

YICHONG YUN

An Approach to Optimizing the Scheduling of Assembly Lines

Controlled by Web Services

Master’s thesis

Examiner: Professor José Luis Martínez Lastra

Examiner and topic approved by the Faculty

Council of the Faculty of Engineering Sciences

on 5 June, 2013.

I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Machine Automation

Yun,Yichong: An Approach to Optimizing the Scheduling of Assembly Lines

Controlled by Web Services

Master of Science Thesis, 62 pages

June 2014

Major subject: Factory Automation

Examiner: Professor José Luis Martínez Lastra

Keywords: optimization, scheduling, process, production.

The combination of factory automation and computer science plays intense important

role in modern manufacturing business.

This thesis introduces a scheduling & optimization system applied on one assembly

line. The implementation relies on JAVA and Drools rule language. The system is

divided into several small modules including Orders, Facilities and Processes Model

Design, Optimization. The Orders module uses JAXB technology to access and

process an input XML file as the initial order list for scheduling. The Facilities and

Processes Model Design Module uses a tabu search algorithm to retrieve a ’best’

scheduling solution. The Optimization module offers several solutions for the same

optimization constraints, according to the different initial conditions that are input.

The tests were perfomed on a real life assembly line originally used for the assembly

of mobile phones. The approach is representative for customized and modularized

detailed scheduling optimization and could be used for other types of assembly lines as

well.

II

PREFACE

Foremost, I would like to express my sincere gratitude to my supervisor Prof. José Luis

Martínez Lastra for offering me the opportunity to do this topic for master thesis.

I give my appreciates to Corina Postelnicu, thanks for the suggestions of the research

and revision of my thesis writing, for her patience, enthusiasm, and immense

knowledge.

My sincere thanks also go to Luis Gonzalez Moctezuma and Johannes Minor, for

teaching me the use of the system and the knowledge about software development.

Also I thank my friends: Qianting Liu, Yu Guo, Wenxin Zhang, Ana Gomez Espinosa

Martin and Jaime Rubio Nuñez, for the support and comfort when I feel depressed for

the study and life.

Last but not the least, I would like to thank my parents, for the understanding and

supporting me spiritually throughout my life.

Yichong Yun

June 2014

III

Content

1. Introduction ... 1

1.1 Problem Definition .. 1

1.2 Work Description... 3

1.3 Thesis Outline ... 4

2. Theoretical Background ... 6

2.1 Planning and Scheduling in Factory Automation ... 6

2.1.1 Factory Automation ... 6

2.1.2 Planning in Factory Automation ... 9

2.1.3 Scheduling in Factory Automation ... 10

2.2 Service Oriented Architecture and Web Services .. 11

2.3 Overview of scheduling search algorithms ... 13

2.3.1 First Fit .. 14

2.3.2 Local Search .. 16

2.3.3 Tabu Search ... 17

2.4 Scheduling Software .. 18

2.5 ISA 95 Standard .. 19

3. Technical Approach ... 20

3.1 Standard .. 20

3.2 Technology .. 21

3.2.1 JAVA.. 21

3.2.2 Referential Software.. 22

4. Implementation ... 26

4.1 Test bed description ... 26

4.2 Software implementation ... 27

4.2.1 Implementation Architecture ... 28

4.2.2 Order ... 33

IV

4.2.3 Application .. 34

4.2.4 Domain .. 37

4.2.5 Solver .. 38

5. Results and Discussion .. 43

5.1 Result Presentation ... 44

5.2 Initial scheduling and result comparison .. 47

6. Conclusions .. 50

References .. 51

Network References .. 53

V

ABBREVIATIONS

ERP Enterprise Resource Planning

MES Manufacturing Execution System

ISA95 ISA-95 is the international standard for the integration of enterprise

 and control systems. ISA-95 consists of models and terminology.

RTU Remote Terminal Unit

CNS Computer Numerical Control

CAD Computer-Aided Design

CAM Computer-Aided Manufacturing

CIMS Computer Integrated Manufacturing System

BOM Bill Of Material

HMI Human Machine Interface

WLAN Local Area Network

PLC Programmable Logic Controller

MRP Material Resources Planning

SOA Service Oriented Architecture

WSDL Web Services Description Language

UDDI Universal Description, Discovery and Integration

SOAP Simple Object Access Protocol

DPWS Devices Profile for Web Services

SCADA Supervisory Control And Data Acquisition

MES Manufacturing Execution System

JVM JAVA Virtual Machine

API Application Programming Interface

RE Rule Engine

GUI Graphical User Interface

UML diagram Unified Modeling Language diagram. A class diagram in the UML is

 a type of static structure diagram that describes the structure of a

 system by showing the system's classes, their attributes, operations

 (or methods), and the relationships among objects.

JAXB JavaTM Architecture for XML Binding

VI

FIGURE LIST

Figure 1 Information Flow Diagram in a Manufacturing System............................. 2

Figure 2 Diagram of System Architecture .. 4

Figure 3 Architecture of ERP System. .. 7

Figure 4 Automation Production Line of Tesla Automotive. 8

Figure 5 Factory Automation System levels. .. 9

Figure 6 the overview of Material Requirements Planning system. 10

Figure 7 Architecture of Web Service. .. 12

Figure 8 Room arrangement problem using first fit and first fit decreasing

algorithms. ... 15

Figure 9 Function Classification. .. 19

Figure 10 Functional Model of Business and Control. ... 21

Figure 11 Screen shots for Drools planner GUI. ... 25

Figure 12 Physical layout of assembly line... 26

Figure 13 System Communication Architecture. .. 27

Figure 14 Diagram of Scheduling System. ... 28

Figure 15 Program Schema of System. ... 29

Figure 16 UML Class Model of Package Order. ... 30

Figure 17 UML Class Model of Package APP. ... 31

Figure 18 UML Class Model of Package Business. .. 31

Figure 19 UML Class Model of Package Domain. ... 32

Figure 20 Part of XML Raw Order Files. ... 33

Figure 21 Output Detail Process Order. .. 34

Figure 22 Architecture of Solver System. ... 38

Figure 23 Configuration file in Solver package. ... 39

Figure 24 Planning entity difficulty comparison. ... 40

Figure 25 Constraints definition parts of rule file. .. 41

Figure 26 Code for score calculation in drools rule language file. 42

Figure 27 Software running processes. ... 43

Figure 28 Cell Usage Percentage in Optimization. ... 48

VII

TABLE LIST

Table 1 Diet Example for Tabu Search Algorithm. ... 17

Table 1 Conception of Rule Engine. ... 22

Table 2 Order list. .. 23

Table 3 Final solution for storage problem. .. 24

Table 6 Package description. ... 33

Table 7 Name and description for methods in FastoryPlanningApp 35

Table 8 Main methods names and description for FastoryModelBuilder 36

Table 9 Assigned cells comparison before and after optimization. 48

1

1. Introduction

1.1 Problem Definition

In industry scheduling (Pinedo, 2005) refers to the reasonable arrangement of

production processes. Three questions are of interest when scheduling:

� “when?”, i.e. the time to load the production materials and to do the processes

� “where?”, i.e. the place that the product is going to be made; and

� “how?”, i.e. the species of products and detail process steps.

Scheduling may focus on either one or all levels of ISA95 (ANSI/ISA–95.00.01–2000,

2000), Enterprise Resource Planning (ERP), Manufacturing Execution System (MES)

or the shop floor. Shop floor scheduling targets detailed short term production (days,

hours), guiding the sequencing of operations, allocation of resources, jobs and

machines to the shop floor , while interacting with long-term enterprise production

planning, taking the firm’s overall cost and benefits into consideration. Figure 1

illustrates the information flow generally associated with planning and scheduling in a

manufacturing system:

2

Figure 1 Information Flow Diagram in a Manufacturing System.(Pinedo, 2005)

3

Orders / demand forecast is input to a master scheduling system to generate production

quantities and due date; based on this data, companies become aware of manufacturing

capacity, take decisions concerning materials and give shop order / release date to the

downstream manufacturers. A Production Dispatcher module, at the shop floor,

executes the dictated scheduling processes. Feedback is given at all times to the

upstream equipment.

