

VALAMBAL ARAVINDAN
PERFORMANCE ANALYSIS OF ISCSI BLOCK DEVICE IN
VIRTUALIZED ENVIRONMENT

Master of Science Thesis

Examiner: prof. Evgeny Kucheryavy
Senior Researcher. Dmitri Moltchanov
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical
Engineering on 3rd September 2014

i

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Information Technology
VALAMBAL, ARAVINDAN: Performance analysis of an iSCSI block device in
virtualized environment
Master of Science Thesis, 56 pages
October 2014
Major: Communication Engineering
Examiner(s): Prof. Evgeny Kucheryavy and Dmitri Moltchanov
Keywords: iSCSI block device, Storage area network, kernel virtual machine
and quick emulator

Virtualization is new to telecom but it has been already implemented in IT sectors. Thus
its benefits are already proven, which drags other sectors attention towards it. Now the
telecom organizations are also focusing on virtualization to reap the full benefits of it.
The main focus of this thesis is to conduct a performance analysis of a block storage
device in a virtualization environment. Storage performance plays vital role in telecom
sector. The performance and the reliability of the storage device is more important
factor to fulfill the client request with minimum latency.

This thesis is comprised of three main areas. The first literature part is to study the
different storage networking possibilities and the different storage protocol practice to
establish communication between server and the storage in the storage area network.
The study indicated that Internet Small Computer System Interface (iSCSI) has more
advantages than other practices in the storage area network. The second part covers the
design of storage area network (SAN) solution. The storage is offered by an iSCSI
storage server. It offers a block level storage device access to the compute server.
Different iSCSI targets are available in market, performance of those were compared.
Linux-IO Target was concluded as better iSCSI target with better performance and
reliability. The Storage server was implemented as a virtual machine for better resource
utilization, thus there was a study about the hypervisor and the different networking
options for the virtual machines were compared. The final part is to optimize the SAN
solution. Multipathing, different caching options and different driver options provided
by the kernel virtual machine (KVM)/ Quick emulators (QEMU) were considered for
optimization.

ii

PREFACE

This Master thesis was written at Product Design Unit, Ericsson at Herzogenrath,
Germany during the period of May 2014 –October 2014.

This thesis is the integral part of my Master of Science program in Information
Technology. It has been concluded and presented to the Faculty of Computing and
Electrical Engineering at Tampere university of Technology in Finland for the
graduation.

I am grateful to examiner Prof. Evgeny Kucheryavy and Dmitri Moltchanov of my
university, for their valuable guidance which helps to keeping me on track during whole
thesis period. And also I would like to thank all my professors and lecturer, who helped
to acquire more insight in telecommunication by presenting their great lectures and
guiding me in laboratory works in my Masters programme.

I extremely appreciate my supervisor Manuel Buil in Ericsson, for the encouragement
and support provided by him throughout my thesis period and warmest thanks to my
manager, who gave me this great opportunity. I would like to express my gratitude to all
my colleagues for their technical support and advice.

I thank my friends and family for their support, encouragement and well wishes
throughout this period. Finally, special thanks to my son Midhulan Aravindan for his
love, support and patience.

Valambal Aravindan

Herzogenrath, October 2014

iii

TABLE OF CONTENTS

Abstract .. i

Preface ... ii

Table of contents .. iii

List of Abbreviations .. v
List of Figures ... vii

1. INTRODUCTION .. 1
1.1 Structure of Thesis .. 2

2. INTRODUCTION TO VIRTUALIZATION AND CLOUD 3
2.1 Cloud computing ... 3
2.2 Need for cloud ... 3
2.3 Virtualization and its types ... 4

2.3.1 Compute virtualization .. 5

2.3.2 Storage virtualization ... 6

2.3.3 Network virtualization ... 7

2.3.4 Desktop virtualization .. 8

2.3.5 Application virtualization .. 8

3. STORAGE NETWORKING TECHNOLOGIES ... 9

3.1 Storage area network (SAN) ... 10

3.1.1 Small computer system interface ... 11

3.1.2 Fibre channel SAN .. 12

3.1.3 Internet Protocol SAN ... 14

3.1.4 Fibre Channel over Ethernet .. 18

3.2 Network Attached Storage .. 18

3.2.1 Why we need NAS .. 19

4. STORAGE AREA NETWORK DESIGN FOR CLOUD INFRASTRUCTURE .. 20
4.1 Kernel virtual machine (KVM) and quick emulator (QEMU) 20
4.2 KVM-QEMU I/O architecture .. 21

4.3 iSCSI targets ... 24
4.3.1 IET (iSCSI Enterprise Target) ... 24

4.3.2 SCST (SCSI Target Subsystem) .. 24

4.3.3 STGT (SCSI Target Framework) .. 24

4.3.4 LIO (Linux-IO Target) .. 25

4.4 iSCSI target perforamnce results ... 25

4.5 LIO architecture .. 26
4.6 Virtual machine networking ... 29

4.6.1 Bridge .. 29

4.6.2 Macvtap ... 31

4.6.3 Openvswitch .. 33

iv

4.6.4 Performance results of Macvtap and Linux Bridge 34
5. PERFORMANCE OPTIMIZATION ... 35

5.1 Multipathing .. 35
5.2 Network interface card teaming .. 37

5.3 Multiple connections per session (MC/S) ... 38

5.4 Effects of cache ... 39
5.5 KVM para-virtualized drivers for block device .. 42

5.5.1 Virtio-blk ... 42

5.5.2 Virtio-SCSI .. 44

5.6 Libiscsi .. 45
6. CONCLUSION ... 47
REFERENCES ... 49
APPENDIX ... 53

v

LIST OF ABBREVIATIONS

ALUA Asymmetric Logical Unit Assignment
API Application Programming Interface
ATA Advanced Technology Attachment
CIFS Common Internet File System
CPU Central Processing Unit
DAS Direct-attached storage
ERL Error Recovery Levels
eui extended unique identifier
FC Fibre Channel
FC SAN Fibre Channel Storage Area Network
FCIP Fibre channel internet protocol
FCoE Fibre Channel over Ethernet
FCP Fibre Channel Protocol
FC-PI Fibre Channel Physical Interface
FDB Forwarding Data Base
FIO Flexible Input/Output
HBA Host-Bus-Adapter
HDD Hard Disk Drive
I/O Input/Output
IaaS Infrastructure as a service
IDE Integrated Drive Electronics
IET iSCSI Enterprise Target
IP SAN Internet Protocol Storage Area Network
IP Internet Protocol
iqn iSCSI Qualified Name
iSCSI Internet Small Computer System Interface
ISL Inter-Switch Link
IT Information technology
KVM Kernel Virtual Machine
LAN Local Area Network
LIO Linux-IO Target
LU Logical Unit
LUN Logical Unit Number
MAC Media Access Control
MC/S Multiple connections per session
NAS Network-attached storage
NFS Network File System

vi

NIC Network Interface Card
PaaS Platform as a service
PCI Peripheral Component Interconnect
PDU Protocol Data Unit
PR Persistent Reservation
QEMU Quick emulators
RAM Random Access Memory
SaaS Software as a service
SAN Storage Area Network
SCSI Small Computer System Interface
SCST SCSI Target Subsystem
SDD Solid-State Drive
SDN Software-defined networking
SLA Service Level Agreement
STGT SCSI Target Framework
STP Spanning Tree Protocol
TCP Transmission Control Protocol
UDP User Datagram Protocol
VFS Virtual File System
VM Virtual machine
WAN Wide Area Network

vii

LIST OF FIGURES

Figure 1 Evolution of conventional system to virtualized cloud system 4
Figure 2 Logical representation of SAN and NAS .. 10
Figure 3 SAN protocols .. 11

Figure 4 SCSI client-server operations .. 12
Figure 5 SCSI target ... 12

Figure 6 Basic topology of FC SAN.. 14

Figure 7 iSCSI layer in protocol Stack ... 15
Figure 8 iSCSI and FCIP .. 17

Figure 9 NAS with NFS ... 18

Figure 10 KVM/QEMU I/O architecture .. 21
Figure 11 Lab setup .. 23

Figure 12 Write performance and Read performance ... 25

Figure 13 Performance of read and write in parallel .. 25

Figure 14 LIO architecture ... 27

Figure 15 LIO configuration .. 29

Figure 16 Bridge architecture .. 30

Figure 17 Virtual file system ... 31

Figure 18 Macvtap architecture ... 33

Figure 19 Openvswitch ... 34

Figure 20 Perforamnce of macvtap and linux bridge ... 34

Figure 21 iSCSI multipath sessions and operation flow ... 35

Figure 22 Multipathing lab setup ... 36

Figure 23 NIC teaming iSCSI session and operation flow ... 37

Figure 24 Multiple connections per session and operation flow 38

Figure 25 Cache at different level .. 40

Figure 26 Performance comparison of different cache modes 42

Figure 27 Storage access by virtio-blk ... 43
Figure 28 Virtio-SCSI .. 44

Figure 29 Virtio-scsi passthrough and performance comparison with virtio-blk 45
Figure 30 Libiscsi iscsi initiator ... 46

1

1. INTRODUCTION

The cost is the crucial factor in today’s business world. IT infrastructure is one of the
important sectors where the organizations are spending more to achieve better
performance and business continuity. The organizations are always keen to reduce the
cost without sacrificing the performance, which leads them to win the business
competitors. Cost and efficiency depends on each other. Efficient utilization of any
resources reduces the cost. Virtualization technology provides a way to achieve efficient
consumption of the resources, by virtualizing the physical hardware.

Most of the organizations are transforming there conventional datacenter to a
virtualized datacenter to incur the profits from virtualization. The three main
classification of on the IT infrastructure virtualization includes server, storage and
network. This thesis focuses on the performance of the virtualized
datacentres.Virtualization transforms the conventional data center into a more flexible
datacenter through server virtualization and consolidation. It also simplifies the
provisioning of IT resources. The resource consolidation reduces hardware cost. The
possibility of dynamic virtual machine migration from servers to servers increases the
flexibility significantly. Thus the organizations bring in transition from conventional to
virtualization datacenters.

Data is one of the main assets of the company. Data storage has to be more secured
and reliable to maintain the business continuity. SCSI is a widely employed storage
protocol to establish connection and data transfer between compute and storage devices.
But it cannot support for the long distance scenarios. To address this problem lot of
technologies evolved to carry the SCSI commands between compute and the storage
server. Most popular among them is iSCSI protocol. iSCSI protocol enables access
between the compute and storage servers in the storage-area networks (SANs) over
TCP/IP networks. Thus iSCSI protocol allows SCSI command sent over the underlying
TCP/IP network. It is very popular, easy to implement and affordable, since it uses the
already existing IP network rather than deploying any new infrastructure. It provides
block-based high speed data transfer. But the organizations are running out of space due
to increase in the application exploration. Virtualization reduces the growth rate of
storage and other hardware demand by effective usage of the hardware resources.

In the conventional method the iSCSI storage server is a real machine, such that
application run on the real hardware. The main limitation of this conventional method is
scalability and inefficient utilization of the hardware resources. The solution is to
virtualize the hardware. In this thesis work, iSCSI storage target server is a virtual
machine, thus the storage devices are virtual device. The benefits include better
utilization of resources, scalability, live migration etc. Since it is virtualized, its

2

performance is not similar to native performances. Several factors are influencing the
performance of the virtual machine and the iSCSI target running on it. Thus the goal of
this thesis is to study and analyze the factors influencing the performance of an iSCSI
target device in the virtual scenario.

1.1 Structure of Thesis

This thesis comprises of six chapters. Chapter 1 presents the brief introduction and the
goal of this thesis. Chapter 2 explains the virtualization and different types of
virtualization. Chapter 3 offers the brief idea of storage area network (SAN) and
network attached storage (NAS). And different protocols that connects compute and the
storage in the storage area network are explained elaborately in chapter 3. Chapter 4
focus on the design and implementation of storage server in the storage area network,
study of hypervisor KVM/QEMU, performance comparison of different iSCSI targets
and virtual machine networking possibilities. Chapter 5 is about analyzing different
possibilities to optimizing the storage performance. Finally Chapter 6 presents the
conclusion of the thesis.

