TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

VALAMBAL ARAVINDAN
PERFORMANCE ANALYSIS OF ISCSI BLOCK DEVICE
VIRTUALIZED ENVIRONMENT

Master of Science Thesis

Examiner: prof. Evgeny Kucheryavy
Senior Researcher. Dmitri Moltchanov
Examiner and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical

Engineering on 3" September 2014

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’'s Degree Programme in Information Technology

VALAMBAL, ARAVINDAN: Performance analysis of an iSCSI block device in
virtualized environment

Master of Science Thesis, 56 pages

October 2014

Major: Communication Engineering

Examiner(s): Prof. Evgeny Kucheryavy and Dmitri Moltchanov

Keywords: iSCSI block device, Storage area network, kernel virtual machine
and quick emulator

Virtualization is new to telecom but it has beereatly implemented in IT sectors. Thus
its benefits are already proven, which drags ofleetors attention towards it. Now the
telecom organizations are also focusing on virhzion to reap the full benefits of it.

The main focus of this thesis is to conduct a parémce analysis of a block storage
device in a virtualization environment. Storagef@@nance plays vital role in telecom

sector. The performance and the reliability of tterage device is more important
factor to fulfill the client request with minimuratency.

This thesis is comprised of three main areas. Tise literature part is to study the
different storage networking possibilities and therent storage protocol practice to
establish communication between server and thegtom the storage area network.
The study indicated that Internet Small Computest&y Interface (iISCSI) has more
advantages than other practices in the storagenateark. The second part covers the
design of storage area network (SAN) solution. Sterage is offered by an iSCSI
storage server. It offers a block level storageimewaccess to the compute server.
Different iSCSI targets are available in marketfgrenance of those were compared.
Linux-IO Target was concluded as better iISCSI tangh better performance and
reliability. The Storage server was implemented >ual machine for better resource
utilization, thus there was a study about the hyiger and the different networking
options for the virtual machines were compared. fifi& part is to optimize the SAN
solution. Multipathing, different caching optionsdadifferent driver options provided
by the kernel virtual machine (KVM)/ Quick emuladofQEMU) were considered for
optimization.

PREFACE

This Master thesis was written at Product Designt,Uricsson at Herzogenrath,
Germany during the period of May 2014 —October 2014

This thesis is the integral part of my Master ofieBce program in Information
Technology. It has been concluded and presentdtietd-aculty of Computing and
Electrical Engineering at Tampere university of Amalogy in Finland for the
graduation.

| am grateful to examineProf. Evgeny Kucheryavy and Dmitri Moltchanov of my
university, for their valuable guidance which hetpkeeping me on track during whole
thesis period. And also | would like to thank alf professors and lecturer, who helped
to acquire more insight in telecommunication bysprding their great lectures and
guiding me in laboratory works in my Masters prognae.

| extremely appreciate my supervisor Manuel BuiEimcsson, for the encouragement
and support provided by him throughout my thesisopeand warmest thanks to my
manager, who gave me this great opportunity. | eidikk to express my gratitude to all
my colleagues for their technical support and aglvic

| thank my friends and family for their support,cenragement and well wishes
throughout this period. Finally, special thanksntg son Midhulan Aravindan for his
love, support and patience.

Valambal Aravindan

Herzogenrath, October 2014

TABLE OF CONTENTS

Y 013 = Lo SRR PP PTTPP [
[= = Vo] PP PP PPPPPPRP ii
TabIE Of CONTENTSeeiiiiiiiiiiiee e a e e e e e e ii
LiSt Of ADDIEVIALIONSuvviiiiiiiiiiiiiis e e e %
LISt OFf FIQUIES ...t e e e e e e eaee e e e e e e e e e e aeeeeeeennnnes Vil
1. INTRODUGCTIONotiiiiiiiiiiiiiiiiiiaaaae e s e eeeaa e e e e e e e e e e seesnseeees 1
1.1 StruCture Of TRESIS ...ttt 2
2. INTRODUCTION TO VIRTUALIZATION AND CLOUD........ccoiiiiiiiiiiiieeeeeen, 3
P28 R @ o 0 o o0 o o U1 o 3
2.2 Need fOr ClOUd.........cooiiiiiiiiiieeee e e e e 3
2.3 Virtualization and itS tYPEScoevvviiiiieeeeer e e e 4
2.3.1 Compute VIrtualiZationccooeiiiiiiieeeeeee e 5
2.3.2 Storage VirtualiZatioN..............uuueeen s s eeeeeeeeeeeeeeeeseensnnnnnaneeeens 6
2.3.3 Network virtualizationccccuuuuuiirimmmm e 7
2.3.4 Desktop Virtualization...........cceeeeeiiiiiiieeeeeise e 8
2.3.5 Application virtualiZationeeeiiiiiiinieeeeeeeeeeeeeeee 8
3. STORAGE NETWORKING TECHNOLOGIES...........coiiiiieiiiiiiiieieeeeeeeee 9
3.1 Storage area NEtWOrk (SAN)c.oovvvevieetmmmmmmm e e e eeeeeeeeeeeeeere e eas 10.
3.1.1 Small computer system interface...........cccceeevvveiiveriiiiiiiiieeeenn. 11
3.1.2 Fibre channel SAN ... 12
3.1.3 Internet ProtoCOl SANccoiiiiiiiiiiis ittt e e 14
3.1.4 Fibre Channel over Ethernet..........cccoo oo 18
3.2 Network Attached STOrageueuueii it eeeea e 18
3.2.1 Why we Need NAS ..ottt e e e e e e e eaaananees 19
4. STORAGE AREA NETWORK DESIGN FOR CLOUD INFRASTRUCTWER 20
4.1 Kernel virtual machine (KVM) and quick emulator (WB) 20
4.2 KVM-QEMU I/O arcChiteCturecoooeeiiiiice e 21
G R ST @3S I = o 1= £ 24
4.3.1 IET (iISCSI Enterprise Target)cccoeeeeicccccceeeeeeeeeeeeeveeveiinneeee s 24
4.3.2 SCST (SCSI Target SUDSYSIEM)scommmmmm e eeeeeeeeeeeeeerenennnnnns 24
4.3.3 STGT (SCSI Target Framework)eemmmmreeeereennnnnninnneeeeeens 24
4.3.4 LIO (LINUX-10 Target) ...cccoveveeeeeeieiiiiceiee e ee e 25
4.4 iSCSI target perforamnce reSultscccccceeeeiiiie e 25.
4.5 LIO @rChit@CIUIEccoiiiieeeee et 26
4.6 Virtual machine Networkingcoovvvieeeeeriiiiieeeeer e 29.
0t R = T [0 = S 29
G V= To1Y - o OO PPPR 31

4.6.3 OPENVSWILCN ..ooiiiieeeee e e e e e e e e 33

4.6.4 Performance results of Macvtap and Linux Bridge..................... 34
5. PERFORMANCE OPTIMIZATION ...ooiiiiiiiiiiiieeeeeee e 35
5.1 MURIPANINGceiiiiiiiiiee e e 35
5.2 Network interface card teaming...........oiieeeeeeininiiiii e 31
5.3 Multiple connections per session (MC/S) ... 38
5.4 Effects Of CACNEuueeeiii i 39
5.5 KVM para-virtualized drivers for BIOCK deVICE w.ccveveviiviiiiiiiiiiiiieeeeeee 42
551 VIrIO-BIK cccooeeieee 42.
5.5.2 ViMIO-SCSI .. oottt eeeaa e e as 4.4
5.6 LIDISCSI i e 45
6. CONCLUSION .. .cuttitiiiiiiiiiiie ettt ereeeeeeaaaaasnnnns 47
REFERENGCES ..ottt aeeeeee s e e e s e e nnnnes 49

APPENDIX ... 53

LIST OF ABBREVIATIONS

ALUA Asymmetric Logical Unit Assignment
API Application Programming Interface
ATA Advanced Technology Attachment
CIFS Common Internet File System

CPU Central Processing Unit

DAS Direct-attached storage

ERL Error Recovery Levels

eui extended unique identifier

FC Fibre Channel

FC SAN Fibre Channel Storage Area Network
FCIP Fibre channel internet protocol
FCoE Fibre Channel over Ethernet

FCP Fibre Channel Protocol

FC-PI Fibre Channel Physical Interface
FDB Forwarding Data Base

FIO Flexible Input/Output

HBA Host-Bus-Adapter

HDD Hard Disk Drive

I/O Input/Output

laaS Infrastructure as a service

IDE Integrated Drive Electronics

IET iISCSI Enterprise Target

IP SAN Internet Protocol Storage Area Network
IP Internet Protocol

igqn ISCSI Qualified Name

iISCSI Internet Small Computer System Interface
ISL Inter-Switch Link

IT Information technology

KVM Kernel Virtual Machine

LAN Local Area Network

LIO Linux-10 Target

LU Logical Unit

LUN Logical Unit Number

MAC Media Access Control

MC/S Multiple connections per session
NAS Network-attached storage

NFS Network File System

NIC
PaaS
PCI
PDU
PR
QEMU
RAM
SaaS
SAN
SCSI
SCST
SDD
SDN
SLA
STGT
STP
TCP
UDP
VFS
VM
WAN

Network Interface Card
Platform as a service
Peripheral Component Interconnect
Protocol Data Unit

Persistent Reservation

Quick emulators

Random Access Memory
Software as a service

Storage Area Network

Small Computer System Interface
SCSI Target Subsystem
Solid-State Drive
Software-defined networking

Service Level Agreement
SCSI Target Framework
Spanning Tree Protocol
Transmission Control Protocol
User Datagram Protocol
Virtual File System

Virtual machine

Wide Area Network

Vi

Vil

LIST OF FIGURES

Figure 1 Evolution of conventional system to vilized cloud system........................ 4
Figure 2 Logical representation of SAN and NAS............ooooiiiiiis 10
FIQUIe 3 SAN PrOtOCOIS. .. .uuuiii e e e e e e e e e e e s 11
Figure 4 SCSI client-Server OPErations.uuuuuuueiiianiee e eeeeeeeeee e eeeeeeeeeinnnen 12
FIQUIE 5 SCSILArgel......coiiiiiiieeee e a e e e e 12
Figure 6 Basic topology Of FC SAN.........uuuiiii e 14
Figure 7 iISCSI layer in protoCol StaCK...........uuuiiiiiiiiiieeeeiiieeeeeeieieeeeeeeee s 15
Figure 8 ISCSI and FCIR........cooiii e 17
Figure 9 NAS WIth NES ... e 8.1
Figure 10 KVM/QEMU 1/O archite@Cture.........ccooeeiiiiiieiieieeii e 21
FIgure 11 Lab SEtUP......ooueiiiiieee et 23
Figure 12 Write performance and Read performance............ccccvviiiiiiiinciinnnn. 25
Figure 13 Performance of read and write in parallel..............cccccoeeiiiiiiin. 25
Figure 14 LIO arChit@CtUI.........uuueiiiiiee ettt e e e e e e eeeeeeeenes 27
Figure 15 LIO CONfIQUIAtION.........uueiiiiiii ettt e e e e e e e e eeeaeees 29
Figure 16 Bridge arChiteCUIR..........cooiiiiiiiiiiiiee e 30
Figure 17 Virtual file SYSteIM.......ccooi i 31
Figure 18 Macvtap arChiteCtUre..........oooiiiiiiiiiicee e 33
Figure 19 OpenVSWITCIL. ..o 4.3
Figure 20 Perforamnce of macvtap and linux bridge...........cccooeeiiiiiiiiiiiiiiiiiiiiins 34
Figure 21 iSCSI multipath sessions and operatiowfl..............ccccceeeiiiinninninn. 35.
Figure 22 Multipathing lab Setup...........ccoii e 36
Figure 23 NIC teaming iISCSI session and operal@m £................cceiiiiiiiinniennnnnnnn. 37
Figure 24 Multiple connections per session and apen flow................cccceeeviiiinnnnns 38
Figure 25 Cache at different [eVel..............ueeiiiiiiii e 40
Figure 26 Performance comparison of different cagtogles................ccoeeeeiiiieiienninne 42
Figure 27 Storage access by Virtio-DlK.............cooiiien 43
Figure 28 VIrtio-SCSL......cooiiiiiiiiiiiiii e A
Figure 29 Virtio-scsi passthrough and performacoenparison with virtio-blk........ 45

Figure 30 LibISCSI ISCSI INITIALOL........civiiiiiiiiiiiiiee e 46

1. INTRODUCTION

The cost is the crucial factor in today’s businessld. IT infrastructure is one of the
important sectors where the organizations are spgndiore to achieve better
performance and business continuity. The orgaoizatare always keen to reduce the
cost without sacrificing the performance, whichdgathem to win the business
competitors. Cost and efficiency depends on eablkerotEfficient utilization of any
resources reduces the cost. Virtualization teclgyopyovides a way to achieve efficient
consumption of the resources, by virtualizing thggical hardware.

Most of the organizations are transforming thereveaotional datacenter to a
virtualized datacenter to incur the profits fromrtwalization. The three main
classification of on the IT infrastructure virtuadtion includes server, storage and
network. This thesis focuses on the performance fthfe virtualized
datacentres.Virtualization transforms the converdialata center into a more flexible
datacenter through server virtualization and cadabbn. It also simplifies the
provisioning of IT resources. The resource constih reduces hardware cost. The
possibility of dynamic virtual machine migratiorofn servers to servers increases the
flexibility significantly. Thus the organizationsibg in transition from conventional to
virtualization datacenters.

Data is one of the main assets of the company. latage has to be more secured
and reliable to maintain the business continuit@SSis a widely employed storage
protocol to establish connection and data trafs#éveen compute and storage devices.
But it cannot support for the long distance scesarifo address this problem lot of
technologies evolved to carry the SCSI commandederi compute and the storage
server. Most popular among them is iSCSI protot®CSI protocol enables access
between the compute and storage servers in thagst@rea networks (SANS) over
TCP/IP networks. Thus iSCSI protocol allows SCShomand sent over the underlying
TCP/IP network. It is very popular, easy to impletnand affordable, since it uses the
already existing IP network rather than deployimy aew infrastructure. It provides
block-based high speed data transfer. But the argtons are running out of space due
to increase in the application exploration. Virtmalion reduces the growth rate of
storage and other hardware demand by effectiveeusipe hardware resources.

