
Petteri Aimonen
Design of an embedded system for video performance measurements
Master of Science Thesis

Examiners: Prof. Timo D. Hämäläinen,
Dr. Erno Salminen
Examiners and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical Engineering
on 5.2.2014

I

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO
Signaalinkäsittelyn ja tietoliikennetekniikan koulutusohjelma
PETTERI AIMONEN: Sulautetun mittalaitteen suunnittelu videomittauksia varten
Diplomityö, 64 sivua, ei liitesivuja
Helmikuu 2014
Pääaine: Digitaali- ja tietokonetekniikka
Tarkastajat: Prof. Timo D. Hämäläinen, TkT Erno Salminen
Avainsanat: videotoiston suorituskyky, kuvataajuus, käyttäjäkokemus, sulautettu järjestelmä

Tämä diplomityö kuvaa videomittauksiin käytettävän mittalaitteen suunnitteluproses-
sin. Kuvatun laitteen tarkoituksena on auttaa videotoiston optimoinnissa toistolaittei-
den, kuten taulutietokoneiden, älypuhelimien ja televisioiden, suunnitteluprosessin aika-
na. Laite mittaa videon kuvataajuuden ja laskee mahdollisesti toistovaiheessa puuttumaan
jääneiden kuvien lukumäärän käyttäen anturia, joka asetetaan toistolaitteen näyttöä vas-
ten.

Ominaisuus, joka erottaa tämän mittalaitteen muista yleisistä tavoista mitata näytön
kuvataajuus on se, että se toimii täysin mitattavan laitteen ulkopuolelta. Mitattavaan lait-
teeseen tai sen ohjelmistoon ei siis tarvita mitään muutoksia, ja kaikki laitteistotason il-
miöt, joita voi esiintyä esimerkiksi näytönohjaimessa, saadaan mitattua. Näin se mahdol-
listaa kattavamman analyysin toistolaitteen toiminnasta, ja mahdollistaa tulosten vertailun
myös kilpailijoiden laitteisiin.

Mittalaitteen toteuttamiseksi suunniteltiin oma STM32F407-mikrokontrolleriin perus-
tuva laitteistoalusta. Koska kohdemarkkinan tarpeet muuttuvat nopeasti uusien laitesuku-
polvien myötä, suunniteltiin mittalaite niin, että sitä voidaan helposti laajentaa esimerkiksi
uusilla antureilla.

Mittausten tarvitsema signaalinkäsittely toteutettiin kokonaan ohjelmallisesti, jotta se
olisi mukautettavissa eri tehtäviin. Tämä asettaa nopeusvaatimuksia laitteen ohjelmistolle,
ja niiden täyttämiseksi ohjelmisto rakennettiin NuttX-reaaliaikakäyttöjärjestelmän päälle.

Projektin tuloksia arvioidaan sekä tavoitteiden saavuttamisen kannalta, että asiakkail-
ta ja myyntiosastolta saadun palautteen perusteella. Laitteen kehittäminen ensimmäisistä
suunnittelupalavereista valmiiseen ohjelmistoversioon saakka kesti 9 kuukautta, ja karak-
terisointimittauksissa todettiin 1 ms mittaustarkkuus 150 FPS kuvataajuuteen asti.

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Signal Processing and Communications Technology
PETTERI AIMONEN: Design of an embedded system for video performance mea-
surements
Master of Science Thesis, 64 pages, no appendix pages
February 2014
Major: Digital and Computer Systems
Examiners: Prof. Timo D. Hämäläinen, Dr. Erno Salminen
Keywords: video playback performance, frame rate, user experience, embedded system

This master’s thesis describes the design process of a measurement instrument for
measuring the video playback performance. The purpose of the instrument is to aid in
optimizing the video playback quality of devices such as tablets, smartphones and televi-
sions. In particular, the instrument measures the frame rate and number of missing frames
using a sensor attached to the display.

The aspect that sets this instrument apart from common ways of measuring display
frame rates is that it operates outside the video playback device. This means that no
modifications are required to the device being tested, and all effects that may occur in e.g.
display hardware are accurately measured. In this way it allows more complete analysis
of the device behaviour, and is also suitable for testing competitor’s devices.

To implement the measurement instrument, a custom hardware platform based around
the STM32F407 microcontroller is designed. In order to adapt to the rapidly changing
needs and focuses of the market sector, the hardware is designed with maximal extensi-
bility to allow easy attachment of new kinds of sensors.

The signal processing required for the sensor signals is implemented entirely in soft-
ware, in order to allow future measurement tasks to use different algorithms. This places
requirements on real-time performance on the hardware and software, and the NuttX real-
time operating system is chosen as a basis for the firmware development.

A software architecture composed of signal processing libraries, low-level device
drivers and GUI user interface is described. The architecture is designed to allow easy
reuse of components to implement several measurement tasks.

Finally, the success of the project is evaluated both on basis of meeting the set goals and
based on feedback received from the pilot customers and sales team. The development
of the instrument took 9 months from the initial planning meetings to the first official
software version. Characterization measurements have shown the instrument to measure
up to 150 FPS frame rates at 1 ms resolution.

III

PREFACE

The purpose of this thesis is to describe the high-level choices and process involved in
the design of an embedded measurement instrument. Due to trade secrets, the signal
processing algorithms used are not described in detail, while their development was a
significant portion of the work in this project.

This thesis was done for OptoFidelity Oy, a test automation and machine vision com-
pany based in Tampere, Finland. Selling world-wide, OptoFidelity has sales relationships
with many of the leading companies in the mobile device market, and is constantly look-
ing for new opportunities to aid in their customer’s research and development process.
The instrument described in this thesis forms a part of their product offering for measur-
ing video playback performance.

I would like to thank OptoFidelity for providing this interesting and challenging topic,
and especially Kimmo Jokinen for his encouragement and highly useful feedback during
the project. The sales team also helped by providing insight into the market demands, and
by arranging demos and test uses with pilot customers. Finally, I would like to thank my
family for support during the stressful year that this project and thesis took to complete.

Jyväskylä 6.2.2014

Petteri Aimonen

IV

CONTENTS

1. Introduction . 1
2. Starting point for design . 4

2.1 Background on video playback performance 4
2.1.1 Ideal video playback . 8
2.1.2 Limits of human perception . 9
2.1.3 Challenges in video playback . 10
2.1.4 Need for timing measurement . 11
2.1.5 Existing solutions . 12

2.2 Towards a measurement instrument . 13
2.2.1 Issues of the previous version . 14
2.2.2 Strengths of the previous version . 15
2.2.3 New market needs . 16
2.2.4 Similar products and methods . 16

2.3 The idea: a Video Multimeter . 18
2.3.1 Basic principle for new version . 19
2.3.2 New features . 19

3. Hardware design . 20
3.1 Design options . 20

3.1.1 High level concept . 21
3.1.2 Processor class . 22
3.1.3 Processor model . 24

3.2 Implementation of the main electronics 25
3.2.1 Touchscreen . 26
3.2.2 Power management . 27
3.2.3 Data storage . 29
3.2.4 Built-in sensor . 29

3.3 Extension capabilities . 30
3.3.1 Sensor connectors . 30
3.3.2 Extension board connector . 32

3.4 Enclosure . 32
3.4.1 Options . 33
3.4.2 Implementation . 33

4. Software architecture . 35
4.1 Real-time operating system . 35

4.1.1 Requirements . 35
4.1.2 Options . 36

4.2 Programming language . 37

V

4.2.1 Options . 37
4.3 Implementation . 38

4.3.1 Device drivers . 38
4.3.2 Signal processing . 40
4.3.3 User interface . 42

5. Results . 45
5.1 Compared to previous version . 46
5.2 Achieving of goals . 46
5.3 Sales and customer feedback . 47

6. Summary . 48
References . 54

VI

TERMS AND SYMBOLS

ADC
Analog to Digital Converter, a device that allows conversion of analog voltage levels
into numeric values.

API
Application Programming Interface, a documented interface that can be used by
software applications to communicate with each other.

CNC
Computer Numerical Control, a class of machining tools that are used to cut and
form metal according to a 3-dimensional model stored on a computer..

DAC
Digital to Analog Converter, a circuit that converts digital signals to analog volt-
ages.

DMA
Direct Memory Access, a hardware unit that can autonomously perform data trans-
fer tasks to and from memory, freeing the main processor to execute other tasks.

DPI
Dots Per Inch, a measurement unit for the pixel density on a display.

Dropped frame
A frame that is missing in video playback, usually due to insufficient performance
of the playback device.

EEPROM
Electrically Erasable Programmable Read Only Memory, a memory circuit that al-
lows permanent storage of data, but can be erased and rewritten when necessary.

FIR
Finite Impulse Response, a type of digital filter where a finite number of previous
samples are combined using multiplication and addition.

FPGA
Field Programmable Gate Array, a microchip that can be programmed to implement
logical circuits.

VII

FPS
Frames Per Second, a measurement unit for the rate of individual images in video
content.

FPU
Floating Point Unit, a processor submodule that accelerates computations with
floating point numbers.

Frame time
The length of time for how long a specific video frame is visible on the display.

GPIO
General Purpose Input Output, a term for microcontroller pins that can be directly
controlled by software to perform either digital input and output.

GUI
Graphical User Interface, a computer program’s interface composed of graphical
elements, such as buttons, images and text areas.

HAL
Hardware Abstraction Layer, a component in an operating system that supports
several kinds of hardware and provides a common interface for applications to use.

I2C
Inter-Integrated Circuit, a type of digital interface which uses two wires and pull-up
resistors for serial communications.

IC
Integrated Circuit, an electronic circuit that has been implemented on a single mi-
crochip.

LCD
Liquid Crystal Display, a display technology based on the polarization change of
liquid crystals.

LDO
Low Drop-Out, a term for voltage regulators that need only a small (usually 0.1–
0.5 V) voltage difference to operate.

LED
Light Emitting Diode, a semiconductor device that emits light when a current flows
through it.

VIII

MCU
MicroController Unit, another term for microcontroller.

Microcontroller
An integrated circuit that combines a microprocessor with memory and other pe-
ripherals on the same microchip.

MOSFET
Metal Oxide Semiconductor Field Effect Transistor, a type of transistor, used to
control the flow of electrical current.

OLED
Organic Light Emitting Diode, a display technology based on an array of small light
emitting diodes that act as the pixels of the screen.

OS
Operating System, a software platform that provides services such as task schedul-
ing, which make it easier to implement applications.

PC
Personal Computer, a general purpose desktop or laptop computer, usually based
on Intel x86 architecture.

PCB
Printed Circuit Board, usually a fiber glass board with etched copper conductors for
mounting components.

POSIX
Portable Operating System Interface, a family of IEEE standards specifying an API
for operating systems, aiming for compatibility between various platforms.

RAM
Random Access Memory, a type of microprocessor memory that is used for tempo-
rary storage of data that is being processed.

RGB
Red Green Blue, the combination of three colors in a computer display which can
produce most of the colors perceived by human eye.

RTC
Real Time Clock, a clock circuit that keeps track of the current time and date.

IX

RTOS
Real Time Operating System, a class of operating systems that is especially de-
signed to allow fast reaction to external events and predictable timing of operations.

SD
Secure Digital, a standardized form factor and interface for memory cards.

SMPS
Switching Mode Power Supply, a class of power supplies that can be designed to
raise or lower a voltage efficiently by rapidly switching it on and off.

SoC
System on Chip, a technique where the processor core and other necessary hardware
components are integrated on a single microchip.

SPI
Serial Peripheral Interface, a type of digital interface which uses three wires for
serial communications.

TFT
Thin Film Transistor, a technology used in display panels.

USART
Universal Synchronous Asynchronous Receiver/Transmitter, a digital circuit that
can both receive and transmit data using a synchronous or an asynchronous serial
protocol.

USB
Universal Serial Bus, an interface standard for connecting peripheral devices to
computers.

1

1. INTRODUCTION

This master’s thesis describes the design process of a measurement instrument for video
playback measurements. The design work done by the author and described in this thesis
includes the choice of hardware components, design of the electronic circuit and circuit
board, design of custom enclosure, choice of software platform and implementation of
the software running on the device. The purpose of the instrument, shown in Figure 1.1,
is to aid in the development of video playback devices, such as tablets, smartphones and
televisions.

Figure 1.1: The device designed in this thesis work.

