
 

 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

JUHO NURMI 

ANALYZING PRACTICAL COMMUNICATION SECURITY OF 

ANDROID VENDOR APPLICATIONS 

Master of Science Thesis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Examiner: Professor Jarmo Harju 
Examiner and topic approved by the 
Council of the Faculty of Computing 
and Electrical Engineering on 
October 8th, 2014 



ii 

 

ABSTRACT 
 
TAMPERE UNIVERSITY OF TECHNOLOGY 
Master’s Degree Programme in Information Technology 
Nurmi, Juho: Analyzing practical communication security of Android vendor 
applications 
Master of Science Thesis, 87 pages, 9 Appendix pages 
December 2014 
Major: Communication Networks and Protocols 
Examiner: Professor Jarmo Harju 
Keywords: Android, Information security, mobile device, security weakness, 
MITM, SSL, TLS, certificate 
 
The development of mobile devices and the new personalized services have gone to the 

point, where users do not alone control their data. While the devices are in constant 

communication with the cloud services the user’s data and the data of the user move 

ever more to the services providers’ cloud services. Little is known about how and how 

well service providers protect the users’ information. 

The work studies two biggest western Android based ecosystems, Google’s and 

Amazon’s, own applications’ practical security in the communication process. The aim 

is to identify all mechanisms used to protect the information that is communicated with 

the Android device. The study used one device from Amazon and Google, and the 

application market was chosen from both service providers for in-depth study. The 

applications were selected on the basis that they must provide same service in order to 

make the comparison possible. In practice, the applications and devices were studied by 

performing active and passive Man-in-the-middle (MITM) attacks in network 

laboratory. The communications were intercepted and analysed afterwards. 

Both vendors relied heavily on SSL/TLS protocol. Also in common was the usage, 

roles and acquirement of authorization tokens. Amazon’s client applications were 

noticed to use digital signatures. The biggest difference between the market applications 

was that Google required authentication when buying an application, while Amazon did 

not require it. During the same authentication Google sent user’s password in plaintext 

inside the TLS connection. During the less frequently happening registration of the 

user’s Google account to the device the user’s password is sent instead encrypted inside 

the TLS connection.  

An active MITM attack was performed on the Google device and account to 

demonstrate what the attacker can do in practice, when SSL/TLS connection is 

compromised. With manipulating traffic and intercepting authorization tokens the 

attacker is able to spy the victim and access to nearly all the victim’s Google data for 

the present. In addition, the attacker can “force” the victim to register herself again to 

the Android device and the attacker can use the victim’s intercepted encrypted password 

to add the victim’s Google account to her own device. 

 

 



 iii 

TIIVISTELMÄ 

 
TAMPEREEN TEKNILLINEN YLIOPISTO  
Tietotekniikan koulutusohjelma 
Nurmi, Juho: Analyzing practical communication security of Android vendor 
applications 
Diplomityö, 87 sivua, 9 liitesivua 
Joulukuu 2014 
Pääaine: Tietoliikenneverkot ja -protokollat  
Tarkastaja: professori Jarmo Harju 
Avainsanat: Android, tietoturvallisuus, mobiililaite, tietoturvaheikkous, 
välimieshyökkäys, SSL, TLS, sertifikaatti 
 
Älylaitteiden kehitys ja palveluntarjoajien uudet henkilökohtaisemmat palvelut ovat 

johtaneet siihen, että käyttäjät eivät enää yksin hallitse tietojaan. Laitteiden ollessa jat-

kuvassa yhteydessä pilvipalveluihin käyttäjien tiedot ja tietoa heistä siirtyy yhä enem-

män palveluntarjoajien pilvipalveluihin. Siitä miten ja kuinka hyvin palveluntarjoajat 

suojaavat käyttäjien tietoja, tiedetään hyvin vähän. 

Työssä tutkitaan kahden suurimman länsimaisen Android-pohjaisen ekosysteemin, 

Googlen ja Amazonin, omien ohjelmien tietoliikenteen tietoturvallisuutta käytännössä. 

Tavoitteena oli selvittää kaikki ne mekanismit, joilla Android-laitteesta lähtevää tietolii-

kennettä suojataan. Tutkimuksessa käytettiin Amazonilta ja Googlelta yhtä laitetta, sekä 

molemmilta valittiin sovelluskauppa tarkempaa tutkimusta varten. Applikaatiot valittiin 

sillä perusteella, että niiden piti tuottaa käyttäjälle samaa palvelua vertailun mahdollis-

tamiseksi. Laitteita ja applikaatioita tutkittiin käytännössä suorittamalla niille sekä pas-

siivisia että aktiivisia välimieshyökkäyksiä verkkolaboratoriossa. Tietoliikenne kaapat-

tiin talteen ja analysoitiin jälkikäteen. 

 Molempien valmistajien ohjelmien, sekä laitteiden tietoturvan havaittiin nojautuvan 

vahvasti kuljetuskerroksen tunnelointiprotokollaan (SSL/TLS). Lisäksi yhteistä oli 

auktorisointitokenien käyttö, niiden roolit sekä hakuprosessi. Amazonin asiakasappli-

kaation havaittiin käyttävän digitaalisia allekirjoituksia. Sovelluskauppojen isoimmaksi 

eroksi havaittiin Googlen vaativan käyttäjää tunnistautumaan ostaessaan applikaatiota, 

mitä Amazonilla ei vaadittu. Googlella samaisen tunnistautumisen yhteydessä havaittiin 

käyttäjän salasanan välittyvän selkokielisenä TLS-tunnelin sisällä. Harvoin tapahtuvan 

Google-käyttäjätunnuksen laitteeseen rekisteröimisen yhteydessä käyttäjän salasana sen 

sijaan välitetään salattuna TLS-tunnelin sisällä. 

Googlen laitteelle ja tunnukselle suoritettiin vielä aktiivinen välimieshyökkäys de-

monstroimaan mitä hyökkääjä voi tehdä käytännössä, kun TLS-protokolla pettää. Mani-

puloimalla liikennettä ja kaappaamalla auktorisointitokeneita hyökkääjän havaittiin 

pystyvän vakoilemaan uhria ja pääsevän toistaiseksi käsiksi etänä lähes kaikkiin uhrin 

Google-tunnuksen tietoihin. Lisäksi hyökkääjä pystyy ”pakottamaan” uhrin rekisteröi-

tymään Android-laitteelleen uudestaan, minkä yhteydessä hyökkääjä voi käyttää uhrin 

kaapattua salattua salasanaa uhrin Google-tunnuksen lisäämiseen omalle laitteelleen.   



 iv 

PREFACE 

 

This thesis was written as a master’s thesis for Tampere University of Technology 

(TUT) in department of Pervasive Computing. Thesis was examined by Professor Jarmo 

Harju from TUT. When I started to work on this thesis, I knew basically nothing of 

Android and especially its security, so the whole journey was very interesting. 

Everywhere you looked at, you saw something new and you had (urge) to understand it.  

There are a lot of people I really have to thank for: I would like to thank Professor 

Jarmo Harju and Nokia Oyj for offering me this interesting topic. I would also like to 

thank Mika Anttila, Sami Majaniemi and Anssi Juvonen from Nokia for guiding me and 

giving me a flying start. In addition, I thank Joona Kannisto and Billy Bob Brumley for 

helping me with cryptology related questions and my colleagues for enduring my 

constant bombardment of questions. 

Special thanks goes to Tanel for enduring in the trenches with me everything that 

TUT threw at us over the years. Most of all, I want thank my family for their support 

and encouragement during my studies. 

 

 

Juho Nurmi, 

11 November 2014   

 

 

  

  

 



 v 

CONTENTS 

 

1 Introduction ............................................................................................................... 1 

2 Security basics ........................................................................................................... 3 

2.1 Basic terms ........................................................................................................ 3 

2.2 Token................................................................................................................. 3 

2.3 Cryptographic hash function ............................................................................. 4 

2.4 MAC and HMAC .............................................................................................. 6 

2.5 Digital signature ................................................................................................ 7 

2.6 Public Key Infrastructure X.509 ....................................................................... 9 

2.7 SSL/TLS .......................................................................................................... 10 

2.8 Man-in-the-middle attack ................................................................................ 11 

3 Test environment ..................................................................................................... 12 

3.1 Android and Used software ............................................................................. 12 

3.1.1 Android OS ........................................................................................ 12 

3.1.2 OpenSSL ............................................................................................ 12 

3.1.3 MITM software – SSLsplit & mitmproxy ......................................... 12 

3.1.4 Wireshark ........................................................................................... 13 

3.1.5 Other software.................................................................................... 13 

3.2 The environment ............................................................................................. 13 

4 Google and Amazon ................................................................................................ 16 

4.1 Google’s and Amazon’s market places ........................................................... 16 

4.2 Google specific details .................................................................................... 18 

4.2.1 Google Login Service and Google Play Services .............................. 18 

4.2.2 ClientLogin ........................................................................................ 19 

4.2.3 2-step verification .............................................................................. 20 

4.3 Absence of Amazon’s specific details ............................................................ 20 

5 Google Results ........................................................................................................ 21 

5.1 Tokens ............................................................................................................. 21 

5.1.1 Master token ...................................................................................... 22 

5.1.2 GLS token .......................................................................................... 24 

5.1.3 GA token ............................................................................................ 26 

5.1.4 Weblogin ............................................................................................ 28 

5.1.5 Token renewal.................................................................................... 29 

5.1.6 Token request parameters .................................................................. 30 

5.2 Practical security in Play Store ....................................................................... 31 

5.2.1 Free application case .......................................................................... 32 

5.2.2 Paid application case .......................................................................... 34 

5.2.3 Miscellaneous findings ...................................................................... 37 

5.3 Discussion ....................................................................................................... 39 

5.3.1 Relationship with GPS, GLS & GA .................................................. 39 

5.3.2 Legacy names .................................................................................... 41 



 vi 

5.3.3 Previous work .................................................................................... 41 

6 Amazon results ........................................................................................................ 43 

6.1 Tokens, acquisition and signatures ................................................................. 43 

6.1.1 x-adp-token ........................................................................................ 44 

6.1.2 Signature ............................................................................................ 45 

6.1.3 Initial token acquisition ..................................................................... 46 

6.1.4 Token acquisition - Exchangetoken ................................................... 51 

6.1.5 Cookie token acquisition - Exchangetoken/cookies .......................... 53 

6.1.6 Token request parameters .................................................................. 56 

6.2 Practical security in Amazon Shop ................................................................. 57 

6.3 Discussion ....................................................................................................... 63 

6.3.1 Speculation of encrypted tokens ........................................................ 63 

6.3.2 Digest function and origin of signing key ......................................... 63 

6.3.3 Problems with a fake CA SSL certificate .......................................... 64 

7 When SSL fails ....................................................................................................... 65 

7.1 MITM attack in practice.................................................................................. 65 

7.1.1 MITM attack preparation ................................................................... 65 

7.1.2 The attack phase................................................................................. 66 

7.2 Gained information and its usage .................................................................... 69 

7.2.1 Exploiting the gained information - Custom requests ....................... 70 

7.2.2 Exploiting the gained information – Victim’s encrypted password .. 71 

7.3 The weaknesses and their prevention .............................................................. 72 

7.3.1 The weaknesses.................................................................................. 72 

7.3.2 What a user can do to prevent or stop a MITM attack? ..................... 72 

7.3.3 What steps has Google taken to protect the user? ............................. 73 

7.3.4 What a service provider can do to prevent a MITM attack? ............. 74 

8 Google and Amazon comparison ............................................................................ 76 

8.1 Google security features summary .................................................................. 76 

8.2 Amazon security features summary ................................................................ 78 

8.3 Comparison of Google and Amazon ............................................................... 79 

8.3.1 Security in general ............................................................................. 79 

8.3.2 Market place specifics ....................................................................... 79 

9 Conclusions ............................................................................................................. 81 

References ....................................................................................................................... 83 

Appendix A ..................................................................................................................... 88 



 vii 

ABBREVIATIONS  
 

APK Android Application Package 

AWS Amazon Web Services 

CA Certificate Authority 

CN Common Name 

CBC Cipher Block Chaining 

DNS Domain Name Service 

GA Google Auth 

GLS Google Login Service 

GMS Google Mobile Services 

GPS Google Play Services 

HMAC Hash-based Message Authentication Code 

HTTP Hypertext Transfer Protocol 

HTTPS Hypertext Transfer Protocol Secure 

IANA Internet Assigned Numbers Authority 

IETF Internet Engineering Task Force 

IKE Internet Key Exchange 

ITU International Telecommunication Union 

ITU-T ITU Telecommunication Standardization Sector 

IV Initialization Vector 

JSON JavaScript Object Notation 

MAC Message Authentication Code 

MITM Man-In-The-Middle 

OHA Open Handset Alliance 

OS Operating System 

PKI Public Key Infrastructure 

RA Registration Authority 

SAN SubjectAltName 

SNI Server Name Indication 

SSL Secure Socket Layer  

TCP Transmission Control Protocol 

TLS Transport Layer Security 

URI Uniform Resource Identifier 

XML Extensible Markup Language 

 

 



 1 

1 INTRODUCTION 

Mobile devices, such as smartphones and tablets, have become an integrated part of our 

everyday life and are used now by all age groups. These devices are used for 

entertainment, communication and business, and hold data of great value, from personal 

and business perspective. Service providers and vendors have started to offer more 

personal services to users and the location of the user’s data has blurred between the 

user’s device and the service provider’s cloud. This has set a requirement for the device 

to be constantly communicating with the cloud in order to get updates, synchronize 

data, etc. Since the devices are constantly communicating and accessing users’ data, it is 

not enough that the data is secured just during the transit. Also, the access to the users’ 

data in the cloud has to be secured. 

According to Stallings [1] the threats that any data faces in the web could be 

classified in active and passive attacks. Passive attacks include eavesdropping on the 

traffic and the attacker gaining restricted information. Active attacks include message 

tampering during the transit and impersonating another user. [1] These attacks break the 

basic security properties, such as, integrity, confidentiality and authentication. 

Android is an open source and customizable operating system (OS) for mobile 

devices that has become leading smartphone platform early in 2010 [2]. The two biggest 

Android versions in the western world, at the time of writing in fall of 2014, are Google 

Android (a.k.a. Android Open Handset Alliance (OHA)) and Amazon Fire OS [3]. This 

thesis concentrates on how Google and Amazon have secured the communications 

between their applications in the mobile devices and services in the cloud. 

 The aim is to identify what security mechanisms the vendors use in practice in the 

communication channel and analyse findings. Internal security mechanisms in the 

device and adequacy of the found mechanisms in the considered context are out of 

scope in this thesis.  

The work was done by examining one device from both vendors and devices were 

studied in a networking laboratory. The study was done while performing a Man-in-the-

middle (MITM) attack to the devices. Market application from both vendors (Amazon 

Shop and Google Play Store) was selected for closer inspection. These applications 

were selected because they execute common functionality and are therefore comparable. 

The communications were intercepted and in certain cases manipulated. Also, the 

communications were logged and analysed manually afterwards.  

Based on the findings an attack is performed to the Google Android device and the 

author’s Google account to demonstrate, what the attacker is capable of doing when 

SSL/TLS protocol fails. A proposal to counter the threat is given.   



 2 

The thesis is divided into 9 chapters. After the introduction, in Chapter 2 the basic 

security mechanisms and protocols are covered. Chapter 3 presents the test 

environment, the used software and how the devices and applications were observed to 

communicate. Next, in Chapter 4 certain Google’s and Amazon’s specific services and 

protocols are covered for background information. Then, in Chapter 5 Google’s and in 

Chapter 6 Amazon’s results from the observations are presented in their respective 

chapters. This includes what tokens were found, how they are acquired and in-depth 

look to the market application. Chapter 7 describes what an attacker can do in practice 

when SSL/TLS protocol fails in a Google Android device and proposes ideas for 

prevention. In Chapter 8 Google’s and Amazon’s found security mechanisms are 

summarized and compared. And finally, in Chapter 9 conclusions are presented. 



 3 

2 SECURITY BASICS 

Chapter starts by covering the most basic information security terms. Next, it moves to 

present tokens. Then basic overview is given to cryptographic functions, starting from 

cryptographic hash function and then moving to digital signatures. Next, it covers public 

key infrastructure and moves then to cover the SSL/TLS protocol. The chapter ends by 

presenting the man-in-the-middle attack.  

2.1 Basic terms 

Authentication is a “process of verifying a claim that a system entity or system resource 

has a certain attribute value” [4]. In other words, it is a process of confirming, for 

example, the identity of a person by her identity documents. Authorization is a process 

of granting approval to a system entity to access a system resource [4]. Google’s own 

terminology in their documentation might be confusing, because they use term Auth to 

address both, authentication and authorization [5]. Integrity is guarding that data has not 

been changed, destroyed, or lost in an unauthorized event or in an accident [4]. 

In symmetric cryptography the same key is used to encrypt and decrypt the message. 

In asymmetric cryptography (a.k.a. public key cryptography) a pair of keys (public and 

private key) is used for different cryptographic operation (e.g. encryption and 

decryption, or signature creation and verification). [4]   

Nonce is defined by NIST [6] as “A time-varying value that has at most a negligible 

chance of repeating, e.g., a random value that is generated anew for each use, a 

timestamp, a sequence number, or some combination of these” [6]. Nonces are used, for 

example, in an initialization vector (IV) of a cipher block chaining (CBC) mode and in 

internet key exchange (IKE) [1] and could be used to assure the recipient that a message 

is fresh and not an old message that an attacker has observed [7]. 

2.2 Token 

According to RFC 4949 Internet Security Glossary, Version 2 the token is an 

overloaded term in the computing literature. The term is used for describing, for 

example, a physical device that is used to store cryptographic information or a data 

object that is used to verify the identity in the authentication process. This thesis uses 

the definition used for capability token, whenever token is mentioned. Capability token 

is a (usually an unforgeable) data object that gives the holder or bearer the right to 

access a system resource. Possession of the token is accepted by a system as proof that 

the holder has been authorized to access the resource indicated by the token. [4] 



 4 

    Tokens were observed to be exchanged between mobile devices and service providers 

in 3 different ways in HTTP messages: in HTTP header (Authorization or custom HTTP 

header), HTTP cookies and in message body (e.g. plaintext, encoded in base64URL, 

JSON object, etc.).  

 
POST /gsync/sub HTTP/1.1 

Authorization: GoogleLogin auth=DQAAAPoAAADt0lDtAdd7cqYdK0nb0Zeu2m-

82WIyPMWrVc2fJh4l8rg_toKPVVcGhH97DE93faN0NrM7Wp4yAL9nA_Fp1-7i4Nsl4wvaC5oq6iPUa 

3-X187awvlkEcIHwiuPghbuq8ch9uwCkxAYRUYEOEASZlANIH66tgp0Kd5z8hKmmJg96FwbBHVLY6f 

EJ_llBA5VUDCdIpx3K-30ytk9lN7OtVCb4p5CpUoTiI-QVO3aGVBG6a-2UrS8oFchnAqJMB46VYTiq 

AGfsKpkSSnLvqQN5UcF6go82ose5pP9G6eYlLJCowF7LxqR96izQ1bKRA-SvlRgYQI3pNpHJGu5V0I 

9NVxs 

Content-Length: 471 

Connection: Keep-Alive 

Listing 2.1 Token provided in the Authorization HTTP header field. 

 
POST /proxy/gmail/mail/g/?version=... HTTP/1.1 

Connection: Keep-Alive 

Cookie: GX=DQAAAPoAAADt0lDtAdd7cqYdK0nb0Zeu2m-82WIyPMWrVc2fJh4l8rg_toKPVVcGhH9 

7DE93faN0NrM7Wp4yAL9nA_Fp1-7i4Nsl4wvaC5oq6iPUa3-X187awvlkEcIHwiuPghbuq8ch9uwCk 

xAYRUYEOEASZlANIH66tgp0Kd5z8hKmmJg96FwbBHVLY6fEJ_llBA5VUDCdIpx3K-30ytk9lN7OtVC 

b4p5CpUoTiI-QVO3aGVBG6a-2UrS8oFchnAqJMB46VYTiqAGfsKpkSSnLvqQN5UcF6go82ose5pP9G 

6eYlLJCowF7LxqR96izQ1bKRA-SvlRgYQI3pNpHJGu5V0I9NVxs 

Cookie2: $Version=1 

Listing 2.2 Token provided in a HTTP cookie. 

 
POST /auth HTTP/1.1 

content-type: application/x-www-form-urlencoded 

 

device_country=fi& ... &EncryptedPasswd=oauth2rt_1%2F406mny5jZzr7hLLS8RMwYUX0M 

0okCkeBLRvA1c1ag3M 

Listing 2.3 Token given in HTTP message body. 

 

It should be noted that usage of observed HTTP headers (Authorization or custom), 

do not all the time strictly follow HTTP specifications. For example, the authentication 

scheme “GoogleLogin” in Listing 2.1 is not found in Internet assigned number authority 

(IANA) maintained HTTP authentication scheme registry [8]. Also, many observed 

custom headers started with prefix “X-“, which RFC 7231 advises not to use [9].      

2.3 Cryptographic hash function 

According to Stallings [1] the cryptographic hash function might be the most versatile 

cryptographic algorithm and it is widely used in security applications and Internet 

protocols. For example, cryptographic hash functions are used in message 

authentication, digital signatures, one-way password files, intrusion detection, virus 

detection and pseudorandom number generators. In general, hash function’s main role is 

to produce data integrity, because its characteristics provide a way to know whether or 

not data has changed. [1] In the simplest way hash function can be described as a 



 5 

function, which takes as an input a variable length message or data block and produces a 

fixed length output. Figure 2.1 presents a widely used hash function structure.  

 

 

 
Figure 2.1 Diagram of Merkle - Damgård structured cryptographic hash function. 

 

A hash function 𝐻 produces a fixed-length hash value 𝐻(𝑚) or message digest from 

a variable length (L bits) message m, which is padded with padding block 𝑃𝐵. Message 

𝑚 is divided to fixed length blocks (e.g. 1024 bits). In the Figure 2.1 the input for the 

hash function 𝐻 starts with fixed value 𝐼𝑉 and message block 𝑚0. The output 𝐻(𝑚0 +

𝐼𝑉) is then fed as input together with next message block 𝑚1 to the hash function 𝐻. 

This is iterated until the final message block 𝑚𝑛, which is padded with padding block 

𝑃𝐵 in order fill the final block to the fixed block length. If the message 𝑚 length is a 

multiple of the fixed block length, then new block is concatenated consisting of just the 

padding block 𝑃𝐵. The 𝑃𝐵 binary value starts with 1 followed by variable amount of 

zeroes and ends with fixed length (e.g. 64 bit or 128 bit) field containing the value of 

the message length 𝐿. The Merkle – Damgård type structure is used, for example, in 

MD5 and SHA-1 hash functions. [10] 

Properties for a “good” hash function are that a large set of inputs produce evenly 

distributed and apparently random outputs. Also a change to one or any of the bits in the 

message M results in the output hash value 𝐻(𝑚) to change with a high probability. [1] 

A cryptographic hash function has more strict requirements in order to be suitable 

for security applications. Stallings [1] defines a cryptographic hash function as an 

algorithm for which no attack is significantly more efficient than brute-force and 

therefore is computationally infeasible to find either: 

 a data object mapping to a pre-specified hash result (the one-way property) 

 two data objects that map to the same hash result (the collision-free property) 

m0

IV

m1 m2 ...

...

mn-1 mn PB

H H H H H(m)

block

block= e.g. 1024 bit

PB= 1000...0 || msg m length

Message m, length L bits

H(m0+IV)

N x block length



 6 

If an attack is found, for a cryptographic hash function, that breaks algorithm’s one-

way property or the collision-free property then that algorithm is considered 

cryptographically broken and is not suitable for use anymore. For example, in 2004, 

2005 and 2008 weaknesses were found on the cryptographic hash function MD5 [11], 

which allowed an attacker to generate collisions [12]. In practice, this gave the attacker 

the ability to spoof SSL CA certificates that used MD5 signing algorithm [12].  

2.4 MAC and HMAC 

Message authentication code (MAC) provides message integrity (like cryptographic 

hash function) and authenticity of the sender. MAC algorithm requires the use of a 

secret key, which is used as an input together with the message. The secret key is shared 

with the recipient, who uses the key to generate the MAC and verify the message. [1] 

Figure 2.2 presents the basic usage of MAC. 

 

 

Figure 2.2 Basic use of message authentication [1]. 

 

In Figure 2.2 the sender (Source A) creates the MAC by using the message M and 

shared secret key K. The generated MAC is then concatenated with the message M and 

sent to the recipient (Destination B). The recipient generates the MAC from the received 

message M using the shared secret key K. Then recipient verifies the message M by 

comparing her own generated MAC to the given MAC. If the recipient gets same MACs 

then the message has not been altered and it has come from known sender. [1] 

MAC functions can be created using different means, such as, symmetric block 

cipher or cryptographic hash function. The latter is also known as hash-based message 

authentication code (HMAC). The usage of HMAC has been motivated by the facts that 

M

Compare

C

|| M C

C(K,M)

K

K

MAC = MAC(K,M)

M = input message

C = MAC function

K = shared secret key

MAC = message authentication code

Source A Destination B



 7 

hash functions are generally executed faster than symmetric block ciphers and the 

library codes for the hash functions are widely available. HMAC is used in SSL and IP 

security. [1] Another useful feature is that in RFC 2104 [13] HMAC was designed in a 

way the embedded cryptographic hash function can be changed, for example, when a 

faster or more secure hash function is required. 

2.5 Digital signature 

A digital signature is a security mechanism that provides authentication, data origin 

authentication, data integrity and nonrepudiation for messages or digital documents. It 

enables the creator of the message to attach a code that acts as a signature. [1] Figure 

2.3 provides a generic model of the digital signature process and Figure 2.4 a simplified 

depiction of digital signature process’s essential elements.  

 

 

Figure 2.3 Generic model of digital signature process [1]. 

 

The digital signature process starts by Bob creating a message M. Bob then uses his 

private key to create a signature S from the message M. The message M and the 

signature S are then transmitted together to Alice (the receiver), which then verifies the 

signature using the message M, signature S and Bob’s public key. The digital signature 

verification algorithm returns information whether the signature is valid or not valid. [1] 

 

Digital

signature

generation

algorithm

Message M

Message M

S

S
Digital

signature

verification

algorithm

Bob

Bob's

private

key

Alice

Bob's

public

key

Return

signature

valid or not valid

Bob's

signature

for M

Transmit



 8 

 

Figure 2.4 Simplified depictions of essential elements of digital signature process [1]. 

 

The digital generation algorithm in its essential parts is depicted in Figure 2.4 below 

Bob. The process starts by Bob creating a cryptographic hash value h of the message M. 

Bob then encrypts the hash value h with his own private key and the encrypted value is 

the signature S that is sent with the message M to Alice. [1] 

Once Alice receives the message M and signature S she starts the verification 

process. First she creates a cryptographic hash value h from the received message M. 

