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Given an audio query, such as polyphonic musical piece, this thesis address the

problem of retrieving a matching (similar) musical score data from a collection of

musical scores. There are di�erent techniques for measuring similarity between any

musical piece such as metadata based similarity measure, collaborative �ltering and

content-based similarity measure. In this thesis, we use the information in the digital

music itself for similarity measures and this technique is known as content-based

similarity measure.

First we extract chroma features to represents musical segments. Chroma feature

captures both melodic information and harmonic information and is robust to timbre

variation. Tempo variation in the performance of a same song may cause dissimi-

larity between them. In order to address this issue we extract beat sequences and

combine them with chroma features to obtain beat synchronous chroma features.

Next, we use Dynamic Time Warping (DTW) algorithm. This algorithm �rst com-

putes the DTW matrix between two feature sequences and calculates the cost of

traversing from starting point to end point of the matrix. Minimum the cost value,

more similar the musical segments are. The performance of DTW is improved by

choosing suitable path constraints and path weight. Then, we implement LSH algo-

rithm, which �rst indexes the data and then searches for a similar item. Processing

time of LSH is shorter than that of DTW. For a smaller fragment of query audio, say

30 seconds, LSH outperformed DTW. Performance of LSH depends on the number

of hash tables, number of projections per table and width of the projection. Both

algorithms were applied in two types of data sets, RWC (where audio and midi are

from the same source) and TUT (where audio and midi are from di�erent sources).

The contribution of this thesis is twofold. First we proposed a suitable feature

representation of a musical segment for melodic similarity. And then we apply two

di�erent similarity measure algorithms and enhance their performances.

This thesis work also includes development of mobile application capable of recording

audio from surroundings and displaying its acoustic features in real time.
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1. INTRODUCTION

Nowadays music is easily available and accessible in digital forms. Amount of digital

music contents are also increasing far more quickly than our ability to process them.

Release of a new song, remix of old popular songs, cover songs from di�erent artists,

songs performed by other artists are main reasons for the increase in musical con-

tents. Often same songs are stored in di�erent format as well like audio, score and

compressed. Every day, numerous music �les are uploaded and downloaded from

di�erent media sharing websites. There are many music downloading and streaming

service operating on World-Wide Web. Because of this it is very easy to collect

music. With the increase of those multimedia data, there arises a problem of man-

aging those data such as searching and retrieving music content. Assume a situation

where you want to play one of your favorite songs from a collection of a few thousand

songs. If you know the artist name or title of a song then you could directly �lter

it from your local collection or you could search online by artist/title. Suppose you

know few words from the lyrics of the song then you could �nd the name of the

song/artist by using Google. Once you have the song title and/or artist you can

�nd the song easily. But imagine a situation where you only have the melody of a

song, or a classical music theme then how would you search for that particular piece

of a music. Or you may have an audio song (or a small piece of audio song) and

want to retrieve its musical score.

It is not only about listeners, due to growth of consumers in digital music, there is

an opportunity for researchers to discover trends and patterns in digital music world.

For example, researchers may be interested in discovering the trends on online music

sales [64], music recommendations, evaluation of music, �nding repeated section in

music [44]. At present common and e�ective approach for recommending similar

music, for example, is based on usage. Last.fm builds a database of millions of users

and songs. It then recommends you song based on "users who liked artist/songs A

and B that you are currently listening also liked songs C and D". Figure 1.1 shows

the music recommended by last.fm, while I was listening to the song by Michelle

Branch. Music tastes of individuals are so di�erent that you cannot produce precise

information for an individual just by averaging the opinions.
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Figure 1.1: Music recommended by last.fm.

1.1 Scope and Purpose of thesis

The objective of this thesis is to investigate content-based similarity measures for

retrieving musical score data based on an audio query. We need to develop strategies

that enable us to access those music collections for search and browse functionality.

This strategy is commonly known as Music Information Retrieval (MIR) and is a

hot topic among researchers. There are many aspects of MIR, in this thesis work we

focus on content-based retrieval technique. This thesis proposed a system capable of

retrieving similar musical score data based on audio query. You may use full audio

�le or a small segment of an audio piece; the proposed system retrieves one or more

similar musical score �le. In this thesis, we use feature vectors to represent any

musical segment, and those feature sequences are used to �nd similarity between

songs. Although an audio can be represented by several features, this thesis is

limited to chroma features and beat sequences. In this thesis, experiments were

performed using only MIDI and audio �le format. In order to retrieve similar item

from the database, this thesis use Dynamic Time Warping and Locality Sensitive

hashing algorithm.

The search engine capable of retrieving musical scores similar to the query can

be helpful for musicologists to �nd out how their work are related to the work of

other composer or their own earlier works as well. Although this task can be done
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by musicologists manually, it would be interesting if computer would perform this

task reasonably well with much less e�ort. This system can be used to solve or avoid

copyright infringement. Composers can �nd out if someone is plagiarizing them or

if their new work exposes them to the risk of plagiarism.

This system can also be used in musical stores, suppose customer may only know

the tune from a record but not any other information as artist name, song title. It

would be interesting if computers do the task of identifying melodies and suggesting

the records.

1.2 Literature Review

Music item is multi-faceted object. When we talk about music, it has its own aspects,

for example title, artist, genre, mood, melody, rhythm etc. In digital form, music

is multimedia document. Some researchers believe that music similarity measure is

one of the fundamental concepts in the �eld of MIR [7]. Music similarity can be

used for:

• Search: Based on similarity measure, we can �nd nearest music item to the

query item.

• Recommendation: We can list similar musical items to the one that user is

currently listening to, which means recommending similar music to user.

• Browsing: Based on similarity measure, one can organize large music collection

into cluster or into hierarchies so that user can easily navigate within those

music collections.

There are di�erent ways to �nd out similarity between music [44; 8]

• Metadata-Based Similarity Measure (MBSM).

• Usage-Based Approach.

• Content-Based Similarity Measure (CBSM).

Metadata-Based Similarity Measure

First approach to �nd similarity between music is through textual metadata, known

as Metadata-Based Similarity Measure (MBSM). In this technique, we match the

textual information of a query and database items to �nd similarity between them.

Sometimes textual information associated with the item is su�cient for similarity

measure. Currently, many music service providers are based on this technique and

achieve success to some degree. This method is very fast. Some commercially

successful MBSM driven music system ask user to provide the name of their favorite
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artist or song title and then it will create a playlist based on artist similarity [44].

With the help of provided information, those system use metadata to �nd an artist

similarity or a genre similarity and then retrieves few tracks that user might be

interested in hearing. In MBSM, query is simple and easy.

But sometimes it is very di�cult to manage a meaningful set of metadata for huge

database because many people are employed to create description and inconsistency

in the description may impact the search performance. Moreover, such textual

information assigned to music recordings provides very limited information about

the content of that particular song. The time and human resources taken to prepare

such database is enormous. And it is also di�cult to describe the melody of music

in human language. Suppose a polyphonic music is played, and you were asked to

describe the melody of that music, it won't be easy for you to describe the melody

in your own language.

Usage-Based Similarity Measure

Second and most common approach in similarity measure is Usage-based approach,

which is also known as collaborative �ltering. Collaborative �ltering has roots from

something we people have been doing from centuries - sharing opinions. For example,

if Bishwa's colleagues say that they liked a latest music released by Beyonce, then

he might consider buying and/or listening it. If majority of them did not like the

song at all, he might decide to spend his money somewhere else. Bishwa might

observe that Kevin recommend the type of music that he likes. Lee has a history

of recommending song that he hates. Clark might recommend everything. Over

a time, Bishwa learns whose opinion he should listen and how can he apply those

opinion to help him �nding a music item of his choice.

Collaborative �ltering works by constructing a database of preference for music

by users. Based on listening history, any new user Bishwa is matched against the

database to �nd out neighbor, who are other users having similar taste to Bishwa.

The music items liked by the neighbor are recommended to Bishwa, and he will prob-

ably like those items as well. This method has been successful in both research and

practice. Figure 1.1 and 1.2 shows the item recommended by last.fm and youtube

respectively.

One of the earliest implementations of collaborative �ltering based recommenda-

tion system is Tapestry [13], which rely on opinions of people from a close-knit com-

munity like o�ce. Earlier automated collaborative �ltering (ACF) systems include

GrounpLens research system [25; 53], Ringo [61], Video Recommender [62]. All of

these systems �rst collect ratings from users and then compute the correlations be-

tween pairs of user in order to identify user's neighbor and make a recommendation

based on the ratings from those neighbors. Other examples of collaborative �ltering



1. Introduction 5

Figure 1.2: Recommendation from Youtube on playing BoyZone's song.

based recommender system include the book recommendation system from Ama-

zon.com, the PHOAKS system to �nd relevant information in WWW [34], Jester

system which recommend jokes [31]. Collaborative �ltering based recommender sys-

tem has also been applied to other technologies including Bayesian networks [27],

Clustering [35] and Horting [9].

Bayesian Network model that can be built o�ine using training sets, creates a

decision tree at each node and edge represents user information. This model is

small, fast and as accurate as nearest neighbor method [27]. In clustering technique,

clusters are created based on a user having similar preferences. Prediction for a user

can be made by averaging the opinions of other users in that cluster. Horting is

a graph based technique where node represents the users and edge between nodes

represent the degree of similarity between two users. Prediction for a user is done

by walking the graph to nearby nodes and combining the opinion of nearby users.

One challenge for collaborative �ltering based recommendation system is to im-

prove the quality of the recommendation for the user. User needs trustable recom-

mendation systems which can help them �nd the item/music they are looking for.

Next challenge is to improve the scalability of the system.

Content-Based Similarity Measure

Another approach in music similarity measure is based on the audio content of a

music piece known as Content Based Similarity Measure (CBSM). This approach
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has its root in information retrieval and information �ltering research. Content-

based method use the information in the digital audio. Audio features contain the

information about musical work and music performance. This method identi�es

what user is looking for, even though user doesn't know exactly what he/she is

looking for. For example, if user has a small segment of music clip, but don't know

about artist or songs, this method is helpful. In this technique, we match the audio

content of query music to the database music. Some people may focus on the speci�c

aspect of the content, for example, tempo, melody etc. Some researchers do not care

about speci�c aspect, and they derive some features to describe the whole contents

of an audio and use these features to match between the query audio and audio in

the database.

Earlier work on content based music retrieval includes [4], where author use mu-

sic segment to retrieve music from the database using beat and pitch information.

"Query-by-humming" system takes user-hummed tone as an input and matches it

against the database of MIDI �les [5]. [63] propose e�cient algorithm to retrieve

similar audio, based on spectral similarity, where each audio �le are processed to

�nd local peaks in signal power. Near each peak, spectral vector is extracted to

represents the music. Specially-de�ned distance vector is used to match two music

pieces. [52] proposed a system that align audio and MIDI and search through the

database of MIDI �le using query audio using chroma feature and Dynamic Time

Warping (DTW) algorithm. The example of commercial content-based system is

shazam.com described in [6]. It can identify music recording taken by mobile de-

vice at restaurants, dance club, pub, car, home and returns the artist, album and

track title with a nearby location where user can buy, or link to purchase online

and download. There are also systems where user can provide melody as a query

and the system identi�es the correct match. Soundhound.com identi�es the song

you sing or hum. Some systems where user can query by humming or singing are

midomi.com, musicline.de and musipedia.org.

Whenever performing similarity measure, it is not advisable to compare two songs

directly. While processing full songs we need to deal with huge amount of data, which

leads to huge memory consumption and high computational load. Instead it is good

idea to extract features that best describe the music content. Such collection of

feature known as feature vectors and are used to compare between music signals.

One should be careful choosing the relevant features because similarity is not well

de�ned. We can de�ne similarity between any music piece based on instrumentation,

harmonic content and rhythm. If one de�nes similarity based on instrumentation

then one should use Mel-frequency cepstral coe�cients (MFCCs) explained in [3].

If one needs to retrieve similar music based on harmonic content, then he/she will

prefer chroma features and rhythmogram is suitable for rhythmic similarity [32].
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This thesis work deals with chroma feature, beat sequences of any musical �le and

combination of both chroma and beat.

After feature extraction of music segment, next step is to determine similarity

between two music segments. Dynamic Time Warping (DTW) is well known al-

gorithm to �nd similarity between two sequences of feature vectors. For example,

one can use DTW to �nd out similarity in walking pattern, or even it can detect

if one person is walking slower or faster as compared to other. DTW is applied in

many applications to measure similarity between audio, music, video etc. Initially,

Dynamic time warping was used to compare speech patterns in automatic speech

recognition. In the �eld of information retrieval and data mining, DTW is successful

in coping with time-deformation and di�erent speeds related with time-dependent

data.

1.3 Structure of a Thesis

The structure of this thesis follows: Section I gives a brief introduction on Music

Information Retrieval (MIR). It provides insight about scope and purpose of the

thesis. This Section also provides a literature review on MIR. Section II is focused

on background knowledge required to understand this thesis. It provides insight

about music terminologies, di�erent types of music representation. In section III,

this thesis gives an overview of the proposed system, its components and working

principle of the system. In section IV, thesis discuss about chroma features, its

variants and extraction process. In this section we also discuss about estimating

beat sequences and combining beat and chroma to obtain beat synchronous chroma

feature. Section V, explain about time alignment, dynamic programming, time

normalization constraints, dynamic time warping algorithm, its implementation with

results. In section VI, we provide a theory behind locality sensitive hashing, its

implementation and results. And �nally in section VII, we end this thesis with

some concluding remarks.
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2. BACKGROUND

This section reviews some methods and tools used in music information retrieval

and music content analysis. Music information retrieval (MIR) is a �eld of science

which deals with retrieving information from a music �le, searching a database of

music �le. It is growing �eld of research with many real-world applications. Some

of the application of MIR technique includes music recommender systems, sound

source separation and recognition systems, automatic music transcription, music

genre classi�cation. This section deals with the important properties of music that

are mostly used in information retrieval.