The number of different models of video playback devices in development is nowa-
days higher than ever previously and new models are introduced every year. Popular
examples include Apple’s iPhone smartphones and iPad tablets, and the Android-based
smartphones and tablets available from multiple manufacturers. An important part of the
user experience on these platforms is the smooth playback of videos, game graphics and
user interface animations. However, verifying the playback quality is a challenge.

1. Introduction 2

If the video playback quality cannot be measured, it is likely that defects and inefficien-
cies will remain in the devices. These will eventually show up to the users, possibly only
occasionally such as jitter that is visible in only certain kinds of motion. The user does
not even need to consciously notice the problem for it to affect the feel of smoothness.

Most common methods are to add instrumentation to the programs, or to have a hu-
man perform subjective evaluation. See [1] and [2], respectively, for examples of these
methods. Instrumenting the programs is often straight-forward, but doesn’t allow com-
parisons to competitor products, verifying the product in the exact same configuration as
the customer would use nor does it detect problems that occur in the display hardware.
Subjective evaluation is expensive and does not provide exact, repeatable results, which
makes it difficult to use during the development process.

Figure 1.2: An example measurement setup where the video playback performance of a
laptop computer is being measured.

OptoFidelity Oy [3] is a company specialized in an external measurement method: the
image on the screen is monitored using a high-speed camera or other sensors. This allows
the verification of the complete playback path, including the display hardware. One of the
product lines based on this principle is the Frame Rate Meter [4], which uses a graphical
marker embedded in the video stream in order to measure frame times.

The device described in this thesis, called Video Multimeter [5], is a continuation of
this product line. It improves upon the previous version by adding more capable sensors

1. Introduction 3

and by allowing more extensibility for various measurement purposes, while retaining
the basic mode of operation. Figure 1.2 shows an example of the measurement setup,
where the marker is located at the upper right corner of the video and is measured using a
fiber-optic sensor.

The rest of the thesis is divided into four parts. The first chapter will provide gen-
eral background on video playback performance measurement, and describe in detail the
challenges involved. The next two chapters will explain in detail the development of the
measurement device, done as part of this thesis work. The final chapter will analyze the
results of the work based on the achievement of goals and the customer feedback received
for the pilot version.

4

2. STARTING POINT FOR DESIGN

Traditionally, measuring of video playback performance has focused on the image quality.
This was reasonable with analog systems, where the primary problems are noise and
distortion. Digital video systems have altogether different failure modes: it is far more
common to encounter gaps and jitter than for the actual image quality to be degraded.

2.1 Background on video playback performance

The term video playback performance is used here for the aspects that affect the video
reproduction quality and happen during the playback, as opposed to those that happen
during the video production. Figure 2.1 shows the typical path from video production to
video playback, and the part of the process that this thesis focuses on.

Original
scene

Video
camera

Compression
algorithm Video file

Decompression
algorithm

Video
display

Video production Video playback

Figure 2.1: A typical process of producing and displaying digital video. This thesis is
concerned with measuring the performance of the video playback portion of
the process.

The overall user experience depends on a wide variety of factors, as illustrated in Fig-
ure 2.2, of which the playback performance is one important part. For detailed discussion
and examples, see [6]- [7]. Leaving aside the audio portion and using a strict definition
of ”video” as only the moving image, the video playback performance consists of two
aspects:

Image quality is the visual aspects of each individual video frame as shown on the
screen. It depends on things such as the display resolution, color reproduction and
decompression accuracy.

Motion quality is the dynamic behavior of video frame changes. In the most basic case,
it means how accurate the frame change time is. Further considerations are how
fast the change occurs, whether the whole display changes in unison and whether
all the video frames are actually displayed.

2. Starting point for design 5

Of these, image quality can be roughly defined as the apparent clarity of the image,
while motion quality can be defined as the apparent smoothness of motion. In the end,
the perceived playback quality is always a complex combination of video quality, audio
quality, content material and personal characteristics of the viewer [6].

Because video playback is a primary use for so many consumer electronic devices,
it is clear that the quality of the playback affects the user’s perceptions of the device.
The smoothness of the image and the smoothness of the motion can have a great deal of
effect on the market success of the tablet, computer or phone. A testimony to this is the
decision of Apple to adopt the Retina displays [8], which provide high image quality, and
the constant drive towards higher performance processors in tablets [9] to provide higher
motion quality. Even the user interface and games are closely related to video playback,
although some of the content is generated in real-time.

Therefore, it is beneficial for the manufacturer to optimize the video playback perfor-
mance of their device. One way to attempt this is just to select the highest performance
hardware on the market, and hope that it overcomes any deficiencies in the software.
However, it would be more cost effective to improve the software, as the improvements
there can be distributed to all devices for no extra cost.

Our goal is to find and eliminate performance bugs from the software. Some of them
can be found out by simple testing by a human, but others are not immediately obvious
when watching the video playback. Humans have a high tolerance for poor quality video
when it is viewed alone, and the deficiencies only become obvious when compared against
a better version. Even if such a golden reference is available, avoiding the subjective bias
will be difficult [10].

To achieve objective results, we want to leave the content material and the personal
characteristics of the viewer out of the consideration. This can be achieved by carefully
designed double-blind studies, such as the Double Stimulus Continuous Quality Scale
methodology [2, p.159], but the cost of such studies is prohibitive for the product devel-
opment phase. It would be optimal to have an electronic device, which could accurately
estimate the perceptions of the average viewer. Such a device could then be used during
the whole product development project to improve the quality of the product, instead of
just rating the product after it is already almost finished.

Electronic measurements that try to estimate the perceived video quality are usually
termed metrics. The typical way to establish a metric is to define one or more measurable
characteristics of the video, and then construct a model that maps the measurements into
a single value. The accuracy of the metric can be studied using the double-blind studies.
The goal is for the metric to correspond as well as possible to the average perceptions of
the users.

2. Starting point for design 6

User experience
when watching

video

Playback
perfor-
mance

Motion
quality

Frame
timing Missing

frames

Image
quality

Decom-
pression

Re-
scaling

Physical
aspects

of device

Form
factor

Weight

Heat

Screen
Size

ColorsVideo
material

Format
Frame

rate

Reso-
lution

Subject
matter

Move-
ment

Details

Figure 2.2: Illustration of the wide variety of aspects that affect the user experience when
watching a video played back on an electronic device. The parts that are of
central interest for this thesis are shaded in gray.

2. Starting point for design 7

There are multiple widely used metrics for video quality, ranging from the PSNR (Peak
Signal-to-Noise Ratio) to more advanced metrics that more closely approximate the hu-
man perception [10]. However, most of them focus on the image quality, ignoring the
motion quality. There are several reasons for this. Historically, the signal path has con-
sisted mostly of analog systems that could degrade the image quality, but could not change
the timing of the material as there was no buffering. Similarly, with the analog systems,
changing the dynamic characteristics such as the frame rate of the material was not feasi-
ble and it was not important to measure something which you cannot improve.

However, the introduction of digital video has radically changed the practical aspects
of video quality. Because most digital video systems buffer one or many frames before
playback, the timing of the frames can be easily and also accidentally altered. Similarly,
higher quality equipment can use higher frame rates than traditional analog systems have.
Consequently, it is now equally important to measure motion quality as it is to measure
the image quality.

There exists ongoing research into the development of metrics for video motion quality.
Notable examples include the Motion-based Video Integrity Evaluation index [7] and V-
Factor [10]. However, there is no general consensus on the reliability of these metrics,
and neither has achieved widespread use.

The use of metrics to estimate the perceptions of the user can also be misleading.
The traditional Peak signal-to-noise ratio (PSNR) metric for the image quality has been
widely used to optimize the compression in video codecs, mostly because of its mathemat-
ical simplicity. However, further research has shown that this actually leads to excessively
blurry images, and codecs that rate better in this metric can actually look worse in real-
ity [11]. Therefore if a metric is to be used, it must be carefully selected to avoid any
undesired bias.

Video file

Compression Decompression

Playback
device

Observer

Figure 2.3: A single playback device can be used to perform subjective comparisons of
video quality by alternating between two sources, for example between orig-
inal and compressed material. However, measuring the quality of the play-
back device itself is not possible with this setup.

Both the double-blind studies and most of the metrics rely on the availability of a
golden reference. The test subjects and the metrics compare degraded material against
the source material. The principle is shown in Figure 2.3. This type of study is well suited
for video compression, transmission and storage testing, where the degraded material and
source material can be played on the same screen. However, when we are interested in the

2. Starting point for design 8

degradation that occurs in the playback device itself, how do we play back the reference?
Or in the case of a metric, how do we capture the degraded material?

There does not exist a general solution to this problem. It might be feasible to use a
very high-quality video display as the reference, and set the test up so that the two devices
are indistinguishable to retain the double-blindness. For comparative studies, comparing
the playback from several screens is sufficient, but this also requires careful arrangements
to avoid subjective bias if the devices can be distinguished. For the use of metrics, a high-
quality video camera can be used to record the display, and through careful calibration
and positioning the recording can be compared to the source material.

However, there is also a different way to approach the problem. We can define how
the ideal video playback device should function, even though it cannot be implemented
in reality. Objective measurements can then be used to determine how close the device is
to the ideal behavior, and what aspects should be improved. Because the reference device
doesn’t actually exist this precludes the use of human subjects for the testing, and we need
accurate measurement devices to replace them instead.

2.1.1 Ideal video playback

Video playback can be considered to be ideal when it fulfills the following criteria:

1. The color values for every pixel in every frame are exactly the same as in the source
material.

2. Each frame is displayed for the same length of time, which is equal to 1/frame rate.

3. Frame changes are immediate and all pixels on the screen change the color instantly
and at the same moment.

Note that the quality of the source material is ignored in the consideration of video
playback performance. Even a poor quality video can be played back ideally, and the
quality of the material depends solely on the quality of the recording device and any
compression that has been applied. It is also assumed that there is an agreed upon way to
decode the source material, i.e. that the color formats or compression is not ambiguous
or implementation-dependent in any way.

Even with these restrictions, the ideal video playback cannot be achieved in practice
due to several inherent physical constraints. There are also many possible implementa-
tion problems that can cause the performance to degrade. If we cannot achieve the ideal
performance, how close to it should we strive to be?

2. Starting point for design 9

2.1.2 Limits of human perception

In some market segments, it is enough to optimize the video playback performance so
that it satisfies the average user. In the high-fidelity market, the manufacturer’s goal is to
push the quality beyond what their most demanding users can perceive. However, in all
situations it is unnecessary to optimize beyond the limits of the human perception.

The human eye functions quite differently from a camera [12]. Instead of evenly
spaced frames, each light receptor transmits its own sequence of neuroimpulses to the
brain. When a new object becomes visible, brains are aware of its position and velocity
much sooner than the actual color or details of the object. A camera in similar situation
would have all the details of the object available at the same time, when the first frame is
captured.

It is relatively straight-forward to determine the maximum visual acuity and color ac-
curacy for the human eye [13]. Based on these, it can be calculated how many pixels
and how many color values can be seen when a display is viewed from a certain distance.
Modern high-DPI (Dots Per Inch) displays, such as Apple’s Retina, approach or exceed
these limits, leading to a viewing experience where the individual pixels can no longer be
distinguished. When combined with good color quality, it is theoretically possible to re-
produce still scenes exactly as they would appear in real life, except for depth perception.

We can also define a limit for the perception of the motion. Even though the eye
operates in such a way that it is impossible to define a strict frame rate for it, it does have
a limit after which an increase of the frame rate of a display cannot be detected. Such
studies have been conducted, and the typical result is in the range of 30–120 FPS [14]. The
large variance is to be expected both due to individual differences and due to differences
in the video content.

Even if a user cannot distinguish the difference in the frame rate, any variation in the
frame times may still be visible. Some studies suggest that the impact of dropped frames
on perceived video quality decreases quickly at frame rates over 25 FPS [15], which
would mean that a jitter (difference of shortest and longest frame time) of up to 40 ms
(1 s / 25) would be allowable. However, there is a lack of studies that would have actually
tested higher frame rates, so the impact is difficult to estimate. Personal experience shows
that variations of around 10 ms are visible, especially in slowly panning aerial imagery.
Even though determining an exact limit of perceptibility would require further studies, it
can be assumed to be somewhere in the tens of milliseconds.