Then she decrypts the received signature S with Bob’s public key and gets hash value 

h’. Hash values h and h’ are then compared together whether they have the same value. 

If the values are the same then Alice knows the signature S is valid otherwise the 

message M cannot be trusted. [1] 

Cryptographic hash function’s role is to provide message integrity. Alice can be 

certain the message has not changed after Bob’s signing, when she creates s hash value 

Message M

Bob

Bob's

private

key

Cryptographic

hash

function

Message M

Alice

Bob's

public

key

Cryptographic

hash

function

h
h'h

S

Decrypt

Compare
Encrypt

S

Bob's

signature

for M
Return

signature

valid or not valid



 9 

of the received message M and compares it to the given (decrypted) hash value h’ and 

the values are the same. Alice’s certainty of the message originating from Bob comes 

from the fact that only Bob holds the key used to encrypt the hash value h from the 

message M. The data origin and nonrepudiation features also stem from the same fact: 

only Bob holds the used encryption key and therefore the message M must have come 

from Bob and he cannot repudiate from sending the message. 

2.6 Public Key Infrastructure X.509 

According to RFC 4949 [4] public key infrastructure is “the set of hardware, software, 

people, policies, and procedures needed to create, manage, store, distribute, and revoke 

digital certificates based on asymmetric cryptography”. The Public key infrastructure 

X.509 (PKIX) is a model, created by IETF that is suitable for a certificate-based 

architecture on the internet. The model is presented in Figure 2.5. 

X.509 is originally a standard created by International Telecommunication Union 

(ITU) Telecommunication Standardization Sector (ITU-T) and later on further 

developed by IETF, e.g. in RFC 5280 [14]. X.509 defines, among other things, the 

structure of the certificate and authentication protocol, which are used in other protocols 

(e.g. Secure Socket Layer (SSL)/Transport Layer Security (TLS)) [1]. 

 

 
Figure 2.5 PKIX architectural model [1]. 

 

In the Figure 2.5 term end entity stands for end users, devices and other entities that 

can be identified in the subject field in the certificate. Certification Authority (CA) is the 

issuer of the certificate and (usually) certificate revocation lists (CRL).  Registration 



 10 

Authority (RA) is an optional party that can assume certain administrative functions 

(often associated in the registration process) from the CA. CRL issuer is another 

optional component that a CA can delegate to publish CRLs. Repository is a term used 

to describe any method for storing certificates and CRLs, and distributing them for end 

entities. [1] 

The PKIX model has certain management functions. Registration is the process 

where a user makes itself known to the CA that issues a certificate to the user. This 

process involves some form of mutual authentication. Initialization process where client 

system acquires securely the public key and other assured information of the trusted 

CA(s) in order to validate certificate paths. Certification is the process where CA issues 

a certificate for the user’s public key, and returns the certificate and/or posts that 

certificate to the repository. Key pair recovery allows end entities to recover their 

encryption/decryption key pair from authorized key backup facility, which is usually the 

CA that issued the certificate for the end entity. Key pair update is a process where the 

end entity’s keys are updated and new certificates are issued. Update is required when, 

for example, the certificate expires. In revocation request an authorized person requests 

from the CA the revocation of a certificate. The revocation is done when, for example, 

the private key to the certificate has been compromised. Cross certification is a process 

where two CAs exchange information in order to create a cross-certificate, which is a 

certificate issued by one CA to another CA that contains a CA signature key used for 

issuing certificates. [1] 

2.7 SSL/TLS 

SSL is a security protocol designed by Netscape [15] and it provides end-to-end security 

services on top of the Transmission control protocol (TCP) [1]. Later on, SSL version 

3.0 was standardized and further developed by IETF and at the same time the name was 

changed to Transport layer security (TLS). SSL protocol stack is presented in Figure 

2.6. 

 

 

Figure 2.6 SSL protocol stack [1]. 

SSL 

Handshake 

Protocol

SSL Change 

Cipher Spect 

Protocol

SSL Alert 

Protocol
HTTP

SSL Record Protocol

TCP

IP



 11 

SSL is a protocol that consists of two layers. The SSL record protocol provides 

basic security services (confidentiality and message integrity) for higher lever protocols, 

especially for the Hypertext transfer protocol (HTTP). The provided security services 

are confidentiality and message integrity. The handshake protocol defines the keys used 

in both services. The confidentiality is provided using encryption and message integrity 

with message authentication code (MAC). [1] 

The Handshake protocol allows the server and client to authenticate each other, 

negotiate an encryption and MAC algorithm, and cryptographic keys used to protect the 

sent data. The change cipher spec protocol uses the SSL record protocol. The change 

cipher spec protocol consist of a single byte with the value 1 and its purpose is to cause 

a pending state to be copied into the current state, which updates the cipher suite to be 

used on this connection. The alert protocol is used to transmit SSL-related alerts, such 

as, handshake failure, bad certificate, certificate revoked, etc. Each alert is either 

warning or fatal. In the case of fatal the connection is immediately terminated. [1]  

2.8 Man-in-the-middle attack 

RFC 4949 [4] defines Man-in-the-middle (MITM) attack as an active attack where the 

attacker intercepts and selectively modifies communicated data to masquerade as one or 

more of the entities involved in a communication association [4]. In this thesis the term 

MITM attack is also considered to include passive attacks, such as, eavesdropping. 

Figure 2.7 visualises a MITM attack. 

 

 

Figure 2.7 MITM connection and perceived connection. 

 

In the MITM attack, users A and B perceive that their connection goes straight 

between A and B. However, in reality the connection goes through the attacker, which 

is in position to eavesdrop and modify the messages of the communication at will. 

Percieved connection

A B

The attacker

Man-in-the-middle connection



 12 

3 TEST ENVIRONMENT 

The chapter starts with presenting Android OS, what software was used in the work and 

what is was used for. The chapter concludes in presenting the used devices, the 

environment and how it worked. 

3.1 Android and Used software 

This section briefly covers the software used in the test environment. The section starts 

with OpenSSL. Then it moves to consider software used to perform the MITM attacks 

and then to the used network analysing tool Wireshark. The section concludes in 

covering the other used software and operating systems.  

3.1.1 Android OS 

Android is a mobile operating system based on Linux kernel. Android OS is open 

source, but in practice nearly every device comes with open source and proprietary 

software [16]. From 2007 Android has been developed by the Google led Open Handset 

Alliance (OHA) [17] consortium of 87 hardware, software and telecommunication 

companies [18]. In smartphones, Android is the most popular OS by having the biggest 

market share at nearly 85% in Q2 2014 [19].  

3.1.2 OpenSSL 

OpenSSL is an open source toolkit implementing SSL and TLS protocols, and has a 

general purpose cryptographic library [20]. In this thesis OpenSSL was used for three 

things: creating a private and public key pair, creating a CA SSL certificate, and as a 

generic SSL/TLS client.   

3.1.3 MITM software – SSLsplit & mitmproxy 

The software used to implement the actual MITM attacks were SSLsplit [21] and 

mitmproxy [22]. Mitmproxy is capable of proxying only HTTP(S) connections and 

modifying the HTTP traffic. SSLsplit is a more generic MITM attack software than 

mitmproxy, as it is capable of performing the attack on any SSL/TLS connection. 

However, SSLsplit cannot be used to modify the traffic. SSLsplit and mitmproxy were 

used as transparent proxies, since Android application’s behaviour cannot be changed. 



 13 

3.1.4 Wireshark 

Wireshark is a network protocol analyser capable of deep inspecting and decrypting 

hundreds of protocols, live data capture and more [23]. In this work Wireshark was used 

to intercept SSL/TLS traffic and analyse the contents offline. For example, SSLsplit is 

fully capable of capturing the all the data from SSL/TLS traffic, but it is in a form that is 

much harder to analyse. 

3.1.5 Other software 

The MITM attack was done with the author’s laptop, which was running Kali Linux. 

Kali Linux is a Linux distribution made for penetration testing [24]. In the laptop 

hostapd application was used to create a WiFi (802.11) access point, where the “victim” 

would connect. Iptables software was used to route traffic in the laptop to certain ports, 

for example, those that SSLsplit was listening.   

3.2 The environment 

The test environment is presented in Figure 3.1. The used devices are a laptop (with 

software described above) and Android devices: Samsung Galaxy S3 4G (Android OS 

4.3.), Samsung Galaxy Trend Plus (Android OS 4.2.2) and Kindle fire HDX 7” tablet 

Fire OS 3.0 (compatible with Android 4.2.2. [25]).  

The work begins (not shown in the Figure 3.1) by creating a public and private RSA 

key pair, which is then used in creation of  self-signed CA SSL certificate. The key pair 

and certificate were created with OpenSSL. Then the CA SSL certificate is installed to 

the Android device (red dotted line in Figure 3.1). All the Android devices had an 

option in the security settings to install a trusted CA certificate, so no special trickery is 

required from the attacker.  

 

 
Figure 3.1 The test environment. 

Wireless

access point

Wireless AP with

Wireshark and

SSLplit/

mitmproxy

Android device

("victim")

The attacker

Perceived connection

Actual connection/

MITM connection

Internet

Install the trusted

CA SSL certificate



 14 

The laptop is setup to be a wireless access point, where Android devices would 

connect to. The created private key is given to the SSLsplit software, so that it uses that 

key instead of creating its own keys, when forging certificates. This is a helpful feature, 

because the same key can now be given to the Wireshark, in order to decrypt and 

analyse the captured traffic between the Android device and the attacker’s laptop. 

When the Android device connects to a service in the Internet it perceives the 

connection to be straight (black connection in Figure 3.1). During the MITM attack the 

Android device’s connection is actually terminated in the attacker’s laptop by the 

MITM software and then the MITM software initiates a new connection to the original 

destination (red connections in Figure 3.1). Figure 3.2 presents how mitmproxy proxies 

HTTPS transparently. 

 

 
Figure 3.2 Transparent HTTPS with mitmproxy [26]. 

 

First the client makes a TCP connection to the server. The router redirects the 

connection to the mitmproxy. In the environment the router was actually the attacker’s 

laptop and the mitmproxy was in the same host (listening to another port). In the third 

phase, the client believes it is talking to the server, initiates SSL connection with the 

handshake, and uses the server name indication (SNI) to indicate the hostname it is 

connecting to. [26] SNI is an extension to the TLS protocol and it is a mechanism for 

client to tell the server (during the handshake) the hostname the client is connecting to 

[27].  

The mitmproxy will pause the SSL handshake with the client and then it connects to 

the server and establishes an SSL connection with the given SNI. The server responds 

with SSL certificate, which contains the common name (CN) and SubjectAltName 

(SAN) values needed for the forged SSL certificate. [26] SAN is an extension in the 

X.509 certificate that allows identities to be bound to the subject of the certificate (e.g. 

email and IP addresses, URIs, DNS names, etc.) [14]. In the sixth phase the mitmproxy 

router

mitmproxy

1:Connection

2:Redirection

3:Initiate SSL

handshake with

SNI

6:Complete SSL

handshake

7:Request

4:Initiate SSL

handshake with

SNI

5:CN & SANs

8:Request

Client
Server



 15 

gives forged certificate to the client and continues the paused SSL handshake with the 

client. [26] The client trusts to forged certificates, because the attacker has installed her 

own rogue CA SSL certificate to the client’s device as the trusted CA certificate. In the 

final seventh and eighth phases, the client generates request and mitmproxy passed the 

request to the server, once the SSL/TLS connection has been established between the 

client and mitmproxy. 

 



 16 

4 GOOGLE AND AMAZON 

The chapter starts with presenting how Google’s and Amazon’s market places generally 

work. Then certain Google’s services and protocols are described for background 

information.   

4.1 Google’s and Amazon’s market places 

Google’s Play Store and Amazon’s Shop applications are market places that provide, 

for example, applications, movies, books, etc. to download and buy. The application 

market was selected for closer inspection, because it was a feature common to both 

applications and they would be therefore comparable.  

In general, the process flow in a simple use case, when downloading a new mobile 

application from Google Play Store and Amazon Shop were similar in both markets 

places. The market place process flow is presented in Figure 4.1. However, it should be 

kept in mind that Figure 4.1 generalizes the process flow and therefore does not 

represent all actions market places take. Full listing of actions would have required 

more detailed reverse engineering, which is out of scope of this thesis. 

For a user the use case consisted mainly four parts. First starting-up the market 

application, then searching and browsing of applications in the market. Thirdly, 

selecting the desired application and in the fourth part the decision to buy and install the 

application. In Google Play Store the user had to take one more action, authenticate 

herself, when buying paid software from the Play Store. 

Amazon shop did not require the user to authenticate herself at all during the use 

case. The user was authenticated when she added her Amazon account to the device and 

when she added credit card details to the Amazon account at Amazon’s website. 

Amazon required credit card details to be added in order to download any application 

from the Amazon shop. Google required credit card details only when buying paid 

applications. 

 



 17 

 

Figure 4.1 Generalized flow diagram for a simple market use case. 

   

Market places had five actions in common and one distinct action from the other. 

First, when the user started the market application, it loaded the front page (which could 

include the images of top recommended applications etc.). Google’s Play Store also 

does one security check at this point. The second and third common phases happen 



 18 

when the user starts to search and browse applications, the market then loads the needed 

resources such as, images for next ten most popular applications. And when the user 

selects the desired application in the third phase, market downloads the application 

specific information, such as, details of the application, reviews and recommended 

applications. 

Google’s Play Store and Amazon’s shop start to differentiate from each other when 

the user decides to buy the desired application. In Google’s case, when the user buys a 

paid software he/she is prompted to authenticate before the transaction is confirmed. 

After the authentication the application is downloaded and installed to the device. The 

user is not required to authenticate when installing and downloading free software from 

the Google Play Store. Also in Google’s case the application receives a security token 

after the installation when the application is started the first time (not shown in Figure 

4.1). 

Amazon’s shop does not require the user to authenticate herself when the user 

decides to buy the desired application. Amazon’s shop also retrieves automatically the 

necessary licenses and tokens after the application has been downloaded and installed to 

the device. 

4.2 Google specific details 

This section starts with presenting Google Login Service (GLS) and Google Play 

Services (GPS). Then it moves to cover Google’s own proprietary mechanism called 

ClientLogin, which is used in the Google’s Play Store. And finally, the Google 2-step 

verification is presented.  

4.2.1 Google Login Service and Google Play Services 

When a user’s Google account is successfully added to an Android phone, the phone 

offers to synchronise the user’s data with Google online services (e.g. Gmail, etc.). 

During this process Google’s applications in the mobile device get tokens for the 

services they represent. The applications get their tokens with the help of Google Login 

Service (GLS), which works as authentication provider for Google accounts. [28]  

It should be noted that the description above concerns only the adding of a user’s 

Google account. Since online services have different ways of handling accounts and 

authentication, Android OS has an account manager, which provides a centralized 

registry of the user’s online accounts, for example, Facebook, Google, Amazon, etc. 

The account manager uses pluggable authenticator modules (which may be developed 

by a third party) for different types of accounts, which actually handle validating 

account credentials, etc. to the specific online service. [29]  

While Android OS is open source software, Google’s applications are not. Google 

has set certain compatibility requirements for devices, before phone manufacturer is 

eligible to license Google Mobile Services (GMS). [30, 31] This means that there are 



 19 

Android devices without Google applications and services, which therefore work 

differently (e.g. Amazon Fire tablets) when a user is added to a device. 

Google Play Services (GPS) is a platform that offers among other things OAuth 2.0 

tokens. GPS is tightly integrated with the Android OS [32] and according to Ars 

Technica [33] Google applications do not work if Play Services is disabled on the 

mobile device. 

4.2.2 ClientLogin 

ClientLogin is a Google’s own proprietary mechanism which provides authorization and 

authentication [34, 35]. Figure 4.2 presents ClientLogin message flow for installed 

applications, which seemed to be the closest documentation to the observed behaviour. 

 

 
Figure 4.2 ClientLogin message flow for installed applications [34].  

 

ClientLogin works as follows [34]: First, the installed application provides user 

interface for the user to supply login credentials. When the user has provided her 

credentials the installed application forwards them to Google. Steps 3 – 6 in Figure 4.2 

cover additional vetting, which Google might require. In such case Google issues a 

CAPTCHA challenge to which the user must answer. After a successful authentication 

Google provides token for the installed application (step 7 in Figure 4.2). Finally in 

steps 8 – 9, the installed application sends its request to Google service and is provided 

with a reply. [34] 

 



 20 

4.2.3 2-step verification 

2-step verification is a Google’s own mechanism for its users to authenticate more 

securely to the Google services. During the sign-in the user is required to provide 

something she knows (password) and something she possesses (phone or security key). 

In practice, the possession of something is to give a verification code or insert a security 

key. Google provides several methods for getting verification codes, for example, text 

message, dedicated application, phone call, printed backup codes, etc.). The verification 

code is a six-digit one time password (OTP) and the security key has to be compatible 

with the open standard called “FIDO Universal 2
nd

 Factor (U2F)”. [36, 37] 

4.3 Absence of Amazon’s specific details 

This thesis does not present any Amazon’s specific feature or protocol, because none 

was observed. The author personally believes the reason for this observation is that 

Amazon software is so integrated to their device that they have nearly complete control 

over it. Amazon also has only its own and a handful of devices, where their software has 

to work.  

This standpoint is completely different from Google, where their software runs in 

other device manufacturers’ devices. In addition, Google provides more services and 

applications for its users than Amazon. Also the devices and Android OS version, where 

their software has to work is more numerous. So the sheer number of services and 

backward compatibility requires Google to have more protocols and features. 



 21 

5 GOOGLE RESULTS 

This chapter first presents how Google’s acquires, uses and renews tokens. After that 

Google Play Store’s security is observed and chapter concludes with discussions on 

findings. All listings in this chapter have been modified (e.g. parts omitted, bolded, etc.) 

for readability. 

5.1 Tokens 

Google Android client applications used tokens heavily. They were observed in nearly 

every message sent to Google. It can be assumed that some kind of token was always 

sent along in every message unless otherwise explicitly stated. One general exception to 

this rule was image downloads, which did not use tokens at all. 

During the observations at least five different tokens were observed, which are 

presented in Listing 5.1. Some additional token-like things were observed such as 

config-tokens and HTTP cookies. These token-like things are not addressed in depth, 

because their usage and roles were not well understood.  

Tokens were observed to be delivered by client applications in three different ways, 

which were described in section 2.2. An important way is to use HTTP header 

Authorization attribute (Figure 2.1), whose value was consisted of two parts; 

mechanism and token value. Mechanism part consisted of a name of the mechanism 

used to acquire the token, which was observed not always being the case. Observed 

example values of the mechanism are; GoogleLogin, AuthSub, OAuth and Bearer. 

Tokens differentiated from each other mainly by length and some tokens could be 

recognised from first few characters. For example, GLS tokens seemed always to begin 

with DQAA and GA tokens with ya29.1.AADtN. The length of tokens belonging to the 

same type was not always the same.  

 
Master token (GLS): 

oauth2rt_1/406mny5jZzr7hLLS8RMwYUX0M0okCkeBLRvA1c1ag3M 

 

GA token: 

ya29.aQAQCcMZ2yQR_E0AAAB_MQ3GI5_1GpBSLDsFS-venMX6K3TI3HjpQJRjF49JG1wpiLMYMFAxK 

6ugQRK7pM5AGfWGgDwiIqZ1BBeRzJfYpmWOLu5Iavi88c6R807eZQ 

 

GLS token: 

DQAAAPsAAABpHeBTHq9gB-vyoONAG_3zIcFUwjAcKTRBLuaEr6XcGza83zwIDDMzWuXheRvLMUYNE2 

A0t2bWv_6U2mY_LuvkQ8QlFsYuYS81mPDWPcGpmMvk53U9Nu2-3drSDYOw6Lsoz29Zhm_uerHRZIrt 

CU5kmYSbLsO1_yon89OaflF3XGJDw6hw5fhAWqqweGum-rHnJh8eF9QjPgFjEAfsgZo0NHvdkgTeQe 

MFx6pq9S_G2-7IPOihP2qrom1ngPURApP35ZbOmAJHzHGahu8a-3x9BtWOfBz4TvOz_W5WdhiTb2H_ 

lZYj_qn3dBKM1ouFyyWIgS3isUpjSVghO-Ti9-49 



 22 

 

Ubertoken (GA, weblogin): 

APh-3FyrN6yRUf6XiAWT1KSM98lvFsLBq0Jrejhz3PZHpA_o3SZjddboqy6aXm_2Q0RtT8ZwQP3Dhu 

_vKmu2IEBYG8_TGSMeX5rj7kpm7mbJATj205ye9qh9mdhQiBCvDCJcloxEjjV-loVW62VG1TBDPCnd 

KiuvgvOYou5U6TaTjffU9wkFw_D6aZBRWyt2M7DfdECE4EFkliqLj9rpj5mhropHqBWy2iLweZK7Hh

aspaaQdL29CSAPlJEXTJmdBdkE2khl-SXjmIMQtsJxasF6fDh1ZvhvoMAm5bUpHHr-gWdTlmhsIFnr 

wUV7JDRCWSb8hlZtOUwIn1RcRv_rDQ0sDf11BsNtObW836IIQL2iMHjeIgAPU6q-FQytyH5KTFQd_s 

_yoBYyuEKcCGgW9xq5H0YbTu1Ir4plO67M_V34Gvceeiu9pClVLilgjCXJwDIIMXc-sbAxm3reg8N5 

2GxuFVVZD0uEwzQ6Fo3OwzwyWgyBmxMBTy_wgQaf7GbuB4rw-40u13NaseNUT9LmBTEYKY6WVPOXmG 

5WxjYUX4SxNbJbHw6AIadIQYTMSDg1wim6cd9hLqPDjW_gyc-6m0Y3WdQSDxQ2xFRHv8uwaY1YR_Wq 

IXK55y0 

 

Play Store application download token: 

AOTCm0RaEzu5Of11gVPwCxV0eWL_T1E5fqoxesTQUveP5s6j3pjf1B8r9KIzBWeiYNvdzl7Pd4O_s6

XT5La9hVBfrdYqqdCiwREn4YUsHrqh2tKMbg 

Listing 5.1 Observed example tokens: Master token, GA, GLS, Ubertoken and 

application download token.  

 

Tokens were observed to be used only for authorization and it is not known whether 

tokens had other information included within them in some way. For example, GLS and 

Ubertoken are long strings, which can easily contain encoded information. 

In general, the acquirement and usage of security tokens for Google’s service 

happens in three phases. At first a “master token” is acquired, and then in the second 

phase the master token is used to acquire another token for a mobile application or its 

service. And finally, the mobile application or service sends its request to Google along 

with the second acquired token included in the message. There is also one exception to 

the three phased token usage, namely Weblogin, which also uses the master token, but 

the application specific token is acquired by exchanging HTTP cookies. 

All tokens were observed to be requested by sending a HTTP message to 

clients.android.google.com/auth address. And it was noticed that in token acquirement 

two different user-agent attributes were used in the HTTP header, Google Login Service 

(GLS) and Google Auth (GA). Both of these user-agents worked in principle in the 

same 3 phases. Differences were in parameters used in token acquirement, applications 

that used either of the user-agents, and in message flow. 

5.1.1 Master token 

Master token was observed to differ from other tokens in two ways. It is acquired only 

when a user’s Google account is registered to an Android device (Figure 5.1) and when 

the user starts to use Google’s 2-step verification for authentication. The master token 

was observed to be used only for acquiring new tokens for Android device’s Google 

applications or services, when they were in need to access Google’s resources and 

user’s data.  

Google does not use the “master token” name, instead in the observations the master 

token was in a parameter called token or EncryptedPasswd. Latter name is used for two 

different things and therefore the name “master token” is used in this thesis to clarify 



 23 

naming and emphasize the master token’s special role. The name master token is to the 

author’s best knowledge first used by Nikolay Elenkov [28].   

 

 

Figure 5.1 Master token acquirement, relayed parameters are in brackets. 

 

Master token acquirement started with registering a user’s Google account to the 

Android device. GLS sent HTTP POST /auth message (Listing 5.2) to Google (address 

android.clients.google.com) containing, among other things, user’s Google email 

address, and presumably user’s encrypted password (parameter EncryptedPasswd) and 

parameter add_account. Email address was thought to be used as login identification 

and parameter add_account indicating that the user’s account is to be added to the 

device. The EncryptedPasswd parameter’s value was observed to change every time the 

user registered to the device. According to Elenkov [28] Google very likely uses 1024-

bit RSA key and the optimal asymmetric encryption padding (OAEP) to encrypt the 

user’s password.   

 
POST /auth HTTP/1.1 

Content-Type: application/x-www-form-urlencoded 

Host: android.clients.google.com 

User-Agent: GoogleLoginService/1.3 (m3 JSS15J) 

 

accountType=HOSTED_OR_GOOGLE&Email=*****@gmail.com&has_permission=1&add_accoun

t=1&EncryptedPasswd=AFcb4KRHuI22tP-Yd3ILuXt1PsGWXM2ZaMkHVSgUyMxwQkLTr3YUExnI7Q 

vh2HT1kZuXbPhZggs4ZQv0ruwsxPruv7NhdcYy9qylXQ6dhnYKiyC9FgIWf67i8gSAYwSYeJXsnQsl

8aA61mTXgybGOTOAn0ypiyXlowgE4n7cy7U1YB-RNQ==&service=ac2dm&source=android 

&androidId=32f8ab24222c9535&device_country=fi&operatorCountry=fi&lang=en&sdk_v

ersion=18 

Listing 5.2 GLS master token request message (Message 1, Figure 5.1). 

 

HTTP/1.1 200 OK 

Content-Type: text/plain; charset=utf-8 

 

SID=DQAAAMsAAADmPD ... 

LSID=DQAAAM0AAAC2O ... 

Auth=DQAAAM0AAAAcO ... 

services=mail,doritos,googleme,lh2,talk,android,cl,friendview, 



 24 

chromiumsync,multilogin 

Email=****@gmail.com 

Token=oauth2rt_1/406mny5jZzr7hLLS8RMwYUX0M0okCkeBLRvA1c1ag3M 

GooglePlusUpgrade=1 

PicasaUser=Tuomo Tutkija 

RopText=  

RopRevision=1 

firstName=Tuomo 

lastName=Tutkija 

Listing 5.3 GLS reply message for Master token request (Message 2, Figure 5.1). 

 

The most important part of the reply message for the master token request was 

parameter Token. The Token field contained the requested master token. The rest of the 

token parameters in the message (LSID, SID and Auth) were never observed to be used. 

In fact, LSID and SID parameters in any GLS token replies were never observed to be 

used. The reply message also contained the user’s name and information regarding to 

other Google services. 

5.1.2 GLS token 

The GLS token acquirement process is presented in Figure 5.2. The first message 

exchange shows how the master token is used to acquire Auth token for a mobile 

application.  