In the conventional method the iISCSI storage seivex real machine, such that
application run on the real hardware. The maintation of this conventional method is
scalability and inefficient utilization of the havdre resources. The solution is to
virtualize the hardware. In this thesis work, iISGHdrage target server is a virtual
machine, thus the storage devices are virtual devithe benefits include better
utilization of resources, scalability, live migmi etc. Since it is virtualized, its

performance is not similar to native performanc®sveral factors are influencing the
performance of the virtual machine and the iISC&jdarunning on it. Thus the goal of
this thesis is to study and analyze the factorsi@nicing the performance of an iISCSI
target device in the virtual scenario.

1.1 Structure of Thesis

This thesis comprises of six chapters. Chaptere$gmts the brief introduction and the
goal of this thesis. Chapter 2 explains the vimaaion and different types of
virtualization. Chapter 3 offers the brief idea stbrage area network (SAN) and
network attached storage (NAS). And different pcote that connects compute and the
storage in the storage area network are explaitedzbmately in chapter 3. Chapter 4
focus on the design and implementation of storagees in the storage area network,
study of hypervisor KVM/QEMU, performance comparnisof different iSCSI targets
and virtual machine networking possibilities. Clapb is about analyzing different
possibilities to optimizing the storage performanE@ally Chapter 6 presents the
conclusion of the thesis.

2. INTRODUCTION TO VIRTUALIZATION AND
CLOUD

Virtualization and cloud computinggchnology go hand in hand to reap the maximum
benefits of each other. In general Cloud refer®togdemand service. To leverage cloud,
virtualization works in parallel with cloud in mostvironments.

2.1 Cloud computing

Evolution of internet leads to a technology calkéold computing. It means that all the
resources needed for computing comes under a silmgld and it is provided to user as
a service on demand. The resources can be eitfteras® or hardware. The computing
process may run in one or many connected serveti, the help of virtualization
technology. The cloud computing has the followiegvece models:

Infrastructure as a service (laaS): The whole stftecture, required to run the
organization operation is provided as a servican&of the important infrastructure
resources are physical and virtual machines, storagual and physical network etc.

Platform as a service (PaaS): Platform is proviaedervice by the cloud providers
which are ready to run user application on demdimg user does not care about the
underlying operating system or the storage promisio

Software as a service (SaaSgrvice provider provides their software or appiaa
as a service running in their data center to theote user on demand through internet.

2.2 Need for cloud

There is no doubt that all the organization lookMard to adopt a technology where
reliable performance is achieved with reduced cbisé conventional IT infrastructure
cannot help them anymore. Some of the vital probléme conventional system facing
are underutilization of hardware, data centergamaing out of space, IT infrastructure
implementation and maintenance cost and energy eost increasing rapidly.
Virtualization addresses these problems. Diffenartualization types are adopted to
address these problems and to increase the oe#freikkncy and performance; those are
discussed briefly in the following sections. Thendéfgs of virtualization also grow
alongside with the growth of virtualization. Thegificant benefits of virtualization
includes business agility, operational flexibilitgigh availability, disaster recovery,
consolidation of IT services, scale up and scaleooudemand, self-service, pay only

for the service consumed, dynamic accessibilitye Figure 1 shows the evolution of
conventional system to virtualized cloud system.

L J . VM J

—
Network Virtualized Network
t e r — [
Virtualized Storage

= 9= 2 ._.J -_.J_ -_.J_‘

- <

| | | j - j e |
=] -
i | —] - =
- = ~

Storage servers
Storage servers

Virtualized Network
— —

Virtualized Storage

1
o000
oo lL

Figure 1 Evolution of conventiongstem to virtualized cloud system

2.3 Virtualization and its types

Virtualization is a technology which enables a waycreate virtual resources out of
physical resources and presenting it to the udterahan providing actual physical
resources. Virtualization leads to pooling of pbgsiresources that has already proven
values like efficient utilization of resources, trah point of resource management.
Virtualization is implemented at different layerfsI® infrastructure. They are classified
as compute, network, storage and application layeralization of IT infrastructure.

2.3.1 Compute virtualization

It is the process of detaching the operating system the physical layer. It is referred
as compute virtualization, because in this layegetber with other hardware
components, the most important component i.e. C&dsvirtualized. CPUs are the
components, where the computing process like rgnaimd executing the codes are
being done. The abstraction of operating systemm fitee physical layer is achieved by
virtualization software called hypervisor which cesnn between operating system and
physical resources. This paves the way for runmigfiple operating systems on the
same physical resources such that multiple vinmathines can run parallel on same
physical machine. There are two flavors of hypemwiavailable in the commercial
market: native and hosted.

Native hypervisor: It is running on the bare metalmanages the physical resources,
since it has direct access to it.

Hosted hypervisor: It is running on the host opagasystem, so it relies on the host
operating for the physical resources management.

Hardware virtualization is applied in three diffetenodes:

Full virtualization: Hypervisor completely simulatbee underlying hardware. And
the guest operating system does not need any roatiliin. The operating system
instructions are binary translated so the virtwihardware can understand and serve
for it. Hypervisor decouples the VMs and the unglag hardware. The guest operating
systems are not aware of being virtualized. Hardwaatures like CPU, memory etc.
required by VMs to run their operating system ampgliaations are served by the
hypervisor. The greatest advantage of this typetha the virtualized hardware
architecture can be completely different from thstharchitecture. However the biggest
disadvantage is the processing speed.

Para-virtualization: Hypervisor does not simulate thardware. It just acts as
software API in-between VM and the underlying haadsv Hypervisor resides on the
hardware and guest operating system run on topi®hiypervisor. The guest operating
system instructions are bypassed to the real phlysardware. To achieve this para-
virtualization device drivers are required in baghest and the hypervisor. Thus this
enables the possibility of running the instructiomeal physical hardware which is very
faster than running in the emulated hardware. Bue the guest operating system needs
some modification in order to communicate with tthevers. And therefore guest
operating systems are aware of being virtualizéds Type of virtualization is can be
utilized when the hardware is not supported forfutualization or application in need
of high processing speed.

Partial virtualization: In this method operatingveanment is virtualized, rather
than the complete machine such that the addresesae virtualized so that can be
utilized by VM’s. It provides isolation of VM frornthe host, by running VM in separate
domain. It allows the VM user to install softwagestem, upgrade system libraries in the
guest without affecting those in the host, and wieesa. Thus, rather than emulating

physical hardware, operating system virtualizatemulates a complete operating
system user space. It enables sharing computeurceesoamong multiple users but the
on the other hand the compatibility is not goodcdftain hardware features are not
virtualized, then any software using those featwidiail.

Benefits of compute virtualization:

» Effective utilization of hardware.

e It enables virtual machine to run in isolated eowment like a physical
machine.

» Virtual machines are hardware independent; mignasceasy between different
servers.

* Hardware investment cost is reduced massively.

2.3.2 Storage virtualization

It is the process of hiding the underlying compigxif physical storage resources and
presenting them as a virtual storage to the comgydems. This is attained with the
help of hypervisor. The compute system is not avedréhe storage virtualization; it
uses a virtual disk as if it was a physical stordgk attached to them. The virtual
storage is mapped to corresponding physical stopridg®e operation is taken care by
virtualization layer. Storage virtualization dealsth storage provisioning to VMs,
block and file level virtualization, virtual prowsing and automated storage tiering.
Storage stack can be classified as compute, staradjaetwork.

Storage provisioningStorage provisioning is the process of providingrage
space to servers, virtual machines or any othemaimg device and it is deployed in
compute layerOne way is the hypervisor apply file system on pingsical storage
attached to it and it creates files in the physstalage space. These files are provided
to the VMs by the hypervisor as a virtual disk.tMa& machines view this storage space
as a real physical disk attached to it. Size offileedepends on the storage needs of the
VMs. Instead of providing a single full disk to anspute system, many virtual disks are
made out of it and it is attached to differentuaitcompute systems. Another way is the
VM can store data directly on a LUN in the real gibgl storage system instead of
storing its data in a virtual disk; this methodcaled as raw device mappingUN is
alogical unit number used in storage to identifiogical unit of as storage device
addressed by the protocols which encapeu#SI This method of storing is useful
when there is a requirement that the applicatiansing on the VM should know about
the physical characteristics of the storage device.

Block and file level virtualization: This virtuaktion deployed in the network layer
and provides an abstract view of physical stor&geurces. The 1/0O coming from the
compute system is sent to the physical storageutfiraghe virtualization layer at the
network layer. The virtualization software hide tphysical location of the storage
hardware and presents the only the logical locatibit to VMs. The virtualization

software needs special networking intelligence domlstorage at different location.
The logical storage is mapped to the physical gi@evice. Virtualization enables to
pool multi-vendor storage resources. This can b@emented in both SAN and NAS
environments. Virtualization is applied at the liddevel in SAN and it is applied at the
file level in NAS. Block level storage virtualizah allow us to combine one or more
LUNs from different storage arrays to form a singidual big volume based on the
requirements and this volume is presented to thes.\Mile-level storage virtualization
eliminates dependencies between the file and iysiphl location, it enables users to
use logical path than the physical path.

Virtual provisioning and automated storage tieri¥@tual provisioning is based on
thin provisioning; it is the ability of allocatelaJN to the VM with high capacity rather
than the actual capacity of the LUN. It is deployedstorage layer. Storage tiering is
said to be hierarchical storage management. Stdrageg is the way of storing data
into a different categories of storage arrays. @aies are based on the SLAs with
different customers. The SLA has different set effuirements such as performance,
frequency of use, reliability etc...

Benefits of storage virtualization:

» Data can be migrated between the storage diskeutitiny interruption.

e Storage space can be scale in or scale out depertie demand.

» Effective utilization of storage.

» Easy management, since the storage is pooled.

» It provides different storage provisioning optidogrovide storage to VM.

» Different networking options for I/O between comgpand storage device.

* Virtual provisioning and storage tiering optimizédse utilization of storage
infrastructure.

2.3.3 Network virtualization

It is the process of creating multiple logical netls on top of the underlying physical
network and operates them as separate independsssical networks. Network
virtualization enables resources sharing amongvititaal networks. Servers in the
virtual networks can communicate without routingnfies, even if they are in different
physical networks. This enables grouping of serggardless geographic location.
Network virtualization is carried out at twevels as virtualizing the physical
networks and virtual machine networks. The physmeivork has components such as
routers, switches, bridges, repeaters and hubs. plmgsical network enables
communication between all the physical deviceschdd to the network with
networking capabilities. The virtual network resideside the server, which enables the
communication between different VMs connected te thrtual network. And also
enable communication between the VM and the phlysieavork. Thus the VM can

communicate with any other devices connected to pihgsical network. The VM
network has component such as virtual NIC, HBA winial switch.

Benefits of network virtualization:

* It provides sharing of the network resources.

* It improves the network security by restricting tt@mmunication between the
VMs in different virtual network.

* Depends on the organization requirements the seaer be grouped together
logically.

* Logical grouping of the servers provides easy mamsmnt.

2.3.4 Desktop virtualization

This is the process of abstracting the desktop foperating system and the application
from the endpoint user. By this technology operasgstem is centralized and running
in a VM in the datacenter. The end users can cdrineihe desktop VM via LAN or
WAN. So executing the application and data stomgehappens in the data center not
in the end-user desktop.

Benefits of Desktop virtualization:

» It reduces cost of the organization, by replacimg personal computer system
with thin clients.

* Itimproves data security, since organization’sadatstored in their data center.
« Data storage backup is simplifies.
* [t can be accessed by the employees regardlebsiofdcation.

2.3.5 Application virtualization

It is the process of abstracting the applicatiammfrthe underlying operating system.
Application software creates the opportunity foe thser to use the application without
any concern of what underlying operating systery treve. Virtualized Application run
in an isolated environment.

Benefits of Application virtualization:

» Application deployment is easy.

» Application installation does not cause any charigabke operating system and
the file system.

* It prevents any corruption of operating system myrinstallation and easy
operating system management.

3. STORAGE NETWORKING TECHNOLOGIES

Earlier the communication between the compute hrdstorage was achieved through
the fixed channel. It means a constant channel wired connection is established
between the compute and storage. The storage estlglirattached to the compute
system and the ways of communication is describettheé operating system. Thus the
host system retains the knowledge of all the stoayices attached to it. The storage
may be external or internal; the communication dednremains static. The intermediate
hops are very much limited. This fixed connectianmot be used by the other compute
nodes to communicate with storage. Laying down mneotion separately for each
compute node and storage makes this technology esxggnsive. So it is utilized for
communication over shorter distances. PCI, IDE/ABASI are some of the popular
storage protocol used in fixed channel technoldgyong these, SCSI provides better
performance over PCI, IDE/ATA. As the channel taabgy is inefficient, there is a
necessity to find a new methodology. The outcontbaslP networking technology; IP
networks are also used to transfer storage I/@draétween compute and the storage.

The IP network connects the compute nodes to shatee among them. The same
network can be utilized to transfer storage I/Gfitdetween compute and the storage.
Thus it reduces the infrastructure cost very mukhnetwork technology is more
flexible than channel technology. The data transiois path between the transmitting
node and the receiving node are not static. It geardynamically, depends on the
criteria like resource availability, current traffsituation etc. Each node in the network
is identified by unique address. The data packets the transmitting node are routed
via in-between hops to each reach the final deshima Hence the networking
technology supports longer distance topologies.n@élaand network technologies
employ networking components such as switchesersutables, buses, ports etc., and
protocols for communication. iISCSI, FCOE, FCIP, &l are some of the important
storage protocols used in IP networking technoldgdyere are two ways of providing
storage to the compute node using the network, dhey

* Presenting storage as a block device (Block levetss)
* Presenting storage as a file system (File levedss)c

The showsFigure 2 the logical picture of storage area network (SAM)ich
provides block level access and the network attheb@rage (NAS) which provides file
level storage access.