1.2 Work Description

The aim of this work is to develop a flexible optimizing scheduling system for an

automatic production line. Prior to incorporating the scheduling system to line, the

entire production was relying on a simple innelar control system, meaning all materials

would traverse all working cells before production finish. Without the Scheduling

System, the pallets would always choose the nearest working cell for production, often

leaving others completely free. Additionally, with machine breakdowns, the control

system needed to be rewritten , and the production line had to be shut down, thus

extending production cycle and cost.

Figure 2 depicts the design of the system. A likely sequencing of operations is

presented as follows:

� The Control module sends requests for scheduling actions .

� The Scheduling module generates an optimization scheduling architecture

based on Drools platform and sends this to the control module.

� The Control module gives instructions to remote terminal units (RTUs) for

detailed control of the work cells and other components.

� The RTUs give feedback or information concerning relevant events to the

Scheduling module – to enable scheduling reactive in case of problems at the

shop floor (e.g. machine breakdown / emergencies)

� Control module – to support production tracking and communication with the

Scheduling module.

4

Figure 2 Diagram of System Architecture

Scheduling system takes order and resources as inputs, and outputs an optimized

scheduling list. The Scheduling module tells the controller how, when, and where to

send the pallets and assigns operations to work cells. This work focuses on the

scheduling module; communication with control system and shop floor are out of the

scope.

1.3 Thesis Outline

Chapter 2 gives an overview of the background of scheduling and planning in factory

automation, scheduling algorithms, scheduling software.

A brief description of the Drools platform, the Rule Language and ISA95 is given also.

Chapter 3 outlines the design approach of this work, including a listing of the reasons

5

for choosing ISA’95 and the scheduling optimization algorithm used.

Chapter 4 gives details on the software implementation.and the test results for a real

assembly line.

Chapter 5 gives a summary and conclusions.

6

2. Theoretical Background

2.1 Planning and Scheduling in Factory Automation

2.1.1 Factory Automation

The 1940s came with increased market demand and higher quality requirement of

products, manufacturers began to give more importance to the full utilization of

resources, while expecting to reduce labor intensity. Single control machines e.g.

Computer Numerical Control (CNSs) replaced manual labor, and gradually became the

main manufacturing unit. (Gongye Zidonghua Jishu He Fazhanshi, 2014)

Starting with the middle of 1960s, a lot of workers lost ground to production line to

ensure large quantities and consistent quality of products. At the same time, the

software for design and development (Computer-Aided Design (CAD),

Computer-Aided Manufacturing (CAM)) came to support product designers.

In 1973 Dr. J. Harrington (WU, Fan, & XIAO, 2014) first proposed the concept of

Computer Integrated Manufacturing System (CIMS): the integration of various

separate parts (CAD/CAM /CAPP/CAQ/FMS) of the enterprise with people through

computer to assist coordination of departments and cooperation to improve

competitiveness and productivity.

1993, American company Gartner Group, Inc. developed Enterprise Resource Planning

(ERP) software (L. Wylie, GartnerGroup, April.1990), which was based on Computer

Integrated Manufacturing System (CIMS). Later, the architecture of this software

developed into a new theory of enterprise management which is still working for

eighty percent of the world's top five hundred enterprises. ERP has the information

flow control for all functions of the whole organization (Figure 3). ERP systems serve

as backbone connection among manufacturing firms, customer service and

stakeholders. A server (Thorpe, 2013)in this figure is responsible for centralized data

storage and control to avoid the directly data writing in the ERP and corrupting Bill Of

Material (BOM).

7

Figure 3 Architecture of ERP System
1
.

In the beginning of the development of factory automation, the capability of machines

was limited to a few operations. Today’s improvements in mechanical technology,

computer science and biology have led to a better accuracy for robot operations and

expansion of the target action horizon.

Figure 4 (Cuccok, 2014) is the automotive assembly line of Tesla. Robots perform the

production controlled by computers. Cars are moved from one section to the next by

vehicles. Robots work on dangerous and heavy actions. Human labor (i.e. assistant

1
 CM application: Configuration Management application.

8

manufacturers) focus on detailed processes that the robots cannot do (for example,

detail painting, assembly position adjustment).

Figure 4 Automation Production Line of Tesla Automotive.

The architecture of a factory automation system (Figure 5 (Infinion, 2014)) could be

divided into three parts.

� Supervision level - for tracking and monitoring factory systems. The main core

applications are based on PC and operation system (Windows, Linux, etc.);

Human Machine Interface (HMI) can display the status of the system in data or

graphic format to help operators understand the running of production. Wireless

Local Area Network (WLAN) also is able to support this level.

� Control Level - for system execution. HMI, Programmable Logic Controller

(PLC) and field bus are applied in this level for data and massage control.

� Device Level - the lowest field level, includes sensors, actuators, motors .

9

Figure 5 Factory Automation System levels.

2.1.2 Planning in Factory Automation

Production planning is designed before the production to enable the enterprise run in a

long term and make sure the final products are delivered to the customers successfully

and on time. Scheduling refers to the details of the production processes.

Production planning may focus on: enterprise production planning, (including human

resource, finance, logistics) or workshop production planning (of long term production

information for detailed production e.g. resource allocation, product quantities, and due

date, etc.)

10

Starting with the middle of 1960s, manufacturing firms got larger project and orders

from worldwide; simple scheduling could not afford production lines anymore, and

then Material Resources Planning (MRP) developed according to TOYOTA’s “lean

manufacturing philosophy” was applied for planning and scheduling (Hopp &

Spearman, 2004). Figure 5 presents a MRP system architecture. It reveals that, MRP

system is interacted with bills of material (BOM), according to the Order and

Inventory modules, it provides information of master schedule. As introduced for

Figure 1, the master schedule is the input for detail scheduling; it gives the information

about production deadlines to constrain scheduling of details.

Figure 6 the overview of Material Requirements Planning system. (Integrate IT,

2013)

2.1.3 Scheduling in Factory Automation

After First Industry Revolution, machine and new technology took place of handcraft.

The factories were relatively small at that time and produced single products. From

1870s, after Second Industry Revolution, manufacturing firms were able to produce

bulk products and business became worldwide, new technology and theories related to

manufacturing and service came up and formed more systematical business system.

11

Before the limited cost accounting method was published in 1880s, schedules were

very simple specifications of order starts/due date (Herrmann, 2006). Frederick Taylor

(Frederick Winslow Taylor, 2014) separation of planning from execution is seen as the

point zero of modern planning and scheduling, as a separate discipline.

 In the 1910s, Henry Laurence Gantt
2
 published a schedule chart breaking an overall

project period into several elements with detailed timed specifications – the low level

schedules (for batch production), laying the cornerstone for production scheduling. .A

Gantt chart shows all available components for operations, activities needed for

production and set quantities of products on every day depend on previous production

and production ability, during daily production, Gantt chart tracks the production

against the daily goal (Wu, Yushun, & Deyun, 2001).

After Second Industry Revolution, machine replaced human labor to finish the

production, shorter production cycle was not as advantage as before, cost became as

important as time to take into consideration when building schedules. As the goals of

scheduling evolved, different mathematics algorithms have started to apply for the

scheduling problem. And with the development of computer science, scheduling

problem moved to a new era...

Scheduling can be conducted in two ways: statically and dynamically. As the name

says, static scheduling is finished before the production, and it will not change during

manufacturing. This type of scheduling has the problem that when the production has

error or there is machine breakdown, the scheduling planning can not guide the

production anymore and production is interruped. To avoid this problem, dynamic

scheduling uses loop data transfer system to enable reactive scheduling by feedback

information from the control level and shop floor devices.

