TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

JUHO NURMI
ANALYZING PRACTICAL COMMUNICATION SECURITY OF

ANDROID VENDOR APPLICATIONS
Master of Science Thesis

Examiner: Professor Jarmo Harju
Examiner and topic approved by the
Council of the Faculty of Computing
and Electrical Engineering on
October 8", 2014

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’'s Degree Programme in Information Technology

Nurmi, Juho: Analyzing practical communication security of Android vendor
applications

Master of Science Thesis, 87 pages, 9 Appendix pages

December 2014

Major: Communication Networks and Protocols

Examiner: Professor Jarmo Harju

Keywords: Android, Information security, mobile device, security weakness,
MITM, SSL, TLS, certificate

The development of mobile devices and the new personalized services have gone to the
point, where users do not alone control their data. While the devices are in constant
communication with the cloud services the user’s data and the data of the user move
ever more to the services providers’ cloud services. Little is known about how and how
well service providers protect the users’ information.

The work studies two biggest western Android based ecosystems, Google’s and
Amazon’s, own applications’ practical security in the communication process. The aim
is to identify all mechanisms used to protect the information that is communicated with
the Android device. The study used one device from Amazon and Google, and the
application market was chosen from both service providers for in-depth study. The
applications were selected on the basis that they must provide same service in order to
make the comparison possible. In practice, the applications and devices were studied by
performing active and passive Man-in-the-middle (MITM) attacks in network
laboratory. The communications were intercepted and analysed afterwards.

Both vendors relied heavily on SSL/TLS protocol. Also in common was the usage,
roles and acquirement of authorization tokens. Amazon’s client applications were
noticed to use digital signatures. The biggest difference between the market applications
was that Google required authentication when buying an application, while Amazon did
not require it. During the same authentication Google sent user’s password in plaintext
inside the TLS connection. During the less frequently happening registration of the
user’s Google account to the device the user’s password is sent instead encrypted inside
the TLS connection.

An active MITM attack was performed on the Google device and account to
demonstrate what the attacker can do in practice, when SSL/TLS connection is
compromised. With manipulating traffic and intercepting authorization tokens the
attacker is able to spy the victim and access to nearly all the victim’s Google data for
the present. In addition, the attacker can “force” the victim to register herself again to
the Android device and the attacker can use the victim’s intercepted encrypted password
to add the victim’s Google account to her own device.

i
TIVISTELMA

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

Nurmi, Juho: Analyzing practical communication security of Android vendor
applications

Diplomity6, 87 sivua, 9 liitesivua

Joulukuu 2014

Paaaine: Tietoliikenneverkot ja -protokollat

Tarkastaja: professori Jarmo Harju

Avainsanat: Android, tietoturvallisuus, mobiililaite, tietoturvaheikkous,
valimieshyokkays, SSL, TLS, sertifikaatti

Alylaitteiden kehitys ja palveluntarjoajien uudet henkilékohtaisemmat palvelut ovat
johtaneet siihen, ettd kéayttajat eivat enda yksin hallitse tietojaan. Laitteiden ollessa jat-
kuvassa yhteydessa pilvipalveluihin kéyttdjien tiedot ja tietoa heista siirtyy yha enem-
man palveluntarjoajien pilvipalveluihin. Siitd miten ja kuinka hyvin palveluntarjoajat
suojaavat kayttdjien tietoja, tiedetddn hyvin véhan.

Tyo6ssa tutkitaan kahden suurimman lansimaisen Android-pohjaisen ekosysteemin,
Googlen ja Amazonin, omien ohjelmien tietoliikenteen tietoturvallisuutta kaytdnnossa.
Tavoitteena oli selvittdd kaikki ne mekanismit, joilla Android-laitteesta l&htevaa tietolii-
kennettd suojataan. Tutkimuksessa kaytettiin Amazonilta ja Googlelta yhté laitetta, sek&
molemmilta valittiin sovelluskauppa tarkempaa tutkimusta varten. Applikaatiot valittiin
silla perusteella, ettd niiden piti tuottaa kayttajalle samaa palvelua vertailun mahdollis-
tamiseksi. Laitteita ja applikaatioita tutkittiin k&ytannossa suorittamalla niille seka pas-
siivisia etta aktiivisia valimieshyokkayksid verkkolaboratoriossa. Tietoliikenne kaapat-
tiin talteen ja analysoitiin jalkikateen.

Molempien valmistajien ohjelmien, sek& laitteiden tietoturvan havaittiin nojautuvan
vahvasti kuljetuskerroksen tunnelointiprotokollaan (SSL/TLS). Liséksi yhteista oli
auktorisointitokenien kayttd, niiden roolit sekd hakuprosessi. Amazonin asiakasappli-
kaation havaittiin kayttavéan digitaalisia allekirjoituksia. Sovelluskauppojen isoimmaksi
eroksi havaittiin Googlen vaativan kayttajaa tunnistautumaan ostaessaan applikaatiota,
mitd Amazonilla ei vaadittu. Googlella samaisen tunnistautumisen yhteydessa havaittiin
kayttdjan salasanan vélittyvéan selkokielisend TLS-tunnelin sisélla. Harvoin tapahtuvan
Google-kayttajatunnuksen laitteeseen rekisterdimisen yhteydessa kayttajan salasana sen
sijaan valitetdan salattuna TLS-tunnelin sisalla.

Googlen laitteelle ja tunnukselle suoritettiin vield aktiivinen vélimieshyokkays de-
monstroimaan mitd hyokkaaja voi tehda kaytanndssa, kun TLS-protokolla pettdad. Mani-
puloimalla liikennettd ja kaappaamalla auktorisointitokeneita hyokkaajan havaittiin
pystyvén vakoilemaan uhria ja péé&sevan toistaiseksi késiksi etdnd lahes kaikkiin uhrin
Google-tunnuksen tietoihin. Lisaksi hyokkadja pystyy “pakottamaan” uhrin rekisterdi-
tymaan Android-laitteelleen uudestaan, minkd yhteydessé hyokkaaja voi kayttdd uhrin
kaapattua salattua salasanaa uhrin Google-tunnuksen lisédmiseen omalle laitteelleen.

PREFACE

This thesis was written as a master’s thesis for Tampere University of Technology
(TUT) in department of Pervasive Computing. Thesis was examined by Professor Jarmo
Harju from TUT. When | started to work on this thesis, | knew basically nothing of
Android and especially its security, so the whole journey was very interesting.
Everywhere you looked at, you saw something new and you had (urge) to understand it.

There are a lot of people I really have to thank for: | would like to thank Professor
Jarmo Harju and Nokia Oyj for offering me this interesting topic. I would also like to
thank Mika Anttila, Sami Majaniemi and Anssi Juvonen from Nokia for guiding me and
giving me a flying start. In addition, | thank Joona Kannisto and Billy Bob Brumley for
helping me with cryptology related questions and my colleagues for enduring my
constant bombardment of questions.

Special thanks goes to Tanel for enduring in the trenches with me everything that
TUT threw at us over the years. Most of all, I want thank my family for their support
and encouragement during my studies.

Juho Nurmi,
11 November 2014

CONTENTS
1 INEFOUUCTION . bttt bbbt nneas 1
2 SECUNEY DASICS....viiuieiieeie ettt ettt ste e e be et e e e e sreenreenaesneeae s 3
2.1 BASIC TBIMIS .ttt bbbttt bbb 3
2.2 TOKEN....e ittt bbbt bbbttt bbb re s 3
2.3 Cryptographic hash fUNCLION ..o 4
2.4 MAC aND HMAC ..ot 6
2.5 Digital SIGNALUIEocvieiieeie et ns 7
2.6 Public Key Infrastructure X.509cccociiiiiiieiicie e 9
2.7 SSLITLS .ot bbbttt bbbt 10
2.8 Man-in-the-middle attack...........ccoociiiiiiiiii 11
3 TESE ENVIFONMENT.....eiiiiiieiiiieiieie ettt st be st sbenreeneas 12
3.1 Android and Used SOFIWATE...........ccceviiiiininieiene e 12
3. L1 ANArOId OS ..o s 12
312 OPENSSL..iiiiiiiiiiieieie ettt 12
3.1.3 MITM software — SSLsplit & MItMProXyccccvvevveveieeieeieseee. 12
3. L4 WITESNAIKciiieiiciieie e e 13
315 Other SOWAIE.cciiieeiicecie e s 13
3.2 THhE ENVIFONMENT ..ottt et 13
4 GOO0QIE AN AMAZON.....cuiiiiiieite ettt e e se e te et be e te et e s e sreere e nre e e 16
4.1 Google’s and Amazon’s market places..........cccvoviiiiiiiiininiii s 16
4.2 Google SPecific detailS.........ccveviiiiiice e 18
4.2.1 Google Login Service and Google Play Services..........c.ccceevevvvrnenee. 18
4.2.2 CHENLOGIN .o 19
4.2.3 2-step VErifiCationccoeiieiicie e 20
4.3 Absence of Amazon’s specific detailscccvviiiiiiiiiiii 20
5 GOO0QIE RESUILS ...t 21
5.1 TOKENS .ttt ettt b bbbttt b ne e 21
5.1.1 MaSEEr tOKEN ..o e 22
TN I € S (0] (-] o SR 24
TN I T € N (0] < SR 26
5.1.4 WEDBIOGIN. ..ot s 28
5.1.5 TOKEN FENEWAL........coiiiiiiiieciiee e 29
5.1.6 Token request Parametersccceevereresenieseseeee e 30
5.2 Practical security in Play STOTecccooiiiiiiiiine e 31
5.2.1 Free appliCation CaSE.........ccoviiirieieieie e 32
5.2.2 Paid appliCation CASE.........cooiririeieieie et 34
5.2.3 Miscellaneous fINdINGSccccviiirieriiene s 37
TR B B [T 1 7] (oo USSR 39
5.3.1 Relationship with GPS, GLS & GAccccveiiie e 39

5.3.2 LEGACY NAIMESooiiiiiiiiiiiieieeie sttt 41

Vi

5.3.3 PreVIiOUS WOTKccviiiiiiiiiiieiisieeeee s 41

B AMAZON FESUITS ...ttt bbbttt b bbb ene s 43
6.1 Tokens, acquisition and SIGNALUIEScccvereieerieeiiesee e 43
6.1.1 X-AUP-TOKEN ..ceeeceieciiee et 44

B.1.2 SIGNALUIEveeeeeeieeiee ettt teeste ettt re e e e raesneeneenreenras 45

6.1.3 Initial token aCqUISITIONcccccveirerieiieseee e 46

6.1.4 Token acquisition - EXChangetoken...........cccccvvvevieviiiesiese e 51

6.1.5 Cookie token acquisition - Exchangetoken/cookies............c.ccccue..... 53

6.1.6 ToKen request ParametersS.......cccccevvereeseesieereee e e ere e 56

6.2 Practical security in AmMazon ShOPcccovveiiiieiice e 57

6.3 DISCUSSION ...ttt sttt bbbttt bbb e s ens 63
6.3.1 Speculation of encrypted tOKENS...........ccevveieiieiiicceec e 63

6.3.2 Digest function and origin of signing Keyccccccevvveveieeivececee, 63

6.3.3 Problems with a fake CA SSL certificateccooererineienisnninnn 64

7 WHEN SSL IS ..o 65
7.1 MITM attack iN PractiCe.........cccevvieieeiieiieie s 65
7.1.1 MITM attack preparation...........ccccovevveiiesieenesie e se e see e 65

7.1.2 The attaCk Phase..........ccceiieieeiii i 66

7.2 Gained information and itS USAQE..........ccevvveiiieeieeiie e 69
7.2.1 Exploiting the gained information - Custom requests....................... 70

7.2.2 Exploiting the gained information — Victim’s encrypted password .. 71

7.3 The weaknesses and their prevention............cccovveveeve e 72
7.3.1 The WEAKNESSES......cviieieitiiiesiieieeie ettt ens 72

7.3.2 What a user can do to prevent or stop a MITM attack?..................... 72

7.3.3 What steps has Google taken to protect the USer?cccccvevvernennee. 73

7.3.4 What a service provider can do to prevent a MITM attack? 74

8 Google and Amazon COMPAISONccveiveieeireerieeresteeseeeesreesreeeesreesreeeesreesreenee e 76
8.1 Google security features SUMMAIYccccoveieiiieieeie e 76

8.2 Amazon security features SUMMAIYcceieiieieeie e 78

8.3 Comparison of Google and AMAZON..........cceierireienireeeee e 79
8.3.1 Security IN geNeralccooiiiiiiieee s 79

8.3.2 Market place SPECITICScccvririiiiiee e 79

T O] o 1151 o] 1SR 81
L (=] =] 00T 83

APPENIX A .ottt bbbt b e 88

ABBREVIATIONS

APK
AWS
CA
CN
CBC
DNS
GA
GLS
GMS
GPS
HMAC
HTTP
HTTPS
IANA
IETF
IKE
ITU
ITU-T

JSON
MAC
MITM
OHA
OS
PKI
RA
SAN
SNI
SSL
TCP
TLS
URI
XML

vii

Android Application Package
Amazon Web Services

Certificate Authority

Common Name

Cipher Block Chaining

Domain Name Service

Google Auth

Google Login Service

Google Mobile Services

Google Play Services

Hash-based Message Authentication Code
Hypertext Transfer Protocol
Hypertext Transfer Protocol Secure
Internet Assigned Numbers Authority
Internet Engineering Task Force
Internet Key Exchange

International Telecommunication Union
ITU Telecommunication Standardization Sector
Initialization Vector

JavaScript Object Notation

Message Authentication Code
Man-In-The-Middle

Open Handset Alliance

Operating System

Public Key Infrastructure
Registration Authority
SubjectAltName

Server Name Indication

Secure Socket Layer

Transmission Control Protocol
Transport Layer Security

Uniform Resource ldentifier
Extensible Markup Language

1 INTRODUCTION

Mobile devices, such as smartphones and tablets, have become an integrated part of our
everyday life and are used now by all age groups. These devices are used for
entertainment, communication and business, and hold data of great value, from personal
and business perspective. Service providers and vendors have started to offer more
personal services to users and the location of the user’s data has blurred between the
user’s device and the service provider’s cloud. This has set a requirement for the device
to be constantly communicating with the cloud in order to get updates, synchronize
data, etc. Since the devices are constantly communicating and accessing users’ data, it is
not enough that the data is secured just during the transit. Also, the access to the users’
data in the cloud has to be secured.

According to Stallings [1] the threats that any data faces in the web could be
classified in active and passive attacks. Passive attacks include eavesdropping on the
traffic and the attacker gaining restricted information. Active attacks include message
tampering during the transit and impersonating another user. [1] These attacks break the
basic security properties, such as, integrity, confidentiality and authentication.

Android is an open source and customizable operating system (OS) for mobile
devices that has become leading smartphone platform early in 2010 [2]. The two biggest
Android versions in the western world, at the time of writing in fall of 2014, are Google
Android (a.k.a. Android Open Handset Alliance (OHA)) and Amazon Fire OS [3]. This
thesis concentrates on how Google and Amazon have secured the communications
between their applications in the mobile devices and services in the cloud.

The aim is to identify what security mechanisms the vendors use in practice in the
communication channel and analyse findings. Internal security mechanisms in the
device and adequacy of the found mechanisms in the considered context are out of
scope in this thesis.

The work was done by examining one device from both vendors and devices were
studied in a networking laboratory. The study was done while performing a Man-in-the-
middle (MITM) attack to the devices. Market application from both vendors (Amazon
Shop and Google Play Store) was selected for closer inspection. These applications
were selected because they execute common functionality and are therefore comparable.
The communications were intercepted and in certain cases manipulated. Also, the
communications were logged and analysed manually afterwards.

Based on the findings an attack is performed to the Google Android device and the
author’s Google account to demonstrate, what the attacker is capable of doing when
SSL/TLS protocol fails. A proposal to counter the threat is given.

The thesis is divided into 9 chapters. After the introduction, in Chapter 2 the basic
security mechanisms and protocols are covered. Chapter 3 presents the test
environment, the used software and how the devices and applications were observed to
communicate. Next, in Chapter 4 certain Google’s and Amazon’s specific services and
protocols are covered for background information. Then, in Chapter 5 Google’s and in
Chapter 6 Amazon’s results from the observations are presented in their respective
chapters. This includes what tokens were found, how they are acquired and in-depth
look to the market application. Chapter 7 describes what an attacker can do in practice
when SSL/TLS protocol fails in a Google Android device and proposes ideas for
prevention. In Chapter 8 Google’s and Amazon’s found security mechanisms are
summarized and compared. And finally, in Chapter 9 conclusions are presented.

2 SECURITY BASICS

Chapter starts by covering the most basic information security terms. Next, it moves to
present tokens. Then basic overview is given to cryptographic functions, starting from
cryptographic hash function and then moving to digital signatures. Next, it covers public
key infrastructure and moves then to cover the SSL/TLS protocol. The chapter ends by
presenting the man-in-the-middle attack.

2.1 Basic terms

Authentication is a “process of verifying a claim that a system entity or System resource
has a certain attribute value” [4]. In other words, it is a process of confirming, for
example, the identity of a person by her identity documents. Authorization is a process
of granting approval to a system entity to access a system resource [4]. Google’s own
terminology in their documentation might be confusing, because they use term Auth to
address both, authentication and authorization [5]. Integrity is guarding that data has not
been changed, destroyed, or lost in an unauthorized event or in an accident [4].

In symmetric cryptography the same key is used to encrypt and decrypt the message.
In asymmetric cryptography (a.k.a. public key cryptography) a pair of keys (public and
private key) is used for different cryptographic operation (e.g. encryption and
decryption, or signature creation and verification). [4]

Nonce is defined by NIST [6] as “A time-varying value that has at most a negligible
chance of repeating, e.g., a random value that is generated anew for each use, a
timestamp, a sequence number, or some combination of these” [6]. Nonces are used, for
example, in an initialization vector (IV) of a cipher block chaining (CBC) mode and in
internet key exchange (IKE) [1] and could be used to assure the recipient that a message
is fresh and not an old message that an attacker has observed [7].

2.2 Token

According to RFC 4949 Internet Security Glossary, Version 2 the token is an
overloaded term in the computing literature. The term is used for describing, for
example, a physical device that is used to store cryptographic information or a data
object that is used to verify the identity in the authentication process. This thesis uses
the definition used for capability token, whenever token is mentioned. Capability token
is a (usually an unforgeable) data object that gives the holder or bearer the right to
access a system resource. Possession of the token is accepted by a system as proof that
the holder has been authorized to access the resource indicated by the token. [4]

Tokens were observed to be exchanged between mobile devices and service providers
in 3 different ways in HTTP messages: in HTTP header (Authorization or custom HTTP
header), HTTP cookies and in message body (e.g. plaintext, encoded in base64URL,
JSON obiject, etc.).

POST /gsync/sub HTTP/1.1

Authorization: GoogleLogin auth=DQAAAPOAAADt01DtAdd7cqgY¥dKOnb0Zeu2m-
82WIyPMWrVc2£fJh418rg toKPVVcGhHO97DE93faNONrM7Wpd4yALO9nA Fpl-7i4NsldwvaC50g6iPUa
3-X187awvlkEcIHwiuPghbug8ch9uwCkxAYRUYEOEASZ1ANTIH66tgp0Kd5z8hKmmIg96FwbBHVLY6E
EJ 11BASVUDCAIpx3K-30ytk91IN70tVCb4p5CpUoTiI-QV03aGVBG6ba-2UrS8oFchnAgqJMB46VYTig
AGEsKpkSSnLvaQN5UcF6go820se5pP9G6eY1LJICowF7LxgRO61zQ1bKRA-SVIRgYQI3pNpHIGuUS5VOI
9NVxs

Content-Length: 471

Connection: Keep-Alive

Listing 2.1 Token provided in the Authorization HTTP header field.

POST /proxy/gmail/mail/g/?version=... HTTP/1.1

Connection: Keep-Alive

Cookie: GX=DQAAAPOAAADtO1DtAdd7cqgYdKOnbOZeuZ2m-82WIyPMWrVc2£fJh418rg toKPVVcGhH9
7DE93faNONrM7Wp4yALOnA Fpl-7i4NsldwvaCSog6iPUa3-X187awvlkEcIHwiuPghbug8chSuwCk
XxAYRUYEOEASZIANIH66tgpO0Kd5z8hKmmJIg96FwbBHVLY6fEJ 11BA5SVUDCAIpx3K-30ytkS1N70tVC
b4p5CpUoTiI-QV03aGVBG6a-2UrS80FchnAgqIMB46VYTigAGEsKpkSSnLvgONS5UcF6go820se5pP9G
6eY1LJCowF7LxqR961zQ1bKRA-SvIRgYQI3pNpHIGUSVOIINVKS

Cookie2: $Version=1

Listing 2.2 Token provided in a HTTP cookie.

POST /auth HTTP/1.1
content-type: application/x-www-form-urlencoded

device country=fi& ... &EncryptedPasswd=oauth2rt 1%2F406mny5jZzr7hLLS8RMwYUXOM
OokCkeBLRvAlclag3M

Listing 2.3 Token given in HTTP message body.

It should be noted that usage of observed HTTP headers (Authorization or custom),
do not all the time strictly follow HTTP specifications. For example, the authentication
scheme “GoogleLogin” in Listing 2.1 is not found in Internet assigned number authority
(IANA) maintained HTTP authentication scheme registry [8]. Also, many observed
custom headers started with prefix “X-“, which RFC 7231 advises not to use [9].

2.3 Cryptographic hash function

According to Stallings [1] the cryptographic hash function might be the most versatile
cryptographic algorithm and it is widely used in security applications and Internet
protocols. For example, cryptographic hash functions are used in message
authentication, digital signatures, one-way password files, intrusion detection, virus
detection and pseudorandom number generators. In general, hash function’s main role is
to produce data integrity, because its characteristics provide a way to know whether or
not data has changed. [1] In the simplest way hash function can be described as a

function, which takes as an input a variable length message or data block and produces a
fixed length output. Figure 2.1 presents a widely used hash function structure.

N x block length
Message m, length L bits

Eblock5
Mgy ‘ml 'mz ‘mn-l 'mnHPB

| _

H(mg+1V) H T H _H(m)
L -

AV

block= e.g. 1024 bit

PB= 1000...0 || msg m length
Figure 2.1 Diagram of Merkle - Damgard structured cryptographic hash function.

A hash function H produces a fixed-length hash value H(m) or message digest from
a variable length (L bits) message m, which is padded with padding block PB. Message
m is divided to fixed length blocks (e.g. 1024 bits). In the Figure 2.1 the input for the
hash function H starts with fixed value IV and message block m,. The output H(m, +
IV) is then fed as input together with next message block m, to the hash function H.
This is iterated until the final message block m,,, which is padded with padding block
PB in order fill the final block to the fixed block length. If the message m length is a
multiple of the fixed block length, then new block is concatenated consisting of just the
padding block PB. The PB binary value starts with 1 followed by variable amount of
zeroes and ends with fixed length (e.g. 64 bit or 128 bit) field containing the value of
the message length L. The Merkle — Damgard type structure is used, for example, in
MD5 and SHA-1 hash functions. [10]

Properties for a “good” hash function are that a large set of inputs produce evenly
distributed and apparently random outputs. Also a change to one or any of the bits in the
message M results in the output hash value H(m) to change with a high probability. [1]

A cryptographic hash function has more strict requirements in order to be suitable
for security applications. Stallings [1] defines a cryptographic hash function as an
algorithm for which no attack is significantly more efficient than brute-force and
therefore is computationally infeasible to find either:

e adata object mapping to a pre-specified hash result (the one-way property)
e two data objects that map to the same hash result (the collision-free property)

If an attack is found, for a cryptographic hash function, that breaks algorithm’s one-
way property or the collision-free property then that algorithm is considered
cryptographically broken and is not suitable for use anymore. For example, in 2004,
2005 and 2008 weaknesses were found on the cryptographic hash function MD5 [11],
which allowed an attacker to generate collisions [12]. In practice, this gave the attacker
the ability to spoof SSL CA certificates that used MD5 signing algorithm [12].

2.4 MAC and HMAC

Message authentication code (MAC) provides message integrity (like cryptographic
hash function) and authenticity of the sender. MAC algorithm requires the use of a
secret key, which is used as an input together with the message. The secret key is shared
with the recipient, who uses the key to generate the MAC and verify the message. [1]
Figure 2.2 presents the basic usage of MAC.

Source A (Destination B_)

< >

K

. XD—:
Compare

| ; A

*

L4
C(K,M)
MAC = MAC(K,M)
M = input message
C = MAC function

K = shared secret key
MAC = message authentication code

Figure 2.2 Basic use of message authentication [1].

In Figure 2.2 the sender (Source A) creates the MAC by using the message M and
shared secret key K. The generated MAC is then concatenated with the message M and
sent to the recipient (Destination B). The recipient generates the MAC from the received
message M using the shared secret key K. Then recipient verifies the message M by
comparing her own generated MAC to the given MAC. If the recipient gets same MACs
then the message has not been altered and it has come from known sender. [1]

MAC functions can be created using different means, such as, symmetric block
cipher or cryptographic hash function. The latter is also known as hash-based message
authentication code (HMAC). The usage of HMAC has been motivated by the facts that

hash functions are generally executed faster than symmetric block ciphers and the
library codes for the hash functions are widely available. HMAC is used in SSL and IP
security. [1] Another useful feature is that in RFC 2104 [13] HMAC was designed in a
way the embedded cryptographic hash function can be changed, for example, when a
faster or more secure hash function is required.

2.5 Digital signature

A digital signature is a security mechanism that provides authentication, data origin
authentication, data integrity and nonrepudiation for messages or digital documents. It
enables the creator of the message to attach a code that acts as a signature. [1] Figure
2.3 provides a generic model of the digital signature process and Figure 2.4 a simplified
depiction of digital signature process’s essential elements.

Bob

Bob's
private
key Transmit
Message M
¢ _I—) Message M
Digital)
signature S Digital
generation signature
algorithm verification
algorithm
Bob's S
signature Return
for M signature

valid or not valid

Figure 2.3 Generic model of digital signature process [1].

The digital signature process starts by Bob creating a message M. Bob then uses his
private key to create a signature S from the message M. The message M and the
signature S are then transmitted together to Alice (the receiver), which then verifies the
signature using the message M, signature S and Bob’s public key. The digital signature
verification algorithm returns information whether the signature is valid or not valid. [1]

Alice

Bob

o
Bob's
public
key
Message M Message M S

T I o—r

Cryptographic Cryptographic

Bob's function function

private
key l ¢

TE‘-E& h h h'
I |

Bob's
signature S Return
for M signature

valid or not valid

Figure 2.4 Simplified depictions of essential elements of digital signature process [1].

