
MARKKU VAJARANTA

Security as a Service for Hybrid Clouds

Master of Science Thesis

Examiner: Professor Jarmo Harju

Examiner and topic approved in the

Computing and Electrical Engineering

Faculty meeting on 8 November 2013

I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Information Technology

MARKKU VAJARANTA:Security as a Service for Hybrid Clouds
Master of Science Thesis, 47 pages, 3 Appendix pages

May 2014

Major: Communication Networks and Protocols

Examiner: Professor Jarmo Harju

Keywords: Cloud service, hybrid cloud, Openstack, cloud network, �rewall, virtualiza-

tion, central management, REST API

Virtualization has increased amongst the IT service providers as a method for achiev-

ing more e�cient server usage. This has led to the concept of cloud services, o�ered

by large data centers with the help of virtualization techniques. Cloud service is

an abstract service, which provides IT services as self-service for the end user. For

example these services can provide virtual servers as on-demand.

Virtual servers in the cloud are usually reachable from the Internet, so their

protection is necessary. This master's thesis discusses �rewalling virtual machines

inside the cloud, together with virtual �rewall distributions and their features. Cloud

services are usually self-services and thus their cloud environment and �rewall are

managed centrally. Automated �rewall provisioning and management for a cloud

service is described.

Main goal for the master's thesis was to �nd a feasible centrally managed security

system. Vyatta was used as a virtual �rewall software and the test environment was

built on top of the Openstack cloud. Vyatta included �rewall, VPN and routing

features suitable for enterprise usage.

The deployed virtual �rewall performed well in the test environment with the

necessary features and also the central management worked without problems. The

central management system was feasible and reusable with other projects. Also the

automatic deployment of Openstack cloud was a feasible choice. However, using

Vyatta requires a lot of changes at least to the Openstack cloud platform, and hence

the network setup and management is di�cult.

There are on-going e�orts to virtualize networking devices in the data center as

well. This will allow the whole service platform to be centrally managed using a sin-

gle interface. Thus all changes to the network and new virtual service requests can

be executed as the customer demands them. Software De�ned Networking (SDN)

and Network Fuctions Virtualization (NFV) both drive the systems to more virtu-

alized and centrally managed environments, thus providing an important research

topic in this �eld.

II

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

MARKKU VAJARANTA: Security as a Service for Hybrid Clouds
Diplomityö, 47 sivua, 3 liitesivua

Toukokuu 2014

Pääaine: Tietoliikenneverkot ja protokollat

Tarkastaja: Professori Jarmo Harju

Avainsanat: pilvipalvelu, hybridipilvi, Openstack, pilviverkko, palomuuri, virtualisointi,

keskitetty hallinta, REST API

Virtualisointi on kasvattanut suosiotaan IT -palveluntarjoajien keskuudessa parem-

man palvelinkapasiteetin hyötysuhteen saamiseksi. Virtualisointi on myös mahdol-

listanut pilvipalveluiden syntymisen. Pilvipalvelut ovat abstrakteja palveluja, jotka

tarjoavat asiakkaille IT -itsepalveluita esimerkiksi virtuaalipalvelmien muodossa.

Pilvessä olevat virtuaalipalvelimet on kytketty yleensä Internetiin, joten niiden

palomuurauksesta tulee huolehtia. Tässä diplomityössä tutkittiin palomuurausta

pilvessä sijaitseville virtuaalikoneille, virtuaalisia palomuurijakeluita ja niiden omi-

naisuuksia. Työssä käsitellään myös keskitettyä hallintaa, jonka avulla voidaan hal-

lita sekä pilvipalvelua että palomuuria. Tästä syystä tutkimuskohteena oli myöskin

palomuurin automaattinen provisiointi pilvipalveluun.

Diplomityössä rakennettiin pilvialustoille sopiva keskitetyn hallinnan palomuuri-

järjestelmä. Käytetty virtuaalinen palomuurijakelu oli nimeltään Vyatta ja koeym-

päristönä toimi Openstackin pilvialusta. Vyattasta löytyi yrityskäyttöön sopivat

palomuuraus-, VPN- ja reititysominaisuudet.

Toteutettu virtuaalinen palomuuri toimi kokonaisuudessaan hyvin, sen ominai-

suudet olivat riittävät ja keskitetty hallinta toimi moitteetta. Käytetyt menetelmät

keskitettyä hallintaa varten, ja Openstackin pilven automaattiset ominaisuudet, oli-

vat toimivia ratkaisuita. Vyattan käyttäminen vaatii silti paljon muutoksia Open-

stackin pilvialustan verkkoon, joten verkon rakentaminen ja hallinta tulevat vaikeiksi.

Tulevaisuudessa useat palvelinkeskuksen verkkolaitteet virtualisoidaan. Virtual-

isointi mahdollistaa koko verkon keskitetyn hallinnan käyttäen ohjelmistoja. Tällöin

verkon muutokset ja laitetarpeet voidaan toteuttaa välittömästi asiakkaan toiveiden

mukaan. Termit Software De�ned Networking (SDN) ja Network Functions Virtual-

ization (NFV) käsittelevät molemmat verkon virtualisointia ja keskitettyä hallintaa

ja ne ovat suunnannäyttäjiä verkkotekniikan tutkimukselle.

III

PREFACE

This thesis was done for Cybercom Finland as a part of their Cloud project. The

idea behind it was simply to implement a �rewall that covers some of the features

missing from the Openstack cloud's �rewall. A new *-as-a-Service began to rise its

head.

Ironically, virtualizing a �rewall has been in my mind already about ten years

ago. After some experiments this did look like a practical solution already at that

time. Now my thesis covers the same topic. Openstack, however, turned to be full

of surprises especially in the �eld of networking so without assistance this project

would have been exhausting.

I would like to thank MSc Riku Kovalainen and MSc Rolf Koski for �nding such

an intresting topic and supervising this work for Cybercom. I would also like to

thank all the employees in the Cybercom Data Center for intriguing conversations

and support with this thesis. This journey to the clouds was delightful to do with

people like you.

I want to thank MSc Aleksi Suhonen for evaluating the thesis. My special grat-

itude goes to my professor Jarmo Harju for guiding me during this work. Such a

comprehensive academic viewpoint was very welcome. And last, I thank Leena for

proofreading this thesis and encouraging me to carry on with the work. Mixing a

cloud, a central management service and a �rewall together may sound extreme -

and to be honest, it is.

Tampere, April 22th 2014

Markku Vajaranta

IV

TABLE OF CONTENTS

1 Introduction . 1

2 Network �rewall systems . 3

2.1 Fundamentals of Firewalling . 3

2.2 Firewall Operation Modes . 4

2.2.1 Stateless Firewall . 4

2.2.2 Stateful Firewall . 5

2.2.3 Application Proxy Firewall . 5

2.2.4 Implementations in the Networks 6

2.3 Preventing Attacks . 7

2.4 Best Practices . 8

3 Cloud systems . 12

3.1 Virtualization Trend . 12

3.2 The Cloud in a Nutshell . 13

3.3 Managing Large Scale Cloud Environment 16

3.3.1 REST API . 16

3.3.2 The Deltacloud . 16

3.4 Hypervisor Capacity and Load Estimation 17

3.5 Firewalling and Network Abstraction in the Openstack Cloud 19

4 The Virtual Firewall . 24

4.1 Security-as-a-Service Concept . 24

4.2 Virtualizing the Firewall to Cloud . 25

4.3 Security Software Selection . 27

4.4 Management Aspects . 28

4.4.1 Cloud Portal Server and Dashboard 29

4.4.2 CLI and WebUI . 30

5 Security Instance Implementation . 31

5.1 The Common Setup and its Di�culties 31

5.2 Instance Deployment Phase . 34

5.2.1 Deployment in an Automated Cloud Environment 34

5.2.2 Manual Con�guration . 35

5.3 Centralized Management . 36

5.4 Security Aspects . 40

6 Discussion . 42

7 Conclusions . 44

Appendix A: Cisco notation ACL example 48

Appendix B: SMTP Application proxy ruleset example 49

Appendix C: Vyatta �rewall example pre-setup 50

V

ABBREVIATIONS AND TERMS

ACL Access control list

AH Authentication Header

API Application Programming Interface

AWS Amazon Web Services

BGP Border Gateway Protocol

CDN Content Delivery Network

CLI Command Line Interface

CPU Central Processing Unit

DHCP Dynamic Host Con�guration Protocol

DMTF CIMI Distributed Management Task Force Cloud Infrastructure

Management Interface

DMZ Demilitarized zone

DoS Denial-of-Service

DPI Deep Packet Inspection

EC2 Elastic Computing Cloud, AWS

ESP Encapsulating Security Payload

FWaaS Firewall-as-a-Service

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaaS Infrastructure-as-a-Service

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IETF Internet Engineering Task Force

IP Internet Protocol

IPsec Internet Protocol Security

IPS Intrusion Prevention System

IRC Internet Relay Chat

KVM Kernel Virtual Machine

LAN Local Area Network

LBaaS Load-Balancer-as-a-Service

NAT Network Address Translation

NAT-T Network Address Translation Traversal

NFV Network Functions Virtualization

NGFW Next-Generation Firewall

NTP Network Time Protocol

OS Operating System

OSI Open Systems Interconnection

VI

OSPF Open Shortest Path First

PaaS Platform-as-a-Service

PHP Server-side HTML embedded scripting language

PPTP Point-to-Point Tunneling Protocol

REST(ful) API Representational State Transfer API

RIP Routing Information Protocol

RPF (Unicast) Reverse Path Forwarding

SaaS Software-as-a-Service

SDDC Software De�ned Data Center

SDN Software De�ned Network

SECaaS Security-as-a-Service

SSH Secure Shell

TCP Transmission Control Protocol

UDP User Datagram Protocol

UI User Interface

URI Uniform Resource Identi�er

vCloud VMware cloud solution

VCPU Virtual CPU

VETH Virtual Ethernet

VM Virtual machine

VPN Virtual Private Network

vRouter Virtual Router

vSwitch Virtual Switch

Vyatta Brocade Software Virtual Router

WWW World Wide Web

1

1 INTRODUCTION

The evolution of data center services is again taking a leap forward. The previous

one occured when the virtualization techniques emerged and several systems were

consolidated into one hardware. Virtual systems have provoked the building of

computing environments from where companies and end users can buy resources

on-demand. These environments are called as cloud services. Cloud is an abstract

service which is based on highly virtualized systems and can be described as a self

service computing system.

Networking and communications often rise a question concerning the overall se-

curity of a speci�c system. A �rewall is the basic building block for safe public

network connectivity. Firewalls are thus used locally in the operating systems or on

the border of internal networks to protect the whole network simultaneously. Fur-

ther, as the IPv4 addressing is depleting, the Network Address Translation (NAT)

system is often used to provide private address range for an internal network area.

Since cloud networks are often using private IP addressing, they require a device to

do the network address translation. It is also common to implement a �rewall and

a NAT into the same device.

One of the most common cloud services is the Infrastructure-as-a-Service (IaaS)

cloud. In IaaS cloud, the user requests for virtual machines that can be connected to

the Internet and thus require �rewalling. The �rewalling of a cloud virtual machine

is traditionally done using the cloud platform provider tools. However, for corporate

users the platform does not contain enough features. In addition, the cloud may be

used by a private user or a company, so separate cloud environments are commonly

built. Di�erent environments can be further built using separate cloud platform

providers depending on the needs of the cloud capacity.

These come together to form a system described in Figure 1.1. A service hosting

operator o�ers cloud services for both private users and companies. The public cloud

meant for private use is built using an open source platform and the private cloud

using a commercial cloud platform provider. The management of the cloud system is

centralized to a cloud dashboard server which is responsible for operating with both

cloud platforms. If the inbuilt �rewalling is insu�cient, other options such as virtual

�rewall with Virtual Private Networks (VPN) need to be considered. Because the

virtual �rewall operates in the cloud, a �rewall management is convenient to add to

1. Introduction 2

the centralized cloud dashboard.

Public cloud,
 open source

Private cloud,
Commercial software,

Company A

Public network

Company A
internal network

Internet
Public cloud

 users

VPN
connection

Service hosting
operator

 Cloud dashboard
 server

Public cloud
management

Firewall
management

Private cloud
management

Tenant A
cloud

Tenant B
cloud

Figure 1.1: An example of a cloud and central management system.

The overall system therefore relies on the central management and its capabili-

ties to operate all the necessary parts. However, since current cloud platforms do

not provide su�cient solutions to the �rewall management problem, a prototype

implementation is built in this thesis.

The thesis includes theory concerning the �rewall in the chapter 2. As the system

relies heavily on virtualization and cloud computing, the cloud is discussed in the

chapter 3. The chapter 4 describes the virtualized �rewall, its environment and the

chosen system. Implementation of the system is discussed in the chapter 5.

