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In this master’s thesis, cell detection from bright-field microscope images is studied
using Histogram of Oriented Gradients (HOG) features with Support Vector Ma-
chine supervised learning classifier. The proposed method is trained iteratively by
finding hard examples. The performance of the method is evaluated using 16 train-
ing and 12 test images with altogether 10736 PC3 human prostate cancer cells. The
cell detection accuracy is assessed with Receiver Operating Characteristic curves,
F1-score and Bivariate Similarity Index. Decision between true positive and false
positive detection is made using PAS-metric.

The experiments consider various parameters and their effect on performance.
It is shown that using hard examples in the training phase increases the level of
generalization of the model considerably. ROC AUC reaches an excellent value of
0.98 after iterative training. When SVM threshold is varied for each image in the
testing phase, F1-score averaged over the peak F1-scores of each image reaches a
high value of 0.85. The most suitable combinations of HOG descriptor parameter
values are presented. All in all, results indicate that HOG can be successfully applied
to bright-field microscope images of PC3 prostate cancer cells taken on subsequent
days, which results in a growth curve that favorably agrees with manual counts. The
implemented cell detection framework outperforms humans in terms of consistency,
objectivity and speed.
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Tässä diplomityössä tutkitaan solujen tunnistamista mikroskooppikuvista käyttäen
Histogram of Oriented Gradients (HOG) piirteitä. Hahmontunnisprosessiin HOG pi-
irteitä käyttäen sisältyy luokitus lineaarisella tukivektorikoneella (SVM), joka on oh-
jatun oppimisen luokitinmalli. Työssä esitetyssä menetelmässä luokitinmalli opete-
taan iteratiivisesti etsien vaikeita esimerkkejä. Menetelmän tarkkuutta tarkastellaan
käyttäen opetusvaiheessa 16:ta kuvaa ja testausvaiheessa 12:ta kuvaa. Mikroskoop-
pikuvat on otettu kirkaskenttäoptiikalla (bright-field microscopy) ihmisen eturauhas-
syöpäsoluviljelmästä (PC3), mihin on merkitty puoliautomaattisesti yhteensä 10736
solua. Menetelmän tarkkuutta arvioidaan käyttäen käyttäen Receiver Operating
Characteristic käyriä, sekä F1-score ja Bivariate Similarity Index metriikoita. Päätös
oikean ja väärän tunnistuksen välillä tehdään käyttäen PAS-metriikkaa.

Tulokset osoittavat, että HOG piirteitä voidaan käyttää onnistuneesti solujen
tunnistuksessa mikroskooppikuvista. Peräkkäisinä päivinä soluviljelmästä otetuista
kuvista voidaan esitetyn menetelmän avulla arvioida kasvukäyrä, jonka ennustamat
solujen lukumäärät vastaavat suotuisasti käsin laskettujen solujen lukumääriä. Otet-
taessa vaikeat esimerkit mukaan opetukseen, väärien tunnistusten määrä pienenee
huomattavasti. Vaikeiden esimerkkien etsinnän jälkeen luokittimen tarkkuus mitat-
tuna ROC käyrän alle jäävänä pinta-alana saa korkeasta luokitustarkkuudesta ker-
tovan arvon 0.98. Menetelmän toimivuuden puolesta puhuu myös F1-score, jonka
suuruus on 0.85 keskiarvoistettuna kaikkien testikuvien yli, kun kullekin kuvalle
ideaalista SVM herkkyyttä on sovellettu. Työn johtopäätöksenä todetaan, että to-
teutettu menetelmä laskee solut riittävällä tarkkuudella sekä objektiivisemmin että
nopeammin kuin ihmiset ja on näin ollen varteenotettava lähestymistapa automaat-
tisessa solujen tunnistamisessa mikroskooppikuvista.
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1. INTRODUCTION

A cell is the basic unit of all known living organisms. Normal cells grow, divide to
produce more cells, and die in a controlled way that is regulated by the body [1].
Cells contain DNA, which is a blueprint for your physical body. If a series of changes
happen in the genes that are responsible for the regulation of the cell cycle, it can
lead to cancer. Cancer is a group of diseases where cells start to grow and divide
abnormally. Rate of cell division can be observed with a growth curve, which is a
useful statistical tool in cancer treatment research. Growth curve is an empirical
model, providing a way to study the evolution of cancer cell culture over time in
terms of number of cells [2].

How can we acquire the number of cells in a given set of samples in the purpose
of creating growth curve? In a case of a limited number of samples to be analyzed,
one of the most straightforward cell counting method is to manually count the
cells by eye under a microscope. However, manual cell counting is an extremely
time-consuming process because it is difficult to process more than a portion of
the sample by the eye. Humans are also subjective and we tend to get tired at
the end of the day. Fortunately, people discovered that computers could be used
to automatically count the number of cells in microscope images. To quantify the
number of cells, they have to be somehow recognized first. This task is important and
challenging image processing problem in bioimage informatics [3], which is referred
to as cell segmentation or cell detection. Cell segmentation aims at identifying cell
boundaries from multi-cell images, whereas in cell detection the object is to detect
only the location instead of the area of each cell. Cell segmentation gives more
detailed information about cells in an image, but from cell counting’s point of view,
there is no need for more than localization of cells provided by cell detection.

The first steps of automated cell counting were taken in 1966 [4]. The year
before, Intel co-founder Gordon E. Moore, stated that the number of transistors in
an integrated circuit would double approximately every two years [5]. The prediction
has proven to be accurate and has had its impact also on medical imaging systems.
This rapid development in technology has led to a situation where high-throughput
imaging systems are generating such large quantities of data that computer-assisted
analysis has become essentially required. Automated cell counting does not only
ensure objectivity and consistency [6] but it is also efficient because computers can
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process large volumes of data quickly and do not get tired or bored.
The purpose of this thesis is to study the suitability of cell detection from bright-

field microscope images using Histogram of Oriented Gradients (HOG) feature de-
scriptors in order to create growth curve. There are several reasons why HOG was
chosen to address the problem. First of all, HOG has been successfully applied
to a number of computer vision problems [7; 8; 9]. Secondly, HOG can represent
partially occluded objects. Thirdly, the original paper pointed out its superiority
in performance when compared to other popular object detection methods such as
SIFT [10]. Finally, HOG has also been used as the basis of more advanced detection
approaches such as the state-of-the-art Latent SVM object detection algorithm [11].

Research of a similar nature has been conducted before, which concludes that
HOG can be successfully applied to the human cell detection [12]. This thesis
validates the result and aims to give deeper insight into the topic by providing
a practical evaluation, where the method is trained and applied to a research-scale
large collection of human prostate cancer cell images spanning a six day cell culturing
experiment.

Several methods exist for counting the cells in an image. The difficulty of per-
forming the cell segmentation or detection task and choosing the correct algorithm
depends much on the type of cells being targeted. If the cells are well separated from
each other and have uniform intensity, simple thresholding or watershed algorithms
are popular choices of approach [13; 14]. If the cells are packed together, algorithms
which account for cell shape and size are preferred [15]. Cells are usually more
packed together in tissue samples than those grown in culture. Another approach,
like the one used in this study, is to recognize cells using training-based machine
learning methods. Examples of cells and background are shown to the detector,
which then learns their most important characteristics. In general, both supervised
and unsupervised learning algorithms can be applied.

Microscope images usually vary more or less from application to application, for
example, in terms of cell shape, cell density, noise level or resolution [16]. There
are also many different microscopy techniques that are used with cell imaging. For
example, in fluorescence microscopy, cells are first stained with a fluorescent dye and
then illuminated with high energy light which causes the target cells to glow as their
stains emit lower energy light. Even though fluorescence labeling can enable more
accurate and effective automated analysis, it is not applicable in all use cases because
fluorescence is not permanent and staining causes unnecessary stress to cells. These
disadvantages can be overcome by using the simplest light microscopy technique,
bright-field microscopy, combined with image processing methods. A bright-field
microscope simply measures visible light transmitted through a sample.

Cell segmentation and cell detection are very application specific tasks and uni-
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versal solution does not exist. The holy grail of software development in this field
of study is to develop set of tools which could be used successfully in extracting
cell-based data from different types of images.

The rest of this thesis is structured as follows. Chapter 2 gives an introduction to
the field of machine learning and pattern recognition, it explains the structure of a
typical pattern recognition system, and describes the model selection tools that are
used in this study. Chapter 3 presents the theory of object detection with HOG fea-
tures in detail. The metrics that are applied in performance evaluation are explained
in Chapter 4. Chapter 5 discusses practical considerations in the implementation
and introduces both the structure of the implemented cell detection framework and
microscope images. Results are presented in Chapter 6, which addresses classifica-
tion accuracy and overall performance of the system. Finally, Chapter 7 discusses
meaning of the results and potential future work.
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2. PATTERN RECOGNITION AND MACHINE

LEARNING

Object recognition is easy for humans - even little children can do it. For example,
when we are shown images of chairs, we immediately know it is a chair even though
we have never seen a chair like that. It does not matter much if the image is fuzzy,
if we see only half of the chair, or if the chair has four legs or only one leg. How
do we know the image represents chair? We have seen a lot of different chairs and
captured what is essential in them. When we were children we saw objects and
someone told us some of them were chairs. Sometimes we had to be corrected when
we called something chair that was actually not a chair. In the same way, if we want
a computer to recognize chairs from images, we first have to teach them how chairs
and not-chairs look like. Until this day, object recognition unfortunately remains as
largely unsolved problem for computers.

After computers were invented, people started wondering if they could be pro-
grammed to learn like humans. That would mean automatically learning how to
learn by themselves and improving with experience. We do not know how to do
it yet. Machine learning as a branch of artificial intelligence is, however, working
towards the goal by studying how we can teach computers to make and improve pre-
dictions or actions based on some data. The data could be, for example, thousands
of images of human faces as the computer learns to recognize faces, or recordings of
conversations in order to understand speech. The more the examples, the better the
computer learns. Luckily we live in a world where enormous amounts of data are
being collected every day. Thus, automated procedures are required when making
sense of this diverse collection of data. Computers can already outperform humans
in many logical problem solving tasks, such as playing chess. But in perceptual pro-
cesses, computers perform a lot worse than humans, even though recent advances in
specific learning tasks claim that computers can solve some tasks even better than
humans [17]. It seems that machine learning will become increasingly important in
computer science and part of mainstream technology.

When it comes to current trends in machine learning, neural networks or more
specifically deep and large networks have attracted a great interest during recent
years. Instead of conventionally concentrating on creating complex and sophisticated
features, we can employ deep learning that can automatically learn the features if
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Figure 2.1: Examples of handwritten digits.

large amounts of training data is available. Using these computationally intensive
techniques has resulted in a tremendous improvement in image recognition accuracy
[18; 19].