These values give an idea of how accurately we should aim to measure the display
behavior, and how close to the perfect result the displays should aim to be.

2. Starting point for design 10

2.1.3 Challenges in video playback

Any video playback device has physical restrictions that prevent it from reaching the ideal
video playback. Many of these are cost issues, so a compromise can be reached which
provides adequate performance compared to the price of the device.

The most common physical limitations are:

1. Color gamut of the display, limiting the reproduction of color values.

2. Refresh rate of the display, limiting the frame rate.

3. Latency of the pixel color changes, limiting the frame change speed.

However, there are also several problems that are primarily caused by the software
implementation of the video playback device. Often these can be overcome with careful
design, without increasing the price of the hardware.

Most common software limitations are:

1. Inaccuracies in decoding of the video contents or color space conversions.

2. Unpredictable timing in multiprocessing operating systems.

3. Gaps in playback caused by unexpected delays in fetching the source material from
disk or network.

4. Mismatch between display frame rate and content frame rate.

Of these, limitation 1. causes problems in image quality, while limitations 2-4. cause
problems in motion quality. Particularly 2. and 3. are difficult to test, as they can vary
depending on background programs and network load, requiring long test runs in different
kinds of environments.

Least obvious of the problems is number 4, which is caused by the refresh rate of
the display hardware not being evenly divisible by the frame rate of the content. If the
refresh rate can not be changed, the best compromise is to duplicate single frames at even
intervals. However, if not explicitly designed and verified, it is much more common for
the frame duplication to vary randomly based on minute timing variations of the system.
This can lead to some frames being displayed for e.g. 3 refresh cycles, while other frames
would be shown only for 1 cycle.

Figure 2.4 shows an example of this behavior by comparing the behaviour of two
playback devices. On both devices, the display refresh rate is approximately 60 Hz and
the video frame rate is 30 FPS. Even though the nominal frequencies are divisible by each
other, small variations can cause them to drift relative to each other. Device 1 handles the

2. Starting point for design 11

0 1 2 3
0

17

33

50

Video time (s)

Fr
am

e
tim

e
(m

s)

0 1 2 3
Video time (s)

Device 1 Device 2

Figure 2.4: Frame timings measured from two video playback devices.

situation well, only requiring an occasional shorter frame to compensate, while the device
2 unnecessary also lengthens the frame times and causes excessive variation.

The jitter in frame times is seen as unevenness in motion, but the visibility of the
problem depends heavily on the contents that is being played. In the example case, device
1 has a jitter of 17 milliseconds and device 2 has a jitter of 33 milliseconds. The jitter also
occurs much less often on device 1, which will further reduce the visibility of it.

Overall, the visibility of the software limitations listed above depends on the user.
Some users will tolerate even high inaccuracies in the playback, and in some kinds of
content the problems may not even be visible. However, it is reasonable to expect that
the differences will be noticed by reviews and when customers are comparing devices
side-by-side in a store.

2.1.4 Need for timing measurement

Comprehensive testing of video playback performance will require the combination of
several methods. Some of the aspects can be verified using traditional software testing
methods, such as running a known file through the decoder and verifying the output.
Other aspects depend more heavily on the interaction between software and hardware,
and require therefore measurements from the real device.

One useful characteristic to measure is the timing of various events, most importantly
the frame changes. This timing information can provide a good estimate of the motion
quality of the playback. It is also relatively straightforward to measure, if the played back
material is modified to include suitable markers.

2. Starting point for design 12

The central point of this thesis is the development of a method and device for such
timing measurements. It is also important that the solution can be integrated in a larger
measurement system, which can then measure the complete scope of video playback per-
formance.

2.1.5 Existing solutions

There exist several ways in which the timing information of video playback can be cap-
tured:

1. By modifying the playback software to capture timestamps when frames are shown.

2. Using generic electronic instruments, such as an oscilloscope connected to the dis-
play hardware.

3. Using a specialized instrument, which monitors the display using a sensor or a
camera.

Method 1 is the most inexpensive, and it has found widespread use. However, it doesn’t
usually capture the delays introduced in the graphics card or display hardware. Further-
more, as it requires modification of the software, it cannot be used for competitor analysis
nor for testing the final production units.

Method 2 can be very flexible in the kinds of measurements that can be performed. An
example of this method is an application note by Rohde & Schwarz on lip-sync measure-
ment using an oscilloscope [16]. However, the signal analysis is rarely automated. This
means that long test runs will require laborious manual verification of the waveforms, or
the development of custom signal analysis software for the purpose. In the latter case, the
complexity of the system would approach that of the method 3.

Method 3 is ideally the least laborious and the most widely applicable option. If the
algorithms included in the instrument perform well, the method can be applied with little
modification to any kind of video playback device. However, the downside is that this
method requires the purchase of a specialized instrument, the expense of which may not
always be justified for a single kind of measurement.

2. Starting point for design 13

2.2 Towards a measurement instrument

The measurement instrument developed in this thesis uses a light sensor, which is
attached to the screen of the video playback device. A microprocessor will then analyze
the waveforms captured using the light sensor and collect the requested data derived from
the frame timings. Figure 2.5 shows an overview of the measurement setup.

In addition to measuring the frame changes, it is useful to be able to output a synchro-
nization pulse to an external camera. This capability allows building a larger measurement
system, where this instrument is used to detect the timing of the video frames, and another
instrument is used to verify the content of the images. An example of such a system is the
OptoFidelity AV100 [17].

Playback
device’s display

Light sensor
Detection of

frame changes

Synchronization
pulse to camera

Timestamps of
frame changes

Figure 2.5: The basic measurement setup for camera synchronization and frame rate
measurements.

The need to measure the frame timings and to synchronize a camera is central to many
video playback performance measurement systems developed by OptoFidelity. Therefore,
the kind of device described in this thesis was first developed very early in the company
history. First version was under the name of Synchronization Module and then refined
as Frame Rate Meter, shown in Figure 2.6. The device described in this thesis is a con-
tinuation of this product line, named Video Multimeter to reflect the wider measurement
possibilities.

Figure 2.6: The OptoFidelity Frame Rate Meter is a predecessor to the device described
in this thesis.

2. Starting point for design 14

Throughout the various versions, the basic measurement setup has remained essentially
the same. However, the use of more refined hardware and algorithms allow more accurate
data to be extracted from the measurements. Equally important goal of the new version is
to address some limitations that have restricted the applicability of the previous versions.

2.2.1 Issues of the previous version

The Frame Rate Meter is a device that can detect a black-and-white marker on the display
using a fiber-optic light sensor. The actual detection of the light levels is implemented as
an analog filter circuit, the output of which is then monitored by an 8-bit microcontroller.
The device can perform the two basic functions: output a synchronization pulse, and
capture timestamps when a change is detected. The analog signal path has proven to
have predictable operation and low latency of just a few microseconds, both of which are
important for this kind of a device.

However, it does also have drawbacks: adapting the device to different purposes is dif-
ficult, because the only way to change the signal path is through hardware modifications.
It also translates to a large number of discrete parts in the hardware, which increases pro-
duction costs. Some of the parts used are no longer manufactured, leading to reduced
availability.

The sensor used is a single photodiode, connected to the fiber-optic cable. This kind of
a sensor can sense the brightness of the light at one point of the screen. It is designed to
be used with a test video, which is modified to contain a black-and-white blinking square
in one corner. Detecting the difference of black and white light levels is reliable, but it has
one severe limitation: if a frame is missing in playback, the square will be the same color
for two frame times. For example, if a frame with black marker is dropped, the marker
will remain white for two frames in a row. Consequently, one dropped frame in playback
leads to two dropped frames in capture. Similarly, two dropped frames can go undetected.

This problem has previously been circumvented using a hardware modification, which
links two units together. In this way it has been possible to monitor two separate syn-
chronization markers on the screen. By having these markers use different frequencies,
dropped frames can be handled more accurately. Essentially this forms a 4-state marker,
by using 2 bits. However, the system consisting of two separate devices and fibers is dif-
ficult to set up and is rarely used. Also, even with the modification, the device does not
collect any information about the dropped frames.

Another problem that has been noticed in practical use is the limited capture rate of
cameras. When emitting the synchronization pulse to the camera, it is usually desirable
to minimize the latency between the frame change and the pulse. However, if two frames
occur very close to each other, the external camera cannot capture them fast enough and
will ignore the second trigger pulse. This shows a need for flexibility when integrating
into other parts of a larger measurement system: to adapt to the speed of the camera, a

2. Starting point for design 15

delay has to be inserted between two synchronization pulses if they occur too closely.
Previously this has also required a hardware modification, which is rarely practical.

Finally, the old version does not attempt to handle the backlight flicker of the display.
In practice this means that the video playback device has to be set to full brightness, an
option that may not be available on all devices.

2.2.2 Strengths of the previous version

One advantage of the analog signal processing is the guaranteed low latency and jitter,
which are just a few microseconds. The camera synchronization requires predictable tim-
ing of the synchronization pulses, and is then adjusted to give the best possible captured
image quality. To have reliable measurement results, the timing has to be equal for all
captured frames.

Figure 2.7: The graphical user interface previously developed for the Frame Rate Meter.

A PC program, shown in Figure 2.7, has been developed to act as a GUI for the device.
It can show the frame rate in real time, and measure the variations in it. The previous

2. Starting point for design 16

version has already been integrated to various other measurement systems, which would
benefit from retaining the same USB interface and functionality.

The previous version has also been extensively used in the field, and found to perform
reliably. When acting as a synchronization device, it is only a small part of the whole mea-
surement system. Therefore it is especially important that synchronization is accurate and
consistent, as errors in results are difficult to pinpoint to a single part of the system. The
simplicity and predictability of the analog signal processing path has helped in achieving
this goal.

2.2.3 New market needs

Despite fulfilling its immediate goal, the Frame Rate Meter has not been a large suc-
cess on the market. Feedback from the sales indicates that the narrow application area
and limitations in measurement are the prime cause for this. Many customers consider
the expense of a separate instrument too large, if it can only perform a basic frame rate
measurement.

Early in the planning of this thesis project, several new possible market areas were
identified. Examples of these are: more thorough frame rate measurement, with dropped
frames detection; camera latency measurement; audio-video synchronization measure-
ment. All of these have something in common with the basic task, namely the measure-
ment of timing information from a display device. However, they all require a different
method of analyzing the signal, and also extra hardware for some of the tasks.

Overall, it was identified that the new instrument would have to be more flexible and
extensible than the previous version. This would allow the sale of a single hardware unit,
which could later be expanded using different software options.

2.2.4 Similar products and methods

There are not many products on the market that perform frame rate measurement from
the playback device’s display. All of these rely on markers embedded in the video feed.

VDelay [18], shown in Figure 2.8, is a program for latency and frame rate measure-
ments in video calls, developed by Columbia University. It uses a small display in front of
the transmitting camera to show a bar code, which is detected at the receiving end using
software. By synchronizing the clocks of the devices, the latency of the transfer can be
computed. By detecting when the barcode changes, the frame rate of the video is known.
The main challenges in the system are related to the refresh rate of the LCD display and
the camera shutter speed, which affect the blurriness and thus detection of the barcode.

An off-the-shelf high-speed video camera can be used to study the frame-rate in single-
use scenarios. This involves recording the display at a high frame rate and careful studying
of the resulting video to identify frame change points. The method is limited by the length

2. Starting point for design 17

Figure 2.8: Screen shot of the vDelay application. Image from [18].

of video that the high-speed camera can record, which is often just a few seconds, and by
the manual work required to process the resulting video. These limitations make studying
longer periods of playback infeasible.

Spirent Communications (previously known as Metrico Wireless) has a test system
called Chromatic [19] for measuring frame rate and other video performance aspects from
a device display. It uses a high-speed video camera to capture spinning circular markers
that have been embedded in the video. An example measurement setup is shown in Figure
2.9. The results are processed on a normal PC laptop. The same camera is also used to
perform further analysis of the video content, such as detecting transmission errors. There
is no public information available on the speed of the camera used nor the measurement
accuracy that can be achieved using this setup, but it is reasonable to assume that it is
limited by the camera speed and available processing power.

Pixel Instruments has a specialized instrument for lip-sync measurements. The Lip-
Tracker [20] automatically detects the speaker from the image and uses computer vision
algorithms to match the lip movements to the audio signal. In this way the measurement
can be performed without a reference source and without any added markers.