10

c NAS
RO Storageserer
compute SAN Storageserver

O
D

Ed

Figure 2 Logical regentation of SAN and NAS

3.1 Storage area network (SAN)

Storage area network is a dedicated high performmartwork, whose primary role is to
enable the communication between the compute sgstemd storage servers. SAN
defines the entire hardware and software infrasiracthat allows compute nodes to
access storage that is not directly attached t8atvers share the storage subsystem.
SAN enables the capability of accessing the extestmaage as a block device. When
there is a storage request from the compute, thragd servers allocate a block device
in requested size in the storage array and it ptesthat to the compute. Then the
compute system has to create a file system inlthek lfor the further use. By this way
block level access of the external storage is aeklidy the SAN. Since the network is
dedicated, communication between storage and serasg in high speed, thus
increasing the overall performance. SAN could atsovide highly secured data
storage. There are different networking method@egand protocols to establish a
communication between storage and compute in SAN¢yTare explained below with
more focus on iISCSI SAN.
Different types of SAN technologies are.

* Fibre channel SAN

« |P SAN

 FCoE

The SCSI is the underlying protocol which is base dll of the above mentioned
technology to provide block storage service to ¢hmpute. At first SCSI protocol is
introduced below and then the above mentioned S&ddnologies are discussed. The

11

Figure 3shows the different protocols used in SAN andqaols layering with respect
to SCSI.

SCSI Protocol

FCP
iSCsI Fibre Channel
iFCP
FCIP
TCP
IP
Ethernet

FiguB SAN protocols

3.1.1 Small computer system interface

SCSI (small computer system interface) is a prdtased for communication between
server and storage. The SCSI standard definestenfiaice, protocols and commands to
establish communication between an initiator arelt#rget. Initiator is the server and
target is the storage device. It provides a hafflelks communication path for SCSI

commands and data. Interfaces such as cables,atorsjeptical signals etc. that allow
initiator and targets to communicate. SCSI commaads encapsulated and carried
across the networks.

SCSil is a client server protocol. The client idexhinitiator which sends the request
to the target server. The storage server is calleget which serves for the initiator
request. A single target can have multiple appbeatlients. The target device is
attached to the SCSI bus of the target. Up to icds can be attached to a single bus.
Host bus adopter is a mandatory device, it takeglesislot. A SCSI host adapter is a
device used to connect one or more SCSI devicescmmputer busThus host bus
adapter is connected to the SCSI bus on one sidetoathe host computer bus on the
other side. After reserving one slot for host bus adg& devices can attach to one
SCSI bus.
I/O operation of SCSI between target and initiator:
It has two categories of protocol services

» Execute command/confirmation services.

» Data transfer services.

12

This operation between the client and server isemgmted as a block diagram in
Figure 4 The Initiator starts the operation and seled&rget. The target accepts it and
requests a command from the Initiator. The Initiagsponds by sending the command
descriptor block to be executed.

Service reguest ~
client server
e
Service response
. 7 e v
M M
Storage /0

Figure 4 SCSI client-server operations

This leads to three main phases of /0O operation

1. Command execute: Send required command and pamameteCDB (command

description Block).

2. Data: Transfer data in accordance with the command

3. Confirmation: Receive confirmation of command.

Targets have one task manager and one or more dlodints (LU), which are
numbered as LUN. A task manager is a server withen SCSI target device that
processes task management functions. Logical onitans a device server to process
SCSI commands. It representedrigure 5

Initiator Target
Service delivery subsystem
Device service request Logical
-1 unit
Device service response Device
SErver
Application
client Take request
“| Task
Take response Manager

Figure 5 SCSI target
With the knowledge of SCSI, now the focus has be®ved on to different SAN
technologies as mentioned above in 3.1.1.

3.1.2 Fibre channel SAN

Fibre channel SAN is a very common high-speed,aded network between compute
systems and shared storage devices. FC SAN usek dv€Sfibre channel protocol
(FCP) to transfer data between compute systemstanaige devices. FCP is a transport

13

protocol similar to TCP used in IP networks. FilZbannel does not incorporate a
command set as SCSI, but it does provide a meahaoisay over other protocols onto
Fibre Channel. SCSI generally rides on top of FiBtennel. It provides block-level
access to storage devices; block 1/0O is over FCSRAG enables storage consolidation
and allows a storage system to be shared by nmaktipinpute systems. This improves
utilization of storage resources, compared to DASvitecture. The basic topology of
FC SAN is represented Figure 6

Layers of FCP protocol:

FC4 — Protocol-mapping layer, in which applicatipnotocols such as SCSI is
encapsulated into a PDU for delivery to FC2.

FC3 — Common services layer, a thin layer that a@wentually implement functions
like encryption or RAID redundancy algorithms.

FC2 — Network layer, defined by the FC-PI-2 stadda&onsists of the core of fibre
channel, and defines the main protocols; this l@patains the basic rules for sending
the data across the FC network.

FC1 — Data link layer, which implements line codigsignals; this layer defines the
transmission protocol that includes serial encodamgd decoding rules, special
characters used, and error control.

FCO — Physical layer, this is the lowest layerhie ECP stack. This layer defines the
physical link between the systems, including theeficables, connectors etc.

Each device in FC SAN are called nodes, each aihthas at least one port to
communicate each with other. Ports are the ouitetse FC network. Some of the FC
ports are mentioned below.

N_port: An end point in the switched fabric. Thisripis also known as the node port.
Typically, it is a compute system port (HBA) ortarage array port that is connected to
a fibre channel switches.

E_port: It is the connection between two fibreroie switches. It is also known as an
Expansion port. When E_ports between two switches fa link, that link is referred to
as an inter-switch link (ISL).

N_port: A port on a switch that connects an N_plbis also known as a fabric port.
G_port: A generic port that can operate as an E_qgroan F_port and determines its
functionality automatically during initialization.

NL_port: It is a port on the node used with an Fliteated loop topology. It is also
known as node loop port.

All nodes in the FC network communicate with onether through an FC switch or
multiple interconnected FC switches. Switches amgerconnected through fibre
channel. A link is established between two switchiest link is referred as inter-switch
link (ISL).

14

FC SAN
compute
FC switch Stﬂrage
I/ &
compute
Inter switch links \"
storage
compute

Figure 6 Basbpology of FC SAN

The different types of FC SAN topologies are diseasbelow.

Point to point: Two devices are connected diretilyeach other. Such that dedicated
connection between N_port of the two devices.

Arbitrated loop: All devices are in a loop or ringransmitting end of one node is

connected to the receiving end of the other nodi aislosed loop is formed.

Switched fabric: All nodes in FC network or loops rmdes communicate with one

another through an FC switch or multiple intercarted FC switches. Switches are
interconnected through fibre channel. A link isnf@d between two switches, that link
is referred as an inter-switch link (ISL).

3.1.3 Internet Protocol SAN

It entails the technologies that transfer storag#it¢ over internet protocol (IP) based
network. Conventional SAN transfers storage dataerothe fibre Channel.
Organizations require high performing and scal&#A&l at low cost. The emergence of
IP technology enables a way for storage data dveretwork. If the storage data is sent
over the IP network, the existing network infrasttwe can be utilized efficiently and
there is no need of laying an additional networkSAN. This is more economical than
investing in FC, since it avoids new SAN hardwarel asoftware installation. IP
network offers easier management and better inéeatylity. Since the storage data is
transmitted over IP network, the distance is ngir@gblem. IP SAN make use of all
available IP network solutions for the better perfance of storage network. Two
protocols are primarily used in IP storage netwpttksy are:

* Internet Small Computer System Interface (iISCSI)

« Fibre channel internet protocol (FCIP)

15

3.1.3.1 Internet Small Computer System Interface

Internet Small Computer System Interface is an H&ed storage protocol for
connecting servers and storage. iISCSI is an eeddqrotocol. The topology of iISCSI
is represented ifrigure 8 It encapsulates SCSI commands over IP netwo8GSI
managed to facilitate data transfers over longadists. iISCSI can be used to transmit
data over local area networks (LANSs), wide areavogts (WANSs), or the Internet and
can enable location-independent data storage.dtatgs on top of TCP. It allows IP
hosts to access IP or Fibre channel connected ig&C@dts. It also allows fibre channel
hosts to access IP targets. Higure 7shows the protocol stack.

Initiator Target
SCSI SCSI
iSCSl i5Csl
TCP TCP
IP IP
Link Link

P TCP iSCsl 5C5I Data

Figure 7 iISG&}er in protocol Stack

SCSil layer: SCSI layer issues SCSI commands depgodi the request from the upper
layer.

ISCSI layer: iSCSI layer it encapsulates the S@Btimmand and data. Then it forwards
the iISCSI pdu with iSCSI header to the underlyil@PTayer.

TCP: This is the transport layer and third layertleé TCP/IP stack. The two main
protocols used in transport layer are UDP and TiISESI utilize the underlying TCP

but not UDP, because UDP provides connectionlessliahle service. SAN network

requires a reliable transport connection. The tegilmble connection is used where it is
not desired to lose any information that is beirapsferred over the network through
this connection. So, the protocol used for thisetyd connection must provide the
mechanism to achieve this desired characteristiCP Tprovides an end-to-end,
connection-oriented, reliable communications servidCP is responsible for the
establishment of a transport connection, sequenaitacknowledging sent packets
and the recovering of lost packets during transionsdt takes care of data flow control,
congestion control and error control. TCP segmé#rgsdata from the above layer into
proper sized chunks and then passes these chutikghennetwork. It acknowledges

16

received packets, waits for the acknowledgmentthefpackets that it sent and sets
timeout to resend the packets if the acknowledgésreme not received in time.

IP: This layer is also known as Internet layerislithe second layer of the TCP/IP
model. The core protocol of the Internet layers The internet layer is responsible for
addressing, packaging and routing functions. Tdwtion of Internet layer is between
link layer and transport layer. If needed, interlager fragment the data from the upper
layer thus the packets are in proper size to passtbe network. Each fragmented IP
datagrams contain source and destination addreggcdl address or IP address)
information that is used to forward the datagraetsveen hosts and across networks. IP
at the destination rearrange fragmented packetowasit was before fragmentation. It
provides connectionless network route betweenrdresiitter and the receivers. Hence
it is not necessary that all the packets shouldetraia the same route. At the
destination side, the data packets may appeadifiesient order than they were sent. It
is the job of the higher layers to rearrange thenorder to deliver them to proper
network applications operating at the applicatayet.

Link Layer: It transfers data that it receives frme network layer of one machine to
the link layer of another machine. The link layefides the procedures for interfacing
with the network hardware and accessing the trasman medium. The link layer
moves network frames between two hosts. The hosig Ime end systems, such as
computers or intermediate devices such as routatsswitches. The link layer only
moves frames directly between two physically cotertdevices. All other tasks are the
responsibility of the upper levels.

ISCSI works with Initiator and Target model:

Target is an SCSI storage device which is capableaeiving the request from the
SCSil initiator and executing it. At first in thedet server iISCSI targets are created with
a unique ign name and LUNs are added to the taKget. the target is ready and it is
listening to the TCP port for any request from t8€SI initiator. The target can be
enabled to accept any initiator or specific indratlepends on the access rights the
target has in its initial settings. To provide asenly to specific initiators, the initiator
names can be mentioned in the target settings.

ISCSI target naming:

Targets and initiators require names for the purpokidentification, so that iISCSI
storage resources can be managed regardless tbtocEhe iISCSI name is the unique
identifier for an iISCSI node and it is also the $@8/ice name .The iISCSI name is the
primary information used in authentication of tdsgéo initiators and initiators to
targets. This name is also used to identify andaganSCSI storage resources. iSCSI
names are associated with iISCSI nodes not withorktadapter cards. There are two
ISCSI naming formats:

. ign - iISCSI qualified name

. eui -extended unique identifier

17

Brief description about ign format is below, sirthés format is used in my iISCSI SAN
set up.

ign. date. organization or your domain name: storage-identifier

Example: ign.2014-09.com.examplenameagi@diskl

Initiator is an SCSI server which is capable ofiisg SCSI commands to the iSCSI

target, based on its storage requirements. iSGt&Etor name is created at iISCSI driver

at load time of the host system. iSCSI initiat@urss a discovery command to search
any available targets. Once the target is discaverean login to the targets. A session
Is created between the target and the initiatoeanis logged in. Now the iISCSI target

device is accessible for the initiator. The sessgmmination is accomplished by simple

logout.

Compute Compute

iSCS1 HBA FC HBA Z

m FCIP Gateway

IP
iSCSI Gateway FCIP Gateway
iSCSl port
FC port = FC port
Storage Storage Storage
Server Server server

FiguBaeSCSI and FCIP

3.1.3.2 Fibre Channel Internet Protocol

FCIP defines a way for encapsulating the fibre adeaframes within the TCP/IP, which

are transferred between two FC SAN. FCIP usesraopdiridges communicating over

TCP/IP, which is the transport protocol. The twalges acts as a gateway for the FC
SAN. The communication path between two FC SANvisran IP network. FCIP is a

tunneling protocol. Between the two bridges a timmereated in the IP network and

the FC frames are sent over this tunnel. The adgenof using this FCIP bridging

concept is, FC networks can be extended over distansing an existing IP-based
infrastructure. The topology of FCIP is representefigure 8

18

3.1.4 Fibre Channel over Ethernet

It is a protocol that encapsulates fibre channmings, to transfer it over the ethernet
networks. As explained before, if the organizai®nsing FC for SAN and IP networks
for LAN it results in two network infrastructurehtis organizations have to run parallel
network infrastructures for their local area netkgoand their storage area networks. It
leads to huge maintenance and implementation ¢&StE gives solution to this
problem by enabling the consolidation of SAN taféind ethernet traffic on to single
converged ethernet infrastructure. It also redubesadministrative overhead and the
complexity in managing the data center.