3

2 NETWORK FIREWALL SYSTEMS

Firewall is often considered as the primary security element. However, it is only a

basic part of network security. A �rewall is best described as a connection limitation

element, which denies undesirable access to the destination system. This chapter

describes what a �rewall is, what it can protect and how it does that. Some example

implementations and best practices are also provided.

2.1 Fundamentals of Firewalling

A �rewall in general is a limiting device or a piece of software running inside an op-

erating system to protect one or more computers or network devices from unwanted

packets travelling in the Internet. The most important job of a �rewall is to decide

which tra�c or connection is to be allowed through. The administrator speci�es

policies that control a number of criteria which in turn make decisions about the

received and transmitted packets.

First of the validation criteria is the source and destination IP address. A �rewall

can make a decision whether it lets tra�c through, based on an IP address only.

Filtering data according to an IP address is very convenient for example in company

internal networks. If data from a speci�c network address area is considered valid, a

rule based on that can be created. IP address spoo�ng may occur and it is described

in Section 2.3.

More speci�c criteria for data �ltering are the protocol �eld and the port number

�eld. Most common protocols are TCP, UDP and ICMP. For example WWW tra�c

typically uses TCP port 80 and therefore an easy way to deny only WWW tra�c

is to deny TCP protocol port 80 connections. Port numbers from 1-1023 are so

called well-known ports, that are meant for some special service or software. Ports

from 1024-49151 are registered to be used with vendor speci�c applications. The

remaining ports, from 49152 to 65535, are dynamic and they can be used by any

application. [1, p. 91]

Software �rewalls protecting a single computer may sometimes be able to �lter

tra�c based on the target software in the system. In these cases the �rewall ruleset

may look for addresses, ports or protocols, but it also veri�es the target software in

the system. This way the system may block any undesired software from reaching

the Internet.

2. Network �rewall systems 4

Before implementing a �rewall, the following questions should be considered:

What really needs protection? Who are we protecting ourselves from? What must

be allowed? Asking these basic questions will lead to the best compromise between

ultimate security and usability. Some of the best practices in �rewalling are overseen

in Section 2.4. [1]

2.2 Firewall Operation Modes

Firewalls are divided in two categories, gateway �rewalls and application proxy �re-

walls [1, p. 98]. The gateway �rewalls are further divided into stateful inspection

�rewalls and packet �lters, also called as stateless �rewalls. Despite the nomencla-

ture, the di�erent �rewalls have their own place in the networking security. These

are discussed next.

2.2.1 Stateless Firewall

Packet �lters are the simplest way to limit network connectivity. Filters are usually

lightweight and thus cause little extra load to the device running it. Therefore packet

�lters are usually implemented in network devices such as routers that are designed

for other purposes, but can handle these �lters.

Packet �lters usually operate on the OSI level 3 [2, p. 6]. That causes the �ltering

to be based on the information in the IP haeder which in turn gives rise to the access

control lists (ACL), the foundation of packet �lters. A �rewall checks whether an

ACL contains a match clause to the packet travelling through the �lter. The ACL

is usually read from top to bottom and in case a match clause is found, an ACL-

directed action takes place. In mismatch cases, a deny action usually is executed.

An example of an ACL is shown in the Appendix A in Cisco speci�c notation. The

ACL permits some ICMP protocol messages, DNS related tra�c on top of UDP and

TCP, port 80 (WWW) directed tra�c and DHCP tra�c (bootps). At the end of

the ACL is the implicit deny action to �lter out all other messages.

Though stateless packet �lters are fast and commonly used, they have several

limitations. Due to the low OSI level placement, the �lter cannot prevent an attack

on the application layer. The statelessness also means incapability to recognize

TCP/IP spoo�ng attacks. In general, all upper layer functions are out of reach.

Normal network activity sometimes requires a �rewall to open a certain port to

establish a connection. However a stateless �rewall is unable to keep track of the

destination and source of the connection which compromises security. This problem

gave rise to the stateful �rewall system. [2, p. 6]

2. Network �rewall systems 5

2.2.2 Stateful Firewall

A stateful �rewall is in essence a stateless �rewall which operates on the OSI level 4

and thus processes more information [2]. It provides session veri�cation for connec-

tion oriented protocol, TCP. For each TCP connection, an own session is made and

a port is opened on the local computer to receive tra�c from a remote system. The

same port must be opened in the �rewall to maintain a connection between these

two.

This kind of a connection places the local computer under the risk of intrusion.

The stateful �rewall addresses the issue by keeping a state-table containing all out-

bound connections made by the stateful (TCP) protocol. The inbound connections

are accepted based on the source IP address, protocol and port. In addition, the

stateful inspection veri�es the incoming TCP packets to belong to an established

connection. For other protocols, the stateful �rewall operates as a packet �lter.

The stateful inspection requires higher performance from the hardware than the

packet �ltering due to the state table it maintains. It is also the reason why the

stateful �rewalls are generally considered more secure than the packet �lters. The

stateful �rewalls are, however, inconvenient to use as the �rst tra�c �ltering elements

in high bandwidth networks. Despite all, the stateful �rewall is considered secure

enough and performs well in most cases as a single �rewall device for a company

internal network. [2, p. 11]

2.2.3 Application Proxy Firewall

A proxy is a system, which receives messages and re-sends them on behalf of an orig-

inal source. An application proxy �rewall, sometimes called as a reverse proxy, does

the same kind of forwarding but it also examines the messages and makes forward-

ing decisions based on a ruleset. The ruleset may for instance contain information

about undesired patterns or messages speci�ed by the network administrator. Based

on the packet examination, the proxy �rewall veri�es the validity of the message.

The valid messages are rewritten and sent to the destination, otherwise the �rewall

rejects the message. An example ruleset of the SMTP application proxy denying

spam or abuse cases is shown in the Appendix B. [1, p. 99]

The application proxy �rewall o�ers a lot of security. The greatest advance is that

incoming messages are �rst sent to the proxy and then forwarded to the intended

destination [1, p. 99]. This way the backend server is protected from any direct

connections. Since the application proxy operates on the application level of the

OSI model, all levels can be inspected. Moreover, the message inspection provides

extensive logging capabilities that may reveal hacking attempts [2].

There are drawbacks to the application proxy �rewall as well. One of the greatest

2. Network �rewall systems 6

is the need for processing time. Because the message is carefully examined, the

�rewall spends a lot of time to complete each packet. Thus the application proxy

is not the system of choice for the high bandwidth or real-time systems. The setup

and maintaining of this kind of a �rewall is highly challenging which discourages the

building of an application proxy for each server. [2, p. 14]

2.2.4 Implementations in the Networks

The di�erent �rewalls have their own purposes in networking. An example network

setup containing all the di�erent �rewall techniques and their necessary features is

shown in Figure 2.1. Regardless of the network structure, more than one �rewall

can be used and it is even recommended especially if the network is extensive.

Multiple layers of �rewalls defend the network e�ciently and thus provide a safer

environment.

Internet

Packet filter
firewall

Stateful inspection
firewall

DMZ

Application
proxy

firewall

User access
servers

Public access servers

Secure public access
servers

Secure user access
servers

Application
proxy

firewall

Stateful inspection
firewall

Internal network

User
computers

Content Delivery
Network

Figure 2.1: Example �rewalling schema.

The network presented in Figure 2.1 is connected to the Internet using a packet

2. Network �rewall systems 7

�lter �rewall. The packet �lter is the only �rewall limiting the network connectivity

to the content delivery network (CDN). A CDN requires a lot of bandwidth and

hence the packet �lter is the �rewall of choice. The internal network is further

secured by a stateful �rewall. Thus it contains all the user computers and servers,

as well as application proxy �rewalls to enhance the security of some vital servers like

database or mail system. The demilitarized zone (DMZ) is likewise placed behind

a stateful inspection �rewall and, further, contain the application proxy.

The network defense described above includes �rewalling from the lightest to the

heaviest solution and also from the most generic to the most speci�c. The packet

�lter �rewall is best placed on the border of the network and the Internet. As

the packet �lter feature implemented in a router requires little capacity and can

easily handle large amounts of data, it won't reduce performance of the router. In

the example shown in Figure 2.1 the stateful �rewalls are then placed behind the

packet �lter to secure the organization's internal network and DMZ. This way the

stateful �rewall maintains the session tables and protects against attacks let through

by the packet �lter. As some tra�c is blocked by the stateless �rewall, it lightens

the load on the stateful �rewall. The application proxies should be placed as the

last �rewalls in front of the servers requiring highest security. A more common

implementation, however, is to use only a stateful �rewall to �lter all tra�c on the

edge of the network. This �rewall hence provides stateful inspection for TCP and

packet �ltering for other protocols.

2.3 Preventing Attacks

Manufacturers or developers may have built special features on �rewall systems to

prevent some speci�c kinds of network attacks. These attack recognition systems

deliver speci�c policies to a �rewall which then operates as a limiting element. Below

are described some of the most common systems that operate to support �rewall.

Intrusion detection systems (IDS) are an e�ective means for identifying network

attacks or hacking attempts. There are two di�erent main types of recognition

systems, a signature-based and an anomaly-based. The signature-based system seeks

signatures for commonly known attacks whereas the anomaly-based system creates

statistics to represent the normal network activity and acts when an alteration is

found. However, the IDS only gathers the information into a log and it is up to the

administrator to take action. [3]

Intrusion prevention systems (IPS) include all the IDS features in addition to an

automatic action for incidents. Some common procedures for preventing attacks are

terminating the connection or session, blocking access to the target due to a speci�c

attack attribute such as source IP, and blocking access to the destination resource.

2. Network �rewall systems 8

[4]

Deep packet inspection (DPI) is a method, that integrates a stateful �rewall

with intrusion detection and prevention systems. The stateful �rewall examines the

received packet and the intrusion detection system will inspect the message carried.

The DPI provides signi�cant bene�t when compared to a traditional stateful �rewall

system because the message is also inspected for fraud patterns. The disadvantage

of the DPI is that it requires a lot of computating power due to the heavy modifying

of the packet as well as the need for the application state information. [5]

The methods presented above detect attacks below application layer. However,

nowdays more and more tra�c uses common service ports and protocols such as

HTTP. This has caused the protocol and port based �rewalling to be less e�ective.

Gartner (2009) has presented the Next-Generation Firewall (NGFW) to be a system

detecting and preventing these attacks in both inbound and outbound directions. It

is also declared that the IPS and DPI methods are ine�ective against these attacks

[6]. Also, the Spire research (2004) claims: "The deterministic intrusion prevention

is the next generation �rewall with deep packet inspection." [7]. The NGFW is

a system that evaluates the protocol stack all the way to the application level and

protects systems within the network from malicious tra�c that may be hidden inside

common tra�c.

2.4 Best Practices

Firewall solutions as a research topic have been going on for years. While the devel-

opment of the security systems progresses, also the intrusions and attacks become

more sophisticated. Security issues are widely considered resulting in some best

practices in network security.

Building a �rewalling system begins by planning a �rewalling design. The design

should include information such as what needs to be protected, from whom, what

methods and devices are in use and how to protect the destination. Also possible

bottlenecks and performance issues need consideration.

The out directed �ltering is often forgotten. Companies tend to maintain the

inbound data �ltering � whether stateful or stateless � well, but no outbound limi-

tation rules are used. The outbound limitation rules are very delicate to plan but

are worth having, because by �ltering out directed tra�c some infected computers

can be prevented from sending data into the Internet. Compromised systems in the

internal network are unfortunately a reality. For example, the Internet Relay Chat

(IRC) protocol is often used by malicious software to communicate with hackers [1,

p. 117]. Thus by denying connection from typical IRC ports, it may be possible to

prevent computers from ending up in a botnet or the likes.

2. Network �rewall systems 9

Layered security architecture, also called as the defense in depth, enhance the

security of the �rewalling. The main concern is to e�ciently prevent breaking into

systems while still providing a fully functional network. The defense in depth also

provides security when a server has been compromised, since the network is protected

from itself also. An example network built with defense in depth is shown in Figure

2.2.

Network 1
(Workstations,

Sales)

Network 2
(Servers,

production)

Network 3
(Workstation,
development)

Network 4
(Servers, Internal

use)

Network 5
(VPN Endpoint)

Network n

Network

Internet

Figure 2.2: Defense in depth example network.

This network contains two di�erent types of �rewalls: the stateless and the state-

ful. The �rewall between the "Internet" and the "Network" is stateless and the

others are stateful. The stateless �rewall should be replaced by a stateful one if the

device can handle tra�c �ow. The purpose of multiple �rewalls is to have the net-

works separated by their function and vulnerability. The separation can be based on

the role of the servers and workstations in the entity. This creates an environment

where one network area can be protected from the others. Even if one network is

compromised, the others remain safe.