The digital generation algorithm in its essential parts is depicted in Figure 2.4 below
Bob. The process starts by Bob creating a cryptographic hash value h of the message M.
Bob then encrypts the hash value h with his own private key and the encrypted value is
the signature S that is sent with the message M to Alice. [1]

Once Alice receives the message M and signature S she starts the verification
process. First she creates a cryptographic hash value h from the received message M.
Then she decrypts the received signature S with Bob’s public key and gets hash value
h’. Hash values h and h’ are then compared together whether they have the same value.
If the values are the same then Alice knows the signature S is valid otherwise the
message M cannot be trusted. [1]

Cryptographic hash function’s role is to provide message integrity. Alice can be
certain the message has not changed after Bob’s signing, when she creates s hash value

of the received message M and compares it to the given (decrypted) hash value h’ and
the values are the same. Alice’s certainty of the message originating from Bob comes
from the fact that only Bob holds the key used to encrypt the hash value h from the
message M. The data origin and nonrepudiation features also stem from the same fact:
only Bob holds the used encryption key and therefore the message M must have come
from Bob and he cannot repudiate from sending the message.

2.6 Public Key Infrastructure X.509

According to RFC 4949 [4] public key infrastructure is “the set of hardware, software,
people, policies, and procedures needed to create, manage, store, distribute, and revoke
digital certificates based on asymmetric cryptography”. The Public key infrastructure
X.509 (PKIX) is a model, created by IETF that is suitable for a certificate-based
architecture on the internet. The model is presented in Figure 2.5.

X.509 is originally a standard created by International Telecommunication Union
(ITU) Telecommunication Standardization Sector (ITU-T) and later on further
developed by IETF, e.g. in RFC 5280 [14]. X.509 defines, among other things, the
structure of the certificate and authentication protocol, which are used in other protocols
(e.g. Secure Socket Layer (SSL)/Transport Layer Security (TLS)) [1].

Certificate/CRL retrieval .
<« End entity
PKI management entities Registration,
initialization,
N certification,
Ced!flcgte key pair recovery,
- publication Registeration < key pair update,
Certificate/ Authorit revocation request
CLR Repository Y ‘ | i
< Certificate/CRL publication Certificate
Authority
o . Cross
RL I CRL
< CRL publication Issuer ¢certification
Certificate
Authority

Figure 2.5 PKIX architectural model [1].

In the Figure 2.5 term end entity stands for end users, devices and other entities that
can be identified in the subject field in the certificate. Certification Authority (CA) is the
issuer of the certificate and (usually) certificate revocation lists (CRL). Registration

10

Authority (RA) is an optional party that can assume certain administrative functions
(often associated in the registration process) from the CA. CRL issuer is another
optional component that a CA can delegate to publish CRLs. Repository is a term used
to describe any method for storing certificates and CRLs, and distributing them for end
entities. [1]

The PKIX model has certain management functions. Registration is the process
where a user makes itself known to the CA that issues a certificate to the user. This
process involves some form of mutual authentication. Initialization process where client
system acquires securely the public key and other assured information of the trusted
CA(s) in order to validate certificate paths. Certification is the process where CA issues
a certificate for the user’s public key, and returns the certificate and/or posts that
certificate to the repository. Key pair recovery allows end entities to recover their
encryption/decryption key pair from authorized key backup facility, which is usually the
CA that issued the certificate for the end entity. Key pair update is a process where the
end entity’s keys are updated and new certificates are issued. Update is required when,
for example, the certificate expires. In revocation request an authorized person requests
from the CA the revocation of a certificate. The revocation is done when, for example,
the private key to the certificate has been compromised. Cross certification is a process
where two CAs exchange information in order to create a cross-certificate, which is a
certificate issued by one CA to another CA that contains a CA signature key used for
issuing certificates. [1]

2.7 SSLI/TLS

SSL is a security protocol designed by Netscape [15] and it provides end-to-end security
services on top of the Transmission control protocol (TCP) [1]. Later on, SSL version
3.0 was standardized and further developed by IETF and at the same time the name was
changed to Transport layer security (TLS). SSL protocol stack is presented in Figure
2.6.

SSL SSL Change
_ SSL Alert
Handshake | CipherSpect HTTP
Protocol
Protocol Protocol

SSL Record Protocol

TCP

IP

Figure 2.6 SSL protocol stack [1].

11

SSL is a protocol that consists of two layers. The SSL record protocol provides
basic security services (confidentiality and message integrity) for higher lever protocols,
especially for the Hypertext transfer protocol (HTTP). The provided security services
are confidentiality and message integrity. The handshake protocol defines the keys used
in both services. The confidentiality is provided using encryption and message integrity
with message authentication code (MAC). [1]

The Handshake protocol allows the server and client to authenticate each other,
negotiate an encryption and MAC algorithm, and cryptographic keys used to protect the
sent data. The change cipher spec protocol uses the SSL record protocol. The change
cipher spec protocol consist of a single byte with the value 1 and its purpose is to cause
a pending state to be copied into the current state, which updates the cipher suite to be
used on this connection. The alert protocol is used to transmit SSL-related alerts, such
as, handshake failure, bad certificate, certificate revoked, etc. Each alert is either
warning or fatal. In the case of fatal the connection is immediately terminated. [1]

2.8 Man-in-the-middle attack

RFC 4949 [4] defines Man-in-the-middle (MITM) attack as an active attack where the
attacker intercepts and selectively modifies communicated data to masquerade as one or
more of the entities involved in a communication association [4]. In this thesis the term
MITM attack is also considered to include passive attacks, such as, eavesdropping.
Figure 2.7 visualises a MITM attack.

A B
Percieved connection >

The attacker

Man-in-the-middle connection
Figure 2.7 MITM connection and perceived connection.

In the MITM attack, users A and B perceive that their connection goes straight
between A and B. However, in reality the connection goes through the attacker, which
IS in position to eavesdrop and modify the messages of the communication at will.

12

3 TEST ENVIRONMENT

The chapter starts with presenting Android OS, what software was used in the work and
what is was used for. The chapter concludes in presenting the used devices, the
environment and how it worked.

3.1 Android and Used software

This section briefly covers the software used in the test environment. The section starts
with OpenSSL. Then it moves to consider software used to perform the MITM attacks
and then to the used network analysing tool Wireshark. The section concludes in
covering the other used software and operating systems.

3.1.1 Android OS

Android is a mobile operating system based on Linux kernel. Android OS is open
source, but in practice nearly every device comes with open source and proprietary
software [16]. From 2007 Android has been developed by the Google led Open Handset
Alliance (OHA) [17] consortium of 87 hardware, software and telecommunication
companies [18]. In smartphones, Android is the most popular OS by having the biggest
market share at nearly 85% in Q2 2014 [19].

3.1.2 OpenSSL

OpenSSL is an open source toolkit implementing SSL and TLS protocols, and has a
general purpose cryptographic library [20]. In this thesis OpenSSL was used for three
things: creating a private and public key pair, creating a CA SSL certificate, and as a
generic SSL/TLS client.

3.1.3 MITM software — SSLsplit & mitmproxy

The software used to implement the actual MITM attacks were SSLsplit [21] and
mitmproxy [22]. Mitmproxy is capable of proxying only HTTP(S) connections and
modifying the HTTP traffic. SSLsplit is a more generic MITM attack software than
mitmproxy, as it is capable of performing the attack on any SSL/TLS connection.
However, SSLsplit cannot be used to modify the traffic. SSLsplit and mitmproxy were
used as transparent proxies, since Android application’s behaviour cannot be changed.

13

3.1.4 Wireshark

Wireshark is a network protocol analyser capable of deep inspecting and decrypting
hundreds of protocols, live data capture and more [23]. In this work Wireshark was used
to intercept SSL/TLS traffic and analyse the contents offline. For example, SSLsplit is
fully capable of capturing the all the data from SSL/TLS traffic, but it is in a form that is
much harder to analyse.

3.1.5 Other software

The MITM attack was done with the author’s laptop, which was running Kali Linux.
Kali Linux is a Linux distribution made for penetration testing [24]. In the laptop
hostapd application was used to create a WiFi (802.11) access point, where the “victim”
would connect. Iptables software was used to route traffic in the laptop to certain ports,
for example, those that SSLsplit was listening.

3.2 The environment

The test environment is presented in Figure 3.1. The used devices are a laptop (with
software described above) and Android devices: Samsung Galaxy S3 4G (Android OS
4.3.), Samsung Galaxy Trend Plus (Android OS 4.2.2) and Kindle fire HDX 7” tablet
Fire OS 3.0 (compatible with Android 4.2.2. [25]).

The work begins (not shown in the Figure 3.1) by creating a public and private RSA
key pair, which is then used in creation of self-signed CA SSL certificate. The key pair
and certificate were created with OpenSSL. Then the CA SSL certificate is installed to
the Android device (red dotted line in Figure 3.1). All the Android devices had an
option in the security settings to install a trusted CA certificate, so no special trickery is
required from the attacker.

Perceived connection

Android device i i
("victim™)

Wireless
access point

Internet

The attacker

Actual connection/

\ MITM connection
N <
S < _ — ~ Wireless AP with
Install the trusted Wireshark and
CA SSL certificate SSLplit/

mitmproxy
Figure 3.1 The test environment.

14

The laptop is setup to be a wireless access point, where Android devices would
connect to. The created private key is given to the SSLsplit software, so that it uses that
key instead of creating its own keys, when forging certificates. This is a helpful feature,
because the same key can now be given to the Wireshark, in order to decrypt and
analyse the captured traffic between the Android device and the attacker’s laptop.

When the Android device connects to a service in the Internet it perceives the
connection to be straight (black connection in Figure 3.1). During the MITM attack the
Android device’s connection is actually terminated in the attacker’s laptop by the
MITM software and then the MITM software initiates a new connection to the original
destination (red connections in Figure 3.1). Figure 3.2 presents how mitmproxy proxies
HTTPS transparently.

1:Connection
>
router
2:Redirection
Client 4:Initiate SSL
en handshake with Server
3:Initiate SSL SNI
handshake with)
SNI
> -
6:Complete SSL mitmproxy 5:CN & SANs
handshake (
<
7:Request 8:Request
> >

Figure 3.2 Transparent HTTPS with mitmproxy [26].

First the client makes a TCP connection to the server. The router redirects the
connection to the mitmproxy. In the environment the router was actually the attacker’s
laptop and the mitmproxy was in the same host (listening to another port). In the third
phase, the client believes it is talking to the server, initiates SSL connection with the
handshake, and uses the server name indication (SNI) to indicate the hostname it is
connecting to. [26] SNI is an extension to the TLS protocol and it is a mechanism for
client to tell the server (during the handshake) the hostname the client is connecting to
[27].

The mitmproxy will pause the SSL handshake with the client and then it connects to
the server and establishes an SSL connection with the given SNI. The server responds
with SSL certificate, which contains the common name (CN) and SubjectAltName
(SAN) values needed for the forged SSL certificate. [26] SAN is an extension in the
X.509 certificate that allows identities to be bound to the subject of the certificate (e.g.
email and IP addresses, URIs, DNS names, etc.) [14]. In the sixth phase the mitmproxy

15

gives forged certificate to the client and continues the paused SSL handshake with the
client. [26] The client trusts to forged certificates, because the attacker has installed her
own rogue CA SSL certificate to the client’s device as the trusted CA certificate. In the
final seventh and eighth phases, the client generates request and mitmproxy passed the
request to the server, once the SSL/TLS connection has been established between the
client and mitmproxy.

16

4 GOOGLE AND AMAZON

The chapter starts with presenting how Google’s and Amazon’s market places generally
work. Then certain Google’s services and protocols are described for background
information.

4.1 Google’s and Amazon’s market places

Google’s Play Store and Amazon’s Shop applications are market places that provide,
for example, applications, movies, books, etc. to download and buy. The application
market was selected for closer inspection, because it was a feature common to both
applications and they would be therefore comparable.

In general, the process flow in a simple use case, when downloading a new mobile
application from Google Play Store and Amazon Shop were similar in both markets
places. The market place process flow is presented in Figure 4.1. However, it should be
kept in mind that Figure 4.1 generalizes the process flow and therefore does not
represent all actions market places take. Full listing of actions would have required
more detailed reverse engineering, which is out of scope of this thesis.

For a user the use case consisted mainly four parts. First starting-up the market
application, then searching and browsing of applications in the market. Thirdly,
selecting the desired application and in the fourth part the decision to buy and install the
application. In Google Play Store the user had to take one more action, authenticate
herself, when buying paid software from the Play Store.

Amazon shop did not require the user to authenticate herself at all during the use
case. The user was authenticated when she added her Amazon account to the device and
when she added credit card details to the Amazon account at Amazon’s website.
Amazon required credit card details to be added in order to download any application
from the Amazon shop. Google required credit card details only when buying paid
applications.

17

/User actions (User's market application's actions

Open the
market place

Load the
frontpage

|

|

|

|

| 5

Amazon

|~

|

|

I

I Google

Securit;:heck

’{ Load needed For example, next
information. 10 images of most
popular

applications, etc.

Searche and/or
browse
applications

Select the
desired

giklication Load detailed
information of the For example,
selected reviews and
application. recommendations,
4 |etc.

Decide to buy
and install the
application

A — =

Google
(Paid softw are)

Authe nticate]

Amazon and
Google (free softw are)
Download the

| application and
install it.

Google

Inform the
user that the
application has
been installed

Retrieve
licenses and
tokens for the
application

Figure 4.1 Generalized flow diagram for a simple market use case.

Market places had five actions in common and one distinct action from the other.
First, when the user started the market application, it loaded the front page (which could
include the images of top recommended applications etc.). Google’s Play Store also
does one security check at this point. The second and third common phases happen

18

when the user starts to search and browse applications, the market then loads the needed
resources such as, images for next ten most popular applications. And when the user
selects the desired application in the third phase, market downloads the application
specific information, such as, details of the application, reviews and recommended
applications.

Google’s Play Store and Amazon’s shop start to differentiate from each other when
the user decides to buy the desired application. In Google’s case, when the user buys a
paid software he/she is prompted to authenticate before the transaction is confirmed.
After the authentication the application is downloaded and installed to the device. The
user is not required to authenticate when installing and downloading free software from
the Google Play Store. Also in Google’s case the application receives a security token
after the installation when the application is started the first time (not shown in Figure
4.1).

Amazon’s shop does not require the user to authenticate herself when the user
decides to buy the desired application. Amazon’s shop also retrieves automatically the
necessary licenses and tokens after the application has been downloaded and installed to
the device.

4.2 Google specific details

This section starts with presenting Google Login Service (GLS) and Google Play
Services (GPS). Then it moves to cover Google’s own proprietary mechanism called
ClientLogin, which is used in the Google’s Play Store. And finally, the Google 2-step
verification is presented.

4.2.1 Google Login Service and Google Play Services

When a user’s Google account is successfully added to an Android phone, the phone
offers to synchronise the user’s data with Google online services (e.g. Gmail, etc.).
During this process Google’s applications in the mobile device get tokens for the
services they represent. The applications get their tokens with the help of Google Login
Service (GLS), which works as authentication provider for Google accounts. [28]

It should be noted that the description above concerns only the adding of a user’s
Google account. Since online services have different ways of handling accounts and
authentication, Android OS has an account manager, which provides a centralized
registry of the user’s online accounts, for example, Facebook, Google, Amazon, etc.
The account manager uses pluggable authenticator modules (which may be developed
by a third party) for different types of accounts, which actually handle validating
account credentials, etc. to the specific online service. [29]

While Android OS is open source software, Google’s applications are not. Google
has set certain compatibility requirements for devices, before phone manufacturer is
eligible to license Google Mobile Services (GMS). [30, 31] This means that there are

19

Android devices without Google applications and services, which therefore work
differently (e.g. Amazon Fire tablets) when a user is added to a device.

Google Play Services (GPS) is a platform that offers among other things OAuth 2.0
tokens. GPS is tightly integrated with the Android OS [32] and according to Ars
Technica [33] Google applications do not work if Play Services is disabled on the
mobile device.

4.2.2 ClientLogin

ClientLogin is a Google’s own proprietary mechanism which provides authorization and
authentication [34, 35]. Figure 4.2 presents ClientLogin message flow for installed
applications, which seemed to be the closest documentation to the observed behaviour.

i 2. Requets token
oupples S00dk T Chemiogn >
login & password " g
& Forwards CAPTCHA R Mal;es” CAPTCHA
challenge
T challenge q Google
5. Responds with *6. Rerequests token Accounts
CAPTCHA answer > with CAPTCHA Authorization
Installed (Responds with
Application token
8. Requests data >
with token
Google
< 9, Responds with Service
requested data Access

Figure 4.2 ClientLogin message flow for installed applications [34].

ClientLogin works as follows [34]: First, the installed application provides user
interface for the user to supply login credentials. When the user has provided her
credentials the installed application forwards them to Google. Steps 3 — 6 in Figure 4.2
cover additional vetting, which Google might require. In such case Google issues a
CAPTCHA challenge to which the user must answer. After a successful authentication
Google provides token for the installed application (step 7 in Figure 4.2). Finally in
steps 8 — 9, the installed application sends its request to Google service and is provided
with a reply. [34]

20

4.2.3 2-step verification

2-step Vverification is a Google’s own mechanism for its users to authenticate more
securely to the Google services. During the sign-in the user is required to provide
something she knows (password) and something she possesses (phone or security key).
In practice, the possession of something is to give a verification code or insert a security
key. Google provides several methods for getting verification codes, for example, text
message, dedicated application, phone call, printed backup codes, etc.). The verification
code is a six-digit one time password (OTP) and the security key has to be compatible
with the open standard called “FIDO Universal 2™ Factor (U2F)”. [36, 37]

4.3 Absence of Amazon’s specific details

This thesis does not present any Amazon’s specific feature or protocol, because none
was observed. The author personally believes the reason for this observation is that
Amazon software is so integrated to their device that they have nearly complete control
over it. Amazon also has only its own and a handful of devices, where their software has
to work.

This standpoint is completely different from Google, where their software runs in
other device manufacturers’ devices. In addition, Google provides more services and
applications for its users than Amazon. Also the devices and Android OS version, where
their software has to work is more numerous. So the sheer number of services and
backward compatibility requires Google to have more protocols and features.

21

5 GOOGLE RESULTS

This chapter first presents how Google’s acquires, uses and renews tokens. After that
Google Play Store’s security is observed and chapter concludes with discussions on
findings. All listings in this chapter have been modified (e.g. parts omitted, bolded, etc.)
for readability.

51 Tokens

Google Android client applications used tokens heavily. They were observed in nearly
every message sent to Google. It can be assumed that some kind of token was always
sent along in every message unless otherwise explicitly stated. One general exception to
this rule was image downloads, which did not use tokens at all.

During the observations at least five different tokens were observed, which are
presented in Listing 5.1. Some additional token-like things were observed such as
config-tokens and HTTP cookies. These token-like things are not addressed in depth,
because their usage and roles were not well understood.

Tokens were observed to be delivered by client applications in three different ways,
which were described in section 2.2. An important way is to use HTTP header
Authorization attribute (Figure 2.1), whose value was consisted of two parts;
mechanism and token value. Mechanism part consisted of a name of the mechanism
used to acquire the token, which was observed not always being the case. Observed
example values of the mechanism are; GoogleLogin, AuthSub, OAuth and Bearer.

Tokens differentiated from each other mainly by length and some tokens could be
recognised from first few characters. For example, GLS tokens seemed always to begin
with DQAA and GA tokens with ya29.1.AADtN. The length of tokens belonging to the
same type was not always the same.

Master token (GLS):
oauth2rt 1/406mny5jZzr7hLLS8RMwYUX0MOokCkeBLRVAlclag3M

GA token:
ya29.aQAQCcMZ2yQR EOAAAB MQ3GI5 1GpBSLDsFS-venMX6K3TI3HjpQJRjF49JGlwpiLMYMFAXK
6ugQRK7pMbAGEWGgDWiIgZ1BBeRzJfYpmWOLUS5Iavi88c6R807eZQ

GLS token:

DQAAAPsAAABpHeBTHg9gB-vyoONAG 3zIcFUwJjACKTRBLuaEr6XcGza83zwIDDMzWuXheRvVLMUYNEZ
AOt2va_6U2mY_Luka8QlFsYuYS81mPDWPpovak53U9Nu2—3drSDYOw6LsozZ9th_uerHRZIrt
CU5SkmYSbLsOl yon890aflF3XGJIDwohwSfhAWgqweGum-rHnJh8eF9QjPgFjEAfsgZo0NHvdkgTeQe
MFx6pg9S G2-7IPOihP2qromlngPURApP35ZbOmAJHzHGahu8a-3x9BtWOfBz4TvOz W5WdhiTb2H
12Yj gn3dBKMlouFyyWIgS3isUpjSVghO-Ti9-49

22

Ubertoken (GA, weblogin):
APh-3FyrN6yRUf6XiAWT1KSMI81vFsLBq0Jrejhz3PZHpA o03SZjddbogy6aXm 2Q0RtT8ZwQP3Dhu
_ VKmu2IEBYG8 TGSMeX5rj7kpm7mbJAT]j205ye9gh9mdhQiBCvDCIcloxE]jjV-10VW62VG1TBDPCnd
KiuvgvOYou5U6TaT]ffUSwkFw D6aZBRWyt2M7DfdECE4EFkl1igL]j9rp]j5mhropHgBWy2iLweZK7Hh
aspaaQdL29CSAPLJEXTImdBdAkE2kh1-SXJmIMQOtsJxasF6£fDhlZvhvoMAmMSbUpHHr-gWdT1lmhsIFnr
wUV7JDRCWSb8h1ZztOUwInlRcRv_rDQOsDf11BsNtObW836IIQL2iMHjeIgAPU6g-FQytyHSKTFQd s
_ yoBYyuEKcCGgW9xg5H0YbTulIr4plO67M V34Gvceeiu9pClVLilgjCXIJwDIIMXc-sbAxm3reg8N>5
2GxXuFVVZDOuEwzQ6Fo30wzwyWgyBmxMBTy wgQaf7GbuB4rw-40ul3NaseNUTILmBTEYKY6WVPOXmG
5Wx 3 YUX4SxNbIbHWw6ATadTQYTMSDglwim6cd9hLgPDIW_gyc-6m0Y3WdQSDxQ2xFRAVEuwaY1YR Wq
IXK55y0

Play Store application download token:
AOTCmORaEzu50£f11gVPwCxV0eWL T1E5fqoxesTQUveP5s6]3pjfl1B8r9KIzBWeiYNvdz17Pd40 s6
XT5La%hVBfrd¥YqgdCiwREn4YUsHrgh2tKMbg

Listing 5.1 Observed example tokens: Master token, GA, GLS, Ubertoken and
application download token.

Tokens were observed to be used only for authorization and it is not known whether
tokens had other information included within them in some way. For example, GLS and
Ubertoken are long strings, which can easily contain encoded information.

In general, the acquirement and usage of security tokens for Google’s service
happens in three phases. At first a “master token” is acquired, and then in the second
phase the master token is used to acquire another token for a mobile application or its
service. And finally, the mobile application or service sends its request to Google along
with the second acquired token included in the message. There is also one exception to
the three phased token usage, namely Weblogin, which also uses the master token, but
the application specific token is acquired by exchanging HTTP cookies.

All tokens were observed to be requested by sending a HTTP message to
clients.android.google.com/auth address. And it was noticed that in token acquirement
two different user-agent attributes were used in the HTTP header, Google Login Service
(GLS) and Google Auth (GA). Both of these user-agents worked in principle in the
same 3 phases. Differences were in parameters used in token acquirement, applications
that used either of the user-agents, and in message flow.

5.1.1 Master token

Master token was observed to differ from other tokens in two ways. It is acquired only
when a user’s Google account is registered to an Android device (Figure 5.1) and when
the user starts to use Google’s 2-step verification for authentication. The master token
was observed to be used only for acquiring new tokens for Android device’s Google
applications or services, when they were in need to access Google’s resources and
user’s data.

Google does not use the “master token” name, instead in the observations the master
token was in a parameter called token or EncryptedPasswd. Latter name is used for two
different things and therefore the name “master token” is used in this thesis to clarify

23

naming and emphasize the master token’s special role. The name master token is to the
author’s best knowledge first used by Nikolay Elenkov [28].

Android device Google

(Google Login Service)
1

I
: 1: HTTP POST /auth (email, encrypted passw ord, add_account, ...)

. 2:_H'IIP2£O,9K (_masfrtgken_,...)_

-
|
|

Figure 5.1 Master token acquirement, relayed parameters are in brackets.

Master token acquirement started with registering a user’s Google account to the
Android device. GLS sent HTTP POST /auth message (Listing 5.2) to Google (address
android.clients.google.com) containing, among other things, user’s Google email
address, and presumably user’s encrypted password (parameter EncryptedPasswd) and
parameter add_account. Email address was thought to be used as login identification
and parameter add_account indicating that the user’s account is to be added to the
device. The EncryptedPasswd parameter’s value was observed to change every time the
user registered to the device. According to Elenkov [28] Google very likely uses 1024-
bit RSA key and the optimal asymmetric encryption padding (OAEP) to encrypt the
user’s password.

POST /auth HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Host: android.clients.google.com

User-Agent: GoogleLoginService/1.3 (m3 JSS15J)

accountType=HOSTED_ OR _GOOGLE&Email=*****@gmail.com¢has_permission=1sadd_accoun
t=1&EncryptedPasswd=AFcb4KRHUI22tP-Yd3ILuXt1PsGWXM2ZaMkHVSgUyMxwQkLTr3YUExNnI7Q
vh2HT1kZuXbPhZggs4ZQvOruwsxPruv7NhdcYy9qylXQ6dhnYKiyCO9FgIWE6718gSAYwSYeJXsnQsl
8aA61mTXgybGOTOANOypiyXlowgE4nT7cy7ULlYB-RNQ==§&service=ac2dm&source=android
&androidId=32f8ab24222c9535sdevice_country=ficoperatorCountry=fislang=ens&sdk_v
ersion=18

Listing 5.2 GLS master token request message (Message 1, Figure 5.1).

HTTP/1.1 200 OK
Content-Type: text/plain; charset=utf-8

SID=DQAAAMSAAADmMPD ...
LSID=DQAAAMOAAAC20 ...
Auth=DQAAAMOAAAACO ...
services=mail,doritos,googleme, 1h2,talk,android,cl, friendview,

24

chromiumsync,multilogin

Email=****@gmail.com

Token=oauth2rt 1/406mny5jZzr7hLLS8RMwYUX0MOokCkeBLRVAlclag3M
GooglePlusUpgrade=1

PicasaUser=Tuomo Tutkija

RopText=

RopRevision=1

firstName=Tuomo

lastName=Tutkija

Listing 5.3 GLS reply message for Master token request (Message 2, Figure 5.1).