Some people talk about machine learning as pattern recognition, where the goal
is to teach computer to recognize patterns from the data. Example of pattern recog-
nition task is using purchase transaction data to identify groups of customers who
behave in a similar way. However, what is essential to these nearly synonymous
branches, is their basis being in statistical learning theory. Statistical learning the-
ory provides a framework for making optimal decisions given all the information
available [20]. It is worth noting, though, that the information can be incomplete
or ambiguous.

The basic building blocks of machine learning and pattern recognition systems
can be introduced by considering an example problem of recognizing handwritten
digits, such as the ones shown in Figure 2.1. Let’s say we have collected a set of
N images, where each represents one handwritten digit. Images are processed so
that each image will be represented by a feature vector x = (f1, f2, . . . , fM) of M
features (e.g., the width of the letter in the image) along with class label y, which
expresses the identity of the digit (0, . . . , 9). Set of feature vectors and class labels
{(x1, y1), (x2, y2), . . . , (xN , yN)} is referred to as training data, which is the input of
a learning algorithm. The goal of the learning is to construct a rule, or classifier,
which can be used to predict the most probable class label ŷu of feature vector
xu representing unseen image with index u of handwritten digit. The ability to
classify correctly unseen data, referred to as testing data, determines the level of
generalization. The problem of generalization is a central issue in machine learning
and pattern recognition.

The main types of learning systems are supervised learning, unsupervised learn-
ing, semi-supervised learning, and reinforcement learning. In supervised learning,
we have prior information about what kind of example belongs to what class. In
unsupervised learning, we have to look for interesting patterns or clusters in the
data without any feedback about the correctness of the findings. In other words, in
supervised learning class labels are known while they are unknown in unsupervised
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learning. Semi-supervised learning combines labeled and unlabeled data to achieve
improvement in learning accuracy when compared to a situation where only labeled
or unlabeled data would have been used. In reinforcement learning, a software agent
interacts with its environment and receives a reward after every action. The agent
keeps track of these rewards, and over time it will learn what action to choose in
order to gain the largest reward.

The two most common supervised learning tasks are classification and regression.
Classification predicts class labels whereas regression aims to find some function
which describes the data so that real-valued numbers can be predicted. Regression
is done by choosing a model and analyzing the relationship between its dependent
variable and one or more independent variables. The most common unsupervised
learning task is clustering, where the data is split into subgroups so that data points
inside one subgroup are somehow more similar to each other than data points be-
tween different subgroups.

2.1 Basic Structure of Pattern Recognition Systems

There exists a variety of approaches in machine learning and pattern recognition.
Similarly, there are a vast number of problems that can be solved with these systems.
Regardless of the fact that the majority of different systems have very application
specific pipelines, many of them can be thought to consist of five key stages [21]:

Preprocessing & 
segmentation

Data 
acquisition

Feature extraction & 
feature selection Classification Post-processing

Figure 2.2: Basic structure of pattern recognition systems consists of five key stages:
data acquisition, preprocessing and segmentation, feature extraction and feature
selection, classification, and post-processing.

Data acquisition refers to collecting observations of the environment of interest
somehow. Sensing can be done for example simply by counting the number of cars
passing by every hour, or with any measurement device such as recording electrical
activity of the brain with an EEG machine or taking images with a microscope, like
the material was collected for this thesis. It usually happens that measurements
capture also some noise or other irrelevant data that has nothing to do with the
pattern recognition task. Computer vision is machine learning related field which
focuses on images captured from the real world in order to produce numerical or
symbolic information.

Preprocessing and segmentation reduce the variability between classes of interest.
Preprocessing refers to operations performed on the raw data in order to improve
its quality. Such operations could be filtering background noise or normalizing the
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data. Normalization means rescaling the data to a standard scale, such as [0, . . . , 1],
so that it becomes comparable. For instance, temperature can be acceptably mea-
sured in both Celsius and Fahrenheit, but those units are not comparable until
normalized.

Segmentation refers to act of dividing data into smaller pieces of usually fixed
size, so that each piece represents one object of interest. Each microscope image in
this thesis contains multiple cancer cells. Each cell is therefore manually segmented
into individual image before feature extraction.

The aim of feature extraction (FE) is to transform the data into some new
feature space, where the pattern recognition problem becomes easier to solve. More
specifically, FE is the search of such features, which best describe the classes in the
data. Unfortunately, universally optimal features do not exist. FE is an application
specific task; some features might work well with one problem, but poorly with
another. For example, let’s think of a task of distinguishing apples from oranges.
They are both more or less round, so feature describing their shape would not help
us much to distinguish them from each other. A lot better choice would be to select
color as a feature. Output of FE is a feature vector containing the extracted features.

Could we use raw data as features? Nothing stops us from doing that. How-
ever, let’s say our facial recognition system’s material consists of 1000× 1000 pixel
grayscale images. If each pixel represented one feature, it would lead us having fea-
ture vectors of length 106, which may be computationally infeasible. Feature vectors
would also assumingly contain many features useless for classification. FE aims to
find a feasible number of features which will extract the relevant information from
the input data. One of the classic methods is Principal Component Analysis (PCA).
The goal of PCA is to select uncorrelated variables (principal components) from the
data, which best describe the variation in a sum-squared error sense [21]. One has
to be careful when reducing dimensionality in this stage. Accuracy of the system
can suffer if the information important to the solution is discarded.

If there is a reason to suppose that the feature vector contains many redundant
or irrelevant features, feature selection (FS) can be used to select only a subset
of features while discarding the rest. Benefits of FS are easier interpretation of
the predictive model, reduced computational effort in the training stage and better
generalization due to reduced overfitting. Example of FS method is LASSO, which
minimizes the residual sum of squares subject to the sum of the absolute value of
the coefficients being less than a constant [22]. As a result, irrelevant features will
be discarded as their coefficients become zero.

Feature extraction and feature selection are closely related but different processes,
even though some consider them as one broad category of methods and sometimes
FE and FS methods are included in classifier implementations. However, the objec-
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tive of FE is to transform the existing features into a lower dimensional space by
creating new features whereas FS selects a subset of the existing features.

In the classification stage, the goal is to determine the most appropriate class for
given new feature vector based on training data. The algorithm which implements
the classification is called the classifier. Variety of different classifiers exist. Some of
the most popular ones such as neural networks, support vector machines, k-nearest
neighbors, Bayesian classifiers, decision trees and logistic regression are explained
in [20; 21] in detail. The range of algorithms raises a question: how do you know
which classifier suits the best for the particular classification problem? Of course,
some classifiers are computationally less complex than others, but it is usually more
important to have adequately large, high-quality data set than selecting appropriate
classifier. One approach is to perform cross-validation over a number of different
classifiers and select the one which minimizes the classification error.

Classifiers can be divided into two categories, generative and discriminative. Gen-
erative techniques build a probabilistic model for the distribution of the features,
whereas discriminative techniques directly learn a mapping between inputs and class
labels [23]. Example of a generative model is Gaussian Mixture Model and example
of a discriminative model is Support Vector Machine, which is used in this study.
Both techniques have their own characteristics, strengths, and weaknesses. Gen-
erative models are often more flexible but it has been shown that discriminative
classifiers can outperform them if large enough training data set is available [24].

Post-processing refers to the actions taken based on the result(s) of classifica-
tion. In the case of character recognition this could mean forming words from single
letters and performing spell check validation.

2.2 Model Selection

Model selection is a process of selecting appropriate machine learning techniques
and parameter values for given data. Usual workflow starts with selecting a set of
candidate models. Next, search strategy and an evaluation criterion are selected.
The candidate models are compared by building the models according to the search
strategy and calculating the evaluation criterion values for each model. Finally, the
model is selected which performs the best. Subsection 2.2.1 discuss grid search as
an example of search strategy and Subsection 2.2.2 discusses cross-validation as an
example of evaluation criterion.

In the model selection task the complexity of the candidate models is tuned so
that the models will generalize, capture the essence of the data, as well as possi-
ble. Complexity can mean, for example, describing the data with an equation with
more parameters than actually needed. When the model is too complex, usually
overfitting occurs. Overfitting is one of the central problems in machine learning.
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Figure 2.3: Example of model selection in regression. Left: the model is too simple
and underfitting occurs. Center: well generalized model capturing the essence of
the signal. Right: the model is too complex and overfitting occurs.

Overfitted model describes noise or random error instead of the underlying signal in
the data. On the contrary, underfitting occurs when the model fails to capture the
underlying signal in the data. Underfitted model is usually too simple. Both un-
derfitted and overfitted models will lead to poor predictions on unseen data. Figure
2.3 illustrates underfitted model, well-generalized model and overfitted model.

Bias and variance are important statistical properties describing the quality of the
model. Their nature is easy to explain with an example. Let’s think of an archer
shooting arrows at a target. Bias describes how much the archer systematically
misses the bullseye in the same direction. Variance describes how scattered the
arrows are. Underfitted model has typically high bias and low variance. Well-
generalized model typically has low bias and low variance. Overfitted model has
typically low bias and high variance.

A medieval monk, William of Occam, stated in the 14th century: "Entities should
not be multiplied unnecessarily.". The principle became known as Occam’s razor.
It proposes that a problem should be stated in its basic and simplest terms. It can
be applied to model selection meaning the simplest model that fits the data is also
the most plausible [25].

2.2.1 Grid Search

Grid search is a method for parameter optimization. It starts by selecting reason-
able and usually exponentially growing sequences (e.g., 10−5, 10−4, . . . , 104, 105 or
2−10, 2−9, . . . , 29, 210) for each parameter. All combinations of parameter values are
used one after another to build a new model. Performance metric values are calcu-
lated for each model. As a result, the combination of these parameter values with
the best score is chosen.

The downside of the grid search is the computational time required to find suitable
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values for a given parameter. One solution to speed up the grid search is to do a
coarse search first in order to identify "better" region of the grid. Next, finer grid
search is performed in this small region.

2.2.2 Cross-Validation

Cross-validation (CV) is a model evaluation method. It is essential to be able to
ensure the quality of a model and to indicate future model predictivity on unseen
data. There are many types of CV techniques, but all of them have the same
basic idea. First, data is split into multiple parts. In Figure 2.4, which illustrates
cross-validation, data is divided into 5 parts. Then, one part of the data (training
set, parts 1,2,4 and 5 in Figure 2.4) is used for training a model and other part of
data that was not used in training of the particular model (validation set, part 3
in Figure 2.4) is used for testing the model. Testing means measuring performance,
i.e., CV error. If the same data was used for training and testing, it would result in
biased classification results. It would be the same thing as giving away the answers
when arranging an exam. Using independent data set gives a hint of the level of
generalization of the model and helps to avoid overfitting.

Train Train Train TrainValidation

1 2 3 4 5

Figure 2.4: Illustration of cross-validation.