Compared to the similar products, the Frame Rate Meter stands apart by its use of a
simpler marker scheme. Instead of using a 1-dimensional marker, such as a barcode, or a
2-dimensional marker like a spinning disc, it uses a single blinking rectangle. This allows
the instrument to capture the marker using a simple photodiode sensor, which can operate

2. Starting point for design 18

Figure 2.9: Running measurement with Spirent Chromatic test system. Image from [19].

at a significantly faster sample rate than a camera. This yields higher accuracy measure-
ments, but on the other hand limits the amount of information that can be conveyed by the
marker.

2.3 The idea: a Video Multimeter

Early in the project, the idea began to form about a highly extensible hardware de-
vice, which could interface various sensors and perform real-time signal processing on
them. Although the name Video Multimeter was coined only later, it encompasses well
the purpose of this device: to be a convenient instrument to measure many aspects of
video playback, providing both quick feedback during development and accurate results
for quality assurance.

To achieve this goal, the hardware has to be designed to be both powerful and exten-
sible. Furthermore, the user interface needs a good usability, in order to make a versatile
tool. All this had to be done in the scope of a relatively small research and development
project, in order to keep the development costs reasonable. Fortunately, with modern dig-
ital parts and ready-made software components, the task is much more feasible than even
just a decade ago.

2. Starting point for design 19

2.3.1 Basic principle for new version

Advances in microprocessor technology have increased the performance steadily over
the years. Modern microcontrollers and small microprocessor systems are already fast
enough to allow the complete implementation of the signal processing path in software.
By capturing all the sensor readings into digital form as early as possible, the signal path
can be defined in software to suit the needs of each measurement task. It also reduces the
part count, as many microcontrollers now include a fast analog-to-digital converter and a
large selection of other peripherals on the same chip.

In addition to performing well in the measurement tasks that have been decided ahead
of time, the device needs to be adaptable for new purposes. Therefore sufficient extension
capabilities must be designed into the hardware, and also the software needs to allow
efficient reuse and modification.

2.3.2 New features

The black-and-white marker of the Frame Rate Meter is the simplest possible way to
detect frame changes, but over the years it has turned out to be too limiting. Instead, a
multi-state marker was required to be able to gather more information about the video
playback. Multiple options were considered, such as using a row of binary markers, but
eventually it was decided to focus primarily on color information to provide the additional
states.

By using the three color channels (red, green and blue) in a binary fashion, 8 com-
binations can be created. This is enough to detect multiple dropped frames in the video
playback, while the marker can still be read through a single optical fiber. This is useful
as it takes up minimal space on the display, which may need to remain visible for other
measurement devices.

The multi-state marker allows for the most important new feature: ability to detect
dropped frames. This allows accurate frame rate and dropped frame measurements, which
were difficult with the previous version if any frame dropping occurred.

However, just doing frame rate measurement is a too narrow market segment to cover
the development costs. By leveraging the flexibility of software, the device can be used for
a variety of tasks: latency measurements, lip sync measurements, camera synchronization
and backlight analysis to name a few. Some of these were implemented for the first
release, in the scope of this project, while others were left for future development.

20

3. HARDWARE DESIGN

To realize the goals set in previous chapter, a suitable hardware platform is needed. The
choices made in this chapter have wide implications for the rest of the design. For ex-
ample, the choice of processor affects the kind of software it can run efficiently. Higher
performance processor can allow fast software development in a high-level language, but
it will also have drawbacks in price, power usage and complexity.

Most important concerns in the hardware design are the manufacturability, cost and
flexibility of the device.

For manufacturability, a premade platform would be optimal. There exists a variety of
embedded development platforms, some of which are also suitable for use in products.
Premade platforms have also a price advantage, as higher production volumes reduce the
manufacturing costs.

On the other hand, maximum flexibility and suitability to the task is achieved with a
custom platform. In this way, every component choice can be tuned to achieve the optimal
compromise between price and capabilities of the device. The price is raised by the design
costs and need for manufacturing resources.

3.1 Design options

The hardware design is necessarily a compromise between price and features. There
exists a very wide range of possible designs, but only a few can be investigated in depth.
To select the optimal design, a hierarchical approach is used: a high-level concept is
decided first, after which the lower level options are explored. This way the amount of
options at each level is limited and manageable.

Figure 3.1 illustrates the hierarchical decision process. The choices will be further
explained in the following sections.

3. Hardware design 21

Initial
idea

USB
peripheral

Network
device

Stand-
alone

Embedded
PC

Linux
platform

Micro-
controller

FPGA SoC

NXP
LPC4330

ST
STM32F407

Atmel
ATSAM4S16

Most portable
Least cost

Best
peripherals

High-level
concept

Processor
class

Processor
model

Figure 3.1: Decision tree of the design possibilities explored.

3.1.1 High level concept

At the beginning of the design process, three top-level design options were identified:

1. USB-connected device, which is operated from a control program running on a PC.
This would be similar to the concept for previous versions.

2. Network connected device, which would be operated using a web browser. The user
interface logic would run on the device itself, and the web browser would provide
the display and control devices.

3. Completely stand-alone device, with its own touchscreen display and GUI running
on it.

Of these, 1. has the lowest requirements for the hardware, and would be consequently
the most economical to implement. At the other end of the spectrum, 3. requires display
device and powerful enough platform to provide an user interface. Option 2. avoids the
need for display, but still requires a powerful processor and also network connectivity.

From the sales feedback, there was a slight preference for the stand-alone option 3. A
stand-alone device would be the easiest to demonstrate at sales events, and also is easiest
to use in many of the use cases. Portability of the device would be another advantage,
as would the independence of PC operating system. By including USB connectivity, the
stand-alone device could also be controlled from a PC if necessary.

3. Hardware design 22

3.1.2 Processor class

To proceed with the design, the needed processing power must be evaluated and a suitable
processor class has to be selected. The exact model of the processor is not important at
this stage, but the general performance class is selected. The design choice of a stand-
alone device with touchscreen display already precludes the lowest-end microcontrollers.
This leaves the following options:

1. Embedded Windows PC, for example Intel Atom [21] or AMD Geode [22] based.

2. Embedded Linux platform, such as BeagleBone [23] or Pandaboard [24].

3. High-end microcontroller, such as ARM Cortex-M4 [25] based ones.

4. Custom system on a chip (SoC), implemented on an FPGA.

Figure 3.2 shows example products from each of these categories. In practice, options
1. and 2. would be implemented using a premanufactured hardware platform, because
the hardware complexity makes custom design prohibitively expensive. Options 3. and
4. have simpler hardware design and could use either a premanufactured platform or a
completely custom one.

It is important to notice that some of these options will not be sufficient by themselves.
The options 1. and 2. would not be able to fulfill the real-time needs of the system, due
to overhead in high-level operating systems. Therefore they would require an auxiliary
microcontroller to handle the real-time processing.

Option 1. has a high cost, in the order of 1000-2000 EUR compared to the 100-200
EUR of the other options. It also lacks portability. Because it would still require a separate
processor for all real-time tasks, it offers little advantage over just using a laptop and a
USB-connected device. Consequently, it is easy to rule out.

Option 4. would have the highest flexibility, as the complete processor system would
be on a re-programmable logic device, in an approach called soft-core processor. The pro-
cessor could for example be augmented with custom instructions for specific tasks. How-
ever, the processing requirements would require a very high-performance FPGA. Also, as
design costs have to be kept low, it is unlikely that the processor would be heavily cus-
tomized in this project. Therefore using a soft-core processor would unnecessarily raise
the price, as traditional processors in the same performance class are generally cheaper
than an FPGA required to run one implemented in re-programmable logic. Therefore
custom SoC on FPGA is not the best option for this device.

The final two options 2. and 3. are both very good alternatives. A Linux-based plat-
form would allow using commonly available software development tools and libraries.

3. Hardware design 23

a) Advantech ARK-3403 [26], an Intel Atom based
embedded Windows PC.

b) BeagleBone [23], an ARM
Cortex-A8 based embedded Linux
platform.

c) STM32F4 Discovery [27], a development board for
STM32F4xx series of ARM Cortex-M4 microcontrollers.

d) Altera DE0-Nano [28], a
development board for Altera
Cyclone IV FPGA.

Figure 3.2: A visual comparison of the processor class options. The photos are from the
cited sources and are shown in approximate scale relative to each other.

It would also have enough processing power to implement many signal processing al-
gorithms, but with reduced real-time responsiveness. Even though achieving the required
timing resolution under a non-real-time operating system is difficult, it would only require
a separate microcontroller or FPGA for the real-time tasks. Such a separation could also
make the software more structured, even though the required communication between
processors would make it more complex.

Nevertheless, the processing requirements for the GUI are not exceedingly large. Op-
tion 3. would easily handle the GUI, while also executing the real-time tasks at the same
time. Software development would be somewhat complicated, because there are not as
many high-quality libraries available and the memory limitations must be considered at
all times. On the other hand, other parts of the software are simplified because there is no
need to communicate between separate processors. Also the hardware is simplified and
power usage is reduced when everything is connected to a single processor, and the closer
connection to hardware allows more determinism in some measurement tasks.

The decisive factor is that option 3. is the simplest, lowest-cost design that can fulfill
the requirements.

3. Hardware design 24

3.1.3 Processor model

The most common processor cores used in modern 32-bit microcontrollers are ARM
Cortex-M series [25], AVR32 [29] and MIPS [30]. Of these the ARM Cortex-M series has
the widest array of associated manufacturers. Consequently it also has the largest amount
of available libraries and good tool support. For example Texas Instruments TMS320
Delfino digital signal processors have very high performance, but their proprietary C28
processor core is not supported by many embedded operating systems. Because the ARM
Cortex-M processors have high performance, low cost and best software support, they are
the most reasonable choice for this design.

ARM Cortex-M series includes M0, M3 and M4 models. Of these, M4 has the highest
performance and also includes a floating point unit in the M4F variant. Because the
price difference is negligible in small production volumes, choice is simple. Highest
performance processor will simplify the software development and allow larger flexibility
in applications.

Manufacturers of high performance Cortex-M4 based microcontrollers include NXP
Semiconductors, ST Microelectronics and Atmel. Details of the available options are
presented in Table 3.1.

Table 3.1: Comparison of high-end Cortex-M4 microcontrollers from three manufactur-
ers, as available for purchase in September 2012. From each product series,
the most suitable model was selected for the table.

Manufacturer NXP ST Atmel
Model LPC4330FBD144 [31] STM32F407ZG [32] ATSAM4S16CA [33]
Clock frequency 204 MHz 168 MHz 120 MHz
Flash memory size External 1 MiB 1 MiB
RAM size 264 kiB 192 kiB 128 kiB
FPU Yes Yes No
ADC 10 bit, 12 bit, 12 bit,

8 channels, 24 channels, 16 channels,
400 kS/s 3 × 2.4 MS/s 1 MS/s

Other features TFT controller,
Cortex-M0
co-processor

Price for 1 unit 8.11 C 12.75 C 9.94 C [34]

The most important application requirement is high general purpose computing perfor-
mance, including high amount of RAM. For connecting different kinds of analog sensors,
good analog capabilities are useful. Finally, a relatively large amount of flash memory,
atleast 1 MiB, is needed to give room for software extensions.

All of the microcontrollers in the table have high enough performance to run basic
signal processing and user interface tasks. However, the LPC4330 is clearly inferior in

3. Hardware design 25

its analog capabilities, and also requires external flash memory which makes the circuit
more complex.

Of the remaining two, the STM32F407 is slightly more powerful and has more mem-
ory. The lack of a floating point unit also limits the performance of the ATSAM4S. Com-
bined with the superior analog capabilities of the STM32F407, this makes it the best
option.

3.2 Implementation of the main electronics

With the processor chosen, the rest of the electronics can be designed around it. These
are quite straightforward design choices, as the only need is to provide the processor the
necessary peripherals for interfacing the external world. Figure 3.3 shows the components
and interconnections on the main board of the device.

STM32F407
processor

MicroSD
card

Sensor
connector 1

Sensor
connector 2

USB port

On-board
fiber sensor

Internal extension connector

INT035TFT
display module

SPI

16-bit memory bus

ADC, I2C,
SPI, ...

ADC, I2C,
SPI, ...

ADC

Synchronization
output

GPIO

Figure 3.3: Overview of the hardware components of the system, and the interconnections
between them.