3

2. INTRODUCTION TO VIRTUALIZATION AND
CLOUD

Virtualization and cloud computing technology go hand in hand to reap the maximum
benefits of each other. In general Cloud refers to, on demand service. To leverage cloud,
virtualization works in parallel with cloud in most environments.

2.1 Cloud computing

Evolution of internet leads to a technology called cloud computing. It means that all the
resources needed for computing comes under a single cloud and it is provided to user as
a service on demand. The resources can be either software or hardware. The computing
process may run in one or many connected servers, with the help of virtualization
technology. The cloud computing has the following service models:

Infrastructure as a service (IaaS): The whole infrastructure, required to run the
organization operation is provided as a service. Some of the important infrastructure
resources are physical and virtual machines, storage, virtual and physical network etc.

Platform as a service (PaaS): Platform is provided as service by the cloud providers
which are ready to run user application on demand. The user does not care about the
underlying operating system or the storage provision.

Software as a service (SaaS): Service provider provides their software or application
as a service running in their data center to the remote user on demand through internet.

2.2 Need for cloud

There is no doubt that all the organization look forward to adopt a technology where
reliable performance is achieved with reduced cost. The conventional IT infrastructure
cannot help them anymore. Some of the vital problems the conventional system facing
are underutilization of hardware, data centers are running out of space, IT infrastructure
implementation and maintenance cost and energy cost are increasing rapidly.
Virtualization addresses these problems. Different virtualization types are adopted to
address these problems and to increase the overall efficiency and performance; those are
discussed briefly in the following sections. The benefits of virtualization also grow
alongside with the growth of virtualization. The significant benefits of virtualization
includes business agility, operational flexibility, high availability, disaster recovery,
consolidation of IT services, scale up and scale out on demand, self-service, pay only

4

for the service consumed, dynamic accessibility. The Figure 1 shows the evolution of
conventional system to virtualized cloud system.

 Figure 1 Evolution of conventional system to virtualized cloud system

2.3 Virtualization and its types

Virtualization is a technology which enables a way to create virtual resources out of
physical resources and presenting it to the user rather than providing actual physical
resources. Virtualization leads to pooling of physical resources that has already proven
values like efficient utilization of resources, central point of resource management.
Virtualization is implemented at different layers of IT infrastructure. They are classified
as compute, network, storage and application layer virtualization of IT infrastructure.

5

2.3.1 Compute virtualization

It is the process of detaching the operating system from the physical layer. It is referred
as compute virtualization, because in this layer together with other hardware
components, the most important component i.e. CPUs are virtualized. CPUs are the
components, where the computing process like running and executing the codes are
being done. The abstraction of operating system from the physical layer is achieved by
virtualization software called hypervisor which comes in between operating system and
physical resources. This paves the way for running multiple operating systems on the
same physical resources such that multiple virtual machines can run parallel on same
physical machine. There are two flavors of hypervisor available in the commercial
market: native and hosted.
Native hypervisor: It is running on the bare metal. It manages the physical resources,
since it has direct access to it.
Hosted hypervisor: It is running on the host operating system, so it relies on the host
operating for the physical resources management.
Hardware virtualization is applied in three different modes:

Full virtualization: Hypervisor completely simulate the underlying hardware. And
the guest operating system does not need any modification. The operating system
instructions are binary translated so the virtualized hardware can understand and serve
for it. Hypervisor decouples the VMs and the underlying hardware. The guest operating
systems are not aware of being virtualized. Hardware features like CPU, memory etc.
required by VMs to run their operating system and applications are served by the
hypervisor. The greatest advantage of this type is that the virtualized hardware
architecture can be completely different from the host architecture. However the biggest
disadvantage is the processing speed.

Para-virtualization: Hypervisor does not simulate the hardware. It just acts as
software API in-between VM and the underlying hardware. Hypervisor resides on the
hardware and guest operating system run on top of this hypervisor. The guest operating
system instructions are bypassed to the real physical hardware. To achieve this para-
virtualization device drivers are required in both guest and the hypervisor. Thus this
enables the possibility of running the instruction in real physical hardware which is very
faster than running in the emulated hardware. But here the guest operating system needs
some modification in order to communicate with the drivers. And therefore guest
operating systems are aware of being virtualized. This type of virtualization is can be
utilized when the hardware is not supported for full virtualization or application in need
of high processing speed.

Partial virtualization: In this method operating environment is virtualized, rather
than the complete machine such that the address spaces are virtualized so that can be
utilized by VM’s. It provides isolation of VM from the host, by running VM in separate
domain. It allows the VM user to install software system, upgrade system libraries in the
guest without affecting those in the host, and vice versa. Thus, rather than emulating

6

physical hardware, operating system virtualization emulates a complete operating
system user space. It enables sharing computer resources among multiple users but the
on the other hand the compatibility is not good. If certain hardware features are not
virtualized, then any software using those features will fail.

Benefits of compute virtualization:

• Effective utilization of hardware.

• It enables virtual machine to run in isolated environment like a physical
machine.

• Virtual machines are hardware independent; migration is easy between different
servers.

• Hardware investment cost is reduced massively.

2.3.2 Storage virtualization

It is the process of hiding the underlying complexity of physical storage resources and
presenting them as a virtual storage to the compute systems. This is attained with the
help of hypervisor. The compute system is not aware of the storage virtualization; it
uses a virtual disk as if it was a physical storage disk attached to them. The virtual
storage is mapped to corresponding physical storage; this operation is taken care by
virtualization layer. Storage virtualization deals with storage provisioning to VMs,
block and file level virtualization, virtual provisioning and automated storage tiering.
Storage stack can be classified as compute, storage and network.

 Storage provisioning: Storage provisioning is the process of providing storage
space to servers, virtual machines or any other computing device and it is deployed in
compute layer. One way is the hypervisor apply file system on the physical storage
attached to it and it creates files in the physical storage space. These files are provided
to the VMs by the hypervisor as a virtual disk. Virtual machines view this storage space
as a real physical disk attached to it. Size of the file depends on the storage needs of the
VMs. Instead of providing a single full disk to a compute system, many virtual disks are
made out of it and it is attached to different virtual compute systems. Another way is the
VM can store data directly on a LUN in the real physical storage system instead of
storing its data in a virtual disk; this method is called as raw device mapping. LUN is
a logical unit number used in storage to identify a logical unit of as storage device
addressed by the protocols which encapsulate SCSI. This method of storing is useful
when there is a requirement that the applications running on the VM should know about
the physical characteristics of the storage device.

Block and file level virtualization: This virtualization deployed in the network layer
and provides an abstract view of physical storage resources. The I/O coming from the
compute system is sent to the physical storage through the virtualization layer at the
network layer. The virtualization software hides the physical location of the storage
hardware and presents the only the logical location of it to VMs. The virtualization

7

software needs special networking intelligence combine storage at different location.
The logical storage is mapped to the physical storage device. Virtualization enables to
pool multi-vendor storage resources. This can be implemented in both SAN and NAS
environments. Virtualization is applied at the block level in SAN and it is applied at the
file level in NAS. Block level storage virtualization allow us to combine one or more
LUNs from different storage arrays to form a single virtual big volume based on the
requirements and this volume is presented to the VMs. File-level storage virtualization
eliminates dependencies between the file and its physical location, it enables users to
use logical path than the physical path.

Virtual provisioning and automated storage tiering: Virtual provisioning is based on
thin provisioning; it is the ability of allocate a LUN to the VM with high capacity rather
than the actual capacity of the LUN. It is deployed in storage layer. Storage tiering is
said to be hierarchical storage management. Storage tiering is the way of storing data
into a different categories of storage arrays. Categories are based on the SLAs with
different customers. The SLA has different set of requirements such as performance,
frequency of use, reliability etc...

Benefits of storage virtualization:

• Data can be migrated between the storage disks without any interruption.

• Storage space can be scale in or scale out depends on the demand.

• Effective utilization of storage.

• Easy management, since the storage is pooled.

• It provides different storage provisioning options to provide storage to VM.

• Different networking options for I/O between compute and storage device.

• Virtual provisioning and storage tiering optimizes the utilization of storage
infrastructure.

2.3.3 Network virtualization

It is the process of creating multiple logical networks on top of the underlying physical
network and operates them as separate independent physical networks. Network
virtualization enables resources sharing among the virtual networks. Servers in the
virtual networks can communicate without routing frames, even if they are in different
physical networks. This enables grouping of server regardless geographic location.
 Network virtualization is carried out at two levels as virtualizing the physical
networks and virtual machine networks. The physical network has components such as
routers, switches, bridges, repeaters and hubs. The physical network enables
communication between all the physical devices attached to the network with
networking capabilities. The virtual network resides inside the server, which enables the
communication between different VMs connected to the virtual network. And also
enable communication between the VM and the physical network. Thus the VM can

8

communicate with any other devices connected to the physical network. The VM
network has component such as virtual NIC, HBA and virtual switch.

Benefits of network virtualization:

• It provides sharing of the network resources.

• It improves the network security by restricting the communication between the
VMs in different virtual network.

• Depends on the organization requirements the servers can be grouped together
logically.

• Logical grouping of the servers provides easy management.

2.3.4 Desktop virtualization

This is the process of abstracting the desktop from operating system and the application
from the endpoint user. By this technology operating system is centralized and running
in a VM in the datacenter. The end users can connect to the desktop VM via LAN or
WAN. So executing the application and data storage are happens in the data center not
in the end-user desktop.

Benefits of Desktop virtualization:

• It reduces cost of the organization, by replacing the personal computer system
with thin clients.

• It improves data security, since organization’s data is stored in their data center.

• Data storage backup is simplifies.

• It can be accessed by the employees regardless of their location.

2.3.5 Application virtualization

It is the process of abstracting the application from the underlying operating system.
Application software creates the opportunity for the user to use the application without
any concern of what underlying operating system they have. Virtualized Application run
in an isolated environment.

Benefits of Application virtualization:

• Application deployment is easy.

• Application installation does not cause any changes to the operating system and
the file system.

• It prevents any corruption of operating system during installation and easy
operating system management.

9

3. STORAGE NETWORKING TECHNOLOGIES

Earlier the communication between the compute and the storage was achieved through
the fixed channel. It means a constant channel or a wired connection is established
between the compute and storage. The storage is directly attached to the compute
system and the ways of communication is described in the operating system. Thus the
host system retains the knowledge of all the storage devices attached to it. The storage
may be external or internal; the communication channel remains static. The intermediate
hops are very much limited. This fixed connection cannot be used by the other compute
nodes to communicate with storage. Laying down a connection separately for each
compute node and storage makes this technology very expensive. So it is utilized for
communication over shorter distances. PCI, IDE/ATA, SCSI are some of the popular
storage protocol used in fixed channel technology. Among these, SCSI provides better
performance over PCI, IDE/ATA. As the channel technology is inefficient, there is a
necessity to find a new methodology. The outcome is the IP networking technology; IP
networks are also used to transfer storage I/O traffic between compute and the storage.

The IP network connects the compute nodes to share data among them. The same
network can be utilized to transfer storage I/O traffic between compute and the storage.
Thus it reduces the infrastructure cost very much. A network technology is more
flexible than channel technology. The data transmission path between the transmitting
node and the receiving node are not static. It changes dynamically, depends on the
criteria like resource availability, current traffic situation etc. Each node in the network
is identified by unique address. The data packets from the transmitting node are routed
via in-between hops to each reach the final destination. Hence the networking
technology supports longer distance topologies. Channel and network technologies
employ networking components such as switches, routers, cables, buses, ports etc., and
protocols for communication. iSCSI, FCOE, FCIP, and NFS are some of the important
storage protocols used in IP networking technology. There are two ways of providing
storage to the compute node using the network, they are

• Presenting storage as a block device (Block level access)

• Presenting storage as a file system (File level access)

The shows Figure 2 the logical picture of storage area network (SAN) which
provides block level access and the network attached storage (NAS) which provides file
level storage access.