In k -fold cross-validation, the data is randomly split into k parts of equal size.
One of the parts is reserved for testing and the rest k -1 parts will be used for training.
The CV process is repeated k times (the folds) so that on every iteration different
part is used for testing. The final model that is selected is the one which produces
the best performance averaged over all k folds.

Leave-one-out cross-validation (LOO-CV) is the same as k -fold cross-validation
with the exception that k=n, where n is the total number of examples. The benefits
of LOO-CV are avoiding random sampling and making maximum use of the data.
The disadvantage of LOO-CV is high computational cost because n different models
are trained on all the data except for one example.
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3. OBJECT DETECTION

The goal of object detection is to detect all instances of a particular class in given
image or video sequence. The task is still a challenge in the field of computer vision
mainly because of the number of possible sources of variation. There are a large
number of possible locations where objects can appear at different scales and shapes.
Even if two objects from the same class are more or less similar sized in real life, but
have different distance from the camera, they appear at different scales in the image.
Objects can be partially obstructed from view or objects from different classes can
somehow remind each other too much, which leads to false detections. Additionally,
variation in the imaging process such as changes in illumination, changes in camera
position, or digital artifacts has to be taken into account.

This chapter is organized as follows. Section 3.1 describes step by step how ob-
jects are detected using Histogram of Oriented Gradients (HOG) feature descriptors.
Section 3.2 explains how integral images can be used to speed up HOG feature com-
putation. Section 3.3 introduces main ideas behind Support Vector Machine, which
is the last step in object detection with HOG. HOG is regarded as a discriminative
object detection method because SVM learns explicit boundary between classes.

3.1 Histogram of Oriented Gradients

Dalal and Triggs introduced Histogram of Oriented Gradients (HOG) feature de-
scriptor in 2005 [7]. HOG describes features based on local histograms of gradient
orientations weighted with gradient magnitudes. In the original paper, the method
was proven to be effective in human detection, but HOG can also be used success-
fully with other pattern recognition problems such as face recognition or vehicle
orientation detection [8; 9].

HOG has become very popular after its release in the field of computer vision.
One of the key advantages of HOG is being able to describe object orientation
while showing invariance to geometric and photometric transformations because it
operates in localized regions. In other words, HOG tends to be unaffected by changes
in shapes and lighting, which appear in larger spatial regions. HOG can be applied
to both color and grayscale images, but using color gives slightly better results.

An overview of object detection with HOG is presented in Figure 3.1. HOG
consists of gamma and color normalization, gradient and orientation computation,
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Figure 3.1: Block diagram of object detection with HOG feature descriptors.

cell histogram computation, normalization across blocks, and flattening into a fea-
ture vector. After calculating the HOG feature, it is classified with support vector
machine. Following Subsections 3.1.1-3.1.5 explain these steps in detail.

3.1.1 Gamma and Color Normalization

The first step in HOG is to perform gamma and color normalization. These pre-
processing procedures bring a modest improvement in performance and reduce the
noise introduced by the camera. The noise in the image distorts gradient values
which are computed in the next step. Color normalization, or intensity normaliza-
tion when targeting grayscale image, changes the range of pixel intensity values to
achieve consistency in dynamic range between images. Following equation defines
the color normalization IN [26]:

IN = (I −Min)
newMax− newMin

Max−Min
+ newMin, (3.1)

where I is the image to be normalized, Min and Max are its minimum and maximum
values, and newMin and newMax define the range in the normalized image.

Gamma γ, in turn, represents nonlinear relationship Lactual = Lγdetected between
detected light Ldetected (i.e., pixel value) and actual luminance Lactual [27]. When
a number of photons is doubled, also the signal received by digital camera sensor
is doubled. However, human visual system behaves differently: when number of
photons is doubled, we perceive the light as being only a fraction brighter. Simple
gamma normalization is done by taking the square root of the pixel values in the
image [7]. This operation expects the gamma to be 0.5. In grayscale images, gamma
and color normalization are applied on intensity values and in color images they are
applied to each color channel.

3.1.2 Gradient and Orientation Computation

The gradient tells how the image changes in the given direction. Gradient compu-
tation is done by sliding a mask over the image pixel by pixel in x and y directions
while calculating gradient value for each pixel describing relationship of neighboring
pixel values according to the mask. Dalal and Triggs compared the functioning of
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following masks:

1-D centered: ∇x = [−1, 0, 1] ∇y = [−1, 0, 1]T

1-D uncentered: ∇x = [−1, 1] ∇y = [−1, 1]T

1-D cubic-corrected: ∇x = [1,−8, 0, 8,−1] ∇y = [1,−8, 0, 8,−1]T

3x3 Sobel: ∇x =

 −1, 0, 1

−2, 0, 2

−1 0, 1,

 ∇y =

 −1, −2, −10, 0, 0

1, 2, 1


Roberts cross: ∇x =

[
1, 0

0, −1

]
∇y =

[
0, 1

−1, 0

]
.

(3.2)

The simple 1-D centered mask worked the best with human detection. When using
this mask, x-gradient’s first and last column and y-gradient’s first and last row
have to be handled separately because the mask does not wholly fit in the image in
those locations. Thus, the difference between the edge pixel and its adjacent pixel
is calculated. The result of the gradient computation with the 1-D centered mask
is presented in Figure 3.2. Also, effect of Gaussian smoothing before applying the
mask was studied, but it was noticed to lower performance.

Figure 3.2: There is the original image on the left, followed by x-gradient in the
center and y-gradient on the right. Gray pixels have small gradient while black and
white pixels represent a large gradient.

Image gradient has two properties: magnitude and orientation. The magnitude
tells how quickly the image is changing and the orientation tells the direction in
which the image is changing most rapidly. They are defined as follows:

magnitude =
√
∇2
x +∇2

y orientation = arctan
(∇y

∇x

)
. (3.3)

In the case of grayscale image the gradient is calculated from the pixel intensity
values, whereas in color images, gradient is calculated for each channel and the one
with with the greatest magnitude (and its corresponding orientation) is selected.
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3.1.3 Cell Histograms

Next, the image is divided into small subsections called cells. For each cell, a
histogram of the gradient orientations of the pixels inside the cell is calculated.
The orientations can be between 0-180◦ (unsigned) or 0-360◦ (signed). Unsigned
orientations worked out better with human detection. Dimensionality is reduced
by quantizing orientations into a predefined number of evenly spaced bins (discrete
intervals). Dalal and Triggs noticed that increasing the number of bins increases
performance up to 9 bins, after which increasing bins makes only little difference.
Each pixel in the cell casts a vote weighted by its magnitude for the bin that its
orientation was quantized to. The voting simply means increasing the frequency of
the observed bin by the magnitude of the pixel.
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15 45 75 105135165

35°

1/3 2/3

Figure 3.3: Left: magnitude and orientation are calculated for every pixel in the
image from gradient values. Center: orientations are quantized to the bins. Right:
weight is bilinearly interpolated between neighboring bins.

The accuracy of cell histograms is improved and aliasing is reduced by interpo-
lating votes linearly between neighboring orientation bins and bilinearly into spatial
cells. Linear interpolation between neighboring bins means dividing the vote be-
tween neighboring bins if the orientation does not happen to be exactly the same
as one of the bin centers. For example, let’s assume orientations between 0-180◦

are divided into 6 bins, and pixel gradient orientation of 35◦ is being added to the
histogram. The difference is 10◦ to larger neighboring bin center and 20◦ to smaller
neighboring bin center. Hence, 2

3
of the magnitude is added to the larger neigh-

boring bin and 1
3
of the magnitude is added to the smaller neighboring bin. Figure

3.3 illustrates this example. Bilinear interpolation between spatial cells means dis-
tributing the vote between neighboring cell histograms according to the vertical and
horizontal distance to those cell centers.
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3.1.4 Block Normalization

After generating cell histograms, they are grouped together into larger subregions
called blocks which typically overlap with each other. Figure 3.4 represents two
different block geometries, which provide very similar performance: square or rect-
angular (R-HOG) and circular (C-HOG). R-HOG blocks are represented by three
parameters: the number of cells per block, the number of pixels per cell and the
number of channels per cell histogram. There are two C-HOG variants: one with a
single central cell and another with angularly divided central cell. C-HOG blocks
are described by four parameters: the number of angular and radial bins, the radius
of the center bin and the expansion factor for the radius of additional radial bins.

Radial bins     Angular bins

R-HOG C-HOG

B
lo
ck

Cell

B
lo
ck

Center
          bin

Figure 3.4: R-HOG and C-HOG block geometries.

The set of histograms inside each block is flattened to a 1-D feature vector v,
which is then contrast normalized in order to increase performance by introducing
better invariance to illumination and shadowing. Dalal and Triggs compared four
different methods for block normalization: L2-norm, L2-Hys, L1-sqrt, and L1-norm.
First three of these turned out to work equally well, whereas L1-norm produced a
little less reliable performance. However, all four normalization methods improved
performance significantly when compared to non-normalized data. L1-norm, L1-
sqrt, and L2-norm are defined as follows:

L1-norm of v =
v

||v||1 + ε

L1-sqrt of v =

√
v

||v||1 + ε

L2-norm of v =
v√

||v||22 + ε2
,

(3.4)

where ||v||k is k -norm of v, and ε is arbitrary small number to prevent division by
zero. L2-Hys is the same as L2-norm followed by clipping (limiting the maximum
values of v to 0.2) and renormalizing, as in [10]. The final descriptor is obtained by
concatenating the normalized block vectors to a single vector. The length of final
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R-HOG descriptor is the number of cells in each block multiplied by the number of
blocks in the image multiplied by the number of orientations, i.e., quantized bins.

3.1.5 Classification with SVM

The last step in object detection with HOG is to use a supervised machine learn-
ing algorithm, Support Vector Machine (SVM). SVM is trained with HOG feature
vectors of different classes. Hyperplane is adjusted accordingly to distinguish the
kind of HOG features that each class typically exhibits. Linear kernel was proposed
in the original paper, even though the use of Gaussian radial basis function kernel
increases performance slightly the cost being increased run time.

When detecting objects from unseen image with a trained SVM classifier, sliding
window technique is used. The input image is resized to various scales, through
which optionally overlapping window is moved and descriptors are computed. For
each window a score is assigned by the classifier, describing how probable the current
detection is. As a result, multiple detections of the same object are achieved. These
detections have to be fused into one detection, for example, with mean-shift method.

The resizing process gives the ability to detect objects at multiple scales with
a single model. Computationally more expensive method would mean training a
model for each scale and running them on the same image without resizing.