2.2 Service Oriented Architecture and Web Services

Service Oriented Architecture (SOA) (Service-Oriented Architecture,SOA, 2014). SOA

is an architectural style for software development which is based on the notion of

service
3
 and network. Services are independent. They have the possibility to finish

2
 In (Gantt, 1903), he stated there are two types of balance: “…one of what each

workman should do and did do; the other, of the amount of work to be done and is

done’’
3
 In (Mahmoud, 2005), he mentioned that: “…A service is an implementation of a

well-defined business functionality, and such services can then be consumed by clients

in different applications or business processes.”

12

their own functions and meanwhile they can ensure the other service exchange

information with each other.

Web services are a technology that implements SOA. (Mahmoud, 2005) W3C defines

“web service” as: “…a web service is a software system designed to support

interoperable machine-to-machine interaction over a network. It has an interface

described in a machine-processable format (specifically WSDL). Other systems

interact with the Web service in a manner prescribed by its description using

SOAP-messages, typically conveyed using HTTP with an XML serialization in

conjunction with other Web-related standards. (W3C, 2013)” Figure 7 describes the

work flow of a web service.

A Web service is described in Web Services Description Language (WSDL) in terms of

interfaces. The Universal Description, Discovery and Integration (UDDI) is one

example of registry used for supporting the publish-locate-invoke paradigm (i.e. the

finding of certain services by web clients.) Web clients send message using Simple

Object Access Protocol (SOAP) for requesting information about services.

Figure 7 Architecture of Web Service.

13

In 2003, the ”SIRENA” project (Service Infrastructure for Real-time Embedded

Networked Applications) (Bohn, Bobek, & Golatowski, 2006) partenered fifteen

companies and universities from three European countries, to build a framework using

a new technology called Devices Profile for Web Services (DPWS) to interconnect

devices in industry, home, vehicle and tecommunication. DPWS enables the devices

communicating with others through network by defining the format and definition of

the technical details of the message transfer. DPWS also shows its cross domain

capability in demonstration, e.g. playing music in a car from home domain using

SIRENA devices by combining usage scenarios, which proved this system

infrastructure could be applied in neworked devices for diverse domains as well. The

further research on devices integration named ”SODA” (Service Oriented

Devices&Delivery Architecture) (Jammes) was aim to develop the inplementation of

DPWS for devices and tools.

In 2006, companies like SAP, Siemens and Schneider Electric joined their efforts in a

European project SOCRADES (Service-Oriented Cross-layer infRAstructure for

Distributed smart Embedded devices) to do further research on the implementation,

and testing of prototypes for DPWS devices based on service oriented architecture in

industry automation domain (Marco, Colombo, & Karnouskos). The test industries

included car engin manufacturing, dynamic assembly system, and cross-enterprise

collaboration in three places. The ArchitecturE for Service-Oriented Process (AESOP)

project (IMC-AESOP Project, 2014), following SOCRADES, focused on merging web

services with Supervisory Control And Data Acquisition (SCADA) system, to realise

more flexibile and economical factory manufacturing.

2.3 Overview of scheduling search algorithms

Algorithm are the backbone of the scheduling optimization problem. This section

provides an overview of scheduling algorithms and their disadvantages and advantages,

with specific focus on the specific algorithms utilized in this work.

There are several types of scheduling algorithms(Bohn et al., 2006):

• Stochastic algorithms based on random functions;

• Heuristic algorithms rely on rules to perform optimization. Such algorithms are

used frequently for dynamic repair. One of the greatest disadvantages of

heuristic algorithms is the fact that the final computed ’best’ solution could be a

local optimal solution instead of the global optimum.

14

• Meta-heuristics algorithms (tabu search, simulated annealing, and genetic

algorithms). These algorithms emerged from heuristic algorithms. The major

difference is that such methods enable the finding of a global ’best’ solution.

• Multi-agent based dynamic algorithms. Such algorithms enable the control by

different agents to avoid long time message transfer between the shop floor and

the scheduling system. Compared to traditional scheduling, which is

single-threaded (leading to one error causing the collapse of a whole system),

multi-agent based dynamic scheduling enables decentralization of control.

The following discussion focuses on the algorithms: First Fit (which is used in the

proposed implementation to generate the initial solution for scheduling

optimization), Local Search and Tabu Search (which gives the final optimized

schedule proposal).

2.3.1 First Fit

First Fit algorithm is one of the simplest heuristic algorithms to quickly generate a

non-optimized solution. In this work, First Fit is used to generate the initial schedule

for optimization.

Originally, First Fit was applied for the bin packing problem. In bin packing problem,

objects with different loads has to be paced in minimum numbers of bins with same

structure and loads. First fit means the items will be placed in the first bin when it fits.

(Dósa & Sgall, 1998)

First Fit Decreasing algorithm is similar with first fit. The difference consists in the

items having to be sorted in a certain order and then use as first fit.

An illustrated example (Figure 8) is provided as follows, to show both First Fit and

First Fit Decreasing at work.

15

Figure 8 Room arrangement problem using first fit and first fit decreasing

algorithms.

The scheduling problem operates on the need to share a number of rooms (Room 1,

Room 2) by three groups (Group 1 of size 3, Group 2 of size 2 and Group 3 of size 5).

Each of the rooms has a maximum capacity of 5.

The question here is how many rooms are needed for all three groups to fulfill their

needs.

Using First Fit algorithm, both Group 1 and Group 2 will occupy Room 1, and Group 3

occupies Room 2 (the capacity of the first room allows for more Groups to be placed

Group Group Group Group 1111Group Group Group Group 2222
Fitting orderFitting orderFitting orderFitting order Result Result Result Result ROOM ROOM ROOM ROOM 1111

ROOM ROOM ROOM ROOM 2222

ROOM ROOM ROOM ROOM 1111
ROOM ROOM ROOM ROOM 2222

Result Result Result Result

16

there once Group 1 is assigned Room 1, and prevents any further allocations once both

Group 1 and Group 2 are assigned Room 1). So in total there are two rooms needed for

all groups.

First Fit Decreasing sorts all groups decreasingly, based on the number of people in

each group. Therefore, the fitting order is Group 2, then Group 1 and, last, Group 3.

The algorithm for assigning participant groups to each room is the same as the method

used with simple First Fit.

2.3.2 Local Search

Local search gives a fractional solution instead of the best solution. The final solution

is related to the initial value of inputs.

The function frame of local search (Sensen, 2013) is as bellow:

N ≔ number of repetitions;

�̅ ≔ ∅;

��� i = 0 to N

 s = initial solution;

 ����� having a neighbor of s with better solution

 $� s ≔ arbitrary neighbor of s with better solution;

 �&$ �����

 �� s is better than � '

 � ' : = �;

 end if

�&$ ���

return �̅;

The initial solution is generated randomly, every time a better solution will replace the

previous one for best fit purpose. The advantage of local search is the speedy

computation capability. The final solution is always better than the original (initial)

solution. Disadvantages of local search include the strong dependence on initial

conditions and large number of repetitions (the larger the number, the better the

solution).

17

2.3.3 Tabu Search

Tabu Search algorithm is developed based on local search however focuses on global

optimal solution. Unlike local search, tabu search looks for the best solution not only

from one domain, but also from neighborhood, trying to avoid repeating search in

similar domain. Tabu search also sets up a list for storing all found ’best’ solutions in

the different domains, the final result being chosen from this list. To prevent infinite

loops and excessive computing, the boundary of neighborhood is limited via a

predefined tabu length.

Table 1 illustrates tabu search via a simple example.

The sample problem is the search for a best diet for one day from a set of food (pasta,

rice, noodle, soup, bread, hamburg, pizza,etc).

The initial conditions are set as combinations of food choices and times of day for each

of the meal possibilities (called neighborhoods), for a set of days.(Table 1)

Table 1 Diet Example for Tabu Search Algorithm.

Day Breakfast Lunch Dinner

Day 1 Bread Pasta Rice

Day 2 Bread Rice Rice

Day 3… Bread Rice Others

…Day N Noodle Rice Soup

Condition impose restrictions (tabu-s) on certain food choices once they are found to

(not) meet the user satisfaction. (e.g. no pasta at lunchtime). A tabu list is populated

with these choices at runtime. Tabu lists can either be filled with negative restrictions

or with positive reinforcements (aspiration conditions) of certain search solutions over

others.