3.2 Network Attached Storage

Data or information is shared across the orgammatr within the organization for their
day today business activities. Therefore theraligays requirement for storing the data
at one place and shared it among the users. lbis efficient than transferring the data
personally to each of them. NAS addresses thisl@gmbin NAS, the storage devices
are connected to the network that provides filel@ccess to the compute system. NAS
iIs a dedicated high performance file server wittregle system. It also allows us to
consolidating disk management; instead of duphcpatlirectories on each system, it
provides a single copy of directory which is shaldall systems in the network.
Besides it allows clients to share files betweemth

NAS utilizes network and file sharing protocols,igthinclude TCP/IP for data transfer
and Common Internet File System (CIFS) and Netvikeksystem (NFS) protocols for
remote file services. NFS is taken in this exangdenario. NFS is a distributed file
system protocol that enables clients to acces§ilédsefrom remote. The server enabled
with NFS technology is called as NFS server, witle system in it and makes them
available on the network. And client server enabheth the NFS client feature can
access the files provided by the NFS server framote. The NFS server export the file
to the client and it is mounted in the client serviéhus this works on a basic client—
server model. ThEigure 9shows the basic idea behind NAS with NFS.

10.80.63.2 10.80.63.4

0 s =
.. & &

10.80.634 ry - fmounted in client system

@m
I

&
Ol

Metwork

Figure 9 NAgh NFS

19

3.2.1 Why we need NAS

SAN connects the client servers and the storageeiseas descried in 3.1.1. Then the
disk in the storage array can be accessed by dewer. The data written on the disk
cannot be shared among the different users. Shidmingame disk among different users
has two main problems; disk space allocation inistexscy and file data corruption. If
the same disk is exposed to different servers, saolrer applies its own file system on
the disk. Thus the file allocation table which msthe memory of each server is not
exposed to other servers. The file allocation talpie file system cache becomes servers
specific; it is not common for all the users. Faample consider a disk that is shared
between server one and two. And both want to woitehe same disk at same time.
Since the file system is not common, if server awriting on the disk, server two
does not aware of it. It is vice versa, if serugo tis writing. Both write at the same
time, this leads to data corruption. In read sdenaach time the servers will not reach
the disk to retrieve data, rather the file systdneach server retrieve the data from its
cache when the request is same. But when servewmte on the disk its own cache
gets updated but not others. So the other serleusts the old information in its own
cache. Like the same way there is problem in filecation as well. In its own file
allocation table, server may see some free blooHsitawill assign it to the application
as per the request. But it does not aware wheliebtock has been already allocated to
any other application by another server. Thus SAMtes big complexity in sharing the
same disk which is solved by NAS by having cerzeifile system. Hence with the
centralized file system, file allocation table dite system cache become common for
all the clients accessing the file system.

20

4. STORAGE AREA NETWORK DESIGN FOR
CLOUD INFRASTRUCTURE

While designing a SAN infrastructure, several fastshould be kept in mind. Because
there exists lots of different methodologies or svay components, that increase or
decrease the overall SAN performance. Each haswisways of working principle and
has its own pros and corns. So the different pdgib are analysed below to obtain a
most reliable and highly performing SAN infrastiuet.

The infrastructure requirements are

. The iISCSI target server should be VM

. The iSCSI initiator can be either a VM or host
. The operating system is LINUX

. The hypervisor is KVYM/QEMU

. Ericsson hardware

4.1 Kernel virtual machine (KVM) and quick emulator (QEMU)

In this SAN design, Linux operating system and ®&M/QEMU hypervisor is
employed. Because it is popular open source saftwirwould not lead to any
additional cost for the organization and it is esgontribute in development.

Quick emulator (QEMU) is an open source machine emulator and virtualiaéren
QEMU runs as a machine emulator, it emulates hamla@ that operating systems and
programs made for a specific hardware can work dafiffarent hardware. But the
performance is very slow since the guest operatimes executed on the emulated
hardware. When QEMU runs as a virtualizer, QEMUiexs performances close to
native performance by executing the guest codecttireon the host CPU. QEMU
functions as a virtualizer when executing underXlea hypervisor or using the KVM
kernel module in Linux. QEMU can make use of KVM emhrunning a guest
architecture that is the same as the host archredeor instance, when running gemu-
system-x86 on an x86 compatible processor, QEMUtake advantage of the KVM
acceleration. KVM is a special operating mode oMMREthat uses CPU extensions i.e.
hardware-assisted virtualization for virtualizatiora a kernel module. It gives the
benefit for both the host and the guest system.

Kernel-based Virtual Machine (KVM) is a full virtualization infrastructure built into
the Linux kernel. KVM has support only for x86 pessor enabled with virtualization
extension and provides hardware assisted virtdadizaKVM allows a user space
program (QEMU) to utilize the hardware virtualizatifeatures of various processors.
Hardware-assisted virtualization is an approach to enable efficient virtualizatidn.

21

means, even though the guest is running in theragepaddress space, it allows the
guest to execute its codes directly on the physiaedware instead doing it on emulated
hardware resources. Thus it avoids binary tramsiaand increases the performance.

4.2 KVM-QEMU I/O architecture

/~ KVMGUEST "\

Applications
¥
+ Only 1 thread can
File System run QEMU code at
& Block Hardware any time
KVM Guest’s -
Kernel - Emulation (qemu_mutex)
bt e
Drivers (QEMU)
Generates /O
requests to host on

guest’s behalf &
handle events

1,

LINUX
KERNEL

HARDWARE

Figure 10 KVM/QEMU 1/O architecture

When running in virtualized system, application ajukst operating systemase
normally not aware of virtualization and for themms like as if they would run on the
bare metal hardware. This is possible becauseedb¢hefits of both KVM and QEMU.
KVM provides CPU virtualization and the QEMU is pessible for hardware
emulationRegarding KVM, as it can be observed in the prevkigure 1Q each guest
CPU has a dedicated virtual CPU thread that useld K&rnel modules in the LINUX
kernel to execute the guest code. When there égja@est coming from an application,
the process code executed on the hosts physical i@Pthe 1/O is taken care by the
QEMU. Only one thread can execute QEMU code atvargtime. It is represented in
Figure 10[33]. Application, on the other hand can accedy tre emulated hardware
and thus it requires binary translation. QEMU doiesry translation and forward 1/0 to
the host kernel. Host kernel treats this 1/O as hky other user application. Therefore
the 1/0O thread is generated by QEMU on behalf efghest. Thread uses the event loop

22

to handle the event# thread is the execution of the little sequence of progm@ima
process. A process can have multi thread that shhee resources allocated for that
process. QEMU does not support multi-threading.sfeded in [43]multi-threading
operating systems made it possible for one threadrt while another was waiting for
something to happen. The processor switches betdifment threads based on the
pre-defined timing policiedEvent loop receives the events from the event queue of the
operating system and pass it to the program foptbeessing. It is a link between the
user space program and the operating system.

The Figure 11shows the preliminary lab setup. Two physical and virtual server
were employed in the implementation. Two physialvers were connected through
the switches. The virtual machine was running ie ohthese physical servers. One of
these physical servers was acting as an iISCS#&toiti The initiator can be either a host
or a physical machine. There are different possdsl for setting up an iISCSI target
server
1. It could be run on a physical host by using lalisk
2. It could be run in a virtual machine by using thrtual disk or
3. The iSCSI target can be provided by the stovagelor externally

The iSCSI target provided by the storage vendoriteaswn target and initiator
driver mechanisms, through which the clients camroonicate to the storage system.
Thus it needs as additional driver and switchesahdr connecting devices to connect
all clients to target in the SAN network. Thus byarms a centralized storage system.
For the some application it may not be suitable: &gplication which needs faster
storage I/O communication such that with reducéenlay it's better to have an iSCSI
target in the host or the VM. The reasons are piexvbelow.

The host has three SSDs (solid-state disk) asragealevice. SSD is an electronic
disk that uses integrated circuit assemblies asaneno store data persistently. SSD
does not have any moving mechanical components laikes it to differ from the
traditional electromechanical magnetic disks suxihard disk drives (HDD) or floppy
disks, which contain spinning disks and movabledfgate heads disks. SSDs have
more benefits when compared to HDDs. It has loweess time, reduced latency and
less noisy. And also it has more resistance to ipalyslisturbances. But the price of
SSDs is much higher than the HDD. Organizationsilshconsume the SSD store space
efficiently, to avoid over cost. Apart from storageace needed for storage real data,
there is also need of additional storage for daydication, it is a very important feature
which saves organization most critical data andolesareliable data availability. And
storage required for migrating the VM from one at@ device to another in case of
failure or fault. Even though the price of SSDs@@uced over the period it is still very
expensive than HDDs.

Hence organization cannot employ SDD for all agtien for economic reasons.
For the application where the speed is not a crfiaa@or HDD can be opted and for
application where storage 1/0 speed is really aiatdactor SSD can be employed.

23

Since the Ericsson hardware has already three 85ihe compute node, it is better to
utilize.

In this SAN solution virtual machine is opted toras target server not the host, in
order to efficiently utilize the resources of thesh It is possible to create several virtual
machine in the same host depends on the resouadlalahty. The iISCSI-client can be
a virtual machine or any other physical machinéuidiog physical machine where the
target is running.At first the VM is started wittelp QEMU and KVM. The below
script was created to start the VM. The charadtesiof the virtual machine like CPU,
network interfaces, memory, language etc. are ddfim the below scripts. For
explanation of the scripts see the appendix [1].

/usr/ bi n/ genu- system x86_64 \
- enabl e- kvm \
-cpu phenom\
-snp 1, sockets=1, cores=1,threads=1 \
-drive file=/home/ubuntu.ing,if=virtio, cache=directsync \
-drive file=/dev/sdbl,if=virtio, cache=directsync \
-drive file=/dev/sdc2,if=virtio, cache=directsync \
-netdev tap,id=tap2, fd=58 58<>/dev/tap58 \
-device virtio-net-pci, netdev=tap2, mac=c6: af: 77: 89: bc: 39 \
-netdev tap,id=tap3, fd=62 62<>/dev/tap62 \
-device virtio-net-pci, netdev=tap3, nac=d2: 23: b9: bb: 93: 00 \
-netdev tap,id=tap4, fd=61 61<>/dev/tap6l \
-device virtio-net-pci, netdev=tap4, mac=b6: a2: c9:c2:59:a9 \
-boot ¢ \
-m 3000 \
-vnc : 3&

Program 1 Virtuahohine start-up script

isCsl1
il - |
[aemu . —

HOST OS [KVM HOST OS

T 10G link T

Frgull Lab setup

Then iSCSI target is configured inside the virtoechine and the iISCSI client is
configured on the other host called iISCSI-initiafbine target always listens to its TCP
port for any request from initiator. The ISCSI-aliediscovers the target and sends the
request. Once the initiator logged into the targetppears as a local disk and it is ready
for usage.

24

4.3 iSCSl targets

As it was explained in 3.1, the storage might cdrom an external server, if server's
own local storage space is not enough for the egpdin. As explained before in 3.1.3.1
this can be accomplished by iISCSI. To achieve ithaSCSI, we require an iISCSI

initiator and an iSCSI server. The iISCSI servals® known as an iSCSI target and in
this section a description and a comparison amieagniost widely used iISCSI targets is
performed. Thus the storage can be scaled in grbguproviding an external storage
support. There are different open source iSCSletafgameworks which can be

supported by Linux operating system.

« STGT
« LIO
» SCST
o IET

4.3.1 |IET (iISCSI Enterprise Target)

It is an iISCSI target designed to run in the Litkexnel. Its aim was to develop an open
source ISCSI target with features that works wellarge scale environment under real
workload. This target was quite popular, but ismdyodeteriorating. Its successor is
SCST, came up with advanced features and it i€ gu@pular among the SCST targets.
Hence it is now unsupported in Linux kernel.

4.3.2 SCST (SCSI Target Subsystem)

It is a generic SCSI target engine for Linux. SC&vices can provide advanced
functionalities like replication, thin provisioningdeduplication, high availability,

automatic backup, etc. SCSTis a GPL licensed S@fjet framework. The SCST
implementation is an improved version of IET targ@€ST devices have support for
many communication link such as iSCSI, Fibre ChgnREoE, SAS, SCSI RDMA

Protocol, InfiniBand (SRP), Wide (parallel) SCStc.elt supports multiple storage
backend interfaces; SCSI pass-through, block I/@ f@le 1/O. It has ISCSI target

support in kernel and also user-space. SCST stolraggrs can be implemented in user-
space with support of the scst_user driver.

4.3.3 STGT (SCSI Target Framework)

It is a standard multiprotocol SCSI target in LIn®IGT aims to simplify creation and
maintenance of SCSI Targets such as iSCSI, fibaarodl, SRP etc. Its key goals were
the clean integration into the SCSI-mid layer amghlementing a great portion of the
target in user space. STGT consists of kernel-spackeuser-space code. For iISCSI
target only user space code is utilized. It meah&TSrun as an application in user

25

space. STGT was superseded by LIO with Linux keth&l38 with many advanced
features.

4.3.4 LIO (Linux-IO Target)

It has been the Linux SCSI target since kerneliorr2.6.38. It supports different fabric
modules like Fibre channel, FCoE, iSCSI, SCSI RDRtatocol InfiniBand (SRP), etc.
The advanced feature set of Linux-IO Target haseriadnore popular among other
SCSI targets. QEMU/KVM, libvirt, and open Stack yide native support for LIO.

This makes organization to consider LIO as a se@gion for cloud environment. It is
designed to support highly available and clustaragte. LIO includes targetcli.
Targetcli is a command line interface, providesoavgrful and easy way to configure
and manage LIO.