Figure 2.1 demonstrates a basic defense in depth �rewalling by containing a num-

ber of separated zones. Each network is an zone of its an own and the most important

computers are placed behind several �rewalls from the Internet. The �gure also il-

lustrates the use of an application proxy �rewall as the protector of a single server,

which is the recommendation.

When using zones, in a �rewall or router device, an ethernet interface is applied

2. Network �rewall systems 10

in a zone. Policies and routing decisions take place between zones. Figure 2.3 shows

an example of a traditional zone setup. The router contains four di�erent interfaces

and four di�erent zones. One of these is a local zone. In the zone based �rewalling

all tra�c must travel from one zone to the other. A local zone has been invented to

allow tra�c to the router itself. However this is not compulsory.

DMZLocal zone

Intranet zone

Internet

zone

eth0

eth1

eth2eth3

LAN 1

Servers

Workstations

Internet

Figure 2.3: Router example zone assignment

Other common zones include Internet, internal network and a DMZ zone. As

shown in Figure 2.1, the main purpose of the DMZ is to contain all public servers.

The packet �lter and the stateful �rewall preceding the DMZ contain open ports

to allow tra�c to services running in the public access servers while the internal

network remains closed. If more security is desired for a server within the DMZ, it

can be placed behind an application proxy �rewall, for instance, or in another DMZ

where the �rewall policies are stricter.

In the example zone assignment (Figure 2.3), the Internet is connected to the

router only via eth0 interface. The router is further connected to the DMZ by the

eth1 interface whereas the internal network zone connects to it by both eth2 and

eth3 interfaces. The latter interfaces are bonded together to share an IP address

and they are therefore considered as a one logical security area containing the same

security policies.

The deny action should always be used as the default setting in the �rewall.

Exceptions can then be added to allow required tra�c. This way the risk for an

accidental harmful �rewall policy is minimized.

Each network, or zone, should have speci�c �rewall rules in both directions. The

�rewalling policies should exist between all zones, including internal network and

the DMZ. The servers in the DMZ are naturally more vulnerable to attacks, so some

2. Network �rewall systems 11

of them may become compromised, yet the internal network remains safe thanks to

�rewall policies. Additional security to the internal network of a company against

attacks from within is brought by the di�erent zones and the defense in depth. In

general, any user having access to the local internal network should be considered as

a potential threat [2, p. 21]. A direct access to the network enables tra�c sni�ng

or attacks against the servers that can be reached from the internal zones.

These guidelines about organization �rewalling are methods to enhance network

security. Unfortunately there is no silver bullet for making a secure network. Some

essential elements are network monitoring devices and an established plan for dis-

covered attacks. However, true security comes only from the persistent development

of the security architecture.

12

3 CLOUD SYSTEMS

The cloud systems are computational systems providing an environment for running

large numbers of program code or operating systems (OS). Especially servers hosted

in a cloud system require virtualization by the cloud platform. The virtualization

is thus a key feature in the cloud system.

This chapter will discuss virtualization in general, how cloud relates to it, what

a cloud environment is and capacity viewpoints. As the cloud environment grows

larger, an universal and easy method for communicating with di�erent parts is

required. This chapter also covers the management of a cloud environment, its

networking and �rewalling.

3.1 Virtualization Trend

In the computing context, virtualization can be considered as an abstraction of a

service, storage, device or network. Implementations include computers, devices and

software just to name a few. Virtualization lowers the costs of hardware remarkably

and reduces idling of hardware by providing software acting like hardware.

Virtualization is not limited only to virtual machines. Almost anything can be

virtualized as denoted by Ameen and Hamo in: "Survey of server virtualization"

[8]. An entire computer can be virtualized, or only the desktop, for instance. In

desktop virtualization, the desktop is located on a server and displayed elsewhere.

Storage virtualization reserves logical blocks from a physical storage device. These

are only a few examples of virtualization. Virtualization consolidates resources used

by multiple parties into one hardware system.

Virtualization has grown rapidly over last few years especially among the hosting

operators. With virtualization, hosting companies may have more than one oper-

ating system running in hardware. A piece of software running multiple operating

systems simultaneously is called a hypervisor, and the system running a hypervi-

sor software is referred to as a host machine. A hypervisor provides a platform for

virtual machines (VM) that are also known as guest machines. The hypervisor can

further be separated in to two main types. The hypervisors of type 1 run directly

on hardware, whereas the type 2 hypervisors run on a host operating system. Type

1 is also known as a bare metal, or native, and type 2 as a hosted hypervisor. Both

of these are built on top of an operating system. The di�erence is that the type 1

3. Cloud systems 13

host operating system is for hosting VMs only and the type 2 host operating system

is a regular desktop OS such as Windows 7 with a VirtualPC hypervisor for running

the VMs. [8]

The power of server virtualization comes from running several operating systems

parallel in a piece of hardware. Virtual machines can change their host machines

�uently on the go in large virtual environments. Furthermore, snapshots can be

created of the VM to transfer the VM to another environment. Thus a server

operating system can accurately be set up in the hypervisor. [9]

The easy deployment of the VM is the key to popularity. In traditional virtu-

alization the deployment process can only be done by the system administrator.

However, the need for rapid server delivery for the end user has been rising among

the VM hosting operators. The answer is a cloud environment.

3.2 The Cloud in a Nutshell

The Cloud is an abstract service usually based on highly virtualized environments

that can be activated as an on-demand self-service and that gets billed by the usage.

Cloud VMs are always available in the Internet and are easily deployable. The

cloud should not be limited only to virtual servers as the following common levels

of services already exist: Infrastructure-as-a-Service (IaaS), Platform-as-a-Service

(PaaS) and Software-as-a-Service (SaaS). Their relationship is displayed in Figure

3.1.

The SaaS delivers the contents of the highest OSI layer to the user. In Software-

as-a-Service the software publisher sells to the end user only the software access via

the Internet. Software is then delivered as a service when requested by the user.

[11]

The PaaS hosts a platform for an application development environment that

includes all the necessary modules for software developing. With the PaaS systems

the developer is able to focus on the product instead of the environment. Software

developed using the PaaS tools is often run in the cloud as a SaaS system. [12]

The IaaS is on a lower in OSI level compared with SaaS or PaaS. With this

service the customers, also called as tenants, can rapidly deploy servers to evaluate

a system scenario or software. A tenant can be either an individual user or a

company that controls a speci�c set of virtual servers inside the cloud. As the

IaaS cloud operates on a pay-as-you-go model, the costs are minimal in short term

use. Also the deployment and testing phases become easier with software licensing.

However, in long term use the costs may rise above the value of hardware. [13]

The IaaS cloud can be done with hardware only, but this requires a complex

management system. The IaaS thus bene�ts from virtualization because of the easy

3. Cloud systems 14

Software-as-a-Service
(e.g. Salesforce,Google Apps, Microsoft Office 365)

Platform-as-a-Service
(e.g. Google App engine, OpenShift)

Infrastructure-as-a-Service
(e.g. Amazon Web Services, Elastichosts, Rackspace)

Development tools, databases, message queues, scalability, web servers

Computing (virtual machines), storage, networking

Software service

Figure 3.1: Cloud service stack [10]

and fast setup of the virtual machines. Virtual machines are also called as instances

when they are placed in the cloud. A speciality of the instances is that they have

some highly dynamic resources available. These resources are further used as �avors

in the instances. Each instance has its own �avor that speci�es the number of virtual

CPUs, the amount of memory and the hard disk assigned to it. A �avor follows its

instance in the cloud when transferred from one host to another. The instances can

be freely moved inside the cloud and this is usually done automatically to balance

the load in the cloud platform. The moving operation is also called as migration.

Hardware systems hosting the cloud can vary a lot, being either a single server or

a full-sized server farm. The size depends on the needs of the system. If only a proof-

of-concept is intended, an IaaS cloud can be set up in a VM. On the other hand,

a full-sized multi-tenant cloud environment requires a great deal of capacity. Also

commodity hardware, meaning hardware no longer used for production, sometimes

runs the cloud.

Cloud systems include four di�erent deployment models: private, community,

public and hybrid cloud. Private clouds are for one organization only. A community

cloud is shared between co-working groups. The private and community clouds

are usually managed by the owner of the cloud. Public clouds are available for

everybody including individual users, groups and companies. They are set up and

sold by organizations specialized in cloud services. A cloud infrastructure including

3. Cloud systems 15

two or more of the clouds presented above is called a hybrid cloud. The hybrid

cloud is often customized and priced depending on the customer requirements. It

also o�ers a good platform as the backend solutions are separated, yet data and

applications can be migrated between the clouds. [14]

Cloud platform providers such as Openstack or VMWare can be used to set up a

cloud with any of the presented cloud deployment models, and all the deployment

models can be created using one or more cloud platforms. The cloud set up using

more than one platform provider is called a multi-platform cloud. When a private

cloud is set up using one platform and a public cloud using another, it becomes a

multi-platform hybrid cloud. A common implementation is to have a public cloud

deployed on top of an open-source cloud platform provider and a private cloud on

top of a commercial cloud platform provider.

Openstack is one of the open-source cloud computing projects. It aims to provide

comprehensive software to manage vast amounts of resources for the cloud [15]. The

Openstack architecture consists of di�erent nodes, that are responsible for speci�c

service areas. Figure 3.2 displays these and their relationships. The di�erent archi-

tecture parts are a network, a block storage, a compute, an image service, an object

storage, an identity and a dashboard [16].

Figure 3.2: Openstack conceptual architecture [16]

The virtual machines are running in the compute node and the other parts pro-

vide supporting elements for them. The network is responsible for the network

connectivity and the image service provides storage volumes for the VMs. The im-

3. Cloud systems 16

age service stores actual virtual disk �les to the object storage. The only visible

part for the user is the dashboard which provides the frontend service. The identity

service authenticates the use use of all these parts. The parts also need to commu-

nicate with others in an e�ective way in order to have a stable and fast environment

for the customer. The messaging between nodes is done using universal Application

Programming Interface (API). [16]

3.3 Managing Large Scale Cloud Environment

Cloud environments set up using multiple platform provider products can be cen-

trally managed by a set of custom tools. One of these is REST API which is discussed

in this section. Also a central management tool, Deltacloud, is brie�y explained.

3.3.1 REST API

ARepresentational State Transfer API (REST API) features the use of URI-identi�ed

resources and commands instead of traditional application state resources. The ben-

e�t is that the server is no longer required to maintain a session. Without the state

information the resource can be freely used all the time, making it the possible for

many clients to use the same application resource simultaneously. [17]

The REST is built on top of an HTTP. The HTTP is an access method for appli-

cations that communicate using REST URI statements. This way the application

does not need any speci�c protocol for communication as this happens �uently with

HTTP tra�c. There are four main types of messages implemented in the REST

system: put, get, post and delete.

The put message generates a new resource to the server and this is used afterwards

by other messages to identify the right sessions. A put message returns the resource

URI to the client in message exchange. A get message sends a message to the

server application and requests for data information from the speci�c URI. With

post messages it is possible to send information to the server for updating. The

update can either be for an existing resource, or it can create a new resource which

then returns the information like the put message. After a resource is no longer

needed, it should be deleted by sending a delete message to appropriate URI. [17]

3.3.2 The Deltacloud

The Deltacloud provides an abstraction layer for managing cloud environments set

up by using products of many platform providers. It o�ers three distinctive API

layers to work with di�erent cloud systems: Deltacloud classic API, Distributed

Management Task Force Cloud Infrastructure Management Interface (DMTF CIMI)

API or EC2 API [18]. The cloud set up with multiple cloud platforms can thus

3. Cloud systems 17

be managed by a central management portal. An overview of the Deltacloud is

displayed in Figure 3.3. Customers connect to the deltacloud REST API through

client software and the deltacloud provides the connectivity, for example to EC2,

through "deltacloud-driver-ec2" driver. EC2 refers to Amazon Elastic Compute

cloud [19].

Figure 3.3: Deltacloud overview [18]

The drivers are not limited only to the commercial cloud operators such as Ama-

zon or Rackspace. There are also a number of open-source cloud platforms (Open-

stack, Eucalyptus). The cloud environments can have parts from a commercial cloud

platform like VMWare vCloud as well as from a free open-source environment, and

yet be managed by the same portal.

An environment running more than one cloud operating system simultaneously

provides environment with a very high availability. The customers will rarely end up

with an entirely unaccessible cloud. When a cloud set up on one platform provider

environment crashes, the other system will still be functional. Naturally the VMs

in a crashed cloud are unusable, but at least the customers will be able to launch

new virtual machines in another cloud operating in the Deltacloud.

3.4 Hypervisor Capacity and Load Estimation

Virtual machines running in hardware share its resources. This may be done equally

or by approximating the need for resources for each VM. A hypervisor allocates a

number of CPUs, physical memory and disk for VMs. The CPU, the disk and

the memory are classi�ed as private by the VM, but in reality the hypervisor shares

these with all virtual machines. This causes capacity problems when many machines

require plenty of a particular resource.