 

 
Figure 5.2 Sequence diagram of token acquirement with Google Login Service. 

 

The Auth token is application or service specific (depends on which one the token 

was acquired for). For example, the application com.google.android.gsf.login was 

observed in token requests together with services such as ac2dm, mail and 



 25 

chromiumsync. Newly acquired Auth token is then passed on in the second message 

exchange, when the application sends it request to Google (Message 3, Figure 5.2). The 

token is acquired usually only once for the application and the same token is then 

always used by the same application.  

 
POST /auth HTTP/1.1 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 339 

Host: android.clients.google.com 

User-Agent: GoogleLoginService/1.3 (m3 JSS15J) 

 

accountType=HOSTED_OR_GOOGLE&Email=****@gmail.com&has_permission=1 

&EncryptedPasswd=oauth2rt_1/406mny5jZzr7hLLS8RMwYUX0M0okCkeBLRvA1c1ag3M 

&service=sierra&source=android&androidId=3c5a5c3bcd5b2d7f 

&app=com.android.vending&client_sig=38918a453d07199354f8b19af05ec6562ced5788 

&device_country=fi&operatorCountry=fi&lang=en&sdk_version=18 

Listing 5.4 GLS token request message (Message 1, Figure 5.2). 

 
HTTP/1.1 200 OK 

Content-Type: text/plain; charset=UTF-8 

  

SID=DQAAAPgAAAB461lU_C32QIyonhi5oxcDsG0jRS--pHSb9EncQxsYOArHghnBmVbBoMEVdr2W_d 

niueIIVWYzh_2ym6DSW00KwUmGpNAanWOATIA3_sM3JIUzMs-AkYyK8zkhp4iIPmSuF9jTcA5ZiYiC 

6rSumbChMbH5Y3pDdmZ-edLEzq7XHbR39g8L_l6ZDjqKyODB0XSy_hr1lkoLVeNraBB0RAsgKYiJ04 

AKv2m1hofhMazn5anssfHnc3v2XL7lyIyE5H9WsCE0b1iZzH_1p1Fm-4pbM5zEOC4Hh7PWwotxa_a-

CMtig4ahsxhFmW6FJQKOYt98g3dlXknqDBcSdzXvygMo 

LSID=DQAAAPwAAAC29nFq6fprKTxuKhzOaguRpSAta0gIb55ryrrvEMAm-BtM5qSjBc5VQLM3y1hl0 

xZ7SNH2Yu9miVnyJ5eL8kUVzP8cbOQGIp6r7-KbDmlg134QPwMx9T_VwamZT31jB6uxc6lMCabeawO 

Z4vQ-otofjYwiQdkAWsB706G-gktTntuOP40-VRqv2BIM6qsCVwA_nHx688513TmHEF_Xh8L9uENGs 

CW44dsmWov_Fqz5XoL-w35qzZUXxGHIf6GeRBDV_-insoOJCW8FxSpDjEJCjc-E2yReK3rt5TWg6mx 

wO65qCsQQK3xIjdFHuZxXVS3BgjgL4FQeGvslFcc3c7Bm 

Auth=DQAAAPsAAAC29nFq6fprKTxuKhzOaguRpSAta0gIb55ryrrvEMAm-BtM5qSjBc5VQLM3y1hl0 

xZ7SNH2Yu9miVnyJ5eL8kUVICvKtImm_YPuAyJK78sOcKChd_Aylv8whDWI8Ygu-ZxSi9G8CIrSOi9 

qQHyMTFN6nYJH_oGA6GYQTz3k541NRIcL6gHyXKeTVeoLWUqcVvVmamHPnII9MFTlHP28Mw6DHoBQv

cx-98U-oGzc7UdwZsEj9bzll1p43FiiUnWdxJHXn5QBydsPa70hagAgaEIPnsFcKRcQI_ngmNehAWV 

d4Cdz5fyyoTGmQRJpFkHo_RVhYJg7JsGaeMV4amVHr838 

issueAdvice=auto 

services=mail,doritos,googleme,lh2,talk,android,cl,friendview,chromiumsync, 

multilogin,sierra,esmobile 

Listing 5.5 GLS token reply message (Message 2, Figure 5.2). 

 

GLS token request message (Listing 5.4) contained in the message body parameters, 

such as, user’s email address (account name), EncryptedPasswd (master token) and the 

name of the application requesting the token. The EncryptedPasswd parameter value in 

Listing 5.4 contains the master token and it is different from parameter used in Listing 

5.2, which presumably contains the user’s encrypted password. 

The reply message contained the requested token in Auth parameter. As stated 

earlier, other tokens (SID and LSID) in the reply message were never observed to be 

used.  



 26 

5.1.3 GA token 

GA method to acquire the application specific token is almost identical to the GLS 

method, differences were on request parameters, token expiry and usage. The process is 

presented in Figure 5.3. 

 

 
Figure 5.3 Sequence diagram of Auth token acquirement with GoogleAuth. 

 

Figure 5.3 presents the GA token acquisition process and usage. The main 

difference between the GLS and the GA is that GA tokens have expiry time and 

therefore applications need to request new tokens. 

 
POST /auth HTTP/1.1 

device:  

app: com.google.android.gms 

Content-Type: application/x-www-form-urlencoded 

Content-Length: 468 

Host: android.clients.google.com 

User-Agent: GoogleAuth/1.4 (m3 JSS15J) 

 

device_country=fi&operatorCountry=fi&lang=en_GB&sdk_version=18 

&google_play_services_version=3225130&accountType=HOSTED_OR_GOOGLE 

&system_partition=1&Email=****@gmail.com&has_permission=1 

&service=oauth2:https://www.googleapis.com/auth/calendar&source=android 

&androidId=3c5a5c3bcd5b2d7f&app=com.google.android.syncadapters.calendar 

&client_sig=38918a453d07199354f8b19af05ec6562ced5788 

&EncryptedPasswd=oauth2rt_1/406mny5jZzr7hLLS8RMwYUX0M0okCkeBLRvA1c1ag3M 

Listing 5.6 GA HTTP token request (Message 1, Figure 5.3). 

 



 27 

The GA request message contained all the same parameters as GLS token request 

message and in addition two to four other parameters depending on the message. New 

parameters are google_play_services_version, system_partition, callerPkg and callerSig. 

Parameters callerPkg and callerSig were not always present in the request. As with the 

GLS token request message, EncryptedPasswd contained the master token. 

 

HTTP/1.1 200 OK 

Content-Type: text/plain; charset=UTF-8 

 

issueAdvice=auto 

Auth=ya29.PgBVooZERI8NA1AAAABnFIMaNWZcbuZS-0hyiBtsU1P2kEK3l0CUnG3se9bzqOk95ksJ 

ialWljLSQk4krt4RjRmdE8MgUj7dwc1GIGjhfDwV048X1o5Uogm8foNwTQ 

Expiry=1405060390 

storeConsentRemotely=0 

Listing 5.7 GA HTTP token reply (Message 2, Figure 5.3). 

 
SID=DQAAAPgAAABhfx1sPUmm ... 

LSID=DQAAAPoAAABpk84aGPG ... 

Auth=DQAAAPsAAACgMO2Jn35 ... 

issueAdvice=auto 

services=mail,doritos,googleme,lh2,talk,android,cl,friendview,chromiumsync, 

multilogin,sierra,esmobile 

Listing 5.8 Alternative GA token reply message (Message 2, Figure 5.3). 

 

The message body of the GA token reply message (Listing 5.7) contained the 

requested token and the token expiry time in unix time. GA tokens had expiry time, 

which suggested that GA tokens were valid only up to a certain time and after that 

applications needed to acquire a new GA token. However, the expiry time was not 

followed all the time. Token requests for the same application and service were 

observed to be made before the previously set token expiry time. 

The GA reply message was not always the same. In cases where the GA reply 

message was different (Listing 5.8) it was noticed to be identical with GLS reply 

message (Listing 5.5), where the requested token is given in Auth parameter. These 

alternative reply messages were also noticed to be given when the service parameter 

value in the GA request message (Listing 5.6) did not begin with “oauth2:”. 

 

 

 

 

 

 

 



 28 

5.1.4 Weblogin 

Weblogin was observed to be a method for acquiring cookie tokens. The process is 

presented in Figure 5.4. 

 

 
Figure 5.4. Sequence diagram of Weblogin method of acquiring token. 

 

The Weblogin method for acquiring token was observed to happen rarely and the 

token was acquired for the Google quicksearchbox application. The first message 

resembles the previously described GA token acquirement method, but there is a 

difference in service parameter (see below). 

 
...&service=weblogin: service=hist&continue=https://www.google.fi... 

&app=com.google.android.googlequicksearchbox ... 

 

The reply (Message 2, Figure 5.4) from Google did not contain auth token. Instead it 

contained following the URL (including new token, uberauth) and expiry with value of 

zero. 

 

 

 



 29 

Auth=https://accounts.google.com/MergeSession?args=service=hist& 

continue=https://www.google.fi&de=1&uberauth=APh-3FzU8H02fj1MkZT3ew28t 

ju0s0cpvZ0ws0jyLi3YKNFoEWsZ0G0BZ0W3lIPQfWXoDOnVCps3u80kkY7fk2mrCYrv6y9

ufg3MxOs-rDo5U5Zz_JuoQR9yvpxG_i12_Y6n5reeNizC2wBAEH2ZCAI9RlYjISIdyRsWx 

LqsIoxCGDc9ajOsBursFqKbzRuf0OY3yg3iSy-rGqsdQ_BA8Igvm9Q25ONlQmJM-uvaXo5 

YNXIFDBo82jHBO0VF13sVdpytRYucerJgkaLdrz6K9IhcU1Dmw4zT7bJdtd8LSYUac1ZXQ 

u4hoLp7hYOO1otrQLhJOt4kwJKdkTTX-7dGiOWxowSCooCZCUVc9yq0QnQ_rhf8sMpSdko 

RYTnlHMHwTmEKANwNF-eT&source=AndroidWebLogin 

Expiry=0 

Listing 5.9 Weblogin HTTP token reply (Message 2, Figure 5.4) 

 

In the rest of message flow most of the information exchanges happened in cookies, 

but the exchanged information was not understood. According to Google [38], they use 

different types of cookies, such as preferences, security, processes, advertising, session 

state, and analytics cookies. Security cookies are used to authenticate user and to protect 

user’s data from unauthorized parties. For example cookies named SID and HSID 

contain digitally signed and encrypted records of a user’s most recent sign-in time and 

Google account ID. [38] 

5.1.5 Token renewal 

One experiment was developed in order to find out the token renew process. In the 

experiment the mobile device’s time was manually set to different future time (from one 

week to 12 months), from the Android device’s own settings, that were usually past the 

acquired GA token’s expiry times. Google’s applications were observed always to send 

tokens to Google. This hinted that the application did not check the token expiry and 

that the responsibility was in Google’s server side. GA tokens were nearly always 

observed to be used immediately and with a few exceptions, token’s usage was not 

observed; meaning that the token delivery method could have not been understood, 

found or the token was simply not used.  

All tokens provided by the GLS (Auth and Master token) were not observed to 

expire during the experiment. In other words, the same token was always used, when 

the application sent new requests to Google. However, tokens were invalidated, for 

example, when an application was updated; master token was revoked manually by the 

user and when the user started to use 2-step verification. The user is able revoke the 

master token manually at Google’s account settings web page. One updated application 

that required new tokens was com.android.google.gms, which is according to Shiram 

the Google Play Services application [39]. Listings 5.10 and 5.11 present the reply 

messages Android device got from Google during the application update. The reply 

presented in Listing 5.10 was observed to happen before the update and Listing 5.11 

after the update.  

 

 

 



 30 

HTTP/1.1 401 Unauthorized 

Content-Type: text/html; charset=UTF-8 

WWW-Authenticate: GoogleLogin realm="https://accounts.google 

.com/ClientLogin", service="androidmarket" 

Listing 5.10 Reply for replicateLibrary message. 

 
HTTP/1.1 403 Forbidden 

Content-Type: text/html; charset=UTF-8 

Listing 5.11 Reply for ApiRequest message. 

  

When a Google’s application send a request to Google and the token was invalid, 

Google replied with a HTTP 401 Unauthorized message. The same request with the 

same token was usually sent 2 – 3 times before the application stopped sending requests 

and then tried to acquire a new token for the application. When the master token in the 

token request was invalid, revoked, etc. Google replied with HTTP 403 Forbidden. 

Depending on the case, when the master token is invalid the user is usually required to 

authenticate. The only observed exception was the com.android.google.com application 

update. The user is kept oblivious to the problems and notices problems only if the 

service she gets is slow and when the master token is invalidated and she needs to 

authenticate.   

5.1.6 Token request parameters 

Table 5.1 presents parameters seen in the captured communications. GLS has two 

entries, because it uses different set of parameters when acquiring a master token. Also 

parameters marked in parenthesis are not always present. 

 

Table 5.1: Observed parameters in GA, GLS and master token acquirement. 

Parameter: GA GLS GLS  

(Master token) 

device_country x x x 

operatorCountry x x x 

lang x x x 

sdk_version x x x 

google_play_services_version x - - 

accountType  x x x 

system_partition x - - 

Email x x x 

has_permission x x x 

service x x x 

source x x x 

androidId x x x 

app x x - 



 31 

client_sig x x - 

callerPkg (x) - - 

callerSig (x) - - 

add_account - - x 

EncryptedPasswd x x x 

 

AccountType parameter defines the type of the account. Only one value was 

observed: HOSTED_OR_GOOGLE. According to ClientLogin’s documentation [34] 

the value in question refers to an action where the user’s Google account is first 

attempted to authorize for hosted account and if failed then attempt for Google account 

[34]. System_partition parameter was left unknown. It was observed to always have the 

same value: 1. 

Service parameter contained information regarding what service requested a token. 

The value was different depending on which user-agent made the request. Values in 

GLS requests were either codenames (e.g. sierra, sj, etc.) or more self-explanatory (e.g. 

androidmarket). GA request’s values were either for specific service (e.g. 

oauth2:https://www.googleapis.com/auth/calendar) or contained multiple values for a 

service and defining specific rights. 

 
oauth2:https://www.googleapis.com/auth/plus.circles.read 

https://www.googleapis.com/auth/plus.circles.write 

https://www.googleapis.com/auth/plus.media.upload 

https://www.googleapis.com/auth/plus.pages.manage  

... 

 

Source parameter value was though to represent the origin of the request. The value 

for the source parameter was always: android. AndroidId parameter is according to 

Shiram [39] a unique device id. The AndroidId is probably the ANDROID_ID value 

described in the Android OS reference [40]. The ANDROID_ID is a 64-bit hex string, 

which is randomly generated when a user’s Google account is added to the device. The 

value changes every time the device had reset performed. [40] This behaviour was in 

line with the author’s observations. 

According to Shiram [39] the client_sig parameter contains a signature value of the 

Google Play services application (com.google.android.gms) [39]. Parameters client_sig 

and callerSig (when present) were observed to have the same value 

(38918a453d07199354f8b19af05ec6562ced5788), which was not observed to change 

during the observations.  

5.2 Practical security in Play Store 

This section first presents the message flow when downloading a free application. Then 

a paid application is considered, which includes new security mechanisms. The section 

concludes with presenting miscellaneous findings. 



 32 

5.2.1 Free application case 

The most essential messages when downloading a free application from Play Store are 

presented in Figure 5.5.  

 

 

Figure 5.5 Message flow of free application case in Play Store. 

 

The message flow of the free application case was conducted securely with 

SSL/TLS up to the log message (Message 4, Figure 5.5) and the rest of the flow was 

done through an insecure channel, including the actual delivery of the free application 

package (Messages 6 – 9). The application was never downloaded from the first given 

URL, which was given in the reply (Message 3) for delivery message (Message 2). 

Instead the user was given in the reply a HTTP 302 - Temporarily moved status and a 

new URL where the download would be completed (Message 7). 

 
GET /fdfe/delivery?doc=com.rechild.advancedtaskkiller&ot=1&st=EKbsppkF%0A 

&vc=10203 

Listing 5.12 Download URL request message (Message 2, Figure 5.5) 



 33 

 
HTTP/1.1 200 OK 

Content-Type: application/x-gzip 

 

KLzvvob5inySFDD_Z9onEk0PK9s 

http://android.clients.google.com/market/download/Download? 

packageName=com.rechild.advancedtaskkiller&versionCode=10203 

&token=AOTCm0R0yTrLIiV_2m0-x_VX7ax9c_wiFqjo0jcrJZJ25KVM3WYffMG9qo8l4hCy1YmTCW 

7tdDL79taYZMJuIQSiBNzUNeVN_cCIJUqR2iY 

&downloadId=77927525110214843* MarketDA052610659720452722080@* 

Listing 5.13 Reply for download URL request message (Message 3, Figure 5.5) 

 
POST /fdfe/log HTTP/1.1 

Content-Type: application/x-protobuf 

Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr_MWeljM ... 

Host: android.clients.google.com 

 

?(6confirmFreeDownload?doc=com.rechild.advancedtaskkiller 

Listing 5.14 Log message of free software case (Message 4, Figure 5.5). 

 

Message 2 was sent after the user had decided to install the desired application. The 

reply in Message 3 contained a URL (which included a token) and a string value 

beginning with MarketDA. The next message sent from the user’s device after the 

delivery message was Log-message containing confirmation of the free application 

download. 

 

GET /market/download/Download?packageName=com.rechild.advanced 

taskkiller&versionCode=10203&token=AOTCm0R0yTrLIiV_2m0-x_VX7ax9c_wiFqjo0jcrJZJ 

25KVM3WYffMG9qo8l4hCy1YmTCW7tdDL79taYZMJuIQSiBNzUNeVN_cCIJUqR2iY 

&downloadId=77927525110214843  

Cookie: MarketDA=05261065972045272208 

Host: android.clients.google.com 

Listing 5.15 Download message (Message 6, Figure 5.5) 

 
HTTP/1.1 302 Moved Temporarily 

Location: http://r3---sn-ovgq0oxu-5goe.c.android.clients.google.com/market/ 

GetBinary/GetBinary/com.rechild.advancedtaskkiller/10203?ms=au&mt=1396861410 

&mv=m&mws=yes&expire=1397034280&ipbits=0&ip=0.0.0.0&cp=Snp3bmFzRFk6ODQzMzY4Nzc

5MzA5NTI3NTM0MDQ&sparams=expire,ipbits,ip,q:,cp&signature=754A53FE5D8B59630EDA

7DDDA3A445C64FF79FD8.B54C0E3A652A09DC1F320773FE6948364BBA1B5F&key=am3 

Listing 5.16 Reply for download message (Message 7, Figure 5.5) 

 

The string value mentioned earlier in Message 3 proved to represent a HTTP cookie 

in Message 6, but it was not known where it was used for (e.g. authentication or 

authorization). Token in the URL was thought to be comparable to Auth tokens, since 

HTTP header did not contain Authorization field. The reply (Message 7) contained the 

final download URL, which included a signature parameter. Signature parameters usage 

was also not known. The author suspected it to have something do to with Android 

packet (APK) verification.  



 34 

 
GET /market/GetBinary/GetBinary/com.rechild.advancedtaskkiller/10203?ms=au 

&mt=1396861410&mv=m&mws=yes&expire=1397034280&ipbits=0&ip=0.0.0.0&cp=Snp3bmFzR

Fk6ODQzMzY4Nzc5MzA5NTI3NTM0MDQ&sparams=expire,ipbits,ip,q:,cp&signature=754A53

FE5D8B59630EDA7DDDA3A445C64FF79FD8.B54C0E3A652A09DC1F320773FE6948364BBA1B5F&ke

y=am3 HTTP/1.1 

Listing 5.17 Final download message (Message 8, Figure 5.5) 

 

Message 8 might be one of the few exceptions where no token was provided to 

Google in some form along the message. However, Message 8 also contained many 

parameters (e.g. cp and mt), whose usage were left unknown. 

5.2.2 Paid application case 

Paid application case introduced new messages and security mechanisms. The most 

essential messages are presented in Figure 5.6. 

 

 

Figure 5.6. Message flow of paid application case in Play Store. 



 35 

The new messages in the paid application case are preparePurchase (Message 2, 

Figure 5.6), ClientLogin (Message 6) and commitPurchase (Message 8). New 

introduced security mechanisms are digital signature and authentication.  

  
POST /fdfe/preparePurchase HTTP/1.1 

Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr_... 

Host: android.clients.google.com 

 

ot=1&doc=radiotime.player&pcauth=4&vc=134&ct=dummy-token 

&dcbch=NxFayPdjWuQoiozgycXNzFWZnEs& 

Listing 5.18 PreparePuchase, (Message 2, Figure 5.6). 

 
HTTP/1.1 200 OK 

X-DFE-Content-Length: 4882 

 

TuneIn Radio Pro2.88 

* ACKDxPPf5Ck7idZZFguFxR/hdHaeAEvajB5RzFqbNeWNhIkcT+3Yc1npgwyy5WwbfFmtvZVCQdq+ 

DNeKM60rA4oZnpaTxuY3nHyIofXjYWTh/lD+dH9IR/1CcY7DIBbA4bNw/K3EzENMd79bvCqKHmsX/v 

M8Lo7VssAfys3p8b6qaq3oqbXMKHVl0kVt2lzmWbNXDlUKMvWbCvNogzlWrN67Xz8EWNWiXm6JjXs+   

... Bnn0=": 

'15218670163581205722.D.15377127500743620B Visa-4670 

*SCurrency fluctuations, bank fees and applicable taxes may change your final 

amount.2By tapping "Buy", you agree to the Google Wallet Terms of Service … 

Listing 5.19 Reply message for preparePurchase (Message 3, Figure 5.6). 

 
POST /fdfe/log HTTP/1.1 

Content-Type: application/x-protobuf 

Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr_MWeljMFno8 ... 

Host: android.clients.google.com 

 

.(%completePurchase?doc=radiotime.player 

Listing 5.20 Log (Message 4, Figure 5.6) 

 

The preparePurchase message was sent right after the user decided to install the 

desired application. On the surface the message did not contain anything new or 

particularly interesting, but it did contain parameters in the message body that were not 

understood. The reply (Message 3, Figure 5.6) contained among other things in one 

capture a 5432 character long base64 encoded string. An attempt to decode the string 

did not reveal anything understandable text, which hinted that the contents might be 

encrypted or binary and therefore the content was left unknown. The next message sent 

from the user’s device after the preparePurchase was Log-message containing 

confirmation of the application purchase.  
 

POST /accounts/ClientLogin HTTP/1.1 

Content-Length: 125 

Host: www.google.com 

 

service=apps&accountType=HOSTED_OR_GOOGLE&source=Google-GooglePlay-80260017 

&Email=****@gmail.com&Passwd=***** & 

Listing 5.21 ClientLogin authentication request (Message 6, Figure 5.6) 



 36 

HTTP/1.1 200 OK 

Content-Type: text/plain 

Content-Length: 881 

 

SID=DQAAAMsAAACoBG ... 

LSID=DQAAAM0AAADfT ... 

Auth=DQAAAMwAAADfTnvm ... 

Listing 5.22 ClientLogin authentication reply (Message 7, Figure 5.6) 

 

After deciding to install the application, Play Store presented a UI interface, where 

the user was requested to authenticate with her Google email address and password. 

Play Store used mechanism called ClientLogin to authenticate the user. One notable 

feature of the ClientLogin mechanism is that the user’s password is communicated in 

plain text. 

Play Store’s usage of ClientLogin was observed to be more straightforward than 

depicted in chapter 4.2.2, it comprised only steps 1 – 2 and 7 presented in Figure 4.2. In 

a successful authentication the reply’s (Message 7) message body looked similar to a 

GLS token reply (Listing 5.5), which contained SID, LSID and Auth tokens. These 

tokens were not observed to be used at all during the communication, which hinted that 

even though ClientLogin is designed mainly as an authorization mechanism [34], Play 

Store used it for only authentication. ClientLogin authentication request message 

(Message 6) is one of the few exceptions that did not contain a token within the 

message.  

It should be noted that when buying application from Play Store the message flow 

included messages and parts of messages, that were not fully understood. Therefore it is 

possible that token provided in Message 7 could have been used and such ClientLogin 

could have been used more than just for authentication.  

 
POST /fdfe/commitPurchase HTTP/1.1 

Content-Type: application/x-www-form-urlencoded; charset=UTF-8 

Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr_... 

X-DFE-Signature-Request: nonce=jBha_12piAPP4w… 

X-DFE-Request-Params: timeoutMs=35000 

Content-Length: 5848 

 

pcauth=2&pcarc=0&pct=ACKDxPP   ...   Bnn0=&ct=dummy-token 

&chdi=qIHI3OWg3mesmCxcMsK75RKu7F4& 

Listing 5.23 Commit purchase message (Message 8, Figure 5.6) 

 
HTTP/1.1 200 OK 

X-DFE-Signature-Response: signature=ABG4_WXBR93mozUv… 

X-DFE-Content-Length: 538 

 

radiotime.player0*(QtDMGv49qQg-UWD2tNhCmW8F00M( 623"cSpa8cWPXSx2cPY7u-

DzpeSktnQ 

https://android.clients.google.com/market/streaming/Download?packageName=radio

time.player&versionCode=134&token=AOTCm0RjPvi90PsYWXQ-FQZVHXpeIysIdSILJLJYjrA_ 

PA5bw5mo4oltsdfKshNv1huHScCTo9_IXqsIdbM52dw7W7xpUYW9r9d1AnR5dPQ&ev=1 



 37 

&downloadId=6890805265695851619*MarketDA052610659720452722080@bJ9GYLSn7DRCHRWp

nLWQ1Ohg==,mEz0TaKr6bILmoIr30cTKCAKPF+YTPRNoqvpsguagis=*... 

Listing 5.24 Reply for commit purchase message (Message 9, Figure 5.6) 

 

Right after the reply for the authentication (Message 7) was received, a 

commitPurchase message (Message 8) is sent. It includes a signature request and in the 

message body the same base64 encoded string (parameter pct in Listing 5.23), which 

was provided in the reply (Message 3) for the preparePurchase message (Listing 5.19). 

The message body also included parameters whose usage was not understood, such as, 

pcauth, pcarc, ct and chdi. Signature request’s purpose is presumed to authenticate the 

other communication party to be genuine Google service. 

 The reply (Message 9) for commitPurchase message contained the response for the 

signature request and download URL (with token) similar the one provided in the free 

application delivery message (Message 2, Figure 5.5). 

 
GET /fdfe/delivery?doc=radiotime.player&ot=1&st=EKbsppkF%0A&vc=134 HTTP/1.1 

Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr_MWelj... 