4.4 iSCSI target perforamnce results

7000 - Write 16000 - Read
6000 only 14000 only
5000 12000
2000 10000 -
EmLO 8000 mLO
3000 6000 -
5000 mSTGT 4000 1 mSTGT
1000 mSCST 2000 - B SCST
0 0 -
N QO © D
& @
© & e
N &

Figure 12 Write perfornt® and Read performance

4000 - Write 7000 - Read

3500 6000

3000 5000

2500 4000

2000 mLIO mLIO

1500 3000

1000 mSTGT 2000 B STGT
W SCST 1000 | SCST

500

Figure 13 Performandeead and write in parallel

26

io= Number of io performed (mb)

bw= Average bandwidth rate(kb/s)

iops= Average 10s performed per second
lat avg= Average latency(msec)

All of these targets performances are conductesinmlar environment. File 1/O is
configured as a back store for all targets. In eispef features, both SCST and LIO
have most advanced features than STGT and IEB. dlear that the competition is
between LIO and SCST. IET’s performance is not mwesk here, since it is now
unsupported. Thus it is out of the race. Perforrmaimmparison is between SCST, LIO,
and STGT. These three targets are running in & tthféerent virtual machines and the
targets are discovered and utilized by another machs shown irFigure 11Three
different test cases were executed they were,wrting on the disk, only reading from
the disk, performing read and write parallel onshene disk. This performance test was
conducted with help of FIO tool.

Flexible 1/0O (FIO) is a tool to measure /O perfamee against different storage
types. While comparing the features of SCST and, ld@ch has benefits in its own
way. In aspect of performance it is clear that WGn the competition. Fromigure 12
andFigure 13 it is clear that LIO has better throughput wigsd latency. Next in line is
SCST. And STGT hold the last position. But in rigide of theFigure 12 STGT's
performance is better than other two. This is bseat is only reading from the disk
such that it requests the data which already exMisst of the scenarios, if the
requested data is same; data is retrieved frontdbke but not from the disk. So it is
predicted that STGT’s better performance is dueatthe. This is in practice to increase
the performance. This is not applicable in writecduse most of the times write data
differs. So the possibility of fetching from thect& is less. Thus while measuring
performance it is better to consider the write perfance. The different modes of cache
and its effects are described elaborately in neapter.

LIO has been chosen as iSCSI target in this SANherfollowing reasons: because
of its performance, since it is included in mostlx distributions, the support provided
for LIO in QEMU/KVM, libvirt, and open stack. Thisiakes LIO target configuration
very easy, reliable and stable. In case of SCSdges not come with Linux Kernel, so
it consumes more time and effort to implement amafigure. And also the stability is
not assured, since it is externally patched toLihtJX kernel. Now the focus is more
on LIO. The general Architecture of LIO is presehibelow.

4.5 LIO architecture

Linux-1O Target is a Linux SCSI target. LIO offeasunified storage system; LIO as a
single infrastructure that functions to support Wianeously fibre channel, FCoE,
iISCSI, InfiniBand etc. The target core engine iempénts the semantics of a SCSI
target, but it does not directly communicate witlitiators and it does not directly

27

access data on disk. Instead it communicates thrdahg fabric modules. Fabric
modules are the frontend of the SCSI target. Itroomicates with the specific protocols
that transport SCSI commands. Backing stores img@iémmethods of accessing data on
disk. This includes RAM disk, file, block device)ydaSCSI pass-through. It can support
file-based storage access and block-based stotagssa It means the storage can be a
file or the block device, but in both the casesitpresented to the initiator as block
device. The LIO architecture is shownkigure 14[18] and logical representation of
the LIO configuration is show ifrigure 15.For the real command line configuration
please check the appendix [2].

Target Architecture
cLI GUI

Library and API (Local and Remote)

Unified Target

Generic Target Engine
SPC-3/4 SCSI Core
Clustering support (PRs, ALUA, Referrals, Fencing)
Smart Array Offloads (VAAI, ODX)

Storage Management Engine
Manage physical and virtual storage resources
Memory allocation and memory map
RDMA buffer management or internal allocation

Fabric Modules Storage Modules

w 2o
n 8 8o m B o B 2
4 £ o =2 = 8 &
o 3 £k sl m
© E§

Figuté LI1O architecture

The following features of SCSI protocol were impéted in Linux 1O target which
makes it even more popular.

Persistent Reservations (PRs): It is a feature hvhitables 1/0 fencing. Fencing is the
process of isolating a faulty node from a clustenades. Thus Persistent reservations
provide the capability to control the access oheaade to storage devices.

Asymmetric Logical Unit Assignment (ALUA): ALUA defes a standardized protocol
in the SCSI standard for accessing a LUN througttiphel controllers of a storage
system). It is a multi-pathing method with intedlig path selection. ALUA allows the
data to reach the LUN via the most optimized p#thmeans all the traffic that is
directed to the non-active controller will be raiifaternally to the active controller. For
a storage system with a single controller, thereisiemand for ALUA.

28

Error Recovery Levels: The iSCSI standards werenddfin internet engineering task
force, with three hierarchy error recovery levelhich is now included in LIO. They
are, as follows

1. ERL=0 Session recovery class: Session recovapfigs the closing of all TCP
connections, internally aborting all executing @ueued tasks for the given initiator at
the target, terminating all outstanding SCSI comasanwith an appropriate SCSI
service response at the initiator, and restartisgsgsion on a new set of connection.

2. ERL=1 Digest failure recovery: It includes thapabilities of ER Level 0. Digest
failure recovery is comprised of two recovery césssvithin-Connection recovery class
and within-Command recovery class.

Within-Connection recovery class: At initiator sifléhe requests are not acknowledged
for a long time by the target and the target stdéus/response not acknowledged for a
long time by initiator enables within-connectiorcogery. Requests are acknowledged
explicitly through ExpCmdSN or implicitly by receng data and/or status. Next
expected command sequence number (ExpCmdSN) puarsee number that the target
ISCSI returns to the initiator to acknowledge comthaeception. The initiator may
retry non-acknowledged commands.

Within-Command recovery class: The loss in data Rididbles the within-command
recovery. At initiator and target side it has diéiet schemes to find out data PDU loss.
3. ERL=2 Connection recovery class: It includes ttapabilities of ER L=0 and
ERL=1. The following scenarios at the initiator ieto start the Connection recovery,
tcp connection failure and receiving an asynchrenoessage that indicates one or all
connections in a session has been dropped. In afagslure it logout from failed
connection and establish a new connection. Whe&R donnection failure occurs at
the target side, it closes the connection and ssgdchronous message to the initiator
to start the connection recovery process.

Active-active task migration and session contimmatERL2 feature of iISCSI provides

active-active task migration and session contiouatilt increases the system

availability. It migrate the connections from falleoutes to available connections that
prevent session and data loss.

Multiple connections per session (MC/S): MC/S abowcreating multiple
communication paths in a single session. MCS allthwesnitiator to establish multiple
TCP/IP connections to the same target within thees@d8SCSI session. It improves
performance and fault tolerance.

T10 Data Integrity Format (DIF): T10 Data Integrfjeld standard provides a way to
check the data integrity between a host contra@liet a disk. This check is carried out
through the data integrity field defined in the Tst@ndard.

29

Ta rgEt Access
control list Target
Underlying Back File LUN (LUNs are | Network
storage < stores /o < Units < mapped to portal &= portals
. groups
the specific
inititor)

Initiator

Figure ILBD configuration

4.6 Virtual machine networking

Virtual networks have the functionalities same dsygical networks, it enable

communication between the machines attached teettgork. The only difference is the
components employed in the virtual networks artualized form of physical network

elements or the software which exactly behavesdilghysical components. Software
defined networking is currently emerging and dyr@atopic in the networking industry.

And one of the key enablers of SDN is virtual nekimmy. A machine must be

network-capable to get attached to the network,ningathat it must have a network
interface controller installed, that enables thenpoter to interface with a network. In
most physical network environments, computers agally connected to a device
called a switch, which creates a local area netwaml enables a communication
between the computers by routing ip packets. Thali network follows the same

idea. Virtual network consists of one or more \attmachines. The virtual machines in
the host can communicate with each other and tdhés¢ through a software switch.
Thus the switches are used to establish a conmebgtween the virtual network and
physical network. Currently Linux supporting thitgpes of software switches

. Bridge

. Macvtap

. Openvswitch
4.6.1 Bridge

Linux Bridge is software, whose functions are santio the hardware switch. This
software bridge is installed within a Linux hostarder to emulate hardware, thus the
virtual machines with virtual NICs can share a Bnghysical NIC of the host. Some
important functionality of bridges includes forwardg data base (FDB), spanning tree
protocol (STP), and aging. brctl is a command interface used to set up, maintain and
inspect the bridge configuration in the Linux kdrne

Each bridge has a number of ports attached to dt fzas its own forwarding
database. Whenever new network interface is adale¢det bridge port, its forwarding

30

database gets updated with the MAC address of ¢imdynadded interface. Thus the
bridge keeps record of MAC address seen on eacdhapdrit can deliver the frames to
the appropriate port which has the destination esidrBy forwarding the frames to
appropriate destination port, it avoids transmiftiredundant copies to all ports.
However, the ethernet address location data isrstatic data. Machines can move to
other ports, network cards can be replaced; tiaidde¢o confusion in delivering packets
to the correct destination. This problem is addigsaging.

Aging is a concept of setting up life time for each MA@eesses in the forwarding
data base. The MAC addresses are retaining initig F it receives frames from it. If
there is no frame coming from a particular MAC addr even after the aging time, the
MAC address is deleted from the FDB. Thus the uthldAC addresses in FDB are
eliminated by an aging technique.

Multiple bridges can work together to create largetworks. It is good to have
spanning tree protocol functionality enabled irstbondition, to find the shortest path
and for eliminating loops in the network. The spgagntree protocol feature can be
disabled in circumstances where it does not maksesdor example when there is only
one bridge in the network or when there are no dowpthe network. Bridges are
capable of running in a promiscuous mode, whichrmaaareceives all traffic on a
network even which are not intended for it. Theolkelblock diagram explains the
operational flow of Linux bridge.

As shown inFigure 16[28], Linux kernel is with a software bridge inéa. The
physical interface ethO of host in added to théwsde bridge, through which all virtual
machine can reach outside network. This behavesalikinterface of the bridge. Now
the bridge interface has the IP address and thsigdlyinterface has only a MAC
address.

gemu/vhost
. Guest

ethD

fd

kernel read/write

Figure 16 Bridge architecture

A tap device was created to connect the gueshedridge. Atap is software device
in the kernel, simulates a link layer device. Isg@s the packets between the kernel and

31

the guest. Virtual machines network interface caly process ethernet frames similar
to physical interface. In virtualized environment®st physical NIC interface is the
main interface that receives frames intended fervintual machines running in it. By
nature it receives and process the ethernet fraandsthen it forwards the payload
further up to the operating system. But the virtNBCs expect ethernet frames. The tap
device addresses this issue. Tap communicates tiwghLinux Bridge to forward
ethernet frames as it is. Thus the virtual machocwmected to tap interfaces will be
able to receive raw Ethernet frames.

QEMU define a network interface and creates a nétwodge by connecting the
host tap network device to a specified networkudsy. When the guest attached to the
tap interface, it gets a special file descriptohiM/ writing operation, the guest writes
into the file descriptor and tap receives thatrgmii. Then it forwards the data to the
bridge. It works vice versa for read. Tap writetifile descriptor and the guest read the
data from the file descriptor. Thus the file dgstor works between the tap and the
guest.

Virtual file system is an abstraction layer on tdgile system. VFS layer provides a
uniform interface for the kernel to deal with varsol/O requests for different file
system. It is clearly shown in tlregure 17[34].

o ext? *Block Device
Program VFS NTFS "Block Device
(cp, rm)

+{ NES # Network

Figure 17 Virtual file system

Finally with all this features bridge brings ouethirtual network interface visible to the
outside network.

4.6.2 Macvtap

Macvtap allows the direct attachment of a virtualchine’s virtual NIC to a physical
NIC on its host. Macvtap is a Linux device drivetadled to simplify the complexity in
Linux bridged networking. Macvtap is a combinatwinthe Macvlan driver and a Tap
device. Macvlan driver is another Linux kernel érvthat is utilized in virtual
networking to create one or more virtual networkeifaces on a physical network
interface. Each virtual interface has its own MA@iess different from the physical
interface’s MAC address. Frames sent to or fromviniial interfaces are mapped to
the physical interface, which is called the lowaterface. Macvlan allows isolation of
traffic. Macvlan allows the interface listen to theaffic which has MAC address
matches it. Thus the interface does not listerhéottaffic which is not intended for it.
TheFigure 18shows the functional flow of macvtap.

32

Thus by combining the functionalities of macvalrdaap, macvtap creates a tap
interface on the physical interface. It can cre@e more tap interfaces on the same
physical interface. Each of these tap interface ad8AC address which is different
from host MAC address and other tap interfaces esddrMacvtap has four different
operational modes.

. Vepa

. Bridge

. Private

. Pass-through

Vepa: All the packets from the virtual machines seat to the external switch to which

the physical interface is connected. If the desitimaof the packet is on the same host
where from the packet originates, the externaldwaent it back to host where from it

received that packet. By this configuration a \aftmachine can communicate with its

host, outside network and the other virtual maclonehe same host. The drawback of
the vepa mode is, even though the virtual machareson the same host it cannot
communicate with it internally, it needs a supgn external switch to route back the

packets. Not all the switches are capable of damg Only the switches support

reflective relay mode can do this job. Reflectieday mode means, the switch send
back the packet to the same port from where itivedat.