"VM consolidation: A real case based on OpenStack Cloud" by Corradi, Farelli

and Foschini discusses VM CPU performance related to the host CPU in the Open-

stack Diablo cloud. The test environment was running Intel Core Duo E7600

@3.06GHz CPU and had Kernel Virtual Machine (KVM) as a hypervisor. The

3. Cloud systems 18

virtual machines contained one virtual CPU (VCPU) with fair processor scheduling

by the host system. The results of the CPU load experiment are shown in Figure

3.4. [20]

Figure 3.4: VCPU Load (A), aggregated host CPU load (B), and power consumption (C)
for the raw VCPU test. [20]

The VCPU load graph (A) demonstrates the virtual CPU state when more virtual

machines are added to the hypervisor. On the X axis are the number of virtual

machines running, on the Y axis is the actual VCPU load per VM and the lines

display the amount of required VCPU load. There are two physical CPUs, which

is directly seen on the graph: the two virtual machines with a 99% CPU load

requirement can both use almost as much computing power as they need. However,

right after the third VM the load increases and the CPU time has to be shared

between the virtual machines, which causes loss of VCPU performance on each VM.

As more virtual machines with high requested CPU times are added, each VM ends

up having less and less CPU time.

In Figure 3.4 the host CPU load graph (B) displays the hypervisor CPU usage

with changing number of VMs and their loads. The Y axis represents the hypervisor

CPU load and the maximum is 200% because the host contains two CPUs. As in

the VCPU load graph (A), the knee point comes after the second VM. The host

manages well two machines at the most. When the third VM requires CPU time

more than approximately 80%, the host CPU is too heavily loaded to provide the

CPU time requested. The knee point also correlates with the number of physical

CPU cores. The VCPU loads drop when the host CPU reaches a 200% usage.

This may cause problems in a hypervisor that has a constant load. The constant

load occurs especially with a VM running a router, a �rewall or a VPN service. A

hypervisor operating with such virtual machines should be designed to answer the

needs of the expected normal VM state.

Virtualization reduces the idling of hardware and the power required per VM. In

Figure 3.4 the power usage graph (C) displays the power consumption of di�erent

VCPU loads with an increasing amount of virtual machines. The knee point, like

before, is reached when the hypervisor becomes fully loaded. As a conclusion, an

environment can handle a lot of virtual machines as long as they don't require

3. Cloud systems 19

constant high CPU usage.

3.5 Firewalling and Network Abstraction in the Open-

stack Cloud

Cloud virtual machines require �rewalling as well as physical computers. It is com-

mon to �rewall either a single cloud VM or the whole network where the VM belongs

to. Because of the abstract network topology in cloud computing, �rewalling is, un-

like in the traditional network, done by security groups in the Openstack cloud.

A security group is a �rewall ruleset that contains at least one statement including

protocol, destination and source port, as well as source address statements for each

group. The security group is then mapped in the Linux iptables that provides a

stateful �rewall for the client virtual machines [21]. Iptables is a Linux package that

con�gures the Linux kernel �rewall. Iptables is stateless by default but the network

con�guration script changes it to become stateful. The iptables �rewalling has a

wide understanding of the di�erent networking protocols but security groups can

only be con�gured for regular TCP, UDP and ICMP tra�c in the Openstack [22].

A typical network and �rewall setup is shown in Figure 3.5. Each tenant, or

customer, controls a number of VMs located in the network area reserved for that

speci�c customer. The IP addressing in these networks is done by using a private

addressing range. The Internet connection for VMs is accomplished with the use

of a NAT. The NAT translates private IP addresses to public IP addresses. In

the Openstack cloud platform, these public IP addresses are called as �oating IP

addresses.

A �oating IP is a public IP address that follows the client VM in the cloud. The

�oating IP is bound to a speci�c VM using 1:1 NAT. Even if a customer requires

a direct public IP address to the VM, a private IP, NAT and �oating IP, are used.

Without this, a transparent live migration between cloud compute nodes would not

be possible when using a traditional network.

The Openstack cloud networking node uses a networking namespace to isolate

tra�c inside a single cloud node. In namespace several networking layers are run

parallel in Linux with each layer having its own �rewall, NAT policies and routing

table. Thus namespace is a totally isolated environment that has its own networking

stack. It tolerates overlapping IP addressing ranges for client networks. [22]

Although the networking in the cloud platform is very abstract, it requires a lot of

di�erent virtual components such as interfaces, ports and switches to be fully func-

tional. Further, the individual virtual machines in the cloud also need them to gain

connectivity to the Internet or to other VMs. The Openstack has approached this

in the Grizzly release by using a separate Networking-as-a-Service called Neutron

3. Cloud systems 20

Cloud nodes
responsible for

networking

Cloud
node 1

Cloud
node n

Internet

Floating IP pool
W.X.Y.Z/nw

NAT, firewall

Tenant B VMs
10.26.44.0/24

Tenant C VMs
10.72.39.0/24

Tenant A VMs
10.26.34.0/24

Figure 3.5: Typical cloud networking and �rewall structure.

(formerly Quantum) [23]. The Neutron relies on di�erent virtual plugins running

in a host Linux OS. Traditionally, the Open vSwitch plugin is used together with

other plugins to provide network functionality.

The Open vSwitch is an open-source L2 virtual switch especially designed to

transfer tra�c both between the VMs and with the outside world. The vSwitch is

thus responsible for transferring tra�c inside a single cloud node and between all

VMs in a single hypervisor. Another plugin similar to vSwitch is a Linux bridge

plugin. The Linux bridge acts like a virtual hub, repeating every message it receives

to all other ports. The Linux bridge could even replace the Open vSwitch, but it

lacks the necessary features such as VLAN.

However, the vSwitch and the Linux bridge need to be connected to other plugins

inside a cloud node. This can be accomplished by using a plugin called virtual

ethernet (VETH) pair. A VETH interface transmits all tra�c it receives directly to

another VETH interface and thus can be considered as a virtual patch cable.

3. Cloud systems 21

Because the physical network contains L3 devices such as routers, the virtual net-

work needs also their equivalent. The Open vSwitch uses internal ports to operate

as an L3 interface. The internal ports are used for routing or Dynamic Host Con�g-

uration Protocol (DHCP) server, for example. DHCP server allocates automatically

IP addresses for devices in a network. A DHCP is thus required for an automatic

IP address allocation for VMs in the cloud. The Neutron uses a DHCP server called

dnsmasq to provide this.

An interface is also an imporant part of a virtual network. It is required to

connect to either a physical network or a VM. A physical interface such as eth0 is

an entrance point to a physical network. A virtual interface called TAP is used

inside a virtual system. A TAP device is an L2 level virtual ethernet interface that

is especially used in a cloud hypervisor to communicate with a VM. A TAP device

is named as vnetX where the X is a running number of the interface.

When using the Open vSwitch plugin for a network environment in the Openstack

cloud platform a network setup for both compute and network node is required. The

networking node structure is shown in Figure 3.6 and the compute node network

structure in Figure 3.7.

tapWWWtapXXX qr-YYY qr-ZZZ

br-int

Port VLAN tag:1 Port VLAN tag:2

br- eth 1

To Public Network

Dnsmasq is assigned
to each subnet

Eth 1

Eth 0

VLAN 102

VLAN 101

br-ex

qg-VVV

phy-br-ex

IP IP IP IP

IP

Configured by L3 Agent dnsmasqdnsmasq

int-br-eth1

phy-br-eth1

To Private Network

Configured by L2 Agent

Configured by DHCP Agent

NAT with iptables

int-br-ex

VLAN ID is converted with flow table
dl_vlan=101 -> mod_vlan_vid:1
dl_vlan=102 -> mod_vlan_vid:2

VLAN ID is converted with flow table
dl_vlan=1 -> mod_vlan_vid:101
dl_vlan=2 -> mod_vlan_vid:102

Interface

veth pair

Open vSwitch

Internal port

Linux Bridge

Figure 3.6: Networking node structure [22].

A public network and the networking node are connected by an interface named

eth0 in Figure 3.6. Incoming tra�c is forwarded from the eth0 to an open vSwitch

3. Cloud systems 22

br-ex. The internal ports qg-VVV, qr-YYY and qr-ZZZ form a router responsible

for transferring tra�c between the open vSwitches br-ex and br-int. A namespace

is used to create the router. The ports tapXXX and tapWWW are connected to

the br-int vSwitch and they are considered as DHCP server ports. Thus the virtual

port tapXXX operates as a DHCP server and the port qr-YYY as a router for the

network in VLAN 1.

The vSwitch br-int is responsible for keeping virtual network tra�c isolated. The

internal VLAN ID that is used for isolation is converted to a suitable global VLAN

ID between the vSwitches br-int and br-eth1. A VETH pair (int-br-eth1, phy-br-

eth1) between vSwitches makes the data �ow. The vSwitch br-eth1 is also connected

to the interface eth1 to gain access to a private network.

vnet0 vnet1 vnet2 vnet3

Vm 0 2

Eth 0
IP

Vm 0 3

Eth 0
IP

Vm 0 4

Eth 0
IP

qbrXXX

qvbXXX

qbrYYY qbrZZZ qbrWWW

qvbWWW

br-int

qvoWWWqvoYYY qvoZZZqvoXXX

qvbZZZqvbYYY

Port VLAN tag:1 Port VLAN tag:2

int-br-eth1

br- eth 1

phy-br-eth1

Configured by Nova Compute

VLAN ID is converted with flow table
dl_vlan=101 -> mod_vlan_vid:1
dl_vlan=102 -> mod_vlan_vid:2

VLAN ID is converted with flow table
dl_vlan=1 -> mod_vlan_vid:101
dl_vlan=2 -> mod_vlan_vid:102

Tenant flows are separated by
internally assigned VLAN ID

Tenant flows are separated by
user defined VLAN ID

Configured by L2 Agent

Eth 1

Vm 0 1

Eth 0
IP

VLAN 102

VLAN 101

Interface

veth pair

Open vSwitch

Internal port

Linux Bridge

To Private Network

Figure 3.7: Compute node network structure [22].

The private network is responsible for transferring data between all the compute

and network nodes. It can also be described as a backbone network for internal

cloud tra�c. The compute node virtual network structure and its connection to the

internal network is shown in Figure 3.7. In this example, the internal network is

connected to the eth1 interface at the compute node. The eth1 is then connected to a

virtual switch br-eth1 and this is further connected to another vSwitch br-int. Again,

these two vSwitches are required to make a VLAN ID conversion between the global

3. Cloud systems 23

and internal VLAN IDs. The virtual switches br-eth1 and br-int are connected by

using the same VETH pair (int-br-eth1, phy-br-eth1) as in the networking node.

The vSwitch integration bridge (br-int) running in the compute node (Figure

3.7) is the central part of the virtual network structure. The virtual networks are

separated by using customer speci�c VLAN IDs on the br-int vSwitch. Therefore

all VMs in the same VLAN communicate through this vSwitch inside a single hy-

pervisor.

There is one end of a VETH interface for each VM to connect them with the

br-int vSwitch. The interfaces are named as qvoXXX, qvoYYY etc. The other end

of the VETH interface pair is named qvbXXX and it connects to a VM speci�c

virtual Linux Bridge device named qbrXXX. The XXX part in the name identi�es

the interface or bridge to belong to a single VM. A virtual TAP interface like vnet0

is connected to each Linux Bridge and is also the VM interface seen by the guest

OS. The TAP interface needs to be connected to the vSwitch via the Linux Bridge

because the iptables rules are assigned to the TAP interface and the Open vSwitch

is not compatible with TAP interfaces that contain iptables rules.

As a conclusion, the Openstack cloud platform provides a virtual network envi-

ronment that mimics the structure of a physical network. The current con�gurable

parts, the �rewall and the NAT, are however seldom enough for a more advanced

user. The complexity of the network plugins is necessitated by the existence of multi-

ple networks as well as the NAT and �rewall features. Unfortunately this also means

that additional means of security are di�cult or almost impossible to implement.

Another solution like a virtual �rewall is thus implicated.

24

4 THE VIRTUAL FIREWALL

Firewalling in the cloud can be done using either a cloud platform provider im-

plementation, a hardware appliance, or a virtual machine inside the cloud itself.

This chapter describes the current problems in �rewall implementations, how the

�rewalling of a cloud network is traditionally done and future prospects. Also the

centralized management is considered in this chapter.

4.1 Security-as-a-Service Concept

A traditional way to �lter tra�c in the cloud network is to use the cloud platform's

own �rewall. However, common features in the �rewall appliances such as VPN,

IDS, load balancing and routing are currently not available in the Openstack cloud

platform for example. Even if a cloud platform provider implements more features,

these may be missing from the other providers, which causes problems in a multi-

platform cloud environment.