The most important part of the reply message for the master token request was
parameter Token. The Token field contained the requested master token. The rest of the
token parameters in the message (LSID, SID and Auth) were never observed to be used.
In fact, LSID and SID parameters in any GLS token replies were never observed to be
used. The reply message also contained the user’s name and information regarding to
other Google services.

5.1.2 GLStoken

The GLS token acquirement process is presented in Figure 5.2. The first message
exchange shows how the master token is used to acquire Auth token for a mobile
application.

O
O

[Mobile device]

Application or Google Login Service

service T

|
I I
I 1: HTTP POST /auth (master token, application, service, ...) I

_____ 2:H1TP200, OK (auth,..) _'U

loo

[]

|
I
|
|
|
|
| |
1 |
| |
1 |
| |
O O &
1 |
| |
1 |

3: HTTP request (auth token)

Figure 5.2 Sequence diagram of token acquirement with Google Login Service.

The Auth token is application or service specific (depends on which one the token
was acquired for). For example, the application com.google.android.gsf.login was
observed in token requests together with services such as ac2dm, mail and

25

chromiumsync. Newly acquired Auth token is then passed on in the second message
exchange, when the application sends it request to Google (Message 3, Figure 5.2). The
token is acquired usually only once for the application and the same token is then
always used by the same application.

POST /auth HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Content-Length: 339

Host: android.clients.google.com

User-Agent: GoogleLoginService/1.3 (m3 JSS15J)

accountType=HOSTED OR GOOGLE&Email=****Q@gmail.com&has_permission=1
&EncryptedPasswd=oauth2rt 1/406mny5jZzr7hLLS8RMwYUX0MOokCkeBLRVAlclag3M
&service=sierraé&source=androidé&androidId=3c5a5c3bcdbb2d7f
&app=com.android.vending&client sig=38918a453d07199354f8b19af05ec6562ced5788
&device_country=fisoperatorCountry=fis&lang=en&sdk _version=18

Listing 5.4 GLS token request message (Message 1, Figure 5.2).

HTTP/1.1 200 OK
Content-Type: text/plain; charset=UTF-8

SID=DQAAAPgAAAB4611U C32QIyonhi5oxcDsGOjRS--pHSbI9ENcQxsYOArHghnBmVbBoMEVAr2W d
niueIIVWYzh 2ym6DSWOO0KwUMGPNAanWOATIA3 sM3JIUzMs-AkYyK8zkhp4iIPmSuF9jTcA5ZiYiC
6rSumbChMbH5Y3pDdmZ-edLEzq7XHbR39g8L 16ZDjgKyODB0XSy hrllkoLVeNraBBORAsgKYiJ04
AKvZ2mlhofhMazn5anssfHnc3v2XL71yIyESHOWsCEObliZzH 1plFm-4pbM5zEOC4Hh7PWwotxa a-
CMtigd4ahsxhFmW6FJQKOYt98g3d1lXkngDBcSdzXvygMo
LSID=DQAAAPWAAAC29InFgb6fprKTxuKhzOaguRpSAtalgIb55ryrrvEMAM-BtM5gqSiBc5VQLM3y1hl10
xZ7SNH2Yu9miVnyJ5eL8kUVzP8cbOQGIp6r7-KbDmlgl34QPwMx9T VwamZT31jB6uxc6lMCabeawO
Z4vQ-otofjYwiQdkAWsB706G-gktTntuOP40-VRQv2BIM6QsCVWA nHx688513TmHEF Xh8LO9uENGs
CW44dsmWov_Fgz5XoL-w35qzZUXxGHIf6GeRBDV -insoOJCW8FxSpDjEJC]jc-E2yReK3rt5TWg6omx
wO659CsQQK3xIjdFHUZxXVS3BgjgL4FQeGvslFcc3c7Bm
Auth=DQAAAPSAAAC29nFg6fprKTxuKhzOaguRpSAtalOgIb55ryrrvEMAM-BtM5gSjBc5VQLM3y1hl0
xZ7SNH2Yu9miVnyJ5eL8kUVICVKtImm YPuAyJK78sO0cKChd Aylv8whDWI8Ygu-ZxSi9G8CIrS0i9
gQHYMTEN6nYJH oGA6GYQTz3k541NRIcL6gHYyXKeTVeoLWUqcVvVmamHPnIIOMFT1HP28Mw6DHOBQV
cx-98U-0Gzc7UdwZzsE]9bz111p43F1iiUnWdxJHXn50BydsPa70hagAgaEIPnsFcKRCQI ngmNehAWV
d4Cdz5fyyoTGmQRIpFkHo RVhYJg7JsGaeMV4amVHr838

issueAdvice=auto
services=mail,doritos, googleme, 1h2,talk,android,cl, friendview, chromiumsync,

multilogin,sierra,esmobile

Listing 5.5 GLS token reply message (Message 2, Figure 5.2).

GLS token request message (Listing 5.4) contained in the message body parameters,
such as, user’s email address (account name), EncryptedPasswd (master token) and the
name of the application requesting the token. The EncryptedPasswd parameter value in
Listing 5.4 contains the master token and it is different from parameter used in Listing
5.2, which presumably contains the user’s encrypted password.

The reply message contained the requested token in Auth parameter. As stated
earlier, other tokens (SID and LSID) in the reply message were never observed to be
used.

26

5.1.3 GA token

GA method to acquire the application specific token is almost identical to the GLS
method, differences were on request parameters, token expiry and usage. The process is
presented in Figure 5.3.

o}

[Mobile device]

Application or Google Auth -Google
service I‘—y—,

| |
A &
@ @
loo I | |
I I
[] : | 1: HTTP POST /auth (master token, application, service, ...) _ |
I
I
: _ _ _ 2 HTTP200,OKauh.) _ _ _ _
I
: .
I I
1 I
1 I
QO O O—
loo T I . [
i I | 3: HTTP request (auth token) ol
1
I ;
e _ _ Lo _ &MPrepy
I I
I I
I I
I I
L I
1 | |

Figure 5.3 Sequence diagram of Auth token acquirement with GoogleAuth.

Figure 5.3 presents the GA token acquisition process and usage. The main
difference between the GLS and the GA is that GA tokens have expiry time and
therefore applications need to request new tokens.

POST /auth HTTP/1.1

device:

app: com.google.android.gms

Content-Type: application/x-www-form-urlencoded
Content-Length: 468

Host: android.clients.google.com

User-Agent: GoogleAuth/1.4 (m3 JSS15J)

device_country=fisoperatorCountry=fislang=en GB&sdk version=18

&google play services_version=3225130&accountType=HOSTED OR GOOGLE
&system partition=1&Email=****@gmail.com&éhas_permission=1
&service=ocauth2:https://www.googleapis.com/auth/calendar&source=android
&androidId=3c5a5c3bcd5b2d7f&app=com.google.android.syncadapters.calendar
&client sig=38918a453d07199354f8b19%af05ec6562ced5788
&EncryptedPasswd=ocauth2rt 1/406mny5jZzr7hLLS8RMwYUX0MOokCkeBLRVAlclag3M

Listing 5.6 GA HTTP token request (Message 1, Figure 5.3).

27

The GA request message contained all the same parameters as GLS token request
message and in addition two to four other parameters depending on the message. New
parameters are google_play_services_version, system_partition, callerPkg and callerSig.
Parameters callerPkg and callerSig were not always present in the request. As with the
GLS token request message, EncryptedPasswd contained the master token.

HTTP/1.1 200 OK
Content-Type: text/plain; charset=UTF-8

issueAdvice=auto
Auth=ya29.PgBVooZERISNAIAAAABNFIMaNWZcbuZS-0hyiBtsUlP2kEK310CUNnG3se9%zq0k95ksJd
1alWljLSQk4krt4RIJRmAES8MgU] 7dwclGIGihfDwV048X1o5Uogm8foNwTQ

Expiry=1405060390

storeConsentRemotely=0

Listing 5.7 GA HTTP token reply (Message 2, Figure 5.3).

SID=DQAAAPgAAABhfx1sPUmm ...

LSID=DQAAAPOAAABRPpk84aGPG ...

Auth=DQAAAPSAAACgMO2JIn35 ...

issueAdvice=auto
services=mail,doritos, googleme, 1h2,talk,android,cl, friendview, chromiumsync,

multilogin,sierra,esmobile

Listing 5.8 Alternative GA token reply message (Message 2, Figure 5.3).

The message body of the GA token reply message (Listing 5.7) contained the
requested token and the token expiry time in unix time. GA tokens had expiry time,
which suggested that GA tokens were valid only up to a certain time and after that
applications needed to acquire a new GA token. However, the expiry time was not
followed all the time. Token requests for the same application and service were
observed to be made before the previously set token expiry time.

The GA reply message was not always the same. In cases where the GA reply
message was different (Listing 5.8) it was noticed to be identical with GLS reply
message (Listing 5.5), where the requested token is given in Auth parameter. These
alternative reply messages were also noticed to be given when the service parameter
value in the GA request message (Listing 5.6) did not begin with “oauth2:”.

28

5.1.4 Weblogin

Weblogin was observed to be a method for acquiring cookie tokens. The process is
presented in Figure 5.4.

[Mobile device]
com.android.googlequicksearchbox Google Auth (GA) Google
| | , | Google |

T
: 1: HTTP POST /auth (master token, application, service=w eblogin...)

|
|
I
|
|
3:: HTTP GET mergeSessionURL (cookies)

|
|
!

2. HTTP 200, OK (Auth=(mergeSessionURL), ...) H
T
I
|
|
|
|
|
1
|
|
I
1

|
|
e — — — i: HITP_302,_Iane|pIenBora_rily (_set _cooﬁes,_locitiorf(crfckﬁooﬂengL)_) . _ _ _hm
| |
| I
5! HTTP GET checkCookies URL (cookies) !
|
|
- 6: HTTP 302, Temporarily Moved (set cookies, location=(setSID_URL))
———————— o 08 A mE T BT R e B Su o TS TS R
| |
| |
| 7: HTTP GET setSID_URL (cookie) |
T
|
e — _ _ _ _ 8:_HTTE G(E,:Ngveg Te_n'poLarilL(sg c%kiei, bﬁati@=g_oogl_eif i)_ _____ L]
I I
| |
| |
| 9: HTTP GET google.fi (cookies) !
]
|
s e e e = 1p: HTTP200, OK (set cookie, webpage) __ _ _ _ _ _ _
I |
| |
| |
| |
L I I

Figure 5.4. Sequence diagram of Weblogin method of acquiring token.

The Weblogin method for acquiring token was observed to happen rarely and the
token was acquired for the Google quicksearchbox application. The first message
resembles the previously described GA token acquirement method, but there is a
difference in service parameter (see below).

...&service=weblogin: service=hist&continue=https://www.google.fi...
&app=com.google.android.googlequicksearchbox ...

The reply (Message 2, Figure 5.4) from Google did not contain auth token. Instead it
contained following the URL (including new token, uberauth) and expiry with value of
zero.

29

Auth=https://accounts.google.com/MergeSession?args=service=hists
continue=https://www.google.fi&de=1&uberauth=APh-3FzU8H02fJ1MkZT3ew28t
Ju0s0cpvZ0Ows0jyLi3YKNFoEWsZ0GOBZOW31IPQfWXoDONVCps3u80kkY7fk2mrCYrvoy9
ufg3MxOs-rDo5U5Z2z JuoQR9yvpxG 112 Y6n5reeNizC2wBAEH2ZCAIOR1IYJISIdAyRsWx
LgsIoxCGDc9ajOsBursFgKbzRuf00Y3yg3iSy-rGgsdQ BA8IgvmS9Q250N1Q0mJIM-uvaXob
YNXIFDBo82jJHBOOVF13sVdpytRYucerJgkaldrz6K9ThcUlDmw4zT7bJdtd8LSYUaclZXQ
u4hoLp7hY001lotrQLhJOt4kwIKAkKTTX-7dGiOWxowSCooCZCUVcOyqOQOnQ rhf8sMpSdko
RYTnl1HMHWTMEKANWNF-eT&source=AndroidWebLogin

Expiry=0

Listing 5.9 Weblogin HTTP token reply (Message 2, Figure 5.4)

In the rest of message flow most of the information exchanges happened in cookies,
but the exchanged information was not understood. According to Google [38], they use
different types of cookies, such as preferences, security, processes, advertising, session
state, and analytics cookies. Security cookies are used to authenticate user and to protect
user’s data from unauthorized parties. For example cookies named SID and HSID
contain digitally signed and encrypted records of a user’s most recent sign-in time and
Google account ID. [38]

5.1.5 Token renewal

One experiment was developed in order to find out the token renew process. In the
experiment the mobile device’s time was manually set to different future time (from one
week to 12 months), from the Android device’s own settings, that were usually past the
acquired GA token’s expiry times. Google’s applications were observed always to send
tokens to Google. This hinted that the application did not check the token expiry and
that the responsibility was in Google’s server side. GA tokens were nearly always
observed to be used immediately and with a few exceptions, token’s usage was not
observed; meaning that the token delivery method could have not been understood,
found or the token was simply not used.

All tokens provided by the GLS (Auth and Master token) were not observed to
expire during the experiment. In other words, the same token was always used, when
the application sent new requests to Google. However, tokens were invalidated, for
example, when an application was updated; master token was revoked manually by the
user and when the user started to use 2-step verification. The user is able revoke the
master token manually at Google’s account settings web page. One updated application
that required new tokens was com.android.google.gms, which is according to Shiram
the Google Play Services application [39]. Listings 5.10 and 5.11 present the reply
messages Android device got from Google during the application update. The reply
presented in Listing 5.10 was observed to happen before the update and Listing 5.11
after the update.

30

HTTP/1.1 401 Unauthorized
Content-Type: text/html; charset=UTF-8
WWW-Authenticate: GooglelLogin realm="https://accounts.google

.com/ClientLogin", service="androidmarket"

Listing 5.10 Reply for replicateLibrary message.

HTTP/1.1 403 Forbidden
Content-Type: text/html; charset=UTF-8

Listing 5.11 Reply for ApiRequest message.

When a Google’s application send a request to Google and the token was invalid,
Google replied with a HTTP 401 Unauthorized message. The same request with the
same token was usually sent 2 — 3 times before the application stopped sending requests
and then tried to acquire a new token for the application. When the master token in the
token request was invalid, revoked, etc. Google replied with HTTP 403 Forbidden.
Depending on the case, when the master token is invalid the user is usually required to
authenticate. The only observed exception was the com.android.google.com application
update. The user is kept oblivious to the problems and notices problems only if the
service she gets is slow and when the master token is invalidated and she needs to
authenticate.

5.1.6 Token request parameters

Table 5.1 presents parameters seen in the captured communications. GLS has two
entries, because it uses different set of parameters when acquiring a master token. Also
parameters marked in parenthesis are not always present.

Table 5.1: Observed parameters in GA, GLS and master token acquirement.

Parameter: GA GLS GLS
(Master token)

device_country X

operatorCountry

lang

X | X | X| X

X
X
sdk_version X

google_play_services_version

accountType

X
X

system_partition

Email

has_permission

service

source

X | X | X| X| X

androidld

XIX|X| XX X|X| X[X|X|X]|] X|X
1
1

XX | X| X[X|X

app

31

client_sig X X -
callerPkg (x) - -
callerSig x) - -
add_account - -
EncryptedPasswd X X

AccountType parameter defines the type of the account. Only one value was
observed: HOSTED_OR_GOOGLE. According to ClientLogin’s documentation [34]
the value in question refers to an action where the user’s Google account is first
attempted to authorize for hosted account and if failed then attempt for Google account
[34]. System_partition parameter was left unknown. It was observed to always have the
same value: 1.

Service parameter contained information regarding what service requested a token.
The value was different depending on which user-agent made the request. Values in
GLS requests were either codenames (e.g. sierra, sj, etc.) or more self-explanatory (e.g.
androidmarket). GA request’s values were either for specific service (e.g.
oauth2:https://www.googleapis.com/auth/calendar) or contained multiple values for a
service and defining specific rights.

oauth2:https://www.googleapis.com/auth/plus.circles.read
https://www.googleapis.com/auth/plus.circles.write
https://www.googleapis.com/auth/plus.media.upload
https://www.googleapis.com/auth/plus.pages.manage

Source parameter value was though to represent the origin of the request. The value
for the source parameter was always: android. Androidld parameter is according to
Shiram [39] a unique device id. The Androidld is probably the ANDROID_ID value
described in the Android OS reference [40]. The ANDROID_ID is a 64-bit hex string,
which is randomly generated when a user’s Google account is added to the device. The
value changes every time the device had reset performed. [40] This behaviour was in
line with the author’s observations.

According to Shiram [39] the client_sig parameter contains a signature value of the
Google Play services application (com.google.android.gms) [39]. Parameters client_sig
and callerSig (when present) were observed to have the same value
(38918a453d0719935418b19af05ec6562ced5788), which was not observed to change
during the observations.

5.2 Practical security in Play Store

This section first presents the message flow when downloading a free application. Then
a paid application is considered, which includes new security mechanisms. The section
concludes with presenting miscellaneous findings.

32

5.2.1 Free application case

The most essential messages when downloading a free application from Play Store are
presented in Figure 5.5.

Android device Google
(Play Store) T
T |
|
: 1: HTTP GET /fdfe/rev?... ’_I-
2: HTTP GET /fdfe/delivery?doc=<app.packet>... >
3: Repl
s o g e ne e omw p g ED . N
4. HTTP GET /fdfellog >
5: Repl
e — _ _ _ _ _ _ _5R Y 1l

6: HTTP GET /market/dow nload/Dow nload?packageName=<app.package>...

7: HTTP 302, Moved Temporarily (Location)

. 8: HTTP GET /market/GetBinary/GetBinary/<app.packet>...

9: application

Figure 5.5 Message flow of free application case in Play Store.

The message flow of the free application case was conducted securely with
SSL/TLS up to the log message (Message 4, Figure 5.5) and the rest of the flow was
done through an insecure channel, including the actual delivery of the free application
package (Messages 6 — 9). The application was never downloaded from the first given
URL, which was given in the reply (Message 3) for delivery message (Message 2).
Instead the user was given in the reply a HTTP 302 - Temporarily moved status and a
new URL where the download would be completed (Message 7).

GET /fdfe/delivery?doc=com.rechild.advancedtaskkiller&ot=1&st=EKbsppkF$0A
&ve=10203

Listing 5.12 Download URL request message (Message 2, Figure 5.5)

33

HTTP/1.1 200 OK
Content-Type: application/x-gzip

KLzvvob5inySFDD Z9onEkOPK9s
http://android.clients.google.com/market/download/Download?
packageName=com.rechild.advancedtaskkiller&versionCode=10203
&token=A0TCmOROyTrLIiV 2m0-x VX7ax9c wiFqjo0jcrJZ2J25KVM3WYEfMG9qo814hCylYmTCW
7tdDL79taYZMJuIQSiBNzUNeVN cCIJUQR2iY

&downloadId=77927525110214843* MarketDA052610659720452722080@*

Listing 5.13 Reply for download URL request message (Message 3, Figure 5.5)

POST /fdfe/log HTTP/1.1

Content-Type: application/x-protobuf

Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr MWeljM ...
Host: android.clients.google.com

? (bconfirmFreeDownload?doc=com.rechild.advancedtaskkiller

Listing 5.14 Log message of free software case (Message 4, Figure 5.5).

Message 2 was sent after the user had decided to install the desired application. The
reply in Message 3 contained a URL (which included a token) and a string value
beginning with MarketDA. The next message sent from the user’s device after the
delivery message was Log-message containing confirmation of the free application
download.

GET /market/download/Download?packageName=com.rechild.advanced
taskkiller&versionCode=10203&token=A0TCMOROyTrLIiV 2m0-x VX7ax9c wiFgjoO0jcrJzJ
25KVM3WYffMG9q08l4hCy1YmTCW7thL79taYZMJuIQSiBNZUNeVN_CCIJUqR2iY
&downloadId=77927525110214843

Cookie: MarketDA=05261065972045272208

Host: android.clients.google.com

Listing 5.15 Download message (Message 6, Figure 5.5)

HTTP/1.1 302 Moved Temporarily

Location: http://r3---sn-ovggOoxu-5goe.c.android.clients.google.com/market/
GetBinary/GetBinary/com.rechild.advancedtaskkiller/10203?ms=aus&mt=1396861410
smv=mémws=yes&expire=1397034280&ipbits=0&ip=0.0.0.0&cp=Snp3bmFzRFk60DQzMzY4NzC
S5MzASNTI3NTMOMDQ&sparams=expire,ipbits,ip, g:, cp&signature=754A53FE5D8B59630EDA
7DDDA3A445C64FF79FD8 . B54CO0E3A652A09DC1F320773FE6948364BBA1B5SF&key=am3

Listing 5.16 Reply for download message (Message 7, Figure 5.5)

The string value mentioned earlier in Message 3 proved to represent a HTTP cookie
in Message 6, but it was not known where it was used for (e.g. authentication or
authorization). Token in the URL was thought to be comparable to Auth tokens, since
HTTP header did not contain Authorization field. The reply (Message 7) contained the
final download URL, which included a signature parameter. Signature parameters usage
was also not known. The author suspected it to have something do to with Android
packet (APK) verification.

GET /market/GetBinary/GetBinary/com.rechild.advancedtaskkiller/10203?ms=au

34

&mt=1396861410&mv=m&émws=yes&expire=1397034280&ipbits=0&ip=0.0.0.0&cp=Snp3bmFzR
Fk60DQzMzY4Nzc5MzASNTI3NTMOMDQ&sparams=expire, ipbits, ip, q:, cp&signature=754A53
FES5D8B59630EDA7DDDA3A445C64FF79FD8.B54CO0E3A652A09DC1F320773FE6948364BBA1B5F&ke
y=am3 HTTP/1.1

Listing 5.17 Final download message (Message 8, Figure 5.5)

Message 8 might be one of the few exceptions where no token was provided to
Google in some form along the message. However, Message 8 also contained many

parameters (e.g. cp and mt), whose usage were left unknown.

5.2.2 Paid application case

Paid application case introduced new messages and security mechanisms. The most
essential messages are presented in Figure 5.6.

Android device
(Play Store)

1: HTTP GET /fdfe/rev?..

2: HTTP POST /fdfe/preparePurchase

-

10: HTTP GET /fdfe/delivery?doc=<app.packet>

11: Reply

12: HTTP GET /market/streaming/Dow nload?packageName=

b

=

Figure 5.6. Message flow of paid application case in Play Store.

13: Application

35

The new messages in the paid application case are preparePurchase (Message 2,
Figure 5.6), ClientLogin (Message 6) and commitPurchase (Message 8). New
introduced security mechanisms are digital signature and authentication.

POST /fdfe/preparePurchase HTTP/1.1
Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr ...
Host: android.clients.google.com

ot=1&doc=radiotime.player&pcauth=4&ve=134&ct=dummy-token
&dcbch=NxFayPdjWuQoiozgycXNzFWZnEs&

Listing 5.18 PreparePuchase, (Message 2, Figure 5.6).

HTTP/1.1 200 OK
X-DFE-Content-Length: 4882

TuneIn Radio Pro2.88

* ACKDxPPf5Ck7idzZFguFxR/hdHaeAEvajB5RzFgbNeWNhIkcT+3YclnpgwyySWwbfFmtvZvCQdg+

DNeKM60rAd4oZnpaTxuY3nHyIofXjYWTh/1D+dHOIR/1CcY7DIBbA4bNw/K3EZENMd7 9bvCgKHmMsX /v

M8L0o7VssAfys3p8b6ogqagq3ogbXMKHV10kVt21zmWbNXD1UKMvIWbCVvNogz1lWrN67Xz8EWNWiXm6JjXs+
. BnnO=":

'15218670163581205722.D.153771275007436208B Visa-4670

*SCurrency fluctuations, bank fees and applicable taxes may change your final

amount.2By tapping "Buy", you agree to the Google Wallet Terms of Service ..

Listing 5.19 Reply message for preparePurchase (Message 3, Figure 5.6).

POST /fdfe/log HTTP/1.1

Content-Type: application/x-protobuf

Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr MWeljMFno8 ...
Host: android.clients.google.com

. ($completePurchase?doc=radiotime.player

Listing 5.20 Log (Message 4, Figure 5.6)

The preparePurchase message was sent right after the user decided to install the
desired application. On the surface the message did not contain anything new or
particularly interesting, but it did contain parameters in the message body that were not
understood. The reply (Message 3, Figure 5.6) contained among other things in one
capture a 5432 character long base64 encoded string. An attempt to decode the string
did not reveal anything understandable text, which hinted that the contents might be
encrypted or binary and therefore the content was left unknown. The next message sent
from the user’s device after the preparePurchase was Log-message containing
confirmation of the application purchase.

POST /accounts/ClientLogin HTTP/1.1
Content-Length: 125
Host: www.google.com

service=apps&accountType=HOSTED OR GOOGLE&source=Google-GooglePlay-80260017
&Email=****Qgmail.com&Passwd=***** g

Listing 5.21 ClientLogin authentication request (Message 6, Figure 5.6)

36

HTTP/1.1 200 OK
Content-Type: text/plain
Content-Length: 881

SID=DQAAAMsSAAACOBG ...
LSID=DQAAAMOAAADET ...
Auth=DQAAAMWAAADfTnvm ...

Listing 5.22 ClientLogin authentication reply (Message 7, Figure 5.6)

After deciding to install the application, Play Store presented a Ul interface, where
the user was requested to authenticate with her Google email address and password.
Play Store used mechanism called ClientLogin to authenticate the user. One notable
feature of the ClientLogin mechanism is that the user’s password is communicated in
plain text.

Play Store’s usage of ClientLogin was observed to be more straightforward than
depicted in chapter 4.2.2, it comprised only steps 1 — 2 and 7 presented in Figure 4.2. In
a successful authentication the reply’s (Message 7) message body looked similar to a
GLS token reply (Listing 5.5), which contained SID, LSID and Auth tokens. These
tokens were not observed to be used at all during the communication, which hinted that
even though ClientLogin is designed mainly as an authorization mechanism [34], Play
Store used it for only authentication. ClientLogin authentication request message
(Message 6) is one of the few exceptions that did not contain a token within the
message.