A tabu length (here, given in terms of number of days N) is pre-set.

Aspiration conditions are one of the engines driving the search out of local optimums

towards the global best choice

The function frame of tabu search is shown bellow:

18

Function Frame of Tabu Search Algorithm

) ≔ an initial domain;

T ≔ tabu list;

 ,s ≔ several neighborhoods;

 B ≔ ∅;

L ∶= tabu length;

��� in)

 ����� having a neighbor with better solution

 $� / ≔ arbitrary neighbor with better solution;

 T ∌ 1;

 end while

�&$ ���

for in Ns

 while in L

 if having better solution than B

 / ≔ arbitraty neighbor with better solution;

T ∌ 1;

 end while

end for

return B;

2.4 Scheduling Software

Scheduling software is divided into two main types, depending on the size of the target

manufacturing company:

• The system to help users generate a detailed production schedule in one of the

many modules of a large ERP system
4
.

• Customized systems for relatively small manufacturing firms which may not

need a commercial framework. These systems take directly into account the

needs of the target company, and translate these needs into SW features. An

example of such a customized scheduling system is the referential software

used for this work (Chapter 3.2.2)..

4
 IBM, Oracle and SAP, provide scheduling software as part of ERP system package.

19

2.5 ISA 95 Standard

ISA 95 (ANSI/ISA–95.00.01–2000, 2000) is the international standard that integrates

enterprise and control systems. ISA 95 defines five levels in integration architecture

(Figure 9):

Figure 9: Function Classification. (ANSI/ISA–95.00.01–2000, 2000)

Business planning and logistic (the highest). This part mainly includes production

scheduling and operation management, at enterprise level.

Level 4 focuses on e.g. the collecting and maintaining materials, goods in process,

quality control and predictive maintenance planning. The basic production schedule

establishing is also included in Level 4. From the definition of Level 4, it is a similar

structure of ERP system and contains more parameters and other functions.

Level 3 is a transition part from enterprise management to manufacturing system. If

Level 4 is focused on global collecting and general function of enterprise, Level 3

focuses on Manufacturing Execution System (MES) level including the details of

production schedule and optimization, data collection and analysis for MES level, area

production reports etc.

20

3. Technical Approach

3.1 Standard

The main modules interacting with the Production Scheduling module implemented in

this thesis include (Figure 10):

� Order Processing,

� Material and Energy Control,

� Production Inventory Control and

� Production Control Systems.

The Production Scheduling module declares its availability for processing scheduling

requests to the Order Processing module, and its resource requirements to Production

Inventory Control. (The scheduling algorithm has to account for inventory limitations.)

This thesis implementation focuses on one-way Production Scheduling � Production

Control communication of information. The implementation of Production Control

� Production Scheduling information flow is out of the scope of this work..

21

Figure 10: Functional Model of Business and Control. (ANSI/ISA–95.00.01–2000,

2000)

3.2 Technology

3.2.1 JAVA

JAVA is an Object Oriented Programming language which supports interoperability. It

is organized by four parts: programming language, JAVA file format, JAVA Virtual

Machine (JVM) and JAVA Application Programming Interface (JAVA API). As the

name of JVM, JAVA programming language has own virtual computer system which

realizes the important characteristic of regardless of computer architecture. JAVA

application programming interface (JAVA API) makes JAVA the possibility to invoke

certain specific functions without knowing the code and the function procedure.

JAVA is open source for all users; compare to the traditional programming language, it

has the superiorities of simplicity, distribution flexibility and portability. Nowadays,

22

JAVA has already become the most popular open-source programming language used

by most of the company for computer and mobile software development.

3.2.2 Referential Software

Drools (Drools, 2013) platform is developed by Redhat Company. It is a business rule

management system aiming to provide a knowledge base and interact with the

inference engine via a simple application programming interface (API). Drools is a

forward chaining production rules system. A rule engine based on rete algorithm stands

at the core of Drools. The Rule Engine (RE) sets the rules and finds the best match data

for setting targets. Rete Algorithm (RA) was designed by Dr Charles L. Forgy, to find a

matched pattern through building a network
5
, and relies on four main concepts: fact,

pattern, condition and rule (Table 1). (Wangmengqz, 2013) .

Table 2 Conception of Rule Engine.

Vocabulary Description

fact Multivariate relationship between objects and their attributes.

pattern The model of facts, all facts has to satisfy one of all patterns.

condition Part of rule, has to fulfill one pattern.

rule

Reasoning statements constituted by the conditions and

conclusions, when fact satisfies the condition, relevant

conclusion will be activated.

The RE follows the steps listed below (Wangmengqz, 2013):

Sequence Procedure

1 Choose one rule r from N rules;

2 Pick up a set s(f) of facts from M facts;

3 Test the conditions using s(f), if the condition is true, then the result R(s(f))

be added to the conflict set C;

4 Pick up next s(f), go to 3;

5 Choose next rule r, go to 2.

Drools planner (Optaplanner, 2014) is open source and developed under Drools

platform. The purpose of this planner is to help users to develop their own optimize

scheduling system targeting the real-world problems, relying on classic scheduling

5
 rete is the Spanish for “net”

23

solutions (including e.g. the sales man problem, nQueens problem, vehicle route

problem etc.).

The solver implementations for these classic problems are provided by the Planner; the

user can directly change parameters and chain connections of problem entities

according to the analyzed problems and use the solver for getting solutions in order to

optimize production.

The system consists of three parts: the Model, the Rules and the Solver. The Model is

an information system that contains all data and parameters of the objective. The rules

are constraints to control the optimization of the final result, and are of two types: hard

and soft (the latter allow conditions imposed on the system to make it possible to

compute the schedule). According to the model and rules, the system will give score to

all generated solutions, with time limitation the best solution will printout.

Table 2 illustrates an example of storage of three types of products. There are three

types of products: A, B, and C, and the capacity of one storage is seven products in

total. An order is showing as below:

Table 3 Order list.

Type Pack One
6
 Pack Two Pack Three

A 3 2 1

B 5 6 3

C 7 4 4

Problem goals: to fill storage space, and use the least amount of storages.

Fixed constraint: one pack of the products in each type cannot be separated in different

storages.

According to the problem, the model is easy to build:

� Objective:

Product type three: A, B, and C

 Storage Capacity: 7

� Constraints of the problem:

Hard constraint: the pack of different type cannot be separated

Soft constraint: combination of the types should close to 7 in one storage.

6
 Package of one type products, cannot be separate when storing. Numbers refer to the

current number of items in one package waiting for packing.

24

The solution algorithm considers first to fill with the pack with most products and then

use small pack to finish the storage. So in the end the best solution will be published as

table below:

Table 4 Final solution for storage problem.

Storage Number Pack Number-Capacity

Storage 1 C1-7

Storage 2 B2-6; A3-1

Storage 3 B1-5; A2-2

Storage 4 C2-4; B3-3

Storage 5 C3-4; A1-3

In Drools Planner system, optimized outputs are able to record in XML file and a

graphical user interface (GUI) helps to show the detailed running process for

optimization.The planner GUI is shown in Figure 11. Screen shot is the vehicle routing

example, the tags in left upper part is the given problem examples XML files, right

upper part is the control panel, lower part with vehicles and routing are real time

refreshing for showing the optimize path for the problem.

25

c) The real time refreshing for showing the optimize path for the problem.

Figure 11 Screen shots for Drools planner GUI.

26

4. Implementation

4.1 Test bed description

The test line is a full automation assembly line. There are twelve work cells working

for assembling mobile phones. Robots are adapted for using pens to draw pictures

instead of real assembly work.

Figure 12 presents the physical layout of the test bed. Cell 1 works on initializing

products on pallets and paper allocation. Once pallets finish working they come back

to this work cell for quality checking by machine vision system. Number seven work

cell is an intermediate buffer. All pallets will store in this buffer and ready to move for

assembly work at the beginning. The other work cells are assembly robots in safety

case. These robots are able to do all operations.

