact 

that most of the potential engines are based on various programming languages that, by 

default, are not native with the framework that is used. 

Another constraint was that the different files used should not be checked whether they 

are valid. This was required to be able to focus more on the implementation of the 

OpenNLP engine and its part-of-speech task. Moreover, the input files that will be used 

by the users are based on corpus files which have standard structure and are likely to be 

error free. So, presuming that the inputs are correct, all the other files created in the ap-

plication should be correct by extension. Even though there is no validation of the integ-

rity of the files that are used in the application, there are numerous error handlers to deal 

with any kind of mistakes that the users might make or that may happen during execu-

tion. 
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Another effect, which comes out from how the whole process of creating the part-of-

speech tagger is laid out, is that the redoing of some of the stages is not possible. Be-

cause of that, the re-preprocessing of some additional data after the preprocessing is 

finished cannot be done. For now, the process must be restarted and the new data needs 

to be included in the input files, after which the preprocessing should be done. A similar 

approach needs also to be taken for the testing stage. In the current state of the applica-

tion, the only truly reusable stage is using a model. That is the only stage through which 

the users can make multiple runs without any need to restart the process.  
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8. SUMMARY 

At the end, the resulting system allows the task of part-of-speech tagging using the 

OpenNLP engine to be used without much difficulty by non-technical users that have 

background in linguistics, for example. By going through the four stages of the process 

the users are able to prepare their data, use the processed data to create a tagger, evalu-

ate the part-of-speech model, and finally use the tagger according to their needs.  

Additionally, the process in the application includes multiple entry and exit points. The 

users are free to enter the creation flow at any of the four stages and use them. Their 

usage is, of course, dependent on the requirements for every one of stages. That flexibil-

ity is also supported by the automated storage of the data from each stage in case the 

users want to quit the application and continue from where they stopped, later on.  

At the same time, the application should be expandable with new tasks and new en-

gines. Some of the would-be additions to the software would require additional libraries 

or plugins to be used, but, nevertheless, their implementation should not be harder than 

the one for the OpenNLP engine and its part-of-speech task. Additionally, the current 

state of the whole system also allows the creation of natural language task models for 

different languages. Moreover, since the OpenNLP engine is already implemented and 

in use, the application can easily be extended with any of its tasks, in a fashion similar 

to the part-of-speech tagging.   

Moreover, the application is also accessible and portable. Through the use of the Mi-

crosoft ASP.NET framework the system was created in the form of a web application. 

Hence, the software can be used by any user that has access to the server without the 

need to install anything on their machine except for a web browser.  

 

Future work 

Some further modifications could be made to particular stages of the process in order to 

make them more reusable. The preprocessing could be improved by adding the possibil-

ity to re-preprocess some additional data. For example, if one forgets to add all the input 

files for preprocessing it should be possible to add them even when that stage is almost 

at its end. This could be achieved by splitting the new data based on the same percent-

age used previously and appending the data into the testing and training files, respec-

tively. Using this method the testing against training data ratio will still be preserved 

and they will be attached correctly.  
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The testing stage can also be somewhat improved by adding the feature of re-testability. 

This could be achieved by allowing the users to upload some new annotated data after 

which the software could create two new test files from it. They would replace the test 

files from the previous run. Subsequently, the model could be re-tested using the two 

new files.  

The use of a model should also be changed so that more than one unannotated data file 

could be used by the model. The software could create one file with the data from the 

various inputs and pass that file to the tagger for marking. If this is implemented in the 

future the users could upload any number of files to be annotated by the model.  

Other additions or improvements would include better algorithm for populating the tree 

for the folder structure, various checks of the different files that are created from the 

process, reading of any type of files as input, and renaming of files and folders by the 

users. The algorithm for the folder structure can also be improved by increasing its effi-

ciency. One way to enhance this would be to remove the dependency of storing nodes 

so that their existence can be checked in the tree. By using some better memoization 

techniques or by implementing a better database the mentioned objectives could be 

achieved.  

Another improvement that could be made to the system in the future would be the inclu-

sion of better checks to handle the input and output files and the inclusion of a database 

for file validation results. For example, integrity tests could be placed to make sure that 

all the files have the correct format. It could even be checked if those are the needed 

files for the specific stage of the process and store that information in a database. This 

would lead to better error handling and that would lead to fewer mistakes made by the 

users.  

The application could also be made to read various types of files instead of the selected 

few that are used now. This way it would be possible to use some files that are currently 

not supported, say, Word or Excel files. For now, they are not supported because they 

require different methods to be read.  

An enhancement to the folder and file structure could also be made. For instance, one 

possibility could be to allow the users to rename the directories and files that are created 

in the application. This might lead to their better organization on the server but it also 

may create problems since everything on it is shared by all the users. This way one user 

could rename the data of another by mistake. And that would lead to the need of imple-

mentation of various security measures like: file and folder restrictions, permission to 

use/rename data, and rights for the users. Another way would be to implement a data-

base to allow all of the above plus sorting and viewing of data in various ways.  
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