Host: android.clients.google.com 

Listing 5.25 Download URL request message (Message 10, Figure 5.6) 

 
HTTP/1.1 200 OK 

X-DFE-Content-Length: 406 

 

... 

cSpa8cWPXSx2cPY7u-DzpeSktnQ 

https://android.clients.google.com/market/streaming/Download? 

packageName=radiotime.player&versionCode=134&token=AOTCm0TIRIXQofTyyCc7EC2IE2C

a8FGeb15iyfb8iK7eSmci77l8ZYXrywRuNjhofg1Lp5bvO8xGHhBylE9p2nXQYC0fOD_cQOYoZQWUf

RA&ev=1&downloadId=-2412412061604833543*  

MarketDA052610659720452722080@bJibg7Wl2WjHJs+hGvBpiBxg==, 

CC/W5vfHdY4dQMS8Wgw88RrMgNcIL9bm98d1jh1AxLw=*... 

Listing 5.26 Reply for download URL request message (Message 11, Figure 5.6) 

 

Even though the URL given in Message 9 looked like the application download 

URL, it was not later on used to download the application. The final download URL 

was delivered in the next message exchange (Messages 10 – 11, Figure 5.6). The reply 

for the delivery message (Listing 5.26) looked almost same as in Listing 5.13 in the free 

application case, except in this case the MarketDA string had next to it two base64 

encoded strings, whose usage was left unknown. 

5.2.3 Miscellaneous findings 

There are a few interesting messages sent by the Play Store’s client application from the 

user’s device during the Play Store’s start up. Messages (not shown in any figure) are: 

POST /fdfe/replicateLibrary and POST /fdfe/bulkDetails. The interesting part of 



 38 

replicateLibrary message contained, in addition to the authorization, also a signature 

request in HTTP header. Finally the time-out values are considered. 

 
POST /fdfe/replicateLibrary HTTP/1.1 

Authorization:GoogleLogin auth=DQAAANQAAADZhuyFo7zr_MWeljMFno... 

X-DFE-Signature-Request: nonce=_hMNviWlui56GEmdvIscAnv-EB2wanBgG 0P7_w-1dDQWe4 

uaVNVtzF0nuOUrJTJA3VxtLe_AEgwSpIry7tVzS0wbBUxFLrS8LMLnlT9HZg5e_6ZBhdSvLP768LYP 

15Kpi8v0eMh1nVuHQK6Pi2K3woqTMD8MwQxHXaXAIh7vAf-5VU3FVT8cfyDGKk0THoc19M_zf6s5eq 

qXFWyZ6-Jwf4fGWEUICkACk6sQ17AphrAx0McsKVklkxGzel6WapHqeKVU8ugQ88C2YLlQnOLEGWqS 

IWwFWzcela2Q-Jz0CCYuRPyrXUKJ-cyWpjZbVyw4_ZJS8PDFE5hYOoAbZrlFTA 

X-DFE-Request-Params: timeoutMs=30000 

Host: android.clients.google.com 

Listing 5.27 replicateLibrary message. 

 
HTTP/1.1 200 OK 

X-DFE-Signature-Response: signature=ABG4_WVWLK2s4PZa5UgRIgciiNGO0bi0RedinvOUkM 

6FuCrghwt-TAXTnmwtlYUHas03LXr44B4ILkpno3v4EQg2PcUHDmRqL736MbbUGW_qmAOPujEZXVB- 

JcWen8t1iBc0gJmo132AinmewYNwgrUZ6kAEkYa4xcVSP9DBEpfhiMwRJ7LrTRh9e2EIz8_zNpPCjg 

Txikuh_PyP12Ukk_q-hNrRonqe9pitWLLsRXgXobgE0m7n24iz0YkSfoG1vQGW5_756gPvzaaU7vxp 

yaMALVt8FM9a5HGGrkFSuFNa2Va8bOrUazHJdJRdZYmhP8MqLPk41BZfa44897V4eUeSoTCB 

Listing 5.28 Reply for replicateLibrary message. 

 

The replicateLibrary message’s HTTP header X-DFE-Signature-Request contained 

a long nonce value encoded with base64URL and the reponse (Listing 5.28) was also 

encoded in base64URL. Since digital signatures are used for authentication it was 

thought that the signature request is one of the Play Store client application’s security 

mechanisms used to authenticate the other communication party, in this case Google’s 

server.  

The bulkDetails message (Listing 5.29) contained in the HTTP header, among other 

things, the authorization token. The interesting part was in the message body, it 

contained a list of applications found on the mobile device. 

 
POST /fdfe/bulkDetails HTTP/1.1 

Authorization: GoogleLogin auth=DQAAANQAAADZhuyFo7zr_MWeljMFn... 

X-DFE-Request-Params: timeoutMs=30000 

Content-Length: 717 

Host: android.clients.google.com 

 

com.android.chrome 

com.google.android.apps.plus 

com.google.android.gm 

com.google.android.gms 

com.google.android.googlequicksearchbox 

... 

Listing 5.29 bulkDetails message. 

 
HTTP/1.1 200 OK 

X-DFE-Soft-TTL: 7200000 

X-DFE-Hard-TTL: 7200000 

 



 39 

com.android.chromecom.android.chrome *Chrome Browser - Google2Google 

Inc.BUSDFree(@J(KQ5,"$2X`pLhR`*Zhttps://lh5.ggpht.com/NBr8wEdoQqZxBMblJWDPN6HI

C3xcEGYM_eEgNbk2iL_GTIUWBVfNRl97bLQFjPBb9FmEHR^*Xhttps://lh3.ggpht.com/_eS2pfW

StKFMufgCbeIAyWmTbhpu_iploEyRdoffHtpdMVtOImS_MMrhAyu949FoVQHj 

 

pHR)android.permission.ACCESS_COARSE_LOCATIONR'android.permission.ACCESS_FINE_

LOCATIONR'android.permission.ACCESS_NETWORK_STATER$android.permission. 

ACCESS_WIFI_STATERandroid.permission.CAMERARandroid.permission.GET_ACCOUNTSR 

android.permission.INTERNETR"android.permission.MANAGE_ACCOUNTSR 

(android.permission.MODIFY_AUDIO_SETTINGSRandroid.permission.NFCR% 

... (rest of the permissions omitted) 

4 Apr 2014APPLICATIONr(t@i (08@Ca)@zB 

Top DeveloperL *B 

http://www.gstatic.com/android/market_images/badges/topdev_ann.pngM *C 

http://www.gstatic.com/android/market_images/badges/topdev_list.pngL !*B 

http://www.gstatic.com/android/market_images/badges/topdev_hdr.png 

"Top Developersdetails?doc=com.android.chrome@ 

https://play.google.com/store/apps/details?id=com.android.chromedetails? 

doc=com.android.chrome 

...(rest of the message body omitted) 

Listing 5.30 Reply for bulkDetails message. 

 

The reply for the bulkDetails contained such HTTP header fields as X-DFE-Hard-

TTL, which was thought to be some kind of time-to-live value for the information 

provided in the message body. The reply message’s message body contained, for 

example, permissions for every requested application. Listing 5.30 shows only the 

information provided for one application.  

Play Store client application was also observed and presumed to use time-out values 

in the HTTP header to inform the server, how much time it had to answer to the request. 

Play Store client application conveyed this information in the HTTP header field named 

X-DFE-Request-Params. For example, with a value timeoutMs=30000. Play Store was 

observed to use values 2500, 30000 and 35000, that were thought to represent 2.5 – 35 

seconds. 

5.3 Discussion 

This section first covers the relationship with the GLS, GA and GPS. Then it moves 

telling the odd finding during the observations, which hindered at first analysis of 

Google’s system. Section concludes with describing the previous work done in the 

subject.  

5.3.1 Relationship with GPS, GLS & GA 

The two observed user-agents in HTTP header hinted that Android has two services or 

at least different codes bases that provide tokens for mobile applications for the 

Google’s resources. There is very little or none reliable information in public how 

Google’s own applications authentication and authorization works. Google provides 



 40 

documentation for several methods [5], but these are meant for third-party developers 

and Google’s applications were observed to use these differently or none at all. 

From the author’s own observations the HTTP user-agent GA in the token 

acquirement is probably actually a integrate part of GPS, because GPS is the only 

publicly known Google Android mobile application service that provides OAuth 2.0 

tokens, although it provides for third-party applications. Shiram’s [39] work also 

supports this speculation. Also from the Ars Technica article [33] it is known Google’s 

tight integration of its applications to GPS and from observations it is known many of 

Google’s own applications to use OAuth 2.0 tokens provided by GA HTTP user-agent. 

According to Elenkov [28] both GLS and GPS provide authentication. For example, 

GLS is responsible when user’s Google account is added to Android device and GPS for 

OAuth 2.0 authorization and Google+ social media service sign-in [28]. Then again 

according to Ars Technica [33] GPS was held responsible of e.g. initial account setup, 

account authentication and account syncing. This contradiction in GLS and GPS 

responsibilities between Elenkov and Ars Technica is probably due the fact that 

Nelenkov’s blog post was done in November 2012, a month after GPS was announced 

[41]. And Ars Technica’s article was done a year later in September 2013 [33], when 

Google had already integrated many its services and applications under GMS [31, 33], 

which consists of GPS and Play Store [31].  

Author’s own observations support neither Elenkov nor Ars Tecnica. In the 

observations the master token request was always the user-agent GLS, but in the reply 

message (Listing 5.3) the master token value begins with “oauth2”, which suggests that 

the GA had made the request. 

Shiram’s [39] work might shed some light in the matter. According to him all the 

critical code related to Google OAuth flow runs only within the 

com.google.android.gms application (.auth.GetToken service), which is signed by 

Google. The service approves applications locally by their signature and package name 

and uses the master to obtain access tokens. [39] The OAuth flow in a Google Android 

device is presented in the Figure 5.7. 

 

 

Figure 5.7 Google OAuth token flow in a Google Android device [39]. 



 41 

In the Figure 5.7 the green areas run trusted code. Shiram also says that the 

com.google.android.gms application is actually the “Google Play Services” application, 

which holds the token service. The application painted in red in the Figure 5.x is a third-

party application, which uses a Google Play Services library. The library does not run 

critical code and it just forwards call to services and activities running within a GPS 

application. [39] Although the Figure 5.7 depicts a third party application, author 

personally believes this flow is applicable with Google’s own applications. 

Shiram’s [39] work describes the master token request and two OAuth token 

requests with their respective parameters, but Shiram had not included the user-agent in 

any of token requests he presented. The master token request was identical to authror’s 

observations. One of the OAuth token request Shiram presented was identical to 

author’s observations of the GLS token request and the second OAuth token request 

resembles very closely to a GA token request. Author believes the differences observed 

in between the GA token request and Shiram’s example stems from the fact that Shiram 

describes a request for a third-party application.  

This hints that the GLS and GA both are now fully integrated in the GPS. This is the 

only logical explanation that author can think of and which explains author’s 

observations and is still in-line with Shiram’s work, which is more recent than 

Elenkov’s and Ars Technica’s. 

5.3.2 Legacy names 

One oddity found during the observations was in the HTTP header Authorization, 

which value contained a token and a name for a security mechanism. This was first 

thought to be confusing, because the observed behaviour of authentication and 

authorization from the captured communications was compared to the publicly available 

documentation (e.g. AuthSub [42]) of the protocol and these two did not match.  

 
POST /gcm/groups HTTP/1.1 

Authorization: AuthSub token=ya29.1.AADtN_X-7HE6... 

 

Later on it was understood that the name of the mechanism the header value did not 

always tell how the token was acquired. It was thought that at some part of time Google 

integrated authorization mechanisms and mechanism names were left as a legacy from 

the past. 

5.3.3 Previous work 

Previous work on how Google uses tokens in Android has been done by Nikolay 

Elenkov [28, 43], KB Shiram [39] and Korean Android community has reverse 

engineered Google GMS [44, 45]. Compared to this thesis Elenkov’s work is broader. 

He mainly concentrates on the Android device, which was considered out of scope in 

this thesis, but also covers communications security. For example, Elenkov describes 



 42 

how GLS has been implemented in different Android versions and discusses related 

security aspects (e.g. how user’s password has been encrypted in the device, etc.) [28, 

43]. Elenkov’s work has also been written from different point of view as he has been 

concentrating to the third party developer’s point of view (e.g. how to use weblogin 

mechanism for single sign-on). This thesis has been written solely from the vendor’s 

(Google and Amazon) point of view. For these reasons Elenkov’s work and this thesis 

have only a few common findings: the master token and weblogin mechanism. 

Elenkov reported Android OS 4.0 and newer versions get during the user’s account 

registration a master token, which is then used to obtain new tokens [28]. This finding 

agrees with authors own observations with Android OS 4.3 version device. Elenkov 

also describes how the new tokens are acquired in devices using operating system older 

than Android 4.0, but this thesis cannot confirm this particular finding, because only a 

single mobile device with Android OS version 4.3 was used during observations. 

   Elenkov presented in his work how weblogin mechanism [43] that could be used 

to single sign-on and essentially to authenticate a user in a third party applications. In 

author’s own observations weblogin mechanism was observed, but it was used in 

different context and its working (especially HTTP cookies) was not fully understood. 

Therefore it is not sensible to compare Elenkov’s finding to author’s observations. 

Shiram’s work also concentrates more on the Android device than what happens in 

the communication channel, but his work shed light on questions that are not possible to 

find out by merely looking at the communication channel. Especially Shiram’s work on 

how an application in a Google Android device gets access tokens was useful in order to 

understand the relationship with GPS, GLS and GA. Shiram had also described the 

master token request and OAuth token requests, which were very similar to author’s 

own findings. 

Korean Android community has done reverse engineering, especially, on Google 

GMS [44, 45], which provides some hints on how Google’s applications work. 

However, the documentations are outdated, since the most recent available works are 

from year 2011. For example, the author’s observations regarding on how Play Store 

works did not match with the documentation. 



 43 

6 AMAZON RESULTS 

Chapter starts by presenting how Amazon acquires, uses and renews tokens. After that 

Amazon’s Market is studied and the chapter concludes by discussing on findings. All 

listings in this chapter hava been modified (e.g. parts omitted, bolded, etc.) for 

readability.  

6.1 Tokens, acquisition and signatures  

Amazon’s applications also used tokens heavily for security. And like with Google, it 

can be assumed that a token was sent in along every message unless otherwise explicitly 

stated.   

During the observations 3 different tokens were observed: refresh, access and x-adp 

token. These are presented in Listing 6.1 together with three different HTTP cookies, 

which were observed to be used as tokens. As with Google’s HTTP cookie tokens, they 

are not addressed in depth, because their usage and roles were not understood.  

Tokens were observed to be delivered in 2 different methods. The first is a HTTP 

header with two different field names: Authorization and a custom header field x-adp-

token (or X-ADP-Authentication-Token). The second method is passing the token in a 

HTML Form. 

From “normal” tokens the refresh and access token’s appearances are almost 

identical. The x-adp-token appearance was different from the others and also it was the 

only token, whose structure and appearance hinted at the usage of encryption 

 
refresh token: 

Atnr|EQEBLjAsAhQVKZUM7BpmmE5Ypqifd1_KuookkgIUKjyZHNDDM2YbA_wTAv3duSX0Yj1n0M0Vq

lVRzIU-gWe1dm1KuT4o-Ku2B1bqlJNhg6MpOA5ZR5sH0PqUUr0kMok1tixedfvw5q0Nz9FWEqnOZru 

FkmYH9I7LFB5XXHULzvjXTiHYYLaA6V-1Syx8sd0ZRG8CpZY0B_M_KuFwYvYxmZHF1A 

 

access token: 

Atna|EQEBLjAsAhQBvlzt4dgbdCS729ZuPMujFv86TwIUQZKdFCFxdKgZ8ew_ViydoMZ_-J5k14c4L 

ie-IDRG_uc7iKWsWZkL2O_30N050_BdNZKR-9ne7T9dYYrfcLT71FG7Hw4j71aobE8XVyiITD6RB1f 

Zvdu5ZHk4PVpTCzFEE0cirxO__UHNYhlLX44SMx_79dcImbVHmv29tqEO12AOABguQg 

 

x-adp-token:  

{enc:O5R4tVC8 ...} 

{key:CprPB3Ja ...} 

{iv:aS/kZh79x+F2V9rsYPLtBQ==} 

{name:QURQVG9rZW5FbmNyeXB0aW9uS2V5} 

{serial:Mg==} 

 

x-main: 

EUboCL9TgRR8dCZw375umy2Cddx?sf5RoNQw0rOSwi@EXlCGKlHjctz?6w1q0Nd8 



 44 

 

at-main: 

5|BbQsv+cew0+OHJDbQUuMhSqsiXHWmmCwKjGjHyJFGMqgIrfu7pZ+2EWlRbjtJmc3leZnLb5HAuvR

R3aRAqvuFa0vfzwMP0aCToa+9XfiXbkBSKvKlIz+TPInosuHN1Z5LgKkoBhCQNccIbP/gMjL2qTYkU

rl3xyRjPPZ0avesUr1AtF175poQqTfUvOxyyxVXC+w7DG8uxUzJMw4AlPseu/uOqinOh7u 

 

sess-at-main: 

u0Po/R0HYUDcqzBYiOLbcfL84dfkuk3bBWsER4AiIxk= 

Listing 6.1 Examples of observed tokens. 

 

As with Google’s token, Amazon’s tokens were also observed to be used only for 

authorization and it is not known whether tokens had information included within them 

in some way, except the x-adp-token. 

Refresh token is used in acquiring new access tokens. The token acquirement 

processes are covered in Sections 6.1.4 and 6.1.5. Access token and x-adp token are 

similar in the way that both are used just for authorization and are pointed to specific 

applications. The difference between these two is in expiry. Access tokens have a 

defined expiry time, which is given when the token is acquired. X-adp-token on the 

other hand was observed to change only when the user registered again to the device. 

In general, the acquirement and usage of tokens of Amazon’s client applications 

happens in two to three phases. Two phase usage concerns x-adp-tokens and third phase 

for the rest. X-adp-tokens are first acquired during the user registration to the device and 

then then the token is used. For the rest, refresh token is acquired during the registration, 

then it is used to acquire access tokens and finally the application uses the access 

tokens. 

The token acquirement and usage, especially, during the registration is a very 

confusing process. For example, tokens are acquired in many different messages, the 

same messages are sent multiple times, certain messages have exceptions and the given 

tokens might be even used only once, etc. In general, the final x-adp-token is given in 

the reply message for the /Firsproxy/registerDevice message. Access tokens and HTTP 

cookie tokens are acquired in messages /ap/exchangetoken and 

/ap/exchangetoken/cookies respectively. Refresh token is acquired during the 

registration in an exception case of /ap/exchangetoken message. 

The rest of this section presents x-adp-token in depth, and then covers signatures, 

which were nearly always present together with x-adp-tokens. Next, a part of token 

acquirement during the registration is covered and it is continued in the following 

sections regarding token and cookie token acquirement. Finally, the token request 

parameters are presented. 

6.1.1 x-adp-token  

X-adp-token, which is sometimes also named as X-ADP-Authentication-Token (Listing 

6.1), is the only observed token where the structure and appearance clearly indicated the 

usage of encryption. The token’s name is taken straight from the custom HTTP header 



 45 

field name. The name of the HTTP header field did not matter to outward appearance of 

the token. The token consisted of five parts separated by curly brackets: enc, key, iv, 

name and serial. In all parts the values were base64 encoded. Enc, key and iv base64 

decoded values were not successfully decoded and decrypted, so their contents were left 

unknown, but name and serial parts were. Name decoded into ADPTokenEncryptionKey 

and serial into 2. 

The length of each part of the encrypted tokens was observed to be always the same. 

Enc part contained 960 character long base64 string which decoded into 720 bytes of 

data. Key and iv were respectively 344 and 24 bytes long base64 strings and decoded 

into 256 and 16 bytes of data. 

The same encrypted token values were observed to be used multiple times, which 

made it possible to follow the token usage and acquirement. This does not confirm, but 

suggests that tokens were encrypted only once before usage and that the same token was 

used until it was expired. The author’s own speculation regarding this token’s 

encryption is discussed in Section 6.3.1. 

6.1.2 Signature 

X-adp-tokens were every time (with one exception) observed to appear with possibly 

two other security methods: digital signature and cryptographic hash function (Listings 

6.2. and 6.3). Digital signature appeared in a custom HTTP header: x-adp-signature. 

Another custom HTTP header x-adp-alg was thought to contain the information 

regarding to what signature algorithm was used, since value SHA256WithRSA refers to 

a known algorithm defined in PKCS #1 standard [46]. 

 
x-adp-signature: Ilro59XAPWWPeFip7s1cqsaDG0AatUie+p7oVKvomG4o1LLLazeXqFUl9j91B 

ZwnumMEg0f5E4tedYglWWRei+2MrKVMPfpgV2IlFZzws4Tw2f23qp+zyaeCVFkMHnVAdRsUBOwIsL0

M92QGvmHUK1NObNg3HpRDn0a1GEwGGjcpPs1yxR3/PIImuJWgKPxJxv1WOEz5UKiEAYuqxZU4eJhya

h5LylqDMV1qZmcMgDFZBZcG6S7fj4WHZ5aWF5Gq:2014-04-24T15:52:37Z 

x-adp-alg: SHA256WithRSA:1.0 

Listing 6.2 x-adp-signature example. 

 

Signature consists of timestamp and 256 character long base64 encoded string, 

which decodes into 192 bytes of data. It is not known what parts of the message are 

included in the calculation of signature, nor the keys used in the algorithm.  

 
X-ADP-Request-Digest: 

Hl6bik/S4im03elWAWIo+Fxj/jQjb8Gv4KUe7KYkmGH9kF5iBxZ1/GfOU/B35uoWkb4tM41Zf/bNI1

zt/738M7gYFSRiHGRbgaLhU1K6WWTPfurJWvVdDQzLlh54sPK+MHnFYDbykEGd2VFbPmVZ0rO09PaN

tXMrzR3Y4ZtE+WdE18XHExNEHqsRuMy2LHjTHIMYw8CS91g26L+RKPUtjCYKY/mKGM9nj+nb5lspX9

xSQx31WsHyCmIuul+ees8Q:2014-04-24T15:52:58Z 

Listing 6.3 x-adp-request-digest example. 

 

The outward appearance of the HTTP field X-ADP-Request-Digest is similar to x-

adp-signature. Both fields have similar timestamp and base64 encoded string with equal 



 46 

length. Only two things suggest that there are differences between these two fields. First 

the HTTP field named x-adp-alg does not appear with X-ADP-Request-Digest. Second 

a part of HTTP field name (digest) refers to a cryptographic hash function’s output. It is 

not known which hash function was used, nor what parts of the HTTP message are 

included in the calculation of the hash function. The author’s own speculation regarding 

this signature and digest value is discussed more in Section 6.3.2.  

6.1.3 Initial token acquisition 

When user’s account was added to the tablet during a registration all tokens were 

acquired in five phases (Figure 6.1).  Figure 6.1 shows only one message of each phase, 

but in practice the same message was sent 2 – 4 times (registerDevice -message being 

an exception) and each time new tokens were issued. 

 

 
Figure 6.1 Amazon token exchanges when adding a user account. 



 47 

 

This subsection considers only getNewDeviceCredentials and registerDevice 

messages. Exchangetoken and exchangetoken/cookies messages are examined in the 

next subsection, because the messages used during the registration are exception cases. 

 
POST /FirsProxy/getNewDeviceCredentials?deviceType=A2VZ790DVVI91K&deviceSeria 

lNumber=D0FBA0A034530WWC&secret=B3KXAQO3AJNZGB7Y170D&radioId=00bb3ab377ce&reas

on=NoState&softwareVersion=323001720&softwareComponentId=com.amazon.thor.andro

id.os HTTP/1.1 

X-Amzn-RequestId: e972d391-52ee-40c2-a242-ac2b3e6ecd1c 

Content-Type: text/xml 

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.2.2; KFTHWI Build/JDQ39) 

Host: firs-ta-g7g.amazon.com 

Content-Length: 612 

 

<?xml 

    <request> 

        <deviceTypeSoftwareVersionMap> 

            <entry 

                deviceType="AZ9LILQBO9I6H" 

                version="38038210" 

                softwareComponentId="com.amazon.cloud9"/> 

            <entry 

                deviceType="A225F6K82YR2UO" 

                version="1710016310" 

                softwareComponentId="com.audible.application.kindle"/> 

            <entry 

                deviceType="AYNDLAEFR9H1C" 

                version="4021210" 

                softwareComponentId="com.amazon.mp3"/> 

            <entry 

                deviceType="A2VZ790DVVI91K" 

                version="323001720" 

                softwareComponentId="com.amazon.thor.android.os"/> 

            <entry 

                deviceType="AXRZR9ASDFH6P" 

                version="30208810" 

                softwareComponentId="com.amazon.ags.app"/> 

        </deviceTypeSoftwareVersionMap> 

    </request> 

Listing 6.4 getNewDeviceCredentials request message. 

 
HTTP/1.1 200 OK 

Server: Amazon Web Server 

Content-Type: text/xml;charset=UTF-8 

 

<?xml 

<response> 

    <deviceCredentials> 

        <deviceCredential 

            deviceType="A2VZ790DVVI91K"> 

            <store_authentication_cookie> 



 48 

0rLs0KcpMz4VcIsfGsFXHEdScn0K4oowDhvZ6vSuIofDqdtITGRCgk3pND

vB4YDLPJVjr9NG5Jnq8Nx+HIMe4udMmWZJINsxhQ7kEDprykkSZRF9MABD

v1vQCqX6rihtpKMoDTuJXzs= 

                 </store_authentication_cookie> 

             <device_private_key> 

MIIDmAIBADANBgkqhkiG9w0BAQEFAASCA4IwggN+AgEAAoHBANKd/Jbn3P 

1nH2N8rb8RfnSFVXXj7p/H10vchArbWAEBDEJAWwrYE6cFMXWDED1Cx5G5

xxq1ycciki7ueaGC4hEWqc+9HLundW/WZKvzq9BQj4OcDUKDjb5xtgep4R

Tp78PKzsPOwCj2XOY/o03/baL3Kocjjz//wExmBfttgle4eY1rB3U... 

                 </device_private_key> 

             <adp_token> 

{enc:XCUbd2MwQEjucIIUTH3SNx6Qgf... 

                 </adp_token> 

             </deviceCredential> 

         </deviceCredentials> 

     <adp_token> 

{enc:XCUbd2MwQEjucIIUTH3SNx6Qgf... 

         </adp_token> 

     <store_authentication_cookie> 

0rLs0KcpMz4VcIsfGsFXHEdScn0K4oo... 

         </store_authentication_cookie> 

     <device_private_key> 

MIIDmAIBADANBgkqhkiG9w0BAQEF... 