Pallets go through all work cells on an innelar conveyor (yellow and blue part in

Figure 12). When there is no work on certain work cell, a pallet will choose by-pass

conveyors (blue sections in Figure 12) to continue the path. Three operations for one

phone are case, keyboard and screen. Each operation has three different types, thus in

total twenty-seven types of phones could be assembled by this assembly line.

Figure 12 Physical layout of assembly line.

The information communication of this test line is based on Web Service technology.

There are RTUs in each work cell and they take charge of request and response to the

27

other components, at the same time, they also send statues and data of the system to

other users from wireless network or internet so that those who are interested in this

system could also monitoring and control in a long distance. Figure 13 is the diagram

for the communication between devices of this assembly line.

Figure 13 System Communication Architecture. (Moctezuma, Jokinen, Postelnicu,

& Lastra, 2012)

4.2 Software implementation

The control system of the test assembly line originally played at the same time both

routing decision making role and low level (device-level) control.

The advantages of the proposed scheduling system include:

• Support to diagnose faults in the overall system without the need to interrupt

the functioning of unaffected equipment parts while conducting the

investigations.

• Interoperability support (XML outputs facilitate integration to most industry

system platforms).

28

4.2.1 Implementation Architecture

Figure 14 illustrates the implementation architecture.

The inputs to the scheduling system include resources and orders: for binding the order

file to gether the products types and quantity for production and based on status of

resouces, hardwares will search for the closest compent that fit the operation condition

of the sytem. Besides, initial schedule according to Order formed by First fit algorithm

are also produced for optimization.

The optimization constraints could include the problems for resources balance, less

process time and so on. The Solver (the core of this system) grants scores to the

solutions generated by Tabu search algorithm according to the constraints and chose

the best answer for the model to achieve the goal for optimization. The final scheduling

output is a detailed scheduling order for the control system.

Figure 14 Diagram of Scheduling System.

The scheduling system is designed based on the architecture and separates all elements

of different modules (schema shows as Figure 15).

29

Figure 15 Program Schema of System.

UML diagrams of main packages of the code are showing as bellowing:

30

Figure 16 UML Class Model of Package Order.

class order

Obj ectFactory

+ createOrder() :Order

+ createProcess() :Process

+ createProcessStep() :ProcessStep

+ ObjectFactory()

Order

orderId :String

process :List<Process>

status :OrderStatus = OrderStatus.WAITING

+ addProcess(Process) :void

+ getAllProcessSteps() :List<ProcessStep>

+ getOrderId() :String

+ getProcess() :List<Process>

+ getProcesses() :List<Process>

+ getStatus() :OrderStatus

+ Order()

+ Order(String)

+ prepareProcessChains() :void

+ printOrderInfo() :void

+ setOrderId(String) :void

+ setProcesses(List<Process>) :void

+ setStatus(OrderStatus) :void

«enumeration»

OrderStatus

 WAITING

 EXECUTING

 COMPLETED

 ERROR

+ value() :String

+ fromValue(String) :OrderStatus

Process

palletId :String

~ previousTask :ITask

+ PROCESS_LOADING_DELAY :int = 20 {readOnly}

processId :String

processStep :List<ProcessStep>

status :ProcessStatus = ProcessStatus.W...

+ addProcessStep(ProcessStep) :void

+ clone(String) :Process

+ clone() :Process

+ getAssignedCell() :Cell

+ getDuration() :int

+ getExpectedCompletionTime() :int

+ getPalletId() :String

+ getPreviousTask() :ITask

+ getProcessId() :String

+ getProcessStep() :List<ProcessStep>

+ getProcessSteps() :List<ProcessStep>

+ getStartCell() :StartCell

+ getStartTime() :int

+ getStatus() :ProcessStatus

+ getTransitTimeToCell(Cell) :int

+ prepareProcessChain() :void

+ Process()

+ Process(String)

+ setPalletId(String) :void

+ setPreviousTask(ITask) :void

+ setProcessId(String) :void

+ setProcessSteps(List<ProcessStep>) :void

+ setStatus(ProcessStatus) :void

«enumeration»

ProcessStatus

 WAITING

 EXECUTING

 COMPLETED

 ERROR

+ value() :String

+ fromValue(String) :ProcessStatus

ProcessStep

~ assignedCell :Cell

operation :String

~ operationObj :Operation

order :Integer

~ previousLink :IProcessChainLink

~ processStepId :String

status :ProcessStepStatus = ProcessStepStat...

+ clone() :ProcessStep

+ getAssignedCell() :Cell

+ getCapableCells() :List<Cell>

+ getDuration() :int

+ getEndTime() :int

+ getOperation() :String

+ getOperationObj() :Operation

+ getOrder() :Integer

+ getPreviousLink() :IProcessChainLink

+ getProcessStepId() :String

+ getStartTime() :int

+ getStatus() :ProcessStepStatus

+ getTransitTime() :int

+ getTransitTimeToCell(Cell) :int

+ ProcessStep()

+ ProcessStep(String, Operation, int)

+ setAssignedCell(Cell) :void

+ setOperation(String) :void

+ setOperationObj(Operation) :void

+ setOrder(Integer) :void

+ setOrder(int) :void

+ setPreviousLink(IProcessChainLink) :void

+ setProcessStepId(String) :void

+ setStatus(ProcessStepStatus) :void

+ solutionEquals(Object) :boolean

+ solutionHashCode() :int

+ toString() :String

«enumeration»

ProcessStepStatus

 WAITING

 EXECUTING

 COMPLETED

 ERROR

+ value() :String

+ fromValue(String) :ProcessStepStatus

#status
#status

#processStep

0..*

#status

#process 0..*

31

Figure 17 UML Class Model of Package APP.

Figure 18 UML Class Model of Package Business.

class app

FastoryModelBuilder

~ cells :Map<String, Cell>

~ context :JAXBContext

~ conveyors :Map<String, Conveyor>

~ marshaller :Marshaller

~ operations :Map<String, Operation>

~ order :Order

~ pallets :Map<String, Pallet>

~ solver :Solver

+ SOLVER_CONFIG :String = "/fi /tut/fast/f... {readOnly}

~ unmarshaller :Unmarshaller

+ buildModel() :void

+ buildNewPlanningProblem(Order) :Schedule

+ buildNewPlanningProblem() :Schedule

+ buildNewPlanningProblem(int) :Schedule

+ builPlanningProblemFromOrderXml(String) :Schedule

+ FastoryModelBuilder()

+ fi l terDescription(String) :List<Operation>

+ generateRandomOrder(String, int, int[]) :Order

+ generateRandomOrder(String, int) :Order

+ getAttachedCell(Conveyor) :Cell

+ initial ize(Schedule) :void

+ loadOrderFromXml(String) :Order

+ printSystemOverview() :void

+ random(int, int) :int

+ random(int, int, int) :int[]

+ randomOp(List<Operation>) :Operation

+ readOp(List<Operation>, int) :Operation

+ saveOrder(Order) :void

+ saveOrder() :void

FastoryPlanningApp

~ guiScoreDirector :ScoreDirector

~ optimal :Solution

~ solver :Solver

+ getScoreDetailList() :List<ScoreDetail>

+ init() :void

+ initSolver() :Solver

+ main(String[]) :void

+ registerForBestSolutionChanges() :void

+ reportNewBestSolution(Solution) :void

+ solve(Solution) :void

class business

Comparable

ScoreDetail

- constraintOccurrenceSet :Set<ConstraintOccurrence> = new HashSet<Con...

- constraintType :ConstraintType

- ruleId :String

- scoreTotal :double = 0.0

+ addConstraintOccurrence(ConstraintOccurrence) :void

+ bui ldConstraintOccurrenceListText() :String

+ compareTo(ScoreDetai l) :int

+ equals(Object) :boolean

+ getConstraintOccurrenceSet() :Set<ConstraintOccurrence>

+ getConstraintType() :ConstraintType

+ getOccurrenceSize() :int

+ getRuleId() :String

+ getScoreTotal() :double

+ hashCode() :int

+ ScoreDetail(String, ConstraintType)

+ toString() :String

32

Figure 19 UML Class Model of Package Domain.