3.2 Integral Image

The computational effort of HOG can be reduced by precomputing integral images
from gradient magnitudes for each bin [28]. It allows cell histograms to be built in
constant time, O(1) time complexity, by extracting sums of rectangular subregions
from the integral image. Integral image is also known as Summed area table, which
was introduced to computer graphics already in 1984. However, the algorithm was
not properly introduced in computer vision until 2001 by Paul Viola and Michael
Jones [29]. Integral image ii(x,y) describes sums of all original image pixel-values
i(x’,y’) left of and above each pixel (x, y):

ii(x, y) =
∑
x′≤x
y′≤y

i(x′, y′). (3.5)

Figure 3.5 shows an example where integral images are generated from gradient
magnitude values for each bin. Gradient orientations 0-180◦ are quantized to 6 bins.
It can be seen how integral images get brighter towards the lower right corner at dif-
ferent rates depending on orientation bin indicating the accumulation of magnitude
values.
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Original Bin 1: 0−30° Bin 2: 30−60°

Bin 3: 60−90° Bin 4: 90−120° Bin 5: 120−150° Bin 6: 150−180°

Magnitudes

Figure 3.5: The first two leftmost images in the upper row are the original image
and its gradient magnitudes. Subsequent images are integral images calculated from
gradient magnitudes for each bin. Intensities of integral images are normalized to
the same scale.

After computing the integral image, sums of arbitrary sized rectangular subre-
gions of original image pixel-values can be calculated using only four array references
into the integral image:∑

x0<x≤x1
y0<y≤y1

i(x, y) = ii(L4) + ii(L1)− ii(L2)− ii(L3), (3.6)

where L1=(x0, y0), L2=(x1, y0), L3=(x0, y1) and L4=(x1, y1). Figure 3.6 illustrates
the computation of rectangle D spanned by the points L1, L2, L3, and L4.

x

y

x

yyy
A

C

B

D

L1 L2

L3 L4

Figure 3.6: The sum within rectangle D in the original image can be computed with
the help of four locations L1, L2, L3 and L4 in the integral image. Locations and the
sum of pixels in rectangles: L1=A, L2=A+B, L3=A+C, and L4=A+B+C+D. The
sum within D can be computed as L4+L1-L2-L3.
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3.3 Support Vector Machine

Corinna Cortes and Vladimir Vapnik introduced supervised machine learning al-
gorithm Support vector machine (SVM) in 1995 [30]. SVM is highly robust and
computationally effective classifier which provide a learning technique for pattern
recognition and regression estimation. The idea behind SVM is to maximize the
margin around the separating hyperplane between two classes. Until this day, SVM
remains as one of the most popular classification methods in machine learning [31].

This section is divided into three subsections. Subsection 3.3.1 introduces the
optimization problem of finding the maximum margin hyperplane. Subsection 3.3.2
describes kernel functions, which transform the data into higher dimensional space
where non-separable data becomes separable. Lastly, subsection 3.3.3 discusses prac-
tices in preprocessing and parameter selection when implementing SVM classifier.

3.3.1 The Optimization Problem

Let’s assume Figure 3.7 like classification problem of separating two classes with
linear hyperplane H. We are given n training examples {xi, yi} , i = 1, . . . , l, where
each example has d features (xi ∈ Rd) and a class label (yi ∈ {−1, 1}). The
hyperplane separates the data points with yi = −1 from those with yi = 1. Other
methods might find lots of possible solutions, but SVM finds an optimal solution. It
maximizes the distance γ, or margin, between the hyperplane and the nearest data
points from both classes (the support vectors). All hyperplanes are defined as the
set of points x which satisfy

H : wTx+ b = 0, (3.7)

where w is the vector perpendicular to the hyperplane and bias b is a constant
representing the distance from the origin to the hyperplane along the direction of w.
If the data is linearly separable, it is possible to form mutually parallel hyperplanes
H1 and H2 so that they separate the data without leaving any data points between
them: H1 : wTx+ b = −1

H2 : wTx+ b = +1.
(3.8)

Data points on the H1 and H2 are the support vectors and the space between H1

and H2 is the margin. Following two constraints ensure that arbitrary input xi will
not fall into the margin:wTxi + b ≤ −1 for yi = −1

wTxi + b ≥ +1 for yi = +1,
(3.9)
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Figure 3.7: Linear and optimal hyperplane H separates class squares from class
triangles with maximum-margin. Margin is maximized with the help of parallel
hyperplanes H1 and H2 pressing against support vectors, closest samples of each
class, that are marked with solid black.

which can be combined together as:

yi(w
Txi + b)− 1 ≥ 0 ∀i. (3.10)

Let d− be the shortest distance from the separating hyperplane to the closest
negative examples and d+ the shortest distance from the separating hyperplane to
the closest positive examples. Now, we can define the margin γ, or distance between
H1 and H2, as d− + d+.

The points which lie on the hyperplane H1 have perpendicular distance |−1−b|||w||

from the origin, where ||w|| =
√
wTw =

√
w2

1 +w2
2. Similarly, the points which

lie on the hyperplane H2 have perpendicular distance |1−b|||w|| from the origin [32].
Because the separating hyperplane is equally distant from H1 and H2, it will give
us d− = d+ = 1

||w|| . Furthermore, this gives the margin

γ = d− + d+ =
2

||w||
. (3.11)

In order to maximize the margin, optimal parameters w and b are found by
minimizing ||w||2 subject to the constraints in equation 3.9. This is a constrained
optimization problem, which is solvable by Lagrangian multiplier method. The dual
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Lower dimension Higher dimension

Figure 3.8: The kernel function maps lower dimensional input space to higher di-
mensional feature space where the data becomes linearly separable.

form of the C-SVM problem is:

min
1

2

l∑
i=1

l∑
j=1

αiαjK(xi,xj)− C
l∑

i=1

αi, (3.12)

subject to αi ≥ 0 and yTα = 0 where αi represent Lagrange multipliers, y =

[y1, . . . , yl]
T, K is a kernel function, and C is cost parameter.

The main two formulations of SVM are C-SVM and ν-SVM. Even though they
are different problems, they both have the same optimal solution set [33]. The
formulations differ in terms of a penalty parameter. As their names imply, C ∈
[0,∞) is the penalty parameter in C-SVM, and ν ∈ [0, 1] is the penalty parameter
in ν-SVM. The penalty parameters relax the constraints of the problem setting so
that a solution can be found to non-separable data by allowing training errors. The
parameter C controls the trade-off between training error and margin maximization.
High value of C tries to classify all the samples correctly and the model may not
generalize well to unseen data [32]. C can be seen as a way of controlling overfitting
of the data. The parameter ν, in turn, represents an upper bound on the fraction
of margin errors and a lower bound on the fraction of support vectors [34]. Some
prefer ν-SVM over C-SVM because it has a more meaningful interpretation. C-SVM
formulation is used in this thesis.

3.3.2 Kernel Functions

Sometimes linear classifiers are not complex enough to capture the structure in the
data. In such case training examples xi can be mapped with function φ : Rn → Rm

from n-dimensional space into higher m-dimensional space where it is possible to
perform the separation. Figure 3.8 represents this mapping.

Kernel function K computes the dot product K(xi,xj) = φ(xi)
Tφ(xj) in the
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higher dimensional space without the need of more complex computation of the
coordinates of the data in that space. This operation is called the kernel trick. Four
basic kernels are:

Linear: K(xi,xj) =xi
Txj

Polynomial: K(xi,xj) =(γxi
Txj + r)d, γ > 0

Radial Basis Function (RBF): K(xi,xj) = exp(−γ||xi − xj||2), γ > 0

Sigmoid: K(xi,xj) = tanh(γxi
Txj + r),

(3.13)

where γ, r, and d are kernel parameters [35].

3.3.3 Data Preprocessing and Parameter Selection

SVM takes vectors of real numbers as an input. Therefore, if the input data has
categorical features, such as {rock, paper, scissors}, it has to be converted into nu-
meric data: {1,0,0}, {0,1,0}, and {0,0,1}. Additionally, it is highly recommended
to normalize the range of the data (both training and testing data) linearly, for ex-
ample, between [−1, 1] or [0, 1]. Normalization prevents features in greater numeric
ranges dominating those in smaller numeric ranges.

Choosing kernel function, its parameters, and parameter C is a crucial step in
SVM when considering its efficiency. Generally the linear kernel provides a useful
baseline, but in more sophisticated case cross-validation procedure is used to choose
the best performing kernel function. Also, the RBF kernel is commonly suggested
as a reasonable first choice because with certain parameters, it behaves like linear
and sigmoid kernel [35]. Other reasons for choosing RBF are its suitable number
of tunable parameters in terms of complexity of the optimization, and RBF kernel
has fewer numerical difficulties than other kernels. However, RBF is not suitable if
there are a vast number of features. When tuning RBF kernel, grid search of the
parameters γ and C combined with cross-validation is a popular approach.
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4. ACCURACY ASSESSMENT CRITERIA

In order to get an idea about how well the cancer cells are detected, it is necessary to
study both SVM classifier performance and performance of the system as a whole.
This is necessary because even if SVM is separating the cells from the background
seemingly well, the detection process can produce much worse results than expected
in case of badly chosen parameters for the sliding window procedure.

In this thesis Receiver Operating Characteristic (ROC) curves were used in as-
sessing SVM performance. The system performance was measured with three other
metrics. In the first approach, F-score was used. ROC and F-score are explained in
Section 4.1. In the second approach, the number and locations of detected cells were
compared with the actual number and locations of cells. To decide whether detec-
tions were correct or not, PAS localization evaluation metric was applied. The PAS
metric is an acronym of PASCAL Visual Object Classes Challenge [36], from where
it is adopted. The PAS metric is presented in Section 4.2. In the third approach
performance was evaluated as a similarity between annotated binary ground truth
image and its binary estimate image with the help of Bivariate Similarity Index,
which is explained in Section 4.3.

4.1 Receiver Operating Characteristic & F-score

The cell detection is considered as a binary classification problem, where each in-
stance I is mapped to either positive (cancer cell) or negative (something else than
cancer cell) class label. Let’s let labels {p,n} represent the actual classes and labels
{p′,n′} represent the class predictions produced by a model. There are four possi-
ble outcomes when instance is classified. If the predicted label and the actual label
are both positive, the instance is counted as true positive (TP). If the predicted
label and the actual label are both negative, the instance is counted as true negative
(TN ). If the predicted label is positive and the actual label is negative, the instance
is counted as false positive (FP). If the predicted label is negative and the actual
label is positive, the instance is counted as false negative (FN ). Table 4.1 presents
the mentioned four different classification outcomes in a confusion matrix, which
forms the basis for many common metrics. It is called confusion matrix because
numbers along its diagonal from lower left to upper right present the confusion,
or error, between classes. Well-performing classifier has most of the counts on the
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Table 4.1: Confusion matrix presenting the possible outcomes of an individual clas-
sification.

p n

p' True positive False positive

n' False negative True negative

Total P N

Predicted
class

Actual class

diagonal from upper left to lower right (correct classifications).
One of the simplest ways of measuring classification performance is accuracy -

the fraction of correctly classified instances. It can be calculated from the confusion
matrix as:

accuracy =
TP + TN

TP + TN + FP + FN
, 0 ≤ accuracy ≤ 1. (4.1)

Even though high accuracy is always a good thing, the number can be rather mis-
leading. Let’s consider an example of screening for a rare disease. One can be very
accurate by blindly calling every case negative. If only 5 % of the patients have the
disease, this kind of predicting method would lead to accuracy of 95 %. Because of
the limited usefulness of accuracy, ROC and F-score are used here instead. They
also take false alarms into account and thus provide better understanding of the
performance.