An alternative is a separate security solution featuring a stateful �rewall, a VPN

endpoint and also a routing daemon. The cloud environment also requires a suitable

networking structure to operate with a �rewall VM. Controlling a VM in the cloud

is usually done via a local console or an SSH connection. A centralized management

through public network is needed for the multi-platform hybrid cloud, requiring a

REST API or some similar feature from the security solution. The multi-platform

hybrid cloud requires a multi-purpose �rewall VM that can be launched on-demand

in the cloud and used as a gateway device for a speci�c cloud network segment. This

concept is known as Security-as-a-Service (SECaaS).

The SECaaS concept may provide all the missing features described above in

addition to many more which are required by the hosting operator or the customer.

The SECaaS may for example be a fully sized NGFW that monitors network tra�c

for intrusions. Also the SECaaS o�ers a great visibility to a single �rewall and to the

whole network because all SECaaS devices are controlled centrally from the cloud

management and they report their state to the control center. In addition to logging

capabilities through the central management, also con�gurations for desired services

can be distributed to a number of devices.

The cloud network can likewise be protected by an external �rewall appliance.

However, the deployment time for such an appliance is longer than for a virtualized

4. The Virtual Firewall 25

one. Also the virtual �rewall is usually the best choice because the cloud is meant

to o�er on-demand services for the user with the pay-as-you-go -model.

4.2 Virtualizing the Firewall to Cloud

A virtual �rewall is usually set up on top of Linux or Unix and it runs a special

set of software capable of operating as both a router and a �rewall. The features

of a virtualized �rewall and a traditional �rewall appliance are mostly alike. The

major di�erence is the device running the �rewall engine. A �rewall appliance is a

physical device, whereas a virtualized �rewall is just a bunch of code running inside

a hypervisor.

Since the virtual �rewall is a VM running inside a hypervisor, it can be cloned.

Therefore it is relatively easy to clone the required amount of �rewall VMs to provide

�rewalls for multiple separate networks. The virtual �rewalls can exist in the cloud

which opens new deployment options. For instance, the �rewall can be launched as

an on-demand self-service using the pay-as-you-go billing. This means that the end

user is no longer required to wait for the vendor to deliver the appliance. Instead of

the traditional physical appliances, the �rewalling and network setup is done using

only software.

The virtual �rewall functionality is based on a VM containing at least two in-

terfaces between which the �rewalling is done. The cloud network traditionally

operates by using private IP addressing and thus the virtual �rewall is required to

use a NAT between the interfaces. The virtual �rewall transfers the NAT and the

�rewall operations from the cloud platform solution, such as Openstack Neutron,

to a virtual machine running in the same cloud. This makes the load caused by

the �rewall and NAT to the Neutron module to be distributed in the computation

nodes of the cloud. The conventional packet �ow in the Openstack network using

the Open vSwitch plugin from the end user to the VM is shown in Figure 4.1.

Figure 4.1 contains the network structures that were described in depth in Section

3.5. There are two main parts: the cloud platform network and the compute nodes.

The network nodes (Neutron) are connected to the cloud provider's edge router using

the eth0 interface. Tra�c exits and enters the Internet here. The eth1 interface in

the Neutron nodes operates as the connection point to cloud's private network where

data is exchanged between all the necessary nodes. The compute nodes containing

the VMs are connected to this private network using the eth0 interface.

A more simple setup is displayed in Figure 4.2. There is now no separate network

node, and thus the public network is directly connected to the compute nodes. The

NAT and the �rewalling are done by a �rewall VM instead of a Neutron network

node running iptables and the NAT. Tra�c between the VMs in the same compute

4. The Virtual Firewall 26

Internet

User

Tenant n

Interface

veth pair

Open vSwitch

b
r-

ex

et
h

0

Internal port

q
g-

V
V

V

q
r-

YY
Y

b
r-

in
t

in
t-

b
r-

et
h

1

p
h

y-
b

r-
et

h
1

b
r-

et
h

1

et
h

1

eth0 eth1 eth0

et
h

0

b
r-

et
h

0

p
h

y-
b

r-
et

0

in
t-

b
r-

et
h

0

b
r-

in
tLinux Bridge

q
vo

X
X

X

q
vb

X
X

X

q
b

rX
X

X

vn
et

0
 (

ta
p

)

Virtual
Machine

eth0

Cloud platform

network node

Cloud platform

compute node

Cloud provider edge
firewall /router

eth0

n times n times

eth1 eth0

Figure 4.1: Openstack cloud conventional setup using vSwitch module.

Internet

User

Tenant n

Interface

veth pair

Open vSwitch

Internal port

eth0

et
h

0

b
r-

et
h

0

p
h

y-
b

r-
et

0

in
t-

b
r-

et
h

0

b
r-

in
t

Linux Bridge q
vo

X
X

X

q
vb

X
X

X

q
b

rX
X

X

vn
et

0
 (

ta
p

)

Cloud provider edge
firewall /router

n times

eth0

Virtual
Machine

eth0

Virtual
firewall

eth0 eth1

VLAN
network

VLAN
network

Cloud platform

compute node

Figure 4.2: Openstack cloud network utilizing virtual �rewall.

node now �ows through the br-int bridge from one VM to another. Further, tra�c

between the virtual machines located in the di�erent compute nodes �ows via a

physical switch plane and is separated by VLAN IDs. The solid green line represents

4. The Virtual Firewall 27

tra�c inside a node and the dotted line between the nodes.

VLAN function is necessary for building a safe and active environment. The

global IP addresses need to be isolated in a speci�c VLAN and be connected only to

a virtual �rewall eth0 interface. This way the virtual �rewalls communicate directly

with the cloud provider's edge router by using global IP addresses. This public

connectivity is represented by the red line from the edge router to the compute

node.

A major change like this provides countless opportunities. A global IP address can

now be directly assigned to a single VM without a NAT and a �rewall. Unfortunately

it compromises security because �rewalling should be done in each virtual server

separately. Also modi�cations can be made at least to Openstack compute node

networking modules. Since Linux bridge is used for gaining the iptables support,

which is no longer needed, the Linux bridge and VETH pair can be removed from

these modules. Such optimization is outside the scope of this thesis and should be

done as a future work.

4.3 Security Software Selection

Firewall software for virtual machines needs to be carefully chosen to ful�ll the

requirements of the cloud platform and the tenant. These requirements include an

open source platform, a NAT, a stateful �rewall, a VPN solution, a REST API and

a routing daemon. This is the basic setup each SECaaS solution should have.

Open source network operating systems can easily be found. Usually they are

based either on some Linux or BSD distribution such as Okapi, Pfsense, ClearOS and

Smoothwall [24, 25, 26, 27]. A NAT, a �rewall and a VPN are included in all of these

software distributions but they lack the API. A setup on Debian GNU/Linux was

also considered but dismissed due to the time consuming and cumbersome inclusion

of the REST API feature [28]. Vyatta, on the other hand, was found to contain

the �rewall, the routing daemon, the VPN and, most importantly, the REST API

[29]. These features are only in the enterprise version of Vyatta that is updated

by the vendor and is delivered with a cloud container template. Although costly,

this reduces the time and e�or of the cloud operator signi�cantly. Additionally,

the Amazon EC2 contains a template for Vyatta, allowing the private cloud to be

extended in Amazon through a VPN [30].

Based on these characteristics, the �rewall VM, also called as the security in-

stance, chosen for this master's thesis was the Linux routing and �rewall engine

called Vyatta Enterprise vRouter by Brocade. It provides a multifunctional Linux

distribution that can be used to secure internal network and to work as a VPN end-

point simultaneously. Vyatta's �rewalling engine is done by using a Linux iptables

4. The Virtual Firewall 28

package. Firewalling can be accomplished by using either per-interface policies or

zone based policies [31]. The zone based policies (see Chapter 2) were chosen for

this demonstration. Vyatta has PPTP, IPSec and OpenVPN features for site-to-site

and remote access VPN connections. Routing in Vyatta is with the Quagga routing

engine, which supports RIP, OSPF and BGP routing protocols. Vyatta has nor-

mally the NAT together with a �rewall. In this thesis, Vyatta is placed between

the Internet and a private network containing many cloud VMs to provide Internet

connectivity for them. Thus the security instance operates as a gateway for all the

cloud VMs running in a virtual private cloud.

4.4 Management Aspects

The enterprise version of Vyatta has the control options of Command Line Interface

(CLI), Web UI and REST API. The most traditional of these three for �rewall

controlling is the CLI. It has been widely used in most enterprise level �rewall

appliances. A cloud platform requires a management interface for the tenant to

make changes to the cloud infrastructure when necessary. Since Vyatta is to be a

part of the cloud infrastructure, a combined cloud dashboard is needed. This is

illustrated in Figure 4.3

Cloud portal server

Deltacloud
API drivers

Firewall management
Backend

Cloud dashboard

Firewall management
Frontend

Cloud
platform

Cloud
platform

Virtual machine
management

Firewalls

SSH CLI

WebUI /API

Tenant

Figure 4.3: Centralized cloud platform and �rewall management.

The cloud dashboard runs in a cloud portal server along with some other software

4. The Virtual Firewall 29

components. The tenant connects either to the Cloud dashboard or directly to the

�rewall SSH CLI for con�guration. The Cloud dashboard includes both the virtual

machine management and the �rewall management frontend features. The VM

management communicates with the Deltacloud API drivers that further manage

the cloud platforms. The �rewall management frontend commands its backend that

is then responsible for communicating with the �rewalls. This section takes a brief

look of the �rewall management through either the cloud dashboard or the �rewall's

own WebUI and CLI.

4.4.1 Cloud Portal Server and Dashboard

Management of the security instance (Virtual �rewall) is preferably done by a cus-

tomized interface called a cloud dashboard. It is not meant to fully replace the

�rewall's own CLI or WebUI, but to make management more user-friendly and cen-

tralized. The dashboard provides con�gurations for most basic features as well as

state information for all the �rewalls managed by a speci�c user account.

The �rewall management backend uses REST API to execute operational and

con�guration mode commands (Chapter 5.3) in the �rewall (Figure 4.3). The REST

API resembles a remote CLI, which provides multifunctionality. It thus o�ers a

customizable controlling environment for the tenants based on their needs.

The �rewall management frontend can also be called as a customized webUI.

It exists especially for creating and editing general con�gurations, NAT rules and

�rewall policies. In addition to these, the frontend also provides information about

the �rewall status, for example �rewall policies and routing table. Log �les stored in

/var/log/ are unreachable for the REST API as there is no appropriate command

to read them. More experienced users, however, can reach them via CLI.

For the general con�guration, the management frontend provides methods for

modifying details such as the hostname. The �rewall policy con�guration is wider:

the user may select a zone, a rule number, IP addressing and port details as well as

a protocol. Removing a �rewall rule means removing all the related settings. An

individual setting is bound to the rule and thus cannot be separately removed. A

NAT rule contains the rule number, IP addressing and port details together with

the protocol �eld. The NAT rules may be removed only one by one. If the user

requires more con�gurable objects such as routing or VPN, CLI should be used via

SSH to reach them.

The central management simpli�es the �rewall con�guration especially when the

user has a number of �rewalls. The end user is no longer required to make a separate

CLI or WebUI connection to individual �rewalls from their internal networks. The

dashboard further provides parallel con�guration for the �rewalls. The manage-

ment server can, for example, send a con�guration command any number of times.

4. The Virtual Firewall 30

Therefore sending a new Network Time Protocol (NTP) server information to all

the �rewalls can now be done with only one command.

4.4.2 CLI and WebUI

A Command Line Interface (CLI) is the basic con�guration interface for a router

or a �rewall device. Vyatta CLI is accessible from the local console of the �rewall

instance or via the SSH, that provides an another remote con�guration method for

the user. The virtual �rewall including the host Linux, can be controlled by the CLI

since it is set up on top of a Linux shell. The CLI is thus always available when

the user has access to the shell. The local console authentication always reqires a

username and a password whereas the SSH also supports a public key.

The CLI on Vyatta is similar to that of the Juniper JunOS CLI. Both contain the

same basic commands and the con�guration tree structure. The CLI is separated

in to the operational and the con�guration mode. The operational mode provides

commands for viewing the �rewall state whereas the con�guration mode is used

for editing the system con�guration parameters. The aforementioned modes of the

REST API follow these same principles.

The WebUI is another friendly way to con�gure the �rewall. It is alike a regular

ADSL �rewall router WebUI. The WebUI operates on top of the lighttpd web server

daemon and thus is also responsible for the message exchange of the REST API.