Table 6 lists the packages and shortly describes their purpose..

class domain

Cell

~ capabi l ities :List<Operation> = new ArrayList<O...

- cellId :String

~ conveyor :Conveyor

~ status :Cel lStatus = CellStatus.WAITING

+ addCapabi l ity(Operation) :void

+ Cell()

+ Cell(String, Conveyor)

+ getCapabil ities() :List<Operation>

+ getCel lId() :String

+ getConveyor() :Conveyor

+ getStatus() :CellStatus

+ getT imeFromCell (Cell) :int

+ hasCapabil ity(Operation) :boolean

+ setCapabil i ties(List<Operation>) :void

+ setCell Id(String) :void

+ setConveyor(Conveyor) :void

+ setStatus(Cel lStatus) :void

+ toString() :String

«enumerati ...

Cell::CellStatus

 WAITING

 WORKING

 READY

 OFFLINE

Conv eyor

~ bypass :boolean

~ id :String

~ nextConveyor :Conveyor

~ transitT ime :int = 5

+ Conveyor(String)

+ equals(Conveyor) :boolean

+ getId() :String

+ getNextConveyor() :Conveyor

+ getTotalTransitT imeToConveyor(Conveyor) :int

+ getTransi tT ime() :int

+ hasBypass() :boolean

+ setBypass(boolean) :void

+ setNextConveyor(Conveyor) :void

+ setTransi tT ime(int) :void

+ toString() :String

«interface»

IProcessChainLink

+ getAssignedCell () :Cell

+ getDuration() :int

+ getStartTime() :int

+ getTransitTimeToCell(Cell) :int

«interface»

ITask

+ getStartT ime() :int

Operation

~ capableCells :List<Cell> = new ArrayList<C...

~ description :String

~ duration :int

~ id :String

+ addCapableCell(Cell) :void

+ getCapableCel ls() :List<Cell>

+ getDescription() :String

+ getDuration() :int

+ getId() :String

+ Operation(String, String, int)

+ setCapableCells(Collection<Cell>) :void

+ toString() :String

Pallet

~ cel l :Cell

~ id :String

~ status :PalletStatus

+ getCell() :Cell

+ Pal let(String)

+ setStartingCel l(Cel l) :void

«property get»

+ getid() :String

«enumeration»

Pallet::PalletStatus

 UNKNOWN

 INTRANSIT

 READY

 INPROCESSING

 OFFLINE

Solution

Schedule

- cellList :List<Cell>

- name :String

- order :Order

- processStepList :List<ProcessStep>

- score :HardAndSoftScore

+ cloneSolution() :Schedule

+ equals(Object) :boolean

+ getCel lList() :List<Cell>

+ getName() :String

+ getOrder() :Order

+ getProblemFacts() :Collection<? extends Object>

+ getProcessList() :List<Process>

+ getProcessStepList() :List<ProcessStep>

+ getScore() :HardAndSoftScore

+ getStartCel ls() :List<StartCel l>

+ hashCode() :int

+ printStats() :void

+ setCellList(List<Cell>) :void

+ setName(String) :void

+ setOrder(Order) :void

+ setScore(HardAndSoftScore) :void

StartCell

+ getStartT ime() :int

+ StartCel l()

+ StartCel l(String, Conveyor)

-cellList 0..*

~status

~cell

~capableCel ls 0..*

~status

~conveyor

~capabil i ties 0..*

33

Table 5 Package description.

Package name Description

fi.tut.fast.fastory.order Format definition for final output.

fi.tut.fast.fastory.planner.app Main method and physical model

builder

fi.tut.fast.fastory.planner.common.business Rules to give score to each solution

fi.tut.fast.fastory.planner.domain Hardwares and interfaces description

fi.tut.fast.fastory.planner.domain.solver Comparator for construction heuristic

(only for First Fit Decreasing

algorithm)

fi.tut.fast.fastory.planner.solver Solver configuration and definition of

optimization constraints

4.2.2 Order

Product order as input is an XML file, the format is showed as Figure 20. Output of

scheduling system is a detail processes list (as Figure 21) with assigned work cell to be

sent to control system.

In program, order package contains output solution output and input import; it uses

JavaTM Architecture for XML Binding (JAXB) to access and process the order XML

file for products information, at the same time, it gives the structure and format for

output the final solutions.

Figure 20 Part of XML Raw Order Files.

34

Figure 21 Output Detail Process Order.

Order package provides schema for the input order parameters:

� ObjectFactory: create order schema.

� Order: provides schema of complex type for element of order in XML file which

contains all information about order ID and the status of order. It defines the final

printed output value according to product order as well.

� Process: schema for the element of process in XML file. Process has processId，

status, palletId and ProcessStep. Every process refers to one product therefore

production information such as process duration, start time, assigned cell and

transit time from cells are also provide in this file.

� Processstep: schema for ProcessStep, includes operationObj, status and order.

Method for operation process time calculation is also included.

� OrderStatus, ProcessStatus, ProcessStepStatus: four status in total, they are:

“EXECUTING”: object is under processing.

“WAITING”: object gets ready for process

“COMPLETED”: object finished processing, production are able to do next step.

“ERROR”: object is unable to be processed; some problems could be machine

breakdown or pallet traffic crash.

4.2.3 Application

Two parts in this package: module builder and application running (main method).

35

FastoryPlanningApp:

It is the main class of whole program. System first gives signal to announce the start,

and then app binding order file which has the production details for each product and

read the file to store the information. Next step, system has to initialize the model for

scheduling. The final model was showing in Figure 21. After all pre-work are ready,

the most important part is scoring every changes about the production order and store

the best solution for later real assemble procedure according to setting rules for

optimization. The definition of each method in this file is showing in Table 7.

Table 6 Name and description for methods in FastoryPlanningApp

Method Description

main(String[] args) Program execution

init()

Execution sequence setting:

� Build scheduling model

� Binding Order XML file

� Import Solver system combines with

order

� Initialize solution store and reset best

solution according to rules

� Give final result and print in screen

Solver initSolver() Combine module with solver system.

reportNewBestSolution(Solution

latestBestSolution)

Showing “New best solution” on screen.

solve(Solution planningProblem)

Making sure the initial solver is empty and

run program to process the module and

give score to each solution.

registerForBestSolutionChanges()

When new solution came out, system do

the contrast with earlier solution, if current

solution is better, this solution will

override the old one.

List<ScoreDetail> getScoreDetailList() Definethe contant of the score detail list

FastoryModelBuilder:

Main definition in this file is binding system with Order XML file and building data

model for solver system. Methods explanation is showing in Table 8.

36

Table 7 Main methods names and description for FastoryModelBuilder

Method Description

FastoryModelBuilder() Build architecture for Order XML

binding, create marshaled and

unmarshaller objects.

Schedule buildNewPlanningProblem(Order

order)

Get into schedule file and the database

is using Order data

Schedule buildNewPlanningProblem(int

productCount)

Initial the count of product of order

Schedule

builPlanningProblemFromOrderXml(String

filename)

Get file name of order XML file.

buildModel() Building model for scheduling

system.

� Create conveyor loop, each

conveyor has corresponding cell

and it is chain structure.

� List cells from number one to

twelve

� Define pallet number is 20, all

pallet starts from cell 7 which is

buffer station.

� Operation definition. Three

actions are doing as operations;

they are keyboard, screen and

case. Each action has three

different types spending another

time. Model defines three actions

are done in separated cells, cell

one is installing station, cell seven

is buffer, rest cells are able to do

any actions. Case action operates

on first four cells, the rest

operation cells are chosen to do

keyboard and screen actions.

printSystemOverview() Declare the final system output

overview on Output window.

getAttachedCell(Conveyor c) Attach cell to corresponding

conveyor.

Operation readOp(List<Operation> ops, int

t)

Get operation information.

random(int min, int max) Mathematical method. Choose

37

random number from given numbers.