10

 Figure 2 Logical representation of SAN and NAS

3.1 Storage area network (SAN)

Storage area network is a dedicated high performance network, whose primary role is to
enable the communication between the compute systems and storage servers. SAN
defines the entire hardware and software infrastructure that allows compute nodes to
access storage that is not directly attached to it. Servers share the storage subsystem.
SAN enables the capability of accessing the external storage as a block device. When
there is a storage request from the compute, the storage servers allocate a block device
in requested size in the storage array and it presents that to the compute. Then the
compute system has to create a file system in the block for the further use. By this way
block level access of the external storage is achieved by the SAN. Since the network is
dedicated, communication between storage and servers are in high speed, thus
increasing the overall performance. SAN could also provide highly secured data
storage. There are different networking methodologies and protocols to establish a
communication between storage and compute in SAN. They are explained below with
more focus on iSCSI SAN.
Different types of SAN technologies are.

• Fibre channel SAN

• IP SAN

• FCoE

The SCSI is the underlying protocol which is base for all of the above mentioned
technology to provide block storage service to the compute. At first SCSI protocol is
introduced below and then the above mentioned SAN technologies are discussed. The

11

Figure 3 shows the different protocols used in SAN and protocols layering with respect
to SCSI.

 Figure 3 SAN protocols

3.1.1 Small computer system interface

SCSI (small computer system interface) is a protocol used for communication between
server and storage. The SCSI standard defines an interface, protocols and commands to
establish communication between an initiator and the target. Initiator is the server and
target is the storage device. It provides a half-duplex communication path for SCSI
commands and data. Interfaces such as cables, connectors, optical signals etc. that allow
initiator and targets to communicate. SCSI commands are encapsulated and carried
across the networks.

SCSI is a client server protocol. The client is called initiator which sends the request
to the target server. The storage server is called target which serves for the initiator
request. A single target can have multiple application clients. The target device is
attached to the SCSI bus of the target. Up to 16 devices can be attached to a single bus.
Host bus adopter is a mandatory device, it takes single slot. A SCSI host adapter is a
device used to connect one or more SCSI devices to a computer bus. Thus host bus
adapter is connected to the SCSI bus on one side, and to the host computer bus on the
other side. After reserving one slot for host bus adopter, 15 devices can attach to one
SCSI bus.
I/O operation of SCSI between target and initiator:
It has two categories of protocol services

• Execute command/confirmation services.

• Data transfer services.

12

This operation between the client and server is represented as a block diagram in
Figure 4. The Initiator starts the operation and selects a target. The target accepts it and
requests a command from the Initiator. The Initiator responds by sending the command
descriptor block to be executed.

 Figure 4 SCSI client-server operations

This leads to three main phases of I/O operation

1. Command execute: Send required command and parameters via CDB (command
description Block).

2. Data: Transfer data in accordance with the command
3. Confirmation: Receive confirmation of command.
Targets have one task manager and one or more Logical Units (LU), which are

numbered as LUN. A task manager is a server within the SCSI target device that
processes task management functions. Logical unit contains a device server to process
SCSI commands. It represented in Figure 5.

 Figure 5 SCSI target

With the knowledge of SCSI , now the focus has been moved on to different SAN
technologies as mentioned above in 3.1.1.

3.1.2 Fibre channel SAN

Fibre channel SAN is a very common high-speed, dedicated network between compute
systems and shared storage devices. FC SAN uses SCSI over fibre channel protocol
(FCP) to transfer data between compute systems and storage devices. FCP is a transport

13

protocol similar to TCP used in IP networks. Fibre Channel does not incorporate a
command set as SCSI, but it does provide a mechanism to lay over other protocols onto
Fibre Channel. SCSI generally rides on top of Fibre Channel. It provides block-level
access to storage devices; block I/O is over FC. FC SAN enables storage consolidation
and allows a storage system to be shared by multiple compute systems. This improves
utilization of storage resources, compared to DAS architecture. The basic topology of
FC SAN is represented in Figure 6.
Layers of FCP protocol:
FC4 – Protocol-mapping layer, in which application protocols such as SCSI is
encapsulated into a PDU for delivery to FC2.
FC3 – Common services layer, a thin layer that could eventually implement functions
like encryption or RAID redundancy algorithms.
FC2 – Network layer, defined by the FC-PI-2 standard, consists of the core of fibre
channel, and defines the main protocols; this layer contains the basic rules for sending
the data across the FC network.
FC1 – Data link layer, which implements line coding of signals; this layer defines the
transmission protocol that includes serial encoding and decoding rules, special
characters used, and error control.
FC0 – Physical layer, this is the lowest layer in the FCP stack. This layer defines the
physical link between the systems, including the fibre cables, connectors etc.
Each device in FC SAN are called nodes, each of them has at least one port to
communicate each with other. Ports are the outlets in the FC network. Some of the FC
ports are mentioned below.
N_port: An end point in the switched fabric. This port is also known as the node port.
Typically, it is a compute system port (HBA) or a storage array port that is connected to
a fibre channel switches.
E_port: It is the connection between two fibre channel switches. It is also known as an
Expansion port. When E_ports between two switches form a link, that link is referred to
as an inter-switch link (ISL).
N_port: A port on a switch that connects an N_port. It is also known as a fabric port.
G_port: A generic port that can operate as an E_port or an F_port and determines its
functionality automatically during initialization.
NL_port: It is a port on the node used with an FC-arbitrated loop topology. It is also
known as node loop port.

All nodes in the FC network communicate with one another through an FC switch or
multiple interconnected FC switches. Switches are interconnected through fibre
channel. A link is established between two switches, that link is referred as inter-switch
link (ISL).

14

 Figure 6 Basic topology of FC SAN

The different types of FC SAN topologies are discussed below.
Point to point: Two devices are connected directly to each other. Such that dedicated
connection between N_port of the two devices.
Arbitrated loop: All devices are in a loop or ring. Transmitting end of one node is
connected to the receiving end of the other node until a closed loop is formed.
Switched fabric: All nodes in FC network or loops of nodes communicate with one
another through an FC switch or multiple interconnected FC switches. Switches are
interconnected through fibre channel. A link is formed between two switches, that link
is referred as an inter-switch link (ISL).

3.1.3 Internet Protocol SAN

It entails the technologies that transfer storage traffic over internet protocol (IP) based
network. Conventional SAN transfers storage data over the fibre Channel.
Organizations require high performing and scalable SAN at low cost. The emergence of
IP technology enables a way for storage data over IP network. If the storage data is sent
over the IP network, the existing network infrastructure can be utilized efficiently and
there is no need of laying an additional network for SAN. This is more economical than
investing in FC, since it avoids new SAN hardware and software installation. IP
network offers easier management and better interoperability. Since the storage data is
transmitted over IP network, the distance is not a problem. IP SAN make use of all
available IP network solutions for the better performance of storage network. Two
protocols are primarily used in IP storage networks, they are:

• Internet Small Computer System Interface (iSCSI)
• Fibre channel internet protocol (FCIP)

15

3.1.3.1 Internet Small Computer System Interface

Internet Small Computer System Interface is an IP based storage protocol for
connecting servers and storage. iSCSI is an end to end protocol. The topology of iSCSI
is represented in Figure 8. It encapsulates SCSI commands over IP networks; iSCSI
managed to facilitate data transfers over long distances. iSCSI can be used to transmit
data over local area networks (LANs), wide area networks (WANs), or the Internet and
can enable location-independent data storage. It operates on top of TCP. It allows IP
hosts to access IP or Fibre channel connected iSCSI targets. It also allows fibre channel
hosts to access IP targets. The Figure 7 shows the protocol stack.

 Figure 7 iSCSI layer in protocol Stack

SCSI layer: SCSI layer issues SCSI commands depending on the request from the upper
layer.
iSCSI layer: iSCSI layer it encapsulates the SCSI command and data. Then it forwards
the iSCSI pdu with iSCSI header to the underlying TCP layer.
TCP: This is the transport layer and third layer of the TCP/IP stack. The two main
protocols used in transport layer are UDP and TCP. iSCSI utilize the underlying TCP
but not UDP, because UDP provides connectionless unreliable service. SAN network
requires a reliable transport connection. The term reliable connection is used where it is
not desired to lose any information that is being transferred over the network through
this connection. So, the protocol used for this type of connection must provide the
mechanism to achieve this desired characteristic. TCP provides an end-to-end,
connection-oriented, reliable communications service. TCP is responsible for the
establishment of a transport connection, sequencing and acknowledging sent packets
and the recovering of lost packets during transmission. It takes care of data flow control,
congestion control and error control. TCP segments the data from the above layer into
proper sized chunks and then passes these chunks onto the network. It acknowledges

16

received packets, waits for the acknowledgments of the packets that it sent and sets
timeout to resend the packets if the acknowledgements are not received in time.
IP: This layer is also known as Internet layer. It is the second layer of the TCP/IP
model. The core protocol of the Internet layer is IP. The internet layer is responsible for
addressing, packaging and routing functions. The position of Internet layer is between
link layer and transport layer. If needed, internet layer fragment the data from the upper
layer thus the packets are in proper size to pass over the network. Each fragmented IP
datagrams contain source and destination address (logical address or IP address)
information that is used to forward the datagrams between hosts and across networks. IP
at the destination rearrange fragmented packets as how it was before fragmentation. It
provides connectionless network route between the transmitter and the receivers. Hence
it is not necessary that all the packets should travel via the same route. At the
destination side, the data packets may appear in a different order than they were sent. It
is the job of the higher layers to rearrange them in order to deliver them to proper
network applications operating at the application layer.
Link Layer: It transfers data that it receives from the network layer of one machine to
the link layer of another machine. The link layer defines the procedures for interfacing
with the network hardware and accessing the transmission medium. The link layer
moves network frames between two hosts. The hosts may be end systems, such as
computers or intermediate devices such as routers and switches. The link layer only
moves frames directly between two physically connected devices. All other tasks are the
responsibility of the upper levels.
iSCSI works with Initiator and Target model:
Target is an SCSI storage device which is capable of receiving the request from the
SCSI initiator and executing it. At first in the target server iSCSI targets are created with
a unique iqn name and LUNs are added to the target. Now the target is ready and it is
listening to the TCP port for any request from the iSCSI initiator. The target can be
enabled to accept any initiator or specific initiator depends on the access rights the
target has in its initial settings. To provide access only to specific initiators, the initiator
names can be mentioned in the target settings.
iSCSI target naming:
Targets and initiators require names for the purpose of identification, so that iSCSI
storage resources can be managed regardless of location. The iSCSI name is the unique
identifier for an iSCSI node and it is also the SCSI device name .The iSCSI name is the
primary information used in authentication of targets to initiators and initiators to
targets. This name is also used to identify and manage iSCSI storage resources. iSCSI
names are associated with iSCSI nodes not with network adapter cards. There are two
iSCSI naming formats:
• iqn - iSCSI qualified name

• eui -extended unique identifier

17

Brief description about iqn format is below, since this format is used in my iSCSI SAN
set up.

 Example: iqn.2014-09.com.examplename:storage.disk1
Initiator is an SCSI server which is capable of issuing SCSI commands to the iSCSI
target, based on its storage requirements. iSCSI initiator name is created at iSCSI driver
at load time of the host system. iSCSI initiator issues a discovery command to search
any available targets. Once the target is discovered, it can login to the targets. A session
is created between the target and the initiator once it is logged in. Now the iSCSI target
device is accessible for the initiator. The session termination is accomplished by simple
logout.

 Figure 8 iSCSI and FCIP

3.1.3.2 Fibre Channel Internet Protocol

FCIP defines a way for encapsulating the fibre channel frames within the TCP/IP, which
are transferred between two FC SAN. FCIP uses a pair of bridges communicating over
TCP/IP, which is the transport protocol. The two bridges acts as a gateway for the FC
SAN. The communication path between two FC SAN is over an IP network. FCIP is a
tunneling protocol. Between the two bridges a tunnel is created in the IP network and
the FC frames are sent over this tunnel. The advantage of using this FCIP bridging
concept is, FC networks can be extended over distances using an existing IP-based
infrastructure. The topology of FCIP is represented in Figure 8.

 iqn. date. organization or your domain name: storage-identifier

18

3.1.4 Fibre Channel over Ethernet

It is a protocol that encapsulates fibre channel frames, to transfer it over the ethernet
networks. As explained before, if the organization is using FC for SAN and IP networks
for LAN it results in two network infrastructure. Thus organizations have to run parallel
network infrastructures for their local area networks and their storage area networks. It
leads to huge maintenance and implementation cost. FCoE gives solution to this
problem by enabling the consolidation of SAN traffic and ethernet traffic on to single
converged ethernet infrastructure. It also reduces the administrative overhead and the
complexity in managing the data center.