         </device_private_key> 

     <cookies> 

         <cookie> 

             <url> 

                 .amazon.ru 

                 </url> 

             <value> 

x-fsn=0rLs0KcpMz4VcIsfGsFXHEdScn0K4oowDhvZ6vSuIofDqdtITGRC 

gk3pNDvB4YDLPJVjr9NG5Jnq8Nx+HIMe4udMmWZJINsxhQ7kEDprykkSZR

F9MABDv1vQCqX6rihtpKMoDTuJXzs=; expires="Mon, 05-Jun-2034 

11:47:37 GMT"; domain=.amazon.ru; path=/; secure 

                 </value> 

             </cookie> 

            ... (rest of cookies omitted) 

            </cookies> 

        </response> 

Listing 6.5 getNewDeviceCredentials reply message 

 

In Listing 6.4 getNewDeviceCredientials request message was one of the first 

messages sent during the registration. The message included information such as: device 

serial number and device type that referred to a specific Amazon application in the 

device. Even though the request message’s payload contained more than one device 

type, the reply message (Listing 6.5) contained tokens for only one device type 

specified in the request message’s URL. The Reply message contained the following 

tokens: store authentication cookies, device private keys and adp-tokens, and cookies 

for different Amazon top level domains (e.g. amazon.co.uk, amazon.com, amazon.de, 

etc).   

 
POST /FirsProxy/registerDevice HTTP/1.1 

X-Amzn-RequestId: d9d1b83c-0f55-45d3-ae1b-7ae952e61c0e 



 49 

Content-Type: text/xml 

User-Agent: Dalvik/1.6.0 (Linux; U; Android 4.2.2; KFTHWI Build/JDQ39) 

Host: firs-ta-g7g.amazon.com 

Content-Length: 970 

 

<?xml 

    <request> 

        <parameters> 

            <deviceType> 

                A2VZ790DVVI91K 

                </deviceType> 

            <deviceSerialNumber> 

                D0FBA0A034530WWC 

                </deviceSerialNumber> 

            <pid> 

                CD411901 

                </pid> 

            <email> 

                *****@gmail.com 

                </email> 

            <password> 

                ***** 

                </password> 

            <secret> 

                B3KXAQO3AJNZGB7Y170D 

                </secret> 

            <softwareVersion> 

                323001720 

                </softwareVersion> 

            <softwareComponentId> 

                com.amazon.thor.android.os 

                </softwareComponentId> 

            </parameters> 

        <deviceTypeSoftwareVersionMap> 

        (omitted, same deviceTypeSoftwareVersionMap as in Listing 6.1) 

        </request> 

Listing 6.6 registerDevice request message. 

 
HTTP/1.1 200 OK 

Server: Amazon Web Server 

Content-Type: text/xml;charset=UTF-8 

 

<?xml 

    <response> 

        <deviceCredentials> 

            <deviceCredential 

                deviceType="AYNDLAEFR9H1C"> 

                <store_authentication_cookie> 

SbkHfZXYg8/a69aEEVe5766+uda... 

                    </store_authentication_cookie> 

                <device_private_key 

                    refDeviceType="A2VZ790DVVI91K"/> 

                <adp_token> 

{enc:yAmMyEhitIhownq3P2udr... 

                    </adp_token> 

                </deviceCredential> 



 50 

 (rest of the deviceCredentials entries omitted) 

            </deviceCredentials> 

        <adp_token> 

(enc:O5R4tVC8+FMNe61lpl3e2... 

            </adp_token> 

        <store_authentication_cookie> 

vbM4lme+gdD3tPYe7G4rr6648zXTp... 

            </store_authentication_cookie> 

        <device_private_key> 

MIIDlQIBADANBgkqh... 

            </device_private_key> 

        <given_name> 

            Tuomo 

            </given_name> 

        <name> 

            Tuomo Tutkija 

            </name> 

        <account_pool> 

            Amazon 

            </account_pool> 

        <country_of_residence> 

            FI 

            <source_of_cor> 

                CUSTOMER_COUNTRY_OF_RESIDENCE 

                </source_of_cor> 

            </country_of_residence> 

        <preferred_marketplace> 

            ATVPDKIKX0DER 

            </preferred_marketplace> 

        <alias> 

            ****** 

            </alias> 

        <kindle_email_address> 

            ******@kindle.com 

            </kindle_email_address> 

        <user_directed_id> 

            amzn1.account.AGUZKC7EKGQVARWZV3Z3ZIVOPOMA 

            </user_directed_id> 

        <user_device_name> 

            Tuomo's Kindle 

            </user_device_name> 

        <cookies> 

  (cookies omitted) 

           </cookies> 

        </response> 

Listing 6.7 registerDevice reply message 

 

In Listing 6.6 registerDevice request message contained mainly the same parameters 

as getNewDeviceCredentials message (Listing 6.4). Parameters in registerDevice 

message were listed in XML at the message body instead of in the URL, as was the case 

with getNewDeviceCredentials message. The registerDevice request message contained 

more parameters such as user’s email and password and values for both of these 

parameters were presented in plaintext.  



 51 

 The reply message (Listing 6.7) included tokens for every entry presented under the 

request message’s deviceTypeSoftwareVersionMap tag. The 

deviceTypeSoftwareVersionMap tag in registerDevice request message contains the 

same entries as in getNewDeviceCredentials message (Listing 6.4). The highlighted 

adp_token entry in the registerDevice reply message was observed to be used 

frequently. The same adp_token entry is mentioned twice in the Listing 6.7. First time it 

is mentioned under the deviceCredentials tag and was pointed to the deviceType 

A2VZ790DVVI91K in the Listing 6.7 (omitted from the listing). This deviceType was 

mapped in Listing 6.1 to a softwareComponenId named com.amazon.thor.android.os, 

which was thought to represent the user’s operating system in the kindle device. Second 

time the token is mentioned immediately following the deviceCredentials XML closing 

tag (highlighted in Listing 6.7). 

6.1.4 Token acquisition - Exchangetoken 

Amazon uses exchangetoken messages to acquire, refresh and access tokens. Refresh 

token’s role and usage is similar to Google’s master token as both are used to acquire 

new tokens. Applications use access tokens to access Amazon’s services and resources.    

 

 
Figure 6.2. Amazon token acquirement and reacquisition process. 



 52 

Figure 6.2 presents both the token acquirement and the renewal process. First the 

mobile device gets an adp_token meant for com.amazon.thor.android.os application 

during the registration. This is represented in the registerDevice request and reply 

messages (Messages 1 and 2, Figure 6.2; Messages 5 and 6 Figure 6.1; Listings 6.6 and 

6.7) In the second message pair (Messages 3 and 4, Figure 6.2) the mobile device 

acquires a refresh token and a temporary access token. The refresh token and the access 

token are acquired by sending a HTTP POST message (along the adp_token) to address 

www.amazon.com/ap/exchangetoken. Exchangetoken message is normally used to 

acquire new temporary access token or cookie tokens for applications, but this case 

(Message 3, Figure 6.2; Message 7, Figure 6.1) is an exception, because both refresh 

token and temporary access token are acquired at the same time. After this the device 

can use the temporary access token as long as it is valid (Messages 7 and 8, Figure 6.2). 

In the first time (during the registration) Messages 5 and 6 are skipped over.  

After the access token has expired a new token is acquired (Messages 5 and 6, 

Figure 6.2). The exchangetoken message is used with the refresh token to acquire new 

access token or cookie tokens for an application to use (Messages 7 and 8, Figure 6.2). 

Refresh token was not observed to expire during the observations. 

 
POST /ap/exchangetoken HTTP/1.1 

User-Agent: AmazonWebView/MAPClientLib/120069810/Android/4.2.2/KFTHWI 

Host: www.amazon.com 

 

app_name=com.amazon.imp 

&app_version=120039810 

&source_token_type=refresh_token 

&source_token=Atnr|EQEBLjAsAhQ5XRXMV... 

&requested_token_type=access_token 

Listing 6.8 Exchangetoken (access token) request message. 

 
HTTP/1.1 200 OK 

Content-Type: application/json;charset=UTF-8 

Set-Cookie: session-id=177-3291618-2853634; Domain=.amazon.com; Expires=Wed, 

19-Apr-2034 12:52:36 GMT; Path=/ 

Set-Cookie: session-id-time=2029063956l; Domain=.amazon.com; Expires=Wed, 19-

Apr-2034 12:52:36 GMT; Path=/ 

 

{  

   "response": {  

      "token":"Atna|EQEBLjAsAhRAto0C ... ", 

      "token_type":"bearer_token", 

      "token_expires_in":"3600" 

   }, 

   "request_id":"06K8ERKMAVP4GVSZNSEK" 

} 

 

Listing 6.9 Exchangetoken (access token) reply message. 

 

 



 53 

Access token reacquisition request message contained five parameters in the 

message body: app_name, app_version, source_token_type, source_token and 

requested_token_type. Reply message contained a JSON object (Listing 6.9) in the 

message body, which had the requested token value and expiry time. 

 
POST /ap/exchangetoken HTTP/1.1 

x-adp-alg: SHA256WithRSA:1.0 

x-adp-signature: VmleK1FFS2ymNj/8uD0VKp ... 

x-adp-token: {enc:O5R4tVC8+FMNe61lpl3e ... 

 

source_token_type=dms_token&source_token=source_token&requested_token_type=ref

resh_token&app_name=com.amazon.imp&app_version=120039810 

Listing 6.10 Exchangetoken (refresh token) request message. 

 

The exchangetoken message during the initial token acquirement was an exception. 

The message was used to request a refresh token and access token during the 

registration. The message had signature and adp_token in the HTTP header and no 

source token was used in the message body (Listing 6.10). The reply message was 

otherwise same as in Listing 6.9, but it contained one more JSON object, refresh token, 

in the message body. 

6.1.5 Cookie token acquisition - Exchangetoken/cookies 

Exchangetoken/cookies is a message used to acquire cookie tokens for applications. 

Exchangetoken/cookies request and reply message are very similar to the 

exchangetoken message in structure and also have the one exception case, which 

happens during the registration. Also the token acquisition and renewal happens in the 

same way as with exchangetoken messages. 

 
POST /ap/exchangetoken/cookies HTTP/1.1 

X-Amzn-RequestId: 70993150-bbec-493b-8bf0-b232ab9ed2f5 

User-Agent: AmazonWebView/MAPClientLib/120069810/Android/4.2.2/KFTHWI 

Cookie: session-id=190-2410784-9443562 

Cookie: ubid-main=177-4988256-9367335 

Cookie: x-main="oYD@eSq5r6YrZ9ikjnrWdVwF98b..." 

Cookie:at-main="5|LDjqyGDFz90dCSsdnDjKbLbRj..." 

Cookie: sess-at-main="WutkQPllmrWqw8unKcFsfhBFLOBbcTbiRGC6/knWAUA=" 

Host: www.amazon.com 

 

source_token_type=refresh_token 

&source_token=Atnr|EQEBLjAsAhQ5XRXMVIHcCu3Fd9... 

&requested_token_type=auth_cookies 

&domain=www.amazon.com 

&app_name=com.amazon.imp 

&app_version=120039810  

Listing 6.11 Exchangetoken (auth cookie) request message. 

 

 



 54 

 

 
HTTP/1.1 200 OK 

Date: Mon, 04 Aug 2014 11:55:19 GMT 

Content-Type: application/json;charset=UTF-8 

Set-Cookie: session-id=184-2273602-6255638; Domain=.amazon.com; Expires=Sun, 

30-Jul-2034 11:55:19 GMT; Path=/ 

Set-Cookie: session-id-time=2037873319l; Domain=.amazon.com; Expires=Sun, 30-

Jul-2034 11:55:19 GMT; Path=/ 

Set-Cookie: ubid-main=182-7107327-1967538; Domain=.amazon.com; Expires=Sun, 

30-Jul-2034 11:55:19 GMT; Path=/ 

Set-Cookie: session-token="U0HxLsnqkMh0q7wWuJB3k+YtqdYzEeqJtefLdQKOpt9AfFBFxpW 

IQV/omwmyFiDYITEMK/aZ4miLTZXWn6qTdkeLBrjp4jcGWbvIoyWR0swDlHXXJBUDXH9XlKjlm2B/G

2CFm6KCyH5YWV2ATDZL5MOMHB7CmbViOqDb/FN6SwQT4NJT5Gq+9jxH/Ug2R++fBJbEFPOC6tEVKTC

MKJC/IU9i06PRu3k1sJdN/BbZ8vE="; Version=1; Domain=.amazon.com; Max-

Age=630720000; Expires=Sun, 30-Jul-2034 11:55:19 GMT; Path=/ 

Content-Encoding: gzip 

 

{"response":{  

      "tokens":{  

         "cookies":{  

            ".amazon.com":[  

               {"Name":"session-id", 

                  "HttpOnly":false, 

                  "Value":"184-2273602-6255638", 

                  "Expires":"30 Jul 2034 11:55:19 GMT", 

                  "Secure":false, 

                  "Path":"/" 

               {"Name":"ubid-main", 

                  "HttpOnly":false, 

                  "Value":"182-7107327-1967538", 

                  "Expires":"30 Jul 2034 11:55:19 GMT", 

                  "Secure":false, 

                  "Path":"/"), 

               {"Name":"x-main", 

                  "HttpOnly":false, 

                  "Value":"\"KTb@txAuqA1gJwuoLlCF?Zje3IDraRzwi@qxXPROVYl?5BRHJ

mG3Q6mcLqkbhiSb\"", 

                  "Expires":"30 Jul 2034 11:55:19 GMT", 

                  "Secure":false, 

                  "Path":"/"), 

               {"Name":"at-main", 

                  "HttpOnly":false, 

                  "Value":"\"5|zMxne86heAPMFpj8vUSatJEVekgpwchVLZbzWNLuK6Zekn9

5OrAqH+okB2d/U7sJokY+l+OY2LO9YbZfuVONS3MFSlZsF/QzevwGoiObA39czy/RxeYD0CNujj2wf

RVehIwvITRLGEUd8kc8I6d6lfF4cD1SRt8uDvosP93lZcLp2OO5uVex3jXnScxBTRgteo3XMo//x+C

Bia69lU/rb3a+uGY9xym8\"", 

                  "Expires":"4 Aug 2014 12:55:19 GMT", 

                  "Secure":true, 

                  "Path":"/"), 

               {"Name":"sess-at-main", 

                  "HttpOnly":false, 

                  "Value":"\"IF2JC9dGVffus4ZzZKXaCAjDPeXCv/xBb0VrD5jy+lY=\"", 

                  "Expires":"4 Aug 2014 12:55:19 GMT", 

                  "Secure":true, 

                  "Path":"/} 



 55 

            ]}}}, 

   "request_id":"030C9TSQRHGTGHW78KC6} 

Listing 6.12 Exchangetoken (auth cookie) reply message. 

 

The exchangetoken/cookies message was observed to acquire five to six cookie 

tokens: session-id, ubid-main, x-main, at-main, sess-at-main and session-token. Session-

token cookie was not always assigned and the logic behind this was not understood. 

Session-token, when assigned, was always given in HTTP header and not in the JSON 

object at HTTP message body as the rest of the cookies. Session-token cookie was also 

given in at least one other message, which was not related to token acquisition. Cookies 

at-main and sess-at-main are given one hour expiry time and the rest of the cookies 

were given 20 years minus 5 days.   

 
POST /ap/exchangetoken/cookies HTTP/1.1 

X-Amzn-RequestId: ad763a6c-0c1c-4b37-852c-0bd75957cdfe 

Content-Type: application/x-www-form-urlencoded 

User-Agent: AmazonWebView/MAPClientLib/120069810/Android/4.2.2/KFTHWI 

Host: www.amazon.co.uk 

Content-Length: 103 

 

requested_token_type=auth_cookies 

&domain=www.amazon.co.uk 

&app_name=com.amazon.imp 

&app_version=120039810 

Listing 6.13 Exchangetoken/cookies (initial token) request message. 

 
HTTP/1.1 200 OK 

Content-Type: application/json;charset=UTF-8 

Set-Cookie: session-id=276-9389280-3838434; Domain=.amazon.co.uk; Expires=Mon, 

05-Jun-2034 11:47:39 GMT; Path=/ 

Set-Cookie: session-id-time=2033120859l; Domain=.amazon.co.uk; Expires=Mon, 

05-Jun-2034 11:47:39 GMT; Path=/ 

 

{"response":{  

      "tokens":{  

         "cookies":{  

            ".amazon.co.uk":[  

               {"Name":"session-id", 

                  "HttpOnly":false, 

                  "Value":"276-9389280-3838434", 

                  "Expires":"5 Jun 2034 11:47:39 GMT", 

                  "Secure":false, 

                  "Path":"/"), 

               {"Name":"ubid-acbuk", 

                  "HttpOnly":false, 

                  "Value":"276-3404217-4919469", 

                  "Expires":"5 Jun 2034 11:47:39 GMT", 

                  "Secure":false, 

                  "Path":"/"} 

            ]}}}, 

   "request_id":"0HHJDB1386HCE0VESJPA"} 

Listing 6.14 Exchangetoken/cookies (initial token) reply message. 



 56 

 

Listing 6.13 and Listing 6.14 present exchangetoken/cookies request and reply 

messages, which were used only when the user’s account was registered to the device. 

Messages are slightly different from the messages presented in Listings 6.11 and 6.12. 

The request message (Listing 6.13) is otherwise the same, but it is missing source_token 

and source_token_type parameters from the message body. Missing parameters are 

explained by the fact that when this request message is sent, no refresh token has yet 

been acquired. 

 The reply message (Listing 6.14) differentiates from the other message (Listing 

6.12) by having only 3 cookies: session-id, session-id-time and ubid-acbuk. The ubid-

acbuk cookie name is thought to depend on the domain mentioned in the request 

message, since Amazon has shops and domains customized for different countries, for 

example, UK and Germany. 

6.1.6 Token request parameters 

Tables 6.1 and 6.2 present parameters used in the token related request messages. Table 

6.1 concentrates on messages concerning token acquisition, including exception cases in 

initial token acquisition while adding a user to a device.  Table 6.2 presents other 

messages related to token acquirement when a user is added to a device.  

 

Table 6.1: Token exchange request parameters.  

Parameter Exchangetoken/  

cookies (initial) 

Exchangetoken/ 

cookies 

Exchangetoken 

requested_token_type x x x 

domain x x - 

app_name x x x 

app_version x x x 

source_token_type - x x 

source_token - x x 

 

Requested_token_type parameter defined what kind of token was requested. 

Observed values were: auth_cookies, refresh_token and access_token. Domain 

parameter was thought to define which domain address the request is supposed to go. 

For example, www.amazon.com and www.amazon.co.uk were observed. 

Source_token_type parameter defines the type of the source token (e.g. refresh_token). 

 

 

 

 

 

 



 57 

Table 6.2: Device register and credentials request message parameters. 

Parameter 

getNewDevice 

Credentials 

(url parameters) 

getNewDevice 

Credentials 

(xml in HTTP 

message body) 

registerDevice 

(xml in HTTP 

message body) 

deviceType x - x 

deviceSerialNumber x - x 

pid - - x 

email - - x 

password - - x 

secret x - x 

softwareVersion x - x 

softwareComponentId x - x 

deviceTypeSoftwareVe

rsionMap (entry: 

deviceType, version, 

softwareComponentId) 

 x x 

reason x - - 

radioId x - - 

 

DeviceType parameter contained a string from capital alphabets and numbers, 

which was suspected to be the unique identification of a specific application (e.g. 

com.amazon.thor.android.os) and its version number. SoftwareComponentId contained 

the name of the application file (e.g. com.audible,application.kindle). 

DeviceTypeSoftwareVersionMap parameter contained entries, which hold deviceType, 

softwareComponenId and softwareVersion.   

RadioId parameter contained the device’s MAC-address. Reason parameter was 

always observed to contain value “NoState” and was suspected to tell the reason why 

the request is made. 

6.2 Practical security in Amazon Shop 

Amazon Shop’s free and paid software cases were made simple. A user starts Amazon 

Shop application, installs free or paid software and then leaves the shop. The message 

flow presented in Figure 6.3 is identical with free and paid software cases. The Figure 

6.3 presents only the most relevant messages from the message flow. Omitted messages 

were related to information and metadata requests, one redundant token request, image 

downloads for the shop and one partial application download.  

 



 58 

 

Figure 6.3 Message flow when buying and downloading software from Amazon shop. 

 
POST /purchaseItem HTTP/1.1 

x-venezia-pfm: ATVPDKIKX0DER 

User-Agent: VeneziaAndroid/release-7.1017 

x-venezia-cor: FI 

Session-ID: 191-0368151-6201814 

X-ADP-Request-Digest: Qi4216+DgNegys2Fb7ft... 

X-ADP-Authentication-Token: {enc:O5R4tVC8+... 

Content-Type: text/plain; charset=UTF-8 

Host: mas-ext.amazon.com 

 

 

{"zeroesPaymentActive":false, 

   "currentVersion":"0", 

   "searchAnalytics":{ 

      "refMarker":"apps_th_gd_gm_4"}, 

   "currentPrice":{ 

      "amount":"0.00", 

      "unit":"USD"}, 

   "deviceInfo":{ 

      "ref":"unknown", 



 59 

      "model":"KFTHWI", 

      "deviceDescriptorId":"MDD-S-3F6CWH2R03YPF", 

      "osVersion":"17", 

      "deviceType":"A2VZ790DVVI91K", 

      "manufacturer":"Amazon", 

      "carrier":"unknown", 

      "build_fingerprint":"Amazon\/thor\/thor:4.2.2\/JDQ39\/13.3.2.3.2_user_ 

323001720:user\/release-keys", 

      "build_product":"thor"}, 

   "asin":"B00JX66AV0"} 

Listing 6.15 PurchaseItem request message. 

 
HTTP/1.1 200 OK 

Content-Type: application/json 

 

{"displayMessageKey":"mas.device.purchase.success.no_error", 

   "orderId":"D01-8181186-4443362", 

   "purchaseErrors":"NoError", 

   "stateToken":"---===**{{{[VeNeZiA]}}}**===----"} 

Listing 6.16 PurchaseItem reply message. 

 

PurchaseItem message (Message 1, Figure 6.3) contained two HTTP header fields: 

X-ADP-Request-Digest and X-ADP-Authentication-Token. These two HTTP header 

fields were used in nearly every message sent from Kindle Fire device to Amazon when 

downloading a free application. Exceptions were Messages 3 – 4 from Figure 6.3 and 

certain messages (omitted from Figure 6.3) related to content metadata. 

The same authentication token was used in every message. The used token was 

observed to be obtained during the registration (Message 6, Figure 6.1) and the acquired 

token was pointed to the deviceType A2VZ790DVVI91K. As mentioned earlier this 

deviceType was mapped to a softwareComponenId named com.amazon.thor.android.os, 

which was thought to represent the user’s operating system in the kindle device. This 

same deviceType is also mentioned in the message body of purchaseItem request 

message (Listing 6.15). 

The reply message for puchaseItem contained four fields: displayMessageKey, 

orderId, purchaseErrors and stateToken. Listing 6.16 presents the case when purchase 

was done successfully. In the case of failure orderId and stateToken fields were left 

empty and other fields had information regarding the error. During observations one 

purchase error was captured, it was due the fact that the author had not selected default 

payment type from Amazon account settings. During this error the author was directed 

to sign-in with the browser to Amazon and change the setting for payment. Afterwards 

purchases were made successfully. 

One notable observation was that the user was never asked to authenticate when 

buying an application or downloading a free application. Also the user was required to 

add credit card details to user’s Amazon account before the user was allowed to install 

any software, free or paid. 
 

 



 60 

HTTP/1.1 200 OK 

Date: Mon, 23 Jun 2014 08:50:56 GMT 

Content-Type: application/json 

Content-Length: 351 

 

{  "apkHash":"R6YV3ht6kFugGE347TmXZg==", 

   "downloadUrl":"https://amznadsi-a.akamaihd.net/US/prod/B008K38DXK-10-

844a3a45-ce68-492e-a70e-34f18e342882.bin?AWSAccessKeyId=AKIAJNJFQESGNKQ7THPA 

&Expires=1404118256&Signature=aqqyoBmv7/L94arzViPTg79aAso=&__h__=1404118256_4a

dc6f2706a2de23f2b9c9f81d8f219a", 

   "latestContentId":"MC-S-39P8Q6KEBTN92", 

   "packageName":"com.rovio.angrybirdsseasonsHD", 

   "stateToken":null} 

Listing 6.17 getDownloadUrl reply message. 

 

The reply message for Message 3 (Figure 6.3) contained in the message body a hash 

value for the requested application file and URL from where to download the 

application. The download URL (for the requested application) contained the following 

parameters: filename, AWSAccessKeyId, expiry time, signature and one unknown 

parameter __h__. 

AWSAccessKeyId’s role in this message is not fully understood. Amazon’s AWS 

(Amazon Web Services) documentations might give some hints. AWSAccessKeyId is 

an identification value distributed by AWS (Amazon Web Services), when a user signs 

up for an AWS account [47]. During the same time when AWS access key is obtained, 

the user also gets a secret key. These two values are used to sign requests made by 

applications to AWS. [48] Based on the AWS documentation, AWSAccessKeyId could 

identify the user to whom the device has been registered to. AWSAccessKeyId was 

observed to change only when the user registers herself to the device, but observations 

do not rule out the possibility of AWSAccessKeyId to change after a time, since the 

observations were done in two sets separated by only three months. 

The signature in the download URL is thought to be the signature of the download 

request and not of the requested application, because the signature resembles the AWS 

signature version 2 [47]. The AWS documentation specifies that the signature in the 

query URL must be base64 encoded and then URI encoded (the URL in the Listing 6.17 

is decoded). The documentation also specifies that the signature has to be calculated 

with either HMAC-SHA1 or HMAC-SHA256 protocols. [47] The signature given in the 

Listing 6.17 meets the first criteria and the signature is 160 bit long after URI decoding, 

which is also the length of the HMAC-SHA1 output [13]. The expiry time given in the 

URL was unix epoch time format and the time was set to expire exactly in one week 

(168 hours). The same expiry time was also a part of the unknown parameter __h__ 

value. 

 
POST /createAuthTokens HTTP/1.1 

User-Agent: VeneziaAndroid/release-7.1017 

Content-Length: 86 

Content-Type: text/plain; charset=UTF-8 

Host: mas-ext.amazon.com 



 61 

{  "stateToken":"", 

   "clientVersion":"release-7.1017", 

   "contentIds":["MC-S-39P8Q6KEBTN92"]} 

Listing 6.18 createAuthTokens request message. 

 
HTTP/1.1 200 OK 

Content-Type: application/json 

Content-Length: 370 

 

{ "authTokens":{  

      "MC-S-39P8Q6KEBTN92":"eiTaNCoAaLUOGGHrzssKCJpArWKclVLcAJM4j3RTpWigua5cg4 

fBSCd57OSaK5dsDHKlLkg37uc8XL+E4l1lHH4tlWNY0K/mmPQhm0hpWMD958VpnuauKYIshKo7SFG2

Xh3bYIwE9zmt4Aqa6Uuxj9vfAAn1aQLpXGjvIyReJVHsJJbjOVIDTbjYgjfvjhPB0baskvX5n7iMzF

Q5T55yZkqUVIHEdKu11ax/2X883INGxIqCSV9jZZVfJRvCkId+faimdhw542OC2SHfzXrhUHNZbKpn

ApiHliXqvtKBW1eXcezec0Tju9/aYd9j9Y1DREesIOV8IJ0pPjz3Et2ZYQ==" 

   },"errors":{}, 

   "stateToken":null} 

Listing 6.19 createAuthTokens reply message. 