It should be noted that when buying application from Play Store the message flow
included messages and parts of messages, that were not fully understood. Therefore it is
possible that token provided in Message 7 could have been used and such ClientLogin
could have been used more than just for authentication.

POST /fdfe/commitPurchase HTTP/1.1

Content-Type: application/x-www-form-urlencoded; charset=UTF-8
Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr ...
X-DFE-Signature-Request: nonce=jBha 12piAPP4w..
X-DFE-Request-Params: timeoutMs=35000

Content-Length: 5848

pcauth=2&pcarc=0&pct=ACKDxPP . Bnn0=&ct=dummy-token
&chdi=qIHI30Wg3mesmCxcMsK75RKu7F4&

Listing 5.23 Commit purchase message (Message 8, Figure 5.6)

HTTP/1.1 200 OK
X-DFE-Signature-Response: signature=ABG4 WXBR93mozUv..
X-DFE-Content-Length: 538

radiotime.player0* (QtDMGv49gQg—-UWD2 tNhCmW8EO0OM (623" cSpa8cWPXSx2cPY7u-
DzpeSktnQ
https://android.clients.google.com/market/streaming/Download?packageName=radio
time.player&versionCode=134&token=A0TCmORjPviO0PsSYWXQ-FQZVHXpelysIdSILJLIYJrA
PASbwbmo4oltsdfKshNv1huHScCTo9 IXgsIdbM52dw7W7xpUYWI9r9dlAnR5dPQ&ev=1

37

&downloadId=6890805265695851619*MarketDA052610659720452722080@bJ9GYLSn7DRCHRWp
nLWQ10hg==,mEz0TaKrobILmoIr30cTKCAKPF+YTPRNogvpsguagis=*...

Listing 5.24 Reply for commit purchase message (Message 9, Figure 5.6)

Right after the reply for the authentication (Message 7) was received, a
commitPurchase message (Message 8) is sent. It includes a signature request and in the
message body the same base64 encoded string (parameter pct in Listing 5.23), which
was provided in the reply (Message 3) for the preparePurchase message (Listing 5.19).
The message body also included parameters whose usage was not understood, such as,
pcauth, pcarc, ct and chdi. Signature request’s purpose is presumed to authenticate the
other communication party to be genuine Google service.

The reply (Message 9) for commitPurchase message contained the response for the
signature request and download URL (with token) similar the one provided in the free
application delivery message (Message 2, Figure 5.5).

GET /fdfe/delivery?doc=radiotime.player&ot=1&st=EKbsppkF%0A&vc=134 HTTP/1.1
Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr MWelj...
Host: android.clients.google.com

Listing 5.25 Download URL request message (Message 10, Figure 5.6)

HTTP/1.1 200 OK
X-DFE-Content-Length: 406

cSpa8cWPXSx2cPY7u-DzpeSktnQ
https://android.clients.google.com/market/streaming/Download?
packageName=radiotime.playeré&versionCode=134&token=A0TCmOTIRIXQofTyyCc7EC2IE2C
a8FGebl5iyfb8iK7eSmci7718ZYXrywRuNjhofglLp5bvO8xGHhBylE9p2nXQYCOfOD cQOYoZQWUE
RA&ev=1&downloadId=-2412412061604833543*
MarketDA052610659720452722080Q@bJibg7W12WjHIs+hGvBpiBxg==,
CC/W5vEHAY4dOMS8Wgw88RrMgNcILIbm98d1ljh1AxLw=". . .

Listing 5.26 Reply for download URL request message (Message 11, Figure 5.6)

Even though the URL given in Message 9 looked like the application download
URL, it was not later on used to download the application. The final download URL
was delivered in the next message exchange (Messages 10 — 11, Figure 5.6). The reply
for the delivery message (Listing 5.26) looked almost same as in Listing 5.13 in the free
application case, except in this case the MarketDA string had next to it two base64
encoded strings, whose usage was left unknown.

5.2.3 Miscellaneous findings

There are a few interesting messages sent by the Play Store’s client application from the
user’s device during the Play Store’s start up. Messages (not shown in any figure) are:
POST /fdfe/replicateLibrary and POST /fdfe/bulkDetails. The interesting part of

38

replicateLibrary message contained, in addition to the authorization, also a signature
request in HTTP header. Finally the time-out values are considered.

POST /fdfe/replicatelLibrary HTTP/1.1

Authorization:GoogleLogin auth=DQAAANQAAADZhuyFo7zr MWeljMFno...
X-DFE-Signature-Request: nonce= hMNviWlui56GEmdvIscAnv-EB2wanBgG 0P7 w-1dDQWe4
uaVNVtzFOnuOUrJTJA3VxtLe AEgwSplry7tVzSOwbBUxFLrS8LMLnlT9HZgS5e 6ZBhdSvLP768LYP
15Kpi8v0eMhlnVuHQK6P12K3wogqTMD8MwQOxHXaXATh7vAf-5VU3FVT8cfyDGKkOTHoc19M zf6s5eq
gXFWyZ6-IJwf4 fGWEUICkACk6sQl7AphrAxOMcsKVklkxGzel 6WapHgeKVU8ugQ88C2YL1IQNOLEGWgS
IWwFWzcela20-Jz0CCYuRPyrXUKJ-cyWp]jZbVyw4 ZJS8PDFE5hYOoOALZrlFTA
X-DFE-Request-Params: timeoutMs=30000

Host: android.clients.google.com

Listing 5.27 replicateLibrary message.

HTTP/1.1 200 OK

X-DFE-Signature-Response: signature=ABG4 WVWLK2s4PZa5UgRIgciiNGOObiORedinvOUkM
6FuCrghwt-TAXTnmwt1YUHas03LXr44B4ILkpno3v4EQQ2PcUHDMRQL736MbbUGW gmAOPujEZXVB-
JcWen8t1iBc0gImol32AinmewYNwgrUZ6kAEkYadxcVSPODBEpfhiMwRJI7LrTRh9e2EIz8 zNpPCjg
Txikuh PyP12Ukk g-hNrRonge9pitWLLsRXgXobgEOm7n24iz0YkSfoGlvQGWS 756gPvzaal7vxp
yaMALVt8FM9%a5HGGrkFSuFNa2va8bOrUazHIdJRAZYmhP8MgLPk41BZfa44897V4eUeSoTCB

Listing 5.28 Reply for replicateLibrary message.

The replicateLibrary message’s HTTP header X-DFE-Signature-Request contained
a long nonce value encoded with base64URL and the reponse (Listing 5.28) was also
encoded in base64URL. Since digital signatures are used for authentication it was
thought that the signature request is one of the Play Store client application’s security
mechanisms used to authenticate the other communication party, in this case Google’s
server.

The bulkDetails message (Listing 5.29) contained in the HTTP header, among other
things, the authorization token. The interesting part was in the message body, it
contained a list of applications found on the mobile device.

POST /fdfe/bulkDetails HTTP/1.1

Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr MWeljMFn...
X-DFE-Request-Params: timeoutMs=30000

Content-Length: 717

Host: android.clients.google.com

com.android.chrome
com.google.android.apps.plus
com.google.android.gm
com.google.android.gms
com.google.android.googlequicksearchbox

Listing 5.29 bulkDetails message.

HTTP/1.1 200 OK
X-DFE-Soft-TTL: 7200000
X-DFE-Hard-TTL: 7200000

39

com.android.chromecom.android.chrome *Chrome Browser - Google2Google
Inc.BUSDFree (Q@J (KQ5, "$2X "pLhR" *Zhttps://1h5.ggpht.com/NBr8wEdoQqZxBMbl JWDPN6HI
C3xcEGYM eEgNbk2iL GTIUWBVENR1O7bLQFjPBbIFmMEHR"*Xhttps://1h3.ggpht.com/ eS2pfW
StKFMufgCbeIAyWmTbhpu iploEyRdoffHtpdMVtOImS MMrhAyu949FoVQH]

pHR) android.permission.ACCESS COARSE LOCATIONR'android.permission.ACCESS FINE
LOCATIONR'android.permission.ACCESS NETWORK STATERSandroid.permission.
ACCESS WIFI STATERandroid.permission.CAMERARandroid.permission.GET ACCOUNTSR
android.permission.INTERNETR"android.permission.MANAGE ACCOUNTSR
(android.permission.MODIFY AUDIO SETTINGSRandroid.permission.NFCR$%

(rest of the permissions omitted)
4 Apr 2014APPLICATIONr (t@i (08@Ca)@zB
Top DeveloperL *B
http://www.gstatic.com/android/market images/badges/topdev_ann.pngM *C
http://www.gstatic.com/android/market images/badges/topdev_list.pngL !*B
http://www.gstatic.com/android/market images/badges/topdev_hdr.png
"Top Developersdetails?doc=com.android.chrome(@
https://play.google.com/store/apps/details?id=com.android.chromedetails?
doc=com.android.chrome
... (rest of the message body omitted)

Listing 5.30 Reply for bulkDetails message.

The reply for the bulkDetails contained such HTTP header fields as X-DFE-Hard-
TTL, which was thought to be some kind of time-to-live value for the information
provided in the message body. The reply message’s message body contained, for
example, permissions for every requested application. Listing 5.30 shows only the
information provided for one application.

Play Store client application was also observed and presumed to use time-out values
in the HTTP header to inform the server, how much time it had to answer to the request.
Play Store client application conveyed this information in the HTTP header field named
X-DFE-Request-Params. For example, with a value timeoutMs=30000. Play Store was
observed to use values 2500, 30000 and 35000, that were thought to represent 2.5 — 35
seconds.

5.3 Discussion

This section first covers the relationship with the GLS, GA and GPS. Then it moves
telling the odd finding during the observations, which hindered at first analysis of
Google’s system. Section concludes with describing the previous work done in the
subject.

5.3.1 Relationship with GPS, GLS & GA

The two observed user-agents in HTTP header hinted that Android has two services or
at least different codes bases that provide tokens for mobile applications for the
Google’s resources. There is very little or none reliable information in public how
Google’s own applications authentication and authorization works. Google provides

40

documentation for several methods [5], but these are meant for third-party developers
and Google’s applications were observed to use these differently or none at all.

From the author’s own observations the HTTP user-agent GA in the token
acquirement is probably actually a integrate part of GPS, because GPS is the only
publicly known Google Android mobile application service that provides OAuth 2.0
tokens, although it provides for third-party applications. Shiram’s [39] work also
supports this speculation. Also from the Ars Technica article [33] it is known Google’s
tight integration of its applications to GPS and from observations it is known many of
Google’s own applications to use OAuth 2.0 tokens provided by GA HTTP user-agent.

According to Elenkov [28] both GLS and GPS provide authentication. For example,
GLS is responsible when user’s Google account is added to Android device and GPS for
OAuth 2.0 authorization and Google+ social media service sign-in [28]. Then again
according to Ars Technica [33] GPS was held responsible of e.g. initial account setup,
account authentication and account syncing. This contradiction in GLS and GPS
responsibilities between Elenkov and Ars Technica is probably due the fact that
Nelenkov’s blog post was done in November 2012, a month after GPS was announced
[41]. And Ars Technica’s article was done a year later in September 2013 [33], when
Google had already integrated many its services and applications under GMS [31, 33],
which consists of GPS and Play Store [31].

Author’s own observations support neither Elenkov nor Ars Tecnica. In the
observations the master token request was always the user-agent GLS, but in the reply
message (Listing 5.3) the master token value begins with “oauth2”, which suggests that
the GA had made the request.

Shiram’s [39] work might shed some light in the matter. According to him all the
critical code related to Google OAuth flow runs only within the
com.google.android.gms application (.auth.GetToken service), which is signed by
Google. The service approves applications locally by their signature and package name
and uses the master to obtain access tokens. [39] The OAuth flow in a Google Android
device is presented in the Figure 5.7.

Application com.google.android.gms

\‘“]I

Figure 5.7 Google OAuth token flow in a Google Android device [39].

41

In the Figure 5.7 the green areas run trusted code. Shiram also says that the
com.google.android.gms application is actually the “Google Play Services” application,
which holds the token service. The application painted in red in the Figure 5.x is a third-
party application, which uses a Google Play Services library. The library does not run
critical code and it just forwards call to services and activities running within a GPS
application. [39] Although the Figure 5.7 depicts a third party application, author
personally believes this flow is applicable with Google’s own applications.

Shiram’s [39] work describes the master token request and two OAuth token
requests with their respective parameters, but Shiram had not included the user-agent in
any of token requests he presented. The master token request was identical to authror’s
observations. One of the OAuth token request Shiram presented was identical to
author’s observations of the GLS token request and the second OAuth token request
resembles very closely to a GA token request. Author believes the differences observed
in between the GA token request and Shiram’s example stems from the fact that Shiram
describes a request for a third-party application.

This hints that the GLS and GA both are now fully integrated in the GPS. This is the
only logical explanation that author can think of and which explains author’s
observations and is still in-line with Shiram’s work, which is more recent than
Elenkov’s and Ars Technica’s.

5.3.2 Legacy names

One oddity found during the observations was in the HTTP header Authorization,
which value contained a token and a name for a security mechanism. This was first
thought to be confusing, because the observed behaviour of authentication and
authorization from the captured communications was compared to the publicly available
documentation (e.g. AuthSub [42]) of the protocol and these two did not match.

POST /gcm/groups HTTP/1.1
Authorization: AuthSub token=ya29.1.AADtN X-7HE6...

Later on it was understood that the name of the mechanism the header value did not
always tell how the token was acquired. It was thought that at some part of time Google
integrated authorization mechanisms and mechanism names were left as a legacy from
the past.

5.3.3 Previous work

Previous work on how Google uses tokens in Android has been done by Nikolay
Elenkov [28, 43], KB Shiram [39] and Korean Android community has reverse
engineered Google GMS [44, 45]. Compared to this thesis Elenkov’s work is broader.
He mainly concentrates on the Android device, which was considered out of scope in
this thesis, but also covers communications security. For example, Elenkov describes

42

how GLS has been implemented in different Android versions and discusses related
security aspects (e.g. how user’s password has been encrypted in the device, etc.) [28,
43]. Elenkov’s work has also been written from different point of view as he has been
concentrating to the third party developer’s point of view (e.g. how to use weblogin
mechanism for single sign-on). This thesis has been written solely from the vendor’s
(Google and Amazon) point of view. For these reasons Elenkov’s work and this thesis
have only a few common findings: the master token and weblogin mechanism.

Elenkov reported Android OS 4.0 and newer versions get during the user’s account
registration a master token, which is then used to obtain new tokens [28]. This finding
agrees with authors own observations with Android OS 4.3 version device. Elenkov
also describes how the new tokens are acquired in devices using operating system older
than Android 4.0, but this thesis cannot confirm this particular finding, because only a
single mobile device with Android OS version 4.3 was used during observations.

Elenkov presented in his work how weblogin mechanism [43] that could be used
to single sign-on and essentially to authenticate a user in a third party applications. In
author’s own observations weblogin mechanism was observed, but it was used in
different context and its working (especially HTTP cookies) was not fully understood.
Therefore it is not sensible to compare Elenkov’s finding to author’s observations.

Shiram’s work also concentrates more on the Android device than what happens in
the communication channel, but his work shed light on questions that are not possible to
find out by merely looking at the communication channel. Especially Shiram’s work on
how an application in a Google Android device gets access tokens was useful in order to
understand the relationship with GPS, GLS and GA. Shiram had also described the
master token request and OAuth token requests, which were very similar to author’s
own findings.

Korean Android community has done reverse engineering, especially, on Google
GMS [44, 45], which provides some hints on how Google’s applications work.
However, the documentations are outdated, since the most recent available works are
from year 2011. For example, the author’s observations regarding on how Play Store
works did not match with the documentation.

43

6 AMAZON RESULTS

Chapter starts by presenting how Amazon acquires, uses and renews tokens. After that
Amazon’s Market is studied and the chapter concludes by discussing on findings. All
listings in this chapter hava been modified (e.g. parts omitted, bolded, etc.) for
readability.

6.1 Tokens, acquisition and signatures

Amazon’s applications also used tokens heavily for security. And like with Google, it
can be assumed that a token was sent in along every message unless otherwise explicitly
stated.

During the observations 3 different tokens were observed: refresh, access and x-adp
token. These are presented in Listing 6.1 together with three different HTTP cookies,
which were observed to be used as tokens. As with Google’s HTTP cookie tokens, they
are not addressed in depth, because their usage and roles were not understood.

Tokens were observed to be delivered in 2 different methods. The first is a HTTP
header with two different field names: Authorization and a custom header field x-adp-
token (or X-ADP-Authentication-Token). The second method is passing the token in a
HTML Form.

From “normal” tokens the refresh and access token’s appearances are almost
identical. The x-adp-token appearance was different from the others and also it was the
only token, whose structure and appearance hinted at the usage of encryption

refresh token:

Atnr|EQEBLJjASAhQVKZUM7BpmmES5Ypgifdl KuookkgIUKJjyZHNDDM2YbA wTAv3duSX0Yj1lnOMOVq
1VRzIU-gWeldmlKuT40-Ku2BlbgqlINhg6MpOASZR5sHOPqUUrO0kMokltixedfvw5gONzIFWEQnOZru
FkmYHOI7LFBS5XXHULzvjXTiHYYLaA6V-1Syx8sd0ZRG8CpZY0B M KuFwYvYxmZHF1A

access token:
Atna|EQEBLJjAsAhQBv1zt4dgbdCs729Z2uPMujFv86TwIUQZKAFCFxdKgZ8ew ViydoMZ -J5kl4c4L
ie-IDRG_uc7iKWsWZkL20 30N050 BANZKR-9ne7T9dYYrfcLT71FG7Hw4j71acbE8XVyiITD6RBLE
Zvdu5ZHk4PVpTCzFEEOcirxO UHNYh1LX44SMx 79dcImbVHmv29tgEO12A0ABguQqg

x-adp-token:

{enc:05R4tVC8 ...}

{key:CprPB3Ja ...}
{iv:aS/kzZh79x+F2V9rsYPLtBQ==

{name : QURQVGIrZW5FbmNyeXB0aW9usS2V5}
{serial:Mg==

x-main:
EUboCL9TgRR8dCZw375umy2Cddx?sf5RoNQw0rOSwiREX1ICGK1Hjctz?6wlqgONd8

44

at-main:
5|BbQsv+cew0+OHIDbQUuUMhSgsiXHWmmCwK]GjHyJFGMagIrfu7pZ+2EW1RbjtImc31leZnLb5HAUVR
R3aRAgvuFalOvfzwMP0aCToa+9XfiXbkBSKvK1Iz+TPInosuHN1Z5LgKkoBhCQONccIbP/gMjL2gTYkU
r13xyRjPPZ0avesUrlAtF175p0QqTfUvOxyyxVXC+w7DG8uxUzIMw4AlPseu/u0ginOh7u

sess-at-main:
u0Po/ROHYUDcqzBYiOLbcfLB84dfkuk3bBWSER4ALIIxk=

Listing 6.1 Examples of observed tokens.

As with Google’s token, Amazon’s tokens were also observed to be used only for
authorization and it is not known whether tokens had information included within them
in some way, except the x-adp-token.

Refresh token is used in acquiring new access tokens. The token acquirement
processes are covered in Sections 6.1.4 and 6.1.5. Access token and x-adp token are
similar in the way that both are used just for authorization and are pointed to specific
applications. The difference between these two is in expiry. Access tokens have a
defined expiry time, which is given when the token is acquired. X-adp-token on the
other hand was observed to change only when the user registered again to the device.

In general, the acquirement and usage of tokens of Amazon’s client applications
happens in two to three phases. Two phase usage concerns x-adp-tokens and third phase
for the rest. X-adp-tokens are first acquired during the user registration to the device and
then then the token is used. For the rest, refresh token is acquired during the registration,
then it is used to acquire access tokens and finally the application uses the access
tokens.

The token acquirement and usage, especially, during the registration is a very
confusing process. For example, tokens are acquired in many different messages, the
same messages are sent multiple times, certain messages have exceptions and the given
tokens might be even used only once, etc. In general, the final x-adp-token is given in
the reply message for the /Firsproxy/registerDevice message. Access tokens and HTTP
cookie tokens are acquired in messages /ap/exchangetoken and
/ap/exchangetoken/cookies respectively. Refresh token is acquired during the
registration in an exception case of /ap/exchangetoken message.

The rest of this section presents x-adp-token in depth, and then covers signatures,
which were nearly always present together with x-adp-tokens. Next, a part of token
acquirement during the registration is covered and it is continued in the following
sections regarding token and cookie token acquirement. Finally, the token request
parameters are presented.

6.1.1 x-adp-token

X-adp-token, which is sometimes also named as X-ADP-Authentication-Token (Listing
6.1), is the only observed token where the structure and appearance clearly indicated the
usage of encryption. The token’s name is taken straight from the custom HTTP header

45

field name. The name of the HTTP header field did not matter to outward appearance of
the token. The token consisted of five parts separated by curly brackets: enc, key, iv,
name and serial. In all parts the values were base64 encoded. Enc, key and iv base64
decoded values were not successfully decoded and decrypted, so their contents were left
unknown, but name and serial parts were. Name decoded into ADPTokenEncryptionKey
and serial into 2.

The length of each part of the encrypted tokens was observed to be always the same.
Enc part contained 960 character long base64 string which decoded into 720 bytes of
data. Key and iv were respectively 344 and 24 bytes long base64 strings and decoded
into 256 and 16 bytes of data.

The same encrypted token values were observed to be used multiple times, which
made it possible to follow the token usage and acquirement. This does not confirm, but
suggests that tokens were encrypted only once before usage and that the same token was
used until it was expired. The author’s own speculation regarding this token’s
encryption is discussed in Section 6.3.1.

6.1.2 Signature

X-adp-tokens were every time (with one exception) observed to appear with possibly
two other security methods: digital signature and cryptographic hash function (Listings
6.2. and 6.3). Digital signature appeared in a custom HTTP header: x-adp-signature.
Another custom HTTP header x-adp-alg was thought to contain the information
regarding to what signature algorithm was used, since value SHA256WithRSA refers to
a known algorithm defined in PKCS #1 standard [46].

x-adp-signature: Ilro59XAPWWPeFip7slcgsaDGO0AatUie+p7oVKvomG40lLLLazeXgFU19j91B
ZwnumMEg0f5E4tedYglWWRei1+2MrKVMPfpgV2I1FZzws4Tw2£23gp+2zyaeCVFkMHNVAdRsSUBOWIsSLO
M92QGVvmHUKINObNg3HpRDN0alGEWGG])cpPslyxR3/PIImudWgKPxJIxv1IWOEZz5UKiEAYugxZU4deJhya
h5LylgDMV1gZmcMgDFZBZcG6S7£74WHZ5aWF5Gq:2014-04-24T15:52:3772

x-adp-alg: SHA256WithRSA:1.0

Listing 6.2 x-adp-signature example.

Signature consists of timestamp and 256 character long base64 encoded string,
which decodes into 192 bytes of data. It is not known what parts of the message are
included in the calculation of signature, nor the keys used in the algorithm.

X-ADP-Request-Digest:
H16bik/S4im03elWAWIO+Fx]j/jQIb8Gv4KUe7TKYkKkmGHOkKF5iBxZ1/GfOU/B35uoWkb4tM41Zf/bNI1
zt/738M7gYFSRiHGRbgaLhUlIK6WWTPfurJWvVdDQzL1h54sPK+MHnFYDbykEGA2VFbPmVZ0r0O09PaN
tXMrzR3Y4ZtE+WAE18XHEXNEHgSRUMy2 LHJTHIMYw8CS91g26L+RKPUtJCYKY/mMKGM9nj+nb51spX9
xSQOx31WsHyCmIuul+ees8Q:2014-04-24T15:52:582

Listing 6.3 x-adp-request-digest example.

The outward appearance of the HTTP field X-ADP-Request-Digest is similar to x-
adp-signature. Both fields have similar timestamp and base64 encoded string with equal

46

length. Only two things suggest that there are differences between these two fields. First
the HTTP field named x-adp-alg does not appear with X-ADP-Request-Digest. Second
a part of HTTP field name (digest) refers to a cryptographic hash function’s output. It is
not known which hash function was used, nor what parts of the HTTP message are
included in the calculation of the hash function. The author’s own speculation regarding
this signature and digest value is discussed more in Section 6.3.2.

6.1.3 Initial token acquisition

When user’s account was added to the tablet during a registration all tokens were
acquired in five phases (Figure 6.1). Figure 6.1 shows only one message of each phase,
but in practice the same message was sent 2 — 4 times (registerDevice -message being
an exception) and each time new tokens were issued.

Kindle
.

T I
I I
I 1: POST /FirstProxy/getNew DeviceCredentials (devicetype, secret, deviceSerialNumber, ...) :

2: HTTP 200, OK (authentication cookies, adp_tokens, device_private_keys, ...)

! 3: POST /ap/exchangetoken/cookies (requested_token_type, domain, app_name, ...)

e_______5H'_I'I'PEOO,_OK_((:oo_kies_)________rl_r|

| 5: POST /FirstProxy/registerDevice (email, passw ord, devicetypes, secret, ...)

< 6 HI'_TP 200, (_)K (_storg_aitheitica_tion:coo_kies_. ad_p_tcieni de_vice__ prilate__ keis, L) ——|'r|

7: POST /ap/exchangetoken (source_token, requested_token_type, app_name, ...)

e g: H_TTP_200,_OK_(toISn_3/pe;acgass__ tok_en, Eefrish __tok@,elpirgs_in_,..i . :IT|

]
9.{ POST /ap/exchangetoken/cookies (requested_token_type, source_token, domain, app_name

~

L

S 1_0: H_I P _200_ OK_(cchiei) ________ U

L

Figure 6.1 Amazon token exchanges when adding a user account.

47

This subsection considers only getNewDeviceCredentials and registerDevice
messages. Exchangetoken and exchangetoken/cookies messages are examined in the
next subsection, because the messages used during the registration are exception cases.

POST /FirsProxy/getNewDeviceCredentials?deviceType=A2VZ790DVVI91lK&deviceSeria
1Number=DOFBAOA034530WWC&secret=B3KXAQO3AJINZGB7Y170D&radioId=00bb3ab377ce&reas
on=NoState&softwareVersion=323001720&softwareComponentId=com.amazon.thor.andro
id.os HTTP/1.1

X-Amzn-RequestId: e€972d391-52ee-40c2-a242-ac2b3ebecdlc

Content-Type: text/xml

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.2.2; KFTHWI Build/JDQ39)

Host: firs-ta-g7g.amazon.com

Content-Length: 612

<?xml
<request>
<deviceTypeSoftwareVersionMap>

<entry
deviceType="AZ9LILOBO9I6H"
version="38038210"
softwareComponentId="com.amazon.cloud9"/>

<entry
deviceType="A225F6K82YR2UO"
version="1710016310"
softwareComponentId="com.audible.application.kindle"/>

<entry
deviceType="AYNDLAEFROH1IC"
version="4021210"
softwareComponentId="com.amazon.mp3"/>

<entry
deviceType="A2VZ790DVVI91K"
version="323001720"
softwareComponentId="com.amazon.thor.android.os"/>

<entry
deviceType="AXRZRIASDFH6P"
version="30208810"
softwareComponentId="com.amazon.ags.app"/>

</deviceTypeSoftwareVersionMap>
</request>

Listing 6.4 getNewDeviceCredentials request message.