31

5 SECURITY INSTANCE IMPLEMENTATION

The SECaaS has been developed to be easily deployable by the end-user. This is

accomplished by an automated �rewall initiation and bonding of the �rewall with

the management dashboard. This chapter describes how the SECaaS can be used in

common setups and how to deploy it with the Openstack or with an another cloud

environment. The �rewall VM's communication with the management server is also

discussed. Furthermore, some answers concerning the user limitations and system

security are provided.

5.1 The Common Setup and its Di�culties

When a company plans to outsource servers, a question may arise about building

a secure connection between the company internal network and the cloud server

network. A VPN is often chosen to provide such a secure multifunction tunnel.

However, the Openstack Neutron for instance does not provide VPN tunneling with

the Grizzly release and thus a virtual �rewall that supports VPN tunnels, such as

Vyatta, is required. Figure 5.1 shows a common way to extend the company internal

network to a cloud network.

Edge router/
firewallEdge firewall/

Router/NAT

Cloud provider

Corporate XYZ
Environment

Vyatta

VPN Tunnel

Corporate internal
network

Cloud instances

Corporate XYZ

Cloud portal
server

Internet

Private cloud
network

Figure 5.1: Internal network extended in a private cloud.

The Corporate XYZ Environment in the �gure represents a common enterprise

5. Security Instance Implementation 32

level internal network and the Cloud Provider the cloud hosting company. Hosts

owned by a certain company are placed in the cloud in a network segment called the

private cloud. All hosts of a private cloud share the same subnet and communicate

with the Internet through the same router. The multifunctional virtual �rewall

is placed between the Internet and the private cloud to protect servers as well as

to operate as a gateway to the Internet and as a VPN endpoint to the corporate

internal network.

A cloud network requires a NAT to be able to save IP address resources when a

private cloud network is set up. However, a NAT behind a NAT can cause trouble.

The Neutron allocates private IPv4 addresses for the VMs and provides the public

IP addresses as �oating IPs using 1:1 NAT. The VM �rewall also implements NAT

and thus overlapping IP addressing may occur. As described in Section 4.2, the

Neutron networking module in Openstack cloud needs to be removed to ensure

proper network functionality.

Figure 5.2 shows �rewalling and relationships of common zones. There are four

di�erent zones: external, internal, local and VPN. The external zone is connected

to an untrusted network (the Internet) and the internal zone to a trusted network

(private cloud). The local zone is meant for tra�c to the Vyatta �rewall. The VPN

zone operates as a zone for networks linked by VPN connections. The end user

may modify the �rewall rules using from-zone and to-zone statements. Each zone

contains also a non-con�gurable deny all rule. Its number is 10000, being the last

rule. Other rules (1-9999) are freely editable by the user.

Edge router/
firewall

Cloud provider

Vyatta

Cloud instances

Corporate XYZ
Private cloud

Cloud portal
server

Internal
zone

External
zone

Local
zone

VPN
zone

Figure 5.2: Vyatta �rewall zone assignment for a private cloud.

The cloud portal server is located in the cloud provider network and the users

5. Security Instance Implementation 33

are able to control their �rewall VMs through the cloud dashboard operating in this

server. The clients connect to the cloud portal server which then communicates with

the �rewall VMs. The message structure used for communication between the cloud

portal server and a �rewall is explained in Section 5.3.

The cloud portal server requires connectivity to the Vyatta REST API from the

external zone and thus a proper �rewall rule needs to be created. This rule is called

a management permit rule and applied from the external zone to the local zone. No

other rule should block it.Therefore the management permit rule is set as the �rst

rule. The rule provides security by allowing connections only from the cloud portal

server IP address. The destination port and the protocol should also be set to make

the rule stricter. An example ruleset is shown in Table 5.1.

Rule # Src. addr. Dest. addr. Src. port Dest. port Protocol action
1 v.x.y.z 0.0.0.0 0 56443 TCP PERMIT

10000 0.0.0.0 0.0.0.0 0 0 ANY DROP

Table 5.1: Example �rewall ruleset from External zone to Local zone.

The VPN tunnel from the company internal network is terminated in the Vyatta

�rewall and so another �rewall rule needs to be created for it. The protocol and the

port follow the settings of VPN software. The �rewall rule for the VPN connection

is set up between the external zone and the local zone. However, data inside the

tunnel �ows from the internal zone to the VPN zone and vice versa.

IPsec is commonly supported in �rewall appliances and thus often utilized in

networks like that in Figure 5.1. The cloud provider network may prohibit the

negotiation of the VPN tunnel between the private cloud and the company internal

network. The IPsec faces this problem when the connection is made through a

NAT. The IPsec Authentication Header (AH) invalidates the authentication phase,

leading to malfunction [32]. Internet Engineering Task Force (IETF) has tried to

approach this with a NAT traversal (NAT-T) by forcing the IPsec to use the UDP in

the port 4500 [33]. This however has no e�ect in the Openstack because the inbuilt

security group �rewall does not allow even the Encapsulated Security Payload (ESP)

protocol, necessary to the IPsec, to pass through. Therefore the modi�cation to

remove the NAT (Section 4.2) is needed.

Another approach is to use other technology like SSL VPN for tunneling. Open-

VPN is an open-source SSL-based VPN product that operates on top of either TCP

or UDP protocol in a chosen port, making it compatible with the NAT. The �re-

walling in the Openstack allows rule creating for corresponding tra�c. Using SSL

VPN eliminates the need for modi�cations of the Openstack Neutron, yet achieving

the VPN functionality.

5. Security Instance Implementation 34

5.2 Instance Deployment Phase

An automated �rewall instance deployment is achieved when a cloud platform is

independently able to modify �rewall instances and a cloud portal server. Without

this the SECaaS requires a lot of manual con�guration. Launching an instance to the

cloud is simple and setting up the connection between the management server and

the �rewall requires little extra e�ort. This section covers the automatic con�gura-

tion of the cloud portal server and the �rewall instance. Also manual con�guration

is discussed.

5.2.1 Deployment in an Automated Cloud Environment

An automated �rewall deployment in SECaaS only needs a cloud platform with an

ability to run custom scripts. The Openstack is one of these platforms and thus

was chosen as the demonstration platform. The deployment phases are shown in

Figure 5.3. First, the end user launches a new �rewall instance to the cloud. Then

the cloud dashboard provides authentication and other metadata information for

the �rewall management backend and the �rewall instance. Finally an initialization

script sets up the �rewall and applies default con�gurations to it.

1. End user:
-Launch new firewall
instance to natively

supported cloud

2. Cloud portal:
- Generate management password
- Crypt the management password using salt
- push crypted management password to metadata
- push user SSH public key to metadata
- push account, plaintext password, IP,
 host ID, user ID to firewall database

3. Firewall instance runs cloudinit:
- Create new management account with crypted
 password received from metadata
- Create new user account with public key received
- map interfaces with zones, create necessary
 firewall rules, create NAT
- Change service ports to high number ports

4. Cloud portal:
- Done

Figure 5.3: Deployment phases in an automated cloud environment.

When launching a �rewall the end user has to take care of a proper interface

assignment and the choice of a right �avor to match the needs of the instance. The

�rst Ethernet interface (eth0) should be placed in an untrusted network and the

second (eth1) in a trusted one. A public SSH key should also be assigned to gain

SSH connectivity to the �rewall.

The password of the �rewall management account is generated and stored in

plaintext in the cloud dashboard because of the REST API, then encrypted and

delivered to the �rewall. The encrypted password is transferred to the �rewall using

cloud instance metadata information. Metadata is generated for every created VM

and saved to a cloud platform, and it remains stored as long as the instance exists.

As the Vyatta �rewall is based on Linux, the password is encrypted with a salt value

and stored in a shadow password �le compatible form. The end user SSH public key

is delivered to the �rewall instance along with the password. The cloud dashboard

5. Security Instance Implementation 35

also stores instance information such as the account details, the IP address, the

�rewall machine ID and the user ID in the �rewall management backend database.

The cloudinit is a script in the client machine that runs default con�gurations

during the �rst boot. Vyatta is based on a CLI and a speci�c con�guration tree

structure, thus the changes done by the cloudinit have to be committed to /con-

�g/con�g.boot -�le. The cloudinit script reads the metadata to set up the manage-

ment account and the SSH public key for the �rewall VM.

Next the cloudinit script assigns IP addresses found in the metadata to the in-

stance. The script maps the eth0 to an untrusted zone and eth1 to a trusted zone.

Further, the script enables stateful packet �ltering, creates a basic outbound NAT

rule as well as basic �rewall rules, and binds them to interfaces. An example setup

using a CLI for Vyatta is displayed in Appendix C.

The basic �rewall rules allow all connections from a trusted network to an un-

trusted one and deny all opposite tra�c. The ruleset allows the incoming manage-

ment connections (port 56443) from the untrusted network to the local zone. It

also allows incoming connections from the untrusted zone to port 56022 for SSH

connectivity. This leaves the ports 443 (HTTPS) and 22 (SSH) free for web and

SSH services in the cloud VMs. Also security is enhanced because these common

service ports are often targeted by automated vulnerability scanners.

5.2.2 Manual Con�guration

The cloud dashboard also has the ability to manually add �rewall management in-

formation to the backend. Some cloud platforms (e.g. VMWare vCloud) do not

support running a custom script when an instance is launched. In these cases au-

tomation cannot be done, making manual �rewall insertion necessary. Also the

customer may run Vyatta in the EC2 or in a server without virtualization. Cloud

dashboard can be used for controlling Vyatta �rewall regardless of their location.

The manual steps for adding a �rewall VM are shown in Figure 5.4. First the

instance needs to be launched and con�gured to operate on its own. When network

connectivity and account information are established the �rewall is ready to be

added under the control of the cloud dashboard.

1. In non-natively supported
cloud environment:

- Launch a firewall instance

2. In the firewall
instance:

- Set username and
password in the firewall CLI

- Create firewall rules to
permit REST API

3. In the management
dashboard:

- Add new firewall based on IP
address, WebUI port, username

and password

4. Done

Figure 5.4: Adding �rewall to central management system.

5. Security Instance Implementation 36

The setup phase of the �rewall instance is done manually by the VM administrator

after the launch. A username and a password need to be set in the CLI together

with the �rewall rules to allow connections from the cloud portal server. The WebUI

port for the REST API should be changed in the lighttpd daemon con�guration �le.

The cloud dashboard needs the global IP address and the port of the �rewall

VM along with a username and a password to operate with REST API queries.

When these have been added to the �rewall dashboard, the performs a few queries

to the �rewall to verify the connection. These queries request for details such as

a hostname and an uptime. When these steps have been completed the �rewall is

ready for use.

5.3 Centralized Management

The central �rewall management of the cloud portal consists of frontend and back-

end software. The frontend is a part of the cloud dashboard whereas the backend

is independent software. These two can be distributed but more commonly they

operate on the same server.

The �rewall management frontend is set up with two di�erent web program-

ming languages, HTML and Javascript. The HTML provides the page layout and

Javascript is needed for the web forms that are necessary for user interaction. The

user �lls in information, it is gathered from the Javascript web forms, and sent to

the backend PHP code. When the frontend and the backend are on the same server,

an HTTP daemon that understands PHP language is essential. PHP performs well

as a backend because it is stateless and transparent to the end user. The PHP back-

end requires a �rewall database that contains information on all the �rewalls with

their IP addresses and authentication details. The �rewall database can either be a

text �le or a fully featured SQL database. A sequence diagram containing the client

browser, the frontend, the backend, the database and the �rewall which illustrates

the interactions between the client, the dashboard and the �rewall is displayed in

Figure 5.5.

The sequence diagram in the �gure begins with the user authentication in the

frontend. It then delivers the authentication information to the backend which in

turn makes a query to the database, validating the user and returning information

about the manageable �rewalls. The backend PHP stores this information for the

duration of the session, keeping the authentication valid whether the user requests for

fetching information or changing or removing con�guration. After the user control

is released from the dashboard, the PHP session is destroyed and re-authentication

is required.

After a successful authentication, the frontend expects the user to pick a number

5. Security Instance Implementation 37

Fw DatabaseClient browser Frontend Backend Firewall

Enter management

Authenticate

Auth. reply
Auth. verification Auth. verification

Deny/Allow(FW List)
Deny/Allow(FW List)

Send result

Task to firewall

Task to firewall

Verify rightsError
Task to firewall

Task reply

Task reply

Task reply

ALT, LOOP

[if Auth successful]

Figure 5.5: Cloud dashboard �rewall authentication and operation sequence diagram.

of �rewalls to edit and a task to perform. The backend veri�es the �rewall selection

against the user information that was received from the database during the au-

thentication. Tampering with the target �rewall information is noticed and illegal

requests are prohibited. When the user input is valid the task is sent to all chosen

�rewalls. The backend receives a reply message from each �rewall and delivers them

to the frontend to be displayed to the user.