2.1 Subjective Attributes of Musical Sound

Before going into further details of MIR, it is good to introduce some basic termi-

nology related to sound and music.

Waveform is representation of an audio signal that shows the change in air pres-

sure. If change in air pressure follows some regular pattern, then it is termed as

periodic waveform and the distance between two successive high or low pressure

levels is known as the period of the waveform. The reciprocal of the period is known

as fundamental frequency (F0). Periodic sound may contain several frequency com-

ponents that are multiples of the F0. The air pressure at highest pressure point is

known as amplitude of the waveform.

A harmonic of a sound wave is a frequency component of the signal that is an

integral multiple of the fundamental frequency. If fundamental frequency (�rst har-

monic) is 20 Hz, then frequencies of next harmonics are 40 Hz for second harmonic,

60 Hz for third harmonic and so on. Harmonics are periodic at the fundamental

frequency, so sum of harmonics is also periodic at that frequency. Waveform of

periodic sound is shown in Figure 2.1.

Pitch is one of the important perceptual attributes of music signal and is de�ned

as an auditory sensation that allows the ordering of sounds on frequency-related scale

ranging from low (slower oscillation) to high (rapid oscillation). More precisely, pitch

can be de�ned as the frequency of a sinusoidal wave that is matched to the target

sound by listener [1]. Pitch has a close relation with the fundamental frequency

(F0) but they are not the same, Pitch is a subjective attribute whereas fundamental

frequency is an objective. Fundamental Frequency (F0) is the inverse of the period.
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In musical term, note means pitched sound itself which represents relative duration

and pitch of a sound. Two notes are perceived similar to each other if the ratio

of fundamental frequencies of those two notes is in the power of two. All notes

satisfying this property are grouped as pitch class.

Loudness is the subjective attribute of a sound (music) that describes the ampli-

tude or power of the sound perceived by human ear. It is related with the amplitude

(physical strength) of a sound wave and can be ordered on a scale from quiet to loud.

Timbre, also known as tone colour, is a sound quality which helps human ear

to distinguish between the sounds produced by two di�erent sources with the same

pitch, duration and loudness. With this attribute we can distinguish between the

sound produced by guitar and piano even if they are played at same note with same

loudness. For a normal listener, timbre is how an instrument sounds like. It is a

complex concept and cannot be explained by simple auditory property, it depends on

the coarse spectral energy distribution of a sound. In analysis of music signal, timbre

is multidimensional concept and is represented by a feature vector, as opposed to

pitch, loudness and duration that can be represented by single scalar value.

2.2 Music Terminology

Melody of a song is a series of pitched sounds with musically meaningful pitch

and interonset interval (IOI) relationship. IOI means time interval between the

beginnings of two sound events. In written music, melody refers to sequences of

single notes. Combination of two or more simultaneous notes form chord and it can

be harmonic or dissonant. Music theory that studies the formation and relationships

of chords is known as harmony.

Musical meter means the regular pattern of strong and weak beats in a musical

piece which consists of detecting the moments of musical emphasis in an acoustic

signal and �ltering them to discover their underline periodicity. Those periodicities

at di�erent time interval together form the meter. Perceptually the most salient

metrical level is tactus, also known as beat or foot-tapping rate. Tactus can also

be considered as the temporal backbone of any musical piece; hence beat tracking

plays an important part in music transcription.

2.3 Music Representation

In modern world, digital music contains textual, visual and audio data. Music

information is represented in a di�erent format depending upon the particular ap-

plication, and such representations di�er in structure and content. In this section,

we focus on three formats of music representation that are widely used. They are

Score representation, Audio format and MIDI format.
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2.3.1 Score Representation

Score representation gives the symbolic description of a music piece as shown in

Figure 2.2. This representation can also be termed as sheet music. The score

encodes the musical work and depicts it in a graphical-textual form. Sheet music

can be used by a musician as a guide to perform a piece of music. In order to create

a performance based on such representation one should have prior knowledge about

music notation. In this type of representation, note objects are used to represent

music. Notes are given in terms of attributes such as musical onset time, pitch,

dynamics, and duration. In order to represent a piece of music by score, one should

have good experience on it.

Scores come in various formats:

• Full Score: Full score represents music for all instruments and voices. It is

intended for conductor to read while directing rehearsals and performances.

• Piano Score: Piano score, often called as reduction score, is a transcription for

piano.

• Lead Sheet: It speci�es lyrics, melody and harmony. It can be used to capture

important elements of a popular song.

There are di�erent ways to represent digital score. One way is to input sheet

music manually in MusicXML format. Similar to all other XML-based formats, it

is intended to be easy to parse and manipulate music. This approach is tiresome

and error prone. One can also use Music Notation Software (scorewriters) to write

and edit digital sheet music, where we can easily input or modify note objects by

computer keyboard, a mouse, or an electric piano. Another method is to scan the

sheet music and then convert the score into the digital image. For computers, this

image is just a set of pixels and cannot create any semantics from it. The next

step is to translate digital image into standard encoding scheme like MusicXML to

show the semantics of the score symbols. This process is known as Optical Music

Recognition (OMR). See [46] for more detail. Current OMR software produce good

accuracy rates for sheet music when using a clean scan or good-quality printed score.

There are still challenges in OMR [14] which includes small artifacts occurred during

a scan. Such artifacts may lead to wrong interpretation problems and to incorrect

recognition result.

2.3.2 Audio Representation

Audio signal or sound wave is generated by a change in air pressure due to some

vibrating object like vocal cord of a human, string of a guitar etc. When there is
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Figure 2.1: Waveform of a periodic sound.

vibration, it causes the displacement and oscillation of air pressure that ultimately

cause compression and rarefaction in air. This change in air pressure travels as a

wave, from source to the receiver, which can be perceived as sound by human ear. In

the case of receiving electronic device (microphone), such air pressure is converted

to an electrical signal. Such variation in air pressure is represented as a waveform

(sound pressure level as a function of time).

The Audio (waveform) representation would encode all important information

(temporal, dynamic, and tonal micro deviations) needed to replicate the acoustic

realization of a musical signal. However, the note parameters like onset time, note

duration, pitches are not given explicitly in the waveform. Sometimes even single

note of sound, played in instrument producing multiple harmonics, becomes complex

with noise components and vibrations. As a result, it is di�cult to compare and

analyze on the basis of waveform representation. For the case of polyphonic mu-

sic, the complexity of waveform representation increases considerably, because there

occurs interference between the components of musical tones, and those mixed com-

ponents are hard to recover. This makes it di�cult to extract note parameters from

polyphonic waveform.

The waveform we discussed is the analog waveform with an in�nite number of

values. Since computer can handle a �nite number of values, the analog waveform

has to be converted to discrete (digital) form and the process is known as digitization.

Digitization of a signal is achieved by sampling and quantization. First waveform
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is sampled at uniform interval and then values of the waveform at each sample

are quantized to discrete set of values. In the case of compact disc (CD), the

waveform is sampled at 44100 Hz (44100 samples per second) and then quantized

by using 65536 possible values and �nally encode by 16-bit coding scheme. Since

digitization is lossy transformation, it is generally not possible to reconstruct the

original waveform from the digital representation. Such error is commonly known

as quantization errors and aliasing which may sometimes introduce audible sound

artifacts. For the case of digital representation used in CD, the sampling rate and

quantization values are chosen in such a way that any degradation caused cannot

be noticed by human ear. For further detail see [30].

2.3.3 MIDI Representation

MIDI stands for Musical Instrument Digital Interface. Originally it was developed

as a standard protocol for controlling and synchronizing digital electronic musical

instrument from di�erent manufacturers. MIDI allows musicians to remotely access

the electronic instrument or a digital synthesizer. For example, you push down a key

of digital piano to start a sound, velocity of keystroke controls the intensity of sound

and sound stops as you release the key. Instead of physically doing these activities

you may send a suitable MIDI message to trigger the instrument to produce the

same sound. MIDI provides the information about how an instrument is played and

how to produce music.

MIDI standard was modi�ed in order to include �le format speci�cation Standard

MIDI File (SMF). SMF tells how to store midi data in the computer and allows

exchange of MIDI data between users. SMF also called as MIDI �le, contains a

collection of message with a time stamp to �nd out timing of message. Information

in MIDI �les known as metamessages are important to software that process MIDI

�les.

The most important MIDI messages are note-on and note-o�. Note-on corre-

sponds to the start of a note whereas note-o� corresponds to the end of the note.

Along with note-on and note-o�, MIDI �le has time stamp, key velocity, MIDI note

number as well as channel speci�cation. MIDI note number encodes the pitch of a

note and contains an integer value between 0 and 127. MIDI pitches are based on

equal-tempered scale. The key velocity controls the intensity of sound and contains

an integer value between 0 and 127. It determines the volume during note-on event

and decay during note-o� event. However, exact interpretation depends upon re-

spective instruments. MIDI channel is represented by an integer between 0 and 15,

which helps the synthesizer to use an instrument that was earlier assigned to that

particular channel number. Each channel supports polyphony that means several

simultaneous notes. Finally, the timestamp is also an integer that represents the
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Figure 2.2: An example of modern music notation.

clock pulses to wait before particular note-on command.

An important aspect of MIDI �le is that it can handle musical along with physical

on-set times and note duration. Like score representation, MIDI also uses timing

information in terms of musical entities instead of expressing it in absolute unit of

time like microseconds. A quarter note is subdivided into basic time unit known as

ticks or clock pulse. Number of pulses per quarter note is mentioned in the header

of the MIDI �le. Timestamp is used to tell how many ticks to wait before executing

MIDI message relative to previous MIDI message. MIDI also allows us to encode and

store absolute timing information at much �ner resolution level and in more �exible

way. MIDI can include the tempo message to specify microseconds per quarter note,

and we can use tempo information to compute absolute timing of a tick.

2.4 Music Transcription

In music, Transcription means to write down the aurally perceived music using

musical notation, that is, to extract the human readable information from a music

recording. It also includes writing down the pitch, beats sequences, onset time, o�set

time, duration of each individual sound in the music signal. Traditionally music is

written by using note symbols that describe pitch, rhythm, beats. The Figure 2.2

shows the notation of music by using note symbol taken from Wikipedia [65]

The main convention in such notation is that time �ows from left to right, and

the pitch of a note is represented by the vertical position on a sta� (fundamental

latticework of music notation, upon which symbol are placed) line. In the case of

drum, it represents instruments and a stroke type.

In the past, music transcription was done by human musicians by listening the

music recording, and the ability to transcribe the music is directly related to ex-
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perience and depth of knowledge in music. Average listener may perceive some

information from a complex polyphony music recording. One can recognize the mu-

sical instrument played, one may be able to tap their foot on beat sequences, one

may be able to detect structural parts as well. But untrained listener may not be

able to detect the sub melodies; he may only perceive the dominant information but

unable to perceive the detailed information. So training is required to analyse the

music while listening. Listener should have adequate knowledge of the instruments

involved and their musical pattern and playing technique.

In mid 1970s, Moorer proposed a system for transcribing music recording by

computer [21]. This was the �rst step towards automatic music transcription. His

work was followed by other researchers in 1980s. All of those early works use only two

concurrent sounds and the pitch relationships between those sounds were restricted

in various ways. Transcriptions of the percussive instruments were �rst addressed

by Schloss, in which di�erent types of conga strikes was classi�ed in the continuous

recordings. Since 1990, the interest in music transcription took the pace. The most

common and successful approach was to use statistical methods. And another trend

was to utilize computational model of the human auditory system. Anssi Klapuri

and Manuel Davy have summarized di�erent signal processing algorithms dedicated

to the various aspect of automatic music transcription [1].

Skilled human musicians are far more accurate and �exible than automatic music

transcription methods. This means till date we do not have any reliable polyphony

music transcription systems. However in the case of limited complexity in the

polyphony music, some degree of success has been achieved. For a transcription

of pitched instrument, there is a restriction in the number of concurrent sound

sources, only the speci�c instrument is considered, interference between percussive

sound and drums is forbidden. Ryynänen and Klapuri demonstrate promising re-

sults in transcribing real world music from CD recordings [42]. For the advancement

in music information retrieval research, one should examine challenge, results and

goals of Music Information Retrieval Evaluation eXchange MIREX [28].

2.5 Similarity matrix

Music is generally self-similar; repetition of certain section is a common phenomenon

in almost all music. Some part of a music segment often resemble with another part

within the same (or di�erent) music piece, for example, second chorus sounds similar

as the �rst chorus. Similarity matrix provides the graphical representation of the

similar segments within the data. Similarity matrix can be of same song or between

di�erent songs. If the similarity matrix is calculated for a same song then it is

termed as self-similarity matrix. Let us suppose we have a sequences feature vector

of one music clip X = (x1, x2, . . . , xN), where xi represents a feature vector at given
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(a) Similarity matrix of same song. (b) Similarity matrix for midi and audio of
same song.

Figure 2.3: Similarity matrix

interval i, and sequences feature vector of another music clip Y = (y1, y2, . . . , yM),

where yk represents a feature vector in time frame k. Then Similarity matrix can be

de�ned as D(i, k) = d(xi, yk), for i ∈ 1, 2, . . . , N ,k ∈ 1, 2, . . . ,M , where d(xi, yk) is

a function measuring the similarity between two vectors. Most common similarity

measure is cosine distance de�ned as

dc(xi, yk) = 0.5

(
1− 〈xi, yk〉
‖xi‖‖yk‖

)
(2.1)

where ‖.‖ denotes the vector norm and 〈., .〉 dot product. The matrix D(i, k) ob-

tained by taking cosine distance is known as distance matrix. Similarly we can

calculate self-similarity matrix where feature vector X and Y represents the same

song.