HTTP/1.1 200 OK
Server: Amazon Web Server
Content-Type: text/xml;charset=UTF-8

<?xml
<response>
<deviceCredentials>
<deviceCredential

deviceType="A2VZ790DVVI91K">
<store_authentication_cookie>

48

0rLsOKcpMz4VcIsfGsFXHEdScnOK4oowDhvZ6vSulofDgdt ITGRCgk3pND
vB4YDLPJV]jrI9NG5JIng8Nx+HIMe4udMmWZJIJINsxhQ7kEDprykkSZRFOMABD
v1vQCgX6rihtpKMoDTuJdXzs=
</store_authentication_cookie>
<device private_key>
MIIDmAIBADANBgkghkiG9wOBAQEFAASCA4IwggN+AGEAAOHBANKA/ Jbn3P
1nH2N8rb8REfNSFVXX]j7p/H10vchArbWAEBDEJAWWrYE6CFMXWDED1Cx5G5
xxqglycciki7ueaGC4hEWgc+9HLundW/WZKvzg9BQj40cDUKDjb5xtgep4dR
Tp78PKzsPOwWCj2X0Y/003/baL3Kocjjz//wExmBfttgledeY1rB3U. ..
</device_private_ key>
<adp_token>
{enc:XCUbd2MwQEjucIIUTH3SNx6Qgf. ..
</adp_token>
</deviceCredential>
</deviceCredentials>
<adp_token>
{enc:XCUbd2MwQEjucIIUTH3SNx6Qgf. . .
</adp_token>
<store_authentication_cookie>
0rLsOKcpMz4VcIsfGsFXHEdScn0K400. . .
</store_authentication_cookie>
<device_private_key>
MIIDmAIBADANBgkghkiGO9wOBAQEF. . .
</device_private_ key>

<cookies>
<cookie>
<url>
.amazon.ru
</url>
<value>
x-fsn=0rLsO0KcpMz4VcIsfGsFXHEdScn0K4oowDhvZ6vSulofDgdtITGRC
gk3pNDvB4YDLPJVjrING5Ing8Nx+HIMe4udMmWZJIINsxhQ7kEDprykkSZR
FOMABDvV1vQCgX6rihtpKMoDTudXzs=; expires="Mon, 05-Jun-2034
11:47:37 GMT"; domain=.amazon.ru; path=/; secure
</value>
</cookie>
(rest of cookies omitted)
</cookies>
</response>

Listing 6.5 getNewDeviceCredentials reply message

In Listing 6.4 getNewDeviceCredientials request message was one of the first
messages sent during the registration. The message included information such as: device
serial number and device type that referred to a specific Amazon application in the
device. Even though the request message’s payload contained more than one device
type, the reply message (Listing 6.5) contained tokens for only one device type
specified in the request message’s URL. The Reply message contained the following
tokens: store authentication cookies, device private keys and adp-tokens, and cookies
for different Amazon top level domains (e.g. amazon.co.uk, amazon.com, amazon.de,
etc).

POST /FirsProxy/registerDevice HTTP/1.1
X-Amzn-RequestId: d9d1b83c-0£55-45d3-aelb-7ae952e61cle

Content-Type: text/xml

User-Agent:

Dalvik/1.6.0 (Linux; U; Android 4.2.2; KFTHWI Build/JDQ39)

Host: firs-ta-g7g.amazon.com
Content-Length: 970

<?xml

<request>

<parameters>
<deviceType>
A2VZT790DVVIO1K
</deviceType>
<deviceSerialNumber>
DOFBAOAO34530WWC
</deviceSerialNumber>
<pid>
CD411901
</pid>
<email>
*HkxxHk@dgmail.com
</email>
<password>
* k Kk kx
</password>
<secret>
B3KXAQO3AJNZGB7Y170D
</secret>
<softwareVersion>
323001720
</softwareVersion>
<softwareComponentId>
com.amazon.thor.android.os
</softwareComponentId>
</parameters>
<deviceTypeSoftwareVersionMap>
(omitted, same deviceTypeSoftwareVersionMap as in Listing 6.1)

</request>
Listing 6.6 registerDevice request message.

HTTP/1.1 200 OK
Server: Amazon Web Server
Content-Type: text/xml;charset=UTF-8

<?xml

<response>
<deviceCredentials>

<deviceCredential
deviceType="AYNDLAEFROHI1C">
<store_authentication_cookie>
SbkHfZXYg8/a69aEEVe5766+uda. . .
</store_authentication_cookie>
<device private_key
refDeviceType="A2VZ790DVVI91K" />
<adp_token>
{enc:yAmMyEhitThowng3P2udr. ..
</adp_token>
</deviceCredential>

49

50

(rest of the deviceCredentials entries omitted)
</deviceCredentials>
<adp_token>
(enc:05R4tVC8+FMNe6llpl3e2. ..
</adp_token>
<store_ authentication_cookie>
vbM41lme+gdD3tPYe7G4rr6648zXTp. . .
</store_authentication_cookie>
<device_private_key>
MIID1QIBADANBgkgh. . .
</device_private_ key>
<given_ name>
Tuomo
</given_name>
<name>
Tuomo Tutkija
</name>
<account_pool>
Amazon
</account_pool>
<country of residence>
FI
<source_of cor>
CUSTOMER COUNTRY OF RESIDENCE
</source_of cor>
</country_of_residence>
<preferred marketplace>
ATVPDKIKXO0ODER
</preferred marketplace>
<alias>
* Kk Kk Kk x
</alias>
<kindle email_ address>
**xxxx*@kindle.com
</kindle_email address>
<user_directed id>
amznl.account .AGUZKC7TEKGQVARWZV3Z3ZIVOPOMA
</user_directed id>
<user_device_ name>
Tuomo's Kindle
</user_device_name>
<cookies>
(cookies omitted)
</cookies>
</response>

Listing 6.7 registerDevice reply message

In Listing 6.6 registerDevice request message contained mainly the same parameters
as getNewDeviceCredentials message (Listing 6.4). Parameters in registerDevice
message were listed in XML at the message body instead of in the URL, as was the case
with getNewDeviceCredentials message. The registerDevice request message contained
more parameters such as user’s email and password and values for both of these
parameters were presented in plaintext.

51

The reply message (Listing 6.7) included tokens for every entry presented under the
request message’s deviceTypeSoftwareVersionMap tag. The
deviceTypeSoftwareVersionMap tag in registerDevice request message contains the
same entries as in getNewDeviceCredentials message (Listing 6.4). The highlighted
adp_token entry in the registerDevice reply message was observed to be used
frequently. The same adp_token entry is mentioned twice in the Listing 6.7. First time it
is mentioned under the deviceCredentials tag and was pointed to the deviceType
A2VZ790DVVI91K in the Listing 6.7 (omitted from the listing). This deviceType was
mapped in Listing 6.1 to a softwareComponenld named com.amazon.thor.android.os,
which was thought to represent the user’s operating system in the kindle device. Second
time the token is mentioned immediately following the deviceCredentials XML closing
tag (highlighted in Listing 6.7).

6.1.4 Token acquisition - Exchangetoken

Amazon uses exchangetoken messages to acquire, refresh and access tokens. Refresh
token’s role and usage is similar to Google’s master token as both are used to acquire
new tokens. Applications use access tokens to access Amazon’s services and resources.

Kindle
e

[
I 1: POST /FirsProxy/registerDevice |

2: Reply (adp_token, ... E
e _ _ ____2z eply (adp_token, .)

3: POST /ap/exchangetoken (adp_token, signature, requested_token_type, ...)

4: Reply (refresh_token, access_token, expires_in, ...)

- -0~ —|

loo 5: POST /ap/exchangetoken (refresh_token, app_name, ...) [

[]
e G:Eepg (aﬁces_s_tgkerl)_ ______

loo |

I

T

Figure 6.2. Amazon token acquirement and reacquisition process.

52

Figure 6.2 presents both the token acquirement and the renewal process. First the
mobile device gets an adp_token meant for com.amazon.thor.android.os application
during the registration. This is represented in the registerDevice request and reply
messages (Messages 1 and 2, Figure 6.2; Messages 5 and 6 Figure 6.1; Listings 6.6 and
6.7) In the second message pair (Messages 3 and 4, Figure 6.2) the mobile device
acquires a refresh token and a temporary access token. The refresh token and the access
token are acquired by sending a HTTP POST message (along the adp_token) to address
www.amazon.com/ap/exchangetoken. Exchangetoken message is normally used to
acquire new temporary access token or cookie tokens for applications, but this case
(Message 3, Figure 6.2; Message 7, Figure 6.1) is an exception, because both refresh
token and temporary access token are acquired at the same time. After this the device
can use the temporary access token as long as it is valid (Messages 7 and 8, Figure 6.2).
In the first time (during the registration) Messages 5 and 6 are skipped over.

After the access token has expired a new token is acquired (Messages 5 and 6,
Figure 6.2). The exchangetoken message is used with the refresh token to acquire new
access token or cookie tokens for an application to use (Messages 7 and 8, Figure 6.2).
Refresh token was not observed to expire during the observations.

POST /ap/exchangetoken HTTP/1.1
User-Agent: AmazonWebView/MAPClientLib/120069810/Android/4.2.2/KFTHWI

Host: www.amazon.com

app_name=com.amazon. imp
&app_version=120039810
&source_token_type=refresh token
&source_token=Atnr |EQEBLJASAhQS5XRXMV. ..
srequested_token_type=access_token

Listing 6.8 Exchangetoken (access token) request message.

HITP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Set-Cookie: session-id=177-3291618-2853634; Domain=.amazon.com; Expires=Wed,
19-Apr-2034 12:52:36 GMT; Path=/

Set-Cookie: session-id-time=20290639561; Domain=.amazon.com; Expires=Wed, 19-
Apr-2034 12:52:36 GMT; Path=/

"response": {
"token":"Atna|EQEBLjAsAhRAtoOC ... ",
"token_type":"bearer_ token",
"token_expires_in":"3600"

by

"request_id":"06K8ERKMAVP4GVSZNSEK"

}

Listing 6.9 Exchangetoken (access token) reply message.

53

Access token reacquisition request message contained five parameters in the
message body: app_name, app_version, source token type, source token and
requested token_type. Reply message contained a JSON object (Listing 6.9) in the
message body, which had the requested token value and expiry time.

POST /ap/exchangetoken HTTP/1.1

x-adp-alg: SHA256WithRSA:1.0
x—adp-signature: VmleKl1FFS2ymN7j/8uDOVKp ...
x—-adp-token: {enc:05R4tVC8+FMNe6llpl3e ...

source_token_ type=dms token&source_token=source token&requested token type=ref
resh_token&app_name=com.amazon.imp&app_version=120039810

Listing 6.10 Exchangetoken (refresh token) request message.

The exchangetoken message during the initial token acquirement was an exception.
The message was used to request a refresh token and access token during the
registration. The message had signature and adp_token in the HTTP header and no
source token was used in the message body (Listing 6.10). The reply message was
otherwise same as in Listing 6.9, but it contained one more JSON object, refresh token,
in the message body.

6.1.5 Cookie token acquisition - Exchangetoken/cookies

Exchangetoken/cookies is a message used to acquire cookie tokens for applications.
Exchangetoken/cookies request and reply message are very similar to the
exchangetoken message in structure and also have the one exception case, which
happens during the registration. Also the token acquisition and renewal happens in the
same way as with exchangetoken messages.

POST /ap/exchangetoken/cookies HTTP/1.1

X-Amzn-RequestId: 70993150-bbec-493b-8bf0-b232ab%d2£f5

User-Agent: AmazonWebView/MAPClientLib/120069810/Android/4.2.2/KFTHWI
Cookie: session-id=190-2410784-9443562

Cookie: ubid-main=177-4988256-9367335

Cookie: x-main="oYD@eSg5r6YrZ9ikjnrWdVwF98b..."
Cookie:at-main="5|LDjqyGDFz90dCSsdnDjKbLbRj..."

Cookie: sess-at-main="WutkQPllmrWgw8unKcFsfhBFLOBbcTbiRGC6/knWAUA="

Host: www.amazon.com

source_token_ type=refresh token
&source_token=Atnr |EQEBLJASAhQ5XRXMVIHcCu3Fd9. ..
&requested_token_type=auth cookies
&domain=www.amazon.com

&app_name=com.amazon.imp

&app_version=120039810

Listing 6.11 Exchangetoken (auth cookie) request message.

54

HTTP/1.1 200 OK

Date: Mon, 04 Aug 2014 11:55:19 GMT

Content-Type: application/json;charset=UTF-8

Set-Cookie: session-id=184-2273602-6255638; Domain=.amazon.com; Expires=Sun,
30-Jul-2034 11:55:19 GMT; Path=/

Set-Cookie: session-id-time=20378733191; Domain=.amazon.com; Expires=Sun, 30-
Jul-2034 11:55:19 GMT; Path=/

Set-Cookie: ubid-main=182-7107327-1967538; Domain=.amazon.com; Expires=Sun,
30-Jul-2034 11:55:19 GMT; Path=/

Set-Cookie: session-token="UOHxLsngkMhOg7wWuJB3k+YtqgdYzEeqdtefLdQKOpt SAfFBFxpW
IQV/omwmyFiDYITEMK/aZ4miLTZXWn6qTdkeLBrip4jcCWbvIoyWROSswD1HXXJIBUDXHIX1KS1m2B/G
2CFm6KCyHS5YWV2ATDZLS5MOMHB7CmbViOgDb/FN6SWQT4ANJIT5Gq+9)xH/Ug2R++fBJOEFPOC6tEVKTC
MKJC/IU9106PRu3klsJdN/BbZ8vE=""; Version=1; Domain=.amazon.com; Max-—
Age=630720000; Expires=Sun, 30-Jul-2034 11:55:19 GMT; Path=/

Content-Encoding: gzip

{"response":{
"tokens": {
"cookies": {
".amazon.com": [
{"Name" :"session-id",
"HttpOnly":false,
"Value":"184-2273602-6255638",
"Expires":"30 Jul 2034 11:55:19 GMT",
"Secure":false,
"Path":"/"
{"Name" : "ubid-main",
"HttpOnly":false,
"Value":"182-7107327-1967538",
"Expires":"30 Jul 2034 11:55:19 GMT",
"Secure":false,
"Path":"/"),
{"Name":"x-main",
"HttpOnly":false,
"Value":"\"KTb@txAugAlgIJwuoLlCF?Zje3IDraRzwi@gxXPROVY1?5BRHJ
mG3Q6mcLgkbhiSb\"",
"Expires":"30 Jul 2034 11:55:19 GMT",
"Secure":false,
"Path":"/"),
{"Name":"at-main",
"HttpOnly":false,
"Value":"\"5|zMxne86heAPMFpj8vUSatJEVekgpwchVLZbzWNLuK6Zekn9
50rAgH+0kB2d/U7sJokY+1+0Y2LO9YbZ fuVONS3MFS1ZsF/QzevwGoiObA39czy/RxeYDOCNujj2wf
RVehIwvITRLGEUd8kc8I6d61fF4cD1SRt8uDvosP931ZcLp2005uVex3jXnScxBTRgteo3XMo/ /x+C
Bia691U/rb3a+uGY9xym8\"",
"Expires":"4 Aug 2014 12:55:19 GMT",
"Secure":true,
"Path":"/"),
{"Name":"sess-at-main",
"HttpOnly":false,
"Value" :"\"IF2JC9dGVffusdZzZKXaCAjDPeXCv/xBb0OVrD5jy+1ly=\"",
"Expires":"4 Aug 2014 12:55:19 GMT",
"Secure":true,
"Path":"/}

55

RSB
"request 1d":"030CO9TSQRHGTGHW78KC6}

Listing 6.12 Exchangetoken (auth cookie) reply message.

The exchangetoken/cookies message was observed to acquire five to six cookie
tokens: session-id, ubid-main, X-main, at-main, sess-at-main and session-token. Session-
token cookie was not always assigned and the logic behind this was not understood.
Session-token, when assigned, was always given in HTTP header and not in the JSON
object at HTTP message body as the rest of the cookies. Session-token cookie was also
given in at least one other message, which was not related to token acquisition. Cookies
at-main and sess-at-main are given one hour expiry time and the rest of the cookies
were given 20 years minus 5 days.

POST /ap/exchangetoken/cookies HTTP/1.1

X-Amzn-RequestId: ad763a6c-0clc-4b37-852c-0bd75957cdfe

Content-Type: application/x-www-form-urlencoded

User-Agent: AmazonWebView/MAPClientLib/120069810/Android/4.2.2/KFTHWI
Host: www.amazon.co.uk

Content-Length: 103

requested_token_type=auth cookies
&domain=www.amazon.co.uk
&app_name=com.amazon.imp
&app_version=120039810

Listing 6.13 Exchangetoken/cookies (initial token) request message.

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8

Set-Cookie: session-1d=276-9389280-3838434; Domain=.amazon.co.uk; Expires=Mon,
05-Jun-2034 11:47:39 GMT; Path=/

Set-Cookie: session-id-time=20331208591; Domain=.amazon.co.uk; Expires=Mon,
05-Jun-2034 11:47:39 GMT; Path=/

{"response":{
"tokens": {
"cookies": {
".amazon.co.uk": [
{"Name" :"session-id",
"HttpOnly":false,
"Value":"276-9389280-3838434",
"Expires":"5 Jun 2034 11:47:39 GMT",
"Secure":false,
"Path":"/"),
{"Name" : "ubid-acbuk",
"HttpOnly":false,
"Value":"276-3404217-4919469",
"Expires":"5 Jun 2034 11:47:39 GMT",
"Secure":false,
"Path":"/"}
DR
"request i1d":"OHHJDB1386HCEOVESJPA"}

Listing 6.14 Exchangetoken/cookies (initial token) reply message.

56

Listing 6.13 and Listing 6.14 present exchangetoken/cookies request and reply
messages, which were used only when the user’s account was registered to the device.
Messages are slightly different from the messages presented in Listings 6.11 and 6.12.
The request message (Listing 6.13) is otherwise the same, but it is missing source_token
and source_token_type parameters from the message body. Missing parameters are
explained by the fact that when this request message is sent, no refresh token has yet
been acquired.

The reply message (Listing 6.14) differentiates from the other message (Listing
6.12) by having only 3 cookies: session-id, session-id-time and ubid-acbuk. The ubid-
acbuk cookie name is thought to depend on the domain mentioned in the request
message, since Amazon has shops and domains customized for different countries, for
example, UK and Germany.

6.1.6 Token request parameters

Tables 6.1 and 6.2 present parameters used in the token related request messages. Table
6.1 concentrates on messages concerning token acquisition, including exception cases in
initial token acquisition while adding a user to a device. Table 6.2 presents other
messages related to token acquirement when a user is added to a device.

Table 6.1: Token exchange request parameters.

Parameter Exchangetoken/ Exchangetoken/ | Exchangetoken
cookies (initial) cookies

requested _token_type X X X
domain X X -
app_name X X X
app_version X X X
source_token_type - X X
source_token - X X

Requested_token_type parameter defined what kind of token was requested.
Observed values were: auth_cookies, refresh_token and access token. Domain
parameter was thought to define which domain address the request is supposed to go.
For example, www.amazon.com and www.amazon.co.uk were observed.
Source_token_type parameter defines the type of the source token (e.g. refresh_token).

57

Table 6.2: Device register and credentials request message parameters.

) etNewDevice .)
getNewDevice g . registerDevice
Credentials

Parameter Credentials (xXmlin HTTP

(url parameters) (xmlin HTTP message body)
P message body) g y

deviceType X -

deviceSerialNumber X -

pid - -

email - _

password - -

secret

softwareVersion

X | X | X[X|X]| X]|X]| X

X | X | X
1

softwareComponentld

deviceTypeSoftwareVe
rsionMap (entry:
deviceType, version,
softwareComponentld)

reason X - -

radiold X - -

DeviceType parameter contained a string from capital alphabets and numbers,
which was suspected to be the unique identification of a specific application (e.g.
com.amazon.thor.android.os) and its version number. SoftwareComponentld contained
the name of the application file (e.g. com.audible,application.kindle).
DeviceTypeSoftwareVersionMap parameter contained entries, which hold deviceType,
softwareComponenld and softwareVersion.

Radiold parameter contained the device’s MAC-address. Reason parameter was
always observed to contain value “NoState” and was suspected to tell the reason why
the request is made.

6.2 Practical security in Amazon Shop

Amazon Shop’s free and paid software cases were made simple. A user starts Amazon
Shop application, installs free or paid software and then leaves the shop. The message
flow presented in Figure 6.3 is identical with free and paid software cases. The Figure
6.3 presents only the most relevant messages from the message flow. Omitted messages
were related to information and metadata requests, one redundant token request, image
downloads for the shop and one partial application download.

Kindle Amazon
(Fire OS) T

I
I
I 1: HTTP POST /purchaseltem I

P
2: Repl
e________Dy________
3: HTTP POST /getDow nloadUrl >
. __ 4 Reply (dow nloadUrl, apkHash, ...) |
5: Request to dow nload the application from dow nloadUrl
6: Application
c — — — — __ o Applicawon |
7: HTTP POST /createAuthTokens >
8: Repl
é________py________
9: HTTP POST /createContentLicenses >
10: Repl
&= = B e il =5 5 BB
[
[
[
| [

Figure 6.3 Message flow when buying and downloading software from Afnazon shop.

POST /purchaselItem HTTP/1.1

x-venezia-pfm: ATVPDKIKXODER

User-Agent: VeneziaAndroid/release-7.1017
x-venezia-cor: FI

Session-ID: 191-0368151-6201814
X-ADP-Request-Digest: Qi4216+DgNegys2Fb7ft...
X-ADP-Authentication-Token: {enc:05R4tVC8+...
Content-Type: text/plain; charset=UTF-8

Host: mas-ext.amazon.com

{"zeroesPaymentActive":false,
"currentVersion":"0",
"searchAnalytics": {

"refMarker":"apps th gd gm 4"},
"currentPrice": {

"amount":"0.00",

"unit":"USD"},
"deviceInfo": {

"ref":"unknown",

59

"model" :"KFTHWI",

"deviceDescriptorId":"MDD-S-3F6CWH2RO3YPFE",

"osVersion":"17",

"deviceType":"A2VZ790DVVIS1K",

"manufacturer":"Amazon",

"carrier":"unknown",

"build fingerprint":"Amazon\/thor\/thor:4.2.2\/JDQ39\/13.3.2.3.2 user
323001720:user\/release-keys",

"build product":"thor"},

"asin":"BOOJX66AVO" }

Listing 6.15 Purchaseltem request message.

HTTP/1.1 200 OK
Content-Type: application/json

{"displayMessageKey":"mas.device.purchase.success.no_error",
"orderId":"D01-8181186-4443362",
"purchaseErrors" :"NoError",
"stateToken":"--—===**{{{ [VeNeZiA] }}}**===---=-"}

Listing 6.16 Purchaseltem reply message.

Purchaseltem message (Message 1, Figure 6.3) contained two HTTP header fields:
X-ADP-Request-Digest and X-ADP-Authentication-Token. These two HTTP header
fields were used in nearly every message sent from Kindle Fire device to Amazon when
downloading a free application. Exceptions were Messages 3 — 4 from Figure 6.3 and
certain messages (omitted from Figure 6.3) related to content metadata.

The same authentication token was used in every message. The used token was
observed to be obtained during the registration (Message 6, Figure 6.1) and the acquired
token was pointed to the deviceType A2VZ790DVVI91K. As mentioned earlier this
deviceType was mapped to a softwareComponenld named com.amazon.thor.android.os,
which was thought to represent the user’s operating system in the kindle device. This
same deviceType is also mentioned in the message body of purchaseltem request
message (Listing 6.15).

The reply message for puchaseltem contained four fields: displayMessageKey,
orderld, purchaseErrors and stateToken. Listing 6.16 presents the case when purchase
was done successfully. In the case of failure orderld and stateToken fields were left
empty and other fields had information regarding the error. During observations one
purchase error was captured, it was due the fact that the author had not selected default
payment type from Amazon account settings. During this error the author was directed
to sign-in with the browser to Amazon and change the setting for payment. Afterwards
purchases were made successfully.

One notable observation was that the user was never asked to authenticate when
buying an application or downloading a free application. Also the user was required to
add credit card details to user’s Amazon account before the user was allowed to install
any software, free or paid.

60

HTTP/1.1 200 OK

Date: Mon, 23 Jun 2014 08:50:56 GMT
Content-Type: application/json
Content-Length: 351

{ "apkHash":"R6YV3ht6kFugGE347TmXzZg=="",

"downloadUrl":"https://amznadsi-a.akamaihd.net/US/prod/B008K38DXK-10-
844a3a45-ce68-492e-a70e-34f18e342882.bin?AWSAccessKeyId=AKIAIJNJFQESGNKQ7THPA
¢Expires=1404118256&Signature=aqqyoBmv7/L%4arzViPTg79%9aAso=6&__h =1404118256 4a
dc6£2706a2de23£2b9c9£81d8f219a",

"latestContentId":"MC-S-39P8Q6KEBTNO92",

"packageName" :"com.rovio.angrybirdsseasonsHD",

"stateToken":null}

Listing 6.17 getDownloadUrl reply message.

The reply message for Message 3 (Figure 6.3) contained in the message body a hash
value for the requested application file and URL from where to download the
application. The download URL (for the requested application) contained the following
parameters: filename, AWSAccessKeyld, expiry time, signature and one unknown
parameter __h

AWSAccessKeyld’s role in this message is not fully understood. Amazon’s AWS
(Amazon Web Services) documentations might give some hints. AWSAccessKeyld is
an identification value distributed by AWS (Amazon Web Services), when a user signs
up for an AWS account [47]. During the same time when AWS access key is obtained,
the user also gets a secret key. These two values are used to sign requests made by
applications to AWS. [48] Based on the AWS documentation, AWSAccessKeyld could
identify the user to whom the device has been registered to. AWSAccessKeyld was
observed to change only when the user registers herself to the device, but observations
do not rule out the possibility of AWSAccessKeyld to change after a time, since the
observations were done in two sets separated by only three months.