Bridge: The virtual machines on the same host camneunicate with each other
internally. If the packets destination is on themeaost as where they originate from are
directly delivered to the target macvtap deviceclSthat the macvtap interfaces can
communicate each other if they operate in bridgelan@®ut the drawback of bridge
mode is that the virtual machines cannot commueiagith its own host. This is
because the packets coming from the guest is fdedato the bridge. The bridge in
turn forwards the incoming packets to the physio&érface of the host, which are
immediately sent to the outside network, cannobbenced back up to the host's IP
stack. And also the packets coming from the hostsant to the physical interface
cannot be bounced back up to the macvtap bridglfatarding to the guests. This can
be solved by creating another virtual interfacetlo@ host with the help of macvlan
driver. As like in bridge the physical interfaceh@tis added to the macvlan virtual
interface. Macvlan interface has the ip addressthadghysical interface has the MAC
address. Thus this macvlan interface is utilizesteéad of ethO for communication
between guest and host. The main advantage of amcvteasy configuration, but this
problem in bridge mode leads to complex configorats like in bridge.

Private: All the packets are sent to the externatick as like in vepa mode and but the
difference is the switch cannot send back packetbé same host. The packets will be
delivered to a virtual machine on the same hossigay machine only if they are sent

33

through an external router or gateway. The routater back the packets to the switch
and the switch send it to the host where the tangeial machine resides.

gemu/vhost gemu/vhost
Guest Guest
eth0 eth0]
v v
fd fd

macvlan

kernel

Figure 18 Macvtap architecture

Pass-through: This mode gives control of physiealicks to the guests. Each physical
interface allowed to use by a single guest interfaica time, thus the scalability is very
much reduced.

4.6.3 Openvswitch

Openvswitch is a booming switching technology. Tpenvswitches are open flow
capable, this makes it more popular. And also ad$éeto consider it in the software
defined networking which is a hot emerging techgglavhere most of the networking
organization is focusing on. It is supported byrogiack for the cloud deployments. It is
a distributed virtual switch. The openvswitches avell suited for multi-server
virtualization environments.

It has centralized controller. The idea behind @&@ized controller is to take the
intelligence out of the routers in the network dochte it at a central point. Thus it is
referred as abstraction of data plane and contewiep It has control plane in the user
space and data plane in the kernel. Packet formgundi performed in the data plane.
Routing is performed in the control plane it mearshange of routing information. The
centralized controllers will communicate with eamie of router in the network with
open flow interface. Open flow is a communicatiaotpcol that gives access to the
forwarding plane of a network switch or router owbe network. The controller
configures the flow table in the remote router.sTitauter makes decision based on this
flow table. The open switch is not implemented aested in my design solution

34

because Ericsson concluded that the current opataysig limited with features and
does not scale. It means that just switching nekingrtraffic results in reaching the
limits of the openvswitch. Therefore, adding sterdrpffic on top would destroy it.
The idea of openvswitch is representeéigure 19

user space
?aemon - | Flow table | | _ | OpenFlow
oVs-vswitc = “| controller
control plane l

upcall

kernel Y
openvswitch Flow table
(datapath) (cache)
data plane |

handler hook |

eth0 _ ethil
promiscuous
mode

<

Figure O®envswitch

4.6.4 Performance results of Macvtap and Linux Bridge

Macvtap tap has been chosen for this SAN soluterabse of the following reasons,
better performance than bridge, easy configuraiwhthis single software has different
operation modes.

3500 Write 7000 + Read
3000 17 6000
2500 5000
2000 4000
1500 - B Macvatp 3000 B Macvatp
1000 T B Linux Bridge 2000 M Linux Bridge
500 . 1000
o = T T T r o -+
S E
QS} ,_1\3;." "\F"Q 'ﬁl
07 Gn X

Figure 20 Perforamncentdcvtap and linux bridge

io= Number of io performed (mb)

bw= Average bandwidth rate(kb/s)

iops= Average 10s performed per second
lat avg= Average latency(msec)

35

5. PERFORMANCE OPTIMIZATION

This chapter presents various techniques to optirtiiz performance of a storage area
network solution. The different methodologies likeiltipathing, multiple connections
per session and NIC teaming improves performandeaarability. The para-virtualized
drivers of KVM improve the I/O performance. Paratvalized drivers are employed in
a scenario where there is performance offset dédlteirtualization. The cache setting
also helps to tune the I/O performance. All of thdgferent possibilities are analyzed
elaborately in the following subchapters.

5.1 Multipathing

Multipathing is a technique that allows establighmore than one physical path that
enables data communication between the host andxternal storage device. By
transmitting the payload across the multiple pattes,congestion on the path is reduced
and the speed is increased. Thus it increasesviiralbperformance. If one of the path
in the SAN network is not functioning due to sonadlures, the data transfer can be
switch to any another physical path which is fummithg perfectly. The process of
switching from failed path to active functioningtipas called path failover. Thus this
failover mechanism improves the performance antt falerance.

Operating system & application

b .

Disk driver (Multipathing)

i5CSl initiator

Session 1

NIC

iscsl
initiator

TCR/IP

v
NIC

NIC

Session 2

Figure 21 iSCSI multipathseas and operation flow

36

The default multipathing driver supported by Linisx MPIO. MPIO allows the
initiator to establish multiple iISCSI sessions twe tsame target, by effectively
aggregating the duplicate devices into a singldcge\Each iISCSI session has single
TCP/IP connection as shown kigure 21 Thus a reliable connection between a host
and its storage is maintained.

The benefits of MPIO include dynamic load balancidgnamic path selection, its
positioning above the SCSI layer and support gibegrLinux. Multipathing driver is
placed above the SCSI layer; hence a single disterdis enough to support network
transport protocols such as Fiber channel, iISG8l,as shown irfrigure 21 Multipath
I/O has two types of configuration active/activeal active/passive. In both scenarios it
can provide failover. In active/active mode, th® lis spread over all paths. In
active/passive mode, the 1/O is spread over hatiefavailable paths.

In our scenario we have two paths as showigire 22 in active/active mode the
I/O is transferred over both the paths. If failoeurs in any one of these paths, it just
neglects the failed path and start sending alli@he active functioning path. In case
of active/passive mode, one path is in active nmeoakthe other path is in passive mode.
The 1/O is sent only over the active path. If fedlsi occur in that path then it switched to
the passive path, which becomes active now. Therefbany cause it utilizes only one
path thus the performance of active/passive cordigpn is less than active/active.
Some important features of multipathing includeadidalancing policy, path grouping
policy, priority based path selection etc. The agunfation information is included in
the appendix [3]

i5CsI1
[VM 0s target
[ammu A
HOST 0OS HOST 0S
T 1 Multipath
10G link |
[106G link

Figure RRultipathing lab setup

The failover time is calculated as

nop timeout + nop interval + replacenent _tinmeout

Nop-out Request and Nop-in Resporides request/response used by an initiator and
target as a ping mechanism to affirm that a commeas still active and all of its
components are operational.

Replacement_timeault controls how long the iSCSI layer should wiait a timed-out
path/session to reestablish itself before failing @@mmands on it.

Lower the value of these parameters, the failogsponse is quick.

37

These parameters can be changed based on theemeguts. In this configuration the
settings are

node.session.timeo.replacement_timeout =1 sec(trvait for a timed-out path)
node.conn[0].timeo.noop_out_interval=1 sec (intEsr@tween NOP-Out requests)
node.conn[0].timeo.noop_out_timeout= 1 sec (Noprequests time out)

The failover time presented here is for the acde®e configuration. The
theoretical failover time calculated with formula B seconds. With the help of
wireshark the practical failover time is calculatesl 3.27, which is very close to the
theoretical value. The wireshark results are prteseim the appendix [5]

5.2 Network interface card teaming

Network interface card (NIC) teaming allows combgnitwo or more NICs together to
make one virtual NIC. It is based on link aggregatilt is a method of combining
similar physical links into one logical link as st in Figure 23 It is also called as
NIC bonding. NIC teaming is employed to achieveallbalancing and failover.

Operating system & application

4

Disk driver

i

|
iSCSl initiator

i

TCPf1P
NIC] Physical connection NIC T

iscsl |
initiator "_. Single iSCSI Session

Virtual NIC

Hﬁl\-\m

NIC NIC

Physical connection

Figure 23 NIC teaming i3G&ssion and operation flow

The physical NICs of a server are teamed and piredess a single NIC to the
application. If the application requests for datavoiting data into the storage target, a
single TCP connection for an iSCSI session is ece&dr each request. It is shown in
the Figure 23 The teamed physical NICs are connected to thevamkt The data
packets of a single TCP connection are distribat@dng the NICs. Thus, hike in the
performance can be expected. In case of failuangfone of the NIC, all the traffic is

38

routed to another available properly functioningCNHence by providing redundant
path, it improves the fault tolerance of a senBut NIC teaming has drawback that
makes it less popular in the SAN deployment. Evemugh the two NICs are teamed, it
is not meaning that the performance or the throughyll be doubled, because the
NICs are not scaled out properly.

For example if two NICs are used, it is not assuhed the packets are sent equally
through two NICs. It may send or may not. As mamgiin NIC teaming, there is only
one TCP connection between the storage and therséitve TCP segments of a single
TCP session are sent through two physical NICgh8arrival at the destination will be
out of order. Each NIC had different delays. Thosthe destination it needs an
additional algorithm to arrange it in order. It ieases the overall latency. And for the
incoming packets there is a need for switch in-ketwthe server and the storage. The
switch is configured in such a way that it will getme packets equally across the NICs.
But in contrast, in multipathing each path has s#paiSCSI session and TCP
connections. It means that each NIC has separd@ecb@nection.

Hence the packets arrived in order and the pathspeasperly scaled out with
specific load balancing function. Therefore multipag performs better than NIC
teaming. NIC teaming works between server and swidultipathingworks between
storage server and client server. NIC teaming & beited for a network where more
intermediate hops are deployida NAS.

5.3 Multiple connections per session (MC/S)

MC/S allows us to create multiple communicatiorhpah a single session, to improve
performance and fault tolerance. Therefore theamoit establishes multiple TCP/IP
connections to the same target within the same ISESsion. It is represented in the
Figure 24.

Operating system & application

L

Disk driver

L

5CSl

L

One i5C3| Session iSCSl initiator{MC/S)

Yy
!
WY TCP/IP
iSCS1 \l‘.

TCP connedion
target
NIC

iscsl
initiator

TCP connedion

Figure 24 Multiple connections per session and apen flow

39

MC/S is done on the iSCSI level. Thus, this featdepends on the storage
protocols. But in contrast, in MPIO the multipatifeature in is included in the disk
driver, hence it supports all the underlying sterggotocols. If there is requirement to
apply different load balancing policies to differdargets it will be better off using
MPIO. This is because load balancing policies @&ssion adherent. It means while
applying policy to MCS it is for the whole session, matter how many connections are
aggregated in this session.

In MC/S failover recovery is easier. If one conmatis failed all the commands are
reassigned to another connection in the same sedsis easy because, all the failure
recovery actions are taking place within the saessisn. Hence all the reservations
information of the targets and the initiators carted to the device are remaining
unaffected. But failover recovery in MPIO is congplied, because here the commands
reassignment is between the sessions. All the caomsare transferred from faulty
session to another active session. Thus, all thsi@e to the specific LUN has been
terminated and then the sessions are establishvelgl.néhen it starts retransmitting the
commands. Therefore the failover recovery time @amand the initiator reservation
information in the targets is not persistent. Bt tcan be addressed if the target is
supported with persistent reservations featurenétbles access for multiple nodes to a
target device and simultaneously blocks acces®tfuer faulty nodes. Thus only the
faulty session is terminated. The other initiat@sssons are unaffected and the
information on the target is persistent. In ournsec® LIO supports persistent
reservation. And it can be concluded that MPIO quenf well than MC/S in the SAN
with its more advanced feature.

54 Effects of cache

The important factor while measuring the perfornganta server is the time taken by
the server to read or write data from or to itelinal storage or the external storage to
which it is connected. The server has differenelewf cache to increase the read and
write performance. The speed of a processor touteea program depends on the
hardware, software and the data locality. Dataeclts the processor, the processor can
execute that program faster. Thus to increase #nmormance and to bring the data
more near to the processor, the computing systesymaan memory where the data are
cached during read or write operation. Hence tharéurequests for the same data can
be served faster, because it is much closer tleaartginal storage device.

Caching is the processes of storing data tempyprarilto the memory to serve the
application faster in future, that requesting tame data. Thus the data is fetched from
the memory rather than from storage disk. Hence dhehe increases the overall
performance. The data of a specific application loarcached in the memory until the
memory is demanded by any other application. Tlceeainfluencing the I/O operation
are page cache and the disk cache.

40

Disk cache is the data cached in the memory ostbage hard disk. Page cache is
the data cached in the memory of the server's tipgraystem. But the problem with
cache is, the data storage is not guaranteed. @unitte operation, most of the data are
written into the memory rather than in the origihatd disk. Once there is a demand for
memory from other application then the data ishfedsinto the hard disk. Otherwise it
resides in the memory. In case if there is powgaria or any other disturbances that
turned off the system, then the data in the memalhbe lost.

In our scenario the virtual machine image file bagn opened as a normal file in
the host, which results in them being cached byntie operating system like any other
file. It is represented in theigure 25.When the guest is executing 1/0 operation, the
data is getting cached in the page cache of balhvitttual machine operating system
and the host operating system. Thus there are dp®s of data, leads to more memory
consumption. It is always good to bypass any orge mache, so the memory can be
utilized by any other application. The virtual maehimage file is very large. Caching
them can consume more memory of the host operayisigm. If more virtual machines
are running on the host, then it consumes almésh@lmemory space of the host and
then there will be no memory space for any hostiegmons.

Application

Guest OS page cache

Virtual Disk

Guest
Host

VM image

Host OS page cache

Physical disk cache

Physical disk

Figure 25« at different level

If the application is writing in the virtual mactanvirtual machine page cache can
be bypassed with O_sync flag that flushes all datdne disk. But in VM the storage
disk is a virtual disk. Thus still the data is stdred in real hard disk; it is cached in the
host page cache. Hence the data is insecure. Tabuckenit is always good to bypass the

41

host page cache. O_sync instruct thatevoperations on the file will complete
according to the requirements of synchronizé&d file integrity completion. Thus it
allows the write command to return and accept thta dn the queue once it is
completed with write operation of current data asgociated file metadata it has, on
the real hard diskThere are several cache modes supported by hgpeikVM and its
performances are shownhigure 26

Cache mode unspecified

If the cache mode is unspecified, the default caghihode is writethrough for the
gemu-kvm versions older than version 1.2. Aftet treasion, the default caching mode
is writeback.