 

The createAuthTokens request message is one the few exceptions that did not 

contain a digest and token pair. The request message contained contentId parameter in 

the message body to refer to the desired application. The contendId was given in the 

reply message (Listing 6.17) for the getDownloadUrl message. The reply message in 

Listing 6.19 provided the requested token in the message body. The token was base64 

encoded and decoding it did not produce anything comprehensible and its usage was left 

unknown. 

 
POST /createContentLicenses HTTP/1.1 

x-venezia-pfm: ATVPDKIKX0DER 

User-Agent: VeneziaAndroid/release-7.1017 

x-venezia-cor: FI 

X-ADP-Request-Digest: VABIXC16jBw3kBYccXYcR ...  

X-ADP-Authentication-Token: {enc:O5R4tVC8+FMNe61lpl3e2 ... 

Content-Length: 358 

Content-Type: text/plain; charset=UTF-8 

Host: mas-ext.amazon.com 

 

{  "stateToken":"", 

   "contentIds":["MC-S-39P8Q6KEBTN92"], 

   "deviceInfo":{  

      "ref":"unknown", 

      "model":"KFTHWI", 

      "deviceDescriptorId":"MDD-S-3F6CWH2R03YPF", 

      "osVersion":"17", 

      "deviceType":"A2VZ790DVVI91K", 

      "manufacturer":"Amazon", 

      "carrier":"unknown", 

      "build_fingerprint":"Amazon\/thor\/thor:4.2.2\/JDQ39\/13.3.2.3.2_user_32

3001720:user\/release-keys", 

      "build_product":"thor" 

}} 

Listing 6.20 createContentLicenses request message. 



 62 

HTTP/1.1 200 OK 

Content-Type: application/json 

Content-Length: 663 

 

{"errors":{}, 

   "licenses":{  

      "MC-S-39P8Q6KEBTN92":{  

         "contentId":"MC-S-39P8Q6KEBTN92", 

         "expirationDate":1.408698591739E9, 

         "token":"ZXhwaXJhdGlvbj0xNDA4Njk4NTkxNzM5LGRybU1vZGU9MSxkZXZpY2VJZD1E

MEZCQTBBMDM0NTMwV1dDLHBhY2thZ2VOYW1lPWNvbS5yb3Zpby5hbmdyeWJpcmRzc2Vhc29uc0hELG

N1c3RvbWVySWQ9QTFUVDcwMFExUjFCMzcsY2hlY2tzdW09UjZZVjNodDZrRnVnR0UzNDdUbVhaZz09

LHRzPToxNDAzNTE0NTkxNzQ0fGU0UTB4aHp4dlpzWWZjK2EzM0U1b0lHeW9pOGt0NktjQXhDbjR3RD

QydnlLRHJpRE5BSkEwQzdyOS9pMk5OR0FTQ0FpUlZ0aW80YjNYTTNHUCt3akVNL0xiVG1vWEtZNDRW

V1RjMk01bWdXdjM1WHNtcVk3WFBRY0I4SWVENU5PTm5IMXFuOWsrTlhPQVB1SHF5eFVBQWEwVnFHWX

JJdUY0WERET2lFWXYydnY4ZFNFZVBNS0Y4c3R1cG8vdldhMG9XT1RXdlFKaGdIQmZVTkhSSlUyaEkx

NEpmeUkxQ3RwY3JHUER4UnpTQWdVYUFxY0xqRlorRlZrY0NoS20rbXRJQVlZbnp4RWdYb0MxblovSF

hGQ05KWjVwdVVlZXkyOHJSL1BOSzdkcnFNTVRkQ2ZoQ1NoWml4anlFVGF3aGtnN0xwc0k1OGpETmZJ

b1lFbENkT2hUdz09" 

      } 

   },"stateToken":null} 

 Listing 6.21 createContentLicenses reply message. 

 

The createContentLicenses request body contained contentId referring to the desired 

application and information regarding the user’s device. The reply message in Listing 

6.21 contained among other things expirationDate and a token that were base64 

encoded. The token was decoded as follows: 
 

expiration=1408698591739,drmMode=1,deviceId=D0FBA0A034530WWC, 

packageName=com.rovio.angrybirdsseasonsHD,customerId=A1TT700Q1R1B37,checksum=R

6YV3ht6kFugGE347TmXZg==,ts=:1403514591744|e4Q0xhzxvZsYfc+a33E5oIGyoi8kt6KcAxCn

4wD42vyKDriDNAJA0C7r9/i2NNGASCAiRVtio4b3XM3GP+wjEM/LbTmoXKY44VWTc2M5mgWv35Xsmq

Y7XPQcB8IeD5NONnH1qn9k+NXOAPuHqyxUAAa0VqGYrIuF4XDDOiEYv2vv8dSEePMKF8stupo/vWa0

oWOTWvQJhgHBfUNHRJU2hI14JfyI1CtpcrGPDxRzSAgUaAqcLjFZ+FVkcChKm+mtIAYYnzxEgXoC1n

Z/HXFCNJZ5puUeey28rR/PNK7drqMMTdCfhCShZixjyETawhkg7LpsI58jDNfIoYElCdOhTw== 

Listing 6.22 Base64 decoded createContentLicenses message reply token.  

 

The token contained among other things expiration time, device Id, package name, 

timestamp (parameter ts) and base 64 encoded checksum. The token also contained 344 

character long base64 string, which was not understood after a decode attempt. The 

string contained after decoding 256 bytes (2048 bits) of data. From the length the author 

suspects it to be either some sort of key for asymmetric encryption algorithm or digital 

signature. The expiration time here is the same as expirationDate parameter presented in 

Listing 6.21, it is presented in another format.   

 

 



 63 

6.3 Discussion 

The x-adp-tokens and signatures/digest values addressed in Sections 6.1.1 and 6.1.2 left 

a few open questions. What is encrypted in the x-adp-token and how it is encrypted? 

Other questions are: what cryptographic hash function is used and where the key for 

signatures is gotten from? Subsections 6.3.1 and 6.3.2 try to answer to these questions. 

Chapter concludes in discussing what problem was encountered with the fake CA SSL 

certificate. 

6.3.1 Speculation of encrypted tokens 

Regarding x-adp-tokens, the enc part is thought to contain encrypted information and 

key and iv parts are thought to contain the encryption key and initialization vector for 

the used encryption algorithm. Encryption key and initialization vector together 

suggested that the used encryption algorithm is a symmetric algorithm, but on the other 

hand the length of the possible encryption key is unusually long (2048 bits). For 

example, AES-256 algorithm has 8 times shorter key. The length of the key actually 

hints that it is encrypted with asymmetric encryption. The idea is presented in Listing 

6.23. 

 

{enc: {𝑐𝑜𝑛𝑡𝑒𝑛𝑡}𝐾𝑆
} 

{key: {𝐾𝑆}𝐾𝐴
−} 

{iv: ... } 

Listing 6.23 Example speculation. 

 

In the Listing 6.23 the key 𝐾𝐴
− is thought to be Amazon’s private key of asymmetric 

encryption algorithm used to wrap (encrypt) symmetric encryption key 𝐾𝑆. The symmetric key 

thought to be used together with iv to encrypt the content in the enc field. The encrypted 

contents were left unknown. 

6.3.2 Digest function and origin of signing key 

X-adp-request-digest‘s cryptographic hash function is one mystery, because the 

length of the hash value seemed to be unusually long (1536 bit). This limits the possible 

list of hash algorithms, but the length of the x-adp-request-digest value also suggests 

another possibility. The digest could actually be a digital signature and the name x-adp-

request-digest is just a legacy name just as discussed in the Google’s case in Section 

5.3.2. 

 
MIIDlQIBADANBgkqhkiG9w0BAQEFAASCA38wggN7AgEAAoHBAMq4bDtSriLvJNCbewFjK94Hv5Nyo1

8+hf1o0Tj5CSTNygNd7Rla9eKCcrJS06qIdJ0IE0lHeOWd/dYAxd4U4CAzZqvOX5mKrrc1bGRuiizM

GyaBKrHwcbFFIU17ptBzui2AFYP9QrTiMjzj+vjXe32G6I5wXKy8XhTl+PeghGk/I8KODaoccCnNQj

Ln6xSB2ZgGeCUk6veCGRIHrKjI03a0D5yZixFELQMQUberyNTmQDuZcRmfuFnljgoyBbA7twIDAQAB

AoHAPn4Jx2PekKBeHfzAN5ZF0KVc1mxxlovkrFDipoiG3BSgYNdUnwteX1xNVVGZNKnqIPp7T4y75T



 64 

UGKjGEzchrqyGNVgtBh0isQYgziOZWrCajfAQ3kDEKK1afRI6IxxvVTO0IqZ/XdjZUjoKL/XSN7vsF

5sLtH//D2frv7jImVmtCiEWA8WX33eibcND2e4/Mp01uj7ow13RdLdILV5hCd9RnZWHHqhjc9RHIkc

3mNbiWBm1k4z/RzRxpi+9+0HnZAmEA+P0MRA03DULOekzCyk2fPQs4UzLwkzKsqRh+o+wdjRUvj67v

ItmIg2C9QJYWWu67VwTx2J7Xj8JhSjq8/Okz3ngd3TzLN9nm4O5DraxMDv421mRjhIJH+ZPITOkLbS

ZVAmEA0G3UVqAweiXMSdTCDyHFzdh+wJvDHXemoNkFyVuEl7FcZsXpxBXKmJ5m8rHWl/dyjixxvnFQ

F9CwhHZDCn7tYhdIfGEOnb0oJBmyQLUEecq+YW0EwUqJKZBMILEJxa3bAmAUCnIhTBsBQz5RU7peBC

9r/2oyMChzAKIrHiCbWxbp0ym32/G9kVrOkEvLVglImmyTzX8V23soRBIGooGxraeSIYLt2sXUogJW

WncyFGsuzcFmMkBcWwwmB4IYxq03xN0CYFqhNzCHrSyf3OnJsqxDwjAU0GDOGhRpH7JXS9XXjpsrSw

OBUXmrBBJC5n7nZ2li9pPtrXPi77G7U9X1Wodo063Qc/tpdKKQSrEP31uVmqGe0BOrBONLlsLU9NVO

RfKH+wJgM8B7XbPYTQ/xeU2vxMnBNGbbQif9PF4KBSAeFb7vmW2D3Jte7VNh3vIpJb7BcipdRmjQgB

remvXEkxEiqH3e9QkOUyyjtXW5oWN2eYply2ByXe4F6suEKfGI5/2UPp6z 

Listing 6.24 Example of given base64 encoded device private key. 

 

Another problem was the origin of the private key that Amazon’s client applications 

in user’s device use to sign messages. During the registration a device private key is 

given, which might have something to do with signatures (Listing 6.7, subsection 6.1.3), 

but the author personally doubts this. One given device private key is presented in 

Listing 6.24. The key is 1228 character long and base64 encoded, which decodes into 

7368 bit of data. The length of the given key (7368 bit) is too long for the key used in 

observed SHA256WithRSA signatures (1536 bit), because according to the standard the 

length of the signature is the same as the length of the private key [46]. No other 

potential key candidate was noticed in the desired length and therefore the origin of the 

used signing key is left unknown. 

6.3.3 Problems with a fake CA SSL certificate 

During the observations a second fake CA SSL certificate was created, but when it was 

deployed all SSL/TLS communications failed during the handshake. At the same time, 

when the new certificate was deployed the Amazon’s device got a new update. It was 

first thought that the new behaviour was a result of the update and Amazon had 

implemented new mechanism to prevent MITM attacks.  

Later on an older certificate was tried and noticed that SSL/TLS communications 

worked again. It was then understood that the problem lied in the new certificate and in 

closer inspection it was noticed that the new certificate had only one field (common 

name) filled during its creation with OpenSSL. This was due the author’s own fault. The 

actual reason why the new certificate did not work with Amazon’s client applications 

was left unknown, but it was understood that all the fields needed to be filled. 



 65 

7 WHEN SSL FAILS 

The MITM attack used in this thesis for observing and capturing encrypted SSL/TLS 

communications is not an easy attack to do in a real life due to its requirements. 

However, the attack is more problematic than it first appears for Google Android users. 

A MITM attack was performed in a laboratory environment to demonstrate what an 

attacker could gain and achieve in a real attack against victim with a Google Android 

device. 

The chapter is divided in three parts. First the MITM attack is described, especially, 

how it was done in practice. Then it moves to describe what information is needed for 

the exploitation, how to exploit and what information the attacker can gain. Chapter 

ends in discussing what the core problems that enabled attacks are, what has been done 

to prevent MITM attacks and finally the author presents a proposal how to prevent the 

described attacks. The findings have been informed to Google in 23th September 2014. 

7.1 MITM attack in practice 

A MITM attack is normally used to spy the victim’s communication, but the attack 

reveals only what the user has conducted during the communication. In Google’s 

Android case this is problematic for the user, because the information leaked in a first 

successful MITM attack could be used to spy the victim remotely after the attack and 

interact with the victim’s data stored in Google’s servers. 

7.1.1 MITM attack preparation 

Figures 7.1 and 7.2 presents the attack flow and Figure 7.4 describes what information 

the attacker is after during the attack and for what she can use that information. The 

attack can be divided in three phases: preparation, MITM attack and exploitation. 

 



 66 

 
Figure 7.1 The MITM attack preparation phase. 

 

In the preparation phase the attacker first needs to gain physical access to the 

victim’s device in order to install a CA SSL certificate into the device’s trusted 

credential storage. And the attacker also needs to somehow route victim’s 

communications through the attacker. In practice the attacker can access to the victim’s 

device with a help of social engineering or simply steal the device. The attacker needs 

only circa 30 seconds to install a CA SSL certificate if the attacker has proper tools and 

scripts. As for tools the attacker needs a device with an USB port, an USB cable and a 

script which automatically copies a specific certificate to attached USB device’s root 

folder.  

The victim’s communication can be routed through the attacker’s device in the same 

way as it was done in the laboratory, by making a WiFi-hotspot. The victim could be 

lured in by performing an “evil-twin” attack, which works creating a WiFi-hotspot with 

same SSID as a real hotspot and moving the rogue hotspot with stronger signal near to 

the victim [49]. Another way to route traffic could be for the attacker to insert new 

credential for her own WiFi-hotspot (which is near the victim) at same time when she is 

accessing the victim’s device and installing the CA certificate. Figure 5.8 presumes the 

attacker using the second option. Finally the attacker returns the device to the victim 

preferably without her knowledge. When the victim connects to the attacker’s WiFi-

hotspot and starts to use the device then the MITM attack starts. 

7.1.2 The attack phase 

When the MITM attack starts the attacker has basically two choices: she can either just 

passively observe or actively modify (and observe) the communications. With passive 



 67 

observation the attacker can only gain authorization tokens present in requests made 

during the attack. And if the attacker is lucky she might intercept a token request, from 

which she gains the victim’s master token (Listings 5.4 and 5.6). 

 

 

Figure 7.2 MITM attack phase. 

 

With an active MITM attack the attacker can “force” the victim’s device to reveal 

information, which is useful in a situation where no token request has been seen. This is 

done by capturing HTTP requests victim’s device makes and modifying the 

authorization tokens to be invalid, before they are passed on to the Google’s servers. 

Because of the modification, Google’s servers return HTTP 401 – Unauthorized reply to 



 68 

the device. The victim’s application gives up after a few failed attempts, presumably 

believing that the problem is in the authorization token, and tries to acquire a new token 

for itself. The token request (Listings 5.4 and 5.6) is interesting for the attacker because 

it contains the desired master token.   

When the attacker gains the master token she is also faced with a decision: she can 

now either stop the active attack or continue the attack to gain even more information. If 

the attacker continues the attack, she can do it by modifying the master token from the 

captured token request to be invalid and pass the request on to the Google’s server. In 

this case the Google’s server return HTTP 403 – Forbidden reply to the device. At this 

point the device presumably believes the problem must be in the user’s account, since 

replies from Google and behaviour so far is the same what happens when the master 

token access has been revoked. Figure 5.9 presents the view the Android device used in 

the demonstration presented to the user after continued attack: 

 

 
  Figure 7.3 View presented to the user when the attacker continues the attack. 

 

The device requests from the victim to authenticate. This is a critical point in the 

attack, because the user can opt not to authenticate right away (during the MITM 

attack), but the author personally believes the majority of the victims would authenticate 

at this point without a second thought. Once the victim authenticates the device sends a 

master token request (Listing 5.2), which is captured by the attacker. The interesting 



 69 

part from this message is the victim’s encrypted Google account password and the new 

master token from Google’s reply message for the request.   

7.2 Gained information and its usage  

After the MITM attack, starts the exploitation of the gained information, which is 

presented in Figure 5.10. The attacker has gained during the MITM attack: applications’ 

authorization tokens, the victim Google account’s master token and victim’s encrypted 

Google account password. During the MITM attack the attacker has gained more 

information than just the previously mentioned, but she cannot trust that she has got 

what she wants from the victim during the MITM attack. Therefore the attacker is after 

tokens and encrypted password, which can be used after the attack to access remotely 

victim’s data in the Google’s servers. 

 

 
Figure 7.4 Information gained in the attack and how to use it. 

 



 70 

Generally authorization tokens have a limited access to the user’s data. Tokens are 

presumably restricted only to the information that the specific application (which the 

token belongs to) needs. A master token on the other hand is used to acquire tokens for 

all Google’s Android applications and victim’s encrypted password is present when 

master token is acquired during the account registration process. 

In general, Google uses only SSL and authorization token to protect user’s data, 

when a Google Android application accesses it. An attacker can, by looking at the 

previously made request and slightly modifying them to handcraft own request and 

access victim’s data. In practice the messages can be handcrafted in a text editor and 

sent manually using OpenSSL, which forms an SSL/TLS tunnel to Google’s servers and 

is capable of sending messages. 

The spying, if done right in practice, stops when the victim changes her Google 

account password and before that the victim could be spied upon for years. In the case 

of phones, according to Roger Entner [50, 51] handset replacement cycle in 2010 and 

2012 in United States was 21.7 months (roughly 2 years), but it also heavily depends on 

the country. For example, in Finland the replacement cycle in 2010 was 74.5 months 

(roughly 6 years). [50]  

7.2.1 Exploiting the gained information - Custom requests 

 During the observations two tests were made, where information acquired in the MITM 

attack was used to reveal more information of the victim than was communicated during 

the MITM attack. The victim in tests was the author’s test Google account. Before tests, 

two contacts and one calendar event was added to the victims Google account for the 

attacker to target.  

In the first test, after the MITM attack the attacker’s computer changed its IP-

address, made an SSL/TLS tunnel connection with OpenSSL to Google’s servers and 

send handcrafted requests, with victim’s authorization tokens. First request was used to 

test whether a replay attack would work. However, the request the attacker made was 

not completely identical with the original message. The attacker’s message was slightly 

modified in order to get reply in a plain text and retrieve more interesting information. 

The first request was used to obtain all of the victim’s contacts (e.g. phone numbers, 

email addresses, etc.) stored in the Google servers. The request made by the attacker 

used the same token as the victim had used. 

Second request was used to test whether the attacker could obtain new tokens for a 

Google’s application or service. The captured GLS and GA token request messages 

contained all the necessary information for the attacker to make modified requests. The 

second request was used to obtain a new token for Google calendar application.  

Third and final request tested whether the attacker could use the newly acquired 

token to make request and obtain more information of the user. The sent request was 

used to obtain all the calendar events the victim had made. The second test was identical 

to the first test, but this time the victim used Google’s 2-step verification, where the 



 71 

login information came from the Google Authenticator. Nevertheless all the requests 

were made successfully in both tests. The requests made in the first test are presented in 

Appendix A. 

While, not every Google’s Android application was tested, these tests proved that 

once a user has been once a victim of a MITM attack capable of decrypting SSL/TLS 

communications the victim could then be spied upon remotely. If the attacker knows the 

victim’s master token, the author believes that then in practice, the attacker has access to 

victim’s all Google data (same data as the victim’s own device has access to), since the 

attacker is able to acquire new tokens for victim’s Google Android applications. On the 

other hand the attacker has to familiarize herself with how Google’s applications 

communicate with Google’s servers in order to be able to make custom requests. 

This attack does not leave traces for the victim to notice (except the new trusted CA 

certificate in the device). No indication was noticed in the Google account’s security 

related pages that another device had made queries or used the victim’s account, for 

example, from another IP-address. Also the Google Android application’s behaviour 

helps to hide the possible attack, since presumably one token is only valid per 

application, and application’s default behaviour is to acquire new token when it has 

problem with the old one and user is not informed of these new requests or invalid 

tokens. 

7.2.2 Exploiting the gained information – Victim’s encrypted password 

With the knowledge of the victim’s encrypted password the author was able to add the 

victim’s Google account to another device and use the Google’s applications with 

victim’s credentials without actually knowing the victim’s password. The attack was 

done as follows.  

The attacker starts by adding the victim’s account to her own device as the victim 

would add her own account. The attacker adds the victim’s Google account name, 

which she got from any of the captured token requests (Listings 5.2, 5.4 and 5.6, 

parameter Email) and types a random string for the password field (the typed password 

does not matter). After accepting the terms of service, etc. the device starts the 

registration process by sending a master token request (Listing 5.2). At the same time 

the attacker performs a MITM attack to her own device and stops the master token 

request message. She changes the EncryptedPasswd parameter (which holds the user’s 

encrypted password) value to the one she got earlier in the MITM attack from the 

victim. After changing the value she lets the message go to the Google’s servers and lets 

the process flow in its own weight. A few minutes later the attacker is able to use the 

victim’s account as she would. 

This attack makes it easier for the attacker to spy or do other malicious acts, because 

she does not have to familiarize herself to how Google’s Android applications 

communicate and make handcrafted requests. On the other hand, this attack leaves 

much bigger traces of the attack. The attacker’s device gets listed to the victims Google 



 72 

accounts – apps and permissions list, where the victim can also revoke the attacker’s 

device’s rights. However, merely revoking the attacker’s device’s right to access 

victim’s account does not prevent the attacker from adding the device again, since the 

attacker knows the victim’s encrypted password and is therefore able to add victim’s 

account again.  

Also this attack does not work when the victim uses 2-step verification. Namely, in 

order to complete the registration process the attacker needs the one time password 

(OTP) given by Google, which is usually given to the phone number found in the 

victim’s Google account details. 

7.3 The weaknesses and their prevention 

Google’s Android applications and Android itself have the following problems that 

made the previously described attacks possible: messages are lacking authentication and 

integrity checking, Android applications in the device blindly trust every CA certificate, 

possibility to use encrypted Google account password more than once. 

7.3.1 The weaknesses   

Messages lacking authentication and integrity checks mean that the party sending 

HTTP requests to Google’s servers is not authenticated nor are messages’ integrity 

secured during the transit. The lack of these measures makes it possible for the attacker 

to send her own requests and modify all the communications between the victim and 

Google’s servers without either of the parties knowing. 

Another issue was that a user-added and trusted SSL CA certificate is also trusted by 

default nearly every Android application (not just Google’s) in the device. This makes it 

possible for the attacker to perform MITM attack capable of decrypting all SSL 

communications. 

The last problem is that a user’s encrypted password sent during the registration is 

valid more than once and possibly for as long the password stays the same. For 

example, the author used a 7 months old encrypted password in a demonstration attack. 

7.3.2 What a user can do to prevent or stop a MITM attack? 

For a user to stop an ongoing spying she needs to change the master token and 

preferably her password, since the attacker can spy the victim as long as the master 

token and the password are valid. The master token can be changed by at least three 

ways: revoking the device’s right to access the user’s account, starting to use 2-step 

authentication and changing the Google account password. 

The device’s right to access the user’s Google account can be revoked from Google 

account security settings regarding applications and websites permissions [52]. Also the 

2-step verification is deployed from the Google account security settings. Both of these 

mechanisms helps only after the user has been a victim of the MITM attack, because the 



 73 

user is given a new master token and the older token, which the attacker has, is 

invalidated. 

The easiest and the most effective way to protect a user temporarily from being 

spied are to change the user’s Google account password, because it automatically 

invalidates all permissions that among other things, any device has to the user’s 

account. This means the attacker cannot use the captured master token and the victim’s 

encrypted password anymore. Changing the password also works until the victim gets 

attacked by a MITM attack again. 

For a user to protect herself from a MITM attack, she can: keep the device under a 

close watch, check the trusted CA certificates time to time or use a device with an 

Android OS 4.4 version or newer. It is not feasible to require for a user to keep a close 

watch on her device all the time. Social engineering and exploiting a trust with the 

victim are also possible means to take victim’s attention away. Also for the user to 

check trusted CA certificates requires a lot of understanding of SSL and Android 

security, which is not a reasonable expectation from an everyday user. And even in the 

case when a victim finds a rogue trusted CA certificate, the attack might have already 

happened. In practice using a newer Android OS is the best solution, because Google 

has made security improvements to OS 4.4 version, which should prevent the MITM 

attack. These improvements are discussed in depth in next section. 

7.3.3 What steps has Google taken to protect the user? 

At the time of writing Google has already taken steps to protect its users. In Android 

version 4.2 Google introduced feature a called Certificate pinning [53]. Certificate 

pinning is according to OWASP [54] a process of associating hosts with their expected 

X.509 certificate or public key. This means that it is used to give an application the 

ability to trust only certain determined CA SSL certificates [55], which prevents MITM 

attack because the rogue CA certificate will not be trusted by applications in the 

Android device. In Android the certificate pinning is implemented by maintaining a list 

of SHA1 hashes of trusted certificate’s public keys [55]. In practice the hash is 

calculated from certificate’s SubjectPublicKeyInfo (SPKI) field and is stored in the 

device in the following way. Enforcing is either true or false and is followed by 

SHA512 hashes separated with comma. [55] 

 
Hostname=enforcing|SPKI SHA512 hash, SPKI SHA512 hash,... 

   

Google added more security features in Android OS 4.4 version and the security 

enhancements included notification related to certificate pinning: "Android 4.4 detects 

and prevents the use of fraudulent Google certificates used in secure SSL/TLS 

communications." Another important security enhancement in Android 4.4 was device 

monitoring warnings, which "provides users with a warning if any certificate has been 

added to the device certificate store that could allow monitoring of encrypted network 



 74 

traffic." [56] In general, author believes the certificate pinning and the system warning 

message are good features. Certificate pinning prevents the MITM attack against certain 

host before it even starts. And system warning messages clearly warn the user of a 

potential MITM attack. 

However, certificate pinning feature and warning messages themselves are not 

enough to protect users, if they are not used. For example, apparently Google does not 

use certificate pinning feature in its own applications except in Android version 4.4. 