The following sections describe the subsystems in detail. All parts of the main elec-
tronics are mounted on the same circuit board, which was also designed as part of this
work. The circuit board is shown in Figure 3.4.

3. Hardware design 26

Figure 3.4: A hand-soldered prototype version of the main circuit board of the device.

3.2.1 Touchscreen

The implementation of a touchscreen based user interface requires several parts: the dis-
play panel itself, a backlight, a TFT controller, touch screen film, touch screen controller,
and finally the processor controlling the user interface. To reduce the design complexity,
an integrated display module is desired. These usually contain all of the parts except for
the main processor in a single module.

A significant challenge with the integrated modules is to ensure their continued avail-
ability. Many modules are manufactured in small volumes and low profits, and conse-
quently may be discontinued at any time. Furthermore, there is no standard form factor
for TFT modules, so changing the module type would involve a redesign of the main PCB
as well as changes to the enclosure.

Displaytech is one prominent manufacturer of integrated TFT and touchscreen mod-
ules. Their products are available from multiple distributors, providing good availability.
The INT035TFT-TS module [35] was chosen for this project. It is a 320×240 screen with
a resistive touchscreen film. While it is not comparable to modern smartphone displays
in image quality, the availability in small quantities and simple hardware design make it
a good choice for a design where production quantities are going to be small and low
hardware development costs are important.

The INT035TFT-TS module integrates a SSD1963 TFT driver IC (Integrated Circuit).
The driver IC has memory buffer for a single display frame, and automatically handles
refreshing the display. The main microprocessor can write and read the screen contents
using a 16-bit data bus. In this design, the TFT display is connected to the STM32F407
microcontroller’s external memory bus to provide fast access.

The touchscreen controller in the display module is MAX11802, which uses a SPI
serial bus to connect to the main processor. It also has a separate interrupt line, which
can be configured to provide information about whether the display is currently being

3. Hardware design 27

touched or not. The touchscreen controller manages the analog-to-digital conversions
automatically, and provides numeric coordinates through the SPI bus.

Overall, the placement of the display determines a large part of the form factor of the
device. The main electronics are placed on the other side of the main PCB, behind the
display, in order to keep the size of the device small. This way the connections for the
display could be routed directly from the processor to the display pins, while the external
connectors are placed to the right of the display.

3.2.2 Power management

To make the device portable, a lithium-ion battery was chosen as the power supply. The
battery will be charged through the USB connection. For safety purposes, a ready-made
li-ion charger IC and a prepackaged battery with a protection circuit were selected for the
design.

The operation on USB power places a constraint on the power usage of the device
and the attached sensors. The maximum permitted current by the USB specification is
500 mA. In order to be able to also charge the battery simultaneously, the total power
usage of the device should remain around 200-300 mA. The processor, at 100 mA, and
the display module, at 150 mA, are the most power intensive devices on the main board.
Fortunately, the total usage of them still leaves 250 mA leeway for external sensors and
battery charging, which seems adequate.

The device is to be powered on and off by means of a slide switch. The switch could in
the simplest case just cut the power supply to the device, but this would cause problems in
practice. Because the device may be in the middle of a write operation to the memory card,
it has to have control over the power-down. This is implemented using a MOSFET (Metal
Oxide Semiconductor Field Effect Transistor), which allows the processor to control its
own power supply independent of the power switch. This is used to force the power to
stay on while important operations are in progress.

The components on the main board require a variety of supply voltages; Figure 3.5
shows an overview of this. Even though the number of separate supplies is large, most
of them are implemented using one-chip linear regulators. Consequently the board area
required by the power supply parts is relatively small.

The main supply voltage for the processor and display is +3.3 volts. This is easily
produced from the nominal 3.7 V voltage of the li-ion battery using a low-dropout linear
regulator (LDO). The regulator chosen operates at 150 mV dropout, which allows the
supply voltage to remain stable until the battery voltage decreases to 3.5 V. At this point
most of the energy in the battery has already been depleted.

3. Hardware design 28

The integrated color sensor and some of the planned external sensors require a +5 V
supply voltage. This is generated from the battery voltage using a combination of a boost-
type SMPS (Switching Mode Power Supply) and a linear regulator. The SMPS is neces-
sary in order to be able to raise the voltage, but the switching action generates considerable
noise in the output voltage. In order to make the output voltage stable enough for the sen-
sors, the SMPS is configured to supply a +5.5 V output, which is then regulated down to
+5 V using a LDO.

Li-ion battery
3.5 – 4.2 V

Power switch

3.3 V low-power
linear regulator

3.3 V low-power
linear regulator

3.3 V linear
regulator

1.2 V linear
regulator

5.5 V boost
SMPS

5 V linear
regulator

Charger IC

USB
connector

Internal
color sensor

STM32F407
microcontroller

TFT display

ADC

RTC

Figure 3.5: Diagram of the power supply scheme of the device.

The display module also needs an additional +1.2 V supply for the display controller,
which is also generated using a linear regulator. At a voltage difference this large, a SMPS
could provide better efficiency in dropping the voltage. However, the power usage on the
+1.2 V supply is low enough that it does not matter in this device.

Finally, there are also two separate +3.3 V supplies that are needed by the processor:
a backup supply for the RTC (Real Time Clock), and a separate supply for the ADC
(Analog-to-Digital Converter). These have a low current drain, and are generated using
small linear regulators. The RTC supply is regulated directly from the battery voltage, be-
fore the power switch. This way the device can keep correct time also when switched off.
The separate ADC supply is implemented only to reduce the noise in the measurements,
and it is regulated similarly to the main +3.3 V supply.

3. Hardware design 29

3.2.3 Data storage

An internal non-volatile memory is required to save configuration settings and the mea-
surement results. This memory can be accessed through the USB port, so it does not have
to be removable. In order to provide enough storage space for the measurements, some of
which can be many hours long and consist of millions of data points, at least a 128 MB
memory is needed.

The most reasonable memory type is flash memory, which comes in various forms.
Flash memories are available with both parallel and serial bus interfaces. While a parallel
bus is faster, it is unnecessarily complex to layout on the PCB due to the large number
of connections. Unfortunately, there are only few options of serial flash memory having
capacity over about 8 MB.

Instead, a more common solution is to use microSD cards as a storage medium. They
provide large capacities in a small form factor, and are available from many manufactur-
ers. Due to the standardized interface, this also reduces the risk of the manufacture of an
important part being discontinued later.

One potential problem of microSD cards is the unpredictable write latency. The card
contains a built-in controller, which handles the erasure and allocation of memory areas
for storage. If the controller has to relocate a large amount of data in order to free up a
location, the write operation may stall for several hundred milliseconds. This is a problem
if real-time measurement data is being saved to the card. However, in this design, the
microcontroller has sufficiently high amount of RAM memory in order to buffer the data
if a stall does occur.

3.2.4 Built-in sensor

The amount of built-in sensors to include on the main board was necessarily a compro-
mise. Including a sensor on the main board simplifies the hardware and reduces the cost,
as it can be assembled in the same step with the main board. However, including unnec-
essary sensors would increase both the cost and the risk of some sensor part becoming
deprecated and unavailable in the future, requiring design changes.

The color sensor is central for the basic measurement situations, so its inclusion was
justified. By having the color sensor built-in, the two external sensor connectors are
available for other purposes.

3. Hardware design 30

3.3 Extension capabilities

To provide for the needs of any future measurement tasks, the device has to be extensi-
ble. Naturally, the choice of microcontroller and platform will limit the capabilities of the
system, and any electrical device will be obsolete eventually as technology progresses.
However, by bringing out as many as possible of the interfaces present on the microcon-
troller, we can make sure that anything that could have been added in the design phase,
can also be added as an extension in the future.

Most important extension capability is the connectors for external sensors. These
should accommodate many kinds of sensors with minimal interfacing. Therefore the
connector has to provide both digital and analog interfaces, and suitable power supply for
the sensors. Some ideas for sensors that have come up during the project are: sound input,
sound output, second color sensor, RGB LED for light output.

In order to allow for higher speed peripherals, there is also an internal extension port.
This provides a 16-bit extension bus, which will allow fast data transfer between the
extension board and the main processor. This bus could allow for example connection of
a camera, an external display or high-speed data storage.

3.3.1 Sensor connectors

The chosen microcontroller already contains a large range of useful peripherals for inter-
facing sensors: it has SPI, I2C and USART buses, ADC and DAC converters, timer inputs
and outputs, and naturally also general-purpose IO pins. Any of these can be useful for
some kind of a sensor or extension, but dedicating a pin for each function would lead to a
large and cumbersome connector.

The microcontroller itself contains a partial solution to this: many of the functions
share pins, and have software-configurable multiplexers that select which function is con-
nected to each pin. Not all of the desired functions are available on any set of pins, but
we can further combine pins electrically using resistors. In any case, a series resistor of
about 50−100 Ω is appropriate for an external sensor bus, in order to act as series termi-
nation. The main benefit of the resistor is to reduce the electromagnetic emissions from
the system.

However, the series resistor can serve a dual purpose: by connecting each connector
pin to two microcontroller pins through separate resistors, we can double the amount of
available functions on each pin. By configuring either of the two microcontroller pins as
high-impedance input, the functions of the other pin can be used independently.

Figure 3.6 shows a schematic of the sensor pin arrangement. The external sensor
connects to the 10-pin connector J1. The resistors R1 and R2 are the series resistors that
connect the two microcontroller pins to the sensor pin IO 1. The other three IO pins have
same kind of connection, which is left out of the diagram for clarity.

3. Hardware design 31

1 2
3 4
5 6
7 8
9 10

J1

PA7: SPI1 MOSI,
TIM14 CH1, ADC IN7

PB6: I2C1 SCL,
USART1 TX

100Ω

R1

100Ω

R2

+3.3V

F2
150 mA

+5V

F1
150 mA

D1

IO 1
IO 2
IO 3
IO 4
ID

R3
2 kΩ

+3.3V

C1
100 nF

ADC input

IC1 STM32F407

Figure 3.6: Simplified electrical schematic of the external sensor connectors. The resistor
arrangement for combining functions is shown for IO 1; the other three IO
pins on the 10-pin connector are connected similarly.

Through careful selection of pins, it was possible to form two sets of 4 data pins so
that each set containing the exactly same functions on each pin. This way the two external
sensor connectors perform identically. Therefore any sensor can be connected to either
connector. By providing appropriate abstraction in the software API, the sensor drivers
do not even have to know which port the sensor is connected to.

To give the final touch of usability, each sensor should be automatically identifiable.
The simplest method of identifying the sensors is to simply have a pull-down resistor of
a defined resistance on the pins. Combined with the R3 pull-up resistor in the device
this forms a voltage divider. The analog input in the microcontroller can then be used to
determine the voltage and identify the sensor. The capacitor C1 reduces the noise in the
measurement. A single resistor with 1 % tolerance is enough to identify about 50 different
kinds of sensors, and requires only a single pin on the connector.

Finally, the sensor connectors should be robust against normal use and occasional mis-
connections. Therefore each pin has its own electro-static discharge protection diode (D1
for IO 1) to protect against static electricity, and each power rail has a automatically re-
setting overcurrent fuse. The series resistors R1 and R2 included in the design provide
further protection of the IO pins against overloading and short-circuits.

3. Hardware design 32

3.3.2 Extension board connector

The extension board connector allows insertion of another PCB inside the same device
enclosure. It has especially been designed to be an efficient way to connect a FPGA as
a co-processor to the main processor. Suitable tasks would be to capture signals from
high-speed sensors, or equivalently provide high-speed data output.

The extension board connector provides access to the 16-bit external memory bus of
the microcontroller. This bus is shared with the TFT display, and each device on the bus
has a separate enable signal. The connector also provides the same +3.3 V and +5 V power
supplies as are available on the main board. Finally, several general purpose IO signals
and a synchronous serial port are provided in order to be able to load a configuration into
an FPGA in runtime.

The design effort of an extension board is necessarily large, as the interface is not
designed to be directly applicable for sensors. Whereas most sensor connections to the
external sensor connectors consist only of a few discrete parts, an extension board will
necessarily include an FPGA or a microcontroller. Therefore it is expected that most
sensors will be connected through the sensor connectors.

However, the extension board connector provides an useful way to add even complex
extra functionality in the future, without resorting to more intrusive hardware modifica-
tions. Because the connector is already designed in, even previously sold devices could
be upgraded with an extension board.