The concept of self-similarity matrix was �rst used in music by Foote [22] to

visualize the time structure of given music recording. The property of self-distance

matrix is determined by the feature representation and distance measure. Usually

distance measure is used to compare single frames. In order to enhance the struc-

tural property of self-distance matrix, it is good to add local temporal evolution of

the feature. Foote [22] proposed an idea to calculate a distance value by taking the

average distance from a number of successive frames. This results in the smoothing

e�ect of the self-distance matrix. Later Müller and Kurth [47] suggest contextual

distance measure to handle local tempo variation in audio recording. As an alter-

native of using sliding window, compute the average distance of a feature vector of

non-overlapping musically meaningful segments such as music measure [23]. Another

approach suggested by Jehan [60] was to compute self-distance matrix at multiple

levels starting from individual frame to musical pattern.

Self-distance matrix is visualized in two-dimensional space as shown in Figure
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2.3. Figure 2.3(a) is visualization of the distance matrix of same audio �le. Here

time runs from left to right and top to bottom, so top-left corner represents the

start of the feature vector, and bottom-right corner indicates the end. At any given

instance the colour at point (x, y) represents the similarity between the features

at instance x and y. Dark blue at point (x, y) means there is less distance (more

similarity) between features at instance x and y where as red colour means there is

more distance (dissimilarity) between features at x and y. If feature describes some

musical properties and remain constant over a certain duration, then block of low

distance is formed, and size of the block tells the duration of the constant feature.

Instead of remaining constant, if feature describes some sequential properties, then

diagonal stripes of low distance are formed.

There is always a diagonal blue line passing from top-left corner to bottom-right

corner, because the feature vector is always same to itself at particular instance

of time. Repeating pattern in the sequences of feature vector (x1, x2, x3, . . . , xN)

of a musical segment are often visible in the distance matrix. If some part of the

feature is repeated, we see stripes in the self-distance matrix that runs parallel to

main diagonal line, and the separation of those stripes from main diagonal blue line

represents the time di�erence in the repetitions.

Feature only is not responsible for the formation of block or stripe, temporal

parameter for feature extraction also plays a vital role [18]. The longer the temporal

window, most likely it is that blocks are formed in self-distance matrix. Paulus and

Klapuri [24] mentioned working with low resolution bene�ts for computation along

with structural reasons.

Often there is repetition of musical parts in another key. By circularly shifting

the chroma feature, Goto [50] simulates transpositions. Later on Müller and Clausen

[48] adopt this idea to bring in the concept of transposition-invariant self-distance

matrix to show the repetitive structure in the presence of key transposition.

Similarly, we can also calculate cross-similarity matrix where feature vector X

and Y in the equation 2.1 represents di�erent song. Figure 2.3(b) is visualization

of the distance matrix between midi and audio format of the same song. Figure 2.4

shows the visualization of two completely di�erent songs. We can see from Figure

2.3(a), diagonal is darker as compared to Figure 2.3(b) because distance between

same feature sequence is more similar. But in the case of Figure 2.4, we do not see

any low cost diagonal line because there is not any similarity between two songs.

One can show repetitive information by transforming self-distance matrix to time-

lag format. Figure 2.5 is the time-lag representation of the audio clip that is used in

similarity matrix of Figure 2.3. In case of distance matrix D both axis represents the

time whereas in case of time-lag matrix R, one of the axis represents the di�erence
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Figure 2.4: Distance matrix for two entirely

di�erent songs.

Figure 2.5: Time lag for the audio song used

in Figure 2.3

in time (lag).

R(i, i− j) = D(i, j) (2.2)

for i− j > 0.

This transformation throws-out the duplicate information from the symmetric

distance matrix. The diagonal stripes in distance matrix representing repeated se-

quences, appears as vertical lines in time-lag representation. In this representation,

stripe information is transformed into easily interpretable form, whereas block in-

formation may be di�cult to extract as they are transformed into parallelograms.

Moreover, this representation works only in the case where repeating parts occur in

the same tempo.
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3. IMPLEMENTATION

In previous section, we have gained some terminology related to music and some

signal processing algorithms that are used in music information retrieval. In order

to realize music information retrieval process, we have created a simple system. In

this section we describe the overview of the system, its di�erent components and its

working procedures.

3.1 System Overview

We would like to construct a system that is capable of matching query feature

sequence of an audio �le against database feature sequences of MIDI �les. The

general idea of our system is presented in Figure 3.1. The system architecture

consists of four main blocks. Synthesizer block is responsible for synthesizing a

MIDI �le to an audio signal. Feature Extraction Block is responsible for extracting

features from the music piece. Database stores all the extracted features along

with other relevant information of music. The matching block performs comparison

between features and returns the result. In an indirect way, this system can be used

to transcribe the given piece of music from audio format to score/MIDI format.

Having a segment of query audio, transcription process is accomplished by �nding

the corresponding MIDI from the database. The functionality of each module is

presented below.

3.1.1 Synthesizer

As we mentioned earlier, MIDI is not actual recording of music, it is rather a spread-

sheet like set of instruction used to create music and it uses about thousand times

less space than the corresponding CD quality audio recording. So it is preferable to

use MIDI format for the database items. In order to extract features, for compar-

isons, we �rst convert MIDI to audio format. This block is mainly responsible for

converting higher level music representation such as MIDI �les to low-level music

representation such as audio �le. This block uses 'Timidity++' software to synthe-

size MIDI �le to uncompressed audio format .wav �le. Timidity++ is a software

synthesizer, capable of playing MIDI �les without any hardware synthesizer. It is

a free software released under GNU General Public License. It is a cross platform

system written in C language. The audio signal generated from this block acts as
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Figure 3.1: System Overview.

an input to the feature extraction block. As seen in Figure 3.1, only database items

(MIDI �les) are passed through this block because we are using audio �les to query,

hence no need of synthesizer for query �les.
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Table 3.1: Important MATLAB functions in chroma toolbox.

Function Name Description

wav_to_audio Takes wave �le and convert it to audio format.
estimateTuning Takes audio data and estimate shift parameter.
audio_to_pitch_via_Fb Extract pitch feature from audio data.
pitch_to_chroma Derive chroma feature from pitch feature.
pitch_to_CENS Derive CENS feature from pitch feature.
smoothDownsampleFeature Smoothing and downsampling of chroma feature.
normalizeFeature Normalization of chroma feature.

3.1.2 Feature Extraction

Once we have an audio signal for a database or a query item, next step is to ex-

tract features describing musical content of the signal. We have already mentioned

importance of feature extraction for matching purpose. We are mainly interested in

chroma features and beat synchronous chroma features. Chroma features capture

both melodic information and harmonic information and variation in tempo is nor-

malized by beat synchronous feature extraction [12]. Chroma feature of an audio

�le is extracted by using chroma toolbox released under GNU-GPL license, see [49].

For beat synchronous chroma features, we �rst need to extract chroma fea-

ture in short frames as mentioned earlier. Table 3.1 gives the overview of impor-

tant MATLAB functions used from chroma toolbox. Extraction of chroma fea-

tures starts by calling function wav_to_audio, which converts input WAV �le

to audio data with a sampling rate of 22050 Hz. In the next step audio data is

passed to a function estimatetuning, which estimates an appropriate �lter bank

shift for the music segment. In next step, pitch features are computed by call-

ing audio_to_pitch_via_FB function, setting window length to 4410 samples and

window overlap of 50% of window length. Here using window of 4410 samples with

a sampling rate 22050 Hz, gives the window of 200 ms of audio. Now next step is

to compute CP (Chroma-Pitch) and CENS (Chroma Energy Normalized Statistics)

features, variants of chroma features described in chapter 4, by passing pitch features

to functions pitch_to_chroma and pitch_to_CENS respectively. Both of those

functions call function smoothDownsampleFeature for smoothing and downsam-

pling and function normalizeFeature for normalization of the features. Chroma

feature extraction is described in more detail in section 4.1.

After successful extraction of chroma features, next step is to extract the beat

sequence of a musical �le using the system explained in [2]. In this project, beat

tracking is done applying two-pass beat tracking method, which means �rst beat

tracking was performed with default parameters. After than compute the tempo

as T = median(di�(beatTimes)) which is the median of inter-beat-intervals from
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the �rst pass (typically around 0.5 seconds). Then the beat tracker parameters are

changed by setting myBeat = T (tempo computed above) and sigmaBeat = 0.05

(allowing less variance around the median tempo). And �nally run beat tracker

again for same input audio �le but now with updated parameters. This process is

done independently for each �le. This mechanism makes sure there is no tempo

�uctuation that would break down the synchronization process.

Once we have chroma and beat sequence, we combine them to get beat syn-

chronous chroma feature. The goal is to have one feature vector per beat. It is done

by averaging the chroma features between two beat times. Such a representation

helps to normalize the tempo variation. Derivation of beat synchronous chroma Fea-

ture starts with calling function PerformBeatSyncChroma, which takes chroma

and beat features as input and returns the beat synchronous chroma feature. All

chroma features between the ith and (i+ 1)th beat are averaged.

Sometime there occur a situation when beat tracker do not perform well, meaning

producing wrong beat sequences. Sometime beat tracker may miss the beat times

and or sometime they may introduce extra beat times. In order to encounter such

situation we derived di�erent variety of beat features.

• Upsampled: In this variant, we upsample the original beat sequences by 2,

meaning one extra beat time is inserted between each original beat sequences.

After Upsampling beat sequences we then calculate beat synchronous chroma

feature. The length of feature vector is this variant is double as compared to

original beat synchronous chroma feature.

• Downsample: In this variant, we down sample the original beat sequences by 2,

meaning we keep every odd beat time. After down sampling beat sequences we

then calculate beat synchronous chroma feature. Here we halved the feature

vector as compared to original beat synchronous chroma feature.

• Threshold based: In this variant, we �rst compute tempo of the music and

compare this tempo value with given threshold (110 in our case). If tempo

is less than given threshold value we upsample the beat sequence else we

downsample the beat sequence and then compute beat synchronous chroma

feature.

3.1.3 Database

Once features have been extracted from a database item (MIDI �le), they are stored

in a database because they are used in future during matching against query item.

Since we are interested with chroma features and beat synchronous chroma features,

we need to store them in the database. So we create a struct which contains chroma
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Table 3.2: Important MATLAB functions for DTW matching.

Function Name Description

PerformMatching Main function, for matching query against database.
GetDistance Compute cosine distance between two feature vectors.
DynamicT imeWarping Performs Dynamic Time Warping.
StaticT imeWarping Strictly follow diagonal path.

features, beat features and beat synchronous chroma features along with other in-

formation related to features and the musical �les. For this purpose we create a

function addToDatabase, which takes the input parameters as struct of features

along with other relevant information and then store them in the database.

Although it is not necessary to store the feature of query items (.wav), we have

also saved the feature of a query item also. Because we can directly use the stored

information for further processing this in turn saves time of feature extraction. The

format and procedures for storing query information is similar to that of database

items as mentioned above.

3.1.4 Matching

This block is responsible for performing matching between query feature and database

feature. Once the features of a query �le are extracted, then they are matched

against the database items for similarity. This block uses either of two algorithms

for similarity measure, Dynamic Time Warping or Locality Sensitive Hashing. Once

the matching is done using either of algorithms the N nearest matches to the query

�le are retrieved as a result.

DTW

For matching using Dynamic Time Warping, Table 3.2 gives the overview of func-

tions required. We �rst need to call function PerformMatching with parameter

like QueryFeature, DatabaseFeatures and Weight vector for DTW paths. For all

items in the database, this function �rst calls GetDistance functions and then call

DynamicT imeWarping function. GetDistance takes two arguments QueryFeature

and ith database feature and then returns the cosine distance matrix between them.

This matrix is passed to DynamicT imeWarping along with Weight vector for path,

which returns the cost of moving from starting position to the end position. Such

cost is calculated against every database item and the database item with minimum

cost is considered as the closest match to the query item. Not always the item

suggested by this algorithm is a perfect match to the query. So, this function also

calculates the rank of the query item based on the cost value we obtained above. If
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Table 3.3: Important MATLAB functions for LSH matching.

Function Name Description

LSHMatching Main function, for matching query against database.
lsh Initialize and index LSH data structure.
lshlookup Perform matching and return n nearest neighbor.

rank is 1 then there is a perfect match between query item and the nearest item sug-

gested by the algorithm. If rank is 2, then the correct match to the query item have

second minimum cost value and so on. We can �nd the e�ciency of the algorithm

as the ratio of correct match to the total item queried.

In order to favor horizontal, vertical and diagonal direction during the alignment

process, we introduce a cost for each path Whor, Wver, Wdia for horizontal, vertical

and diagonal paths respectively. For example, if you wish to favor diagonal path

than the cost of horizontal path Whor and vertical path Wver should be greater than

the cost of diagonal path Wdia. Since during alignment process, we want DTW path

not to deviate more from diagonal path so generally value ofWdia is less as compared

to the value of Whor and Wver. But too much variation on those costs may also lead

us to unfavorable results. One should be sensible while choosing cost for each path.

If we want to �nd the cost of moving from starting point to end point strictly

following the diagonal path then we can use StaticT imeWarping function or just

use weight that give in�nite cost to paths other than horizontal path.

LSH

The main idea of LSH is to project the high-dimensional data into low-dimensional

space, where each point is mapped to a k-bit vector, called as hash key. Similar

input items are mapped to the same bucket with high probability. Table 3.3 gives

the overview of LSH based matching. LSH based matching starts by calling function

LSHMatching with parameters like QueryFeature, Database. This function calls an-

other function lsh which initialize the LSH data structure. This function will just

index the data; it will not store it. You need to have original data so that you can go

back to actual data from indices. Once the indexing of database is performed, this

function then calls another function lshlookup, which performs the actual compari-

son between query item and then database items and returns the n nearest neighbor.