Receiver operating characteristic (ROC) curve is a simple yet useful tool for
analyzing detector performance. It helps in choosing the best model out of the set
of candidate models. Put differently, ROC helps in deciding where to draw the line
between the number of true positives (benefits) and false positives (costs). ROC
curve plots false positive rate FPR

FPR =
FP

FP + TN
=
FP

N
, 0 ≤ FPR ≤ 1 (4.2)

on x-axis against true positive rate TPR

TPR =
TP

TP + FN
=
TP

P
, 0 ≤ TPR ≤ 1 (4.3)

on y-axis, while decision threshold or some other detector parameter is varied over
a range of values [37]. In the case of creating ROC curve for given SVM model,
varying threshold means varying the bias b term of the model. FPR is the fraction
of FPs out of the total actual negatives and TPR is the fraction of TPs out of the
total actual positives. TPR is also known as sensitivity or recall in machine learning.
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Figure 4.1: The ROC space with hypothetical ROC curve and scatter plot of the
five prediction examples.

ROC curve was invented during World War II by British electrical and radar en-
gineers. It was used as a tool to assess radar receiver operator’s ability to distinguish
whether a blip on the radar screen represented a flock of birds, friendly aircraft or
enemy aircraft. Later, it has been employed in many different fields of studies such
as signal detection theory, psychology, and machine learning [38].

An example shown in Figure 4.1 illustrates the ROC space with hypothetical
ROC curve and scatter plot of five discrete classifiers labeled A through E. There
are some points in ROC space which are important to notice. Classifiers located
on the diagonal from (0,0) to (1,1), such as E, are worthless because they make
as good predictions as made with a random guess. With random guess you are
expected to get half the positives and half the negatives correct. Points above
this diagonal represent better than random guess and points below the diagonal,
such as D, represent worse than a random guess. However, in the case of binary
classification, classification decision produced by classifier located below the random
guess line can be reversed in order to utilize the power of the classifier, thereby
producing a classifier located in the upper left triangle. Classifier A in Figure 4.1
at (0,1) represent a perfect classification with no false negatives no false positives.
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Lower left corner of ROC space at (0,0) represent a situation where every instance
is classified as negative. In such case there will be no false positives and no true
positives. Its opposite is classifier located in upper right corner at (1,1) where every
instance is classified as positive.

Classifiers located at the left-hand side of the ROC space are considered as "con-
servative". Such classifiers require strong evidence for positive classifications and
thus produce only a small number of false positives. Classifiers located at the right-
hand side of the ROC space are considered as "liberal". This kind of classifiers
require less evidence for positive classifications and thus produce also more false
positives than conservative classifiers. [37] Classifier B in Figure 4.1 is more conser-
vative than classifier C. Many real-world problems have a large number of negative
instances making conservative classifiers more attractive than liberal ones.

ROC curve can be reduced into a single scalar by calculating the area under
the ROC curve (AUC). AUC enables performance comparison between different
classifiers. It is defined in a following way:

AUC =

∫ 1

0

ROC(t) dt, (4.4)

where ROC(t) is TPR and t is FPR. AUC can have values in range [0, 1]. AUC
of a classifier is interpreted as the probability of ranking randomly chosen positive
instance higher than randomly chosen negative instance. It is worth noting that even
if an arbitrary classifier Y has lower AUC than arbitrary classifier Z, the classifier
Y may still have better performance in some specific region of ROC space.

F-score measures performance using using precision and recall (TPR). Precision
is defined as the fraction of the TP s out of the all the instances predicted as positive:

precision =
TP

TP + FP
, 0 ≤ precision ≤ 1. (4.5)

Precision can be interpreted as the probability of random positive prediction being
correct, and recall can be interpreted as the probability of random positive instance
being predicted as positive. In other words, precision tells more about the accuracy
of the system, whereas recall tells more about the robustness of the system. F-score
combines these two metrics into a single number. Its general definition is:

Fβ =
(β2 + 1) · precision · recall
β2 · precision+ recall

, (4.6)

where 0 ≤ Fβ ≤ 1 and 0 ≤ β ≤ +∞ [39]. β controls the relative importance of
recall over precision. If recall is half as important as precision, β=0,5 is used. If
recall is twice as important as precision, β=2 is used. The traditional way is to
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give equal weights to both, leading to F1-score:

F1 = 2 · precision · recall
precision+ recall

=
2 · TP

2 · TP + FP + FN
, (4.7)

which calculates the harmonic mean of precision and recall. F1-score values can
also vary between [0, 1]. F1-score can only be large when both precision and recall
are large.

4.2 Definition of a Match

As mentioned in the previous section, each positively predicted label (cancer cell de-
tection) can be counted either as TP or FP . In this thesis, the decision between TP
and FP is based on studying the amount of spatial overlap PAS(Rd, Rgt) between
rectangle detections Rd and rectangle ground truth cancer cells Rgt:

PAS(Rd, Rgt) =
area(Rd ∩Rgt)

area(Rd ∪Rgt)
, (4.8)

where area(Rd ∩Rgt) corresponds to the number of pixels in the intersection of Rd

and Rgt, and area(Rd ∪Rgt) corresponds to the number of pixels in the union of Rd

and Rgt [36]. Values of PAS(Rd, Rgt) can vary between [0, 1], where 1 corresponds
to perfect localization. Detection is considered as TP only if its PAS metric exceeds
arbitrary threshold value. In the original paper threshold value of 0.5 was used.

4.3 Bivariate Similarity Index

Paul Jaccard developed a method for comparing the similarity and diversity of eco-
logical species in 1901 [40; 41]. The Jaccard index, or Jaccard similarity coefficient,
SJ(T,E) is defined as the size of the intersection of the reference data set T and its
estimates E, divided by the size of the union of those:

SJ(T,E) =
|T ∩ E|
|T ∪ E|

, (4.9)

where 0 ≤ SJ(T,E) ≤ 1. If every data point is classified correctly, then |T ∩ E| =
|T ∪E| and SJ(T,E) = 1. If the algorithm does not detect any cells, then E = 0 and
SJ(T,E) = 0. The Jaccard distance, on the other hand, measures dissimilarity of two
things and can be simply obtained from the Jaccard index as DJ(T,E) = 1− SJ(T,E).

The Jaccard index, however, can give a little biased view of the performance
since it cannot distinguish certain underestimation cases from overestimation cases.
Thus, an alternative pair of similarity measures, Bivariate Similarity Index (BSI),
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have been proposed in [42]:

TET =
|T ∩ E|
|T |

TEE =
|T ∩ E|
|E|

,

(4.10)

where 0 ≤ TET ≤ 1 and 0 ≤ TEE ≤ 1. If the estimate E is the same as reference
T , then TET = 1 and TEE = 1. These similarity metrics divide performance in
four sections:

• T and E dislocated from each other: TET and TEE are both small

• Overestimation: TET is large and TEE is small

• Underestimation: TET is small and TEE is large

• Good segmentation: TET and TEE are both large.

Sometimes it is more useful to have univariate metric instead of these bivariate
indices. Therefore, segmentation distance dseg is defined as the Euclidean distance
from the point corresponding to the TET and TEE values to perfect segmentation
where TET = 1 and TEE = 1:

dseg =
√
(1− TET )2 + (1− TEE)2. (4.11)

Even though dseg does not provide information about overestimation or underesti-
mation, it works as a general measure of segmentation accuracy.
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5. THE CELL DETECTION FRAMEWORK

This chapter introduces the way, how the theory described in Chapters 3 and 4 is ap-
plied in practice in order to implement the cell detection framework. The framework
is illustrated by the block diagram in Figure 5.1. It consists of separate training and
testing phases. In the training phase, cell and non-cell (i.e., background) example
images are cropped from the input images using ground truth annotations. Then,
HOG features are generated from each of the cropped images and an initial linear
SVM classifier is trained, which is employed to iteratively learn final classifier by
finding hard examples from the input images with sliding window method. In the
testing phase, unseen images are scanned with sliding window and HOG features
are generated from the position of each window in the image. These features are
classified as cell or non-cell with the linear SVM classifier that was constructed in
the training phase. It is likely that multiple positive detections will be clustered, be-
cause (a) sliding window procedure can be done in multiple scales, and (b) windows
can overlap with each other on each scale. Thus, clustered detections are merged
together. Finally, growth curve is created using an estimated number of cells in the
images of each day.

Figure 5.1: Block diagram of the implemented cell detection framework.

The outline of this chapter is as follows. Section 5.1 introduces the microscope
images at which the cell detection framework was applied. Section 5.2 explains
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how training data was collected and Section 5.3 explains how confusion matrix was
created. Section 5.4 describes the choices made regarding software development
tools.

5.1 Microscope Images

The cell detection framework was evaluated on a data set consisting of grayscale
bright-field images of PC3 human prostate cancer cell lines. The PC3 cell lines were
isolated from a bone metastasis of a 62-year-old Caucasian male in 1979. Images
were taken with QImaging Retiga-2000R camera using Olympus IX71 microscope
and Objective Imaging Surveyor automated scanning and imaging software. The
cancer cells were kept in an incubator at constant 37 ◦C in 5 % CO2 atmosphere
while maintained in Ham’s F12 nutrient mixture that was supplemented with 10 %
FBS and L-glutamine. The cells were passaged using trypsin two times in a week to
create more growing space. The day when the cells were passaged into the imaging
chamber is called day 0. By the next day, the cells had attached to the bottom
of the chamber and the sample was imaged. That day is called day 1. The data
set consists of images taken on days 1-6. 192 images were taken with autofocus
each day. Pixel resolution of the images is 1596 (width) × 1196 (height). Figure
5.2 presents cropped images of the same area in a sample throughout different days
demonstrating the growth of cancer cell culture. It is worth noting that the cells
could move around freely in the samples to some extent.