3.2 Network Attached Storage

Data or information is shared across the organization or within the organization for their
day today business activities. Therefore there is always requirement for storing the data
at one place and shared it among the users. It is more efficient than transferring the data
personally to each of them. NAS addresses this problem. In NAS, the storage devices
are connected to the network that provides file level access to the compute system. NAS
is a dedicated high performance file server with storage system. It also allows us to
consolidating disk management; instead of duplicating directories on each system, it
provides a single copy of directory which is shared by all systems in the network.
Besides it allows clients to share files between them.
NAS utilizes network and file sharing protocols, which include TCP/IP for data transfer
and Common Internet File System (CIFS) and Network file system (NFS) protocols for
remote file services. NFS is taken in this example scenario. NFS is a distributed file
system protocol that enables clients to access the files from remote. The server enabled
with NFS technology is called as NFS server, with file system in it and makes them
available on the network. And client server enabled with the NFS client feature can
access the files provided by the NFS server from remote. The NFS server export the file
to the client and it is mounted in the client server. Thus this works on a basic client–
server model. The Figure 9 shows the basic idea behind NAS with NFS.

 Figure 9 NAS with NFS

19

3.2.1 Why we need NAS

SAN connects the client servers and the storage servers as descried in 3.1.1. Then the
disk in the storage array can be accessed by client server. The data written on the disk
cannot be shared among the different users. Sharing the same disk among different users
has two main problems; disk space allocation inconsistency and file data corruption. If
the same disk is exposed to different servers, each server applies its own file system on
the disk. Thus the file allocation table which is in the memory of each server is not
exposed to other servers. The file allocation table and file system cache becomes servers
specific; it is not common for all the users. For example consider a disk that is shared
between server one and two. And both want to write on the same disk at same time.
Since the file system is not common, if server one is writing on the disk, server two
does not aware of it. It is vice versa, if server two is writing. Both write at the same
time, this leads to data corruption. In read scenario, each time the servers will not reach
the disk to retrieve data, rather the file system of each server retrieve the data from its
cache when the request is same. But when server one wrote on the disk its own cache
gets updated but not others. So the other server still uses the old information in its own
cache. Like the same way there is problem in file allocation as well. In its own file
allocation table, server may see some free blocks and it will assign it to the application
as per the request. But it does not aware whether this block has been already allocated to
any other application by another server. Thus SAN creates big complexity in sharing the
same disk which is solved by NAS by having centralized file system. Hence with the
centralized file system, file allocation table and file system cache become common for
all the clients accessing the file system.

20

4. STORAGE AREA NETWORK DESIGN FOR
CLOUD INFRASTRUCTURE

While designing a SAN infrastructure, several factors should be kept in mind. Because
there exists lots of different methodologies or ways or components, that increase or
decrease the overall SAN performance. Each has its own ways of working principle and
has its own pros and corns. So the different possibilities are analysed below to obtain a
most reliable and highly performing SAN infrastructure.
The infrastructure requirements are
• The iSCSI target server should be VM
• The iSCSI initiator can be either a VM or host
• The operating system is LINUX
• The hypervisor is KVM/QEMU
• Ericsson hardware

4.1 Kernel virtual machine (KVM) and quick emulator (QEMU)

In this SAN design, Linux operating system and the KVM/QEMU hypervisor is
employed. Because it is popular open source software, it would not lead to any
additional cost for the organization and it is easy to contribute in development.
Quick emulator (QEMU) is an open source machine emulator and virtualizer. When
QEMU runs as a machine emulator, it emulates hardware so that operating systems and
programs made for a specific hardware can work on a different hardware. But the
performance is very slow since the guest operations are executed on the emulated
hardware. When QEMU runs as a virtualizer, QEMU achieves performances close to
native performance by executing the guest code directly on the host CPU. QEMU
functions as a virtualizer when executing under the Xen hypervisor or using the KVM
kernel module in Linux. QEMU can make use of KVM when running a guest
architecture that is the same as the host architecture. For instance, when running qemu-
system-x86 on an x86 compatible processor, QEMU can take advantage of the KVM
acceleration. KVM is a special operating mode of QEMU that uses CPU extensions i.e.
hardware-assisted virtualization for virtualization via a kernel module. It gives the
benefit for both the host and the guest system.
Kernel-based Virtual Machine (KVM) is a full virtualization infrastructure built into
the Linux kernel. KVM has support only for x86 processor enabled with virtualization
extension and provides hardware assisted virtualization. KVM allows a user space
program (QEMU) to utilize the hardware virtualization features of various processors.
Hardware-assisted virtualization is an approach to enable efficient virtualization. It

21

means, even though the guest is running in the separate address space, it allows the
guest to execute its codes directly on the physical hardware instead doing it on emulated
hardware resources. Thus it avoids binary translation and increases the performance.

4.2 KVM-QEMU I/O architecture

 Figure 10 KVM/QEMU I/O architecture

When running in virtualized system, application and guest operating systems are

normally not aware of virtualization and for them it is like as if they would run on the
bare metal hardware. This is possible because of the benefits of both KVM and QEMU.
KVM provides CPU virtualization and the QEMU is responsible for hardware
emulation. Regarding KVM, as it can be observed in the previous Figure 10, each guest
CPU has a dedicated virtual CPU thread that uses KVM kernel modules in the LINUX
kernel to execute the guest code. When there is a request coming from an application,
the process code executed on the hosts physical CPU but the I/O is taken care by the
QEMU. Only one thread can execute QEMU code at a given time. It is represented in
Figure 10 [33]. Application, on the other hand can access only the emulated hardware
and thus it requires binary translation. QEMU does binary translation and forward I/O to
the host kernel. Host kernel treats this I/O as like any other user application. Therefore
the I/O thread is generated by QEMU on behalf of the guest. Thread uses the event loop

22

to handle the events. A thread is the execution of the little sequence of program or a
process. A process can have multi thread that shares the resources allocated for that
process. QEMU does not support multi-threading. As stated in [43] multi-threading
operating systems made it possible for one thread to run while another was waiting for
something to happen. The processor switches between different threads based on the
pre-defined timing policies. Event loop receives the events from the event queue of the
operating system and pass it to the program for the processing. It is a link between the
user space program and the operating system.

The Figure 11 shows the preliminary lab setup. Two physical and one virtual server
were employed in the implementation. Two physical servers were connected through
the switches. The virtual machine was running in one of these physical servers. One of
these physical servers was acting as an iSCSI-initiator. The initiator can be either a host
or a physical machine. There are different possibilities for setting up an iSCSI target
server
1. It could be run on a physical host by using local disk
2. It could be run in a virtual machine by using the virtual disk or
3. The iSCSI target can be provided by the storage vendor externally

The iSCSI target provided by the storage vendor has its own target and initiator
driver mechanisms, through which the clients can communicate to the storage system.
Thus it needs as additional driver and switches and other connecting devices to connect
all clients to target in the SAN network. Thus by it forms a centralized storage system.
For the some application it may not be suitable. For application which needs faster
storage I/O communication such that with reduced latency it’s better to have an iSCSI
target in the host or the VM. The reasons are provided below.

The host has three SSDs (solid-state disk) as a storage device. SSD is an electronic
disk that uses integrated circuit assemblies as memory to store data persistently. SSD
does not have any moving mechanical components. This makes it to differ from the
traditional electromechanical magnetic disks such as hard disk drives (HDD) or floppy
disks, which contain spinning disks and movable read/write heads disks. SSDs have
more benefits when compared to HDDs. It has lower access time, reduced latency and
less noisy. And also it has more resistance to physical disturbances. But the price of
SSDs is much higher than the HDD. Organizations should consume the SSD store space
efficiently, to avoid over cost. Apart from storage space needed for storage real data,
there is also need of additional storage for data replication, it is a very important feature
which saves organization most critical data and enables reliable data availability. And
storage required for migrating the VM from one storage device to another in case of
failure or fault. Even though the price of SSDs are reduced over the period it is still very
expensive than HDDs.

Hence organization cannot employ SDD for all application for economic reasons.
For the application where the speed is not a crucial factor HDD can be opted and for
application where storage I/O speed is really a crucial factor SSD can be employed.

23

Since the Ericsson hardware has already three SSDs in the compute node, it is better to
utilize.

In this SAN solution virtual machine is opted to run as target server not the host, in
order to efficiently utilize the resources of the host. It is possible to create several virtual
machine in the same host depends on the resource availability. The iSCSI–client can be
a virtual machine or any other physical machine including physical machine where the
target is running.At first the VM is started with help QEMU and KVM. The below
script was created to start the VM. The characteristics of the virtual machine like CPU,
network interfaces, memory, language etc. are defined in the below scripts. For
explanation of the scripts see the appendix [1].
/usr/bin/qemu-system-x86_64 \

-enable-kvm \

-cpu phenom \

-smp 1,sockets=1,cores=1,threads=1 \

-drive file=/home/ubuntu.img,if=virtio,cache=directsync \

-drive file=/dev/sdb1,if=virtio,cache=directsync \

-drive file=/dev/sdc2,if=virtio,cache=directsync \

-netdev tap,id=tap2,fd=58 58<>/dev/tap58 \

-device virtio-net-pci,netdev=tap2,mac=c6:af:77:89:bc:39 \

-netdev tap,id=tap3,fd=62 62<>/dev/tap62 \

-device virtio-net-pci,netdev=tap3,mac=d2:23:b9:bb:93:00 \

-netdev tap,id=tap4,fd=61 61<>/dev/tap61 \

-device virtio-net-pci,netdev=tap4,mac=b6:a2:c9:c2:59:a9 \

-boot c \

-m 3000 \

-vnc :3&

 Program 1 Virtual machine start-up script

 Figure 11 Lab setup

Then iSCSI target is configured inside the virtual machine and the iSCSI client is
configured on the other host called iSCSI-initiator. The target always listens to its TCP
port for any request from initiator. The iSCSI-client discovers the target and sends the
request. Once the initiator logged into the target, it appears as a local disk and it is ready
for usage.

24

4.3 iSCSI targets

As it was explained in 3.1, the storage might come from an external server, if server‘s
own local storage space is not enough for the application. As explained before in 3.1.3.1
this can be accomplished by iSCSI. To achieve that in iSCSI, we require an iSCSI
initiator and an iSCSI server. The iSCSI server is also known as an iSCSI target and in
this section a description and a comparison among the most widely used iSCSI targets is
performed. Thus the storage can be scaled in or out, by providing an external storage
support. There are different open source iSCSI target frameworks which can be
supported by Linux operating system.

• STGT

• LIO

• SCST

• IET

4.3.1 IET (iSCSI Enterprise Target)

It is an iSCSI target designed to run in the Linux kernel. Its aim was to develop an open
source iSCSI target with features that works well in large scale environment under real
workload. This target was quite popular, but is slowly deteriorating. Its successor is
SCST, came up with advanced features and it is quite popular among the SCST targets.
Hence it is now unsupported in Linux kernel.

4.3.2 SCST (SCSI Target Subsystem)

It is a generic SCSI target engine for Linux. SCST devices can provide advanced
functionalities like replication, thin provisioning, deduplication, high availability,
automatic backup, etc. SCST is a GPL licensed SCSI target framework. The SCST
implementation is an improved version of IET target. SCST devices have support for
many communication link such as iSCSI, Fibre Channel, FCoE, SAS, SCSI RDMA
Protocol, InfiniBand (SRP), Wide (parallel) SCSI, etc. It supports multiple storage
backend interfaces; SCSI pass-through, block I/O and file I/O. It has ISCSI target
support in kernel and also user-space. SCST storage drivers can be implemented in user-
space with support of the scst_user driver.