In the case of DTW, we can directly use the feature vectors extracted from feature

extraction block, but in case of LSH, one should �rst concatenate N 12-long feature

vectors into one 12N-long feature vector. LSH toolbox used in this thesis is available

at [67]. This toolbox is maintained by Assistant Professor Greg Shakhnarovich at

Toyota Technological Institute - Chicago. LSH is described in more detail in chapter

6.
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3.2 DataSet

In order to perform content based information retrieval experiments, one needs to

have a set of data. Researchers can apply di�erent algorithms and methodology to

the same set of data and compare the results between them. For this thesis work we

perform an experiment on two types of database, RWC (Real World Computing)

database and TUT database, collected and maintained by audio research group of

Tampere University of Technology.

3.2.1 Real World Computing (RWC)

RWC music database is music database that is available for researcher as a common

foundation. This is considered as the world's �rst large scale copyright-cleared music

database. This database was created by RWC Music Database Sub working Group

of the Real World Computing Partnership (RWCP) of Japan. Japan's National In-

stitute of Advance Industrial Science and Technology (AIST) holds all the copyright

and legal issues related to this database and is distributed among researchers at

minimum cost which covers the shipping, duplication and handling chargers. The

entire music �le in the database has its corresponding MIDI �les and text �les for

lyrics. This database contains Popular Music Database (100 pieces), Jazz Music

Database (50 pieces), Classical Music Database (50 Pieces), Royalty-free Database

(15 Pieces), see [39; 66] for further information.

In this thesis work, we are concerned about 100 pieces of popular database among

which 20 songs were performed with English lyrics whereas 80 songs were performed

with Japanese lyrics. 148 people were involved in recording those songs including 30

lyrics writer, 23 arrangers, 25 composers and 34 singers. In order to maintain balance

between male-female singers, 15 male singers sung 50 songs, 13 female singers sung

44 songs and 6 vocal group sung 6 songs.

3.2.2 TUT Dataset

Apart from RWC database, we have also created our own database named as TUT

database. In RWC database, the audio (query item) and its corresponding MIDI

version (database item) are structurally same. But in real world situation, that is

often not the case. In real world situation we have a di�erent version of the same song

like cover songs, remix songs and many more with structural di�erences. Often we

come across a situation where we need to compare two structurally di�erent songs,

for example, we need to query with the remix version of the songs and database

contain its corresponding original songs.

To handle such a situation we decided to collect MIDI and audio of popular songs

from a di�erent source and this dataset is termed as TUT database. It contains 290
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popular audio songs and a MIDI version of those songs. This database was collected

and maintained by research assistants Tuomo Tuunanen and Jani Mäkinen. MIDI

format was obtained from midimusic whereas audio was obtained from itunes.
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4. FEATURE EXTRACTION

Automatic music processing faces lots of di�culties because music data are complex

and diverse. For musical data we need to take care of various aspects such as

instruments (drums, guitar, voice, piano), data format (score, audio, MIDI) and

other parameters like dynamics, tempo, etc. In order to analyse and access the

musical data, one should extract suitable features that capture the important aspects

of data leaving out irrelevant details.

In recognition and retrieval tasks, feature extraction is a special form of reducing

data dimensionality. When we have an input item that is too large to be processed,

then such item will be transformed into a reduced set of feature (also known as

feature vectors) which are relevant to our task, leaving out irrelevant information

(noise). Such process of transforming large input item into the set of features is

known as feature extraction. Feature extraction process reduces the amount of

resource required to describe the item (music). Analysis of a music signal with

extracted feature will allow more reliable modelling / learning / matching, etc. as

irrelevant (noisy) information is suppressed.

One should be careful while choosing which feature to extract. Not all features

are important, so one should analyse the relevant feature for the task. Extraction

of irrelevant features will unnecessarily increase the processing time and may result

into wrong result. For this thesis work, we concentrate only on chroma features and

beat sequences. And later we combine both chroma feature and beat sequences to

get beat synchronous chroma features.

4.1 Chroma Feature Extraction

Chroma based audio features are well known in the �eld of musical signal processing

and analysis. It is well known that human perception of pitch is periodic in a way

that two pitches di�ering by an octave are perceived as harmonically similar. Be-

cause of this property of pitch, we can separate pitch into tone height and chroma.

Music audio can be represented by using chroma features in which the entire spec-

trum is divided into 12 bins each bin representing the distinct chroma a musical

octave. Thus, we can represent a chroma feature of a music by a 12 dimensional

vector x = (x(1), x(2), x(3), . . . , x(12))T , where x(1) corresponds to chroma C, x(2)

to chroma C#, x(3) to chroma D, and so on. Each sequence of chroma features



4. Feature Extraction 27

expresses the short time energy distribution over twelve chroma bands. Chroma

features are robust to variation in timbre and are closely related to harmony. As

a result, chroma-based audio feature also known as pitch class pro�le are used in

music processing and analysis. Chroma-based features are used in chord recogni-

tion, music synchronization and alignment as well as structure analysis of audio

signals. In the case of content based music/audio retrieval such as audio matching

and cover song identi�cation, chroma features are considered as powerful mid-level

feature representation. There are di�erent ways of computing chroma feature of an

audio. It can be either computed by using short-time Fourier transform (STFT)

with binning strategies [40] or by using multirate �lter banks [46]. We can also

introduce some pre-processing and post-processing steps in order to alter spectral,

temporal and dynamic aspect which leads to numbers of di�erent variant of chroma

features.

In order to extract chroma feature of a music piece, this thesis uses the chroma

toolbox released under GNU-GPL license, see [49]. This toolbox contains the matlab

implementation and introduces pre-processing and post-processing steps to mod-

ify spectral, temporal and dynamic aspect which gives us the di�erent variants of

chroma feature named as Pitch, CP, CLP, CENS and CRP. This thesis work con-

centrates on CP and CENS features. During feature extraction process, an audio

signal is decomposed into 88 frequency bands corresponding to pitches A0 to C8.

For su�cient spectral resolution for lower frequencies, authors use constant Q multi-

rate �lter bank using a sampling rate of 882 Hz for low pitches, 4410 Hz for medium

pitches and 22050 Hz for high pitches see [46] for details. And then using a �xed

length window with 50% overlap, short-time mean-square power is computed for

each 88 pitch subbands. By using a window of length 200 milliseconds will give

the features at the rate of 10 Hz (10 features per second). The obtained feature

measures the short-time energy content of an audio signal within each subbands,

and this feature is termed as Pitch.

In order to account for global tuning of an audio segment, the center frequencies

of the sub band-�lters of the multirate �lter bank need to be shifted properly. At

this point, average spectrogram vector is computed and estimate for �lterbank shift

is estimated using weighted binning techniques similar to [15]. From six di�erent

pre-computed multirate �lter banks (available in toolbox) corresponding to a shift

of σ ∈ {0, 1
4
, 1

3
, 1

2
, 2

3
, 3

4
} semitones, the most suitable one is chosen according to the

estimated tuning deviation.

Once we have the pitch features, we can compute chroma features by adding

the corresponding values that belong to same chroma.The resulting 12 dimensional

vector x = (x(1), x(2), x(3), . . . , x(12))T , is known as Chroma-Pitch and is denoted

by CP, where x(1) represents chroma C, x(2) represents chroma C#, x(3) represents
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(a) Waveform

(b) Pitch

(c) CP Normalized

(d) CLP

(e) CENS

Figure 4.1: Various feature representation of an audio.
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chroma D, and so on.

In order to achieve invariance, chroma feature can be normalized to suitable `p-

norm de�ned by ‖x‖p = (
∑12

i=1 |x(i)|p)1/p, for some natural number p ∈ N and for a

given chroma vector x = (x(1), x(2), x(3), . . . , x(12))T . In this thesis work, chroma

feature is normalized with respect to Euclidean norm i.e., p = 2.

Sometimes it is important to represent the sound intensity on a logarithmic scale.

For this purpose, we can apply the logarithmic compression to the energy while

generating audio pitch features. If e be the energy value of a pitch representation

and η be the suitable positive constant known as compression parameter, logarithmic

compression can be achieved by replacing the value of e with log(η.e + 1). Then

chroma features are computed as explained above. The computed feature is known

as Chroma-Log-Pitch and is represented by CLP[η].

Another variant of chroma feature known as Chroma Energy Normalized Statis-

tics (CENS) contains robust and scalable audio features. This feature is widely used

in audio matching and retrieval systems see [16; 45]. In order to compute CENS fea-

ture, all chroma vector is normalized to `1-norm and quantized to chosen threshold.

In the next step, features are smoothed by using window of suitable length w ∈ N
and then features are downsampled by factor d. Finally the downsampled features

are again normalized to `2-norm.

Another variant of chroma feature provided by chroma toolbox is known as

Chroma DCT-Reduced log Pitch (CRP), which is invariant to timbre. Given a

pitch vector, we �rst perform logarithmic compression and then apply DCT to the

compressed pitch vector and keep only the higher coe�cient of the resulting spec-

trum. In the next steps we apply IDCT and �nally convert the resulting pitch vector

into 12 dimensional chroma features which is then normalized by Euclidean norm.

Among those chroma variants, this thesis uses the CP and CENS feature, which

captures harmonic and melodic information. Both variants are robust against the

variations of musical properties like timbre, dynamics, articulation, execution of note

groups, and temporal micro-deviations [51]. CENS features, which was introduced

�rst in [45], are strongly correlated to short-time harmonic content of the audio signal

while absorbing a variation in other parameters. CENS feature can be processed

e�ciently because of their low temporal resolutions, see [45; 46] for details.

4.2 Beat Feature Extraction

When you listen to your favorite songs, you are usually able to tap your foot in

time to the music. It is quite automatic and unconscious human response to the

music. Unfortunately, it is not easy for computers. The computational equivalent

to this behavior is termed as a beat tracking. Beat tracking involves estimating

the beat location (i.e., where you would tap your foot). In engineering terms, it
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is the frequency and phase of a beat signal, phase of which is zero at the location

of each beats. The main purpose of beat tracking system is to compute the set of

beat times that would exactly match with the foot taps of trained human musicians.

The tempo of a musical piece can be de�ned as the rate of the musical beat and

is measured in beats per minute. In case of music information retrieval based re-

search, beat sequences can give you the musically signi�cant temporal segments for

additional analysis; such as rhythmic genre classi�cation [58], long-term structural

segmentation of audio [40; 41], chord estimation for harmonic description [26].

Beat tracking with the help of computers is an active area of research. Most

of the earlier algorithms for beat tracking used symbolic data or MIDI rather than

audio signals. It might be due to inadequate computational resources or may be due

to di�culty in note onset detection for early computers. However, recent progress

on computational power, audio feature extraction and onset detection has enabled

the use of audio signals. There are many beat tracking algorithms proposed by the

researchers. For example, Goto [37; 38] proposed a real-time beat tracking system

for music.

Dixon beat tracking system [57; 59], has two major components, that performs

tempo induction and beat tracking respectively. First digital audio input is prepro-

cessed by an onset detection stage. The list of onset times given by this stage is

fed into the tempo induction module. This component examines the time between

pairs of note onset, and then performs clustering to �nd signi�cant cluster of inter-

onset intervals. Each cluster representing a hypothetical tempo. These clusters are

ranked such that most salient cluster is ranked most highly. The output of tempo

induction module, which is ranked list of a tempo hypothesis, together with event

times are input to the beat tracking module. Those hypotheses are tested by agent

architecture about the rate and timing of beats. And then give the output as beat

times found by highest ranked agent.

Ellis describe a beat tracking system [11], which at �rst estimate a global tempo.

This global tempo is used to construct a transition cost function. And then dynamic

programming is used to �nd best-scoring set of beat times that re�ect the tempo.

There are many beat sequence extraction algorithms proposed by di�erent re-

searchers. Some state-of-art algorithms were compared by [17], and it was shown

that the approach [2] was most accurate. This thesis uses the methods suggested

by [2]. In his approach, there are mainly three important entities: time-frequency

analysis, comb �lter resonators and probabilistic model for pulse periods. In time-

frequency analysis part, his technique measures the degree of accentuation in a music

signal. This technique is robust to diverse acoustic (music) materials. A registral

accents is used as an input in order to generate time instants of meter (tactus, mea-

sures, tatums). Periodic analysis of registral accents is performed by using bank of
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(a) Chroma Feature. (b) Spectrogram. (c) Real time switching be-
tween chroma and spectro-
gram.

Figure 4.2: Mobile application displaying acoustic features.

comb-�lter resonators. Comb �lter resonator is used to extract feature for estimat-

ing pulse period and phase. Here �lter bank estimates the periods (time duration

between two successive beats) and the phase (time distance from the start of the

performance) at mentioned three time scales. Lastly probabilistic model is used to

estimate tatum, period-length of tactus, and pulse and temporal continuity. For

each time instance, �rst estimation of period of pulse is performed which is used as

input to the phase model. The prior musical knowledge is encoded by probabilis-

tic model that lead to reliable and temporally stable meter/beat tracking. Meter

estimation can be done in both causal and non-causal way. Causal implementation

requires more time to become steady. In this thesis work, we employed non-causal

implementation. For more detail, see [2].

4.3 Beat Synchronous Chroma Features

This representation has two features, beat sequence and chroma feature. The goal of

beat synchronous chroma features is to have one feature vector per beat. By using

this representation, one can normalize the variation on tempo. It is done by averag-

ing all the chroma features between any two beats. It can also be viewed as average

power between two beats. Beat synchronous chroma feature was used by Ellis [10]

for cover song identi�cation. In this thesis we use CP variant of chroma feature

along with beat sequences to compute beat synchronous chroma (BSC) feature.