The signature in the download URL is thought to be the signature of the download
request and not of the requested application, because the signature resembles the AWS
signature version 2 [47]. The AWS documentation specifies that the signature in the
query URL must be base64 encoded and then URI encoded (the URL in the Listing 6.17
is decoded). The documentation also specifies that the signature has to be calculated
with either HMAC-SHA1 or HMAC-SHA256 protocols. [47] The signature given in the
Listing 6.17 meets the first criteria and the signature is 160 bit long after URI decoding,
which is also the length of the HMAC-SHA1 output [13]. The expiry time given in the
URL was unix epoch time format and the time was set to expire exactly in one week
(168 hours). The same expiry time was also a part of the unknown parameter __ h
value.

POST /createAuthTokens HTTP/1.1
User-Agent: VeneziaAndroid/release-7.1017
Content-Length: 86

Content-Type: text/plain; charset=UTF-8
Host: mas-ext.amazon.com

61

{ "stateToken":"",
"clientVersion":"release-7.1017",
"contentIds": ["MC-S-39P8Q6KEBTN92"] }

Listing 6.18 createAuthTokens request message.

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 370

{ "authTokens": {
"MC-S-39P8Q6KEBTN92" : "eiTaNCoAaLUOGGHrzssKCIpArWKclVLcAJIMAj3RTpWiguaScgd

fBSCA570SaK5dsDHK1Lkg37uc8XL+E4111HH4t1WNYOK/mmPQhmOhpWMD958VpnuauKYIshKo7SFG2
Xh3bYIWE9zmt4Aqab6UuxjIvEAAN1aQLpXGivIyReJVHsIJIbjOVIDTb)Yg]jfvjhPBObaskvX5n7iMzF
Q5T55yZkqUVIHEdKullax/2X883INGxIqCSV9jZZVEJRvCkId+faimdhw5420C2SHEzXrhUHNZbKpn
ApiHl1iXgvtKBWleXcezec0Tju9/aYd9j9Y1DREesIOV8IJ0pPjz3EL2Z2YQ==""

},"errors":{},

"stateToken" :null}

Listing 6.19 createAuthTokens reply message.

The createAuthTokens request message is one the few exceptions that did not
contain a digest and token pair. The request message contained contentld parameter in
the message body to refer to the desired application. The contendld was given in the
reply message (Listing 6.17) for the getDownloadUrl message. The reply message in
Listing 6.19 provided the requested token in the message body. The token was base64
encoded and decoding it did not produce anything comprehensible and its usage was left
unknown.

POST /createContentLicenses HTTP/1.1

x-venezia-pfm: ATVPDKIKXODER

User-Agent: VeneziaAndroid/release-7.1017
x-venezia-cor: FI

X-ADP-Request-Digest: VABIXC1l6jBw3kBYccXYcR ...
X-ADP-Authentication-Token: {enc:05R4tVC8+FMNe6llpl3e2
Content-Length: 358

Content-Type: text/plain; charset=UTF-8

Host: mas-ext.amazon.com

{ "stateToken":"",
"contentIds": ["MC-S-39P8Q6KEBTN92"],
"deviceInfo": {
"ref":"unknown",
"model" : "KFTHWI",
"deviceDescriptorId":"MDD-S-3F6CWH2RO3YPF",
"osVersion":"17",
"deviceType":"A2VZ790DVVIO1K",
"manufacturer":"Amazon",
"carrier" :"unknown",
"build fingerprint":"Amazon\/thor\/thor:4.2.2\/JDQ39\/13.3.2.3.2 user_ 32
3001720:user\/release-keys",
"build product":"thor"
}}

Listing 6.20 createContentLicenses request message.

62

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 663

{"errors":{},
"licenses": {
"MC-S-39P8Q6KEBTN92" : {

"contentId":"MC-S-39P8Q6KEBTNO92",

"expirationDate":1.408698591739E9,

"token" : "ZXhwaXJhdGlvbjOxNDA4N]k4NTkxNzM5LGRybUlvZGUIMSxkZXZpY2VIZD1E
MEZCQTBBMDMONTMwV1dDLHBhY2thZ2VOYW11PWNvbS5yb3ZpbybhbmdyeWIJpcmRzc2Vhec29ucOhELG
N1c3RvbWVYSWQIQTFUVDCcWMFEXU]jFCMzcsY2hlY2tzdW09UJZZViNodDZrRnVnROUzNDdUbVhaZz09
LHRzPToxNDAzZNTEONTkxNzQOfGUOUTB4aHp4dlpzWWZJK2EzMOU1b01HeW9pOGtONktjOXhDbjR3RD
QydnlLRHIPRESBSkEWQzdyOS9pMk50ROFTQOFpULZ0aW80Y JNYTTNHUCt3akVNLOxX1VG1VvWEL ZNDRW
V1IRjMkO1bWdAXdJMIWHNtcVk3WEFBRYOI4SWVENUSPTmMS IMXFuOWsrT1hPQVB1SHESeFVBOWEWVNEFHWX
JJAUYOWERET21FWXYydnY4ZFNFZVBNSOY4c3R1cG8vdldhMGIXTIRXA1FKaGdAIQmzZVTkhSS1UyaEkx
NEpmeUkxQ3RwY3JHUERAUNpTOWAVYUFxYOxqR1orR1ZrYONoS20rbXRIQV1Zbnp4RWAYbOMxblovSF
hGQOS5KWjVwdVV1ZXkyOHISL1BOSzdkcnENTVRkQ2Z0oQ1NoWml4anlFVGF3aGtnNOxwcO0k10GpETmMZ J
b1l1FbENkKkT2hUdz09"

}
},"stateToken":null}

Listing 6.21 createContentLicenses reply message.

The createContentLicenses request body contained contentld referring to the desired
application and information regarding the user’s device. The reply message in Listing
6.21 contained among other things expirationDate and a token that were base64
encoded. The token was decoded as follows:

expiration=1408698591739, drmMode=1, deviceId=DOFBAOAO34530WWC,
packageName=com.rovio.angrybirdsseasonsHD, customerId=A1TT700Q1R1B37, checksum=R
6YV3ht 6kFugGE347TmXZg==, £s=:14035145917441e4Q0xhzxvZsYfc+a33E50IGyoi8kt6KcAxXCn
4wD42vyKDriDNAJAOCT7r9/i2NNGASCAIRVti04b3XM3GP+wjEM/LbTmoXKY44VWTc2M5mgWv35Xsmg
Y7XPQcB8IeD5NONNHI1gn9k+NXOAPuHqyxUAAaOVgGYrIuF4XDDO1iEYv2vv8dSEePMKF8stupo/vial
OoWOTWvQJIhgHBfUNHRJU2hI14JfyI1CtpcrGPDxRzSAgUaAqcLjFZ+FVkcChKm+mtIAYYnzxEgXoCln
Z/HXFCNJZ5puUeey28rR/PNK7drgMMTACfhCShZixjyETawhkg7LpsI58jDNfIoYE1ICAOhTw==

Listing 6.22 Base64 decoded createContentLicenses message reply token.

The token contained among other things expiration time, device Id, package name,
timestamp (parameter ts) and base 64 encoded checksum. The token also contained 344
character long base64 string, which was not understood after a decode attempt. The
string contained after decoding 256 bytes (2048 bits) of data. From the length the author
suspects it to be either some sort of key for asymmetric encryption algorithm or digital
signature. The expiration time here is the same as expirationDate parameter presented in
Listing 6.21, it is presented in another format.

63

6.3 Discussion

The x-adp-tokens and signatures/digest values addressed in Sections 6.1.1 and 6.1.2 left
a few open questions. What is encrypted in the x-adp-token and how it is encrypted?
Other questions are: what cryptographic hash function is used and where the key for
signatures is gotten from? Subsections 6.3.1 and 6.3.2 try to answer to these questions.
Chapter concludes in discussing what problem was encountered with the fake CA SSL
certificate.

6.3.1 Speculation of encrypted tokens

Regarding x-adp-tokens, the enc part is thought to contain encrypted information and
key and iv parts are thought to contain the encryption key and initialization vector for
the used encryption algorithm. Encryption key and initialization vector together
suggested that the used encryption algorithm is a symmetric algorithm, but on the other
hand the length of the possible encryption key is unusually long (2048 bits). For
example, AES-256 algorithm has 8 times shorter key. The length of the key actually
hints that it is encrypted with asymmetric encryption. The idea is presented in Listing
6.23.

{enc: {content}y,}
{key: {Ks}k;}
{iv: ... }

Listing 6.23 Example speculation.

In the Listing 6.23 the key K, is thought to be Amazon’s private key of asymmetric
encryption algorithm used to wrap (encrypt) symmetric encryption key K. The symmetric key
thought to be used together with iv to encrypt the content in the enc field. The encrypted
contents were left unknown.

6.3.2 Digest function and origin of signing key

X-adp-request-digest‘s cryptographic hash function is one mystery, because the
length of the hash value seemed to be unusually long (1536 bit). This limits the possible
list of hash algorithms, but the length of the x-adp-request-digest value also suggests
another possibility. The digest could actually be a digital signature and the name x-adp-
request-digest is just a legacy name just as discussed in the Google’s case in Section
5.3.2.

MIID1QIBADANBgkghkiGOwOBAQEFAASCA38wggN7AGEAROHBAMq4bDtSriLvINChewFjK94Hv5Nyol
8+hfl1o0Tj5CSTNygNd7R1a9eKCcrJS06gIdJ0IEO01HeOWd/dYAxd4U4CAZZgvOX5mKrrclbGRuiizM
GyaBKrHwcbFFIU17ptBzui2AFYPIQrTiMyzj+viXe32G6I5wXKy8XhT1l+PeghGk/I8KODaoccCnNQS
Ln6xSB2ZgGeCUk6veCGRIHrKjI03a0D5yZ1ixFELQMOUbe ryNTmQDuZcRmfuFnljgoyBbA7twIDAQAB
AoHAPNn4Jx2PekKBeHfzANSZFO0KVclmxx1lovkrFDipoiG3BSgYNdUnwteX1xNVVGZNKngIPp7T4y75T

64

UGKJjGEzchrqyGNVgtBh0isQYgziOZWrCajfAQ3kDEKK1afRI6IxxvVTO0IqZ/XdjZUjoKL/XSN7vsFEF
5sLtH//D2frv7jImVmtCiEWA8WX33eibcND2e4/MpO0luj70wl3RALAILV5hCAIRNZWHHghjc9RHIke
3mNbiWBmlk4z/RzRxpi+9+0HNZAmMEA+POMRAO3DULOekzCyk2fPQs4UzLwkzKsgRh+o+wdjRUvV)67v
ItmIg2C9QJYWWu67VwTx2J7Xj8JhSjg8/0kz3ngd3TzLNInm405DraxMDv421mRjhIJH+ZPITOkKLDLS
ZVAMEAQOG3UVgAwe 1 XMSATCDyHFzdh+wJvDHXemoNkFyVuE1l 7FcZsXpxBXKmJISm8rHW1 /dyjixxvnFQ
FOCwhHZDCn7tYhdIfGEOnb0oJBmyQLUEecg+YWOEwWUqJKZBMILEJxa3bAmMAUCNIhTBsBQz5RU7peBC
9r/20yMChzAKIrHiCbWxbpOym32/G9kVrOkEvLVglImmyTzX8V23soRBIGooGxraeSIYLt2sXUogdW
WncyFGsuzcFmMkBcWwwmB4IYxg03xNOCYFghNzCHrSyf30nJsgxDwjAUOGDOGhRpH7JIXS9XXjpsrSw
OBUXmrBBJC5n7nZ21i9pPtrXPi77G7U9X1Wodo063Qc/tpdKKQSrEP31uvVmgGe0BOrBONL1sLUINVO
RfKH+wJIgM8B7XbPYTQ/xeU2vxMnBNGbbQi f 9PF4KBSAeFb7vmW2D3Jte7VNh3vIpJIb7BcipdRmiQgB
remvXEkxE1gH3e9Qk0OUyyjtXW50WN2eYply2ByXedF6suEKfGIS5/2UPp6z

Listing 6.24 Example of given base64 encoded device private key.

Another problem was the origin of the private key that Amazon’s client applications
in user’s device use to sign messages. During the registration a device private key is
given, which might have something to do with signatures (Listing 6.7, subsection 6.1.3),
but the author personally doubts this. One given device private key is presented in
Listing 6.24. The key is 1228 character long and base64 encoded, which decodes into
7368 bit of data. The length of the given key (7368 bit) is too long for the key used in
observed SHA256WIithRSA signatures (1536 bit), because according to the standard the
length of the signature is the same as the length of the private key [46]. No other
potential key candidate was noticed in the desired length and therefore the origin of the
used signing key is left unknown.

6.3.3 Problems with a fake CA SSL certificate

During the observations a second fake CA SSL certificate was created, but when it was
deployed all SSL/TLS communications failed during the handshake. At the same time,
when the new certificate was deployed the Amazon’s device got a new update. It was
first thought that the new behaviour was a result of the update and Amazon had
implemented new mechanism to prevent MITM attacks.

Later on an older certificate was tried and noticed that SSL/TLS communications
worked again. It was then understood that the problem lied in the new certificate and in
closer inspection it was noticed that the new certificate had only one field (common
name) filled during its creation with OpenSSL. This was due the author’s own fault. The
actual reason why the new certificate did not work with Amazon’s client applications
was left unknown, but it was understood that all the fields needed to be filled.

65

7 WHEN SSL FAILS

The MITM attack used in this thesis for observing and capturing encrypted SSL/TLS
communications is not an easy attack to do in a real life due to its requirements.
However, the attack is more problematic than it first appears for Google Android users.
A MITM attack was performed in a laboratory environment to demonstrate what an
attacker could gain and achieve in a real attack against victim with a Google Android
device.

The chapter is divided in three parts. First the MITM attack is described, especially,
how it was done in practice. Then it moves to describe what information is needed for
the exploitation, how to exploit and what information the attacker can gain. Chapter
ends in discussing what the core problems that enabled attacks are, what has been done
to prevent MITM attacks and finally the author presents a proposal how to prevent the
described attacks. The findings have been informed to Google in 23th September 2014.

7.1 MITM attack in practice

A MITM attack is normally used to spy the victim’s communication, but the attack
reveals only what the user has conducted during the communication. In Google’s
Android case this is problematic for the user, because the information leaked in a first
successful MITM attack could be used to spy the victim remotely after the attack and
interact with the victim’s data stored in Google’s servers.

7.1.1 MITM attack preparation

Figures 7.1 and 7.2 presents the attack flow and Figure 7.4 describes what information
the attacker is after during the attack and for what she can use that information. The
attack can be divided in three phases: preparation, MITM attack and exploitation.

66

<l e N2) y
The attacker's actions Google's server's

| actions

(The victim's actions | [The victim's device's
| actions

/F&epdration phase \L | I

Gain physical
access to the
victim's device

!

Install new

| trusted SSL CA
| certificate to
| | the device

one's own |

|

[

I

Lose sight of | l |
Android device X |
) I
|

I

|

|

|

|

|

|

! Trust the new
| | | CA certificate | |
|

|

|

|

|

|

|

[

| | | | Route victim
| device's
| communications

| through the
| attacker
]

| Return the

|

I

Use the device S 2
victim's device

|
I
I
I
|
|
I
|
|
|
|
I
|
|
|
|
I

N

! Ve e —_— e ———— i o Zom . —_— R L S T Fem

Figure 7.1 The MITM attack preparation phase.

In the preparation phase the attacker first needs to gain physical access to the
victim’s device in order to install a CA SSL certificate into the device’s trusted
credential storage. And the attacker also needs to somehow route victim’s
communications through the attacker. In practice the attacker can access to the victim’s
device with a help of social engineering or simply steal the device. The attacker needs
only circa 30 seconds to install a CA SSL certificate if the attacker has proper tools and
scripts. As for tools the attacker needs a device with an USB port, an USB cable and a
script which automatically copies a specific certificate to attached USB device’s root
folder.

The victim’s communication can be routed through the attacker’s device in the same
way as it was done in the laboratory, by making a WiFi-hotspot. The victim could be
lured in by performing an “evil-twin” attack, which works creating a WiFi-hotspot with
same SSID as a real hotspot and moving the rogue hotspot with stronger signal near to
the victim [49]. Another way to route traffic could be for the attacker to insert new
credential for her own WiFi-hotspot (which is near the victim) at same time when she is
accessing the victim’s device and installing the CA certificate. Figure 5.8 presumes the
attacker using the second option. Finally the attacker returns the device to the victim
preferably without her knowledge. When the victim connects to the attacker’s WiFi-
hotspot and starts to use the device then the MITM attack starts.

7.1.2 The attack phase

When the MITM attack starts the attacker has basically two choices: she can either just
passively observe or actively modify (and observe) the communications. With passive

67

observation the attacker can only gain authorization tokens present in requests made

during the attack. And if the attacker is lucky she might intercept a token request, from

which she gains the victim’s master token (Listings 5.4 and 5.6).
_____________________ /_ Aot e o T ens P ——

])
[The victim device's Google's server's
| actions | actions

|

|

\)
. | |
qArTM—attack phase | |
|/;Use the device \j | |
\ 4 & A
; e — | Make HTTP | |
| request J

|
|
|
|
|
|

-

|

|

|

|

|

|

\ 2 =N l
[Active - MITM ! [Passive-MITM “ |
|

|

|

|

|

|

|

\ attack attack
j ergd‘ljfz ;{':P (" Listen for
| Hegrest by authorization
invalidating
| Authorization I-:I?;I: ?z f:jzrsnt 5
| tokens < a -

|
|
|
I
| ~
|
|
|
|
|
|
|

| | [] M

Make HTTP L
request for a I
new |
authorization)
token (/auth p- Capture \
giessage) the master token |

(Return HTTP 401 - l

‘ Unauthtorized)

\

N\

|

|

|

|

|

| Continue

attack by

| invalidating the

| master token
| from the token

| { request

R

I

|

|

|

|

|

|

|

(" Return HTTP b
403 - Forbidden
& —

4

7 Request the i ‘
victim to
authenticate | T

" " Captute the)
. | victim's Google
[/ Make HTTP account's
L request for a i encryp:led d ®
new master || | B

token (/auth the new
message) | | | mastertoken

1
I [
l |
l [
l [
l [
l [
I |
l |
l [
l 1
l |
' [
l [
l [
l [
l [
| [
l [
I [
I [
l 1
l [
| |
l [
l |
l |
l [
l |
' |
l [
l [
l [
l [
I |
l [
l 1
| |

== — = R ca— = = = . e, Sy e (P

Figure 7.2 MITM attack phase.

With an active MITM attack the attacker can “force” the victim’s device to reveal
information, which is useful in a situation where no token request has been seen. This is
done by capturing HTTP requests victim’s device makes and modifying the
authorization tokens to be invalid, before they are passed on to the Google’s servers.
Because of the modification, Google’s servers return HTTP 401 — Unauthorized reply to

68

the device. The victim’s application gives up after a few failed attempts, presumably
believing that the problem is in the authorization token, and tries to acquire a new token
for itself. The token request (Listings 5.4 and 5.6) is interesting for the attacker because
it contains the desired master token.

When the attacker gains the master token she is also faced with a decision: she can
now either stop the active attack or continue the attack to gain even more information. If
the attacker continues the attack, she can do it by modifying the master token from the
captured token request to be invalid and pass the request on to the Google’s server. In
this case the Google’s server return HTTP 403 — Forbidden reply to the device. At this
point the device presumably believes the problem must be in the user’s account, since
replies from Google and behaviour so far is the same what happens when the master
token access has been revoked. Figure 5.9 presents the view the Android device used in
the demonstration presented to the user after continued attack:

. SA

Retype password

| ’ Wl @gmail.com
t ‘ Password

+ EREVERER =
2 o S B o=

—

Figure 7.3 View presented to the user when the attacker continues the attack.

The device requests from the victim to authenticate. This is a critical point in the
attack, because the user can opt not to authenticate right away (during the MITM
attack), but the author personally believes the majority of the victims would authenticate
at this point without a second thought. Once the victim authenticates the device sends a
master token request (Listing 5.2), which is captured by the attacker. The interesting

69

part from this message is the victim’s encrypted Google account password and the new
master token from Google’s reply message for the request.

7.2 Gained information and its usage

After the MITM attack, starts the exploitation of the gained information, which is
presented in Figure 5.10. The attacker has gained during the MITM attack: applications’
authorization tokens, the victim Google account’s master token and victim’s encrypted
Google account password. During the MITM attack the attacker has gained more
information than just the previously mentioned, but she cannot trust that she has got
what she wants from the victim during the MITM attack. Therefore the attacker is after
tokens and encrypted password, which can be used after the attack to access remotely
victim’s data in the Google’s servers.

[Interesting Google related liformation
the attacker gained in MITM attack

| |

|
|
|
| Victim's
|
|

| Authorization (Master token) encrypted
token X y Google account
password

[How and for w hat
Ito use the gained
information

Send custom

Send cusiomi) token requests

requests remotely for any
remotely with Google's Android
captured application
authorization 2
token to access \J{
victim's data

related to the
particular Google
Android
application

Send custom
requests remotely
with newly
requested
authorization token
to access victim's
datarelated to a
particular Google
. Android application

|
| victim's parameter |

{ victim would

[Perform MITM
attack for the ‘
attacker's own
Android device |

y

‘ Add victim's

account and ‘
enter random

password J

v

Intercept and
modify /auth |
message by
changing the
EncryptedPasswd
parameter to the
intercepted

A

Let the account
adding process
flow and access
the victim's
account from the
attacker's own
device as the

it i i Wommm B s L e] Hmk} (i} i ot ol it ! i} YR

Figure 7.4 Information gained in the attack and how to use it.

70

Generally authorization tokens have a limited access to the user’s data. Tokens are
presumably restricted only to the information that the specific application (which the
token belongs to) needs. A master token on the other hand is used to acquire tokens for
all Google’s Android applications and victim’s encrypted password is present when
master token is acquired during the account registration process.

In general, Google uses only SSL and authorization token to protect user’s data,
when a Google Android application accesses it. An attacker can, by looking at the
previously made request and slightly modifying them to handcraft own request and
access victim’s data. In practice the messages can be handcrafted in a text editor and
sent manually using OpenSSL, which forms an SSL/TLS tunnel to Google’s servers and
is capable of sending messages.

The spying, if done right in practice, stops when the victim changes her Google
account password and before that the victim could be spied upon for years. In the case
of phones, according to Roger Entner [50, 51] handset replacement cycle in 2010 and
2012 in United States was 21.7 months (roughly 2 years), but it also heavily depends on
the country. For example, in Finland the replacement cycle in 2010 was 74.5 months
(roughly 6 years). [50]

7.2.1 Exploiting the gained information - Custom requests

During the observations two tests were made, where information acquired in the MITM
attack was used to reveal more information of the victim than was communicated during
the MITM attack. The victim in tests was the author’s test Google account. Before tests,
two contacts and one calendar event was added to the victims Google account for the
attacker to target.

In the first test, after the MITM attack the attacker’s computer changed its IP-
address, made an SSL/TLS tunnel connection with OpenSSL to Google’s servers and
send handcrafted requests, with victim’s authorization tokens. First request was used to
test whether a replay attack would work. However, the request the attacker made was
not completely identical with the original message. The attacker’s message was slightly
modified in order to get reply in a plain text and retrieve more interesting information.
The first request was used to obtain all of the victim’s contacts (e.g. phone numbers,
email addresses, etc.) stored in the Google servers. The request made by the attacker
used the same token as the victim had used.

Second request was used to test whether the attacker could obtain new tokens for a
Google’s application or service. The captured GLS and GA token request messages
contained all the necessary information for the attacker to make modified requests. The
second request was used to obtain a new token for Google calendar application.

Third and final request tested whether the attacker could use the newly acquired
token to make request and obtain more information of the user. The sent request was
used to obtain all the calendar events the victim had made. The second test was identical
to the first test, but this time the victim used Google’s 2-step verification, where the

71

login information came from the Google Authenticator. Nevertheless all the requests
were made successfully in both tests. The requests made in the first test are presented in
Appendix A.

While, not every Google’s Android application was tested, these tests proved that
once a user has been once a victim of a MITM attack capable of decrypting SSL/TLS
communications the victim could then be spied upon remotely. If the attacker knows the
victim’s master token, the author believes that then in practice, the attacker has access to
victim’s all Google data (same data as the victim’s own device has access to), since the
attacker is able to acquire new tokens for victim’s Google Android applications. On the
other hand the attacker has to familiarize herself with how Google’s applications
communicate with Google’s servers in order to be able to make custom requests.

This attack does not leave traces for the victim to notice (except the new trusted CA
certificate in the device). No indication was noticed in the Google account’s security
related pages that another device had made queries or used the victim’s account, for
example, from another IP-address. Also the Google Android application’s behaviour
helps to hide the possible attack, since presumably one token is only valid per
application, and application’s default behaviour is to acquire new token when it has
problem with the old one and user is not informed of these new requests or invalid
tokens.

7.2.2 Exploiting the gained information — Victim’s encrypted password

With the knowledge of the victim’s encrypted password the author was able to add the
victim’s Google account to another device and use the Google’s applications with
victim’s credentials without actually knowing the victim’s password. The attack was
done as follows.

The attacker starts by adding the victim’s account to her own device as the victim
would add her own account. The attacker adds the victim’s Google account name,
which she got from any of the captured token requests (Listings 5.2, 5.4 and 5.6,
parameter Email) and types a random string for the password field (the typed password
does not matter). After accepting the terms of service, etc. the device starts the
registration process by sending a master token request (Listing 5.2). At the same time
the attacker performs a MITM attack to her own device and stops the master token
request message. She changes the EncryptedPasswd parameter (which holds the user’s
encrypted password) value to the one she got earlier in the MITM attack from the
victim. After changing the value she lets the message go to the Google’s servers and lets
the process flow in its own weight. A few minutes later the attacker is able to use the
victim’s account as she would.

This attack makes it easier for the attacker to spy or do other malicious acts, because
she does not have to familiarize herself to how Google’s Android applications
communicate and make handcrafted requests. On the other hand, this attack leaves
much bigger traces of the attack. The attacker’s device gets listed to the victims Google

72

accounts — apps and permissions list, where the victim can also revoke the attacker’s
device’s rights. However, merely revoking the attacker’s device’s right to access
victim’s account does not prevent the attacker from adding the device again, since the
attacker knows the victim’s encrypted password and is therefore able to add victim’s
account again.