Otherwise author would not have been able do this work with Android OS 4.3 and 4.2 

devices. Also at the time of writing only one third-party application in the tested Google 

Android OS 4.3 device was noticed not to work in the test environment and this 

behaviour was presumed to be a result from the certificate pinning. On the other hand 

the device was stripped from unnecessary applications when possible in order to keep 

capture files "as clean as possible".   

Also at the moment of writing only the newest Android OS 4.4 version has these 

features. This is an issue for older Android OS version users, because only the newest 

Android devices get updates to new versions of the OS. This has led to a problem called 

Android OS fragmentation. Even now after a year Google released Android OS 4.4 [57] 

it is still used roughly only in 21% of all of the Android devices [58]. So it will take 

time until the majority of the Android users are protected. 

7.3.4 What a service provider can do to prevent a MITM attack? 

The author presents the following proposal, which might or might not be appropriate for 

a service provider, but it prevents the described attacks. In-depth analysis of the 

proposal is out-of-scope of this thesis. The author proposes for a service provider to use 

digital signatures in messages from both the client and the server to protect users from 

the observed aftereffects of the MITM attack. Digital signature is useful because it 

authenticates the party sending a message and gives integrity protection for the 

message. For the attacker to make her own request she needs to get the victim’s private 

key used for signing messages, which does not need to be present in the 

communications at all. Hence this would prevent the attacker from making her own 

requests successfully to Google’s servers.  

As stated earlier, Amazon uses digital signatures in nearly every request made to 

Amazon’s servers, but their implementation should not be completely copied, because 

the key distribution the author presumes Amazon using is not secure enough to protect 

from a MITM attack. The problem with Amazon’s key distribution is that Amazon’s 

server gives the private key used for signing during the registration to the user’s device 

and it is given in plaintext. Hence the key would leak to the attacker, if registration was 

done under a MITM attack. Author personally believes the MITM attack happening 

during the first registration is highly unlikely, but apparently it is not impossible for the 

attacker to gain the same information. The attacker can deceive victim’s device to 



 75 

“force” the victim to register again, as it was demonstrated, and gain all tokens and the 

key used for signing. 

Instead of service provider giving the private key for signing to the user’s device let 

the user’s device create the keys for signing (𝐾𝐴
+and 𝐾𝐴

−) and give the public key 𝐾𝐴
+ in 

encrypted form during the registration process when the master token is acquired. Using 

Google Android as an example, Google’s Android devices already have Google’s public 

key 𝐾𝐺
+, which is used to encrypt the user’s password [28]. The process to deliver the 

user’s device signing key 𝐾𝐴
+ could be the following:  

 

...&EncryptedPasswd={𝐾𝑆 }𝐾𝐺
+&EncryptedContent={𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 𝐾𝐴

+}𝐾𝑆
... 

 

According to Elenkov [28] the Google’s public key resembles 1024-bit RSA public 

key and Google uses OAEP for padding and therefore can encrypt at maximum 86 bytes 

of data [28]. Due the limitation of how much data can be encrypted with Google’s RSA 

private key, the master token request requires few minor changes. First changes should 

take the user’s password away from EncryptedPasswd parameter and replace it with a 

symmetric encryption key 𝐾𝑆, which is encrypted with Google’s public key to ensure 

only Google can retrieve it. Then a new parameter EncryptedContent is added to the 

master token request. The new parameter contains user’s password for authentication 

and her public key 𝐾𝐴
+, which Google can use to verify the user’s devices signatures. 

The content of the new parameter is encrypted with a symmetric encryption algorithm 

using the key 𝐾𝑆. 

Using signatures and giving the signing key as described would fix two other 

problems: encrypted password reusability and deceiving the victim’s device to do 

registration again. The password reusability is prevented in the case where the attacker 

copies the parameters EncryptedPasswd and EncryptedContent to her own request (in 

order to use victim’s Google account in her own Android device). Because the attacker 

does not have the user device’s private key 𝐾𝐴
−, she cannot make valid signatures for 

subsequent messages. And deceiving the victim’s device would not be possible if 

Google would also sign sent messages, because the attacker does not know the Google’s 

private key  𝐾𝐺
− and therefore is not able to make valid replies. Google already has the 

capability to sign requests, as seen in Google Play Store Listings 5.23 and 5.27.  

Digital signature is not however a silver bullet in fixing these problems. Signatures 

require extra processing power from both the user’s Android device and Google’s 

servers, which might be an issue for Google who has over 1 billion active Android users 

at the time of writing in 2014 [59].   

 



 76 

8 GOOGLE AND AMAZON COMPARISON 

The chapter is divided in three parts. First and second part summarise the found security 

features in Google’s and Amazon’s cases. In the third section Google’s and Amazon’s 

security features are compared and discussed. 

8.1 Google security features summary 

Table 5.1 summarizes the security features that Play Store was observed to use when 

buying and downloading free and paid software. Presented features are restricted to 

those features that were directly observable in the communication channel. Main 

differences were in the usage of SSL/TLS and in the additional authentication of the 

communicating parties.  

 

Table 5.1: Observed security features of free and paid application cases in Google. 

Security feature Free application case Paid application case 

Confidentiality SSL/TLS used in the 

communication, except in the final 

delivery of the application. 

SSL/TLS used during the 

whole communication. And 

probably some kind of 

encryption is used with 

prepare- and 

commitPurchase messages. 

Authentication: 

Server 

Client presumably authenticates 

servers with signature requests at 

the beginning of the message flow. 

 

Same as in free application 

case, but also additional 

server authentication when 

user committed to purchase 

of the application. 

Authentication: 

User 

The user is never authenticated. The user is authenticated, 

when he/she decides to buy 

the application. 

Authorization: Every message sent by user’s 

device except the last one used to 

download the application has a 

token included. 

Every message sent by 

user’s device except 

ClientLogin authentication 

had a token included. 

Availability: 

Time-out value 

Every message sent by user’s 

device except application delivery 

messages (Messages 6 and 8, 

Every message sent by 

user’s device except 

ClientLogin authentication 



 77 

Figure 5.5) had time-out value in 

HTTP header. 

and final application 

delivery message 

(Messages 6 and 12, Figure 

5.6) sent from client to 

Google had time-out value 

in HTTP header. 

Integrity: 

Message 

Message integrity is not protected.  Message integrity is not 

protected. 

Integrity: 

Application 

Possibly signature was used. 

(Discussed below in detail.) 

No protection was 

observed, but messages 

contained parts which were 

not fully understood. 

(Discussed below in detail.) 

 

SSL/TLS was used to secure the whole communication between the user’s device 

and Google, when the user buys an application from Play Store. In free application case 

the SSL/TLS was also used, but not in the last two messages, which were part of the 

application download. 

In free and paid application cases the client application in user’s device 

authenticated the Google server it communicated with by sending a signature request 

during the Play Store start-up. In paid application case Play Store makes one additional 

signature request, when the user has committed to purchase an application.   

In the paid application case the user was authenticated when the decision to buy the 

application was made. Play Store used Google’s own proprietary mechanism 

ClientLogin for this purpose. In the free application case the user is not authenticated at 

all.  

Authorization was done with tokens, which are used between free and paid cases 

similarly. In paid case every message except the ClientLogin message sent by the user’s 

device included a token. In free application case every message sent by the user’s 

device included a token except the final message requesting the application packet 

download. 

Also time-out values were sent along similarly in nearly every message sent from 

the user’s device in free and paid cases. The exceptions were in free application case the 

final two messages used to download the application. In paid case also the final 

application download request and the ClientLogin message used for user authentication 

did not have time-out value in the message. 

Google was not observed to use any means to protect the message integrity in the 

application layer in free and paid application cases. However, determining whether any 

application integrity protection is used was not clear. In paid application case no 

protection was observed, but messages contained parts which were not understood. For 

example, reply message for preparePurchase message contained over 5400 character 

long base64 encoded string, which could easily hold signatures or hash values of the 



 78 

application. The free application case is also unclear on the application’s integrity 

protection. The last message used to request and download the application contained a 

signature parameter in the URL. However it was left unknown what the signature was 

for (e.g. URL or the packet) and what parts the signature covered.   

8.2 Amazon security features summary 

In Amazon the observed security features were identical with free and paid software 

cases. Table 5.2 presents the findings. 

 

Table 5.2: Observed security features in Amazon case. 

Security feature Free and paid application cases 

Confidentiality SSL/TLS used during the whole 

communication. 

Authentication: 

Server 

Client does not authenticate server 

it communicates with. 

Authentication: 

User 

The user is never authenticated, 

when the decision to buy or 

download an application is made. 

Authorization: Every message except the  

createAuthtoken and certain 

metadata requests has a token 

included. 

Availability: 

Time out value 

Time out values are not used. 

Integrity: 

Message 

Nearly every message that has an 

x-adp-token included contains 

also a digest or signature of the 

message. 

Integrity: 

Application 

The application’s hash value is 

provided before the download. 

 

Amazon uses the SSL/TLS to secure confidentiality of the whole communication 

between a client (user’s device) and a server (Amazon). Certain image downloads and 

reachability test URLs were not protected by the SSL/TLS.   

The Amazon shop client application does not authenticate the server it 

communicates with. The shop application also does not authenticate the user, when the 

decision to download a free application or purchase an application is made.  

Nearly every message has a token included, presumably just for client applications 

authorization to use Amazon services. X-ADP-token is also always (with one exception) 



 79 

accompanied with message digest or signature value, which protects the message from 

tampering and corruption during the transit from user’s device to Amazon. However, it 

was not known what part of the message the hash or signature covers. Application’s 

integrity was protected by telling the application file’s hash value at the same time when 

the download URL was given. 

8.3 Comparison of Google and Amazon 

The section is divided in two parts. The first part compares the security in general 

between Google and Amazon. The second part concentrates on security of the market 

places. 

8.3.1 Security in general 

In general, Google and Amazon used tokens in the same way for authorization. First, a 

master token or refresh token was acquired, when the user’s account was registered to 

the Android device. Then the master token or refresh token was used to acquire tokens 

for applications. One difference between Google’s and Amazon’s token acquirement 

process was that certain Amazon’s applications got tokens during the registration 

process and the tokens were not acquired with the refresh token. 

Amazon’s client applications were the only ones to use signatures (and possibly 

hash functions) to protect the integrity of the client’s messages to Amazon and in the 

case of signatures, also to authenticate the sender. There might be the issue of how the 

key used for signing is delivered to the device during the registration (see Section 

6.3.2). However, the delivery method for the key was not determined conclusively. The 

author believes that the key distribution is not a big problem, unless the attacker can 

force the user to register herself again to the device in order to intercept the signing key. 

However, this possibility was not tested. 

The usage of the signature in a message is a clear security advantage for Amazon 

and for their users, if the SSL/TLS fails. As it was demonstrated in the case of Google’s 

device (see Chapter 7), when SSL/TLS protection fails the attacker can get access to 

nearly all the information the victim has in her Google account. From the perspective of 

the communication security, it can be said that Google lacks defence in depth. 

8.3.2 Market place specifics 

Biggest differences between Google’s and Amazon’s market places were due to the fact 

that Google Play Store worked differently depending on whether the user was acquiring 

a paid or a free application. Both Google’s and Amazon’s market places used heavily 

SSL/TLS and authorization tokens. Amazon used both the whole time and Google used 

it also the whole time except in the free application case, when the application was 

downloaded. Other exceptions in SSL/TLS and token usage were in certain image 

downloads and reachability tests. 



 80 

Amazon Shop did not authenticate the user at any point, when free or paid 

application was bought and downloaded. In Google’s case it depended on the 

application’s price. If the application was bought, then the user was authenticated in 

Google’s Play Store, but not in the free application’s case. The Google’s authentication 

mechanism (ClientLogin) in Play Store had one oddity: the user’s password was sent in 

plain text inside the SSL/TLS connection. The author felt this was odd, because during 

the registration, which happens rarely compared to buying applications from Play Store, 

the user’s password is sent encrypted in the SSL/TLS connection.  

The Amazon Shop’s lack of authentication might be a problem when, for example, a 

user’s device has been stolen. The thief can buy, for example, applications from the 

shop in the name of the victim. However, this case requires two things: first the victim 

has to have given her credit card details to her Amazon’s account and the thief has to 

get past the device’s screen lock, if it has been enabled (by default it is off). 

Google Play Store client application was the only one to check with whom it was 

communicating by making a signature request, and the only one to use time-out values 

for messages. However, the signature request was made only once and only for the 

requested nonce. This means that, in practice, it does not prevent the attacker from 

modifying the message as long as she does not touch the nonce that the client 

application sends and the signature that the Google’s server sends in response.  

The application integrity comparison is not clear. Amazon clearly gives the 

application’s hash value. Google was observed only in free application case to give a 

signature, but it was not determined whether the signature was for the application or the 

URL. In paid application case no integrity protection mechanism was observed, but then 

again certain parts of the messages were not understood. 

    

 



 81 

9 CONCLUSIONS 

The goal of this thesis was to identify and analyse, what security mechanisms Android 

vendors, Amazon and Google, use during the communication when their own Android 

applications communicate with their services. The adequacy of the found security 

mechanisms for the observed applications was out of the scope of this thesis.  

In general, both Google and Amazon rely on authorization tokens and SSL/TLS 

protocol to protect the communicated information.  Amazon’s client applications in the 

Android device were noticed to use signatures to provide message integrity protection 

and authenticate the sender. 

The security and general operation of the market applications were similar. The 

SSL/TLS was used all the time, except in Google Play Store it depended on whether the 

application was free or not. Other differences were on the requirement of user 

authentication during the purchase. Amazon does not require the user to authenticate on 

purchase, which means that, security wise, the user of Amazon’s device has to take 

greater care of her own device than Google’s user. 

 During the authentication, when the user buys an application from Play Store, the 

client application sends the user’s password in plaintext inside the secured SSL/TLS 

connection. During the less frequently happening registration of the user’s Google 

account to the device the user’s password is sent instead encrypted inside the SSL/TLS 

connection. 

The Google’s device and the authors Google’s account was attacked to demonstrate 

in practice, what the attacker can do and achieve, when the SSL/TLS protection fails. 

Security weaknesses were found and informed to Google. The weaknesses give the 

attacker ability to remotely access to nearly all the victim’s Google data, for now. Also 

the attacker can “force” the victim to register again to the Android device, and the 

attacker can use the victim’s intercepted encrypted password to add the victim’s Google 

account to her own Android device. However, it should be noted that the attack used in 

the demonstration requires for the attacker to have physical access to the device. The 

author proposes using digital signatures and usage of Android OS 4.4 version or newer 

to counter the threat. 

The author believes that the goal set for the thesis was reached and the work went 

well, even though there were some issues. The challenges and critiques of the work 

method in making this thesis were lack of documentation and manual labour. There is, 

in practice, no documentation available (only bits and pieces) of Google’s and 

Amazon’s applications and security mechanisms. Hence, a lot of the time was just spent 

to understand how things worked and what message was related to what application, 



 82 

etc. Google’s habit to change the way how things worked did not help either. These are 

also the reasons why so many things were left unknown. 

The lack of documentation is where the manual labour came in. For example, in a 

very simple case where Amazon Android device is booted, waited 30 seconds on the 

home screen, and then shut down, the device sends circa 3000 packets, which can be 

filtered to circa 110 interesting messages that all have to be examined manually. The 

longest capture files had over 800 interesting packets. Over 60 communications were 

captured and examined, and number is quite big, because the author seemed to find all 

the time something that had to be verified in a new capture, before it could be written in 

the thesis. Also, when the understanding of how the system and applications worked 

was achieved, then the captured communications were not studied as closely, and 

because of this, a few exception cases were found later on by accident. Hence, it is 

possible that some things might have been missed. 

Future work on the subject could be done in determining whether Amazon’s devices 

can be forced to authenticate the user again and what the attacker can achieve with 

manipulating the packets during the MITM attack. For the Google Play Store, the free 

application download security could be examined more closely, since the application 

download does not use the SSL/TLS protocol, which might leave the download 

vulnerable for poisoning attacks. 

 

 

 

  

 



 83 

REFERENCES 

 

[1]  W. Stallings, Cryptography and Network security - Principles and practice, 

London: Pearson Education, Inc., 2011.  

[2]  Canalys, “Google's Android becomes the world's leading smart phone platform,” 

Canalys, 31 January 2011. [Online]. Available: 

http://www.canalys.com/static/press_release/2011/r2011013.pdf. [Accessed 24 

October 2014]. 

[3]  Phonearena, “Android forks are now 20% of the ecosystem. What is Google's 

plan?,” Phonearena, 5 August 2014. [Online]. Available: 

http://www.phonearena.com/news/Android-forks-are-now-20-of-the-ecosystem.-

What-is-Googles-plan_id59003. [Accessed 24 October 2014]. 

[4]  R. Shirey, “Internet Security Glossary, Version 2,” RFC 4949, IETF, 2007. 

[5]  Google, “Google Developers: Google Accounts Authentication and 

Authorization,” [Online]. Available: https://developers.google.com/accounts/. 

[Accessed 8 September 2014]. 

[6]  E. Barker and J. Kelsey, “Draft NIST Special Publication 800-90A, Rev. 1 - 

Recommendation for Random Number Generation Using Deterministic Random 

Bit Generators,” National Institute of Standards and Technology, 21 April 2014. 

[Online]. Available: http://csrc.nist.gov/publications/drafts/800-

90/sp800_90a_r1_draft.pdf. [Accessed 8 October 2014]. 

[7]  R. Anderson, Security Engineering - A guide to building dependable distributed 

systems, 2nd ed., Indianapolis: Wiley Publishing, Inc, 2008.  

[8]  IANA, “Hypertext Transfer Protocol (HTTP) Authentication Scheme Registry,” 

IANA, 17 February 2014. [Online]. Available: 

http://www.iana.org/assignments/http-authschemes/http-authschemes.xhtml. 

[Accessed 26 October 2014]. 

[9]  R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1): Semantics 

and Content,” RFC 7231, IETF, 2014. 

[10]  J.-S. Coron, D. Yevgeniy, C. Malinaud and P. Puniya, “Merkle-Damgård 

Revisited : how to Construct a Hash Function,” 2005. [Online]. Available: 

https://www.cs.nyu.edu/~puniya/papers/merkle.pdf. [Accessed 28 October 2014]. 

[11]  R. Rivest, “The MD5 Message-Digest Algoritm,” RFC 1321, IETF, 1992. 

[12]  Carnegie Mellon University, “CERT - Vulnerability Note VU#836068 - MD5 



 84 

vulnerable to collision attacks,” 31 December 2008. [Online]. Available: 

http://www.kb.cert.org/vuls/id/836068. [Accessed 9 October 2014]. 

[13]  H. Krawczyk, M. Bellare and R. Canetti, “HMAC: Keyed-Hashing for Message 

Authentication,” RFC 2104, IETF, 1997. 

[14]  D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and W. Polk, “Internet 

X.509 Public Key Infrastructure Certificate and Certificate Revocation List 

(CRL) Profile,” RFC 5280, IETF, 2008. 

[15]  Netscape Communications Corporation, “The SSL Protocol,” Netscape 

Communications Corporation, March 1996. [Online]. Available: 

https://web.archive.org/web/19970614020952/http://home.netscape.com/newsref/

std/SSL.html. [Accessed 25 October 2014]. 

[16]  R. Amadeo, “Google’s iron grip on Android: Controlling open source by any 

means necessary,” Ars Tecnica, 21 October 2013. [Online]. Available: 

http://arstechnica.com/gadgets/2013/10/googles-iron-grip-on-android-controlling-

open-source-by-any-means-necessary/. [Accessed 1 November 2014]. 

[17]  Open Handset Alliance, “Press - Industry Leaders Announce Open Platform for 

Mobile Devices,” Open Handset Alliance, 5 November 2007. [Online]. Available: 

http://www.openhandsetalliance.com/press_110507.html. [Accessed 1 November 

2014]. 

[18]  Open Handset Alliance, “OHA - Members,” Open Handset Alliance, [Online]. 

Available: http://www.openhandsetalliance.com/oha_members.html. [Accessed 1 

November 2014]. 

[19]  Internatiolan Data Corporation, “Smartphone OS Market Share, Q2 2014,” 

Internatiolan Data Corporation, 2014. [Online]. Available: 

http://www.idc.com/prodserv/smartphone-os-market-share.jsp. [Accessed 1 

November 2014]. 

[20]  The OpenSSL Project, “OpenSSL - Cryptography and SSL/TLS Toolkit,” 2014. 

[Online]. Available: https://www.openssl.org/. [Accessed 29 October 2014]. 

[21]  D. Roethlisberger, “SSLsplit - transparent and scalable SSL/TLS interception,” 

2014. [Online]. Available: https://www.roe.ch/SSLsplit. [Accessed 29 October 

2014]. 

[22]  A. Cortesi, “mitmproxy: a man-in-the-middle proxy,” 2013. [Online]. Available: 

http://mitmproxy.org/index.html. [Accessed 29 October 2014]. 

[23]  Wireshark Foundation, “About Wireshark,” [Online]. Available: 

https://www.wireshark.org/about.html. [Accessed 29 October 2014]. 

[24]  Offensive Security Ltd., “Kali Linux,” Offensive Security Ltd., 2014. [Online]. 

Available: http://www.kali.org/. [Accessed 29 October 2014]. 

[25]  Amazon, “Kindle Fire Device and Feature Specifications,” Amazon, 2014. 

[Online]. Available: https://developer.amazon.com/sdk/fire/specifications.html. 



 85 

[Accessed 30 October 2014]. 

[26]  mitmproxy project, “How mitmproxy works,” mitmproxy project, 2014. [Online]. 

Available: http://mitmproxy.org/doc/howmitmproxy.html. [Accessed 30 October 

2014]. 

[27]  D. Eastlake, “Transport Layer Security (TLS) Extensions: Extension Definitions,” 

RFC 6066, IETF, 2011. 

[28]  N. Elenkov, “Android online account management,” 5 11 2012. [Online]. 

Available: http://nelenkov.blogspot.jp/2012/11/android-online-account-

management.html. [Accessed 3 September 2014]. 

[29]  Google, “Android Developers: Reference - AccountManager,” [Online]. 

Available: 

http://developer.android.com/reference/android/accounts/AccountManager.html. 

[Accessed 8 September 2014]. 

[30]  Google, “Android - Frequently Asked Questions: Compatibility,” [Online]. 

Available: http://source.android.com/source/faqs.html#compatibility. [Accessed 8 

September 2014]. 

[31]  P. Bright, “Neither Microsoft, Nokia, nor anyone else should fork Android. It's 

unforkable.,” Arstechnica, 8 February 2014. [Online]. Available: 

http://arstechnica.com/information-technology/2014/02/neither-microsoft-nokia-

nor-anyone-else-should-fork-android-its-unforkable/. [Accessed 8 September 

2014]. 

[32]  Google, “Google Developers: Google Play Services,” [Online]. Available: 

http://developer.android.com/google/play-services/index.html. [Accessed 8 

September 2014]. 

[33]  R. Amadeo, “Balky carriers and slow OEMs step aside: Google is defragging 

Android,” Arstechnica, 3 September 2013. [Online]. Available: 

http://arstechnica.com/gadgets/2013/09/balky-carriers-and-slow-oems-step-aside-

google-is-defragging-android/. [Accessed 8 September 2014]. 

[34]  Google, “ClientLogin for Installed Applications,” [Online]. Available: 

https://developers.google.com/accounts/docs/AuthForInstalledApps?hl=en. 

[Accessed 8 September 2014]. 

[35]  Google, “Google Developers: YouTube API v2.0 - ClientLogin for Installed 

Applications,” [Online]. Available: 

https://developers.google.com/youtube/2.0/developers_guide_protocol_clientlogi

n. [Accessed 8 September 2014]. 

[36]  Google, “Google 2-Step Verification,” Google, [Online]. Available: 

https://www.google.com/landing/2step/. [Accessed 31 October 2014]. 

[37]  Google, “Using Security Key for 2-Step Verification,” Google, 2014. [Online]. 

Available: https://support.google.com/accounts/answer/6103523?hl=en. 



 86 

[Accessed 31 October 2014]. 

[38]  Google, “Types of cookies used by Google,” [Online]. Available: 

http://www.google.com/intl/en/policies/technologies/types/. [Accessed 8 

September 2014]. 

[39]  K. Sriram, “Sbktech: Inside the Android Play Service's magic OAuth flow,” 

January 2014. [Online]. Available: http://sbktech.blogspot.fi/2014/01/inside-

android-play-services-magic.html. [Accessed 24 September 2014]. 

[40]  Google, “Android Developers: Reference - Settings.Secure,” Google, [Online]. 

Available: 

http://developer.android.com/reference/android/provider/Settings.Secure.html#A

NDROID_ID. [Accessed 24 September 2014]. 

[41]  Google, “Google Plus: Android Developers - Google Play services,” 26 

September 2012. [Online]. Available: 

https://plus.google.com/+AndroidDevelopers/posts/J1A5hc1ZnS1. [Accessed 8 

September 2014]. 

[42]  Google, “Google Developers: Google Accounts Authentication and 

Authrorization - AuthSub for Web Applications,” [Online]. Available: 

https://developers.google.com/accounts/docs/AuthSub. [Accessed 8 September 

2014]. 

[43]  N. Elenkov, “Single sign-on to Google sites using AccountManager,” 9 

November 2012. [Online]. Available: http://nelenkov.blogspot.fi/2012/11/sso-

using-account-manager.html. [Accessed 8 September 2014]. 

[44]  Y. Soo, "6th Kandroid conference - Google GMS (Google Mobile Services)," 15 

October 2010. [Online]. Available: 

http://www.kandroid.org/board/data/board/conference/file_in_body/1/6th.kandroi

d.conference.gms.analysis.pdf. [Accessed 21 October 2014]. 

[45]  Y. Soo, “7th Kandroid conference - Google GMS (Google Mobile Services),” 11 

March 2011. [Online]. Available: 

http://www.kandroid.org/board/data/board/conference/file_in_body/1/7.session.7t

h.kandroid.gms.analysis.final.pdf. [Accessed 21 October 2014]. 

[46]  J. Jonsson and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA 

Cryptography Specifications Version 2.1,” RFC 3447, IETF, 2003. 

[47]  Amazon, “Amazon Web Services - AWS Documentation: Signature Version 2 

Signing Process,” [Online]. Available: 

http://docs.aws.amazon.com/general/latest/gr/signature-version-2.html. [Accessed 

8 September 2014]. 

[48]  Amazon, “Amazon Web Services - Aws Documentation: Types of Security 

Credentials,” [Online]. Available: 

http://docs.aws.amazon.com/general/latest/gr/aws-sec-cred-types.html. [Accessed 

8 September 2014]. 



 87 

[49]  Y. Song, C. Yang and G. Gu, “Who is peeping at your passwords at Starbucks? 