The backend validates the user input. The frontend delivers the user input from

Javascript to the PHP backend using $_POST -method. These messages are user

generated so the input validity needs to be veri�ed. The validation in the backend is

done by building a con�guration tree using arrays and then verifying the user input

against it. This procedure protects the �rewall from faulty commands.

The backend also protects the �rewall from removing or overrunning any vital

con�gurations. The protection includes the basic outbound NAT and the man-

agement permit rule. However, the CLI via local console or SSH can be used to

remove any of these con�gurations. The user limiting balances between protecting

the �rewall and not totally restricting the user.

The PHP backend communicates with the �rewall using REST API. The REST

API operates with HTTPS messages that can be built using cURL, for example.

The cURL is a library for URL transfer that provides multifunctional message cre-

ation for web services and thus performs well with REST API. A cURL message

requires a header containing authentication, application and HTTP request infor-

5. Security Instance Implementation 38

mation together with a destination address. A valid cURL query from a Linux shell

to the Vyatta REST API requesting active resource information is as follows:

curl -k -i -u username:password -H "content-length:0" -H "Accept:

application/json" -X GET https://10.11.11.1/rest/op

The cURL is based on �ags. The -k �ag stands for insecure connection where the

server certi�cate is not veri�ed. With the -i �ag, the output shows also the usually

hidden HTTP header. The -u �ag assigns authentication information to the REST

API query. The -H �ag sets the HTTP header content-length to zero and speci�es

the data to be JSON. The -X builds a custom query, for example get or delete. The

same message can be written in PHP as follows:

$headers = array ("Accept: application/json", "content-length:0");

$ch = curl_init();

curl_setopt($ch, CURLOPT_URL, "https://10.11.11.1/rest/op");

curl_setopt($ch, CURLOPT_SSL_VERIFYHOST, 0);

curl_setopt($ch, CURLOPT_SSL_VERIFYPEER, 0);

curl_setopt($ch, CURLOPT_HTTPHEADER, $headers);

curl_setopt($ch, CURLOPT_USERPWD, "username:password");

curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

// curl_setopt($ch, CURLOPT_POST, true);

// curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");

$output = curl_exec($ch); // Firewall answer

curl_close($ch);

The PHP code �rst creates a handle named $ch that is then used in the query.

Second, details like address and authentication information are added. The line

CURLOPT_SSL_VERIFYHOST sets the query to avoid certi�cate veri�cation.

Third, plaintext username and password are inserted. A query is executed with

given parameters and the response gets stored in the variable $output. Finally, the

resource is released using the curl_close command. Other messages (Ch 3.3.1) can

be sent using the same structure by uncommenting either the CURLOPT_POST

or CURLOPT_CUSTOMREQUEST �eld.

A REST API sequence diagram displaying information fetching from a �rewall

is shown in Figure 5.6. The �rewall management backend makes a post query to

the instance containing the requested information resource identi�er in the URI. For

example, the full URI to receive IP routing information is:

https://ip.address.of.firewall:56443/rest/op/show/ip/route

5. Security Instance Implementation 39

Cloud portal server Firewall VM

POST, "show..."

201 Created, "/rest/op/A34F..."

GET, "/rest/op/A34F..."

200 OK, "response"

DELETE, "/rest/op/A34F..."

200 OK

Figure 5.6: Sequence diagram of �rewall information fetching message exchange.

The �rewall responds to the post message using 201 Created message containing

a resource ID. The backend fetches the real data from there using a get message. A

small delay is needed between the post and the get messages to allow the �rewall time

to collect and process requested information. The delay veri�ed during prototype

experiments to be long enough for every task is two seconds. The Vyatta's remote

access API guide claims the delete message to be useless because supposedly the

�rewall automatically removes the reserved resource [34]. However, it turned out

during these experiments that this does not take place necessitating the use of

manual delete message.

Con�guring a �rewall requires a more complicated message exchange. A common

example is illustrated in Figure 5.7. The con�guration phases are the same whether

using REST API or CLI: entering the con�guration mode, adding con�gurations,

and applying the commit, save and exit -commands. During the �rst phase a post

message representing the con�gure command is sent to the �rewall that again replies

using 201 Created containing the resource ID. In the second phase, the backend loops

through the put messages until there are no more con�guration parameters to be

sent. After this task, a commit is sent to the �rewall using a post message. The

�rewall answers with 200 OK containing the commit response. In case the commit

is not approved, �rewall management stores the return message, displays it to the

user and sends a delete message to remove the resource reserved for the con�guration

session. Otherwise backend sends a save message to the �rewall before the delete

message.

The sequence diagram in Figure 5.8 displays message exchange when the user

5. Security Instance Implementation 40

Cloud portal server Firewall VM

POST, "configure"

201 Created, "/rest/conf/A34F..."

PUT, "/rest/conf/A34F.../command"

200 OK, "response"

DELETE, "/rest/conf/A34F..."

200 OK

POST, "Commit"

200 OK, "Commit response"

POST, "Save"

200 OK, "Save response"

LOOP

[until all commands sent]

ALT

[if Commit successful]

Figure 5.7: Sequence diagram of �rewall con�guration message exchange.

requires removal of con�gurations from the �rewall. This is very similar to the

con�guration insert phase. However, only one put message containing a delete task

is required. The con�guration is hierarchical so an entire con�guration tree branch

can be removed at once. Commit and save commands are sent using a post message

to apply and save the con�guration and they are followed by a delete to remove the

allocated resource in the �rewall.

5.4 Security Aspects

The cloud portal server and all virtualized �rewalls can be reached from the Internet.

Thus the users can connect to the cloud dashboard from anywhere in the Internet

and the cloud portal server in turn can reach the �rewalls. To be more exact, by

default the WebUI and the REST API of the �rewalls are only connectable from

the cloud portal server's IP address. This protects the �rewall management and the

cloud dashboard operates as an application proxy �rewall. However, CLI can be

used to create a new REST API �rewall rule to allow connections from a wider IP

address range.

The Vyatta �rewall contains in this demonstration two user accounts: a separate

con�guration account for the cloud dashboard and a user account for the end user.

5. Security Instance Implementation 41

Cloud portal server Firewall VM

POST, "configure"

201 Created, "/rest/conf/A34F..."

PUT, "/rest/conf/A34F.../delete"

200 OK, "response"

DELETE, "/rest/conf/A34F..."

200 OK

POST, "Commit"

200 OK, "Commit response"

POST, "Save"

200 OK, "Save response"

Figure 5.8: Sequence diagram of �rewall con�guration removal message exchange.

The password for the former is 20 characters long and stored non-encrypted in the

backend database in the cloud portal server, which is safe as long as the database

remains intact. This is also a weakness that can easily compromise security. The

passwords are stored encrypted in the �rewall and the cloud metadata thus remain

very secure.

The end user account is generated in the cloudinit phase and an SSH private

key is added to it. The account is created using a commonly known password to

enable login through the local shell, the SSH and the WebUI. The SSH only allows

logins with a private key, making it safe as nobody can enter the �rewall via SSH

without this key. The �rewalling rule protects the �rewall from WebUI and REST

API connections from the Internet excluding the cloud portal server. An additional

rule to allow these connections can be created and thus it is highly recommended

that the end user should change the password right after launching the instance.

42

6 DISCUSSION

This thesis demonstrates how a �rewall can be virtualized to an IaaS cloud and how

a central management service is used to control a number of �rewalls simultane-

ously. The virtual �rewall o�ers an on-demand service and extends beyond regular

�rewalling functions. This is called Security-as-a-Service (SECaaS).

The prototype implementation was successfull as a proof-of-concept to o�er knowl-

edge on the SECaaS management and the Openstack Neutron. However, it is not

yet ready to be used in production. Convenient use would require more features,

and a security review should be performed.

The �rewall, the VPN and the routing features of the SECaaS are likely to be

replaced in the near future by some built-in software of the IaaS cloud. A milestone is

already accomplished by the new release of the Openstack cloud platform (Havana)

with the Neutron network plugin that uses multiple service plugins such as Load-

Balancer-as-a-Service (LBaaS) and Firewall-as-a-Service (FWaaS). The LBaaS is

already in the Grizzly release and the FWaaS is being developed for the Neutron.

The Openstack networking currently contains security groups for �rewalling. The

FWaaS includes stateful zone based �rewalling and also next-generation �rewalling

is being considered. [35]

When the FWaaS plugin is in use the Vyatta VM �rewalling becomes unnecessary.

This compromises the required VPN feature, giving rise to another new Neutron

module called VPNaaS, VPN-as-a-Service. The VPNaaS, however, only supports

IPsec site-to-site tunneling which, on the other hand, usually gets the task done.

Also, IPsec is standardized technology, enabling cross-platform setups. The use

of FWaaS and VPNaaS means in practice that the cloud modi�cations required by

Vyatta, such as the network environment and the �rewall management in the central

management portal, are no longer needed. [35]

The virtualized �rewall is included in the Software De�ned Networking (SDN)

and the Network Functions Virtualization (NFV). The SDN speci�es how network

devices are managed by software. The main principles in the SDN are to separate the

control and data planes and to use a �ow based tra�c forwarding. The control plane

is for management whereas the data plane is for operating with the tra�c �ltering,

forwarding and routing. Further, the control plane management can be centralized

to cover all devices in a data center. This automates network management tasks.

6. Discussion 43

This enables rapid network deployment and provisioning through the data center.

The SDN controller can handle either virtual or physical devices, which makes the

environment highly elastic. Therefore The SDN is a cunning research topic for

providing on-demand data center services. [36]

The term NFV is often related with the SDN. It is complementary to the SDN but

neither depends on the other. The NFV consists of a number of network functions

such as the �rewall, the NAT and the IDS just to name a few, and thus attempts

to transfer hardware appliances to hypervisors or the cloud. Furthermore, the SDN

and NFV are combined in the Software De�ned Data Center (SDDC), a data center

which is elastic and highly virtualized. All the SDDC services are -as-a-service and

as such deployed on-demand. Thus the time-to-market is minimized. [37, 38]

The commercial and the open-source software costs, bene�ts and time consump-

tion should be compared to �nd out the best possible outcome for cloud computing.

However, the inevitable requirements such as customized central cloud portal may

elevate the costs unexpectedly. What comes to the pros and cons of virtualization,

the NFV and SDN reduce the time required for con�guring and cabling devices, but

these are likely to need new hardware and thus cause extra expenses.

44

7 CONCLUSIONS

This Master's Thesis introduced a Security-as-a-Service concept that contains a

central management dashboard and an IaaS cloud supported virtual �rewall. Vyatta

was chosen as �rewall software due to its properties (the �rewall, the VPN, the

routing daemon and the REST API). The Vyatta �rewall security policies were

considered comprehensive and reliable thanks to the stateful inspection. Vyatta

has also been proven to handle complicated routing and VPN scenarios. OpenVPN

and IPsec VPN both perform well and site-to-site tunneling can be done with any

participant supporting either of these techniques.

The most commonly used �rewall features can be con�gured from a central man-

agement dashboard. The key to the central management of Vyatta is the REST

API. It also allows the centralized management to control many �rewalls in parallel.

Thus the dashboard is able to send a speci�c command theoretically to any number

of �rewalls simultaneously. In practice, this is limited to a few thousand depending

on the available hardware and software resources.

A severe discovery was made with the cloud network. Cloud platform providers

often rely on a separate network component, like Openstack with Neutron. The

cloud platform software and even the whole cloud network needs to be modi�ed to

enhance the �rewall operation. Without modi�cations the network tra�c may cause

extra load on the cloud as well as di�culties with the VPN function.

The SECaaS concept is likely to extend from the mere cloud to the entire data

center. This would mean combining the tenant's physical network in the data center

with the cloud's virtual network. Therefore a single �rewall VM could protect

both the virtual and the hardware servers of a data center. Further, the �rewall

management is transferred from the administrators to the end users.

The customers will require more and more on-demand services in the era of cloud

computing. SECaaS gives rise to the future data center model whereas the virtual

�rewall heads for NFV. The multi-platform cloud's security and usability especially

bene�t from the SECaaS. These can however be achieved cost-e�ectively in a single

platform cloud as well. The Openstack cloud has made progress in this with its new

release but still does not have any ultimate solution. The race for the best cloud

platform is going on, which elevates the requirements for the bene�t of the tenant.

The need for more virtualized network functions and *-as-a-Service remains.

45

REFERENCES

[1] D. Liu, S. Miller, M. Lucas, A. Singh, J. Davis, et al., Firewall policies and

VPN con�gurations. Syngress, 2006.

[2] C. K. Wack John and P. Jamie, �Guidelines on �rewalls and �rewall policy,�

tech. rep., DTIC Document, 2002.

[3] R. Di Pietro and L. V. Mancini, Intrusion detection systems. Springer, 2008.