Cache = writethrough

Host page cache — used Disk write cachgpassed

The gemu-kvm uses O_DSYNC semantics, to communieéte the storage device
where writes are reported as completed only wherd#ta has been written completely
on the storage device. The host page cache isamkthe disk write cache is bypassed.
So there is no need to send flush commands to reatatg integrity.

Cache = writeback

Host page cache — used Disk write cachsed

The gemu-kvm uses neither O_DSYNC nor O_DIRECT seice to communicate
with the storage device where writes are repoibettié guest as completed but actually
written on the host page cache. And the flush contmaould be expected to send
down data to the real storage to manage data itytegr

Cache=none

Host page cache — bypassed Disk watde — used

The gemu-kvm uses O_DIRECT semantics, to communiedh the storage device, so
where writes are reported as completed but actwaityen on the disk write cache. The
host page cache is bypassed and the disk writeegaalsed. Thus the data are placed in
write queue only, so flush commands would be exquett send down to manage data
integrity.

Cache = unsafe

Host page cache — used Disk write cacheed

This mode is similar to the cache=writeback modge Tinsafe mode ignores all flush
commands from the guests. This mode is used instlemario where the user has
accepted to compromise with risk of data loss i thse of failure situations over
performance.

Cache=directsync
Host page cache — bypassed Disk writhea- bypassed

42

The gemu-kvm uses both O_DSYNC and O_DIRECT sersgrit communicate with
the storage device, where writes are reported apleted only when the data has been
written completely on the storage device. The Ipagfe cache is bypassed and the disk
write cache is bypassed.

18000 300
I |OPS
16000 -
-#-CPU (%) - 250
14000 -
12000 - -~ 200
g., 10000 - g
150
o))
= 8000 o]
6000 - ~ 100
4000
50
2000 -
0 0
writethrough writeback none unsafe directsync

Figure 26 Performance compani®f different cache modes

It is recommended to use Cael&rectsync while measuring storage performance.
Because with directsync no cache is utilized, titubelps to get down the real
performance of a storage system.

5.5 KVM para-virtualized drivers for block device

KVM /QEMU provide full virtualization which is aledy explained in chapter 4. It has
some limitations with 1/0O performances. The 1/O fpanance is very much limited
when compare to native performance, since it isgushe emulated hardware. But
KVM supports many para-virtualization drivers toprave the virtual 1/0O performance.
Para-virtualized drivers allow running the 1/O ogteyn directly on the real device.
Virtio is the framework for I/O para-virtualizatiom KVM. The two important para-
virtualized drivers supported by KVM, which influggs the block 1/0O performance are

* Virtio-blk
* Virtio-SCSI

55.1 Virtio-blk

Virtio—blk is a para-virtualized 1/O driver for thielock device. This para-virtualized
driver gives better performance than executingdf@ration on an emulated hardware.

43

Even though it provides better performance it l@ameslimitations, they are described
below.

Limited scalability: Virtio-blk puts a strong lingtion on the number of block storage
devices that can be added to a guest. Currenttypddlkk supports approximately 30
disks per guest only. When the hardware is virpgaliand presented to VM, it inherits
the same characteristics of hardware as like iabed in the host. As like in host the
PCI device has up to 32 slots. Peripheral Compohgatconnect PCl), as its hame
implies is a standard that describes how to contrextperipheral components of a
system together in a structured and controlled walus is a communication system
that transfers data between components inside autem or between computers. Each
device can be a multifunction board with a maximomeight separate functions,
without getting affected by the other function e tsame slot. Virtio presents each disk
and network card as a separate function. Whenemeces are added or removed from
a running machine, all functions in the same slavento be added or removed
simultaneously. Thus due to this limitation, eadBl Blot will usually hold a single
virtio device and limiting the KVM guest to 28 vatdevices. The remaining four slots
are reserved for various pieces of virtual hardware

Limitation in adding features: Virtio-blk definegsi own command sets for 1/O
operations like read, write etc. In case of addiew features it needs modification in
both guest and the host operating system.

SCSI pass-through: SCSI command from guest reatthetorage only when it is
attached as LUN, but cannot support file or diskage. The guest sees the attached
LUN as /dev/vd. Sometime programs may refuse ta s88S|I commands to device
which varies from host device naming. In host tkgick name starts as /dev/sd. It is
represented in thigigure 27[40].

Most of the limitations of virtio-blk are addresdeylthe virtio-scsi driver.

""""""""" (Jdev/vdx] |
Guest |BlOok | [yirfio-plk] |
scsl O
L
Device e
QEMU [virtio-blk]

_Pags-
VFS through

K |
Host Block — T’:LUNE

kernel E——

Hardware|Device —

Figure 27 Storageass by virtio-blk

44

5.5.2 Virtio-SCSI

The virtio-SCSI is a new feature of the KVM. It asstorage interface for the virtual
machine. The virtio-scsi is high performance partualized storage device. Virtio-scsi
provides anything that the underlying SCSI targepperts. It is a virtual small
computer system interface (SCSI) host bus adopigritas the successor of the virtio-
blk, with improved capabilities. SCSI is standaréct&onic interfaces that allow
personal computers to communicate with peripheaadilware such as disk drives, tape
drives etc. Virtio-SCSI provides the ability to emtt directly to SCSI LUNs and
significantly improves scalability compared to wrblk. It allows accessing multiple
storage devices through a single controller, areblemy reuse of the guest operating
system’s SCSI stack.
The benefits are

* Improved scalability

» Standard command set

» Standard device naming

* SCSI device pass-through—uvirtio-scsi can presensiphl storage devices

directly to guests.

Improved scalability: Virtio-scsi has capability tmnnect to multiple storage devices
and presenting it to the virtual machines. Virtasisaccomplishes this by multiplexing
numerous storage devices on a single controllesh Bavice on a virtio-scsi controller
is represented as a logical unit, or LUN. The LUAYs grouped into targets. The limit
of each virtio-scsi device is 256 targets maximwngontroller and 16,384 logical units
per target.

CPU

i

Yy

PCI Bus
T 1 > PCI Slots

k4 v
Ethernet Virtio-scsi South Bridge
HBA

F

QEMU
virtio-scsi VM

HOST
Device
Controller

Hard disk

Device Printer
Controller

SCSI Bus Device CD-ROM
Controller

i i

Figure 28 Virtio-SCSI

45

Standard command set: Virtio-scsi uses standard 8@8mand sets. Its specification
does not define commands like read, write for didkstead, it defines a transport
protocol for the commands. Since it acts as a p@mprotocol, host operating system
does not require any modification. If there is adification in the virtio-scsi module,
only the guest operating system required modifeatiThus it will be added or the
existing virtio-scsi should get updated only in guest operating system.

Standard device naming: virtio-scsi disks use #rmes paths as a bare-metal system.
This simplifies physical-to-virtual and virtual-tortual migration. But virtio-blk
devices are represented by the guests with filesse/imames start with /dev/vd which is
different than the host device name. The virtia-devices are represented by /dev/sd as
like in host.

SCSI device pass-throughFor virtual disks that are backed by a whole LwNhe
host, it can be desirable to let the guest send 8@8mands directly to the LUN. This
is known as pass-through, which is representdeigare 29 Disks are presented to the
guest on a SCSI bus. And the guest sees the attathed as /dev/sd as like in host. It
natively accepts the SCSI command set. Disks asepted to the guest on a SCSI bus
as shown inFigure 28and the virtual machine definition script are irgd in the
appendix [4]

Guest |Block
oo | o] | e s 2
= — ;.‘ 1| 12000 oo
QEMU Device '-'IrtIO'SGISI 10000 1 1o
,,,,,,,,, Pass- 1l i g0 190
VFS through ' liops 185 CPU
Host =ILUN | O - 180
kernel Block Ej: 4000 - k175
P - 170
f 2000 7 L 165
Hardware |Device E’j' | 0 - - 160
R s N virtio-scsi virtio-blk

Figure 29 Virtio-scsi passthrough and perfomoa comparison with virtio-blk

5.6 Libiscsi

Libiscsi is a client-side library to implement ti®CSI protocol that can be used to
access the resources of an iSCSI target. It igaggmce initiator, provides support only
for iISCSI targets. By configuring the libiscsi irttee QEMU, the iSCSI-initiator can run
on the QEMU. So it accesses the iISCSI targetsttlirbg bypassing the host. Thus it

46

enables hypervisor to access the iSCSI targetstlyirand this can be employed in a
scenario where the host must not see the storageedeof the virtual machine. Virtio-
scsi has support for the libiscsi. It is showrigure 30[40].

(c)libiscsi

Eluﬁk W

Guest Layer .
kernel | SCSI scsl mod |

Layer | | virtio-scsi
evice | |virtio-scsi
qemy |-Laver | [libiscsi

|
|

Host
kernel i
Directfy talk to
iBC3l storage.

R S T]

Hardware!| Device E

Figure 30 Libiscstsi initiator

47

6. CONCLUSION

The purpose of this thesis is to study the diffeqgossibilities of designing a storage
area network (SAN) and to provide an optimized Sgd\ution. The different protocols
for storage area network such as iISCSI, SCSI, KIR fand FCoE were studied. From
the study, ISCSI is recommended as the best seifatdtocol for the storage area
network. Hence iSCSI is employed to enable comnatimn between storage server
and client in this SAN design. And it is also cam®d that storage server is a virtual
machine for the following reasons. The main reasares efficient utilization of
hardware, scalability of storage, replication andsgility of live migration.
Virtualization is achieved by the hypervisor KVM/QIE.

KVM/QEMU has been selected as hypervisor becaus&ihivl is included in the
kernel of the operating system LINUX. Hence it isrmreliable and it also minimizes
the effort and time required for the configuratidimere is also requirement to acquire
insight knowledge about working means of KVM/QEMTthus the working means of
KVM/QEMU were studied. Since the storage serveraisirtual machine, virtual
network has been employed to enable communicateswden virtual machine and
others. There are many options like Bridge, Macveaapm Openvswitch for deploying
virtual network. The benefits and drawbacks of eaththem were analyzed and
Macvtap is the final choice for this virtual machinetwork configuration because of its
performance and easy configuration. The iISCSI tasgeinning on the virtual machine.
There are different iISCSI targets like LIO, SCST,GY and IET are available in
market. The performance of each of them was medsémmong all LIO is the best
performing and reliable target as per this envirentnWith these basic configurations
the storage server is ready and the clients canwilizing the storage space offered by
the storage server. But the performance can benspitoved.

In order to improve the performance, various patamehave been taken into
account. It includes network level optimizationraairtualized drivers of KVM and
cache. Network level optimization includes Multipag, MC/S, NIC teaming. All of
these technologies are mainly used to improve #gmpnance and redundancy. From
the study, Multipathing is concluded as the besioopyhen compared to other options
like NIC teaming and MC/S. Multipathing can be agofed in two ways active/active
and active/passive. Active/active multipathing refprred than active/passive for its
better performance since the 1/O is spread ovepatis. The para-virtualized driver is
employed to increase the I/O performance in a\firtualization scenario. The para-
virtualized drivers of KVM include virtio-scsi andrtio-blk. Virtio-scsi is employed in
this design even though the performance of théovintk is high. This is because virtio-
scsi has rich features than virtio-blk and it iseav driver of KVM, expected to grow

48

more in the future. The cache setting of the virtnachine also has high impact on the
storage 1/0 performance. The cache setting for $#bl solution is direct sync. Direct

sync mode does not use any cache. Thus data igtégecured even in case of any
unexpected system failure. It is recommended totipe directsync cache mode while
measuring the performance of SAN, which helps tbthje real performance of the

storage device and SAN configuration without arfjuence of cache. Cache mode of
writeback or writethrough can be used to incredseage performance by taking the
risk of data integrity. With these configuratiohe tvirtual storage server was optimized
such that there is betterment in the crucial pataradike efficiency, performance and
redundancy.

There are some limitations in this study. The pennce analysis of storage server
was conducted in Ericsson specific equipment,nhoabe generalized. Due to the time
limit, the SAN solution was not integrated to th@enstack for the cloud services. The
future study based on this thesis can be integratiwith openstack to provide cloud
services. An in-depth study can also be conductedhe para-virtualized drivers of
KVM in code level to improve the storage performanc

49

REFERENCES

[1] Dan Kusnetzky, Virtualization: A Manager's GeidBig picture of the Who,
What and Where of virtualization, O'REILLY 2011.
Availability:http://it-ebooks.info/read/583/

[2] Bernard Golden, Virtualization for Dummies, \&§ publishing, Inc.
Availability:http://it-ebooks.info/read/2777/

[3] The Most Complete and Integrated Virtualizati&rom Desktop to Datacenter,
An Oracle White Paper, October 2010.
Availablility:http://www.oracle.com/us/technologiegtualization/virtualization
- strategy-wp-183617.pdf

[4] Jean S. Bozman Gary P. Chen, Optimizing Hardviar x86 Server
Virtualization,WhitePaper, August 2009.
Availability:http://www.intel.com/Assets/PDF/whitaper/IDC
choosingvirthardware.pdf

[5] Understanding Full Virtualization, Paravirtiadtion, and hardware Assist,
White Paper, Availability:http://www.vmware.conés/pdf/
VMware_paravirtualization.pdf

[6] Modeling and Performance Evaluation of iSC3$br8ge Area Networks over
TCP/IP- based MAN and WAN networks, C. M.Gauger,®dhn, S. Gunreben,
D. Sass, and S. Gil Perez.