List<Operation> filterDescription(String

filter)

Filter operation with certain filter

characters.

random(int min, int max, int n) Random choose n numbers from min

to max.

initialize(Schedule s) As method name says initialize

schedule.

Order loadOrderFromXml(String filename) Load an Order from XML file.

Order generateRandomOrder(String

orderId, int nDefs, int[] quantities)

Put Order in JAVA system and

generate initial order for scheduling.

4.2.4 Domain

The physical components of the assembly line are pallets, conveyors, work cells,

dynamic objects of assembly production are operations and schedule for production.

Domain package give definition of all parameters of these objectives.

� Cell: definition includes cell ID, status, and relevant conveyors.

� Conveyor: basic information contents ID, pallet transit time, and the connection

with downstream conveyor.

� Pallet: pallet ID, status of the pallet and the first operation cell where the process

starts.

� StartCell: it is the extension for cell to define the lead cell for the pallet route and

calculate the process time.

� Schedule: scheduling procedures, the first thing is gathering all information for

scheduling system which includes order, cells, processes list and so on, the next is

using drools score system and override it at each time the score is better than

before. Finally schedule prints the best solution after optimization.

� ITask: interface, defined as getStartTime.

� IProcessChainLink: interface, contents several method signatures and constant

declarations.

38

4.2.5 Solver

The Solver package is the core of the whole system: it defines the rules for

optimization and publishes the final solution.

The architecture is shown in Figure 22. There are two parts in the solver system. First

part is solver: this is the configuration system by defining the algorithms for

construction heuristics and meta- heuristics. The other part is the score director. This

system will define the rules (constraints for optimization, .drl file) and tell the system

what is going to be the best score of each solution (JAVA file of score detail). Using the

method getScoreDirectorFactory() as the entry point, the score director will process

several times per second to support all optimized solutions to the solver.

Figure 22 Architecture of Solver System.

a. Configuration file

In this file (Figure 23), there are three sessions, <solutionClass> and

<planningEntityClass> gives the definition of the model. A planning entity class is

used by the score constraints and changes during scheduling. In this system, the order

of the process steps makes the decision of the efficiency for assembly line, so here the

planning entity is ProcessStep.class. A solution class is the dataset for Solver to solve.

It also can be considered as uninitiated solution.

In <scoreDirectorFactory>, it defines the score function. “HARD_AND_SOFT” gives

the type of the constraints. <scoreDrl> element gives the directory of the .drl file, e.g.

the rule file defines all optimization constraints .

39

The elements following <scoreDirectorFactory> configure the optimization algorithm.

<termination> gives the information of the time limitation of the scheduling. It could

be seconds, minutes and hours, the difference is the changing of the tag name to the

right time unit.

 Figure 23 Configuration file in Solver package.

Construction heuristic is the element to give the algorithm to generate the initial

solution. There are two algorithms: First Fit and First Fit Decreasing can be chosen.

First Fit Decreasing has to set the items difficulties, so a planning entity difficulty

comparator file has to be annotated as shown in Figure 24.

40

Figure 24 Planning entity difficulty comparison.

The changes from one solution to another solution is called “move”, a MoveSelector's

main function is to create Iterator<Move> when needed. There are three methods to

choose the “move”, original, random and shuffled.

Original: the selector will follow the default order of the moves. All moves will be

chosen only once.

Random: random choose the moves, one move may be chosen twice or more.

Shuffled: shuffled random choose the moves, each move will be done only once.

<acceptor> makes decision whether the moves are accepted or not. The tube size for

planning entity has to do several tests to look for the arrangement. Number given in the

example is random.

<forager> helps the system to pick up the nest step from all gathered moves, the

default rule is choose the move with higher score, when several moves has same score,

forager will choose a random one from them. The sub element decides the number

limitation of accepted selection; it would be the more the better.

b. Rule file

Rule (.drl) file full name is called drools rules language. Users could change

constraints to meet the demand of the optimization.

In rule file, the language is call rule language. Figure 25 indicates how to define the

rules in .drl file. It could be positive and negative constraints, positive is the conditions

users try to do the maximum and negative is the ones users try to do the minimum.

According to the real scheduling case, we choose negative constraints only. The

definitions of the constraint are of two types:

Negative hard constraints: constrains that cannot be broken when the system executes.

Negative soft constraints: if this condition can be avoided, the system will be

optimized.

41

The figure also shows the structure of the rule language, rule name, “when” which

gives constraints condition description and “then” to tell score algorithm.

Figure 25 Constraints definition parts of rule file.

Based on the rules, calculate score section accumulates hard and soft constraints into

relevant score calculator for final solution calculation. The code is shown in Figure 26.

This section does not need to change and it is inherent in the rule language.

42

 Figure 26 Code for score calculation in drools rule language file.

The configuration file could be seen as the connection between the physical system

and score calculator. It defines the algorithm which is planned to be applied to the real

system, the detail information about the method and restrictions of the solver.

Rule file is the core file for solver, dictating the optimization scope.

43

5. Results and Discussion

The runtime scheduling procedure is showing as below as Figure 27.

Figure 27 Software running processes.

The system gathers information of facilities and processes (class: FastoryModelBuilder)

to build the model for scheduling and to initialize the orders, i.e. accessing and

44

processing order XML file (package: fi.tut.fast.fastory.order) and make the order as an

initial schedule list. The following step is according to the problem and planning

entities, solver gets ready to do the search for better solutions (class: ScoreDetail) and

print out the final result (class: Schedule).

5.1 Result Presentation

The initialization step can be modified based on the real situation; outputs will show all

data of the setting system, which including the quantity and identify numbers of cells,

conveyors, pallets and operations. Screenshots bellowing reveals the outputs for

system initialization.

Screenshot 1: System overview.

Screenshot 2: Conveyor chain and status output.

45

Screenshot 3: Operation and cells binding outputs. In this part, cells are random

chose to finish one operation; this could be setting according to user’s

requirement.

During the action of routine, output shows the optimization procedure at every step.

The output tells the score calculation of the current step and the best score of all

previous processes. New best score appears, output will give comment about it. Screen

shot 5 shows the debug comments.

Screenshot 4: Schedule solution initialization.

Screenshot 5: Optimize debug comments.

46

The final result (the best score) is setting time also printed in outputs. Cell usage is not

the working times of cells, but it is the working percentage of each cell.

Screenshot 6: Total time and usage of cells.

Final schedule will give detailed operation information to the downstream system. The

details include the start time of one order, the assigned cell of operation, information of

operations and order of all operations. The form of the list is:

 Process “ID” “[state]” start @ “starting time”:

 ProcessStep “ID” “[state]” start @ “starting time” – Cell: “AssignedCell”

- Operation [ID]: “OpertionType” (OperationSpendingTime)

Screenshot 7 indicates one part of the final optimized scheduling list.

47

Screenshot 7: Part of the list of final schedule.

5.2 Initial scheduling and result comparison

The main target for this assembly line optimization is to assign the processes to a

suitable work cell. The setting of the condition for generate initial schedule is assign

the processes to three or four work cells randomly. For every optimization, this gives

different initial schedules even for the same order. This section shows the before/after

comparison per optimization. Comparison between the different solutions proposed for

the same optimization constraints and yet slightly different initial conditions is

excluded here.

Constraints in this test are all soft constraints, this means, there is no requirement could

not be broken. In this test, the soft constraints are least total process time and average

cell usage.

Main scheduling data is shown in Table 9. The left number is the assigned cell ID after

optimization and the right one is the initial assigned cell ID. Each process aims to

finish one product, each process step refers to one operation by one work cell, and one

product needs three process steps. The initial scheduling did the assignment relatively

centralized and the optimized scheduling distributes process steps to different cells.

48

Table 8 Assigned cells comparison before and after optimization.