  Day 1                                       Day 2                                      Day 3

  Day 4                                       Day 5                                      Day 6

Figure 5.2: The data set consists of bright-field microscope images of PC3 cancer
cell lines taken on days 1-6.
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5.2 Training Phase

In order to achieve correct results, enough training samples must be collected. Here,
the act of collecting training examples is referred as annotating, which was done by
accurately separating representative rectangular areas from images. The objective
was to collect training examples of each class from images of each day. Because
manual segmentation is a tedious process, data was collected in a semi-automatic
manner. First, smaller amount of training examples was collected manually to train
the initial classifier, which was then employed to detect cancer cells from unseen
images in order to collect larger amount of training examples to train a classifier for
the first SVM training iteration. The initial amount of training data was collected
by programming annotation software, with the help of which 840 individual cells
(positive examples) in total were manually annotated from 6 day 1 images. Because
every cancer cell in those images was annotated, it was possible to automatically
collect the same amount of negative examples from random locations in background.
In this case, background means every pixel in the image that is not part of any of
the positive examples. For each annotated image, an INI file was created consisting
of sections describing annotation coordinates and the class they represented. Figure
5.3 shows a screenshot of the annotation software on the left-hand side with one
positive and one negative example. On the right-hand side, there is screenshot of
INI file containing the coordinates and class identifiers for the rectangle annotations.

Figure 5.3: Left: cropped screenshot from the annotation software, including posi-
tive (green) and negative (red) annotation. Right: upper left corner (ulc & ulr) and
lower right corner (lrc & lrr) coordinates of annotations are stored in sections in the
INI file. Class labels of annotations are stored in section names.

Sizes of annotations can vary freely, but when HOG features are computed, train-
ing example images have to have the same size in order to produce equally sized
feature vectors which SVM takes as input. That is why following steps are taken
when cropping training examples from input images. If the aspect ratio of anno-
tation is already the same as the aspect ratio of HOG descriptor window size, the
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annotation is simply resized to match the window size. If the aspect ratio of annota-
tion is different than the aspect ratio of the window size, smaller dimension (width
or height) of the annotation is extended on both sides to correspond to the larger
dimension. This procedure enables preservation of original aspect ratio. However,
if the annotation is so close to the edge of the image that its dimensions cannot be
extended, the annotation is cropped as such and resized to correspond to window
size using bilinear interpolation. Now the original aspect ratio is lost and the image
will be stretched, which does not necessarily help detecting similar cells.

a)

c)

b)

d)

Figure 5.4: Illustration of experimental data: 49 randomly selected cell (a) and
non-cell (c) example images, median image of all cell (b) and non-cell (d) examples
and visualization of their HOG features. Images in a) and c) have been resized to
32× 32 pixels and their intensities have been normalized to the same scale. Images
b) and d) are also of size 32× 32 pixels, but zoomed in versions of them are shown.
Because pixel intensity values of d) varied within a narrow range when compared to
that of b), pixel intensities of b) and d) have been normalized to different scales to
provide better visualization.
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Cell detection framework with the initial classifier was applied on images from
days 2-6 (2 per day). The results were inspected with the annotation software
to discard false positive detections. Also, more positive and negative examples
were annotated manually. Like previously done with day 1 images, more negative
examples were automatically collected from the background of day 2 and day 3
images. Automatic collection concerned only images from those days because not
all cancer cells were annotated in subsequent day images. In other words, automatic
collection from day 4-6 images would have caused some cancer cells to accidentally
end up being marked as negative examples.

As a result, the total number of 4858 cell and 7198 non-cell examples were col-
lected from 16 images from days 1-6 for the first SVM training iteration. Sizes
of annotated PC3 cancer cells, written as mean ± standard deviation, vary in the
images within a fairly narrow range: width 39 ± 8 px, height 38 ± 9 px, aspect
ratio 0.9 ± 0.4 px. Each image represents an area of 1190.8 µm (width) x 891.4 µm
(height) in real life. This magnification information gives roughly the actual sizes of
cells: width 29.10 ± 5.97 µm and height 28.32 ± 6.71 µm. It is important to notice
though, that the annotations were slightly bigger than the cells.

Figure 5.4 presents 32 × 32 pixel sized training examples from each class and
median images of all training examples of each class with a visualization of HOG
features. HOG features are visualized with rose plots, where each shows the distri-
bution of gradient orientations within HOG cell. HOG features are visualized using
cell size of 4 × 4 pixels. Rose plots consist of petals, which indicate the contribu-
tion of each orientation within the cell histogram. The median cell image consists
of almost perfectly round object in the middle of the image, whereas the median
non-cell image does not show any pattern and consists of low amplitude noise only.

Figure 5.5: Examples of sources of variation in the microscope images. a) Large cell
in focus, b) Average sized cell out of focus, c) Air bubble, d) Blurred spot caused by
an unclean camera lens, e) Cells partially on top of other cells, f) Spatially isolated
cell, g) Cells next to each other but not on top of other cells.
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Annotating was not, and is not, straightforward process without expert knowl-
edge in cell biology. There were multiple objects which were difficult to manually
classify or segment because of different sources of variation in the microscope im-
ages. Examples of such sources of variation are presented in Figure 5.5. First of all,
cells varied in terms of shape, size, and density. The easiest cells to segment were
those that were spatially isolated from other cells. It was more difficult to segment
cells that were right next to each other, and cells that were on top of other cells.
The stacking of cells was mostly visible in day 6 images. It was caused by lack of
horizontal and vertical space in the culture and indicated by stacked cells being on
different focus level than those that were not stacked. Because of the high density of
cells, it was inevitable that some of the positively labeled training examples included
also parts of neighboring cells. When it comes to annotating partially occluded cells,
only the cells which were approximately at least half visible were annotated. Other
sources of variation complicating the training data collection were air bubbles in
the samples on top of cells, cells out of focus, and blurred spots that appeared
in the same locations throughout images. Blurred spots were caused by unclean
camera lens. Additionally, it is possible that a few of the training examples were
incorrectly labeled. It is likely that mentioned issues in the training data collection
had a negative influence on the classification performance causing detection of false
positives.

Detection of false positives was tried to overcome already in the training phase
by training an initial classifier with all the training data from days 1-6 and using
it to search for false positives, i.e., "hard examples". All false detections that do
not overlap with annotated cancer cells are considered as hard examples. This
procedure is repeated multiple times and on each iteration hard examples are added
to the training data. Hard examples are searched until the amount of hard examples
is small enough. In the Chapter 6 iteration continues until less than 5 % of the
initial amount of false positives are found. During the iterations, total of 2564 hard
examples was collected for the final classifier. The hard examples that are found
in the last iteration consist mostly of blurred spots that were caused by an unclean
camera lens, shown in Figure 5.5 with label d). Finding hard examples was noticed
to improve the classification performance considerably.

5.3 Testing Phase

A total of 5878 cancer cells were annotated manually from 12 images (2 per each
day) for the purpose of testing the accuracy of the implemented cell detection frame-
work. Confusion matrix is created by calculating PAS metric with each neighboring
detection and ground truth cell. Two rectangles are considered as neighbors, if the
distance between their horizontal and vertical center points do not exceed 200 pixels.
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Those detections are counted as TP which have the PAS metric value larger than
threshold 0.3. Figure 5.6 demonstrates the reason why threshold value 0.3 is used
instead of 0.4 or 0.5, which was used in the PASCAL VOC challenge. Threshold
values 0.5 and 0.4 require very exact localization, which causes many of the actually
TP detections to be mistakenly counted as FP s. It is made sure that each annotated
cell can have at most one matching true positive detection. The detections which
do not have any matching annotations according to the mentioned constraints, are
marked as FP s. The unmatched annotations represent the FNs. All pixels in the
image that are not counted as TP , FP or FN represents TNs.

Figure 5.6: a), b), c): The same cropped area of the same sample with different (a:
0.5, b: 0.4, c: 0.3) PAS metric threshold values. Blue rectangles represent FNs,
red rectangles represent FP s, and green rectangles represent TP s. With threshold
value 0.5, all four detections are counted as FP s even though the detections are
inside rather large annotations. With threshold value 0.4, two cells are considered
as TP but the other two remain as FP s. With threshold value 0.3, all four cells
are correctly counted as TP . Images d), e), and f) illustrate the amount of overlap
(red) between orange and gray squares when PAS metric is 0.5, 0.4 and 0.3.

Detection of false positives is tried to overcome in testing phase by filtering initial
detection results according to two constraints, which were assigned by subjectively
inspecting the most common types of false positives. Detections completely inside
other detections and detections overlapping with other detections more than the
PAS metric value 0.8 are filtered out.



5. The Cell Detection Framework 35

5.4 Software Implementation

The cell detection framework was implemented using Python (release 2.7.5) pro-
gramming language. A Python wrapper for free OpenCV (release 2.4.9) library
was used mainly to provide HOGDescriptor class, which implements HOG object
detector [43]. OpenCV stands for Open Source Computer Vision. It was officially
launched in 1999 by Intel Russia research center. OpenCV focuses primarily on real-
time image processing, which requires rapid calculations. This is why it is written
in optimized C++ code.

Table 5.1: OpenCV HOGDescriptor class and detectMultiScale function input
and output parameters, their default values and descriptions.

Parameter Default value Description

winSize (64, 128) Descriptor window size

blockSize (16, 16) R-HOG block size

blockStride (8, 8) Block step size.
It must be a multiple of cell size.

cellSize (8, 8) Cell size

nbins 9 Number of orientation bins

derivAperture 1 The size of extended Sobel operator. Values & mask 
sizes: 1=1x3 & 3x1, 3=3x3, 5=5x5, 7=7x7.

winSigma -1.0 Gaussian smoothing window parameter

histogramNormType 0 Normalization method, 0=L2-Hys

L2HysThreshold 0.2 L2-Hys normalization method shrinkage

gammaCorrection True Flag to specify whether the gamma correction 
preprocessing is required or not

nlevels 64 Maximum number of detection window increases

ou
tp

ut hog HOGDescriptor class instance

img  Source image

hitThreshold 0 Threshold for the distance between features and SVM 
classifying plane

winStride cellSize Sliding/detection window step size.
It must be a multiple of blockStride.

padding 0 Extra padding (border) for image to detect objects 
partially outside image

scale 1.05 Coefficient of the detection window increase

finalThreshold 2 Grouping parameter for neighboring detections.
0 means not to perform grouping.

useMeanshiftGrouping False Flag to specify whether to group detections using mean 

HOGDescriptor’s detectMultiScale function performs the sliding window pro-
cedure and merges detections. Table 5.1 presents descriptions of HOGDescriptor
and detectMultiScale input and output parameters. The large number of the



5. The Cell Detection Framework 36

parameters pose a challenge when studying the most suitable combination of their
values in terms of the performance of the cell detection framework.

Based on the average dimensions of annotated cells that are presented in Section
5.2, winSize parameter of HOGDescriptor was fixed to (32,32) and padding param-
eter of detectMultiScale was fixed to (16, 16). Width and height of descriptor
window size are power of two, which ensures computational efficiency (because com-
puters are based on the binary numbering system, where the base is 2). Also,
detectMultiScale only scales up the size of the detector window, meaning there
cannot be smaller detections than descriptor window size. Padding was chosen to
correspond to approximately half of the median size of positive annotations. That
value was chosen because it enables the detection of cells, which are partially outside
image.