[7] ISCSI Technical White Paper, Nishan Systems.
Availability:http://www.diskdrive.com/iSCSl/readirgpom/white-
papers/Nishan_iSCSI_Technical_White_Paper.pdf

[8] Storage Protocol Comparison, White Paper, vrewar
Availability:http://www.vmware.com/files/pdf/techpar/Storage_Protocol_
Comparison.pdf

[9] iISCSI Protocol Concepts and Implementation, M/Raper, Cisco Systems.
Availability:http://storusint.com/storage_protocdsssi/iSCSI%20White%20
paper.pdf

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

50

Storage area networking protocols and architec
Availability:http://www.cisco.com/networkers/nw044sos/tech/docs/
OPT-2TO1.pdf

John L Hufferd, Consultant, IP Storage areadtdtols: iSCSI, Hufferd
Enterprises, SNIA.
Avalilability:http://www.snia.org/sites/default/edation/tutorials/2011/spring/
networking/HufferdJohn-IP_Storage_Protocols-iSQdl.

Internet Small Computer Systems Interface 8§@aming and Discovery,
Avalilability:http://tools.ietf.org/html/rfc3721

Fibre Channel (FC). Availability: http://tooistf.org/html/rfc3643

Unified Fabric White Paper—Fibre Channel oiz¢ernet (FCoE)
Availability:http://www.cisco.com/c/en/us/td/docslstions/Enterprise
/Data_Center/UF_FCoE_final.html

Fibre Channel over Ethernet: Enabling Serni@rConsolidation, White Paper
Availability:http://www.brocade.com/downloads/docents/white_papers
/Brocade_FCoE_WP-00.pdf

Fibre Channel over TCP/IP (FCIP)
Availability:http://www.ietf.org/rfc/rfc3821.txt

Securing Block Storage Protocols over IP
Availability:http://tools.ietf.org/html/rfc3723

LIO Architecture
Availability:http://linux-iscsi.org/wiki/lO

Comparing File (NAS) and Block (SAN) storage
Availability:https://www.spectralogic.com/indexmffuseaction=home.
displayFile&DoclD=4630

Randy H. Katz, Network-Attached Storage SysefBEE paper
Availability:http://ieeexplore.ieee.org/stamp/stamp?tp=&arnumber=232686

Network-attached storage for growing smallibass
Availability:https://education.emc.com/academiaailte/documents
/IEAA_Content/Exercises/IOMEGA%20NAS%20for%20SMB.pdf

51

[22] Cluster Technology and File Systems
Availability:http://www.stalker.com/notes/SFS.html

[23] KVM - KERNEL BASED VIRTUAL MACHINE
Avalilability:http://www.redhat.com/en/files/resaas/en-rh-kvm-
kernal-based-virtual-machine.pdf

[24] Jan Kiszka, Architecture of the Kernel-baséntual Machine (KVM),Siemens
Availability:http://www.linux-kongress.org/2010/dies/KVM-Architecture-
LK2010.pdf

[25] Paolo Bonzini, Effective multi-threading in QBJ, Red Hat
Availability:http://www.linux-kvm.org/wiki/images/IL7/Kvm-forum
-2013-Effective-multithreading-in-QEMU. pdf

[26] Anthony Liguori, Multi-threading in QEMU
Avalilability:http://www.linux-kvm.org/wiki/images/70/2010-forum-
threading-qgemu.pdf

[28] Toshiaki Makita,Virtual switching technologiemd Linux bridge, NTT Open
Source Software Center.
Availability:http://events.linuxfoundation.org/sgkevents/files/slides/
LinuxConJapan2014_makita_0.pdf

[29] Linux I/O (LIO)
Availability:http://linux-iscsi.org/wiki/Main_Page

[30] iSCSI Error Handling and Recovery
Availability:http://tools.ietf.org/html/rfc3720#ston-6.1.4.4

[31] Combining the Reliability of iSCSI with Full rEor Recovery and the
Performance of 10 Gigabit Ethernet.
Availability:http://www.force10networks.com/whitepars/pdf/
wp_iscsi_10ge.pdf

[32] Martin K. Petersen, T10 Data Integrity Feature
Availability:https://www.usenix.org/legacy/eventl3/tech/petersen.pdf

[33] Dr. Khoa Huynh, Exploiting The Latest KVM Fea¢s For Optimized
Virtualized Enterprise Storage Performance, IBMuxTechnology Center.
Availability:http://events.linuxfoundation.org/sgkevents/files/slides/

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

52

CloudOpen2013_Khoa_Huynh_v3.pdf

The Linux Kernel's VFS Layer
Availability:https://www.usenix.org/legacy/eventarsx01/full_papers/
kroeger/kroeger_html/node8.html

The Linux Virtual File system
Availability:http://www.inf.fu-berlin.de/lehre/SS@DS/Lectures/Lecture16.pdf

Best Practices for Running VMware vSphere 8CSI, TECHNICAL
MARKETING DOCUMENTATION, July 2013
Avalilability:http://www.vmware.com/files/pdf/iSCStlesign_deploy.pdf

Link Aggregation, IEEE.
Availability:http://ieeexplore.ieee.org/stamp/stajap?tp=&
arnumber=4668665

NIC TEAMING, IEEE 802.3ad, vmware.
Availability:http://www.vmware.com/pdf/esx2_NIC_Teng.pdf

Asias He , Virtio-blk Performance ImprovemeRgd Hat, KVYM FORUM Nov
2012. Availability:http://mww.linux-kvm.org/wiki/inages/f/f9/2012-forum-
virtio-blk-performance-improvement.pdf

Masaki Kimura ,Better Utilization of Storagee&tures from KVM Guest via
virtio-scsi.
Availability:http://events.linuxfoundation.org/sgkevents/files/slides/
MasakiKimura_LinuxConNorthAmerica2013_1.pdf

Virtio SCSI, An alternative virtualized stomagtack for KVM.
Availability:http://www.linux-kvm.org/wiki/images/f5/2011-forum-virtio-
scsi.pdf

Laura Novich, Paolo Bonzini, virtio-scsi, Tetbal white paper, Red Hat Israel.
Multithreading

Availability:http://www.tutorialspoint.com/operain system/os_multi_threadin
g.htm

53

APPENDIX

[1] A script to define virtual machine

[usr/ bi n/ genu- system x86_64 \

- enabl e- kvm \

-cpu phenom\

-snp 1, sockets=1, cores=1,threads=1 \

-drive file=/home/ubuntu.ing,if=virtio, cache=directsync \
-drive file=/dev/sdbl,if=virtio, cache=directsync \

-drive file=/dev/sdc2,if=virtio, cache=directsync \
-netdev tap,id=tap2, fd=58 58<>/dev/tap58 \

-device virtio-net-pci, netdev=tap2, mac=c6: af: 77: 89: bc: 39 \
-netdev tap,id=tap3,fd=62 62<>/dev/tap62 \

-device virtio-net-pci, netdev=tap3, mnac=d2: 23: b9: bb: 93: 00 \
-netdev tap,id=tap4,fd=61 61<>/dev/tap6l \

-device virtio-net-pci, netdev=tap4, mac=b6: a2: c9:c2: 59:a9 \
-boot c \

-m 3000 \

-vnc : 3&

enable-kvm

Enable the kvm features when needed, otherwis@&4U.

cpu cpu_model

Specify type of the processor (CPU) model.

smp number_of_cpus

Specifies how many CPUs will be emulated. This aptilso takes other CPU-related
parameters, such as number of sockets, number res quer socket, or number of
threads per core.

file=image fname

Specify the path of the disk image which will bed®y the drive.

if=drive_interface

Specifies the type of interface to which the dnseconnected. Currently only floppy,
ide, or virtio are supported by SUSE. Virtio deBreepara-virtualized disk driver.

If your device, such as -drive, needs a specialedrand driver properties to be set,
specify them with the -device option, and identifiyh drive= suboption.

cache=method

Specify the caching method for the drive. Possi@diies are unsafe, writethrough,
writeback, directsync, or none.

54

netdev

This option defines a network interface and a djetyipe of networking for your VM.
tap

Specify a bridged or routed networking.

fd

file descriptor

boot

Specifies the order in which the defined drived ba& booted. Drives are represented by
letters, where 'a’ and 'b' stands for the floppyedr1 and 2, 'c’' stands for the first hard
disk, 'd' stands for the first CD-ROM drive, andtm'p' stand for Ether-boot network
adapters.

2] L10O Configuration

55

[3] Multipath configuration

defaults {

user friendly _nanes yes

Use npathn nanes for nultipath devices

pat h_groupi ng_policy multibus

Place all paths in one priority group

pat h_checker readsectorO

Method to determine the state of a path

polling interval 3

How often (in seconds) to poll state of paths

pat h_sel ector "round-robin 0"

Algorithm to determne what path to use for next 1/0O
oper ati on

rr_mn_io 1000 #(default)

The nunber of 1/0O requests to route to a path before
switching to the next path

fail back i medi ate

Fail back to highest priority path group with active paths
no_path_retry O

#Nunber of times the system should attenpt to use a failed
pat h before disabling queueing

}

bl ackli st {

devnode "“sd[a-d]$"

}

mul ti pat hs {

mul ti path {

wwi d 360014057bbf 7733f 4c54da98a0a5757d
}

}

[4] VM script with virtio-drivers

/usr/ bi n/ genu- system x86_64 \

- enabl e- kvm \

-cpu phenom\

-snp 1, sockets=1, cores=1,threads=1 \

-drive id=hdO, fil e=/hone/vnil.ing,if=none, cache=directsync \
-device virtio-scsi-pci \

- devi ce scsi-hd, dri ve=hdO \

-drive id=hdl,fil e=/dev/sdbl,if=none, cache=directsync \

-device virtio-scsi-pci \

-devi ce scsi-hd, drive=hdl \

-drive id=hd2,fil e=/dev/sdc2,if=none, cache=directsync \
-device virtio-scsi-pci \

-devi ce scsi-hd, drive=hd2 \

-netdev tap,id=tap6, fd=58 58<>/dev/tap58 \

-device virtio-net-pci, netdev=tap6, mac=c6: af: 77: 89: bc: 39 \
-netdev tap,id=tap7,fd=61 61<>/dev/tap6l \

-device virtio-net-pci, netdev=tap7, mnac=b6: a2:c9:c2:59:a9 \
-netdev tap,id=tap8, fd=62 62<>/dev/tap62 \

-device virtio-net-pci, netdev=tap8, mac=d2: 23: b9: bb: 93: 00 \
-boot ¢ \

-m 3000 \

-vnc :5&

[9] Failover time calculation with wireshark

Fiter: Iiscsi - | Expression... Clear 2pply Sawve |
Mo, | Tirne I Source ‘ Destination I Frot:u:nll Ltnqthl Infa |

121983 12. 23848200¢ 10.63. 48.129 10.63.48.131 1SCSI 1018 SCSI: Write(19) LUN: 0x00!
121986 12. 23909400€10,. 63. 48. 131 10. 63.48.129 iSCSI 114 SCSI: Rasponse LUN: Ox00
121992 12. 23937500¢ 10. 63. 48. 125 10.63.48.131 15CSI 1018 SCSI: Write(l0) LUN: OxO0Q
121995 12. 23990700C 10, 63. 48, 131 10. 63.48.129 A5CST 114 SCSI: Response LUM: 0x00 |
122001 12.24012200¢ 10. 63. 48. 129 10.63.48.131 iSCSI 1018 SCSI: Writell0) LUN: Ox00|
122004 12. 2406550010, 63. 48. 131 10.63.48.129 iSCSI 114 SCSI: Rasponse LUN: 0xD0
122010 12. 24086900¢ 10, 63. 48. 129 10. 63. 48. 131 iSCST 1018 SCSI: Write(l0) LUN: 0x00
122013 12.24141300¢ 10. 63. 48. 131 10, 63.48. 129 1SCSI 114 SCSI: Response LUN: 0x00
122019 12. 24169300¢ 10, 63. 48.129 10. 63. 48. 131 iSCSI 1018 SCSI: Writeil0) LUN: D:Ol.':fi
122022 12.24230900¢ 10. 63. 48. 131 10. 53. 48,129 iSCSI 114 SCSI: Response LUN: Ox00 |
122028 12. 24252500¢ 10, 63. 48. 129 10. 63.48.131 1SCSI 1018 SCSI: Writel(l0) LUM: Ox00!
122035 12.53984700¢ 10.63. 48. 82 10.63.48.89 1SCSI 114 NOP OQut .
122036 12. 54020200 10. 63, 48. 83 10, 63.48.82 1SCSI 114 HOP In
122040 13. 2398880010, 63. 48. 129 10. 63.48. 131 iSCSI 114 NOP Dut

[122042 13 44385600€10.63.48.125 ___10.63.48.131 _______iSCSI_____ 114 [TCP Retransmission] NoP |
122043 13.53988300¢ 10.63. 4B. B2 10.63.48.89 15C5I 114 HOP Qut
132044 13 54024400010,.63, 48, 89 10, 63.48. 82 15CST 114 HOP In |

| 122046 13.85183700(10.63.48.125 __18.63.48.131 ______iSCSI 114 [TCP Retransmission] NoP |
122050 14.53987600¢ 10, 63, 48, 82 10, 63, 48, 85 ASCST 114 HOP Qut '
122051 14 54026100¢ 10.63. 48. 89 10. 63.48. 82 15C51 114 NOP In |

122061 15:51627300¢ 10. 83 1018 SCSI: Writei(l0) LUN: Ox00H
122062 15.51709500¢ 10. 63. 4885 16.63.48.82 iSCST 114 SCSI: Response LUN: Ox00 |
122069 1551754600 10. 63. 48. B2 10.63.48.89 iSCST 1018 SCSI: Write(l0) LUN: axoa_i
122071 15.51818400¢10.63. 4889 10.63.48 82 1SCST 114 SCSI: Response LUN: 0x00 .
122077 15.51863800C 10, 63. 48. 82 10.63.48.89 1SCST 1018 SCSI: Write(lD) LUN: Dx00

199080 TR RIGSARAAL 1A £E5 4D OO0 ih ST 4D O » EFaT 174 €FET: Dasesases | TRis Soeffh |