4.4 Visualizing Acoustic Features in Real Time On a Mobile

Device

For this thesis work, we decided to develop a mobile application that can record

the audio from its surroundings and display the acoustic features in real time. For

this purpose, we choose Unity3D platform to develop our application and deploy

it into mobile device. Our application is capable of recording audio through the
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built-in microphone of mobile device at sampling frequency of 44100 and displays

its spectrum on mobile device in real time. In order to calculate spectrum data,

we use inbuilt function GetSpectrumData, which takes two important parameters

like numSamples (number of samples) and FFTWindow. GetSpectrumData returns

a block of currently playing source's spectrum data. By default, our application

uses rectangular window with 1024 samples. User interface allows you to change

some parameters. You can easily switch between chroma feature and spectrogram.

Number of samples must be a power of 2 with a minimum value of 64 and maximum

value of 8192. We use window to reduce the leakage between frequency bands. The

more complex window type, better the quality but at the cost of processing speed.

Figure 4.2 shows the screenshot of mobile device displaying acoustic features.
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5. DYNAMIC TIME WARPING

In this chapter, we will �rst go through the basic concepts related to dynamic

time warping and then we will highlight the principle and concept of DTW. Before

stepping into DTW, we �rst talk about time alignment and normalization, dynamic

programming and time-normalization constraints. In this section, we discuss DTW

algorithm and its implementation.

5.1 Time Alignment and normalization

In speech recognition, variation in the speaking rate and duration contribute to the

dissimilarity of the same utterance. Such variation in the rate should not contribute

in dissimilarity of the same utterance. Thus, there is a need of normalization in the

utterance before making any meaningful comparison. Same is the case with music

as well, often same song is sung by di�erent artist at di�erent speed and tempo.

Such variation in the singing rate and tempo should not contribute in dissimilarity

of the same piece of music.

One of the best solutions to such problem is to �nd the best alignment between

a pair of music sequences. Here �nding the best alignment means to �nd the best

path through the distance matrix that maps the feature sequences from one song

pattern to the feature sequences from another song pattern. In order to �nd the

best path, one should solve a minimization problem to calculate the dissimilarity

between two feature patterns. Simple solution to time alignment is linear time

alignment technique.

Let us suppose X = (x1, x2, x3, . . . , xTx) and Y = (y1, y2, y3, . . . , yTy) be the fea-

ture sequences of two songs respectively. Let the time indices of X and Y be

denoted by ix and iy respectively and Tx and Ty need not to be identical. The

dissimilarity between X and Y is denoted by d(ix, iy), where ix = 1, 2, 3, . . . , Tx and

iy = 1, 2, 3, . . . , Ty.

In linear time normalization, the dissimilarity between X and Y is de�ned by

d(x, y) =

Ty∑
iy=1

d(ix, iy) (5.1)
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Figure 5.1: An Example of Linear time alignment for two sequence of di�erent time dura-

tion.

where

iy =
Ty
Tx
ix (5.2)

Here, round-o� rule is applied in equation 5.2 because ix and iy both are integer.

Here according to the direction of time normalization the summation in equation

5.1 can be done ix ranging from 1 to Tx.

Linear time alignment assumes that the variation in tempo of the song is propor-

tional to the musical sound and is independent to music being produced. Thus, one

can assume that measurement of distortion takes place along the straight diagonal

line of a rectangle in a (ix, iy) plane as shown in the Figure 5.1. The points (ix, iy)

along the diagonal line represents the dissimilarity (distance) between the feature

vector X and Y at index ix and iy. Clearly this does not e�ectively model the

simulation for real music.

Another general approach for time alignment and normalization is to use two

wrapping functions φx and φy. Those two wrapping function maps the indices of

two music features ix, iy to the common time axis k.

ix = φx(k), k = 1, 2, 3, . . . , T (5.3)
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Figure 5.2: An example of time normalization of two sequence where individual time index

ix and iy are mapped to common time index k.

and

iy = φy(k), k = 1, 2, 3, . . . , T (5.4)

Those two wrapping function pair φ = (φx, φy) are used to de�ne the global

pattern dissimilarity measure dφ(X, Y ) as the sum of distortion over whole utterance

as

dφ(X, Y ) =
T∑
k=1

d (φx(k), φy(k))m(k)/Mφ (5.5)

where d(φx(k), φy(k)) is again dissimilarity de�ned for xφx(k) and yφy(k), m(k) is a

non-negative path weighing coe�cient andMφ is a path normalization factor. Figure

5.2 shows the example to general time normalization scheme. The solid line in the

grid is the path along which the dφ(X, Y ) is evaluated.

Now we need to specify the path φ = (φx, φy) as indicated by above equation.

The main issue is to choose the appropriate path from an extremely large number of

possible pairs of wrapping functions, in order to measure overall path dissimilarity

with consistency. Sakoe and Chiba [19] suggest to choose the minimum of dφ(X, Y ),

over all possible path to de�ne dissimilarity d(X, Y ) such that

d(X, Y )
∆
= min

φ
dφ(X, Y ) (5.6)
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Figure 5.3: An example of optimal path problem, �nding minimum cost for moving from

point 1 to i in as many moves as required.

For performance of the same piece of music, the above equation measures the dissim-

ilarity based on the best probable alignment in order to compensate for the tempo

di�erence. In order to �nd the best path, one can use dynamic programming.

Now let us analyze the time complexity. Let M and N be the length two se-

quences. As a result, our dissimilarity matrix will be of size MxN . Filling the

each cell of the matrix with dissimilarity value is constant time. Thus, �lling entire

matrix is O(MN). Calculating path parameters in all MxN points is also O(MN).

Hence overall time complexity is O(MN). Its space complexity is also O(MN).

5.2 Dynamic Programming

Dynamic programming is widely used method for solving sequential decision prob-

lem. To show its applicability in music matching, let us discuss two problems (par-

ticularly related with time alignment and normalization) that are solved by dynamic

programming.

First problem is optimal path problem. Let us suppose we have a set of N points.

Let ζ(i, j) be the non-negative cost of moving from ith point to jth point in a single

step. Now problem is to �nd the minimum cost for moving from any point, say 1,

to another point, say i, using as many steps as required. This problem is shown in

Figure 5.3, where cost of moving from point 1 to i is minimum if we go through

intermediate points 3 and 4, ζ(1, i) > ζ(1, 3) + ζ(3, 4) + ζ(4, i). Using conventional

terms, let 'policy' be the term used to determine the cost and the sequence of points

to traverse from start point, say 1, to end point, say i. Now main issue is to determine

the policy with minimum cost for moving from point 1 to point i. Let this cost is

denoted by ϕ(1, i).

Let us �rst consider ϕ(1, j) be the cost of moving from initial point 1 to optimal

intermediate point j using as many steps as required and then ζ(j, i) be cost of
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moving from optimal intermediate point j to point i in a single step, then following

equation holds

ϕ(1, i) = min
j
[ϕ(1, j), ζ(j, i)] (5.7)

Then optimal sequence of moves with minimum cost from any point i to any other

point j with as many steps as necessary with intermediate point ` can be written as

ϕ(i, j) = min
`
[ϕ(i, `), ϕ(`, j)] (5.8)

This equation tells that all the consecutive sequences of movement from point i

to j must also be optimal, and the intermediate point ` must also be an optimal

point linking the optimal partial sequences of move before and after that point.

The second problem is synchronous sequential decision problem. Now next step

is to �nd the optimal number of moves, say M , starting from point i to point j

with minimum cost ϕM(i, j). Starting from point i, after mth step, (m < M), path

can reach any point `, ` = 1, 2, 3, . . . , N , with minimum cost of ϕm(i, `). Assume in

(m+ 1)th move, we reach point n, then

ϕm+1(i, n) = min
`
[ϕm(i, `) + ζ(`, n)] (5.9)

Equation (5.9) allows us to search optimal path incrementally, in a progressive man-

ner and only best moves are considered.

Now let us analyze the time complexity. Let M and N be the length of two se-

quences. As a result, our dissimilarity matrix will be of sizeMxN . The initialization

step is performed only in the �rst row and column of a matrix; hence time com-

plexity for initialization step is O(M +N). Filling the each cell of the matrix with

cost of reaching that cell from the initial point involves evaluating its neighbor cells

and updating cell with optimal value, which is constant time. Thus, �lling up entire

matrix is O(MN). Finally during backtracking we move maximum of M +N steps,

O(M +N). Hence overall time complexity is O(M +N) +O(MN) +O(M +N) =

O(MN).

5.3 Time-Normalization Constraints

For meaningful alignment process in terms of time normalization, we require some

constraints on warping functions. Unconstraint minimization in equation (5.6) can

result in a close match between two di�erent utterances resulting in meaningless

comparison. Some necessary and reasonable warping constraints for time alignment

include:

• endpoint constraint



5. Dynamic Time Warping 38

• monotonicity conditions

• local continuity constraints

• path constraints

• slope weighting

5.3.1 Endpoint Constraints

Usually endpoints mark beginning and ending points of the music signal. Endpoints

of a music signal are considered to be known prior, and all the temporal varia-

tion occurs in the range of known endpoints. In case of time normalization, end

points provides the limits to the music signal, giving a set of constraints for warping

functions

φx(1) = 1, φy(1) = 1 (5.10)

φx(T ) = Tx, φy(T ) = Ty. (5.11)

5.3.2 Monotonicity Conditions

The temporal order of the spectral sequence in a music signal is important. In order

to maintain the order for time normalization, monotonicity constraints is imposed

in a form

φx(k + 1) ≥ φx(k) (5.12)

φy(k + 1) ≥ φy(k) (5.13)

This constraint implies that the path along which dφ(X, Y ) is evaluated will never

have a negative slope, which eliminates the possibility of time reverse warping along

the time axis.

5.3.3 Local Continuity Constraints

The main purpose of time normalization is to �nd best temporal match as de�ned

in equation (5.6), so we should not omit any sound segment containing important

information. To minimize the risk of important information loss, a set of local

continuity constraints is included on the warping function. Such constraint can take

many forms, one of them suggested by Sakoe and Chiba [19] is

φx(k + 1)− φx(k) ≤ 1 (5.14)

φy(k + 1)− φy(k) ≤ 1 (5.15)
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Figure 5.4: An example of local continuity constraints.

Sometimes such constraints get quite complicated; hence it is easy to express them

in term of incremental path change. Let path P be a sequence of moves, each move

is speci�ed by a coordinate pairs,

P → (p1, q1)(p2, q2)(p3, q3) . . . (pT , qT ) (5.16)

where subscript is in term of time k. Figure 5.4 illustrates three paths P1 →
(1, 1)(1, 0), P2 → (1, 1), P3 → (1, 1)(0, 1).

For a path that begins at (1, 1), we usually set p1 = q1 = 1.

φx(k) =
k∑
i=1

pi (5.17)

φy(k) =
k∑
i=1

qi (5.18)

If path ends at (Tx, Ty), then we have

Tx =
T∑
k=1

pk (5.19)

Ty =
T∑
k=1

qk (5.20)

Figure 5.5 shows the few sets of local constraints and their path speci�cations in

the (ix, iy) plane. Type I constraint is identical to what mentioned in equation 5.14

and 5.15. In path I and path II, all paths are single-move path, whereas in type III,

path P1 and P2 takes two moves and paths P3 and P4 takes one moves. All types of

constraints can be interpreted accordingly to the path speci�cation shown in Figure

5.5, except path type proposed by Itakura, at bottom of the �gure which prohibits
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Figure 5.5: Set of local constraints and their resulting path speci�cation.

successive (1, 0)(1, 0) moves.

Due to local continuity constraints certain region of the (ix, iy) plane are excluded

from the region where optimal warping path can traverse. Because of this, global

constraints can be imposed to allowable warping path. Such constraints speed up

the computation of DTW as well as control the route of a warping path. Such



5. Dynamic Time Warping 41

allowable region of the (ix, iy) can be de�ned as:

Qmin = min
`

[
T∑̀
i=1

p
(`)
i

/
T∑̀
i=1

q
(`)
i

]
(5.21)

Qmax = max
`

[
T∑̀
i=1

p
(`)
i

/
T∑̀
i=1

q
(`)
i

]
(5.22)

where ` is the allowable path index, P` is the local continuity constraints set and T`
is total moves in P`. For example, in type I constraints, ` = 1, 2, 3 and T` = 1, 1, 1

respectively for P1, P2, P3. Qmin and Qmax gives minimum and maximum possible

expansion in warping. Normally Qmin = 1/Qmax.

Using minimum and maximum values for path expansion, global path constraint

can be de�ned as

1 +
[φx(k)− 1]

Qmax

≤ φy(k) ≤ 1 +Qmax[φx(k)− 1] (5.23)

Ty +Qmax[φx(k)− Tx] ≤ φy(k) ≤ Ty +
[φx(k)− Tx]

Qmax

(5.24)

Equation 5.23 gives the range of a point that can be reached starting from point

(1, 1) in the (ix, iy) plane. Whereas equation 5.24 gives the range of points having

legal path to the end point (Tx, Ty).

Sakoe and Chiba [19] proposed additional global path constraint to prevent ex-

cessive time stretch or compression.

|φx(k)− φy(k)| ≤ T0, (5.25)

where T0 gives the maximum allowable absolute time deviation between two pat-

terns at any moment. Constraints from equation 5.25 is known as range-limiting

constraints as they limit absolute di�erence in the warped time scale.

5.3.4 Slope Weighting

Slope weighting adds another level of control while searching warping path. As men-

tioned in equation 5.5, the weighting function, m(k) is used to minimize the e�ect of

each short-time distortion d(φx(k), φy(k)). In order to prefer certain locally allow-

able path, one can associate the weighting function to prescribed path constraints.

Such weighing functions de�ned locally are known as slope weighting function as

they are responsible for the slope of the local path constraints.
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Sakoe and Chiba [19] proposed four type of slope weighting functions

m(k) = min[φx(k)− φx(k − 1), φy(k)− φy(k − 1)] (5.26)

m(k) = max[φx(k)− φx(k − 1), φy(k)− φy(k − 1)] (5.27)

m(k) = φx(k)− φx(k − 1) (5.28)

m(k) = φx(k)− φx(k − 1) + φy(k)− φy(k − 1)], (5.29)

For initialization, let us assumed that φx(0) = φy(0) = 0. The number is asso-

ciated with each path which is known as weight for that path. For less preferable

paths, we use higher weighting value. Hence the weight attempts to maintain a bias

towards the path with less weighting value.