3.4 Enclosure

The design of the enclosure posed some challenges in the project. Even though the
scope of the thesis project did not necessarily include any enclosure at all, some solution
was necessary in order to make the device usable and presentable for demos. For example,
the optical fiber that connects into the color sensor would have been difficult to attach
without an enclosure.

Furthermore, it was important to have some enclosure concept in mind when laying
out the main board. For example, connectors had to be placed so that they could be
brought easily to the sides of the enclosure, and the placement of the display also had to
be reasonable.

In the prototype phase, low starting costs were essential for the enclosure design. It
was very likely that several designs would have to be tried, so any starting costs such as
mold making or CNC programming would quickly accumulate.

For the prototyping phase, it was therefore important to have a flexible technology that
allows affordable testing of many test models, with fast turn-around time. For the pilot
production runs, it was also necessary to minimize the amount of manual labor.

3. Hardware design 33

3.4.1 Options

One way to keep costs low would be to use a pre-made standard enclosure. However, the
need for openings for the connectors and especially the display would still have required
custom machining of the enclosure. Another issue is that very few standard enclosures
would match the dimensions of the display well.

Most commercial electronic devices use an enclosure made of injection molded plastic.
For this product, even the estimated production runs are too small to warrant the cost of
mold making. Even the inexpensive prototyping services have costs starting at thousands
of euros per each run [36].

Some of the other devices manufactured by OptoFidelity Oy in the past have used
a custom aluminum enclosure that has been milled using CNC machinery. This is a
reasonable option, and allows the production of high-quality enclosures in small runs. The
per-unit cost is high compared to most other options, but not unreasonable for the price
range of these products. However, there are still significant non-recurring engineering
costs charged by the supplier, for tasks such as processing the model and programming
the tools.

Recently, the price of 3D printing has also become affordable for this kind of appli-
cations. The prime benefit of 3D printing is that there are no setup costs, and that very
complex shapes can be created. It is therefore a good fit for the prototyping run, as various
enclosure designs can be tried out at low expense.

3.4.2 Implementation

The prototype enclosures were ordered from ShapeWays, a company based in Nether-
lands that provides 3D-printing services [37]. ShapeWays uses high-precision industrial
machinery for the purpose, which provide a good accuracy and surface quality in the
end product. The material used was Polished Alumide, which is a marketing name for
polyamide mixed with fine aluminum powder, and then polished using glass beads after
printing.

The 3D printed part and the complete enclosure are shown in Figure 3.7. The main
board, connectors and display fit readily in the apertures designed into the model, reducing
the amount of manual assembly work. The size of the device is approximately 12× 8×
3 cm.

The front and back panels were ordered separately, laser-cut of acrylic sheet. This both
reduces the amount of material that has to be printed, consequently reducing the price,
and also makes the structure stronger. The laser cutting technology can also engrave the
surface of the plastic, allowing the texts and markings to be added in the same step. The
visibility of the engraved texts was not entirely satisfactory, but good enough for the pilot
run.

3. Hardware design 34

a) 3D printed part b) Assembled device

Figure 3.7: The 3D printed body and the assembled enclosure.

Both the 3D printing process and the laser cutting are controlled by computer-based
models. These were designed using the open source tools QCad [38] and OpenScad [39].
While they do not match the capabilities of commercial CAD packages, the amount of
learning required is smaller and they allowed the quick production of models for this
purpose.

35

4. SOFTWARE ARCHITECTURE

The high-level purpose of the device is straightforward: capture data from sensors, apply
signal processing algorithms, show results or take an action. The design of the necessary
filtering algorithms is the most difficult part of the core tasks. It is more of a signal
processing problem than a software architecture problem.

However, to support these core tasks, a significant amount of low-level software is
necessary. Because the hardware is custom, there is no premade operating system that
would work without configuration. Also some device drivers will have to be written,
because no operating system contains drivers for all of the wide variety of chips on the
market.

4.1 Real-time operating system

Most important part of the support software is the operating system that will run on
the device. The purpose of a RTOS (Real-Time Operating System) is to support multiple
parallel tasks, without compromising the strict timing requirements of the tasks. Most
RTOS also provide a HAL (Hardware Abstraction Layer), which contains device drivers
and a programming interface for the various parts of the hardware.

4.1.1 Requirements

In the scope of this project, there are no resources to port or significantly extend the chosen
RTOS. Therefore it is necessary that the RTOS already contains support for the STM32F4
processor. Most important subsystems should also be included or easy to integrate: USB
driver, graphics toolkit and file system.

Furthermore, to be commercially useful, the operating system must have reasonable
support and licensing model and reasonably secure future availability. This can mean
either paid-for support package, or an open source community around the project. In the
latter case, any features not implemented by the community can be implemented by the
designer, only to the limit of available time.

4. Software architecture 36

Table 4.1: Feature matrix of the software components included in each of the considered
RTOS. Features marked as separate or third-party are sold separately by ei-
ther the same company or by another one. Features marked as no do not have
an existing implementation for the operating system.

RTOS Graphics C library File system HAL STM32F4 USB Driver

ChibiOS/RT No No No Yes Yes
µC/OS-II Separate Separate Separate Yes Third-party
NuttX Yes Yes Yes Yes Incomplete
FreeRTOS No No Third-party No Third-party

4.1.2 Options

Table 4.1 shows 4 candidate operating systems that were considered for the project. All
of them could fullfill the requirements, either by themselves or when combined by other
components. In some cases, however, this would require adapting separate libraries to
work with the chosen RTOS, while in other cases an already integrated solution exists.

ChibiOS/RT [40] is an open-source RTOS, which contains basic thread facilities and
a HAL with drivers for most STM32F4 peripherals [41]. It does not include a file system
nor C standard library, but separate libraries can be used.

µC/OS-II [42] is a commercial RTOS developed by Micrium. There is no official
STM32F4 support yet, but third-party ports exist [43]. Advanced file system and graphics
modules are available.

NuttX [44] is an open-source RTOS that aims ”to be a tiny Linux-compatible OS for
MCUs.” Consequently it supports many POSIX interfaces, such as pthreads. It has drivers
for most STM32F4 peripherals, but some are not fully working or tested.

FreeRTOS [45] is an open-source RTOS with long history and extensively reviewed
code base. The basic system includes only the kernel and thread functionality, but device
drivers are available from third parties [43].

Some well-known operating systems were left out of comparison because of lack of
hardware support, such as NutOS, eCos or VXWorks. These systems did not support the
ARM Cortex-M4F processor at the time when the device was being designed.

Overall, NuttX contained the most features that were required by this project. Espe-
cially its integrated graphics subsystem, which supports multiple application threads and
has a built-in window manager, contributed towards the decision. Furthermore, being
open source and BSD licensed made it an inexpensive option that can be modified as
necessary.

4. Software architecture 37

4.2 Programming language

The traditional de facto programming language for embedded systems has been C.
However, modern microcontrollers are powerful enough to support higher level lan-
guages, which may offer faster software development and easier to understand code.

There are two main components in the system: the signal processing and the user
interface. For the signal processing part, real-time requirements such as high performance
and predictable latency are critical. For the user interface, performance is not as critical
as the efficiency of software development.

4.2.1 Options

The Cortex-M4 processor is widely supported by many programming languages. Some
of the most commonly used programming languages are:

C is supported by compilers from many vendors and is compiled to native machine
code for the target. It is a relatively low-level language, allowing efficient use of the
hardware but often requires more complex code for implementation than other languages.

C++ is a high-level object-oriented language, also supported by compilers from many
vendors. Compared to C, it has higher level features but still allows everything that is
possible through C and has equal performance.

C# is a high-level object-oriented language, which uses garbage collection to simplify
development. It can be run on microcontrollers by the means of .NET Micro Framework
[46]. Unlike the full .NET Framework, the Micro Framework only interprets the byte code
and does not include just-in-time compilation. This leads to 2–10 times slower execution
than the languages that are compiled to native code.

Lua [47] is a script language, which is widely used to implement the higher-level
portions of applications and games. It is rarely used to implement complete programs,
but is used as a method to allow easy customization of applications for various purposes.
In the scope of this project, it could allow fast development of measurement tasks once
the lower level components have been finished.

The NuttX operating system itself is implemented in C and C++. Therefore the use
of any other language would require the development of a separate interface layer to
provide access to the NuttX functions from the rest of the software. Choosing C++ as
the development language was a reasonable way to maximize the performance while also
providing high-level features for development.

4. Software architecture 38

4.3 Implementation

The software components implemented as part of this project can be divided into three
categories: device drivers, signal processing filters, and user interface. The overview of
the software architecture and the components implemented in this project are shown in
Figure 4.1.

Measurement
application

Support
libraries

Graphics
subsystem

Operating system
kernel

Signal processing
algorithms

Display
driver

Built-in
drivers

Custom
drivers

Display
hardware

MicroSD
card

Sensors

Figure 4.1: Overview of the software architecture. The user interacts with the measure-
ment application, which communicates with the hardware through the kernel
and driver layers. The shaded parts were implemented in this thesis work,
while the other parts are reused open source components.

The complete system also contains the scheduler, device drivers and graphics libraries
from the NuttX operating system, some of which were extended for this project but most
of which are used as-is. Most changes to the NuttX core have been contributed back to
the central project, which has the benefit of not needing to maintain them separately over
the changes in future operating system versions.

4.3.1 Device drivers

The lowest level of the software implementation is the device drivers, which interface to
hardware resources such as the color sensor or the synchronization port. These can be
considered to form a part of the NuttX kernel, as applications communicate with them
through standard kernel interfaces such as the device nodes in /dev.

To meet the performance requirements, most of the device driver code runs in interrupts
when new samples are available from the hardware. Also DMA (Direct Memory Access)

4. Software architecture 39

Sensor chip

Analog-to-digital
converter

DMA controller

Double-buffered
memory area

High samplerate
filters

Samplerate
reduction

Message queue Message queue

Low samplerate
filters

User interface Filesystem
writing

Hardware

Interrupt handler

Application 1 Application 2

Software

Figure 4.2: Data flow in the system when two applications are reading the data from the
color sensor device driver.

techniques are used to offload the processing of the data to the hardware. When the
samples are ready in a memory buffer, the interrupt passes them on to applications by
means of message queues, which are implemented by the NuttX kernel.

Figure 4.2 shows the flow of the data throughout the hardware and software of the
device. Hardware handles the most time critical parts of collecting the samples. When one
of the memory buffers is full, the interrupt handler triggers, performs some of the more
demanding filtering tasks, reduces sample rate of the signal and passes on the samples to
memory queues. Each reading application has its own queue of incoming samples, which
it can then read and process in whatever way is appropriate for the application’s purpose.

The message queue mechanism provides thread safety, but it also has a negative per-
formance impact when large amounts of data are being processed. Consequently, it is
important that the device drivers do not have to to pass excessive amount of data to the
applications. This is accomplished by running some of the signal processing algorithms

4. Software architecture 40

in the interrupt handlers, such as the backlight filtering. In order to function effectively,
the backlight filter needs to process every input sample at the full 100 kHz sample rate,
but for further analysis a smaller sample rate is sufficient.

A traditional approach to interrupt handlers is to keep them as short as possible, be-
cause a running interrupt handler blocks all other tasks on the system. However, modern
CPU cores such as the Cortex-M4 have multiple pre-emptible interrupt priorities, so that
a higher priority interrupt can interrupt another, longer running handler. This is beneficial
in exactly this kind of applications, where there is a need to run long processing tasks in
the interrupts. By setting a lower priority for the longer interrupt handlers, the shorter
ones can pre-empt it. In this specific case, it allows the reduction of the sample rate as
early as possible, without compromising the overall system interrupt latency.

4.3.2 Signal processing

Digital signal processing forms a core part of the software. It is necessary to both im-
plement the currently required measurements, and to allow easy extensibility for future
needs. Furthermore, efficiency, reliability and testability are important.

The signal processing tasks in this system consist of fairly basic algorithms: FIR (Fi-
nite Impulse Response) filters, sliding window variances and averages, derivatives and
some custom non-linear filtering. It is reasonable that these basic algorithms should be
implemented as reusable blocks, which can be combined in various ways to realize the
measurement tasks.