[4] K. Scarfone and P. Mell, �Guide to intrusion detection and prevention systems

(idps),� NIST Special Publication, vol. 800, no. 2007, p. 94, 2007.

[5] I. Dubrawsky, �Firewall evolution - deep packet inspection,� Security Focus,

vol. 29, 2003.

[6] J. Pescatore and G. Young, �De�ning the next-generation �rewall,� Gartner

RAS Core Research Note, 2009.

[7] P. Lindstrom and R. Director, �Intrusion prevention systems (ips): Next gen-

eration �rewalls,� Spire Security, 2004.

[8] R. Y. Ameen and A. Y. Hamo, �Survey of server virtualization,� arXiv preprint

arXiv:1304.3557, 2013.

[9] J. Matthews, T. Gar�nkel, C. Ho�, and J. Wheeler, �Virtual machine contracts

for datacenter and cloud computing environments,� in Proceedings of the 1st

workshop on Automated control for datacenters and clouds, ACDC '09, (New

York, NY, USA), pp. 25�30, ACM, 2009.

[10] V. Seppänen, �Elastic build system in a hybrid cloud environment,� Master's

thesis, Tampere University of Technology, 2011.

[11] V. Choudhary, �Software as a service: Implications for investment in software

development,� in System Sciences, 2007. HICSS 2007. 40th Annual Hawaii

International Conference on, pp. 209a�209a, 2007.

[12] G. Lawton, �Developing software online with platform-as-a-service technology,�

Computer, vol. 41, no. 6, pp. 13�15, 2008.

[13] M. Armbrust, A. Fox, R. Gri�th, A. D. Joseph, R. H. Katz, A. Konwinski,

G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia, �Above the

clouds: A berkeley view of cloud computing,� Tech. Rep. UCB/EECS-2009-28,

EECS Department, University of California, Berkeley, Feb 2009.

REFERENCES 46

[14] P. Mell and T. Grance, �The nist de�nition of cloud computing (draft),� NIST

special publication, vol. 800, no. 145, p. 7, 2011.

[15] Openstack cloud computing software [WWW]. [Retrieved 2013-09-05]. http:

//www.openstack.org.

[16] Openstack conceptual architecture [WWW]. [Retrieved 2013-09-05].

http://docs.openstack.org/grizzly/openstack-compute/admin/

content/conceptual-architecture.html.

[17] E. Wilde, �Putting things to rest,� Recent Work, School of Information, UC

Berkeley, 2007.

[18] Deltacloud system overview [WWW]. [Retrieved 2013-09-05]. http://

deltacloud.apache.org/about.html.

[19] Amazon Elastic Compute Cloud [WWW]. [Retrieved 2013-09-05]. http://aws.

amazon.com/ec2/.

[20] A. Corradi, M. Fanelli, and L. Foschini, �Vm consolidation: a real case based

on openstack cloud,� Future Generation Computer Systems, 2012.

[21] Openstack networking service, security guide [WWW]. [Retrieved 2013-

09-10]. http://docs.openstack.org/trunk/openstack-security/content/

ch032_networking-best-practices.html.

[22] Openstack documentation, open vSwitch, OpenStack Networking Administra-

tion Guide [WWW]. [Retrieved 2013-09-10]. http://docs.openstack.org/

trunk/openstack-network/admin/content/under_the_hood_openvswitch.

html.

[23] Openstack Networking Neutron page [WWW]. [Retrieved 2013-10-15]. https:

//wiki.openstack.org/wiki/Neutron.

[24] Okapi router feature page [WWW]. [Retrieved 2013-10-24]. http:

//okapirouter.net/index.php?option=com_content&view=article&id=

222&Itemid=19.

[25] ClearOS Community edition feature page [WWW]. [Retrieved 2013-10-24].

http://www.clearfoundation.com/Software/overview.html.

[26] Smoothwall Express community version feature page [WWW]. [Retrieved 2013-

10-24]. http://www.smoothwall.org/about/express-feature-list/.

http://www.openstack.org
http://www.openstack.org
http://docs.openstack.org/grizzly/openstack-compute/admin/content/conceptual-architecture.html
http://docs.openstack.org/grizzly/openstack-compute/admin/content/conceptual-architecture.html
http://deltacloud.apache.org/about.html
http://deltacloud.apache.org/about.html
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://docs.openstack.org/trunk/openstack-security/content/ch032_networking-best-practices.html
http://docs.openstack.org/trunk/openstack-security/content/ch032_networking-best-practices.html
http://docs.openstack.org/trunk/openstack-network/admin/content/under_the_hood_openvswitch.html
http://docs.openstack.org/trunk/openstack-network/admin/content/under_the_hood_openvswitch.html
http://docs.openstack.org/trunk/openstack-network/admin/content/under_the_hood_openvswitch.html
https://wiki.openstack.org/wiki/Neutron
https://wiki.openstack.org/wiki/Neutron
http://okapirouter.net/index.php?option=com_content&view=article&id=222&Itemid=19
http://okapirouter.net/index.php?option=com_content&view=article&id=222&Itemid=19
http://okapirouter.net/index.php?option=com_content&view=article&id=222&Itemid=19
http://www.clearfoundation.com/Software/overview.html
http://www.smoothwall.org/about/express-feature-list/

REFERENCES 47

[27] Pfsense Opensource Firewall Distribution feature page [WWW]. [Re-

trieved 2013-10-24]. http://www.pfsense.org/index.php@option=com_

content&task=view&id=40&Itemid=43.html.

[28] Debian GNU/Linux home page [WWW]. [Retrieved 2013-10-24]. http://www.

debian.org.

[29] Vyatta �rewall distribution feature page. Brocade company [WWW]. [Re-

trieved 2013-10-24]. http://www.vyatta.com/product/vyatta-network-os/

open-source-vs-enterprise.

[30] Vyatta Network OS for Amazon. Brocade company web page [WWW]. [Re-

trieved 2013-10-24]. http://www.vyatta.com/product/vyatta-network-os/

amazon.

[31] Vyatta, INC. Vyatta System, Firewall Reference guide [WWW]. [Re-

trieved 2013-09-15]. http://www.vyatta.com/downloads/documentation/

VC6.5/Vyatta-Firewall_6.5R3_v02.pdf.

[32] B. Aboba and W. Dixon, �IPsec-Network Address Translation (NAT) Compat-

ibility Requirements.� RFC 3715 (Informational), IETF, Mar. 2004.

[33] T. Kivinen, B. Swander, A. Huttunen, and V. Volpe, �Negotiation of NAT-

Traversal in the IKE.� RFC 3947 (Proposed Standard), IETF, Jan. 2005.

[34] Vyatta, INC. Vyatta System, Remote access API 2.0 Reference guide

[WWW]. [Retrieved 2013-10-02]. http://www.vyatta.com/downloads/

documentation/VC6.5/Vyatta-RemoteAccessAPI2.0_6.5R1_v01.pdf.

[35] Openstack Networking API 2.0 Reference [WWW]. [Retrieved 2013-10-28].

http://docs.openstack.org/api/openstack-network/2.0/content/ch_

preface.html.

[36] T. D. Nadeau and K. Gray, SDN: Software De�ned Networks. " O'Reilly Media,

Inc.", 2013.

[37] Network Function Virtualization (NFV), White paper. ETSI [WWW]. [Re-

trieved 2013-10-31]. http://portal.etsi.org/NFV/NFV_White_Paper.pdf.

[38] Horizontal Integration - Unlocking the cloud stack. Nixu Software [WWW]. [Re-

trieved 2013-10-31]. http://www.nixusoftware.com/unlocking_the_cloud_

stack_whitepaper.pdf.

http://www.pfsense.org/index.php@option=com_content&task=view&id=40&Itemid=43.html
http://www.pfsense.org/index.php@option=com_content&task=view&id=40&Itemid=43.html
http://www.debian.org
http://www.debian.org
http://www.vyatta.com/product/vyatta-network-os/open-source-vs-enterprise
http://www.vyatta.com/product/vyatta-network-os/open-source-vs-enterprise
http://www.vyatta.com/product/vyatta-network-os/amazon
http://www.vyatta.com/product/vyatta-network-os/amazon
http://www.vyatta.com/downloads/documentation/VC6.5/Vyatta-Firewall_6.5R3_v02.pdf
http://www.vyatta.com/downloads/documentation/VC6.5/Vyatta-Firewall_6.5R3_v02.pdf
http://www.vyatta.com/downloads/documentation/VC6.5/Vyatta-RemoteAccessAPI2.0_6.5R1_v01.pdf
http://www.vyatta.com/downloads/documentation/VC6.5/Vyatta-RemoteAccessAPI2.0_6.5R1_v01.pdf
http://docs.openstack.org/api/openstack-network/2.0/content/ch_preface.html
http://docs.openstack.org/api/openstack-network/2.0/content/ch_preface.html
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.nixusoftware.com/unlocking_the_cloud_stack_whitepaper.pdf
http://www.nixusoftware.com/unlocking_the_cloud_stack_whitepaper.pdf

48

APPENDIX A: CISCO NOTATION ACL

EXAMPLE

access-list 101 permit icmp any any echo-reply

access-list 101 permit icmp any any ttl-exceeded

access-list 101 permit icmp any any unreachable

access-list 101 permit udp any any eq domain

access-list 101 permit udp any eq domain any

access-list 101 permit tcp any any eq domain

access-list 101 permit tcp any eq domain any

access-list 101 permit tcp any any eq www

access-list 101 permit udp any eq bootps any eq bootpc

access-list 101 deny ip any any

49

APPENDIX B: SMTP APPLICATION PROXY

RULESET EXAMPLE

Helo checks

mail.tld REJECT You are not mail.tld

mx1.mail.tld REJECT You are not mx2.mail.tld

mx2.mail.tld REJECT You are not mx2.mail.tld

localhost REJECT You are not me

Recipient checks

/^\@/ 550 Invalid address format.

/[!%\@].*\@/ 550 This server disallows weird address syntax.

Sender checks

mail.tld 554 Spam not tolerated here

50

APPENDIX C: VYATTA FIREWALL EXAMPLE

PRE-SETUP

Make the firewall stateful as default

set firewall state-policy established action accept

set firewall state-policy related action accept

set firewall state-policy invalid action deny

Create a NAT to firewall

set nat source rule 10 outbound-interface 'eth0'

set nat source rule 10 source address '192.168.10.0/24'

set nat source rule 10 translation address 'masquerade'

Assing interfaces to zones, create rule sets and bind them to zones

set zone-policy zone Untrust interface eth0

set zone-policy zone Trust interface eth1

set firewall name OUTBOUND rule 100 action accept

set firewall name INBOUND rule 9999 action deny

set zone-policy zone Untrust from zone Trust firewall name OUTBOUND

set zone-policy zone Trust from zone Untrust firewall name INBOUND

Also the local-zone requires firewalling

set zone-policy zone LocalZone local-zone

set firewall name L_From_T rule 1 action accept

set firewall name L_From_U rule 100 action accept

set firewall name L_From_U rule 100 destination port 56022

set firewall name L_From_U rule 101 action accept

set firewall name L_From_U rule 101 destination port 56443

set firewall name L_From_U rule 101 source address 192.168.24.24

set firewall name L_From_U rule 9999 action deny

set zone-policy zone LocalZone from Trust firewall name L_From_T

set zone-policy zone LocalZone from Untrust firewall name L_From_U

Create an account for the management server or the user

set system login user configureaccount authentication encrypted-password

'1r/s97RG3$MRpnD8Co00GBwO2BduyLz.'

set system login user configureaccount authentication public-keys

user@hostname key 'key'

set system login user configureaccount authentication public-keys

user@hostname type 'ssh-rsa'

set system login user configureaccount level 'admin'

	Introduction
	Network firewall systems
	Fundamentals of Firewalling
	Firewall Operation Modes
	Stateless Firewall
	Stateful Firewall
	Application Proxy Firewall
	Implementations in the Networks

	Preventing Attacks
	Best Practices

	Cloud systems
	Virtualization Trend
	 The Cloud in a Nutshell
	Managing Large Scale Cloud Environment
	REST API
	The Deltacloud

	Hypervisor Capacity and Load Estimation
	Firewalling and Network Abstraction in the Openstack Cloud

	The Virtual Firewall
	Security-as-a-Service Concept
	Virtualizing the Firewall to Cloud
	Security Software Selection
	Management Aspects
	Cloud Portal Server and Dashboard
	CLI and WebUI

	Security Instance Implementation
	The Common Setup and its Difficulties
	Instance Deployment Phase
	Deployment in an Automated Cloud Environment
	Manual Configuration

	Centralized Management
	Security Aspects

	Discussion
	Conclusions
	Appendix A: Cisco notation ACL example
	Appendix B: SMTP Application proxy ruleset example
	Appendix C: Vyatta firewall example pre-setup