5.4 Dynamic Time Warping

Now we can use dynamic programming algorithm to solve the minimization problem

involved in the de�nition of pattern dissimilarity measure in equation 5.6 with em-

bedded time normalization and alignment. Dynamic Programming equation, mainly

equation 5.9, and optimality principle are directly applicable to this problem. Slope

weighting and local path constraints mentioned in an earlier section require some

adjustment to the original algorithm. Because of the endpoint constraints (both X

and Y terminates at Tx and Ty respectively), we can rewrite equation 5.6 in terms

of Tx and Ty as

Mφd(X, Y )
∆
= D(Tx, Ty) = min

φx,φy

T∑
k=1

d(φx(k), φy(k))m(k) (5.30)

Also the minimum partial distortion accumulated along the path connecting (1, 1)

and (ix, iy) is

D(ix, iy)
∆
= min

φx,φy ,T ′

T ′∑
k=1

d(φx(k), φy(k))m(k), (5.31)

where φx(T
′) = ix and φy(T

′) = iy. Thus dynamic programming recursion with

constraints becomes

D(ix, iy) = min
(i′x,i

′
y)
[D(i′x, i

′
y) + ζ((i′x, i

′
y), (ix, iy))], (5.32)
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where ζ is the weighted accumulated distortion between two points (ix, iy) and (i
′
x, i
′
y)

ζ((i′x, i
′
y), (ix, iy)) =

Ls∑
`=0

d(φx(T
′ − `), φy(T ′ − `))m(T ′ − `), (5.33)

where Ls is the total number of moves along the path from (ix, iy) to (i′x, i
′
y) and

φx(T
′ − Ls) = i′x and φy(T

′ − Ls) = i′y.

Now we evaluate the incremental distortion ζ along the allowable path given

by chosen local continuity constraints. The range of (i′x, i
′
y) for minimization in

equation 5.32 is limited by the chosen set of local constraints. Figure 5.6 shows

recursive formula for few sets of local constraints with slope weighing.

As stated in the previous section, there is a clear distinction between type III local

constraint and the Itakura constraints. For Itakura constraints, one function g(k)

should be introduced in order to prevent paths traversing horizontally for more than

one move. If the best path to reach a point (ix−1, iy) is from point (ix−2, iy), then

the algorithm will reject all other allowable connection to point (ix − 1, iy) except

from the point (ix−2, iy). If such case occurs then the best path to reach point (ix, iy)
can only be either from point (ix − 1, iy − 1) or from point (ix − 1, iy − 2), because

Itakura constraints do not allow two consecutive horizontal moves. The path from

point (ix − 2, iy − 1) to point (ix, iy) through point (ix − 1, iy) is not considered

even if the accumulated distortion at (ix, iy) through this particular path is smaller

as compare to through other points. But in case of Type III local constraints, the

partial accumulated distortion at two successive frames is maintained hence the path

satisfying the constraints of no two successive horizontal moves can be found.

Since normalizing factor Mφ in equation 5.5 is considered to be independent to

warping path, we can remove it out of the dynamic programming recursion. Once

the optimal path is discovered, factor Mφ can be restored as in equation 5.30. Now

let us summarize the dynamic programming implementation of discovering best path

through Tx by Ty grid which starts at point (1, 1) and ends at (Tx, Ty).

• Initialization

DA(1, 1) = d(1, 1)m(1, 1). (5.34)

• Recursion

For 1 ≤ ix ≤ Tx, 1 ≤ iy ≤ Ty such that ix and iy stay within the allowable

grid, calculate

DA(ix, iy) = min(i′x,i
′
y)[DA(i

′
x, i
′
y) + ζ((i′x, i

′
y), (ix, iy))], (5.35)

where ζ((i′x, i
′
y), (ix, iy)) is de�ned in equation 5.33.
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Figure 5.6: Few sets of local constraints with slope weights and DP recursion formula.

• Termination

d(X, Y ) =
DA(Tx, Ty)

Mφ

. (5.36)

This algorithm performs recursion steps to all local path that leads us to point

(ix, iy) in just a single step from the point (i′x, i
′
y) using chosen local path constraints
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for the implementation. In these recursion steps, algorithm only evaluates the value

of those points (ix, iy) that can only be reached from the starting point (1, 1) and

that can end at (Tx, Ty). Depends upon the chosen local path constraints, there are

less number of points in allowable path region. The number of points falling in this

region is also the number of calculation, ζ((i′x, i
′
y), (ix, iy)), required for implementing

DTW algorithm. In general, it is believed that implementation of DTW requires

about 80% of the computation and rest is about optimal path search. So by proper

use of constraints, we can reduce the amount of calculation required.

When using a local path constraints which allows k-to-1 time scale of contraction

and expansion, then according to [33], the ratio of grid points in allowable path

region to the grid point in rectangle of TxXTy is

R =

(
k − Tx

Ty

)(
k − Tx

Ty

)
k2 − 1

(5.37)

Therefore if we take a case where Tx = Ty with k = 2, then we get R = 1/3.

Similarly on setting Tx = Ty and k = 3, we obtain R = 1/2, that is, about half of

grid points are allowed with contraction and expansion of 3:1 scale.

5.5 Implementation and result

Dynamic Time Warping experiment was conducted in two data sets, RWC and

TUT using two types of feature vectors, �rst with chroma (CENS) feature and

then with beat synchronous chroma feature. Our experiment starts with o�ine

processing which included synthesizing database items (MIDI �les) to audio format

using timidity software, extracting features (chroma, beat and beat synchronous

chroma) from those items and storing it for future use.

For DTW, one should choose the type of local continuity constraints and slope

weights aka path weight. For this set of experiment, we will be using Type I and

Type II local continuity constraints as mentioned in section 5.3.3 and Figure 5.5.

Slope weight is varied in between 1 to 5.

Figure 5.7 and 5.8 shows the dynamic warping path for audio and midi version of

same song (audio and midi from the same source, as in the case of RWC database).

Here red line shows the dynamic time warping path with minimal cost. Figure 5.8

is the zoomed version of path in Figure 5.7. Now let us check the dynamic time

warping path for real world situation, where audio and midi are not from the same

source and in such cases there may be structural di�erence between midi and audio.

Figure 5.9 shows the dynamic time warping path for four songs whose source are

di�erent, as in the case of TUT database. Structural di�erences were evident for

the songs shown in Figure 5.9(a) and 5.9(b), where we can see that distance matrix
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Figure 5.7: DTW Path on similarity matrix

for Midi and audio version of same song.

Figure 5.8: Zoomed version of DTW path

in Figure 5.7

(a) DTW Path for song I want to break free. (b) DTW Path for song you are not alone.

(c) DTW Path for song sweet home. (d) DTW Path for song mamma mia.

Figure 5.9: DTW path over similarity matrix for real world real world scenario where audio

and midi are from di�erent source.
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Figure 5.10: DTW Path over DTW matrix

for Midi and audio version of same song.

Figure 5.11: Zoomed version of DTW path

in Figure 5.10

(a) DTW Path for song I want to break free. (b) DTW Path for song you are not alone.

(c) DTW Path for song sweet home. (d) DTW Path for song mamma mia.

Figure 5.12: DTW path over DTW matrix for real world real world scenario where audio

and midi are from di�erent source.
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Table 5.1: Results of DTW, On RWC using di�erent features.

Weight CENS Feature BSC Feature Mod BSC Feature
[Whor, Wdia, Wver] Path 1 Path 2 Path 1 Path 2 Path 1 Path 2
[1 1 1] 92 92 89 70 89 84
[2 1 2] 92 94 91 73 88 84
[3 1 3] 93 95 91 72 88 82
[4 1 4] 92 94 90 72 87 79
[5 1 5] 93 93 85 72 88 77
[1 2 1] 81 92 83 69 79 84
[2 2 2] 92 92 89 70 89 84
[3 2 3] 92 92 90 71 89 84
[4 2 4] 92 94 90 73 88 84
[5 2 5] 92 95 91 73 88 84
[1 3 1] 81 92 78 69 71 84
[2 3 2] 85 92 85 69 80 84
[4 3 4] 92 92 90 71 89 84
[5 3 5] 92 93 90 71 89 84
[1 4 1] 81 92 71 69 70 84
[2 4 2] 81 92 83 69 79 84
[3 4 3] 85 92 86 70 84 84
[5 4 5] 92 92 90 71 89 84
[1 5 1] 81 92 68 69 68 84
[2 5 2] 81 92 79 69 73 84
[3 5 3] 84 92 85 69 80 84
[4 5 4] 87 92 87 70 86 84

and path were broken. Such situation might occur because songs may be performed

by di�erent singer at di�erent speed; length of two song are not same resulting in

a di�erence in starting point and/or end point of two songs; some song may have

extra repetitive chorus. Such o�-diagonal lines visible in �gure 5.9(a) and 5.9(b)

makes matching of the song harder. Whereas in case Figure 5.9(c) and 5.9(d) there

is not any noticeable structure di�erence and in such case where DTW path remains

within a diagonal makes matching comparatively easy.

Now take a query audio �le (which may be a full song or a small segment of a

song), extract its relevant features and then search for a similar item in the database

using DTW. For every item in the database, calculate the distance matrix with query

item and then calculate the path cost of traversing from the initial point to the �nal

point. The database item with minimum path cost is considered as the most similar

song to the query song. We can also retrieve N similar songs by retrieving the songs

with N minimum path cost.
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Table 5.2: Result of applying DTW on RWC database for 30 seconds query songs.

Weight BSC Feature Mod BSC Feature
[Whor, Wdia, Wver] Path 1 Path 2 Path 1 Path 2
[1 1 1] 65 60 61 60
[2 1 2] 54 60 49 59
[3 1 3] 50 59 42 48
[4 1 4] 46 51 36 41
[5 1 5] 43 47 32 37
[1 2 1] 65 60 61 61

[2 2 2] 65 60 61 60
[3 2 3] 60 62 54 59
[4 2 4] 54 60 49 59
[5 2 5] 52 58 44 50
[1 3 1] 60 61 57 60
[2 3 2] 66 62 63 62

[3 3 3] 65 60 61 60
[4 3 4] 62 61 54 60
[5 3 5] 57 61 51 59
[1 4 1] 56 62 54 60
[2 4 2] 65 60 60 61

[3 4 3] 67 62 65 61

[4 4 4] 65 60 61 60
[5 4 5] 64 61 55 60

RWC Database

For this experiment, we have 100 MIDI songs stored in the database and we use

their corresponding audio format as query item. Table 5.1 shows the retrieval rate

of DTW using CENS feature on RWC database. Here Path I and path II means

local continuity constraints type I and type II as shown in Figure 5.5. Another

set of experiment was conducted using beat synchronous chroma feature on RWC

database. Furthermore we also modi�ed the beat synchronous chroma feature by

up sampling and down sampling beat sequences based on the value of tempo (110

in our case). If tempo of the song is less that 110, then its beat sequences is up

sampled else down sampled and then calculate beat synchronous chroma feature.

Table 5.1 shows the retrieval rate of DTW using BSC and modi�ed BSC feature on

RWC database.

From the result, we can see that the performance rate is higher when we favor

diagonal move which means when we give less weight for diagonal path as compared

to horizontal and vertical one. We can also see from results that if weight for diag-

onal path is too less than horizontal and vertical then also performance degrades.

So we can conclude that, for CENS feature, we have best performance rate by using
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Table 5.3: Results of DTW, On RWC by deleting and repeating segments.

Weight Deleting Segment Repeating Segment
[Whor, Wver, Wdia] Path 1 Path 2 Path 1 Path 2
[1 1 1] 87 85 84 63
[2 1 2] 88 85 83 65
[3 1 3] 88 83 78 65
[4 1 4] 87 79 77 64
[5 1 5] 88 76 72 63
[1 2 1] 76 85 74 64
[2 2 2] 87 85 84 63
[3 2 3] 88 85 82 64
[4 2 4] 88 85 82 64
[5 2 5] 88 85 81 64
[1 3 1] 74 85 69 63
[2 3 2] 81 85 78 64
[3 3 3] 87 85 84 63
[4 3 4] 88 85 83 65
[5 3 5] 88 85 82 65
[1 4 1] 72 85 67 64
[2 4 2] 76 85 72 63
[3 4 3] 82 85 80 64
[4 4 4] 87 85 84 63
[5 4 5] 86 85 83 65
[1 5 1] 69 83 66 63
[2 5 2] 75 83 70 62
[3 5 3] 81 85 75 63
[4 5 4] 83 84 80 64
[5 5 5] 87 85 84 63

local continuity constraint type II with path weight [3 1 3] and [5 2 5]. However,

path weight [2 1 2], [4 2 4] and [4 1 4] also produce a good result for local continuity

constraint type II. But for the case of beat synchronous chroma feature, local con-

tinuity constraint type I outperform type II. In this case, path weight [2 1 2], [3 1

3] and [5 2 5] produce a good result local continuity constraint type I. While using

modi�ed BSC, local continuity constraint I produce good results.