4.3.3 STGT (SCSI Target Framework)

It is a standard multiprotocol SCSI target in Linux. STGT aims to simplify creation and
maintenance of SCSI Targets such as iSCSI, fibre channel, SRP etc. Its key goals were
the clean integration into the SCSI-mid layer and implementing a great portion of the
target in user space. STGT consists of kernel-space and user-space code. For iSCSI
target only user space code is utilized. It means STGT run as an application in user

25

space. STGT was superseded by LIO with Linux kernel 2.6.38 with many advanced
features.

4.3.4 LIO (Linux-IO Target)

It has been the Linux SCSI target since kernel version 2.6.38. It supports different fabric
modules like Fibre channel, FCoE, iSCSI, SCSI RDMA Protocol InfiniBand (SRP), etc.
The advanced feature set of Linux-IO Target has made it more popular among other
SCSI targets. QEMU/KVM, libvirt, and open Stack provide native support for LIO.
This makes organization to consider LIO as a storage option for cloud environment. It is
designed to support highly available and cluster storage. LIO includes targetcli.
Targetcli is a command line interface, provides a powerful and easy way to configure
and manage LIO.

4.4 iSCSI target perforamnce results

 Figure 12 Write performance and Read performance

 Figure 13 Performance of read and write in parallel

0

1000

2000

3000

4000

5000

6000

7000

LIO

STGT

SCST

0

2000

4000

6000

8000

10000

12000

14000

16000

LIO

STGT

SCST

0

500

1000

1500

2000

2500

3000

3500

4000

LIO

STGT

SCST

0

1000

2000

3000

4000

5000

6000

7000

LIO

STGT

SCST

Read

Read

only

Write

Write

only

26

io= Number of io performed (mb)
bw= Average bandwidth rate(kb/s)
iops= Average IOs performed per second
lat avg= Average latency(msec)

All of these targets performances are conducted in similar environment. File I/O is
configured as a back store for all targets. In aspects of features, both SCST and LIO
have most advanced features than STGT and IET. It is clear that the competition is
between LIO and SCST. IET’s performance is not measured here, since it is now
unsupported. Thus it is out of the race. Performance comparison is between SCST, LIO,
and STGT. These three targets are running in a three different virtual machines and the
targets are discovered and utilized by another machine as shown in Figure 11.Three
different test cases were executed they were, only writing on the disk, only reading from
the disk, performing read and write parallel on the same disk. This performance test was
conducted with help of FIO tool.

Flexible I/O (FIO) is a tool to measure I/O performance against different storage
types. While comparing the features of SCST and LIO, each has benefits in its own
way. In aspect of performance it is clear that LIO won the competition. From Figure 12
and Figure 13, it is clear that LIO has better throughput with less latency. Next in line is
SCST. And STGT hold the last position. But in right side of the Figure 12, STGT‘s
performance is better than other two. This is because; it is only reading from the disk
such that it requests the data which already exists. Most of the scenarios, if the
requested data is same; data is retrieved from the cache but not from the disk. So it is
predicted that STGT’s better performance is due to cache. This is in practice to increase
the performance. This is not applicable in write, because most of the times write data
differs. So the possibility of fetching from the cache is less. Thus while measuring
performance it is better to consider the write performance. The different modes of cache
and its effects are described elaborately in next chapter.

LIO has been chosen as iSCSI target in this SAN for the following reasons: because
of its performance, since it is included in most Linux distributions, the support provided
for LIO in QEMU/KVM, libvirt, and open stack. This makes LIO target configuration
very easy, reliable and stable. In case of SCST, it does not come with Linux Kernel, so
it consumes more time and effort to implement and configure. And also the stability is
not assured, since it is externally patched to the LINUX kernel. Now the focus is more
on LIO. The general Architecture of LIO is presented below.

4.5 LIO architecture

Linux-IO Target is a Linux SCSI target. LIO offers a unified storage system; LIO as a
single infrastructure that functions to support simultaneously fibre channel, FCoE,
iSCSI, InfiniBand etc. The target core engine implements the semantics of a SCSI
target, but it does not directly communicate with initiators and it does not directly

27

access data on disk. Instead it communicates through the fabric modules. Fabric
modules are the frontend of the SCSI target. It communicates with the specific protocols
that transport SCSI commands. Backing stores implement methods of accessing data on
disk. This includes RAM disk, file, block device, and SCSI pass-through. It can support
file-based storage access and block-based storage access. It means the storage can be a
file or the block device, but in both the case it is presented to the initiator as block
device. The LIO architecture is shown in Figure 14 [18] and logical representation of
the LIO configuration is show in Figure 15. For the real command line configuration
please check the appendix [2].

 Figure 14 LIO architecture

The following features of SCSI protocol were implemented in Linux IO target which
makes it even more popular.

Persistent Reservations (PRs): It is a feature which enables I/O fencing. Fencing is the
process of isolating a faulty node from a cluster of nodes. Thus Persistent reservations
provide the capability to control the access of each node to storage devices.

Asymmetric Logical Unit Assignment (ALUA): ALUA defines a standardized protocol
in the SCSI standard for accessing a LUN through multiple controllers of a storage
system). It is a multi-pathing method with intelligent path selection. ALUA allows the
data to reach the LUN via the most optimized path. It means all the traffic that is
directed to the non-active controller will be routed internally to the active controller. For
a storage system with a single controller, there is no demand for ALUA.

28

Error Recovery Levels: The iSCSI standards were defined in internet engineering task
force, with three hierarchy error recovery levels, which is now included in LIO. They
are, as follows
1. ERL=0 Session recovery class: Session recovery implies the closing of all TCP
connections, internally aborting all executing and queued tasks for the given initiator at
the target, terminating all outstanding SCSI commands with an appropriate SCSI
service response at the initiator, and restarting a session on a new set of connection.
2. ERL=1 Digest failure recovery: It includes the capabilities of ER Level 0. Digest
failure recovery is comprised of two recovery classes: within-Connection recovery class
and within-Command recovery class.
Within-Connection recovery class: At initiator side if the requests are not acknowledged
for a long time by the target and the target side status/response not acknowledged for a
long time by initiator enables within-connection recovery. Requests are acknowledged
explicitly through ExpCmdSN or implicitly by receiving data and/or status. Next
expected command sequence number (ExpCmdSN) is a sequence number that the target
iSCSI returns to the initiator to acknowledge command reception. The initiator may
retry non-acknowledged commands.
Within-Command recovery class: The loss in data PDU enables the within-command
recovery. At initiator and target side it has different schemes to find out data PDU loss.
3. ERL=2 Connection recovery class: It includes the capabilities of ER L=0 and
ERL=1. The following scenarios at the initiator let it to start the Connection recovery,
tcp connection failure and receiving an asynchronous message that indicates one or all
connections in a session has been dropped. In case of failure it logout from failed
connection and establish a new connection. When a TCP connection failure occurs at
the target side, it closes the connection and send asynchronous message to the initiator
to start the connection recovery process.

Active-active task migration and session continuation: ERL2 feature of iSCSI provides
active-active task migration and session continuation. It increases the system
availability. It migrate the connections from failed routes to available connections that
prevent session and data loss.

Multiple connections per session (MC/S): MC/S allows creating multiple
communication paths in a single session. MCS allows the initiator to establish multiple
TCP/IP connections to the same target within the same iSCSI session. It improves
performance and fault tolerance.

T10 Data Integrity Format (DIF): T10 Data Integrity Field standard provides a way to
check the data integrity between a host controller and a disk. This check is carried out
through the data integrity field defined in the T10 standard.

29

 Figure 15 LIO configuration

4.6 Virtual machine networking

Virtual networks have the functionalities same as physical networks, it enable
communication between the machines attached to its network. The only difference is the
components employed in the virtual networks are virtualized form of physical network
elements or the software which exactly behaves like a physical components. Software
defined networking is currently emerging and dynamic topic in the networking industry.
And one of the key enablers of SDN is virtual networking. A machine must be
network-capable to get attached to the network, meaning that it must have a network
interface controller installed, that enables the computer to interface with a network. In
most physical network environments, computers are usually connected to a device
called a switch, which creates a local area network and enables a communication
between the computers by routing ip packets. The virtual network follows the same
idea. Virtual network consists of one or more virtual machines. The virtual machines in
the host can communicate with each other and to the host through a software switch.
Thus the switches are used to establish a connection between the virtual network and
physical network. Currently Linux supporting three types of software switches

• Bridge
• Macvtap
• Openvswitch

4.6.1 Bridge

Linux Bridge is software, whose functions are similar to the hardware switch. This
software bridge is installed within a Linux host in order to emulate hardware, thus the
virtual machines with virtual NICs can share a single physical NIC of the host. Some
important functionality of bridges includes forwarding data base (FDB), spanning tree
protocol (STP), and aging. brctl is a command line interface used to set up, maintain and
inspect the bridge configuration in the Linux kernel.

Each bridge has a number of ports attached to it and has its own forwarding
database. Whenever new network interface is added to the bridge port, its forwarding

30

database gets updated with the MAC address of the newly added interface. Thus the
bridge keeps record of MAC address seen on each port and it can deliver the frames to
the appropriate port which has the destination address. By forwarding the frames to
appropriate destination port, it avoids transmitting redundant copies to all ports.
However, the ethernet address location data is not a static data. Machines can move to
other ports, network cards can be replaced; this leads to confusion in delivering packets
to the correct destination. This problem is address by aging.

Aging is a concept of setting up life time for each MAC addresses in the forwarding
data base. The MAC addresses are retaining in the FDB, if it receives frames from it. If
there is no frame coming from a particular MAC address even after the aging time, the
MAC address is deleted from the FDB. Thus the unused MAC addresses in FDB are
eliminated by an aging technique.

Multiple bridges can work together to create larger networks. It is good to have
spanning tree protocol functionality enabled in this condition, to find the shortest path
and for eliminating loops in the network. The spanning tree protocol feature can be
disabled in circumstances where it does not make sense, for example when there is only
one bridge in the network or when there are no loops in the network. Bridges are
capable of running in a promiscuous mode, which means it receives all traffic on a
network even which are not intended for it. The below block diagram explains the
operational flow of Linux bridge.

As shown in Figure 16 [28], Linux kernel is with a software bridge installed. The
physical interface eth0 of host in added to the software bridge, through which all virtual
machine can reach outside network. This behaves like an interface of the bridge. Now
the bridge interface has the IP address and the physical interface has only a MAC
address.

 Figure 16 Bridge architecture

A tap device was created to connect the guest to the bridge. A tap is software device
in the kernel, simulates a link layer device. It passes the packets between the kernel and

31

the guest. Virtual machines network interface can only process ethernet frames similar
to physical interface. In virtualized environments, host physical NIC interface is the
main interface that receives frames intended for the virtual machines running in it. By
nature it receives and process the ethernet frames and then it forwards the payload
further up to the operating system. But the virtual NICs expect ethernet frames. The tap
device addresses this issue. Tap communicates with the Linux Bridge to forward
ethernet frames as it is. Thus the virtual machines connected to tap interfaces will be
able to receive raw Ethernet frames.

QEMU define a network interface and creates a network bridge by connecting the
host tap network device to a specified network of guest. When the guest attached to the
tap interface, it gets a special file descriptor. While writing operation, the guest writes
into the file descriptor and tap receives that as input. Then it forwards the data to the
bridge. It works vice versa for read. Tap writes into file descriptor and the guest read the
data from the file descriptor. Thus the file descriptor works between the tap and the
guest.

Virtual file system is an abstraction layer on top of file system. VFS layer provides a
uniform interface for the kernel to deal with various I/O requests for different file
system. It is clearly shown in the Figure 17 [34].

 Figure 17 Virtual file system

Finally with all this features bridge brings out the virtual network interface visible to the
outside network.