The reusability was achieved by implementing each basic algorithm or filter block as a
separate C++ class. The classes share a basic interface, which allows chaining of several
instances together to form a filter chain. Input samples are given through a function call
on the chain’s first filter, and the samples then progress automatically through the chain.
Output data is collected through a callback function on the last filter. An example of such
a filter chain is shown in Figure 4.3.

Samples from
the color sensor

Color space
conversion

Color change
detection

Color
recognition

Color sequence
interpretation

List of
dropped frames

Frame times

Figure 4.3: Simplified diagram of a filter chain for detecting the frame times and dropped
frames from a color marker. Each block in the diagram is implemented as a
separate filter, which can be chained in different layouts for measurement
tasks.

4. Software architecture 41

For this thesis, the filter blocks implemented include such functions as backlight filter-
ing, color space conversion, color change detection and color recognition. The algorithms
used cannot be described here in detail due to their proprietary nature. An important
goal was that the device would not require complex setup, but would instead automati-
cally adapt to many kinds of display devices under measurement. This was accomplished
through careful design of the algorithms, so that they will capture the fundamental char-
acteristics of the signal and not be affected by variations between display types.

Because of the very large variations in the kinds of display devices in use, the algo-
rithms used are necessarily somewhat heuristic in nature. Verifying the performance of
the algorithms is a major task, as even small changes made to accommodate one kind of
display could cause problems for another kind. In order to verify the performance of the
filters, a regression test suite was needed.

Figure 4.4 shows two examples of the various kinds of display behaviors that the signal
processing algorithms have to adapt to and tested for. The OLED display is characterized
by much faster color changes, which are in fact so abrupt that the internal refresh cycles
of the screen can be seen as glitches. The data shown in the graph has already been
preprocessed by a color calibration algorithms, which separates the R, G and B channels
and normalizes the range of color values to 0–255.

1 2 3

0

255

Frame number

B
ri

gh
tn

es
s

(R
G

B
)

1 2 3
Frame number

LCD display OLED display

Figure 4.4: Comparison of OLED and LCD display behaviors. Each graph shows the
measured brightness of three color channels: red, green and blue.

The very basic behavior of the filters can be verified using synthetic unit tests. For
example, a color change detector can be tested by feeding a generated sequence of 100
samples of one color and then 100 samples of another color, and checking that the output
shows a single transition at the correct time.

However, testing the adaptability to various display types cannot be done using syn-
thetic data. Instead, throughout the project test data was collected from various kinds
of devices and added to the test suite. Once the data is processed through the filters,

4. Software architecture 42

the output is checked visually using graphing tools. For example, graphing the detected
color changes against the raw color data gives a graph that is feasible, if tedious, to check
manually.

After the output has been manually checked once, the results are stored as a reference
file. Any further runs will compare the output of this (filter, data file) pair against the
reference file, and only report differences that exceed a predefined threshold. This allows
automatic checking of all changes against the full test data set, which greatly reduces the
possibility of regressions in filter performance.

Further development could be done in the area of comparing the reference files and
actual filter output. Currently the checks report considerably often false positives, as
there is only a single threshold defined for the whole test. For displays with slow color
transition, like LCD in Figure 4.4, the uncertainty in the results is necessarily larger than
for displays with very fast transition. Similarly, the glitches in OLED waveforms can
result in false transitions which must be filtered out separately, a step which complicates
the individual testing of the filter blocks.

As the signal processing subsystem is implemented as standard C++, it is very portable
to various platforms. For example, the tests can be readily run on the development PC,
which speeds up the process of running through all the test data files. Similarly, even
if a future version of this device is designed based on a different hardware platform and
operating system, the signal processing portion can be reused.

4.3.3 User interface

NuttX includes its own GUI and window manager libraries, called NxWidgets [48] and
NxWM [49]. These are designed to fit the resources available on common microcon-
trollers, and are therefore a good fit for the hardware in this project. The programming
language for the graphical side is C++, and the libraries use the familiar object-oriented
approach to GUI programming.

The NXWidgets library contains user interface elements (widgets) for the most com-
mon functions, such as buttons, text boxes and labels. Each widget is a separate C++
class, and new widgets can be implemented by the user of the library. Unlike the GUI
libraries typically used on PC’s, NXWidgets does not include any automatic layout sup-
port: each widget has to be manually placed based on pixel coordinates. As long as the
screen size remains constant, however, this is not a large problem.

The NxWM window manager provides facilities for starting applications, switching
between them and closing them. The NxWM’s basic user interface, shown in Figure 4.5,
is the taskbar at the side of the screen, and the start window which acts as a list of ap-
plications. Each application is implemented as a C++ class, all of which implement a

4. Software architecture 43

Figure 4.5: The basic NxWM user interface, showing the taskbar on the left and the list
of applications in the start window on the right.

common interface IApplication. The application is responsible for creating its own win-
dows, processing input events and painting the graphics when requested by the window
manager.

Overall, the NXWidgets and NxWM combination provides a flexible graphics subsys-
tem, which can run multiple applications simultaneously and each application can also
have multiple threads itself. This is useful for example in the frame rate measurement
application, shown in Figure 4.6, where the graph can be updated by one thread while the
rest of the user interface is handled in another. For this to work, one aspect that must be
taken care of is the threading model between the applications and user input events.

Figure 4.6: User interface during frame rate measurement.

Depending on which thread delivers the asynchronous input events from the user, there
may be need to use interlocking between several threads to prevent corruption of the
program state. As part of the development work relating to this thesis, the core of NxWM
was modified to pass all asynchronous events through a single worker thread, as shown

4. Software architecture 44

in Figure 4.7 This change was also contributed to the upstream NuttX project, and it
simplifies the development of multithreaded applications for this platform.

Touchscreen
driver

GUI
elements

System-wide
worker thread

Signal processing
thread

Touch events Data to display

Method
calls

Figure 4.7: Multithreading model used in the user interface. All events are synchronized
by the use of a single worker thread, which makes it simpler to write reliable
multithreaded code.

By passing each event through the work queue, there is no need to perform interlocking
as all GUI actions are delivered by a single thread. Applications can still also use addi-
tional threads when necessary, as long as they implement the interlocking themselves.

The applications developed for the device in this thesis are straightforward in architec-
ture. As the signal processing subsystem handles most of the actual measurement task,
the application only has to provide means to display and save the results. This is ac-
complished through a few custom controls, such as the scrolling frame time graph, and
a single class per each application. The class instantiates the necessary controls, places
them on the screen and runs its own thread to for the signal processing filters.

45

5. RESULTS

The project did succeed in producing a design for a device, which accurately performs
frame rate measurements using the multi-state color marker. The time frame from the
beginning of the project to the final hardware design was 7 months, and to the first official
release of the software 9 months. All design work was done by the author, while the
product manager, sales team and hardware team provided highly useful feedback.

The 5-month schedule set at the beginning of the project was exceeded slightly, and
the amount of features implemented during the thesis work had to be significantly re-
duced. Most significantly, it was initially planned to develop a high-speed camera exten-
sion board for the device, but this would have been an excessive amount of work.

When considering the schedule in retrospect, it becomes clear that the target prod-
uct should have been defined more clearly in the beginning. Even though the hardware
choices were made early, there were little discussions about at which point the device
should be fit for sale as a product. This didn’t affect the actual work much, as it smoothly
transitioned from initial design to productization. However, it did cause confusion in
communicating about the project status, which could have been avoided if the goals were
set more accurately.

Product development in small companies poses a few unique challenges. Due to the
difficult to predict future market success, relatively small amount of resources can be al-
located to a single project. The most important thing is to be able to prove the concept and
probe the market potential with a small investment, and then continue development if the
product sells well. In this case, the single person development team and extensible hard-
ware were good choices for keeping costs low. However, having only a single developer
involved in the initial design caused trouble when transferring the further development
work to other groups. Having wider involvement through design and code reviews during
the development could have paid back by making further development easier.

Overall, bringing a new product from the first designs to a sellable pilot product in
only 9 months and 3 hardware revisions is a good achievement for the project. The rest of
this Chapter evaluates the product as a device, i.e. whether the instrument that has been
designed fulfills its purpose well.

5. Results 46

5.1 Compared to previous version

The measurement accuracy of the previous version, Frame Rate Meter, has never been
completely characterized. The general feel is that both the Frame Rate Meter and the
Video Multimeter have a similar accuracy, down to the millisecond level. However, the
Video Multimeter does not require manual adjustments of the brightness limits, and also
handles dropped frames better.

The market potential of the Video Multimeter is much larger than that of the Frame
Rate Meter. Because many new measurement functions can be implemented in software,
the company can provide custom solutions for individual customers. The co-operation
with customers also provides new use cases, some of which have wider demand on the
market.

The hardware costs of the two versions are similar. In both cases, the cost of assembly
dominates the price. The number of manual steps in the assembly has been reduced
compared to the previous version, and the amount of electrical components on the PCB is
also smaller. The 3D-printed enclosure is also quick to assemble.

Characterization has shown that the Video Multimeter can measure up to 150 FPS
with 1 ms resolution. This improves over the 120 FPS limit of the Frame Rate Meter. The
resolution of the Frame Rate Meter was 0.1 ms, which was possible due to the simpler
signal processing requirements. However, 1 ms is a sufficient measurement resolution
for the displays expected in the near future, and very likely exceeds the limits of human
perception. Specialized measurement tasks could also use a simpler signal processing
pipeline in order to measure at higher resolution.

5.2 Achieving of goals

The primary goal was to implement frame detection in a way that could solve the
problems with dropped frames that had arisen in the previous revision. This was achieved
by means of a multi-state color marker and a sensor capable of reading it.

Secondary goals were to expand the device to new kinds of measurement tasks. The
extensibility designed into the hardware makes this possible. This has been demonstrated
by implementing a few additional measurements, such as camera latency, and more can
be added through software and new sensors.

Tertiary goal was to simplify the use of the device by automatically compensating for
different display types, backlight brightnesses and other factors, without manual configu-
ration. This has been achieved through a careful design of signal processing algorithms.
The difficulty of this task was greatly underestimated in the beginning of the project, and
about a month of the schedule slip is entirely due to problems in making the signal pro-
cessing cope with display variations. However, in the end a single algorithm that accepts

5. Results 47

any display type allows a much better result than having a separate algorithm for every
situation.

There were also other secondary goals that were related to the planned camera exten-
sion board. However, these had to be dropped midway through the project, when the
schedule began to slip. The hardware does allow the implementation of the camera exten-
sion later on, so these goals can be considered to be postponed for now.

5.3 Sales and customer feedback

Generally, the customers have been interested in the possibilities of the new model.
Some example measurement reports have been prepared for customer’s own devices, and
these have been considered very useful. A few customers have also provided us with
completely new use cases, which will highly benefit from the extensibility built into the
device.

The sales department has been pleased about the easier demonstrability of the new
device, compared to the previous models. As the device is self-contained and portable,
the demonstration is easy to set up. Also the new measurement tasks, such as camera
latency measurement, have allowed more interesting demonstrations and they also give
the potential customers an idea about the flexibility of the device.

Early pilot customers had concerns about the accuracy of the results. These have been
addressed both by fixing of several software problems, and by performing a full character-
ization of the repeatability of the measurement results. The characterization results have
proven the high repeatability and accuracy of the measurements across several display
types.

Some negative feedback has been received about the look and feel of the enclosure.
This is definitely something that could be improved now that the main hardware devel-
opment is complete. A custom milled aluminum case could be more fitting for the price
range of these instruments.

The basic design choice of making a portable instrument with its own touchscreen
has also been questioned. However, the explanation that the portability allows mobile
measurements in e.g. moving vehicle, has been generally accepted. It is true that a PC-
based user interface can in some cases provide a better usability. Nevertheless, even that
becomes feasible, as an API to control the device through USB has been planned.

Finally, the feature of camera latency measurements has drawn interest inside the com-
pany itself. OptoFidelity Oy develops many kinds of camera systems and the latency of
video transfer is important in many of them. The portability and design of the Video Mul-
timeter have been ideal for these measurements, as setting up the measurement takes only
seconds. Usually it requires just the turning on of the device and positioning the fiber on
the screen.

48

6. SUMMARY

This thesis has described the theoretical background, hardware design and software archi-
tecture of the OptoFidelity Video Multimeter. The designed device functions as planned
and is able to measure frame rate and dropped frames of video playback. Table 6.1
presents some general statistics about the project.