Other important libraries in this work were NumPy (release 1.8) and scikit-learn
(release 0.15.0b1) [44; 45]. NumPy provided multi-dimensional data structures and
numerical operations on them. Scikit-learn is an open source machine learning
library, which provided implementation of SVM, along with functions for cross-
validation and ROC metric. The SVM in scikit-learn is implemented by wrapper
around LIBSVM library [46].

To the best of our knowledge, there are no publicly available implementations
of the complete SVM training procedure with proper mining for hard examples as
described in the original HOG paper [7]. The implementation of this thesis along
with the used data set can be downloaded from the supplementary website1.

1http://code.google.com/p/hog-cell-detection-framework/

http://code.google.com/p/hog-cell-detection-framework/
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6. RESULTS

This chapter presents the results of the numerous experiments that were performed
on different parts of the implemented cell detection framework. The experiments
consisted of parameter testing and algorithm testing.

The rest of this chapter is separated into two main sections. Section 6.1 reports
the results of studying SVM classification performance in the training phase of the
cell detection framework and Section 6.2 reports the results of studying the overall
performance in the testing phase of the framework.

6.1 Classification Performance

This section describes how well SVM functions in the proposed cell detection frame-
work. It is important no notice that when SVM performance is evaluated in the
training phase, input images are accurately segmented images of cells and back-
ground (referred as "easy examples"), which makes the classification task a lot easier
than in testing phase. In testing phase the problem setting is more difficult because
the input images can consist of, for example, half of a cancer cell or a quarter of it,
depending on the location of sliding window in the image.

This section is structured as follows. Subsection 6.1.1 describes how the amount
of training data affects SVM performance and Subsection 6.1.2 presents results of
studying how a selected subset of HOGDescriptor parameters affect SVM perfor-
mance. Subsection 6.1.3 presents how iterative training process affects the accuracy
of SVM.

The cost parameter of each SVM classifier presented under Subsections 6.1.1 and
6.1.2 have been cross-validated on the range of 10−4, 10−3, . . . , 103, 104 so that on
each fold training set consisted of all the images except the ones taken on a specific
day (LOO-CV). Also, in the middle of each ROC graph under mentioned subsections,
there is a zoomed-in image from the upper left corner of the ROC space. On the
right-hand side of each ROC graph, there is a table showing the HOGDescriptor
parameter values which remained the same when performing the particular test.
The length of feature vector is denoted by "fvl" in the legend of the ROC graphs.
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10+      7-        2--       AUC 0.873

100+    75-      25--     AUC 0.975

500+    375-    125--   AUC 0.982

1000+  750-    250--   AUC 0.990

2000+  1500-  500--   AUC 0.992

winSize (32, 32)

blockSize (16, 16)

blockStride (8, 8)

cellSize (8, 8)

nbins 9

Figure 6.1: ROC curves for different numbers of training examples. "+" denotes
positive examples, "−" denotes negative examples, and "−−" denotes hard negative
examples. ROC curves were calculated by classifying separate 2000 positive and 2000
negative examples with no hard examples.

6.1.1 Effect of Amount Of Training Data

ROC curves in Figure 6.1 show that when the number of training examples is in-
creased, also the SVM performance is improved. Using only 10 positive examples
and 10 negative examples is already yielding moderate classification result with AUC
being 0.873. AUC is increased by ∼0.1 to 0.975 when the amount of training data
increased by tenfold. When 500 positive examples and 500 negative examples are
used in training, AUC reaches the value of 0.982. Excellent prediction with AUC
of 0.990 is produced when 1000 positive examples and 1000 negative examples are
used in training. Finally, when 2000 positives and 2000 negatives are utilized, SVM
performance increases with a lower rate than before to AUC of 0.992.

The Figure 6.1 implies that when more than 10 training examples from each class
are used, TPR grows rapidly to at least 0.9 while FPR stays less than 0.1 when the
threshold is lowered from the situation where every instance is classified as negative.
However, the growth of TPR levels off after its rapid increase, meaning the cost of
increasing TPR after this point is the rapid growth of FPR.

6.1.2 Effect of HOG Parameters

This subsection presents the results of determining the most suitable combination
of HOGDescriptor parameter values. Following parameters are studied in the same
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order as they are listed here: blockSize, blockStride, cellSize and nbins. Every ROC
graph under this subsection has been created by using separate training and testing
sets, which both consisted of 2000 positive and 2000 negative examples with no hard
examples included.

ROC curves in Figure 6.2 show how SVM accuracy is affected when block size is
varied. The smallest and the largest studied block sizes (4,4) and (32,32) produce
equally sized and shortest feature vectors with the length of 576. Those block sizes
result also in worst AUC scores of 0.989 and 0.988. SVM performs the second
best with AUC of 0.994 when the block size is (16,16). The best AUC of 0.997
is obtained with block size (8,8), which has width and height corresponding to a
quarter of those of the window size. It is worth noting that SVM performs worse
with the block size (16,16) than with the block size (8,8) even though twice as long
feature vector (length 3600) is produced when the block size (16,16) is used.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

True positive rate (TPR)

Block size (4, 4)        fvl 576      AUC 0.989

Block size (8, 8)        fvl 1764    AUC 0.997

Block size (16, 16)    fvl 3600    AUC 0.994

Block size (32, 32)    fvl 576      AUC 0.988

winSize (32, 32)

blockStride (4, 4)

cellSize (4, 4)

nbins 9

Figure 6.2: ROC curves for different block sizes.

When it comes to choosing the most suitable block stride parameter value, ROC
curves in Figure 6.3 imply that too small or too large block stride should not be
selected. The best AUC of 0.996 is obtained when the block stride (4,4) is used.
The width and height of the block stride (4,4) correspond to half of those of the
used block size. Block strides (2,2) and (8,8) yield 0.002 lower AUC of 0.994. Block
stride (8,8) equals to having no overlap between adjacent blocks because the block
size was attached to (8,8) when the results were generated.

ROC curves in Figure 6.4 show that SVM performance is improved when smaller
cell size is used. The best AUC of 0.995 is obtained when cell size (2,2) is used.
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Figure 6.3: ROC curves for different block strides.

Width and height of cell size (2,2) correspond to a quarter of those of the used block
size. Cell sizes (4,4) and (8,8) yield lower AUCs of 0.994 and 0.992. Reducing cell
size from (4,4) to (2,2) improves AUC only by 0.001 but at the same time the length
of feature vector is quadrupled. In other words, cell size (2,2) provides slightly better
performance than cell size (2,2) with the cost being increased computation time.
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Cell size (8, 8)    fvl 144      AUC 0.992

winSize (32, 32)
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Figure 6.4: ROC curves for different cell sizes.
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Increasing the number of orientation bins also improves SVM performance, as
the ROC curves in Figure 6.5 indicate. Using only 1 bin gives poor AUC of 0.696.
When only 1 bin is used, the difference between samples is determined by the sum
of magnitudes in a sample. Increasing the number of orientation bins from 1 to 2
leads to 0.266 increase in AUC to 0.962. 3 orientation bins yield AUC of 0.986.
When the number of bins is doubled to 6, AUC increases by 0.005 to 0.991. After
this point, the increase of AUC slows down because 9 orientation bins raise AUC by
0.004 to 0.995. When the number of bins is doubled again to 18, 0.003 increase in
AUC is seen, leading to a value of 0.998. Almost perfect classification with AUC of
0.999 is obtained when the nbins parameter value of 36 is used.

0.0 0.2 0.4 0.6 0.8 1.0
False positive rate (FPR)

0.0

0.2

0.4

0.6

0.8

1.0

True positive rate (TPR)

Nr of bins 1      fvl 36        AUC 0.696

Nr of bins 2      fvl 72        AUC 0.962

Nr of bins 3      fvl 108      AUC 0.986

Nr of bins 6      fvl 216      AUC 0.991

Nr of bins 9      fvl 324      AUC 0.995

Nr of bins 18    fvl 648      AUC 0.998

Nr of bins 36    fvl 1296    AUC 0.999

winSize (32, 32)

blockSize (16, 16)

blockStride (8, 8)
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Figure 6.5: ROC curves for different number of orientation bins.

Another way of inspecting the difficulty of the classification problem is to visualize
the separability of the classes. Figure 6.6 shows a histogram of 2000 positive and 2000
"easy" negative testing data point projections onto normal vector w of linear SVM.
The projection can be simply done by calculating dot product with features and SVM
weights. Location 0 on the x-axis of the histogram represents the location of the
separating hyperplane. The histogram indicates that the classes are well separable
even though both classes consist of a small portion of examples which somehow
remind the opposite class. Those examples are identified by the overlapping tails of
the histograms.
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Figure 6.6: Visualization of class separability of unseen training data points.

6.1.3 Effect of Finding Hard Examples

Figure 6.7 shows how AUC of SVM decreases on the left-hand side and how detec-
tion accuracy increases in terms of averaged F1-score on the right-hand side during
iterative training. The ideal detectMultiScale parameter values were not used in
this test, which is why the resulted F1-scores are not the main point here so much
as the general increase in those values is. The models on each iteration have been
trained with 75 % of random positive examples and 75 % of random negative ex-
amples. The ROC curves have been calculated by classifying the remaining 25 % of
each class examples. On each iteration parameter C of SVM was cross-validated on
the range of 10−2, . . . , 102, resulting every time to selecting C = 0.1.

On the first iteration with all the positive and all the "easy" negative examples
AUC reaches a very high value of 0.997. However, SVM does not perform as well
as AUC might suggest when the model classifies images during the second iteration
in sliding window method that is run on the same input images from where the
training examples of that particular model were cropped, leading to poor F1-score
of 0.11 and 1064 hard examples. These hard examples lower AUC by 0.004 to 0.993.
Employing the large amount of initial hard examples when training a new model
for the third iteration, causes F1-score to increase to 0.47. Also, the number of hard
examples decreases on the same iteration to 295, which corresponds to roughly one
third of their amount on the previous (second) iteration. As the iterations progress,
the rate of finding less hard examples slows down along with the rate of increase in
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F1-score. After 15 iterations, the iterative training is finished because the number
of hard examples has decreased to 50, which we consider to be low enough amount
corresponding to 5 % of the initial number of hard examples. On the last iteration
F1-score reaches value of 0.77 and AUC has lowered to 0.982.

One might easily misunderstand the ROC curves in Figure 6.7. It is true that
classification accuracy lowers in terms of AUC as the iterations proceed, but what is
also happening is that the level of generalization of the model is getting higher and
higher on each iteration as the model is trained with more and more hard examples.
The semi-automatically gathered training examples are too easy to separate, which
cause SVM to overfit the training data and to generalize poorly to unseen data if
no hard examples are mined. Thus, the ROC curve on the last iteration correspond
better to the reality of the difficulty of the classification problem than the one drawn
on the first iteration.
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Figure 6.7: The results of iterative SVM training. Left: classification performance
demonstrated by ROC curves for each SVM training iteration. Right: detection
performance demonstrated by averaged F1-score over each training image from days
1-3 as a function of iterations.