From the table 5.1, we can see that the retrieval rate for local continuity constraint

type II using BSC feature is not good as compared to local continuity constraint type

I. On close examination of DTW path for the songs that fails for local continuity

constraint type II using BSC feature, we found that there were some horizontal and

vertical line segment. Since Local continuity constraint type II do not allow us to

move through low cost horizontal and vertical path, we were forced to move through

higher cost path increasing the overall path cost and resulting in incorrect match.
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Table 5.4: Applying DTW in TUT dataset

Weight BSC Feature Modi�ed BSC Feature
[Whor, Wver, Wdia] Path 1 Path 2 Path 1 Path 2
[1 1 1] 67.5862 54.1379 73.1034 58.6207

[2 1 2] 69.3103 53.4483 79.3103 57.5862
[3 1 3] 65.5172 51.7241 71.0345 54.4828
[4 1 4] 61.7241 50.0000 64.1379 51.3793
[5 1 5] 58.2759 47.5862 60.0000 49.6552
[1 2 1] 42.0690 53.7931 48.9655 57.9310
[2 2 2] 67.5862 54.1379 73.1034 58.6207

[3 2 3] 72.7586 54.1379 78.9655 58.9655

[4 2 4] 69.3103 53.4483 79.3103 57.5862
[5 2 5] 66.8966 52.0690 74.1379 55.5172
[1 3 1] 27.9310 53.7931 41.3793 57.9310
[2 3 2] 52.4138 54.4828 60.0000 58.2759
[4 3 4] 72.0690 54.1479 78.6207 58.9655

[5 3 5] 71.7241 54.4828 79.6552 59.3103

[1 4 1] 24.1379 53.4483 38.9655 57.2414
[2 4 2] 42.0690 53.7931 48.9655 57.9310
[3 4 3] 57.2414 54.4828 63.7931 58.2759
[5 4 5] 72.4138 54.1379 76.8966 58.9655

[1 5 1] 22.7586 53.4483 38.2759 57.2414
[2 5 2] 33.4483 53.4483 44.1379 57.9310
[3 5 3] 47.9310 54.4828 54.4828 57.9310
[4 5 4] 60.0000 54.4828 65.5172 58.2759

Moreover regarding processing time, when I query with the song 315 seconds,

it took almost 55 seconds to compare it against 100 database items and return the

result. When I query with song 136 seconds long, it took almost 11 seconds to return

the result (using beat synchronous chroma feature) using local continuity constraint

type I and giving equal weight to all paths.

There may also be a situation when there is distortion in the query songs, meaning

there may be a modi�cation in original songs like deletion of a certain portion from

a song or repetition of a certain portion of the song. We were also interested to

see the retrieval performance of our method in such case. In order to simulate

such situation, one set of experiment was conducted by deleting certain portion

of a query song (approximately 25 - 30 seconds) from a random position. And

another set of experiment was conducted by repeating certain section (approximately

25 - 30 seconds) at random position from every query item. Table 5.3 shows the

performance rate using BSC features on RWC database. It shows that the matching

is robust against deletion and duplication of song at random position. Here also we

can see that local continuity constraint type I perform better than local continuity
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Table 5.5: Result of applying DTW on TUT database for 30 seconds query songs.

Weight BSC Feature Mod BSC Feature
[Whor, Wdia, Wver] Path 1 Path 2 Path 1 Path 2
[1 1 1] 45.86 43.45 50.34 49.31
[2 1 2] 41.03 44.48 46.55 51.03

[3 1 3] 37.24 40.69 43.45 49.31
[4 1 4] 35.52 38.97 39.66 47.24
[5 1 5] 33.45 35.17 36.90 43.79

constraint type II, because while deleting and repeating certain segment there occurs

a horizontal or vertical line segment in DTW path causing matching harder for local

continuity constraint type II.

Next experiment was performed using a small segment of audio query. From

the set of 100 query songs, each songs were cut into 30 seconds segment from a

random position. And those 30 seconds segments were used as query song. It do

not make any sense applying DTW between 30 seconds query segment with full

songs from the database. So a sliding window is created, whose length is equal to

the length of the query sequence. This window is moved through every index of a

song from the database. DTW is applied between the database sequences captured

by a window with the query sequence. Table 5.2 shows the retrieval rate using BSC

and modi�ed BSC feature on RWC database. For path weight [3 4 3] and local

continuity constraint type I, out of 100 query samples, 67 were able to identify their

corresponding song. Out of those 67 matching songs, 42 were able to identify the

correct position of query clip in full song from the database (Here, deviation within

the range of 10 seconds was considered as the correct match for the position). Instead

of applying dynamic path, we also tried to apply static path that moves through

diagonal line. In this case, retrieval rate reduced to 55%.

Using modi�ed beat synchronous chroma feature for a query item only, retrieval

rate was 60% and 29% using dynamic and static path respectively. And using

such modi�ed beat synchronous chroma feature for both database and query item,

retrieval rate was 65% and 48% for dynamic and static path respectively.

TUT

In the next step, DTW algorithm was applied on TUT database containing songs

from a di�erent source. Same procedure was repeated for this database as it was done

for RWC database. Here we use beat synchronous chroma feature to represents query

and database songs. Here also we modify beat synchronous chroma feature based on

the value of tempo, as we did for RWC database. For this, we �rst compute the value

of tempo. If tempo is greater than 110 then beat sequences were down sampled else
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(a) Song ID 3. (b) Song ID 5.

Figure 5.13: DTW path where static and dynamic path give correct match.

(a) Song ID 16. (b) Song ID 55.

Figure 5.14: DTW path where static path fails but dynamic path works.

up sampled and then �nally beat synchronous chroma feature were computed. Table

5.4 below shows the retrieval rate. We can observe that performance increase by

modifying beat synchronous chroma feature based on tempo and favoring diagonal

move.

Here we can see that the retrieval rate for TUT database was low as compared to

RWC database, it is because the midi and audio songs in TUT database are from a

di�erent source and have structural di�erence. Such structural di�erence makes the

matching harder. For the same reason as explained in the case of RWC database

local continuity constraint type I perform better than local continuity constraint

type II.

We also performed an experiment using 30 seconds of audio clip as a query. Table

5.5 shows the performance for DTW. Here we were able to achieve retrieval rate up

to 50%. We can also see that the retrieval rate was low as compared to RWC

database due to the structural di�erence.
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For the case of static path, the retrieval rate was 34.48% for BSC feature and

32.07% for modi�ed BSC feature.

5.6 Static Vs Dynamic

In the next step, we were interested in the cases where both static and dynamic

path leads us to the correct result. Here we use a small segment of a query song and

try to �nd out correct song with correct time index from the database item. Figure

5.13 shows the resulting DTW path for two songs where both dynamic and static

path give correct time index matching (deviation of 2 seconds is considered as the

correct match). Here we can see DTW path almost being diagonal. Furthermore,

we were also interested in the path where dynamic path leads to the correct match

but static path fails. Figure 5.14 shows the resulting dynamic path. We can see

that the path has clearly vertical or horizontal segment.
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6. LOCALITY SENSITIVE HASHING

A nearest neighbor (NN) problem involves the collection of a relevant features of an

object (music, image, video, documents, etc.) represented as points in d-dimensional

space; with a query point, we are required to retrieve the similar objects (nearest

points) to the query object. The feature of each object is represented as a point in

high dimensional space. The similarity between them is measured by the distance

matrix between them. NN problem can be thought up as "given a collection of

n data points, built an algorithm that returns a set of data points that are near

(similar) to a given query point". In theory, this seems like an easy walk, but as

the size of database increases and the objects are complicated (high dimensional)

then the processing time increases with the size of database and complexity of an

object. The most researched instance is when data point lies on d-dimensional

Euclidean space. The importance of this problem lies in many areas like: machine

learning, pattern recognition, information retrieval, data compression, image and

video database, statistics and data analysis.

There are many e�cient algorithms for low dimensional cases. One could be done

by building tree like structure for an object. With a query point, we can start from

the root node and determine whether our query lies to the left or right of the current

node. This process continues till we descend to the leaf node of a tree. For a perfectly

balanced tree, this problem is solved in O(logN) times, where N is the number of

nodes of the tree. For a single dimension, this works well. For a multidimensional

case, this idea becomes as kd-tree and was �rst coined by Jon Bently [29] in 1975.

And it remained popular data structure for multidimensional search. Later many

more multidimensional data structure were introduced, see [20] for detail. Currents

solution su�ers from either query time or space that is exponential in d. In reality, for

large d, either in theory or in practice, current solutions provide little improvement

to linear algorithms that compare a query point to all other points from the database.

This phenomenon is called "the curse of dimensionality". It was shown in [56] that

all current indexing techniques, other than LSH based indexing, degrades to linear

search for high dimensional data. This problem is serious for large scale similarity

search.

In order to remove this bottleneck, many researchers have proposed an idea of

using approximation. In many cases, instead of �nding exact nearest neighbor,
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�nding the approximate nearest neighbor is su�cient. In these techniques, the

algorithms return a point that is at a distance of at most c times the distance

between the query and its nearest point; c > 1 is known as approximation factor.

Most of the cases, it happens that the relevant answer lies closer to the query point

as compared to irrelevant points. This is advantageous property of good similarity

search. Moreover, another desirable point is that approximate similarity search are

faster than the exact one.

In this section, we focus on one of the most popular approximate similarity search

algorithm for high dimension based on the concept of locality-sensitive hashing

(LSH) [54]. The main idea behind it is to hash a point using several hash func-

tions. For each hash function, near (similar) objects have higher probability of

collisions than the objects that are far apart. Then one can retrieve near neighbors

by hashing the query point with hash function and retrieve all the elements from

bucket containing the query point. LSH algorithm is popular in a variety of areas

like computer vision, computational biology, web clustering etc.

Here lds is used to denote the Euclidean space <d under the ls norm, which means
the length of a vector (x1, x2, x3, . . . , xd) is de�ned as (|x1|s + |x2|s + |x3|s + . . . +

|xd|s)1/s. Let us denote d-dimensional set of data point by P , and points p chosen

from from P also belong to d-dimensional space <d. Let the ith coordinate of p, for
i = 1, 2, 3, . . . , d is denoted by pi. Further, the distance between two points p and q

in lds is denoted by ds(p, q) = ‖p− q‖s and is de�ned as

‖p− q‖s =

(
d∑
i=1

|pi − qi|s
)1/s

(6.1)

where s > 0. Generally for Euclidean distance s = 2 or for Manhattan distance

s = 1. Often subscript 2 is skipped while representing Euclidean distance, that is,

‖p− q‖ = ‖p− q‖2.

6.1 R-near Neighbor

Any point p is said to be R-near neighbor of a query point q, if those two points are

at most R distance apart. In such case, if there are any points in R-near neighbor,

the algorithm returns one of them. If there are not any point in R-near neighbor,

then the algorithm indicates that there do not exist any point for the parameter

R. R-near neighbor and nearest neighbor are related because one can check that

the point returned by nearest neighbor is within a distance of R or not. But the

reverse is somehow complicated, which involves creating a di�erent instance of R-

near neighbor, changing the value of R. We query the data structure in increasing

order of R and when data structure returns a point then the process is stopped.
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The original LSH solves the approximate version of R-near neighbor problem

known as (R, c)- near neighbor problem. In this formulation, if there is any point

in P which is at most R distance from the query point q, then it is su�cient for an

algorithm to return any point within a distance of at most cR from the query point

q. Approximate version of near neighbor can be de�ned as follows.

6.1.1 Randomized c-approximate R-near neighbor or (c, R)-

NN

Given a set of data points, P , in a d-dimensional space <d, with parameters failure

probability δ > 0 and R > 0, build a data structure such that, with any query point

q, if there exists an R-near neighbor of q in p, gives you some cR-near neighbor of q

in P , with probability 1−δ. Let us assume δ is an absolute constant that is bounded
away from 1 (for example 1/2). In order to increase the probability of success, we

can build and query several instance of data structure. For example, if we build two

independent data structures both with δ = 1/2, this will gives you the overall failure

probability of δ = 1/2.1/2 = 1/4. We can scale down the coordinates of all points

by R. We can assume R = 1, so often it is skipped and refer to c-approximate near

neighbor problem or c-NN.

6.1.2 Randomized R-near neighbor reporting

Given a set of data points, P , in a d-dimensional space <d with parameters δ > 0

and R > 0, built a data structure such that, with any query point q, gives you the

R-near neighbor of q in P with probability of 1− δ.

6.2 Basic LSH

The basic building block of Locality-sensitive hashing is locality-sensitive hash func-

tions. Let us assume H denotes the family of hash functions mapping to <d. For

any two points p and q, we choose a function h from H uniformly at random to

analyze the probability of h(p) = h(q). The family H is called locality sensitive,

or (R, cR, P1, P2)-sensitive, for any two points p and q belong to <d, if it satisfy
following conditions.

• if ‖p− q‖ ≤ R then PrH [h(q) = h(p)] ≥ P1.

• if ‖p− q‖ ≥ cR then PrH [h(q) = h(p)] ≤ P2.

LSH family is useful if and only if P1 > P2.

We can use LSH family H for designing an e�cient algorithm for approximate

near neighbor search. Since the gap between high probability P1 and low probability
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P2 could be quite small, one needs to amplify the gap between them to achieve

desired collision probability. Having a family of hash functions H with parameters

(R, cR, P1, P2), the gap between the two probabilities P1 and P2 can be ampli�ed

by concatenating several hash functions. For parameter k and L (discussed later),

choose L functions gj(q) = (h1,j(q), h2,j(q), . . . , hk,j(q)), where ht,j(1 ≤ t ≤ k, 1 ≤
j ≤ L) are chosen independently and uniformly at random from H. These are the
actual hash function used to hash data points.

One can construct a data structure by placing each and every point p into a

bucket gj(p), for j = 1, 2, 3, . . . , L. We may have a large number of buckets; only

non-empty buckets are retained. Instead of storing data points, pointers to the data

points are stored into buckets. While processing any query point q, all the buckets

g1(q), g2(q), g3(q), . . . , gL(q) are scanned and all points stored on the buckets are

retrieved. After having such points, their distance to the query point is computed

and any point that is valid answer to query is returned. Two scanning strategies are

possible.

• For some parameter L′, the search is interrupted after �nding L′ points (in-

cluding duplicates).

• The search is continued till all data points from buckets are retrieved; addi-

tional parameter is not required.