Also this attack does not work when the victim uses 2-step verification. Namely, in
order to complete the registration process the attacker needs the one time password
(OTP) given by Google, which is usually given to the phone number found in the
victim’s Google account details.

7.3 The weaknesses and their prevention

Google’s Android applications and Android itself have the following problems that
made the previously described attacks possible: messages are lacking authentication and
integrity checking, Android applications in the device blindly trust every CA certificate,
possibility to use encrypted Google account password more than once.

7.3.1 The weaknesses

Messages lacking authentication and integrity checks mean that the party sending
HTTP requests to Google’s servers is not authenticated nor are messages’ integrity
secured during the transit. The lack of these measures makes it possible for the attacker
to send her own requests and modify all the communications between the victim and
Google’s servers without either of the parties knowing.

Another issue was that a user-added and trusted SSL CA certificate is also trusted by
default nearly every Android application (not just Google’s) in the device. This makes it
possible for the attacker to perform MITM attack capable of decrypting all SSL
communications.

The last problem is that a user’s encrypted password sent during the registration is
valid more than once and possibly for as long the password stays the same. For
example, the author used a 7 months old encrypted password in a demonstration attack.

7.3.2 What a user can do to prevent or stop a MITM attack?

For a user to stop an ongoing spying she needs to change the master token and
preferably her password, since the attacker can spy the victim as long as the master
token and the password are valid. The master token can be changed by at least three
ways: revoking the device’s right to access the user’s account, starting to use 2-Step
authentication and changing the Google account password.

The device’s right to access the user’s Google account can be revoked from Google
account security settings regarding applications and websites permissions [52]. Also the
2-step verification is deployed from the Google account security settings. Both of these
mechanisms helps only after the user has been a victim of the MITM attack, because the

73

user is given a new master token and the older token, which the attacker has, is
invalidated.

The easiest and the most effective way to protect a user temporarily from being
spied are to change the user’s Google account password, because it automatically
invalidates all permissions that among other things, any device has to the user’s
account. This means the attacker cannot use the captured master token and the victim’s
encrypted password anymore. Changing the password also works until the victim gets
attacked by a MITM attack again.

For a user to protect herself from a MITM attack, she can: keep the device under a
close watch, check the trusted CA certificates time to time or use a device with an
Android OS 4.4 version or newer. It is not feasible to require for a user to keep a close
watch on her device all the time. Social engineering and exploiting a trust with the
victim are also possible means to take victim’s attention away. Also for the user to
check trusted CA certificates requires a lot of understanding of SSL and Android
security, which is not a reasonable expectation from an everyday user. And even in the
case when a victim finds a rogue trusted CA certificate, the attack might have already
happened. In practice using a newer Android OS is the best solution, because Google
has made security improvements to OS 4.4 version, which should prevent the MITM
attack. These improvements are discussed in depth in next section.

7.3.3 What steps has Google taken to protect the user?

At the time of writing Google has already taken steps to protect its users. In Android
version 4.2 Google introduced feature a called Certificate pinning [53]. Certificate
pinning is according to OWASP [54] a process of associating hosts with their expected
X.509 certificate or public key. This means that it is used to give an application the
ability to trust only certain determined CA SSL certificates [55], which prevents MITM
attack because the rogue CA certificate will not be trusted by applications in the
Android device. In Android the certificate pinning is implemented by maintaining a list
of SHAI hashes of trusted certificate’s public keys [55]. In practice the hash is
calculated from certificate’s SubjectPublicKeyInfo (SPKI) field and is stored in the
device in the following way. Enforcing is either true or false and is followed by
SHAJ512 hashes separated with comma. [55]

Hostname=enforcing|SPKI SHA512 hash, SPKI SHA512 hash,...

Google added more security features in Android OS 4.4 version and the security
enhancements included notification related to certificate pinning: "Android 4.4 detects
and prevents the use of fraudulent Google certificates used in secure SSL/TLS
communications.” Another important security enhancement in Android 4.4 was device
monitoring warnings, which "provides users with a warning if any certificate has been
added to the device certificate store that could allow monitoring of encrypted network

74

traffic.” [56] In general, author believes the certificate pinning and the system warning
message are good features. Certificate pinning prevents the MITM attack against certain
host before it even starts. And system warning messages clearly warn the user of a
potential MITM attack.

However, certificate pinning feature and warning messages themselves are not
enough to protect users, if they are not used. For example, apparently Google does not
use certificate pinning feature in its own applications except in Android version 4.4,
Otherwise author would not have been able do this work with Android OS 4.3 and 4.2
devices. Also at the time of writing only one third-party application in the tested Google
Android OS 4.3 device was noticed not to work in the test environment and this
behaviour was presumed to be a result from the certificate pinning. On the other hand
the device was stripped from unnecessary applications when possible in order to keep
capture files "as clean as possible".

Also at the moment of writing only the newest Android OS 4.4 version has these
features. This is an issue for older Android OS version users, because only the newest
Android devices get updates to new versions of the OS. This has led to a problem called
Android OS fragmentation. Even now after a year Google released Android OS 4.4 [57]
it is still used roughly only in 21% of all of the Android devices [58]. So it will take
time until the majority of the Android users are protected.

7.3.4 What a service provider can do to prevent a MITM attack?

The author presents the following proposal, which might or might not be appropriate for
a service provider, but it prevents the described attacks. In-depth analysis of the
proposal is out-of-scope of this thesis. The author proposes for a service provider to use
digital signatures in messages from both the client and the server to protect users from
the observed aftereffects of the MITM attack. Digital signature is useful because it
authenticates the party sending a message and gives integrity protection for the
message. For the attacker to make her own request she needs to get the victim’s private
key used for signing messages, which does not need to be present in the
communications at all. Hence this would prevent the attacker from making her own
requests successfully to Google’s servers.

As stated earlier, Amazon uses digital signatures in nearly every request made to
Amazon’s servers, but their implementation should not be completely copied, because
the key distribution the author presumes Amazon using is not secure enough to protect
from a MITM attack. The problem with Amazon’s key distribution is that Amazon’s
server gives the private key used for signing during the registration to the user’s device
and it is given in plaintext. Hence the key would leak to the attacker, if registration was
done under a MITM attack. Author personally believes the MITM attack happening
during the first registration is highly unlikely, but apparently it is not impossible for the
attacker to gain the same information. The attacker can deceive victim’s device to

75

“force” the victim to register again, as it was demonstrated, and gain all tokens and the
key used for signing.

Instead of service provider giving the private key for signing to the user’s device let
the user’s device create the keys for signing (K, and K;) and give the public key K; in
encrypted form during the registration process when the master token is acquired. Using
Google Android as an example, Google’s Android devices already have Google’s public
key K2, which is used to encrypt the user’s password [28]. The process to deliver the
user’s device signing key K, could be the following:

...&EncryptedPasswd={Ks }Kg&EncryptedContent={password, KX}KS -

According to Elenkov [28] the Google’s public key resembles 1024-bit RSA public
key and Google uses OAEP for padding and therefore can encrypt at maximum 86 bytes
of data [28]. Due the limitation of how much data can be encrypted with Google’s RSA
private key, the master token request requires few minor changes. First changes should
take the user’s password away from EncryptedPasswd parameter and replace it with a
symmetric encryption key K, which is encrypted with Google’s public key to ensure
only Google can retrieve it. Then a new parameter EncryptedContent is added to the
master token request. The new parameter contains user’s password for authentication
and her public key K;, which Google can use to verify the user’s devices signatures.
The content of the new parameter is encrypted with a symmetric encryption algorithm
using the key K.

Using signatures and giving the signing key as described would fix two other
problems: encrypted password reusability and deceiving the victim’s device to do
registration again. The password reusability is prevented in the case where the attacker
copies the parameters EncryptedPasswd and EncryptedContent to her own request (in
order to use victim’s Google account in her own Android device). Because the attacker
does not have the user device’s private key K, , she cannot make valid signatures for
subsequent messages. And deceiving the victim’s device would not be possible if
Google would also sign sent messages, because the attacker does not know the Google’s
private key K and therefore is not able to make valid replies. Google already has the
capability to sign requests, as seen in Google Play Store Listings 5.23 and 5.27.

Digital signature is not however a silver bullet in fixing these problems. Signatures
require extra processing power from both the user’s Android device and Google’s
servers, which might be an issue for Google who has over 1 billion active Android users
at the time of writing in 2014 [59].

76

8 GOOGLE AND AMAZON COMPARISON

The chapter is divided in three parts. First and second part summarise the found security
features in Google’s and Amazon’s cases. In the third section Google’s and Amazon’s
security features are compared and discussed.

8.1 Google security features summary

Table 5.1 summarizes the security features that Play Store was observed to use when
buying and downloading free and paid software. Presented features are restricted to
those features that were directly observable in the communication channel. Main
differences were in the usage of SSL/TLS and in the additional authentication of the
communicating parties.

Table 5.1: Observed security features of free and paid application cases in Google.

Security feature

Free application case

Paid application case

Confidentiality

SSL/TLS used in the
communication, except in the final
delivery of the application.

SSL/TLS used during the
whole communication. And
probably some kind of
encryption is used with
prepare- and
commitPurchase messages.

Authentication:
Server

Client presumably authenticates
servers with signature requests at
the beginning of the message flow.

Same as in free application
case, but also additional
server authentication when
user committed to purchase
of the application.

Authentication:
User

The user is never authenticated.

The user is authenticated,
when he/she decides to buy
the application.

Authorization:

Every message sent by user’s
device except the last one used to
download the application has a
token included.

Every message sent by
device except
ClientLogin authentication
had a token included.

user’s

Availability:
Time-out value

Every message sent by user’s
device except application delivery
messages (Messages 6 and 8,

Every message sent by
user’s device except
ClientLogin authentication

77

Figure 5.5) had time-out value in | and final application
HTTP header. delivery message
(Messages 6 and 12, Figure
5.6) sent from client to
Google had time-out value
in HTTP header.

Integrity: Message integrity is not protected. | Message integrity is not
Message protected.

Integrity: Possibly signature was used. | No protection was
Application (Discussed below in detail.) observed, but messages

contained parts which were
not fully understood.
(Discussed below in detail.)

SSL/TLS was used to secure the whole communication between the user’s device
and Google, when the user buys an application from Play Store. In free application case
the SSL/TLS was also used, but not in the last two messages, which were part of the
application download.

In free and paid application cases the client application in user’s device
authenticated the Google server it communicated with by sending a signature request
during the Play Store start-up. In paid application case Play Store makes one additional
signature request, when the user has committed to purchase an application.

In the paid application case the user was authenticated when the decision to buy the
application was made. Play Store used Google’s own proprietary mechanism
ClientLogin for this purpose. In the free application case the user is not authenticated at
all.

Authorization was done with tokens, which are used between free and paid cases
similarly. In paid case every message except the ClientLogin message sent by the user’s
device included a token. In free application case every message sent by the user’s
device included a token except the final message requesting the application packet
download.

Also time-out values were sent along similarly in nearly every message sent from
the user’s device in free and paid cases. The exceptions were in free application case the
final two messages used to download the application. In paid case also the final
application download request and the ClientLogin message used for user authentication
did not have time-out value in the message.

Google was not observed to use any means to protect the message integrity in the
application layer in free and paid application cases. However, determining whether any
application integrity protection is used was not clear. In paid application case no
protection was observed, but messages contained parts which were not understood. For
example, reply message for preparePurchase message contained over 5400 character
long base64 encoded string, which could easily hold signatures or hash values of the

78

application. The free application case is also unclear on the application’s integrity
protection. The last message used to request and download the application contained a
signature parameter in the URL. However it was left unknown what the signature was
for (e.g. URL or the packet) and what parts the signature covered.

8.2 Amazon security features summary

In Amazon the observed security features were identical with free and paid software
cases. Table 5.2 presents the findings.

Table 5.2: Observed security features in Amazon case.

Security feature

Free and paid application cases

Confidentiality

SSL/TLS used during the whole
communication.

Authentication:
Server

Client does not authenticate server
it communicates with.

Authentication:
User

The user is never authenticated,
when the decision to buy or
download an application is made.

Authorization:

Every message except the
createAuthtoken and certain
metadata requests has a token
included.

Availability:
Time out value

Time out values are not used.

Integrity: Nearly every message that has an

Message x-adp-token included contains
also a digest or signature of the
message.

Integrity: The application’s hash value is

Application provided before the download.

Amazon uses the SSL/TLS to secure confidentiality of the whole communication
between a client (user’s device) and a server (Amazon). Certain image downloads and
reachability test URLs were not protected by the SSL/TLS.

The Amazon shop client application does not authenticate the server it
communicates with. The shop application also does not authenticate the user, when the
decision to download a free application or purchase an application is made.

Nearly every message has a token included, presumably just for client applications
authorization to use Amazon services. X-ADP-token is also always (with one exception)

79

accompanied with message digest or signature value, which protects the message from
tampering and corruption during the transit from user’s device to Amazon. However, it
was not known what part of the message the hash or signature covers. Application’s
integrity was protected by telling the application file’s hash value at the same time when
the download URL was given.

8.3 Comparison of Google and Amazon

The section is divided in two parts. The first part compares the security in general
between Google and Amazon. The second part concentrates on security of the market
places.

8.3.1 Security in general

In general, Google and Amazon used tokens in the same way for authorization. First, a
master token or refresh token was acquired, when the user’s account was registered to
the Android device. Then the master token or refresh token was used to acquire tokens
for applications. One difference between Google’s and Amazon’s token acquirement
process was that certain Amazon’s applications got tokens during the registration
process and the tokens were not acquired with the refresh token.

Amazon’s client applications were the only ones to use signatures (and possibly
hash functions) to protect the integrity of the client’s messages to Amazon and in the
case of signatures, also to authenticate the sender. There might be the issue of how the
key used for signing is delivered to the device during the registration (see Section
6.3.2). However, the delivery method for the key was not determined conclusively. The
author believes that the key distribution is not a big problem, unless the attacker can
force the user to register herself again to the device in order to intercept the signing key.
However, this possibility was not tested.

The usage of the signature in a message is a clear security advantage for Amazon
and for their users, if the SSL/TLS fails. As it was demonstrated in the case of Google’s
device (see Chapter 7), when SSL/TLS protection fails the attacker can get access to
nearly all the information the victim has in her Google account. From the perspective of
the communication security, it can be said that Google lacks defence in depth.

8.3.2 Market place specifics

Biggest differences between Google’s and Amazon’s market places were due to the fact
that Google Play Store worked differently depending on whether the user was acquiring
a paid or a free application. Both Google’s and Amazon’s market places used heavily
SSL/TLS and authorization tokens. Amazon used both the whole time and Google used
it also the whole time except in the free application case, when the application was
downloaded. Other exceptions in SSL/TLS and token usage were in certain image
downloads and reachability tests.

80

Amazon Shop did not authenticate the user at any point, when free or paid
application was bought and downloaded. In Google’s case it depended on the
application’s price. If the application was bought, then the user was authenticated in
Google’s Play Store, but not in the free application’s case. The Google’s authentication
mechanism (ClientLogin) in Play Store had one oddity: the user’s password was sent in
plain text inside the SSL/TLS connection. The author felt this was odd, because during
the registration, which happens rarely compared to buying applications from Play Store,
the user’s password is sent encrypted in the SSL/TLS connection.

The Amazon Shop’s lack of authentication might be a problem when, for example, a
user’s device has been stolen. The thief can buy, for example, applications from the
shop in the name of the victim. However, this case requires two things: first the victim
has to have given her credit card details to her Amazon’s account and the thief has to
get past the device’s screen lock, if it has been enabled (by default it is off).

Google Play Store client application was the only one to check with whom it was
communicating by making a signature request, and the only one to use time-out values
for messages. However, the signature request was made only once and only for the
requested nonce. This means that, in practice, it does not prevent the attacker from
modifying the message as long as she does not touch the nonce that the client
application sends and the signature that the Google’s server sends in response.

The application integrity comparison is not clear. Amazon clearly gives the
application’s hash value. Google was observed only in free application case to give a
signature, but it was not determined whether the signature was for the application or the
URL. In paid application case no integrity protection mechanism was observed, but then
again certain parts of the messages were not understood.

81

9 CONCLUSIONS

The goal of this thesis was to identify and analyse, what security mechanisms Android
vendors, Amazon and Google, use during the communication when their own Android
applications communicate with their services. The adequacy of the found security
mechanisms for the observed applications was out of the scope of this thesis.

In general, both Google and Amazon rely on authorization tokens and SSL/TLS
protocol to protect the communicated information. Amazon’s client applications in the
Android device were noticed to use signatures to provide message integrity protection
and authenticate the sender.

The security and general operation of the market applications were similar. The
SSL/TLS was used all the time, except in Google Play Store it depended on whether the
application was free or not. Other differences were on the requirement of user
authentication during the purchase. Amazon does not require the user to authenticate on
purchase, which means that, security wise, the user of Amazon’s device has to take
greater care of her own device than Google’s user.

During the authentication, when the user buys an application from Play Store, the
client application sends the user’s password in plaintext inside the secured SSL/TLS
connection. During the less frequently happening registration of the user’s Google
account to the device the user’s password is sent instead encrypted inside the SSL/TLS
connection.

The Google’s device and the authors Google’s account was attacked to demonstrate
in practice, what the attacker can do and achieve, when the SSL/TLS protection fails.
Security weaknesses were found and informed to Google. The weaknesses give the
attacker ability to remotely access to nearly all the victim’s Google data, for now. Also
the attacker can ‘“force” the victim to register again to the Android device, and the
attacker can use the victim’s intercepted encrypted password to add the victim’s Google
account to her own Android device. However, it should be noted that the attack used in
the demonstration requires for the attacker to have physical access to the device. The
author proposes using digital signatures and usage of Android OS 4.4 version or newer
to counter the threat.

The author believes that the goal set for the thesis was reached and the work went
well, even though there were some issues. The challenges and critiques of the work
method in making this thesis were lack of documentation and manual labour. There is,
in practice, no documentation available (only bits and pieces) of Google’s and
Amazon’s applications and security mechanisms. Hence, a lot of the time was just spent
to understand how things worked and what message was related to what application,

82

etc. Google’s habit to change the way how things worked did not help either. These are
also the reasons why so many things were left unknown.

The lack of documentation is where the manual labour came in. For example, in a
very simple case where Amazon Android device is booted, waited 30 seconds on the
home screen, and then shut down, the device sends circa 3000 packets, which can be
filtered to circa 110 interesting messages that all have to be examined manually. The
longest capture files had over 800 interesting packets. Over 60 communications were
captured and examined, and number is quite big, because the author seemed to find all
the time something that had to be verified in a new capture, before it could be written in
the thesis. Also, when the understanding of how the system and applications worked
was achieved, then the captured communications were not studied as closely, and
because of this, a few exception cases were found later on by accident. Hence, it is
possible that some things might have been missed.

Future work on the subject could be done in determining whether Amazon’s devices
can be forced to authenticate the user again and what the attacker can achieve with
manipulating the packets during the MITM attack. For the Google Play Store, the free
application download security could be examined more closely, since the application
download does not use the SSL/TLS protocol, which might leave the download
vulnerable for poisoning attacks.

83

REFERENCES

[1]

[2]

[3]

[4]
[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

W. Stallings, Cryptography and Network security - Principles and practice,
London: Pearson Education, Inc., 2011.

Canalys, “Google's Android becomes the world's leading smart phone platform,”
Canalys, 31 January 2011. [Online]. Available:
http://www.canalys.com/static/press_release/2011/r2011013.pdf. [Accessed 24
October 2014].

Phonearena, “Android forks are now 20% of the ecosystem. What is Google's
plan?,” Phonearena, 5 August 2014. [Online]. Available:
http://www.phonearena.com/news/Android-forks-are-now-20-of-the-ecosystem.-

What-is-Googles-plan_id59003. [Accessed 24 October 2014].

R. Shirey, “Internet Security Glossary, Version 2,” RFC 4949, IETF, 2007.

Google, “Google Developers: Google Accounts Authentication and
Authorization,” [Online]. Available: https://developers.google.com/accounts/.
[Accessed 8 September 2014].

E. Barker and J. Kelsey, “Draft NIST Special Publication 800-90A, Rev. 1 -
Recommendation for Random Number Generation Using Deterministic Random
Bit Generators,” National Institute of Standards and Technology, 21 April 2014.
[Online]. Available: http://csrc.nist.gov/publications/drafts/800-
90/sp800_90a_r1_draft.pdf. [Accessed 8 October 2014].

R. Anderson, Security Engineering - A guide to building dependable distributed
systems, 2nd ed., Indianapolis: Wiley Publishing, Inc, 2008.

IANA, “Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry,”
IANA, 17 February 2014. [Online]. Available:
http://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml.
[Accessed 26 October 2014].

R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Semantics
and Content,” RFC 7231, IETF, 2014.

J.-S. Coron, D. Yevgeniy, C. Malinaud and P. Puniya, “Merkle-Damgard
Revisited : how to Construct a Hash Function,” 2005. [Online]. Available:
https://www.cs.nyu.edu/~puniya/papers/merkle.pdf. [Accessed 28 October 2014].

R. Rivest, “The MD5 Message-Digest Algoritm,” RFC 1321, IETF, 1992.
Carnegie Mellon University, “CERT - Vulnerability Note VU#836068 - MD5

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

84

vulnerable to collision attacks,” 31 December 2008. [Online]. Available:
http://www.kb.cert.org/vuls/id/836068. [Accessed 9 October 2014].

H. Krawczyk, M. Bellare and R. Canetti, “HMAC: Keyed-Hashing for Message
Authentication,” RFC 2104, IETF, 1997.

D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and W. Polk, “Internet
X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile,” RFC 5280, IETF, 2008.

Netscape Communications Corporation, “The SSL Protocol,” Netscape
Communications ~ Corporation, March ~ 1996. [Online]. Available:
https://web.archive.org/web/19970614020952/http://home.netscape.com/newsref/
std/SSL.html. [Accessed 25 October 2014].

R. Amadeo, “Google’s iron grip on Android: Controlling open source by any
means necessary,” Ars Tecnica, 21 October 2013. [Online]. Available:
http://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-
open-source-by-any-means-necessary/. [Accessed 1 November 2014].

Open Handset Alliance, “Press - Industry Leaders Announce Open Platform for
Mobile Devices,” Open Handset Alliance, 5 November 2007. [Online]. Available:
http://www.openhandsetalliance.com/press_110507.html. [Accessed 1 November
2014].

Open Handset Alliance, “OHA - Members,” Open Handset Alliance, [Online].
Available: http://www.openhandsetalliance.com/oha_members.html. [Accessed 1
November 2014].

Internatiolan Data Corporation, “Smartphone OS Market Share, Q2 2014,”
Internatiolan Data Corporation, 2014. [Online]. Available:
http://www.idc.com/prodserv/smartphone-os-market-share.jsp. [Accessed 1
November 2014].

The OpenSSL Project, “OpenSSL - Cryptography and SSL/TLS Toolkit,” 2014.
[Online]. Available: https://www.openssl.org/. [Accessed 29 October 2014].

D. Roethlisberger, “SSLsplit - transparent and scalable SSL/TLS interception,”
2014. [Online]. Available: https://www.roe.ch/SSLsplit. [Accessed 29 October
2014].

A. Cortesi, “mitmproxy: a man-in-the-middle proxy,” 2013. [Online]. Available:
http://mitmproxy.org/index.html. [Accessed 29 October 2014].

Wireshark Foundation, “About = Wireshark,” [Online]. Available:
https://www.wireshark.org/about.html. [Accessed 29 October 2014].

Offensive Security Ltd., “Kali Linux,” Offensive Security Ltd., 2014. [Online].
Available: http://www.kali.org/. [Accessed 29 October 2014].

Amazon, “Kindle Fire Device and Feature Specifications,” Amazon, 2014.
[Online]. Awvailable: https://developer.amazon.com/sdk/fire/specifications.html.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

85

[Accessed 30 October 2014].

mitmproxy project, “How mitmproxy works,” mitmproxy project, 2014. [Online].
Available: http://mitmproxy.org/doc/howmitmproxy.html. [Accessed 30 October
2014].

D. Eastlake, “Transport Layer Security (TLS) Extensions: Extension Definitions,”
RFC 6066, IETF, 2011.

N. Elenkov, “Android online account management,” 5 11 2012. [Online].
Available: http://nelenkov.blogspot.jp/2012/11/android-online-account-
management.html. [Accessed 3 September 2014].

Google, “Android Developers: Reference - AccountManager,” [Online].
Available:
http://developer.android.com/reference/android/accounts/AccountManager.html.
[Accessed 8 September 2014].

Google, “Android - Frequently Asked Questions: Compatibility,” [Online].
Available: http://source.android.com/source/fags.html#compatibility. [Accessed 8
September 2014].

P. Bright, “Neither Microsoft, Nokia, nor anyone else should fork Android. It's
unforkable.,” Arstechnica, 8 February 2014. [Online]. Available:
http://arstechnica.com/information-technology/2014/02/neither-microsoft-nokia-
nor-anyone-else-should-fork-android-its-unforkable/. [Accessed 8 September
2014].

Google, “Google Developers: Google Play Services,” [Online]. Available:
http://developer.android.com/google/play-services/index.html. [Accessed 8
September 2014].

R. Amadeo, “Balky carriers and slow OEMs step aside: Google is defragging
Android,” Arstechnica, 3 September 2013. [Online]. Available:
http://arstechnica.com/gadgets/2013/09/balky-carriers-and-slow-oems-step-aside-
google-is-defragging-android/. [Accessed 8 September 2014].

Google, “ClientLogin for Installed Applications,” [Online]. Available:
https://developers.google.com/accounts/docs/AuthForInstalledApps?hl=en.
[Accessed 8 September 2014].

Google, “Google Developers: YouTube API v2.0 - ClientLogin for Installed
Applications,” [Online]. Available:
https://developers.google.com/youtube/2.0/developers_guide_protocol_clientlogi
n. [Accessed 8 September 2014].

Google, “Google 2-Step Verification,” Google, [Online]. Available:
https://www.google.com/landing/2step/. [Accessed 31 October 2014].

Google, “Using Security Key for 2-Step Verification,” Google, 2014. [Online].
Available: https://support.google.com/accounts/answer/6103523?hl=en.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

86

[Accessed 31 October 2014].

Google, “Types of cookies used by Google,” [Online]. Available:
http://www.google.com/intl/en/policies/technologies/types/. [Accessed 8
September 2014].

K. Sriram, “Sbktech: Inside the Android Play Service's magic OAuth flow,”
January 2014. [Online]. Available: http://sbktech.blogspot.fi/2014/01/inside-
android-play-services-magic.html. [Accessed 24 September 2014].