 Process Step 1 Cell Id Process Step 2 Cell Id Process Step 3 Cell Id

Process 1 12 12 11 8 9 12

Process 2 9 3 8 11 6 6

Process 3 3 3 4 4 8 8

Process 4 3 3 5 5 3 6

Process 5 10 4 2 2 12 12

Process 6 6 12 2 2 12 12

Process 7 3 3 9 4 10 10

Process 8 10 10 4 4 4 4

Process 9 11 3 2 2 6 6

Process 10 11 11 4 2 10 10

Process 11 10 10 2 11 4 4

Process 12 4 4 6 6 9 6

Process 13 3 3 6 6 3 10

Process 14 3 3 2 2 9 5

The usage of cells before and after optimization is shown in Figure 24. First fit

algorithm is the construction heuristics, so for initial scheduling, the process is always

designed to be done in the nearest work cell (cell 3 in this case has most operations to

do). However with the meta-heuristics (percentage of all time spending of one cell in

total process time), this situation changes. Figure 28 illustrates the optimization to be

quite effective to keep balance for each cell.

Figure 28 Cell Usage Percentage in Optimization.

Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 8 Cell 9 Cell 10 Cell 11 Cell 12

BEFORE 20 41 28 9 23 6 0 16 11 23

AFTER 19 26 21 6 24 6 17 20 19 12

0

5

10

15

20

25

30

35

40

45

C
e

ll
 U

sa
g

e
 P

e
rc

e
n

ta
g

e

图表标题图表标题图表标题图表标题

49

Besides the balance for cell usage, the total process time is also under consideration,

(here increasing from 663 seconds to 683 seconds). This solution shows more

superiority in cell balance than total process time, and it also depends on the initial

schedule. Several scheduling trials will give different solutions for the same order;

each user could choose the best one based on different constraints weight, for example

the final optimal might focus on better resource balance than process time.

50

6. Conclusions

Today’s companies need manufacturing optimization, with specific focus on cost

reduction, energy savings and environmental issues. The master plan defined prior to

the commencing of the production must be coupled with scheduling algorithms that

would perform on manufacturing processes data acquired in RT.

The test bed for the scheduling system implemented in this thesis work is a dedicated

assembly line; the proposed system architecture could nevertheless be applied to any

type of production line.

The final optimization guidelines rely on constraints defined formally as rules.

Different initial conditions result in different optimization solutions proposed.

The system accomplishes scheduling optimization and gives satisfactory solutions for

optimization purpose.

Advantages of the proposed solutions include:

� Decoupling between facilities and the scheduling algorithm. The assembly line

could be built, in practice, by any component, the scheduling algorithm just pays

attention to several parameters from the large, i.e. identifying the planning entity

and constraints objects.

� Availability of problem-specific solutions. Local search has the defect that the

found solution might not prove suitable for all types of problems. In practice

though, clients may focus on different purposes for optimization, thus the local

search algorithm is able to find a ’best’ solution for certain specific problem. At

the same time, different initial schedules result in different solutions, each client

could choose the best one from these solutions.

� Flexibility on the solver side. Sample optimize planner provides several algorithms

for optimization, and the configuration file for solver offers all information about

optimization. Changing the parameters could also affect the optimized solutions.

51

References

ANSI/ISA–95.00.01–2000. (2000). In Enterprise-Control System Integration Part 1:

 Models and Teminology (pp. 19-26). US.

Dósa, G., & Sgall, J. (1998). First Fit bin packing: A tight analysis. Leibniz

 International Proceedings in Informatics (pp. 1-15). Dagstuhl Publishing.

Gantt, H. L. (1903). A graphical daily balance in manufacture. [ASME Transactions]

 24, 1322-1336.

Herrmann, J. (2006). A history of production scheduling. In J. Herrmann (Ed.), (pp.

 1-22) Springer US. doi:10.1007/0-387-33117-4_1

Hopp, W., & Spearman, M. (2004). Commissioned Paper To Pull or Not to Pull: What

 Is the Question? Manufacturing & Service Operations Management, pp. 133-148.

Jammes, F. (n.d.). 05022-SODA-SODA_Innovation-report. ITEA.

L. Wylie, GartnerGroup. (April.1990). ERP: A Vision of the Next-Generation MRP II.

Marco, T., Colombo, A. W., & Karnouskos, S. (n.d.). SOCRADES ROADMAP.

 SOCRADES.EU.

Pinedo, M. (2005). Introduction. Planning and scheduling in manufacturing and

 services (pp. 8) Springer US.

Ryś, T., Stanek, R., & Ziembla, W. (1994). MIPS: A DSS for multiobjective interactive

 project scheduling. European Journal of Operational Research, 79(2), 196-207.

 doi:10.1016/0377-2217(94)90351-4

Tharumarajah, A., & Bemelman, R. (1997). Approaches and issues in scheduling a

 distributed shop-floor environment. Computers in Industry, 34(1), 95–109.

52

Wu, C., Yushun, F., & Deyun, X. (2001). Chapter 15 computer integrated

 manufacturing. In S. Gavriel (Ed.), Handbook of industrial engineering -

 technology and operations management (3rd edition) (pp. 485) John Wiley & Sons

 Inc.

53

Network References

Drools. [WWW]. [Accessed on 2013, May 16]. Available at:

https://www.jboss.org/drools/

Optaplanner. [WWW]. [Accessed on 2014, April 19]. Available at:

http://www.optaplanner.org/

Cuccok, p.. Elképesztő robottechnológia a Tesla gyárban. [WWW]. [Accessed on 2014,

April 20] Available at: http://www.pto.hu/post/1/12997

Frederick Winslow Taylor. [WWW]. [Accessed on 2014, April 19] Available at:

http://en.wikipedia.org/wiki/Frederick_Winslow_Taylor

Gongye Zidonghua Jishu He Fazhanshi. [WWW]. [Accessed on 2014, April 19]

Available at: http://wenku.baidu.com/view/67cc681c10a6f524ccbf852f.html

IMC-AESOP Project. [WWW]. [Accessed on 2014, May 10] Available at:

http://www.imc-aesop.eu

Infinion. Industrial Automation Efficient & Robust Semiconductor Solutions. [WWW].

[Accessed on 2014, April 3] Available at:

http://www.infineon.com/dgdl/Industrial_Automation_2013.pdf?folderId=db3a

30431689f4420116a096e1db033e&fileId=db3a30433cabdd35013cb48285386c

94

Integrate IT. [WWW]. [Accessed on 2013, May 15] Available at:

http://erp123.biz/erp-guide/erp-flowcharts-of-data/mrp-overview

Mahmoud, Q. H. (2005, April). Service-Oriented Architecture (SOA) and Web

Services: The Road to Enterprise Application Integration (EAI). [WWW].

[Accessed on 2013, May 15] Available at

http://www.oracle.com/technetwork/articles/javase/soa-142870.html

54

Material Requirements Planning . [WWW]. [Accessed on 2013, May 15] Available at:

http://en.wikipedia.org/wiki/Material_requirements_planning

MIE Scheduling Software 1. [WWW]. [Accessed on 2013, May 28] Available at:

http://www.softsia.com/MIE-Scheduling-Software-download-0z1d.htm

Sensen, N. Local Search Algorithms. [WWW]. [Accessed on 2013, May 27] Available

at

http://www2.cs.uni-paderborn.de/cs/ag-monien/PERSONAL/SENSEN/Schedul

ing/icpp/node5.html

Service-Oriented Architecture,SOA.[WWW]. [Accessed on 2014, April 19] Available

at:

http://wiki.mbalib.com/wiki/%E9%9D%A2%E5%90%91%E6%9C%8D%E5%

8A%A1%E6%9E%B6%E6%9E%84

Software as a service:ERP by the Hour and ERP Sytems: Do they Satisfy? (). [WWW].

[Accessed on 2013, May 15] Available at:

http://managementinfosystemsblogg.blogspot.fi/

Thorpe, G. (2013, May 16). Design For Purpose. [WWW]. [Accessed on 22.2.2006]

Available at: http://designforpurpose.blogspot.fi/

W3C.Web Services Glossary. [WWW]. [Accessed on 2013, May 27] Available at:

http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/#webservice

Wangmengqz. [WWW]. [Accessed on 2013, June 14] Available at:

http://bbs.csdn.net/topics/390113737