4.6.2 Macvtap

Macvtap allows the direct attachment of a virtual machine’s virtual NIC to a physical
NIC on its host. Macvtap is a Linux device driver entailed to simplify the complexity in
Linux bridged networking. Macvtap is a combination of the Macvlan driver and a Tap
device. Macvlan driver is another Linux kernel driver that is utilized in virtual
networking to create one or more virtual network interfaces on a physical network
interface. Each virtual interface has its own MAC address different from the physical
interface’s MAC address. Frames sent to or from the virtual interfaces are mapped to
the physical interface, which is called the lower interface. Macvlan allows isolation of
traffic. Macvlan allows the interface listen to the traffic which has MAC address
matches it. Thus the interface does not listen to the traffic which is not intended for it.
The Figure 18 shows the functional flow of macvtap.

32

Thus by combining the functionalities of macvaln and tap, macvtap creates a tap
interface on the physical interface. It can create one more tap interfaces on the same
physical interface. Each of these tap interface has a MAC address which is different
from host MAC address and other tap interfaces address. Macvtap has four different
operational modes.
• Vepa
• Bridge
• Private
• Pass-through

Vepa: All the packets from the virtual machines are sent to the external switch to which
the physical interface is connected. If the destination of the packet is on the same host
where from the packet originates, the external switch sent it back to host where from it
received that packet. By this configuration a virtual machine can communicate with its
host, outside network and the other virtual machine on the same host. The drawback of
the vepa mode is, even though the virtual machines are on the same host it cannot
communicate with it internally, it needs a support from external switch to route back the
packets. Not all the switches are capable of doing this. Only the switches support
reflective relay mode can do this job. Reflective relay mode means, the switch send
back the packet to the same port from where it received it.

Bridge: The virtual machines on the same host can communicate with each other
internally. If the packets destination is on the same host as where they originate from are
directly delivered to the target macvtap device. Such that the macvtap interfaces can
communicate each other if they operate in bridge mode. But the drawback of bridge
mode is that the virtual machines cannot communicate with its own host. This is
because the packets coming from the guest is forwarded to the bridge. The bridge in
turn forwards the incoming packets to the physical interface of the host, which are
immediately sent to the outside network, cannot be bounced back up to the host's IP
stack. And also the packets coming from the host are sent to the physical interface
cannot be bounced back up to the macvtap bridge for forwarding to the guests. This can
be solved by creating another virtual interface on the host with the help of macvlan
driver. As like in bridge the physical interface eth0 is added to the macvlan virtual
interface. Macvlan interface has the ip address and the physical interface has the MAC
address. Thus this macvlan interface is utilized instead of eth0 for communication
between guest and host. The main advantage of macvtap is easy configuration, but this
problem in bridge mode leads to complex configuration as like in bridge.

Private: All the packets are sent to the external switch as like in vepa mode and but the
difference is the switch cannot send back packets to the same host. The packets will be
delivered to a virtual machine on the same host physical machine only if they are sent

33

through an external router or gateway. The router route back the packets to the switch
and the switch send it to the host where the target virtual machine resides.

 Figure 18 Macvtap architecture

Pass-through: This mode gives control of physical devices to the guests. Each physical
interface allowed to use by a single guest interface at a time, thus the scalability is very
much reduced.

4.6.3 Openvswitch

Openvswitch is a booming switching technology. The openvswitches are open flow
capable, this makes it more popular. And also it leads to consider it in the software
defined networking which is a hot emerging technology where most of the networking
organization is focusing on. It is supported by openstack for the cloud deployments. It is
a distributed virtual switch. The openvswitches are well suited for multi-server
virtualization environments.

It has centralized controller. The idea behind centralized controller is to take the
intelligence out of the routers in the network and locate it at a central point. Thus it is
referred as abstraction of data plane and control plane. It has control plane in the user
space and data plane in the kernel. Packet forwarding is performed in the data plane.
Routing is performed in the control plane it means exchange of routing information. The
centralized controllers will communicate with each one of router in the network with
open flow interface. Open flow is a communication protocol that gives access to the
forwarding plane of a network switch or router over the network. The controller
configures the flow table in the remote router. This router makes decision based on this
flow table. The open switch is not implemented and tested in my design solution

34

because Ericsson concluded that the current openvswitch is limited with features and
does not scale. It means that just switching networking traffic results in reaching the
limits of the openvswitch. Therefore, adding storage traffic on top would destroy it.
The idea of openvswitch is represented in Figure 19.

 Figure 19 Openvswitch

4.6.4 Performance results of Macvtap and Linux Bridge

Macvtap tap has been chosen for this SAN solution because of the following reasons,
better performance than bridge, easy configuration and this single software has different
operation modes.

 Figure 20 Perforamnce of macvtap and linux bridge

io= Number of io performed (mb)
bw= Average bandwidth rate(kb/s)
iops= Average IOs performed per second
lat avg= Average latency(msec)

35

5. PERFORMANCE OPTIMIZATION

This chapter presents various techniques to optimize the performance of a storage area
network solution. The different methodologies like multipathing, multiple connections
per session and NIC teaming improves performance and reliability. The para-virtualized
drivers of KVM improve the I/O performance. Para-virtualized drivers are employed in
a scenario where there is performance offset due to full virtualization. The cache setting
also helps to tune the I/O performance. All of these different possibilities are analyzed
elaborately in the following subchapters.

5.1 Multipathing

Multipathing is a technique that allows establishing more than one physical path that
enables data communication between the host and an external storage device. By
transmitting the payload across the multiple paths, the congestion on the path is reduced
and the speed is increased. Thus it increases the overall performance. If one of the path
in the SAN network is not functioning due to some failures, the data transfer can be
switch to any another physical path which is functioning perfectly. The process of
switching from failed path to active functioning path is called path failover. Thus this
failover mechanism improves the performance and fault tolerance.

 Figure 21 iSCSI multipath sessions and operation flow

36

The default multipathing driver supported by Linux is MPIO. MPIO allows the
initiator to establish multiple iSCSI sessions to the same target, by effectively
aggregating the duplicate devices into a single device. Each iSCSI session has single
TCP/IP connection as shown in Figure 21. Thus a reliable connection between a host
and its storage is maintained.

The benefits of MPIO include dynamic load balancing, dynamic path selection, its
positioning above the SCSI layer and support given by Linux. Multipathing driver is
placed above the SCSI layer; hence a single disk driver is enough to support network
transport protocols such as Fiber channel, iSCSI, etc. as shown in Figure 21. Multipath
I/O has two types of configuration active/active and active/passive. In both scenarios it
can provide failover. In active/active mode, the I/O is spread over all paths. In
active/passive mode, the I/O is spread over half of the available paths.

In our scenario we have two paths as shown in Figure 22, in active/active mode the
I/O is transferred over both the paths. If failure occurs in any one of these paths, it just
neglects the failed path and start sending all I/O in the active functioning path. In case
of active/passive mode, one path is in active mode and the other path is in passive mode.
The I/O is sent only over the active path. If failures occur in that path then it switched to
the passive path, which becomes active now. Therefore at any cause it utilizes only one
path thus the performance of active/passive configuration is less than active/active.
Some important features of multipathing includes load balancing policy, path grouping
policy, priority based path selection etc. The configuration information is included in
the appendix [3] .

 Figure 22 Multipathing lab setup

The failover time is calculated as
nop timeout + nop interval + replacement_timeout

Nop-out Request and Nop-in Response: This request/response used by an initiator and
target as a ping mechanism to affirm that a connection is still active and all of its
components are operational.
Replacement_timeout: It controls how long the iSCSI layer should wait for a timed-out
path/session to reestablish itself before failing any commands on it.
Lower the value of these parameters, the failover response is quick.

37

These parameters can be changed based on the requirements. In this configuration the
settings are
node.session.timeo.replacement_timeout =1 sec (time to wait for a timed-out path)
node.conn[0].timeo.noop_out_interval=1 sec (intervals between NOP-Out requests)
node.conn[0].timeo.noop_out_timeout= 1 sec (Nop-out requests time out)

The failover time presented here is for the active/active configuration. The
theoretical failover time calculated with formula is 3 seconds. With the help of
wireshark the practical failover time is calculated as 3.27, which is very close to the
theoretical value. The wireshark results are presented in the appendix [5] .

5.2 Network interface card teaming

Network interface card (NIC) teaming allows combining two or more NICs together to
make one virtual NIC. It is based on link aggregation. It is a method of combining
similar physical links into one logical link as shown in Figure 23. It is also called as
NIC bonding. NIC teaming is employed to achieve load balancing and failover.

 Figure 23 NIC teaming iSCSI session and operation flow

The physical NICs of a server are teamed and presented as a single NIC to the
application. If the application requests for data or writing data into the storage target, a
single TCP connection for an iSCSI session is created for each request. It is shown in
the Figure 23. The teamed physical NICs are connected to the network. The data
packets of a single TCP connection are distributed among the NICs. Thus, hike in the
performance can be expected. In case of failure of any one of the NIC, all the traffic is

38

routed to another available properly functioning NIC. Hence by providing redundant
path, it improves the fault tolerance of a server. But NIC teaming has drawback that
makes it less popular in the SAN deployment. Even though the two NICs are teamed, it
is not meaning that the performance or the throughput will be doubled, because the
NICs are not scaled out properly.

For example if two NICs are used, it is not assured that the packets are sent equally
through two NICs. It may send or may not. As mentioned in NIC teaming, there is only
one TCP connection between the storage and the server. The TCP segments of a single
TCP session are sent through two physical NICs. So the arrival at the destination will be
out of order. Each NIC had different delays. Thus in the destination it needs an
additional algorithm to arrange it in order. It increases the overall latency. And for the
incoming packets there is a need for switch in-between the server and the storage. The
switch is configured in such a way that it will send the packets equally across the NICs.
But in contrast, in multipathing each path has separate iSCSI session and TCP
connections. It means that each NIC has separate TCP connection.

Hence the packets arrived in order and the paths are properly scaled out with
specific load balancing function. Therefore multipathing performs better than NIC
teaming. NIC teaming works between server and switch. Multipathing works between
storage server and client server. NIC teaming is best suited for a network where more
intermediate hops are deployed like NAS.

5.3 Multiple connections per session (MC/S)

MC/S allows us to create multiple communication paths in a single session, to improve
performance and fault tolerance. Therefore the initiator establishes multiple TCP/IP
connections to the same target within the same iSCSI session. It is represented in the
Figure 24.

 Figure 24 Multiple connections per session and operation flow

39

MC/S is done on the iSCSI level. Thus, this feature depends on the storage
protocols. But in contrast, in MPIO the multipathing feature in is included in the disk
driver, hence it supports all the underlying storage protocols. If there is requirement to
apply different load balancing policies to different targets it will be better off using
MPIO. This is because load balancing policies are session adherent. It means while
applying policy to MCS it is for the whole session, no matter how many connections are
aggregated in this session.

In MC/S failover recovery is easier. If one connection is failed all the commands are
reassigned to another connection in the same session. It is easy because, all the failure
recovery actions are taking place within the same session. Hence all the reservations
information of the targets and the initiators connected to the device are remaining
unaffected. But failover recovery in MPIO is complicated, because here the commands
reassignment is between the sessions. All the commands are transferred from faulty
session to another active session. Thus, all the session to the specific LUN has been
terminated and then the sessions are established newly. Then it starts retransmitting the
commands. Therefore the failover recovery time is more and the initiator reservation
information in the targets is not persistent. But this can be addressed if the target is
supported with persistent reservations feature. It enables access for multiple nodes to a
target device and simultaneously blocks access for other faulty nodes. Thus only the
faulty session is terminated. The other initiator sessions are unaffected and the
information on the target is persistent. In our scenario LIO supports persistent
reservation. And it can be concluded that MPIO perform well than MC/S in the SAN
with its more advanced feature.

5.4 Effects of cache

The important factor while measuring the performance of a server is the time taken by
the server to read or write data from or to its internal storage or the external storage to
which it is connected. The server has different levels of cache to increase the read and
write performance. The speed of a processor to execute a program depends on the
hardware, software and the data locality. Data closer to the processor, the processor can
execute that program faster. Thus to increase the performance and to bring the data
more near to the processor, the computing system has main memory where the data are
cached during read or write operation. Hence the future requests for the same data can
be served faster, because it is much closer than the original storage device.
Caching is the processes of storing data temporarily in to the memory to serve the
application faster in future, that requesting the same data. Thus the data is fetched from
the memory rather than from storage disk. Hence the cache increases the overall
performance. The data of a specific application can be cached in the memory until the
memory is demanded by any other application. The caches influencing the I/O operation
are page cache and the disk cache.