Strategy 1 and Strategy 2 solves (c, R)-near neighbor problem and R-near neighbor

reporting problem respectively. Algorithm is correct if it satis�es both strategies.

According to Theorem 4 of [54], if you set k = log1/P2n and L = nρ, where ρ = ln 1/P1

ln 1/P2

and n number of data in d-dimensional space, then both strategies hold with constant

probability.

6.3 LSH scheme based on stable distribution

In this section, we introduce and analyze LSH family based on s-stable distribution,

for any s ∈ (0, 2]. A distribution D over <d is called s-stable, if there exists s ≥ 0

such that for any n real number v1, v2, . . . , vn and i.i.d. variables X1, X2, . . . , X3

with distribution D, the random variable
∑

i viXi has the same distribution as the

variable (
∑

i |vi|s)1/sX, where X is a random variable with distribution D [43].

Stable distribution exists for s ∈ (0, 2], particularly

• a Cauchy distribution DC , de�ned by density function c(x) = 1
π

1
1+x2

, is 1-

stable.

• a Gaussian (normal) distribution DG, de�ned by density function g(x) =
1√
2π

exp−x
2/2, is 2-stable.
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Stable distribution is applied in various applications. [55] used it for sketching of

high dimensional vectors and since it is used in numerous applications. The main

idea is to generate a random vector a with dimension d and elements of this vector is

selected independently from s-stable distribution. Given a d-dimensional vector v,

whose dot product 〈a, v〉 gives you a random variable distributed as (
∑

i |vi|s)1/sX

(i.e., ‖v‖sX), whereX is a random variable with s-stable distribution. The collection

of such random vectors 〈a, v〉, corresponding to di�erent a's, is known as sketch of

vector v and it is used to estimate ‖v‖s, refer [55] for more details. This sketch is

distributive, i.e., for any p, q ∈ <d, a.(p− q) = a.p− a.q.

6.3.1 Hash family

In this technique, hash value to each vector is assigned by calculating dot products

(a.v). Since hash functions are locality sensitive, closer points should collide with

high probability. Dot product (a.v) is used to project all vector onto real line.

We know from s-stability that for any two vectors p and q, distance between their

projection (a.p− a.q) is distributed as ‖p− q‖sX, where X is s-stable distribution.

When real line is cut into equal width segments of appropriate width w, and hash

value is assigned according to the segment on which they project onto, then it is clear

that the hash function will preserve locality. Each hash functions ha,b(v) : Rd → N
will map vector v onto the set of integers. All hash functions are indexed by choosing

random a and b, where a as mentioned earlier is d-dimensional vector whose entries

are chosen independently from s-stable distribution and b is a real number that is

chosen homogeneously from range [0, w]. For known a and b, hash function is given

by ha,b(v) = ba.v+b
w
c.

For any two vectors p and q, assume u = ‖p − q‖s and let p(u) be the collision

probability of p and q for hash function that is chosen uniformly from hash family

H.
p(u) = Pa,b[ha,b(p) = ha,b(q)] =

∫ w

0

1

u
fs(

t

u
)(1− t

w
)dt (6.2)

where fs(t) is probability density function (pdf) of the absolute value of s-stable

distribution.

For a �xed value of w, the collision probability decrease monotonically with u =

‖p−q‖s. Thus hash function is (R, cR, P1, P2)-sensitive for P1 = p(1) and P2 = p(c).

The choice of w depends to data set and query point, but according to [43], we

obtain good result by setting w = 4, so we will use w = 4 in our implementation.

Refer [43] for detail discussion on choosing optimal value of other parameters.
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6.4 Exact Euclidean LSH

Exact Euclidean LSH (E2LSH) is based on LSH scheme as explained in [43]. The

original LSH scheme solves approximate version of R-near neighbor problem, which

we call (R, c)-near neighbor problem where it return any point within distance of

at most cR from a query point q, if there exists a point in P within a distance of

R from q with constant probability. Whereas E2LSH solves randomized version of

R-near neighbor problem, (R, 1−δ)-near neighbor problem, where δ is a probability
that a near neighbor is not reported. In order to solve randomized version of R-

near neighbor problem, that is, (R, 1 − δ)-near neighbor problem, E2LSH use the

concept of basic LSH scheme to retrieve all near neighbor point and then drops the

approximate near neighbor. The running time of this scheme depends on data set P .
This scheme is slower for bad data set (i.e., when there are many approximate near

neighbor), meaning for any query point q, we have many points clustered outside

the ball of radius R centered at q.

Three main parameters responsible for the performance are projection per hash

value (K), Number of the hash table (L) and width of the projection (w). The

parameter K gives the tradeo� between time for computing hash value and time

for pruning false positive. The larger the value of K, the more time is spent for

hash computation. Parameter w has a same e�ect as K, decreasing w will reduce

the collision probability for any two points. However, if w is decreased below a

certain level then similar data point will fall under di�erent buckets and require L

to increase.

6.5 Implementation and Results

Similar to the DTW, Locality sensitive hashing was also conducted in two data sets,

RWC and TUT using two types of features CENS and beat synchronous chroma.

Here also we need to perform o�ine processing of database �le to extract feature

and store it.

Here we need to select appropriate number of the hash table (L) (20 for LSH and

50 for E2LSH), number of projection per table (K) (24 for LSH and 20 for E2LSH)

and the width of an interval in the projection line (W) = 4.

In order to perform this experiment, feature vectors need to be converted to the

column vector. If our query item contains 50 sequences of feature vectors (12 x

50), then it need to be �rst converted to the column vector (1 x 600). We need to

convert database items also to the column vector, each column vector representing

50 sequences of feature vector. This can lead us to the situation where we can have

a di�erent type of database.

DataBase1: We can create a database such that �rst column vector contains
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Table 6.1: Result of LSH on RWC database using BSC.

DataBase Average Max Min Deviation

DataBase1 78.44 83 73 10
DataBase2 59.47 74 47 27
DataBase3 46.43 69 33 36

Table 6.2: Result of E2LSH on RWC database using BSC.

DataBase Average Max Min Deviation

DataBase1 80.17 84 77 7
DataBase2 64.79 77 55 22
DataBase3 50.53 74 38 36

feature from index 1 to 50, second column vector contains feature from index 2 to

51, third from index 3 to 52 and so on.

DataBase2: We can create a database such that �rst column vector contains

feature from index 1 to 50, second column vector contains feature from index 6 to

55, third from index 11 to 61 and so on.

DataBase3: We can create a database such that �rst column vector contains

feature from index 1 to 50, second column vector contains feature from index 11 to

60, third from index 21 to 70 and so on. Since LSH is based on approximate near

neighbor search, so its result might di�er each time. So this test was repeated 100

times and retrieval rate was averaged for each type of database.

Table 6.1 and 6.2 shows the performance rate of LSH and E2LSH respectively on

above mentioned database using beat synchronous chroma feature. We can see that

E2LSH perform better than LSH in all three types of database.

We also test LSH for di�erent query length on database type I. Table 6.3 shows

the performance rate. We can clearly see that performance is almost saturated

when the query length is 40. Beyond 40, increase in query length do not make any

signi�cant di�erence in performance, it only just increase processing time. So query

size of 40 or 50 would be a good choice.

Although Database1 performs better than rest 2 types of database, in practice

for large database one prefer Database3 (as Database1 will have more column vector

as compared to Database3). But the performance of Database3 is worst than its

counterpart. So we would like to make several sub queries from a query �le. For

example, suppose we have a query length of 60 beats, and then we would like to

have a 10 sub queries using beats 1...50, 2...51, ....., 10...60. Then this will return

the best among the 10 matches. We expect that the result should be equivalent to

Database1. When performing the same experiment 100 times for all query songs,

we found that the result obtained was almost similar to that of Database1 with an

average e�ciency of 80.72 and 79.89 for LSH and E2LSH respectively.
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Table 6.3: Result of changing query length for LSH on RWC.

Length Mean Max Min Di�erence

10 62.15 71 53 18
20 73.63 79 56 14
30 75.90 85 69 16
40 78.34 82 73 9
50 78.69 85 73 12
60 79.63 84 76 8
70 80.33 85 78 7
80 80.44 85 77 8
90 81.12 86 76 10
100 80.87 84 78 6

Table 6.4: Result of changing query length for LSH on TUT database.

Length Mean Max Min Di�erence

10 23.50 27.93 2034 7.59
20 31.03 35.17 26.90 8.28
30 33.01 36.90 30.00 6.90
40 33.97 36.90 30.69 6.21
50 34.78 37.59 32.41 5.17
60 35.20 38.62 30.69 7.93
70 34.81 37.24 32.07 5.17
80 35.70 38.28 33.10 5.17
90 34.90 37.59 32.07 5.52
100 34.32 37.93 31.38 6.55

TUT Database

Same set of experiment was also performed in TUT database as well. Table 6.4

shows the retrieval rate for di�erent query length. Here also we can see that the

result is almost saturated when the query length is 40.

Here we can see that LSH result for TUT dataset is worse as compared to result

of RWC database. It is because audio and MIDI of TUT dataset are from di�erent

sources and have structural di�erence. Such structural di�erence makes matching

harder of LSH algorithm.

6.5.1 Slope Histogram as a factor of LSH failures

The aim of this experiment was to �nd out the cause for LSH failure. While observing

DTW path, we often encounter a situation where path is vertical/horizontal for a

certain distance. Hence we conduct this experiment for �nding a section on self

distance matrix such that the length of the path is greater than 10 seconds and

slope of the path is less than 0.1 (or slope greater than 10 in the opposite case).
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(a) Slope histogram for the case where LSH
succeeds.

(b) Slope histogram for the case where LSH
fails.

(c) Slope histogram for the case where LSH
fails but DTW succeeds.

(d) Slope histogram for the case where LSH
and DTW both fail.

Figure 6.1: Slope histogram of distance matrix for di�erent cases.

(a) Slope histogram for the case where LSH
succeeds.

(b) Slope histogram for the case where LSH
fails.

(c) Slope histogram for the case where LSH
fails but DTW succeeds.

(d) Slope histogram for the case where LSH
and DTW both fail.

Figure 6.2: Slope histogram for di�erent cases by deleting the segments from DTW path

whose slope is greater than 10 of less than 0.1.



6. Locality Sensitive Hashing 64

Among the 101 correct matched songs (by LSH), such case was evident in 28 cases.

In 20 songs, above mentioned case was detected for midi axis and in eight songs above

mentioned case was detected for audio axis. Among 189 incorrect matched songs,

such case appears in 107 cases. In 66 songs, above mentioned case was detected for

midi axis and in 41 songs above mentioned case was detected for audio axis. After

deleting such segments, overall slope of a DTW path was calculated. Figure 6.1

shows the histogram of the overall slope of DTW and Figure 6.2 shows the overall

slope of DTW path after deleting above mentioned cases for all correctly matched

songs and incorrectly matched songs respectively.

We can see from Figure 6.1 and 6.2 that LSH works best for the case when slope

approach towards unity and fails if its slope deviated from unity.

From Figure 6.1(a) and 6.2(a), we can see that horizontal/vertical segment as

mentioned above do not occur for the case where LSH works. Because the height

of each block in histogram is almost identical in both �gures. So we can say that

LSH works well if there is not any vertical/horizontal segment in DTW path. Figure

6.2(b), 6.2(c) and 6.2(d) shows that for all other case such segments were evident.

From Figure 6.1(b) and 6.2(b) we can also conclude that LSH mostly fails when

slope of DTW path is almost half (or double in opposite case).
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7. CONCLUSION AND FUTURE WORK

This section summarizes the thesis with some concluding remarks. This section also

discusses possibilities for improvements in the near future.

7.1 Conclusion

In this thesis, we investigated the di�erent issues regarding retrieval of musical

score data based on audio query. We discussed the musical features that describe

characteristics of any musical segment. The primary goal of this thesis was to

propose a system that applies di�erent methods used in music information retrieval

algorithms to retrieve musical scores.

Among the main component of this system are feature extraction block and in-

formation retrieval algorithms to retrieve similar music in terms of pitch content.

A 12-dimensional chroma feature vector represents pitch content of any musical

piece and is robust to variation of timbre. Beat sequences were also extracted to

address the tempo variation problem. Chroma features and beat sequences were

combined in a sophisticated manner for e�ective representation of a musical piece.

These features were processed by two well-known algorithms DTW and LSH to re-

trieve musical score data that best describes the query audio. Parameters of those

algorithms were chosen smartly to enhance the performance of the proposed system.

Our system was implemented in two di�erent datasets RWC dataset (which con-

tain audio and musical score data from the same source) and TUT dataset (which

contain audio and musical score data from di�erent sources) and the results illustrate

the e�ectiveness of the system. On RWC dataset, choosing appropriate parameters

for DTW, gives you up to 91% retrieval rate, using BSC feature. On TUT dataset,

with appropriate parameters retrieval rate was up to 72.76%. Further enhance-

ment can be obtained by up sampling or down sampling beat sequences based on

threshold tempo value and the calculating BSC features. This technique increases

the retrieval rate from 72.76% to 79.65%. When using a smaller segment of query

audio, say approximately about 30 seconds in length, the performance dropped to

40% and 33.44% for RWC and TUT dataset respectively for BSC features.

LSH algorithm is fast as compared to DTW and performs well in a situation where

query audio and its corresponding database item are structurally similar. But its

performance degrades as query audio and database items are structurally di�erent.
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7.2 Future Work

Lastly, this thesis is a small e�ort towards the �eld of Music Information Retrieval.

There are many possibilities for improvement in the current proposed system. There

are few ideas that were left out due to resource and time limitation. One possibility

of improvement is to make LSH work for the cases where audio and MIDI are from

a di�erent source. One could also try with di�erent features instead of chroma and

beat.

Another possibility of improvement is to develop an UI that shows harmonically

similar songs in real time while listening to the music.
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