— To catch an evil twin access point,” in Dependable Systems and Networks 

(DSN), Chigago, 2010.  

[50]  E. Roger, “International Comparisons: The handset replacement cycle,” 2011. 

[Online]. Available: http://mobilefuture.org/wp-content/uploads/2013/02/mobile-

future.publications.handset-replacement-cycle.pdf. [Accessed 11 November 

2014]. 

[51]  E. Roger, “Entner: Handset replacement cycles haven't changed in two years, but 

why?,” Recon Analytics, 18 March 2013. [Online]. Available: 

http://www.fiercewireless.com/story/entner-handset-replacement-cycles-havent-

changed-two-years-why/2013-03-18. [Accessed 11 September 2014]. 

[52]  Google, “Google accounts security - Account permissions,” [Online]. Available: 

https://security.google.com/settings/security/permissions?pli=1. [Accessed 6 

October 2014]. 

[53]  Google, “Android Source - Security Enhancements in Android 4.2,” [Online]. 

Available: 

https://source.android.com/devices/tech/security/enhancements42.html. [Accessed 

8 September 2014]. 

[54]  OWASP, “Certificate and Public Key Pinning,” OWASP, 14 August 2014. 

[Online]. Available: 

https://www.owasp.org/index.php/Certificate_and_Public_Key_Pinning. 

[Accessed 13 October 2014]. 

[55]  N. Elenkov, “Certificate pinning in Android 4.2,” 12 December 2012. [Online]. 

Available: http://nelenkov.blogspot.fi/2012/12/certificate-pinning-in-android-

42.html. [Accessed 13 October 2014]. 

[56]  Google, “Android Source - Security Enchancements in Android 4.4,” [Online]. 

Available: 

https://source.android.com/devices/tech/security/enhancements44.html. [Accessed 

8 September 2014]. 

[57]  Google, “Android developers blog - Android 4.4 KitKat and Updated Developer 

Tools,” 31 October 2013. [Online]. Available: http://android-

developers.blogspot.ca/2013/10/android-44-kitkat-and-updated-developer.html. 

[Accessed 13 October 2014]. 

[58]  Google, “Android Developer - Dashboards: Platform Versions,” [Online]. 

Available: http://developer.android.com/about/dashboards/index.html#Platform. 

[Accessed 8 September 2014]. 

[59]  Google, “Youtube - Google I/O 2014 - Keynote,” Google, 25 June 2014. 

[Online]. Available: http://www.youtube.com/watch?v=wtLJPvx7-ys#t=368. 

[Accessed 12 October 2014]. 

 



 88 

APPENDIX A 

Appendix A presents 3 different custom requests made to Google with their response. 

The first one requests all the victim’s contacts. Second is a token request for Google 

calendar application and in third request the same token is used to retrieve all the 

victim’s calendar events. 

  
A.1 Request and response for all of the victim’s contacts 

~$ openssl s_client -connect android.clients.google.com:443 

CONNECTED(00000003) 

depth=2 C = US, O = GeoTrust Inc., CN = GeoTrust Global CA 

verify error:num=20:unable to get local issuer certificate 

verify return:0 

--- 

Certificate chain 

 0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=*.google.com 

   i:/C=US/O=Google Inc/CN=Google Internet Authority G2 

 1 s:/C=US/O=Google Inc/CN=Google Internet Authority G2 

   i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA 

 2 s:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA 

   i:/C=US/O=Equifax/OU=Equifax Secure Certificate Authority 

--- 

Server certificate 

-----BEGIN CERTIFICATE----- 

MIIHUzCCBjugAwIBAgIIANgyk4MznC ... 

-----END CERTIFICATE----- 

subject=/C=US/ST=California/L=Mountain View/O=Google Inc/CN=*.google.com 

issuer=/C=US/O=Google Inc/CN=Google Internet Authority G2 

--- 

No client certificate CA names sent 

--- 

SSL handshake has read 4472 bytes and written 434 bytes 

--- 

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256 

Server public key is 2048 bit 

Secure Renegotiation IS supported 

Compression: NONE 

Expansion: NONE 

SSL-Session: 

    Protocol  : TLSv1.2 

    Cipher    : ECDHE-RSA-AES128-GCM-SHA256 

    Session-ID: 

8EED3E0C3A24E7265F78B66544286E63AD86EFD898676A80D650B29421A65447 

    Session-ID-ctx:  

    Master-Key: 

9817D8DA54F54A90DBF92D0B4BACBF06590086FEF8487F0A4D89100646B422BDF060502575A066

60193810131F211B25 

    Key-Arg   : None 



 89 

    PSK identity: None 

    PSK identity hint: None 

    SRP username: None 

    TLS session ticket lifetime hint: 100800 (seconds) 

    TLS session ticket: 

    0000 - e3 00 d6 10 60 44 fb 6a-1f cd 02 31 fe e8 5a cd   ....`D.j...1..Z. 

    0010 - 44 e2 e6 ff dd 0c 86 ba-c1 87 ef 13 bc 39 f0 27   D............9.' 

    0020 - aa 61 c9 3f a9 b4 4e cd-d2 3e b2 b6 1d b6 40 d4   .a.?..N..>....@. 

    0030 - a5 59 29 d9 a6 93 fb 7b-c6 0d 91 9d 6f 69 6b 58   .Y)....{....oikX 

    0040 - 8b 9e a4 8e 3a 55 d6 ff-11 92 55 6d ba aa 77 81   ....:U....Um..w. 

    0050 - a8 da 17 58 4d 0b 5f e1-fa 8b d4 98 9e 58 8e bc   ...XM._......X.. 

    0060 - e9 d5 0c 25 03 55 f7 a8-0b 9c 6c 47 cc aa 89 c3   ...%.U....lG.... 

    0070 - 4b 93 f0 00 3b f6 97 c6-2c c6 fb e9 12 96 3d b5   K...;...,.....=. 

    0080 - b2 93 14 5a 20 fc e9 85-af e1 24 35 e7 6a 22 1a   ...Z .....$5.j". 

    0090 - 25 ef 56 00 f8 ef 7b f5-c8 dc c7 7c 42 a1 c3 75   %.V...{....|B..u 

    00a0 - 8d 12 d9 d5                                       .... 

 

    Start Time: 1408709028 

    Timeout   : 300 (sec) 

    Verify return code: 20 (unable to get local issuer certificate) 

--- 

GET /proxy/contacts/contacts/*****@gmail.com/base2_property-android_linksto-

gprofiles_highresphotos?sz=720&showdeleted=false&orderby=lastmodified&sortorde

r=ascending&max-results=500 HTTP/1.1 

Accept-Encoding: identity 

Authorization: GoogleLogin 

auth=DQAAAPsAAABmVviowlWXVULUgHnitLKbrhiDFkgfd5zzGp4WPwvrrLcIqrSQNLPQHtP1jVeBc

x_GbZDrXC96UvdcEyWYSJNBhOHA07Ph3Pa68yaNVWbYhJbx4BtmqYS6x9T8TWpDh1l5sGNJUtSMm9R

3-XxiB9VmJJ2yUdyX2H0_ZKGdEVgBI5iF1ySbwmsPzGaBMG42iukn8ggw0h6xkWf1HBjTJwGNvqNJQ 

DVZiaREToB1DpXYj-ReHHhAb_YUsHIVaL9d1fsQC8Au_OL5KG9fp2QU2pombYk2vZmeXOjfZv6Vq4c 

nJuVrwI8sTKWIr7KBgY7cLuBgf7ScXyZimcWsqS4fwWC 

GData-Version: 5.0 

Host: android.clients.google.com 

Connection: close 

User-Agent: Android-GData-Contacts/1.3 (m3 JSS15J); 

 

HTTP/1.1 200 OK 

Expires: Fri, 22 Aug 2014 12:03:53 GMT 

ETag: "Qn4zcDVSLy17ImA9XRZbF00DRwc." 

Content-Type: application/atom+xml; charset=UTF-8 

Date: Fri, 22 Aug 2014 12:03:53 GMT 

Cache-Control: private, max-age=0 

X-Content-Type-Options: nosniff 

X-Frame-Options: SAMEORIGIN 

X-XSS-Protection: 1; mode=block 

Server: GSE 

Connection: close 

 

<?xml version="1.0" encoding="UTF-8"?> 

<feed gd:etag="&quot;Qn4zcDVSLy17ImA9XRZbF00DRwc.&quot;" 

xmlns="http://www.w3.org/2005/Atom" 

xmlns:batch="http://schemas.google.com/gdata/batch" 

xmlns:gContact="http://schemas.google.com/contact/2008" 

xmlns:gd="http://schemas.google.com/g/2005" xmlns:openSearch="http://a9.com/-

/spec/opensearch/1.1/"> 

 <id>*****@gmail.com</id> 

 <updated>2014-08-22T12:03:53.088Z</updated> 



 90 

 <category scheme="http://schemas.google.com/g/2005#kind" 

term="http://schemas.google.com/contact/2008#contact"/> 

 <title>Tuomo Tutkija's Contacts</title> 

 <link rel="alternate" type="text/html" href="https://www.google.com/"/> 

 <link rel="http://schemas.google.com/g/2005#feed" type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos"/> 

 <link rel="http://schemas.google.com/g/2005#post" type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos"/> 

 <link rel="http://schemas.google.com/g/2005#batch" 

type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos/batch"/> 

 <link rel="self" type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos?max-

results=500&amp;orderby=lastmodified&amp;showdeleted=false&amp;sortorder=ascen

ding"/> 

 <author> <name>Tuomo Tutkija</name> 

  <email>*****@gmail.com</email> </author> 

 <generator version="1.0" 

uri="http://www.google.com/m8/feeds">Contacts</generator> 

 <openSearch:totalResults>3</openSearch:totalResults> 

 <openSearch:startIndex>1</openSearch:startIndex> 

 <openSearch:itemsPerPage>500</openSearch:itemsPerPage> 

 <entry gd:etag="&quot;Q3szeTVSLi17ImA9Wh9RE00KTgE.&quot;"> 

  

<id>http://www.google.com/m8/feeds/contacts/*****%40gmail.com/base/243721788c6

0ec13</id> 

  <updated>2014-02-13T14:15:52.581Z</updated> 

  <app:edited xmlns:app="http://www.w3.org/2007/app">2014-02-

13T14:15:52.581Z</app:edited> 

  <category scheme="http://schemas.google.com/g/2005#kind" 

term="http://schemas.google.com/contact/2008#contact"/> 

  <title/> 

  <link rel="http://schemas.google.com/contacts/2008/rel#photo" type="image/*" 

href="https://www.google.com/m8/feeds/photos/media/*****%40gmail.com/243721788

c60ec13"/> 

  <link rel="self" type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos/243721788c60ec13"/> 

  <link rel="edit" type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos/243721788c60ec13"/> 

  <gd:email rel="http://schemas.google.com/g/2005#other" 

address="foobar@onewaymail.com" primary="true"/> 

 </entry> 

 <entry gd:etag="&quot;QH87fTVSLS17ImA9XRZbF00ITwY.&quot;"> 

  

<id>http://www.google.com/m8/feeds/contacts/****%40gmail.com/base/488b5c940ec1

90e8</id> 

  <updated>2014-08-22T10:20:21.105Z</updated> 

  <app:edited xmlns:app="http://www.w3.org/2007/app">2014-08-

22T10:20:21.105Z</app:edited> 

  <category scheme="http://schemas.google.com/g/2005#kind" 

term="http://schemas.google.com/contact/2008#contact"/> 



 91 

  <title>Wife</title> 

  <link rel="http://schemas.google.com/contacts/2008/rel#photo" type="image/*" 

href="https://www.google.com/m8/feeds/photos/media/*****%40gmail.com/488b5c940

ec190e8"/> 

  <link rel="self" type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos/488b5c940ec190e8"/> 

  <link rel="edit" type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos/488b5c940ec190e8"/> 

  <gd:name> <gd:fullName>Wife</gd:fullName> <gd:givenName>Wife</gd:givenName> 

  </gd:name> 

  <gd:email rel="http://schemas.google.com/g/2005#home" 

address="wife@example.com"/> 

  <gd:phoneNumber rel="http://schemas.google.com/g/2005#mobile" uri="tel:+358-

5-6807456886">56807456886</gd:phoneNumber> 

  <gd:structuredPostalAddress rel="http://schemas.google.com/g/2005#home"> 

   <gd:formattedAddress>SampleStreet 64</gd:formattedAddress> 

   <gd:street>SampleStreet 64</gd:street> 

  </gd:structuredPostalAddress> 

  <gContact:groupMembershipInfo deleted="false" 

href="http://www.google.com/m8/feeds/groups/*****%40gmail.com/base/6"/> 

  <gContact:groupMembershipInfo deleted="false" 

href="http://www.google.com/m8/feeds/groups/*****%40gmail.com/base/e"/> 

 </entry> 

 <entry gd:etag="&quot;Rnc8eTVSLi17ImA9XRZbF00ITw0.&quot;"> 

  

<id>http://www.google.com/m8/feeds/contacts/*****%40gmail.com/base/230fe6838eb

2917c</id> 

  <updated>2014-08-22T10:21:37.971Z</updated> 

  <app:edited xmlns:app="http://www.w3.org/2007/app">2014-08-

22T10:21:37.971Z</app:edited> 

  <category scheme="http://schemas.google.com/g/2005#kind" 

term="http://schemas.google.com/contact/2008#contact"/> 

  <title>Eve</title> 

  <link rel="http://schemas.google.com/contacts/2008/rel#photo" type="image/*" 

href="https://www.google.com/m8/feeds/photos/media/*****%40gmail.com/230fe6838

eb2917c"/> 

  <link rel="self" type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos/230fe6838eb2917c"/> 

  <link rel="edit" type="application/atom+xml" 

href="https://www.google.com/m8/feeds/contacts/*****%40gmail.com/base2_propert

y-android_linksto-gprofiles_highresphotos/230fe6838eb2917c"/> 

  <gd:name> <gd:fullName>Eve</gd:fullName><gd:givenName>Eve</gd:givenName> 

  </gd:name> 

  <gd:email rel="http://schemas.google.com/g/2005#home" 

address="xxx@example.com" primary="true"/> 

  <gContact:groupMembershipInfo deleted="false" 

href="http://www.google.com/m8/feeds/groups/*****%40gmail.com/base/6"/> 

  <gContact:groupMembershipInfo deleted="false" 

href="http://www.google.com/m8/feeds/groups/*****%40gmail.com/base/114a16f18ce

b4967"/> 

 </entry> 

</feed> 

read:errno=0 

~$ 



 92 

A.2 Token request and response for the calendar application  

~$ openssl s_client -connect android.clients.google.com:443 

CONNECTED(00000003) 

depth=2 C = US, O = GeoTrust Inc., CN = GeoTrust Global CA 

verify error:num=20:unable to get local issuer certificate 

verify return:0 

--- 

Certificate chain 

 0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=*.google.com 

   i:/C=US/O=Google Inc/CN=Google Internet Authority G2 

 1 s:/C=US/O=Google Inc/CN=Google Internet Authority G2 

   i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA 

 2 s:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA 

   i:/C=US/O=Equifax/OU=Equifax Secure Certificate Authority 

--- 

Server certificate 

-----BEGIN CERTIFICATE----- 

MIIHUzCCBjugAwIBAgIIANgyk4M ... 

-----END CERTIFICATE----- 

subject=/C=US/ST=California/L=Mountain View/O=Google Inc/CN=*.google.com 

issuer=/C=US/O=Google Inc/CN=Google Internet Authority G2 

--- 

No client certificate CA names sent 

--- 

SSL handshake has read 4472 bytes and written 434 bytes 

--- 

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256 

Server public key is 2048 bit 

Secure Renegotiation IS supported 

Compression: NONE 

Expansion: NONE 

SSL-Session: 

    Protocol  : TLSv1.2 

    Cipher    : ECDHE-RSA-AES128-GCM-SHA256 

    Session-ID: 

F95A4AC8F3F0B281D2C04071F805127F3390195444F7FCFC2576F5828C731372 

    Session-ID-ctx:  

    Master-Key: 

04B951EDC1B10B81C9AF108A6985729DB5596C3FBA378D96A59495348E2068821B8E1CE4673AEA

66340307F53188CC2A 

    Key-Arg   : None 

    PSK identity: None 

    PSK identity hint: None 

    SRP username: None 

    TLS session ticket lifetime hint: 100800 (seconds) 

    TLS session ticket: 

    0000 - f0 4c 8f f3 09 31 d8 9c-1d 39 af b2 b2 91 7f 5d   .L...1...9.....] 

    0010 - 6e f6 87 04 cd f6 1e 03-63 90 ae 6a b9 1e bd 01   n.......c..j.... 

    0020 - 13 cb 62 76 6f 97 b6 35-6e fa 68 1b ed 0f 46 19   ..bvo..5n.h...F. 

    0030 - ca 08 ed 15 85 ae 84 5b-6b cf cc 9a ed 4b 9f 3b   .......[k....K.; 

    0040 - be f5 3f f2 71 5d 5d ea-fc d2 74 6a ea a8 4a 82   ..?.q]]...tj..J. 

    0050 - df 27 10 02 9c c5 be 50-ab f7 53 96 bf fd 46 30   .'.....P..S...F0 

    0060 - be 77 2b 5d 8f 8e cb 80-28 ec 62 33 cd e7 33 79   .w+]....(.b3..3y 

    0070 - db b3 73 4e f1 ea 6c 77-d6 ad c0 37 e3 82 43 e0   ..sN..lw...7..C. 

    0080 - ee b7 a9 6e aa c9 09 05-53 5d 12 20 8f 5a c4 25   ...n....S]. .Z.% 

    0090 - 07 44 20 50 27 23 29 c5-e1 37 6c ae 78 0a fc 5a   .D P'#)..7l.x..Z 

    00a0 - 5f e4 79 a5                                       _.y. 



 93 

 

    Start Time: 1408710551 

    Timeout   : 300 (sec) 

    Verify return code: 20 (unable to get local issuer certificate) 

--- 

POST /auth HTTP/1.1 

device: 3c5a5c3bcd5b2d7f 

app: com.google.android.calendar 

User-Agent: GoogleAuth/1.4 (m3 JSS15J) (m3 JSS15J) 

content-length: 548 

content-type: application/x-www-form-urlencoded 

Host: android.clients.google.com 

Connection: Keep-Alive 

Accept-Encoding: identity 

 

device_country=fi&operatorCountry=fi&lang=en_GB&sdk_version=18&google_play_ser

vices_version=5089036&accountType=HOSTED_OR_GOOGLE&system_partition=1&Email=**

**%40gmail.com&has_permission=1&service=oauth2%3Ahttps%3A%2F%2Fwww.googleapis.

com%2Fauth%2Fcalendar&source=android&androidId=3c5a5c3bcd5b2d7f&app=com.google

.android.calendar&client_sig=38918a453d07199354f8b19af05ec6562ced5788&callerPk

g=com.google.android.calendar&callerSig=38918a453d07199354f8b19af05ec6562ced57

88&EncryptedPasswd=oauth2rt_1%2F406mny5jZzr7hLLS8RMwYUX0M0okCkeBLRvA1c1ag3M 

 
HTTP/1.1 200 OK 

Content-Type: text/plain; charset=UTF-8 

Date: Fri, 22 Aug 2014 12:29:14 GMT 

Expires: Fri, 22 Aug 2014 12:29:14 GMT 

Cache-Control: private, max-age=0 

X-Content-Type-Options: nosniff 

X-Frame-Options: SAMEORIGIN 

X-XSS-Protection: 1; mode=block 

Server: GSE 

Transfer-Encoding: chunked 

 

d7 

issueAdvice=auto 

Auth=ya29.aQAjs_X49pHYY1EAAAB39h3uv9Euls1VFEf1NXLSm8nFnY8GFGXuPQTwjnaHgE_SNtQL

5mV2hyLgsDYH7kZ-uxfs1n-KgcxkO7p9xIN4G2b-

jvJAkpt7YkLzDGPbhxhE5XoxVQoYxnVixXkIVQU 

Expiry=1408793692 

storeConsentRemotely=0 

0 

 

^C 

~$ 

 
A.3 Request and response of all the victim’s calendar events  

openssl s_client -connect android.clients.google.com:443 

CONNECTED(00000003) 

depth=2 C = US, O = GeoTrust Inc., CN = GeoTrust Global CA 

verify error:num=20:unable to get local issuer certificate 

verify return:0 

--- 

Certificate chain 

 0 s:/C=US/ST=California/L=Mountain View/O=Google Inc/CN=*.google.com 

   i:/C=US/O=Google Inc/CN=Google Internet Authority G2 



 94 

 1 s:/C=US/O=Google Inc/CN=Google Internet Authority G2 

   i:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA 

 2 s:/C=US/O=GeoTrust Inc./CN=GeoTrust Global CA 

   i:/C=US/O=Equifax/OU=Equifax Secure Certificate Authority 

--- 

Server certificate 

-----BEGIN CERTIFICATE----- 

MIIHUzCCBjugAwIBAgIIANg ... 

-----END CERTIFICATE----- 

subject=/C=US/ST=California/L=Mountain View/O=Google Inc/CN=*.google.com 

issuer=/C=US/O=Google Inc/CN=Google Internet Authority G2 

--- 

No client certificate CA names sent 

--- 

SSL handshake has read 4472 bytes and written 434 bytes 

--- 

New, TLSv1/SSLv3, Cipher is ECDHE-RSA-AES128-GCM-SHA256 

Server public key is 2048 bit 

Secure Renegotiation IS supported 

Compression: NONE 

Expansion: NONE 

SSL-Session: 

    Protocol  : TLSv1.2 

    Cipher    : ECDHE-RSA-AES128-GCM-SHA256 

    Session-ID: 

9630BBF1B941DA42FB6C108E5B3E48AE32A765FFC116BE94C654AC19E286F278 

    Session-ID-ctx:  

    Master-Key: 

DED47B7FF70F0E514BEE20DEB0F0194D2C61F7922203E8CCCD654DEAEF91D1ACC878868BCD4BC7

CE90E88001C88F1F7B 

    Key-Arg   : None 

    PSK identity: None 

    PSK identity hint: None 

    SRP username: None 

    TLS session ticket lifetime hint: 100800 (seconds) 

    TLS session ticket: 

    0000 - f0 4c 8f f3 09 31 d8 9c-1d 39 af b2 b2 91 7f 5d   .L...1...9.....] 

    0010 - d2 93 c6 68 4e 31 34 5b-10 90 65 66 a4 ae 46 0c   ...hN14[..ef..F. 

    0020 - a7 8a 77 a8 e7 7d c6 ca-fb cc 08 25 08 ac 08 b6   ..w..}.....%.... 

    0030 - 4f d6 11 9c 13 bc de c6-92 53 5b 5e f3 71 c5 ca   O........S[^.q.. 

    0040 - 5a 85 bc 48 69 68 4c 9b-de 46 f1 2c 21 3a f8 1e   Z..HihL..F.,!:.. 

    0050 - 00 3d 6c 3f ae 36 ce 51-1d 00 08 ae 32 1b 71 1f   .=l?.6.Q....2.q. 

    0060 - 91 f2 3b 0f ea c6 1f 47-f7 25 ac 1f 72 7e 28 41   ..;....G.%..r~(A 

    0070 - 56 e0 6d 5e 54 90 59 8e-cf 7c 80 3f 9a 43 da ff   V.m^T.Y..|.?.C.. 

    0080 - e6 40 0d 1b e6 35 db 4b-af 28 a8 ea 59 fd 43 62   .@...5.K.(..Y.Cb 

    0090 - 0a 54 f5 04 b8 86 ab b3-d8 db cb 80 23 b3 0f 90   .T..........#... 

    00a0 - 03 32 75 4d                                       .2uM 

 

    Start Time: 1408711220 

    Timeout   : 300 (sec) 

    Verify return code: 20 (unable to get local issuer certificate) 

--- 

GET 

/calendar/v3/calendars/****@gmail.com/events?maxAttendees=50&maxResults=200&ti

meMax=2015-09-02T00:00:00.000Z HTTP/1.1 

Accept-Encoding: identity 



 95 

Authorization: OAuth 

ya29.aQAjs_X49pHYY1EAAAB39h3uv9Euls1VFEf1NXLSm8nFnY8GFGXuPQTwjnaHgE_SNtQL5mV2h

yLgsDYH7kZ-uxfs1n-KgcxkO7p9xIN4G2b-jvJAkpt7YkLzDGPbhxhE5XoxVQoYxnVixXkIVQU 

User-Agent: samsung/m3xx/m3:4.3/JSS15J/I9305XXUEMKC:user/release-

keys:com.google.android.calendar:201404014 Google-HTTP-Java-Client/1.14.1-beta 

(gzip) 

Host: www.googleapis.com 

Connection: close 

 

HTTP/1.1 200 OK 

Expires: Fri, 22 Aug 2014 12:40:24 GMT 

Date: Fri, 22 Aug 2014 12:40:24 GMT 

Cache-Control: private, max-age=0, must-revalidate, no-transform 

Content-Type: application/json; charset=UTF-8 

X-Content-Type-Options: nosniff 

X-Frame-Options: SAMEORIGIN 

X-XSS-Protection: 1; mode=block 

Content-Length: 1144 

Server: GSE 

Alternate-Protocol: 443:quic 

Connection: close 

 

{ 

 "kind": "calendar#events", 

 "etag": "\"1408693865712000\"", 

 "summary": "*****@gmail.com", 

 "updated": "2014-08-22T07:51:05.712Z", 

 "timeZone": "Europe/Helsinki", 

 "accessRole": "owner", 

 "nextSyncToken": "CICT2suxpsACEICT2suxpsACGAU=", 

 "items": [ 

  { 

   "kind": "calendar#event", 

   "etag": "\"2817387731424000\"", 

   "id": "fjhb3rflgagu9s6rdadfmustd8", 

   "status": "confirmed", 

   "htmlLink": 

"https://www.google.com/calendar/event?eid=ZmpoYjNyZmxnYWd1OXM2cmRhZGZtdXN0ZDg

gbmlzZWMudHV0QG0", 

   "created": "2014-08-22T07:51:05.000Z", 

   "updated": "2014-08-22T07:51:05.712Z", 

   "summary": "2 week vacation with wife in Hong Kong", 

   "location": "Hong Kong", 

   "creator": { 

    "email": "*****@gmail.com", 

    "displayName": "Tuomo Tutkija", 

    "self": true 

   }, 

   "organizer": { 

    "email": "*****@gmail.com", 

    "displayName": "Tuomo Tutkija", 

    "self": true 

   }, 

   "start": { 

    "date": "2014-09-01" 

   }, 

   "end": { 



 96 

    "date": "2014-09-02" 

   }, 

   "transparency": "transparent", 

   "iCalUID": "fjhb3rflgagu9s6rdadfmustd8@google.com", 

   "sequence": 0, 

   "reminders": { 

    "useDefault": false 

   } 

  } 

 ] 

} 

read:errno=0 

~$ 