40

Disk cache is the data cached in the memory of the storage hard disk. Page cache is
the data cached in the memory of the server’s operating system. But the problem with
cache is, the data storage is not guaranteed. During write operation, most of the data are
written into the memory rather than in the original hard disk. Once there is a demand for
memory from other application then the data is flushed into the hard disk. Otherwise it
resides in the memory. In case if there is power failure or any other disturbances that
turned off the system, then the data in the memory will be lost.

In our scenario the virtual machine image file has been opened as a normal file in
the host, which results in them being cached by the host operating system like any other
file. It is represented in the Figure 25. When the guest is executing I/O operation, the
data is getting cached in the page cache of both the virtual machine operating system
and the host operating system. Thus there are two copies of data, leads to more memory
consumption. It is always good to bypass any one page cache, so the memory can be
utilized by any other application. The virtual machine image file is very large. Caching
them can consume more memory of the host operating system. If more virtual machines
are running on the host, then it consumes almost all the memory space of the host and
then there will be no memory space for any host applications.

 Figure 25 Cache at different level

If the application is writing in the virtual machine, virtual machine page cache can
be bypassed with O_sync flag that flushes all data to the disk. But in VM the storage
disk is a virtual disk. Thus still the data is not stored in real hard disk; it is cached in the
host page cache. Hence the data is insecure. To conclude it is always good to bypass the

41

host page cache. O_sync instruct the write operations on the file will complete
according to the requirements of synchronized I/O file integrity completion. Thus it
allows the write command to return and accept the data in the queue once it is
completed with write operation of current data and associated file metadata it has, on
the real hard disk. There are several cache modes supported by hypervisor KVM and its
performances are shown in Figure 26.
Cache mode unspecified
If the cache mode is unspecified, the default caching mode is writethrough for the
qemu-kvm versions older than version 1.2. After that version, the default caching mode
is writeback.

Cache = writethrough
Host page cache – used Disk write cache – bypassed

The qemu-kvm uses O_DSYNC semantics, to communicate with the storage device
where writes are reported as completed only when the data has been written completely
on the storage device. The host page cache is used and the disk write cache is bypassed.
So there is no need to send flush commands to manage data integrity.

Cache = writeback
Host page cache – used Disk write cache – used
The qemu-kvm uses neither O_DSYNC nor O_DIRECT semantics, to communicate
with the storage device where writes are reported to the guest as completed but actually
written on the host page cache. And the flush command would be expected to send
down data to the real storage to manage data integrity.

Cache = none
Host page cache – bypassed Disk write cache – used
The qemu-kvm uses O_DIRECT semantics, to communicate with the storage device, so
where writes are reported as completed but actually written on the disk write cache. The
host page cache is bypassed and the disk write cache is used. Thus the data are placed in
write queue only, so flush commands would be expected to send down to manage data
integrity.

Cache = unsafe
Host page cache – used Disk write cache – used
This mode is similar to the cache=writeback mode. The unsafe mode ignores all flush
commands from the guests. This mode is used in the scenario where the user has
accepted to compromise with risk of data loss in the case of failure situations over
performance.

Cache=directsync
Host page cache – bypassed Disk write cache – bypassed

42

The qemu-kvm uses both O_DSYNC and O_DIRECT semantics, to communicate with
the storage device, where writes are reported as completed only when the data has been
written completely on the storage device. The host page cache is bypassed and the disk
write cache is bypassed.

 Figure 26 Performance comparison of different cache modes

It is recommended to use Cache=directsync while measuring storage performance.
Because with directsync no cache is utilized, thus it helps to get down the real
performance of a storage system.

5.5 KVM para-virtualized drivers for block device

KVM /QEMU provide full virtualization which is already explained in chapter 4. It has
some limitations with I/O performances. The I/O performance is very much limited
when compare to native performance, since it is using the emulated hardware. But
KVM supports many para-virtualization drivers to improve the virtual I/O performance.
Para-virtualized drivers allow running the I/O operation directly on the real device.
Virtio is the framework for I/O para-virtualization in KVM. The two important para-
virtualized drivers supported by KVM, which influences the block I/O performance are

• Virtio-blk

• Virtio-SCSI

5.5.1 Virtio-blk

Virtio–blk is a para-virtualized I/O driver for the block device. This para-virtualized
driver gives better performance than executing I/O operation on an emulated hardware.

43

Even though it provides better performance it has some limitations, they are described
below.
Limited scalability: Virtio-blk puts a strong limitation on the number of block storage
devices that can be added to a guest. Currently virtio-blk supports approximately 30
disks per guest only. When the hardware is virtualized and presented to VM, it inherits
the same characteristics of hardware as like it behaves in the host. As like in host the
PCI device has up to 32 slots. Peripheral Component Interconnect (PCI), as its name
implies is a standard that describes how to connect the peripheral components of a
system together in a structured and controlled way. A bus is a communication system
that transfers data between components inside a computer, or between computers. Each
device can be a multifunction board with a maximum of eight separate functions,
without getting affected by the other function in the same slot. Virtio presents each disk
and network card as a separate function. Whenever devices are added or removed from
a running machine, all functions in the same slot have to be added or removed
simultaneously. Thus due to this limitation, each PCI slot will usually hold a single
virtio device and limiting the KVM guest to 28 virtio devices. The remaining four slots
are reserved for various pieces of virtual hardware.
Limitation in adding features: Virtio-blk defines its own command sets for I/O
operations like read, write etc. In case of adding new features it needs modification in
both guest and the host operating system.
SCSI pass-through: SCSI command from guest reaches to storage only when it is
attached as LUN, but cannot support file or disk storage. The guest sees the attached
LUN as /dev/vd. Sometime programs may refuse to send SCSI commands to device
which varies from host device naming. In host the device name starts as /dev/sd. It is
represented in the Figure 27 [40].
Most of the limitations of virtio-blk are addressed by the virtio-scsi driver.

 Figure 27 Storage access by virtio-blk

44

5.5.2 Virtio-SCSI

The virtio-SCSI is a new feature of the KVM. It is a storage interface for the virtual
machine. The virtio-scsi is high performance para-virtualized storage device. Virtio-scsi
provides anything that the underlying SCSI target supports. It is a virtual small
computer system interface (SCSI) host bus adopter and it is the successor of the virtio-
blk, with improved capabilities. SCSI is standard electronic interfaces that allow
personal computers to communicate with peripheral hardware such as disk drives, tape
drives etc. Virtio-SCSI provides the ability to connect directly to SCSI LUNs and
significantly improves scalability compared to virtio-blk. It allows accessing multiple
storage devices through a single controller, and enabling reuse of the guest operating
system’s SCSI stack.
The benefits are

• Improved scalability
• Standard command set

• Standard device naming
• SCSI device pass-through—virtio-scsi can present physical storage devices

directly to guests.
Improved scalability: Virtio-scsi has capability to connect to multiple storage devices
and presenting it to the virtual machines. Virtio-scsi accomplishes this by multiplexing
numerous storage devices on a single controller. Each device on a virtio-scsi controller
is represented as a logical unit, or LUN. The LUNs are grouped into targets. The limit
of each virtio-scsi device is 256 targets maximum per controller and 16,384 logical units
per target.

 Figure 28 Virtio-SCSI

45

Standard command set: Virtio-scsi uses standard SCSI command sets. Its specification
does not define commands like read, write for disks. Instead, it defines a transport
protocol for the commands. Since it acts as a transport protocol, host operating system
does not require any modification. If there is a modification in the virtio-scsi module,
only the guest operating system required modification. Thus it will be added or the
existing virtio-scsi should get updated only in the guest operating system.
Standard device naming: virtio-scsi disks use the same paths as a bare-metal system.
This simplifies physical-to-virtual and virtual-to-virtual migration. But virtio-blk
devices are represented by the guests with files whose names start with /dev/vd which is
different than the host device name. The virtio-scsi devices are represented by /dev/sd as
like in host.
SCSI device pass-through: For virtual disks that are backed by a whole LUN in the
host, it can be desirable to let the guest send SCSI commands directly to the LUN. This
is known as pass-through, which is represented in Figure 29. Disks are presented to the
guest on a SCSI bus. And the guest sees the attached LUN as /dev/sd as like in host. It
natively accepts the SCSI command set. Disks are presented to the guest on a SCSI bus
as shown in Figure 28 and the virtual machine definition script are included in the
appendix [4] .

 Figure 29 Virtio-scsi passthrough and performance comparison with virtio-blk

5.6 Libiscsi

Libiscsi is a client-side library to implement the iSCSI protocol that can be used to
access the resources of an iSCSI target. It is a user space initiator, provides support only
for iSCSI targets. By configuring the libiscsi into the QEMU, the iSCSI-initiator can run
on the QEMU. So it accesses the iSCSI targets directly by bypassing the host. Thus it

46

enables hypervisor to access the iSCSI targets directly and this can be employed in a
scenario where the host must not see the storage devices of the virtual machine. Virtio-
scsi has support for the libiscsi. It is show in Figure 30 [40].

 Figure 30 Libiscsi iscsi initiator

47

6. CONCLUSION

The purpose of this thesis is to study the different possibilities of designing a storage
area network (SAN) and to provide an optimized SAN solution. The different protocols
for storage area network such as iSCSI, SCSI, FC, FCIP and FCoE were studied. From
the study, iSCSI is recommended as the best suitable protocol for the storage area
network. Hence iSCSI is employed to enable communication between storage server
and client in this SAN design. And it is also concluded that storage server is a virtual
machine for the following reasons. The main reasons are efficient utilization of
hardware, scalability of storage, replication and possibility of live migration.
Virtualization is achieved by the hypervisor KVM/QEMU.

KVM/QEMU has been selected as hypervisor because the KVM is included in the
kernel of the operating system LINUX. Hence it is more reliable and it also minimizes
the effort and time required for the configuration. There is also requirement to acquire
insight knowledge about working means of KVM/QEMU. Thus the working means of
KVM/QEMU were studied. Since the storage server is a virtual machine, virtual
network has been employed to enable communication between virtual machine and
others. There are many options like Bridge, Macvtap, and Openvswitch for deploying
virtual network. The benefits and drawbacks of each of them were analyzed and
Macvtap is the final choice for this virtual machine network configuration because of its
performance and easy configuration. The iSCSI target is running on the virtual machine.
There are different iSCSI targets like LIO, SCST, STGT and IET are available in
market. The performance of each of them was measured. Among all LIO is the best
performing and reliable target as per this environment. With these basic configurations
the storage server is ready and the clients can start utilizing the storage space offered by
the storage server. But the performance can be still improved.

In order to improve the performance, various parameters have been taken into
account. It includes network level optimization, para-virtualized drivers of KVM and
cache. Network level optimization includes Multipathing, MC/S, NIC teaming. All of
these technologies are mainly used to improve the performance and redundancy. From
the study, Multipathing is concluded as the best option when compared to other options
like NIC teaming and MC/S. Multipathing can be configured in two ways active/active
and active/passive. Active/active multipathing is preferred than active/passive for its
better performance since the I/O is spread over all paths. The para-virtualized driver is
employed to increase the I/O performance in a full virtualization scenario. The para-
virtualized drivers of KVM include virtio-scsi and virtio-blk. Virtio-scsi is employed in
this design even though the performance of the virtio-blk is high. This is because virtio-
scsi has rich features than virtio-blk and it is a new driver of KVM, expected to grow

48

more in the future. The cache setting of the virtual machine also has high impact on the
storage I/O performance. The cache setting for this SAN solution is direct sync. Direct
sync mode does not use any cache. Thus data integrity is secured even in case of any
unexpected system failure. It is recommended to practice directsync cache mode while
measuring the performance of SAN, which helps to get the real performance of the
storage device and SAN configuration without any influence of cache. Cache mode of
writeback or writethrough can be used to increase storage performance by taking the
risk of data integrity. With these configurations the virtual storage server was optimized
such that there is betterment in the crucial parameters like efficiency, performance and
redundancy.