Google, “Android Developers: Reference - Settings.Secure,” Google, [Online].
Available:
http://developer.android.com/reference/android/provider/Settings.Secure.html#A
NDROID_ID. [Accessed 24 September 2014].

Google, “Google Plus: Android Developers - Google Play services,” 26
September 2012. [Online]. Available:
https://plus.google.com/+AndroidDevelopers/posts/J1A5hc1ZnS1. [Accessed 8
September 2014].

Google, “Google Developers: Google Accounts Authentication and
Authrorization - AuthSub for Web Applications,” [Online]. Available:
https://developers.google.com/accounts/docs/AuthSub. [Accessed 8 September
2014].

N. Elenkov, “Single sign-on to Google sites using AccountManager,” 9
November 2012. [Online]. Awvailable: http://nelenkov.blogspot.fi/2012/11/sso-
using-account-manager.html. [Accessed 8 September 2014].

Y. Soo, "6th Kandroid conference - Google GMS (Google Mobile Services),” 15
October 2010. [Online]. Available:
http://www.kandroid.org/board/data/board/conference/file_in_body/1/6th.kandroi
d.conference.gms.analysis.pdf. [Accessed 21 October 2014].

Y. Soo, “7th Kandroid conference - Google GMS (Google Mobile Services),” 11
March 2011. [Online]. Available:
http://www.kandroid.org/board/data/board/conference/file_in_body/1/7.session.7t
h.kandroid.gms.analysis.final.pdf. [Accessed 21 October 2014].

J. Jonsson and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1,” RFC 3447, IETF, 2003.

Amazon, “Amazon Web Services - AWS Documentation: Signature Version 2
Signing Process,” [Online]. Available:
http://docs.aws.amazon.com/general/latest/gr/signature-version-2.html. [Accessed
8 September 2014].

Amazon, “Amazon Web Services - Aws Documentation: Types of Security
Credentials,” [Online]. Available:
http://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html. [Accessed
8 September 2014].

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

87

Y. Song, C. Yang and G. Gu, “Who is peeping at your passwords at Starbucks?
— To catch an evil twin access point,” in Dependable Systems and Networks
(DSN), Chigago, 2010.

E. Roger, “International Comparisons: The handset replacement cycle,” 2011.
[Online]. Available: http://mobilefuture.org/wp-content/uploads/2013/02/mobile-
future.publications.handset-replacement-cycle.pdf. [Accessed 11 November
2014].

E. Roger, “Entner: Handset replacement cycles haven't changed in two years, but
why?,” Recon Analytics, 18 March 2013. [Online]. Available:
http://www.fiercewireless.com/story/entner-handset-replacement-cycles-havent-
changed-two-years-why/2013-03-18. [Accessed 11 September 2014].

Google, “Google accounts security - Account permissions,” [Online]. Available:
https://security.google.com/settings/security/permissions?pli=1. [Accessed 6
October 2014].

Google, “Android Source - Security Enhancements in Android 4.2,” [Online].
Available:
https://source.android.com/devices/tech/security/enhancements42.html. [Accessed
8 September 2014].

OWASP, “Certificate and Public Key Pinning,” OWASP, 14 August 2014.
[Online]. Available:
https://www.owasp.org/index.php/Certificate_and_Public_Key Pinning.
[Accessed 13 October 2014].

N. Elenkov, “Certificate pinning in Android 4.2,” 12 December 2012. [Online].
Available: http://nelenkov.blogspot.fi/2012/12/certificate-pinning-in-android-
42.html. [Accessed 13 October 2014].

Google, “Android Source - Security Enchancements in Android 4.4,” [Online].
Available:
https://source.android.com/devices/tech/security/enhancements44.html. [Accessed
8 September 2014].

Google, “Android developers blog - Android 4.4 KitKat and Updated Developer
Tools,” 31 October 2013. [Online]. Available: http://android-
developers.blogspot.ca/2013/10/android-44-kitkat-and-updated-developer.html.
[Accessed 13 October 2014].

Google, “Android Developer - Dashboards: Platform Versions,” [Online].
Available: http://developer.android.com/about/dashboards/index.html#Platform.
[Accessed 8 September 2014].

Google, “Youtube - Google I/0O 2014 - Keynote,” Google, 25 June 2014.
[Online]. Available: http://www.youtube.com/watch?v=wtLJPvXx7-ys#t=368.
[Accessed 12 October 2014].

88

APPENDIX A

Appendix A presents 3 different custom requests made to Google with their response.
The first one requests all the victim’s contacts. Second is a token request for Google
calendar application and in third request the same token is used to retrieve all the
victim’s calendar events.

A.l1l Request and response for all of the victim’s contacts
~$ openssl s _client -connect android.clients.google.com:443
CONNECTED (00000003)
depth=2 C = US, O = GeoTrust Inc., CN = GeoTrust Global CA
verify error:num=20:unable to get local issuer certificate
verify return:0
Certificate chain
0 s:/C=US/ST=California/L=Mountain View/0O=Google Inc/CN=*.google.com
i:/C=US/0=Google Inc/CN=Google Internet Authority G2
1 s:/C=US/0=Google Inc/CN=Google Internet Authority G2
i:/C=US/0=GeoTrust Inc./CN=GeoTrust Global CA
2 s:/C=US/0O=GeoTrust Inc./CN=GeoTrust Global CA
i:/C=US/0O=Equifax/0OU=Equifax Secure Certificate Authority

Server certificate

subject=/C=US/ST=California/L=Mountain View/0O=Google Inc/CN=*.google.com
issuer=/C=US/0=Google Inc/CN=Google Internet Authority G2

No client certificate CA names sent
SSL handshake has read 4472 bytes and written 434 bytes

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256
Server public key is 2048 bit

Secure Renegotiation IS supported

Compression: NONE

Expansion: NONE

SSL-Session:

Protocol : TLSv1l.2

Cipher : ECDHE-RSA-AES128-GCM-SHA256

Session-ID:
8EED3EOC3A24E7265F78B66544286E63AD86EFD898676A80D650B29421A65447

Session-ID-ctx:

Master-Key:
9817D8DA54F54A90DBF92D0B4BACBF06590086FEF8487F0A4D89100646B422BDF060502575A066
60193810131F211B25

Key-Arg : None

89

PSK identity: None

PSK identity hint: None

SRP username: None

TLS session ticket lifetime hint: 100800 (seconds)
TLS session ticket:

0000 - e3 00 d6 10 60 44 fb 6a-1f cd 02 31 fe e8 5a cd ... D.j...1..7Z.
0010 - 44 e2 e6 ff dd Oc 86 ba-cl 87 ef 13 bc 39 £0 27 Devivnnnnnnn. 9.!
0020 - aa 61 c9 3f a9 b4 4e cd-d2 3e b2 b6 1d b6 40 d4 .a.?..No.>. L@
0030 - a5 59 29 d9 a6 93 fb 7b-c6 0d 91 9d 6f 69 6b 58 Y) ... f{....01kX
0040 - 8b 9e a4 8e 3a 55 do ff-11 92 55 6d ba aa 77 81 ce.tUn. . Um. W,
0050 - a8 da 17 58 4d Ob 5f el-fa 8b d4 98 9e 58 8e bc LW XML LLLL. X..
0060 - €9 d5 0Oc 25 03 55 f7 a8-0b 9c 6¢ 47 cc aa 89 c3 R 0 P N C I
0070 - 4b 93 £f0 00 3b £6 97 c6-2c c6 fb e9 12 96 3d b5 S =.
0080 - b2 93 14 5a 20 fc e9 85-af el 24 35 e7 6a 22 la e o $5.9".
0090 - 25 ef 56 00 £f8 ef 7b f5-c8 dc ¢7 7c¢ 42 al c3 75 $.V...{....|B..u

00a0 - 8d 12 d9 d5

Start Time: 1408709028

Timeout : 300 (sec)

Verify return code: 20 (unable to get local issuer certificate)
GET /proxy/contacts/contacts/*****@gmail.com/base2 property-android linksto-
gprofiles highresphotos?sz=720&showdeleted=false&orderby=lastmodified&sortorde
r=ascending&max-results=500 HTTP/1.1
Accept-Encoding: identity
Authorization: GoogleLogin
auth=DQAAAPSAAABMVViowlWXVULUgHnitLKbrhiDFkgfd5zzGp4WPwvrrLcIgrSONLPQHtP1jVeBc
X GbZDrXC96UvdcEyWYSJINBhOHAO7Ph3Pa68yaNViWbYhJbx4BtmgYS6x9T8TWpDh1l15sGNJULSMmOR
3-XxiB9VmJJ2yUdyX2H0 ZKGAEVGBIS5iFlySbwmsPzGaBMG42iukn8ggwOh6xkWE1HB] TIWGNvaNJIQ
DVZiaREToB1DpXYj-ReHHhAb YUsHIVaL9dlfsQC8Au OL5KG9fp2QU2pombYk2vZmeX0]jfZveVqgdc
nJuVrwI8sTKWIr7KBgY7cLuBgf7ScXyZimcWsgS4 fwiWC
GData-Version: 5.0
Host: android.clients.google.com
Connection: close
User-Agent: Android-GData-Contacts/1.3 (m3 JSS15J);

HTTP/1.1 200 OK

Expires: Fri, 22 Aug 2014 12:03:53 GMT

ETag: "QOn4zcDVSLyl7ImASXRZbFOODRwc."
Content-Type: application/atom+xml; charset=UTF-8
Date: Fri, 22 Aug 2014 12:03:53 GMT
Cache-Control: private, max-age=0
X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block

Server: GSE

Connection: close

<?xml version="1.0" encoding="UTF-8"?>

<feed gd:etag=""Qn4zcDVSLyl7ImASXRZbFOODRwcC. ""
xmlns="http://www.w3.0rg/2005/Atom"
xmlns:batch="http://schemas.google.com/gdata/batch"
xmlns:gContact="http://schemas.google.com/contact/2008"
xmlns:gd="http://schemas.google.com/g/2005" xmlns:openSearch="http://a9%.com/-
/spec/opensearch/1.1/">

<id>*****@gmail.com</id>

<updated>2014-08-22T12:03:53.088%</updated>

90

<category scheme="http://schemas.google.com/g/2005#kind"
term="http://schemas.google.com/contact/2008#contact"/>

<title>Tuomo Tutkija's Contacts</title>

<link rel="alternate" type="text/html" href="https://www.google.com/"/>

<link rel="http://schemas.google.com/g/2005#feed" type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos"/>

<link rel="http://schemas.google.com/g/2005#post”" type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos"/>

<link rel="http://schemas.google.com/g/2005#batch"
type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos/batch"/>

<link rel="self" type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos?max-
results=500&orderby=lastmodified& showdeleted=false& sortorder=ascen
ding"/>

<author> <name>Tuomo Tutkija</name>

<email>*****Qgmail.com</email> </author>

<generator version="1.0"
uri="http://www.google.com/m8/feeds">Contacts</generator>
<openSearch:totalResults>3</openSearch:totalResults>
<openSearch:startIndex>1</openSearch:startIndex>
<openSearch:itemsPerPage>500</openSearch:itemsPerPage>

<entry gd:etag=""Q03szeTVSLil7ImAOWhOREOOKTgE. " ">

<id>http://www.google.com/m8/feeds/contacts/*****%40gmail.com/base/243721788c6
O0ecl3</id>
<updated>2014-02-13T14:15:52.581%</updated>

<app:edited xmlns:app="http://www.w3.0rg/2007/app">2014-02-
13T14:15:52.5812</app:edited>
<category scheme="http://schemas.google.com/g/2005#kind"

term="http://schemas.google.com/contact/2008#contact"/>

<title/>

<link rel="http://schemas.google.com/contacts/2008/rel#photo" type="image/*"
href="https://www.google.com/m8/feeds/photos/media/*****%40gmail.com/243721788
c60ecl3"/>

<link rel="self" type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos/243721788c60ecl3"/>

<link rel="edit" type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos/243721788c60ecl3"/>

<gd:email rel="http://schemas.google.com/g/2005#other"
address="foobar@onewaymail.com" primary="true"/>

</entry>

<entry gd:etag=""QH87fTVSLS17IMASXRZbFOOITwWY. " ">

<id>http://www.google.com/m8/feeds/contacts/****%$40gmail.com/base/488b5c940ecl
90e8</id>
<updated>2014-08-22T10:20:21.105%Z</updated>

<app:edited xmlns:app="http://www.w3.0rg/2007/app">2014-08-
22T10:20:21.1052</app:edited>
<category scheme="http://schemas.google.com/g/2005#kind"

term="http://schemas.google.com/contact/2008#contact"/>

91

<title>Wife</title>

<link rel="http://schemas.google.com/contacts/2008/rel#photo”" type="image/*"
href="https://www.google.com/m8/feeds/photos/media/*****%40gmail.com/4880b5c940
ecl90e8"/>

<link rel="self" type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos/488b5c940ec190e8"/>

<link rel="edit" type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos/488b5c940ecl190e8"/>

<gd:name> <gd:fullName>Wife</gd:fullName> <gd:givenName>Wife</gd:givenName>

</gd:name>

<gd:email rel="http://schemas.google.com/g/2005#home"
address="wife@example.com" />

<gd:phoneNumber rel="http://schemas.google.com/g/2005#mobile" uri="tel:+358-
5-6807456886">56807456886</gd: phoneNumber>

<gd:structuredPostalAddress rel="http://schemas.google.com/g/2005#home">

<gd: formattedAddress>SampleStreet 64</gd:formattedAddress>

<gd:street>SampleStreet 64</gd:street>

</gd:structuredPostalAddress>

<gContact:groupMembershipInfo deleted="false"
href="http://www.google.com/m8/feeds/groups/*****%40gmail.com/base/6"/>
<gContact:groupMembershipInfo deleted="false"
href="http://www.google.com/m8/feeds/groups/*****%40gmail.com/base/e"/>
</entry>

<entry gd:etag=""Rnc8eTVSLil7ImAIXRZbFO0ITwO. " ">

<id>http://www.google.com/m8/feeds/contacts/*****%40gmail.com/base/230fe6838eb
2917¢c</1id>
<updated>2014-08-22T10:21:37.971%Z</updated>

<app:edited xmlns:app="http://www.w3.0rg/2007/app">2014-08-
22T10:21:37.97172</app:edited>
<category scheme="http://schemas.google.com/g/2005#kind"

term="http://schemas.google.com/contact/2008#contact"/>

<title>Eve</title>

<link rel="http://schemas.google.com/contacts/2008/rel#photo" type="image/*"
href="https://www.google.com/m8/feeds/photos/media/*****%40gmail.com/230fe6838
eb2917c"/>

<link rel="self" type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos/230fe6838eb2917c"/>

<link rel="edit" type="application/atom+xml"
href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2 propert
y-android linksto-gprofiles highresphotos/230fe6838eb2917c"/>

<gd:name> <gd:fullName>Eve</gd:fullName><gd:givenName>Eve</gd:givenName>

</gd:name>

<gd:email rel="http://schemas.google.com/g/2005#home"
address="xxx@example.com" primary="true"/>

<gContact:groupMembershipInfo deleted="false"
href="http://www.google.com/m8/feeds/groups/*****$40gmail.com/base/6"/>

<gContact:groupMembershipInfo deleted="false"

href="http://www.google.com/m8/feeds/groups/*****$40gmail.com/base/114al6fl8ce
b4967" />

</entry>

</feed>

read:errno=0

~$

A.2 Token request and response for the calendar application
~$ openssl s _client -connect android.clients.google.com:443

CONNECTED (00000003)
depth=2 C

U

S,

verify return:0

O =

Certificate chain
:/C=US/ST=California/L=Mountain View/0O=Google Inc/CN=*.google.com
:/C=US/0=Google Inc/CN=Google Internet Authority G2
:/C=US/0=Google Inc/CN=Google Internet Authority G2
:/C=US/0=GeoTrust Inc./CN=GeoTrust Global CA
:/C=US/0=GeoTrust Inc./CN=GeoTrust Global CA

0 s

[7 N SR/ R

:/C=US/0O=Equifax/0OU=Equifax Secure Certificate Authority

Server certificate

GeoTrust Inc., CN

GeoTrust Global CA
verify error:num=20:unable to get local issuer certificate

subject=/C=US/ST=California/L=Mountain View/0O=Google Inc/CN=*.google.com
issuer=/C=US/0=Google Inc/CN=Google Internet Authority G2

No client certificate CA names sent

SSL handshake has read 4472 bytes and written 434 bytes

New,

TLSv1/SSLv3,
Server public key is 2048 bit

Secure Renegotiation IS supported

Compression:

Expansion:

NO

SSL-Session:

Protocol

Cipher

NON
NE

Session-1ID:
FO95A4AC8F3F0B281D2C04071F805127F3390195444F7FCFC2576F5828C731372
Session-ID-ctx:

Master-Key:
04B951EDC1B10B81COAF108A6985729DB5596C3FBA378D96A59495348E2068821B8E1CE4673AEA

E

TLSv1.2
ECDHE-RSA-AES128-GCM-SHA256

None

£3
04
76
15
2
02
5d
de
6e
50

None

lifetime

09
cd
6f
85
71
9c
8f
f1
aa
27

66340307F53188CC2A
Key-Arg None
PSK identity: None
PSK identity hint:
SRP username:
TLS session ticket
TLS session ticket:
0000 - f0 4c 8f
0010 - 6e f6 87
0020 - 13 cb 62
0030 - ca 08 ed
0040 - be f5 3f
0050 - df 27 10
0060 - be 77 2b
0070 - db b3 73
0080 - ee b7 a9
0090 - 07 44 20
00a0 - 5f e4 79

ab

31
fo
97
ae
5d
c5
8e
ea
c9
23

ds
le
b6
84
5d
be
cb
6C
09
29

hint:

9c-1d
03-63
35-6e
S5b-6b
ea-fc
50-ab
80-28
77-d6
05-53
c5-el

100800

39
90
fa
cf
d2
£7
ec
ad
5d
37

af
ae
68
cc
74
53
62
cO
12
6c

Cipher is ECDHE-RSA-AES128-GCM-SHA256

(seconds)

b2
6a
1b
9a
6a
96
33
37
20
ae

b2
b9
ed
ed
ea
bf
cd
e3
8f
78

91
le
0f
4b
a8
fd
e’
82
S5a
O0a

7f
bd
46
9f
4a
46
33
43
c4
fc

01
19
3b
82
30
79
el
25
S5a

L...1...9....
o W c..J
bvo..5n.h
....... [k.
2.911...tJ
.. P..S
w+]....(.b3
sN..lw...7
n .S]

92

Start Time: 1408710551

Timeout : 300 (sec)

Verify return code: 20 (unable to get local issuer certificate)
POST /auth HTTP/1.1
device: 3c5abc3bcd5b2d7f
app: com.google.android.calendar
User-Agent: GoogleAuth/1.4 (m3 JSS15J) (m3 JSS15J)
content-length: 548
content-type: application/x-www-form-urlencoded
Host: android.clients.google.com
Connection: Keep-Alive
Accept-Encoding: identity

93

device country=fisoperatorCountry=fi&lang=en GB&sdk version=18&google play ser
vices version=5089036&accountType=HOSTED OR GOOGLE&system partition=1&Email=**
**%40gmail.com&has permission=l&service=oauth2%3Ahttps$3A%2F%2Fwww.googleapis.

com%2Fauth%2Fcalendarssource=android&androidId=3c5a5c3bcd5b2d7f&app=com.google
.android.calendar&client sig=38918a453d07199354f8bl9%af05ec6562ced5788&callerPk
g=com.google.android.calendaré&callerSig=38918a453d07199354f8b19%af05ec6562ced57

88&EncryptedPasswd=ocauth2rt_ 1%2F406mny5jZzr7hLLS8RMwYUX0MOokCkeBLRvAlclag3M

HTTP/1.1 200 OK

Content-Type: text/plain; charset=UTF-8
Date: Fri, 22 Aug 2014 12:29:14 GMT
Expires: Fri, 22 Aug 2014 12:29:14 GMT
Cache-Control: private, max-age=0
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN
X-XSS-Protection: 1; mode=block

Server: GSE

Transfer-Encoding: chunked

d7
issueAdvice=auto

Auth=ya29.aQAjs_X49pHYY1EAAAB39h3uvIEulslVFEfINXLSm8nFnY8GFGXuPQTwjnaHgE SNtQL

5mV2hyLgsDYH7kZ-uxfs1ln-KgcxkO7p9xIN4G2b-
jvJAkpt7YkLzDGPbhxhE5X0oxVQoYxnVixXkIVQU
Expiry=1408793692

storeConsentRemotely=0

0

~C
~$

A.3 Request and response of all the victim’s calendar events
openssl s client -connect android.clients.google.com:443

CONNECTED (00000003)
depth=2 C = US, O = GeoTrust Inc., CN = GeoTrust Global CA
verify error:num=20:unable to get local issuer certificate
verify return:0
Certificate chain
0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=*.google.com
i:/C=US/0=Google Inc/CN=Google Internet Authority G2

1 s:/C=US/0=Google Inc/CN=Google Internet Authority G2
i:/C=US/0=GeoTrust Inc./CN=GeoTrust Global CA

2 s:/C=US/0=GeoTrust Inc./CN=GeoTrust Global CA
1:/C=US/0O=Equifax/0OU=Equifax Secure Certificate Authority

Server certificate

94

subject=/C=US/ST=California/L=Mountain View/0O=Google Inc/CN=*.google.com
issuer=/C=US/0=Google Inc/CN=Google Internet Authority G2

No client certificate CA names sent

SSL handshake has read 4472 bytes and written 434 bytes

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256

Server public key is 2048 bit
Secure Renegotiation IS supported
Compression: NONE
Expansion: NONE
SSL-Session:

Protocol : TLSvl.2

Cipher : ECDHE-RSA-AES128-GCM-SHA256

Session-1ID:

9630BBF1B941DA42FB6C108ESB3E48AE32A765FFC116BE94C654AC19E286F278

Session-ID-ctx:
Master-Key:

DED47B7FF70F0E514BEE20DEBOF0194D2C61F7922203E8CCCD654DEAEF91D1IACC878868BCD4BC7

CE90E88001C88F1F7B
Key-Arg : None
PSK identity: None
PSK identity hint: None
SRP username: None
TLS session ticket lifetime hint:
TLS session ticket:
0000 - f0 4c 8f £3 09 31 d8 9c-1d
0010 - d2 93 c6 68 4e 31 34 5b-10
0020 - a7 8a 77 a8 e7 7d c6 ca-fb
0030 - 4f d6 11 9c 13 bc de c6-92
0040 - 5a 85 bc 48 69 68 4c 9b-de
0050 - 00 3d 6c 3f ae 36 ce 51-1d
0060 - 91 f2 3b 0f ea c6 1f 47-f7
0070 - 56 €0 6d 5e 54 90 59 8e-cf
0080 - e6 40 0d 1b e6 35 db 4b-af
0090 - 0Oa 54 £f5 04 b8 86 ab b3-d8
00a0 - 03 32 75 4d

Start Time: 1408711220
Timeout : 300 (sec)
Verify return code: 20 (unable to

GET

100800

39
90
cc
53
46
00
25
e
28
db

af
65
08
5b
f1
08
ac
80
a8
cb

(seconds)

b2
66
25
Se
2c
ae
1f
3f
ea
80

b2
ad
08
£3
21
32
72
9a
59
23

91
ae
ac
71
3a
1b
Te
43
fd
b3

7f
46
08
c5
£8
71
28
da
43
0f

5d
Oc
b6
ca
le
1f
41
ff
62
90

;....G.%..r~ (A
V.m*"T.Y..|.?.C.
@ 5.K.(..Y.Cb
Tevvvnnnnn. #..
2uM

get local issuer certificate)

/calendar/v3/calendars/****Qgmail.com/events?maxAttendees=50&maxResults=200&ti

meMax=2015-09-02T00:00:00.000Z HTTP/1.

Accept-Encoding: identity

1

95

Authorization: OAuth
ya29.aQAjs_ X49pHYY1EAAAB39h3uv9EulslVFEf1INXLSm8nFnY8GFGXuPQTwjnaHgE SNtQL5mV2h
yLgsDYH7kZ-uxfsln-KgcxkO7p9xIN4G2b-jvJAkpt7YkLzDGPbhxhE5X0oxVQoYxnVixXkIVQU
User-Agent: samsung/m3xx/m3:4.3/JSS15J/I9305XXUEMKC: user/release-
keys:com.google.android.calendar:201404014 Google-HTTP-Java-Client/1.14.1-beta
(gzip)

Host: www.googleapis.com

Connection: close

HTTP/1.1 200 OK

Expires: Fri, 22 Aug 2014 12:40:24 GMT

Date: Fri, 22 Aug 2014 12:40:24 GMT
Cache-Control: private, max-age=0, must-revalidate, no-transform
Content-Type: application/json; charset=UTF-8
X-Content-Type-Options: nosniff
X-Frame-Options: SAMEORIGIN

X-XSS-Protection: 1; mode=block
Content-Length: 1144

Server: GSE

Alternate-Protocol: 443:quic

Connection: close

"kind": "calendar#events",
"etag": "\"1408693865712000\"",
"summary": "*****Q@gmail.com",
"updated": "2014-08-22T07:51:05.712z2",
"timeZone": "Europe/Helsinki",
"accessRole": "owner",
"nextSyncToken": "CICT2suxpsACEICT2suxpsACGAU=",
"items": [
{

"kind": "calendar#event",

"etag": "\"2817387731424000\"",

"id": "fjhb3rflgagu9sé6rdadfmustds8",

"status": "confirmed",

"htmlLink":
"https://www.google.com/calendar/event?eid=ZmpoYjNyzZmxnYWd10XM2cmRhZGZtdXNOZDg
gbmlzZWMudHVO0QGO",

"created": "2014-08-22T07:51:05.0002z",

"updated": "2014-08-22T07:51:05.712z2",

"summary": "2 week vacation with wife in Hong Kong",
"location": "Hong Kong",

"creator": {

"email™: "*****@gmail.com",

"displayName": "Tuomo Tutkija",

"self": true

by

"organizer": {
"email": "*****@gmail.com",
"displayName": "Tuomo Tutkija",

"self": true
by
"start": {
"date": "2014-09-01"
by
"end": {

"date": "2014-09-02"

by

"transparency": "transparent",

"iCalUID":

"sequence":

"fihb3rflgagu9s6rdadfmustd8@google.com",
0,

"reminders": {

"useDefault": false

}
}
]
}
read:errno=0

~$

96