6.2 Overall Performance

This section presents the results of studying the overall performance of the frame-
work in the testing phase. Subsection 6.2.1 answers to the question: "What sliding
window parameter values should be chosen for cell detection?" and Subsection 6.2.2
answers to the question: "How accurate is the estimated growth curve?".
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6.2.1 Sliding Window Method Parameters

This subsection shows the results of performing a grid search on the scale, nlevels,
winStride and finalThreshold parameters of detectMultiScale in terms of F1-score
and computation time. The aim is therefore to find and justify values that can be
suggested for sliding window method in cell detection with HOG.

Our original aim was to evaluate the sliding window method with ROC curves,
which unfortunately appeared to be impossible after many failed attempts. It was
impossible to calculate complete ROC curves with the sliding window method be-
cause TPR did not ever reach its maximum value of 1.0 even though the threshold
of SVM was lowered beyond the point where each example should have been con-
sidered as TP . We suspect that the cause for this was the algorithm in OpenCV
which merged too many nearby detections as one detection because the annotations
that never got detected were those which overlapped a lot with other annotations.
That is why we use F1-score when assessing sliding window method parameters.

We found that resizing window size to various scales in sliding window procedure
only lowers performance from F1-score of 0.85 to F1-score of 0.78, which is demon-
strated on the left-hand side in Figure 6.8. Multi-scale search enables detection of
large cells which, however, exist in small numbers. Sizes of annotated cancer cells
vary in our images within a fairly narrow range, as presented in Section 5.2. That
is why we suggest performing the sliding window procedure on single-scale using
window size of 32× 32, which has aspect ratio and size close to the average of those
in annotated cells. Another advantage with single-scale detection is the shortest
possible computation time, 1.10 seconds.
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Figure 6.8: 3-D bar graph visualization of grid search performed on scale and nlevels
parameters of detectMultiScale function. On the left-hand side there are F1-scores
on the z-axis averaged over all the test images and on the right-hand side there are
corresponding computation times.
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Figure 6.9 demonstrates that using a default finalThreshold value of 2.0 yields the
highest averaged F1-score of 0.85 together with using winStride parameter value of
(4,4), which has width and height corresponding to half of those of utilized blockSize.
Those values have also the shortest computation time of 3.26 seconds when compared
to those of other combinations of the parameter values. Smaller parameter values
lead to lower cell detection accuracy and increased computation time.
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Figure 6.9: 3-D bar graph visualization of grid search performed on finalThreshold
and winStride parameters of detectMultiScale function. On the left-hand side
there are F1-scores on the z-axis averaged over all the test images and on the right-
hand side there are corresponding computation times.

Figure 6.10 presents the effect that hitThreshold has on F1-score. HitThreshold
parameter is the same as the bias term of SVM which corresponds to the SVM
hyperplane’s distance from the origin, thus regulating the sensitivity of the model.
The figure shows that images of each day prefer slightly different hitThreshold values
in terms of F1-score. Day 1-3 images reach their highest F1-scores of 0.80, 0.84 and
0.88 with more "conservative" classifiers that other day images prefer, having higher
hitThresholds 1.02, 0.94 and 0.86. Day 4 and 6 prefer more "liberal" models because
their best F1-scores of 0.85 and 0.82 were achieved with lower hitThresholds 0.41 and
0.40. Day 5 images gain their highest averaged F1-score of 0.87 with hitThreshold
value of 0.68, which is near the average hitThreshold of all images, 0.72. The average
of the best F1-scores of each test image while the threshold was varied is 0.85.

The results that Figure 6.10 presents, suggest that the default hitThreshold value
of 0.00 does not give the optimal cell detection outcome. Hence, its neighboring val-
ues should be examined. Furthermore, it seems that when selecting the most suitable
hitThreshold value, a trade-off has to be made between cell detection accuracy being
higher on some day images than others.



6. Results 46

0 1 2 3 4 5
hitThreshold

0.0

0.2

0.4

0.6

0.8

1.0

F1-score

Mean
0.72

Day 1

Day 2

Day 3

Day 4

Day 5

Day 6

Figure 6.10: Averaged F1-score for each day images as a function of hitThreshold
parameter values. Highest F1-score of each curve is indicated by a stem plot.

6.2.2 Growth Curve Estimation

This subsection is concentrated on reporting the results of growth curve estimation,
which is the final step in the proposed cell detection framework. Figure 6.11 shows
estimated growth curves on the left-hand side and scatter plots of their BSI mea-
sures on the right-hand side, presented as TET vs. TEE. HOGDescriptor and
detectMultiScale parameter values were selected based on all the results that are
presented in this chapter. The growth curves were generated using hitThresholds
of 0.6 (upper row) and 0.7. It should be noted that the results in Figure 6.11 are
slightly biased when it comes to the sensitivity of SVM because the hitThreshold
values were selected based on Figure 6.10, which was calculated using the same im-
ages as in Figure 6.11. In a real-life application that cannot be done because testing
data labels are unknown. The hitThreshold value should be inferred using training
data and hope that the selected value works also well with unseen images.

The Figure 6.11 shows that both of the estimated growth curves follow the manual
counts in a favorable manner. The both estimated curves also overestimate the
number of cells on day 1-3 images and underestimate the number of cells on day 6
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Figure 6.11: Estimated growth curves and scatter plots of their BSI measures TET
and TEE, using two different hitThreshold values. The results in each row are from
the same test, so that results in the first row used hitThreshold of 0.6 and the results
in the second row used hitThreshold of 0.7.

images. More "liberal" SVM classifier with hitThreshold of 0.6 predicts the number
of cells closer to the reality on day 5 and 6 images than the more more "conservative"
classifier with hitThreshold 0.7. The conservative classifier is more accurate with
day 1-4 images than the liberal classifier.

When looking at the manual counts, the number of cells grows almost linearly
from 70 to 200 on during days 1-3. After that, the number of cells roughly doubles
when measured on days 4 and 5. In the end, the cell quantity grows from ∼800 to
∼1400 when moved on from day 5 to day 6.

In real-life applications, it is almost impossible to avoid FP s, and thus more
attention should be given to the total number of detections, TP+FP , instead of
only looking at the correct amount of TP s. It seems that the most suitable SVM
thresholds for the images of each day could be the ones which produce equal amounts
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of FP s and FNs, which is exactly what happens on day 5 in the upper left corner
of Figure 6.11. In other words, with such hitThreshold value the estimated counts
would meet the manual counts perfectly, because then the amount of detected FP s
closes the gap to the manual counts that the amount of TP s leaves underestimated.

The BSI graphs of Figure 6.11 support the argument of accurate cell detection
with HOG because TET and TEE are both large in both BSI graphs. TET values
are centered around 0.7 and TEE values are centered around 0.9. The segmentation
distance (4.11) is 0.35 with the liberal classifier and 0.36 with the conservative
classifier.

Figure 6.12 shows cropped day 5 image of the result of cell detection with HOG
features. The figure demonstrates effective detection of cancer cells and the difficulty
of the problem.

Figure 6.12: Cropped day 5 image of the result of cell detection with HOG features.
The green rectangles denote true positives, the red rectangles denote false positives
and the blue rectangles denote false negatives. The black arrows denote three false
negatives where the cell detection framework has correctly detected a cell that the
human annotator has missed when annotating.
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7. CONCLUSIONS

The results of this thesis imply that Histogram of Oriented Gradients feature de-
scriptors can be successfully applied to cell detection from bright-field microscope
images. Growth curve, which agrees favorably with manual counts can be estimated
by counting the occurrence of the detected cells from microscope images taken on
subsequent days. Automated algorithm counted the cells in a more objective, con-
sistent and faster manner than manual counting.

The proposed cell detection framework learns a Support Vector Machine model
iteratively by finding hard examples. The iterative training process was noticed to
be a crucial step for eliminating false positive detections, producing cross-validated
ROC AUC of 0.98. In the testing phase, two other performance evaluation metrics
were used. A segmentation distance of 0.35 according to Bivariate Similarity Index
is acquired. When SVM threshold is varied for each image in the testing phase,
F1-score averaged over the peak F1-scores of each image reaches value of 0.85.

As a result of thorough investigation of HOG parameters with ROC curves in
the training phase, the parameter values shown in Table 7.1 are suggested for HOG
descriptor in cell detection. These values serve as a reasonable starting point and the
accuracy of the descriptor can be improved by increasing the number of orientation
bins or by minimizing the cell size to 2× 2.

Table 7.1: Suggested HOG descriptor parameter values for cell detection.

Parameter Value

Descriptor window size (32, 32)

R-HOG block size (8, 8)

Block step size (4, 4)

Cell size (4, 4)

Number of orientation bins 9

Maximum number of detection window increases 1

The results emphasize the importance of clean imaging conditions. The hardest
examples consisted mostly of blurred spots that were caused by unclean camera
lens. Those spots were detected easily as cells because their shape and size were
very similar to those of many of the cells, especially the ones out of focus.
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As suggestions for future research, it could be interesting to find out how deep
learning works with cell detection or to investigate how different SVM kernels per-
form. Furthermore, it would be worth studying if a stack of different focus levels
of microscope images could improve the accuracy of the system when compared
to the current situation, where single focus level is used. Even though bright-field
microscope images of cancer cells were used in this thesis, we believe the detection
framework could perform successfully also with other kinds of microscopy techniques
and cell types, if the training is done with according material. As a final develop-
ment proposal, it would be helpful if the cell detection framework had a graphical
user interface, where one could for example change manually the sensitivity of SVM.

When it comes to suggested improvements, there is room for improvement in
OpenCV. Its documentation is practically nonexistent, which lead to certain draw-
backs in the implementation. Also, nlevels parameter is placed wrongly as HOGDe-
scriptor parameter as it should belong as part of detectMultiScale parameters.
Current placement of the parameter is not logical and makes the task of varying its
values unnecessarily complicated.

Another outcome of this thesis is that the software implementation and the data
set will be publicly available and can be downloaded from the supplementary web-
site1. Also, a research paper summarizing the essence of the results of this thesis
is submitted to the IEEE International Symposium on Biomedical Imaging (ISBI
2015) [47].

In summary, it is possible to implement a complete and robust cell detection
framework with HOG features, which yields accurate results with relatively low
error rate. If the aim is to estimate growth curve, perhaps the most important
question lies in selecting the correct SVM threshold. The ideal threshold vary from
images to images, depending on the number of cells in the image.

1http://code.google.com/p/hog-cell-detection-framework/

http://code.google.com/p/hog-cell-detection-framework/
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