There are some limitations in this study. The performance analysis of storage server
was conducted in Ericsson specific equipment, it cannot be generalized. Due to the time
limit, the SAN solution was not integrated to the openstack for the cloud services. The
future study based on this thesis can be integrating it with openstack to provide cloud
services. An in-depth study can also be conducted on the para-virtualized drivers of
KVM in code level to improve the storage performance.

49

REFERENCES

[1] Dan Kusnetzky, Virtualization: A Manager’s Guide, Big picture of the Who,
What and Where of virtualization, O’REILLY 2011.
Availability:http://it-ebooks.info/read/583/

[2] Bernard Golden, Virtualization for Dummies, Wiley publishing, Inc.
 Availability:http://it-ebooks.info/read/2777/

[3] The Most Complete and Integrated Virtualization: From Desktop to Datacenter,

An Oracle White Paper, October 2010.
Availablility:http://www.oracle.com/us/technologies/virtualization/virtualization
- strategy-wp-183617.pdf

[4] Jean S. Bozman Gary P. Chen, Optimizing Hardware for x86 Server
Virtualization,WhitePaper, August 2009.
Availability:http://www.intel.com/Assets/PDF/whitepaper/IDC
choosingvirthardware.pdf

[5] Understanding Full Virtualization, Paravirtualization, and hardware Assist,
White Paper, Availability:http://www.vmware.com/files/pdf/
VMware_paravirtualization.pdf

[6] Modeling and Performance Evaluation of iSCSI Storage Area Networks over

TCP/IP- based MAN and WAN networks, C. M.Gauger, M. Kohn, S. Gunreben,
D. Sass, and S. Gil Perez.

[7] iSCSI Technical White Paper, Nishan Systems.

Availability:http://www.diskdrive.com/iSCSI/reading-room/white-
papers/Nishan_iSCSI_Technical_White_Paper.pdf

[8] Storage Protocol Comparison, White Paper, vmware.
Availability:http://www.vmware.com/files/pdf/techpaper/Storage_Protocol_
Comparison.pdf

[9] iSCSI Protocol Concepts and Implementation, White Paper, Cisco Systems.
Availability:http://storusint.com/storage_protocols/iscsi/iSCSI%20White%20
paper.pdf

50

[10] Storage area networking protocols and architecture,
Availability:http://www.cisco.com/networkers/nw04/presos/tech/docs/
OPT-2T01.pdf

[11] John L Hufferd, Consultant, IP Storage area Protocols: iSCSI, Hufferd
Enterprises, SNIA.

 Availability:http://www.snia.org/sites/default/education/tutorials/2011/spring/
 networking/HufferdJohn-IP_Storage_Protocols-iSCSI.pdf

[12] Internet Small Computer Systems Interface (iSCSI) Naming and Discovery,
 Availability:http://tools.ietf.org/html/rfc3721

[13] Fibre Channel (FC). Availability: http://tools.ietf.org/html/rfc3643

[14] Unified Fabric White Paper—Fibre Channel over Ethernet (FCoE)

Availability:http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise
/Data_Center/UF_FCoE_final.html

[15] Fibre Channel over Ethernet: Enabling Server I/O Consolidation, White Paper
Availability:http://www.brocade.com/downloads/documents/white_papers
/Brocade_FCoE_WP-00.pdf

[16] Fibre Channel over TCP/IP (FCIP)

Availability:http://www.ietf.org/rfc/rfc3821.txt

[17] Securing Block Storage Protocols over IP
Availability:http://tools.ietf.org/html/rfc3723

[18] LIO Architecture
 Availability:http://linux-iscsi.org/wiki/LIO

[19] Comparing File (NAS) and Block (SAN) storage
 Availability:https://www.spectralogic.com/index.cfm?fuseaction=home.

displayFile&DocID=4630

[20] Randy H. Katz, Network-Attached Storage Systems, IEEE paper
 Availability:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=232686

[21] Network-attached storage for growing small business
Availability:https://education.emc.com/academicalliance/documents
/EAA_Content/Exercises/IOMEGA%20NAS%20for%20SMB.pdf

51

[22] Cluster Technology and File Systems

Availability:http://www.stalker.com/notes/SFS.html

[23] KVM – KERNEL BASED VIRTUAL MACHINE
 Availability:http://www.redhat.com/en/files/resources/en-rh-kvm-

kernal-based-virtual-machine.pdf

[24] Jan Kiszka, Architecture of the Kernel-based Virtual Machine (KVM),Siemens
Availability:http://www.linux-kongress.org/2010/slides/KVM-Architecture-
LK2010.pdf

[25] Paolo Bonzini, Effective multi-threading in QEMU, Red Hat
Availability:http://www.linux-kvm.org/wiki/images/1/17/Kvm-forum
-2013-Effective-multithreading-in-QEMU.pdf

[26] Anthony Liguori, Multi-threading in QEMU
 Availability:http://www.linux-kvm.org/wiki/images/7/70/2010-forum-

threading-qemu.pdf

[28] Toshiaki Makita,Virtual switching technologies and Linux bridge, NTT Open
Source Software Center.
Availability:http://events.linuxfoundation.org/sites/events/files/slides/
LinuxConJapan2014_makita_0.pdf

[29] Linux I/O (LIO)
Availability:http://linux-iscsi.org/wiki/Main_Page

[30] iSCSI Error Handling and Recovery
 Availability:http://tools.ietf.org/html/rfc3720#section-6.1.4.4

[31] Combining the Reliability of iSCSI with Full Error Recovery and the

Performance of 10 Gigabit Ethernet.
Availability:http://www.force10networks.com/whitepapers/pdf/
wp_iscsi_10ge.pdf

[32] Martin K. Petersen, T10 Data Integrity Feature
Availability:https://www.usenix.org/legacy/event/lsf07/tech/petersen.pdf

[33] Dr. Khoa Huynh, Exploiting The Latest KVM Features For Optimized
Virtualized Enterprise Storage Performance, IBM Linux Technology Center.
Availability:http://events.linuxfoundation.org/sites/events/files/slides/

52

CloudOpen2013_Khoa_Huynh_v3.pdf

[34] The Linux Kernel's VFS Layer
Availability:https://www.usenix.org/legacy/event/usenix01/full_papers/
kroeger/kroeger_html/node8.html

[35] The Linux Virtual File system

Availability:http://www.inf.fu-berlin.de/lehre/SS01/OS/Lectures/Lecture16.pdf

[36] Best Practices for Running VMware vSphere on iSCSI, TECHNICAL

MARKETING DOCUMENTATION, July 2013
 Availability:http://www.vmware.com/files/pdf/iSCSI_design_deploy.pdf

[37] Link Aggregation, IEEE.

Availability:http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&
arnumber=4668665

[38] NIC TEAMING, IEEE 802.3ad, vmware.
Availability:http://www.vmware.com/pdf/esx2_NIC_Teaming.pdf

[39] Asias He , Virtio-blk Performance Improvement, Red Hat, KVM FORUM Nov
2012. Availability:http://www.linux-kvm.org/wiki/images/f/f9/2012-forum-
virtio-blk-performance-improvement.pdf

[40] Masaki Kimura ,Better Utilization of Storage Features from KVM Guest via
virtio-scsi.
Availability:http://events.linuxfoundation.org/sites/events/files/slides/
MasakiKimura_LinuxConNorthAmerica2013_1.pdf

[41] Virtio SCSI, An alternative virtualized storage stack for KVM.
Availability:http://www.linux-kvm.org/wiki/images/f/f5/2011-forum-virtio-
scsi.pdf

[42] Laura Novich, Paolo Bonzini, virtio-scsi, Technical white paper, Red Hat Israel.

[43] Multithreading

Availability:http://www.tutorialspoint.com/operating_system/os_multi_threadin
g.htm

53

APPENDIX

[1] A script to define virtual machine

/usr/bin/qemu-system-x86_64 \

-enable-kvm \

-cpu phenom \

-smp 1,sockets=1,cores=1,threads=1 \

-drive file=/home/ubuntu.img,if=virtio,cache=directsync \

-drive file=/dev/sdb1,if=virtio,cache=directsync \

-drive file=/dev/sdc2,if=virtio,cache=directsync \

-netdev tap,id=tap2,fd=58 58<>/dev/tap58 \

-device virtio-net-pci,netdev=tap2,mac=c6:af:77:89:bc:39 \

-netdev tap,id=tap3,fd=62 62<>/dev/tap62 \

-device virtio-net-pci,netdev=tap3,mac=d2:23:b9:bb:93:00 \

-netdev tap,id=tap4,fd=61 61<>/dev/tap61 \

-device virtio-net-pci,netdev=tap4,mac=b6:a2:c9:c2:59:a9 \

-boot c \

-m 3000 \

-vnc :3&

enable-kvm
Enable the kvm features when needed, otherwise use QEMU.

cpu cpu_model
 Specify type of the processor (CPU) model.

smp number_of_cpus
Specifies how many CPUs will be emulated. This option also takes other CPU-related
parameters, such as number of sockets, number of cores per socket, or number of
threads per core.
file=image_fname
Specify the path of the disk image which will be used by the drive.

if=drive_interface
Specifies the type of interface to which the drive is connected. Currently only floppy,
ide, or virtio are supported by SUSE. Virtio defines a para-virtualized disk driver.
If your device, such as -drive, needs a special driver and driver properties to be set,
specify them with the -device option, and identify with drive= suboption.

cache=method
Specify the caching method for the drive. Possible values are unsafe, writethrough,
writeback, directsync, or none.

54

netdev
This option defines a network interface and a specific type of networking for your VM.

tap
Specify a bridged or routed networking.

fd
file descriptor

boot
Specifies the order in which the defined drives will be booted. Drives are represented by
letters, where 'a' and 'b' stands for the floppy drives 1 and 2, 'c' stands for the first hard
disk, 'd' stands for the first CD-ROM drive, and 'n' to 'p' stand for Ether-boot network
adapters.

[2] LIO Configuration

55

[3] Multipath configuration

defaults {

user_friendly_names yes

Use mpathn names for multipath devices

path_grouping_policy multibus

Place all paths in one priority group

path_checker readsector0

Method to determine the state of a path

polling_interval 3

How often (in seconds) to poll state of paths

path_selector "round-robin 0"

Algorithm to determine what path to use for next I/O

operation

rr_min_io 1000 #(default)

The number of I/O requests to route to a path before

switching to the next path

failback immediate

Failback to highest priority path group with active paths

no_path_retry 0

#Number of times the system should attempt to use a failed

path before disabling queueing

}

blacklist {

devnode "^sd[a-d]$"

}

multipaths {

multipath {

wwid 360014057bbf7733f4c54da98a0a5757d

}

}

[4] VM script with virtio-drivers

/usr/bin/qemu-system-x86_64 \

-enable-kvm \

-cpu phenom \

-smp 1,sockets=1,cores=1,threads=1 \

-drive id=hd0,file=/home/vm1.img,if=none,cache=directsync \

-device virtio-scsi-pci \

-device scsi-hd,drive=hd0 \

-drive id=hd1,file=/dev/sdb1,if=none,cache=directsync \

56

-device virtio-scsi-pci \

-device scsi-hd,drive=hd1 \

-drive id=hd2,file=/dev/sdc2,if=none,cache=directsync \

-device virtio-scsi-pci \

-device scsi-hd,drive=hd2 \

-netdev tap,id=tap6,fd=58 58<>/dev/tap58 \

-device virtio-net-pci,netdev=tap6,mac=c6:af:77:89:bc:39 \

-netdev tap,id=tap7,fd=61 61<>/dev/tap61 \

-device virtio-net-pci,netdev=tap7,mac=b6:a2:c9:c2:59:a9 \

-netdev tap,id=tap8,fd=62 62<>/dev/tap62 \

-device virtio-net-pci,netdev=tap8,mac=d2:23:b9:bb:93:00 \

-boot c \

-m 3000 \

-vnc :5&

[5] Failover time calculation with wireshark