Table 6.1: Basic information of the project and device

Scope of project Complete hardware and software design of a
measurement instrument.

Purpose Accurate measurement of timing characteristics
of video playback.

Time frame 9 months from initial planning to first software
release.

Work effort
hardware design 5 weeks
low-level software 10 weeks
signal processing 10 weeks
user interface 5 weeks
documentation 5 weeks

Lines of code
low-level drivers 2000 lines
signal processing 3000 lines
user interface 5000 lines
contributions to NuttX 2000 lines, 107 patches

Strengths Accurate measurement, portable device, exten-
sibility with new sensors and software.

Drawbacks High design cost compared to sales volumes,
demanding platform for software development.

Overall, the development progressed rapidly and completing the device in just 9
months can be considered fast. However, even so the accumulated development costs
are high, which can be problematic for a device with small sales volumes. In some points
of the project further insight to the market conditions could have lead to better choices;
for example, some other hardware design could have simplified the software develop-
ment. Even if the cost of the hardware would have increased, up to a point it would be
compensated by smaller development costs.

6. Summary 49

Nevertheless, the initial market interest has been promising and the potential is high
due to the possibility of extending the device to perform various measurement tasks. Per-
haps the most critical remaining problem is the difficulty of further software development.
Because a large part of the software has real-time demands, it cannot be very abstract and
performance characteristics have to be carefully thought out when implementing func-
tionality. This leads to a highly demanding environment for software development, which
consequently raises the time required and cost of features. One way to address this would
have been to use faster hardware, allowing the software to be less efficient but still meet
the speed requirements.

In conclusion, the project succeeded in producing a design that meets the needs, and is
extensible for future demands. Further development depends on market requirements and
financial aspects.

50

REFERENCES

[1] Intel Corporation, “Quantify and optimize the user interactions with Android
devices,” 2011.
http://software.intel.com/en-us/articles/

quantify-and-optimize-the-user-interactions-with-android-devices.

[2] International Telecommunication Union, Objective perceptual assessment of video
quality: Full reference television, 218 pages, 2004.
http://www.itu.int/ITU-T/studygroups/com09/docs/tutorial_opavc.

pdf.

[3] OptoFidelity Ltd, “OptoFidelity – technology and expertise,” 2013.
http://www.optofidelity.com/company/technology-and-expertise.

[4] OptoFidelity Ltd, “OptoFidelity FRM120 Frame Rate Meter,” 2 pages, 2008.

[5] OptoFidelity Ltd, “OptoFidelity Video Multimeter,” 2 pages, 2013.
http://www.optofidelity.com/wp-content/uploads/2013/07/OF_

VideoMultimeter_PB_screen.pdf.

[6] D. Hands, “A basic multimedia quality model,” IEEE Transactions on Multimedia,
vol. 6, no. 6, pp. 806–816, 11 pages, 2004.
http://dx.doi.org/10.1109/TMM.2004.837233.

[7] K. Seshadrinathan and A. C. Bovik, “Motion-based perceptual quality assessment
of video,” Proc. SPIE, vol. 7240, pp. 72400X–72400X–12, 13 pages, 2009.
http://dx.doi.org/10.1117/12.811817.

[8] Apple Inc, “Learn about the high-resolution Retina display,” 2010.
https://web.archive.org/web/20100625135600/http://www.apple.com/

iphone/features/retina-display.html.

[9] PassMark Software, “Android devices - CPUMark rating,” 2014.
http://www.androidbenchmark.net/cpumark_chart.html.

[10] S. Winkler and P. Mohandas, “The evolution of video quality measurement: From
PSNR to hybrid metrics,” IEEE Transactions on Broadcasting, vol. 54, no. 3,
pp. 660–668, 9 pages, 2008.
http://dx.doi.org/10.1109/TBC.2008.2000733.

[11] J. Garrett-Glaser, “Diary of an x264 developer: Why so many H.264 encoders are
bad,” 2009.
http://x264dev.multimedia.cx/archives/164.

http://software.intel.com/en-us/articles/quantify-and-optimize-the-user-interactions-with-android-devices
http://software.intel.com/en-us/articles/quantify-and-optimize-the-user-interactions-with-android-devices
http://www.itu.int/ITU-T/studygroups/com09/docs/tutorial_opavc.pdf
http://www.itu.int/ITU-T/studygroups/com09/docs/tutorial_opavc.pdf
http://www.optofidelity.com/company/technology-and-expertise
http://www.optofidelity.com/wp-content/uploads/2013/07/OF_VideoMultimeter_PB_screen.pdf
http://www.optofidelity.com/wp-content/uploads/2013/07/OF_VideoMultimeter_PB_screen.pdf
http://dx.doi.org/10.1109/TMM.2004.837233
http://dx.doi.org/10.1117/12.811817
https://web.archive.org/web/20100625135600/http://www.apple.com/iphone/features/retina-display.html
https://web.archive.org/web/20100625135600/http://www.apple.com/iphone/features/retina-display.html
http://www.androidbenchmark.net/cpumark_chart.html
http://dx.doi.org/10.1109/TBC.2008.2000733
http://x264dev.multimedia.cx/archives/164

REFERENCES 51

[12] A. B. Watson and J. Albert J. Ahumada, “Model of human visual-motion sensing,”
J. Opt. Soc. Am. A, vol. 2, pp. 322–341, 21 pages, Feb 1985.
http://dx.doi.org/10.1364/JOSAA.2.000322.

[13] M. Kalloniatis and C. Luu, “Psychophysics of vision,” in WEBVISION The Orga-
nization of the Retina and Visual System (H. Kolb, R. Nelson, E. Fernandez, and
B. Jones, eds.), University of Utah, 2013.
http://webvision.med.utah.edu/book/part-viii-gabac-receptors/.

[14] Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura, “Improvement
of motion image quality by high frame rate,” SID Symposium Digest of Technical
Papers, vol. 37, no. 1, pp. 14–17, 4 pages, 2006.
http://dx.doi.org/10.1889/1.2433276.

[15] Q. Huynh-Thu and M. Ghanbari, “Impact of jitter and jerkiness on perceived video
quality,” in Second International Workshop on Video Processing and Quality Metrics
for Consumer Electronics (VPQM-06), 6 pages, 2006.
http://enpub.fulton.asu.edu/resp/vpqm/vpqm2006/papers06/308.pdf.

[16] Rohde & Schwarz, Lip-Sync Measurement (AV Delay) for TV Displays – Application
Note, 12 pages, 2010.
http://www.rohde-schwarz.de/file/7BM77_1E.pdf.

[17] OptoFidelity Oy, AV100 Video Quality Analysis System, 2013.
http://www.optofidelity.com/products-and-services/

test-automation/video-playback-performance/

av100-video-quality-analysis-system.

[18] O. Boyaci, A. Forte, S. Baset, and H. Schulzrinne, “vDelay: A tool to measure
capture-to-display latency and frame rate,” in Multimedia, 2009. ISM ’09. 11th IEEE
International Symposium on, pp. 194–200, 7 pages, 2009.
http://dx.doi.org/10.1109/ISM.2009.46.

[19] Spirent Communications, “Chromatic video quality measurement system.”
http://www.spirent.com/Service-Experience/Fit4Launch_Measurement_

Systems/Chromatic.

[20] Pixel Instruments Corporation, “LipTracker lip sync analyzer,” 6 pages, 2009.
http://www.pixelinstruments.tv/pdf/Manuals/LipTracker%20Data%

20Sheet%202009.pdf.

http://dx.doi.org/10.1364/JOSAA.2.000322
http://webvision.med.utah.edu/book/part-viii-gabac-receptors/
http://dx.doi.org/10.1889/1.2433276
http://enpub.fulton.asu.edu/resp/vpqm/vpqm2006/papers06/308.pdf
http://www.rohde-schwarz.de/file/7BM77_1E.pdf
http://www.optofidelity.com/products-and-services/test-automation/video-playback-performance/av100-video-quality-analysis-system
http://www.optofidelity.com/products-and-services/test-automation/video-playback-performance/av100-video-quality-analysis-system
http://www.optofidelity.com/products-and-services/test-automation/video-playback-performance/av100-video-quality-analysis-system
http://dx.doi.org/10.1109/ISM.2009.46
http://www.spirent.com/Service-Experience/Fit4Launch_Measurement_Systems/Chromatic
http://www.spirent.com/Service-Experience/Fit4Launch_Measurement_Systems/Chromatic
http://www.pixelinstruments.tv/pdf/Manuals/LipTracker%20Data%20Sheet%202009.pdf
http://www.pixelinstruments.tv/pdf/Manuals/LipTracker%20Data%20Sheet%202009.pdf

REFERENCES 52

[21] Intel, “Intel Atom processor,” 2013.
http://www.intel.com/content/www/us/en/processors/atom/

atom-processor.html.

[22] Advanced Micro Devices, Inc., “AMD Geode LX processor family,” 2013.
http://www.amd.com/la/products/embedded/processors/geode-lx/

Pages/geode-lx-processor-family.aspx.

[23] BeagleBoard.org Foundation, “BeagleBone,” 2013.
http://beagleboard.org/Products/BeagleBone.

[24] Pandaboard.org, “PandaBoard technical specifications,” 2013.
http://pandaboard.org/node/300/#Panda.

[25] ARM Ltd., “Cortex-M series,” 2013.
http://www.arm.com/products/processors/cortex-m/.

[26] Advantech Co.,Ltd., “ARK-3403 – Intel Atom D510/D525 fanless embedded box
PC,” 2013.
http://www.advantech.com/products/ARK-3403/mod_

96172106-3409-45B3-83A1-AE004C960E48.aspx.

[27] STMicroelectronics, “Discovery kit for STM32F407/417 lines,” 2013.
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419.

[28] Altera Corporation, “DE0-Nano development and education board,” 2013.
http://www.altera.com/education/univ/materials/boards/de0-nano/

unv-de0-nano-board.html.

[29] Atmel, “AVR32 architecture document,” 377 pages, 2011.
http://www.atmel.fi/Images/doc32000.pdf.

[30] Imagination Technologies Ltd., “MIPS M4K hard IP cores,” 2013.
http://www.imgtec.com/mips/mips-m4k-hardip.asp.

[31] NXP Semiconductors, LPC4350/30/20/10 32-bit ARM Cortex-M4/M0 microcon-
troller, 150 pages, 2012.
http://www.nxp.com/documents/data_sheet/LPC4350_30_20_10.pdf.

[32] STMicroelectronics, DS8626: STM32F405xx, STM32F407xx datasheet, 185 pages,
2012.
http://www.st.com/web/en/resource/technical/document/datasheet/

DM00037051.pdf.

http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html
http://www.intel.com/content/www/us/en/processors/atom/atom-processor.html
http://www.amd.com/la/products/embedded/processors/geode-lx/Pages/geode-lx-processor-family.aspx
http://www.amd.com/la/products/embedded/processors/geode-lx/Pages/geode-lx-processor-family.aspx
http://beagleboard.org/Products/BeagleBone
http://pandaboard.org/node/300/#Panda
http://www.arm.com/products/processors/cortex-m/
http://www.advantech.com/products/ARK-3403/mod_96172106-3409-45B3-83A1-AE004C960E48.aspx
http://www.advantech.com/products/ARK-3403/mod_96172106-3409-45B3-83A1-AE004C960E48.aspx
http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF252419
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.altera.com/education/univ/materials/boards/de0-nano/unv-de0-nano-board.html
http://www.atmel.fi/Images/doc32000.pdf
http://www.imgtec.com/mips/mips-m4k-hardip.asp
http://www.nxp.com/documents/data_sheet/LPC4350_30_20_10.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/DM00037051.pdf
http://www.st.com/web/en/resource/technical/document/datasheet/DM00037051.pdf

REFERENCES 53

[33] Atmel, SAM4S ARM Cortex-M4 Microcontrollers, 2012.
http://www.atmel.com/products/microcontrollers/arm/sam4s.aspx.

[34] Digi-Key, Price listings, November 2012.
http://digikey.fi/.

[35] Displaytech Ltd., INT035TFT-TS LCD Module, 2011.
https://www.displaytech-us.com/3-5-inch-integrated-tft-driver-boards.

[36] Proto Labs Inc., “Protomold injection molding,” 2012.
http://www.protomold.com/.

[37] Shapeways Inc., “3D printing services.”
http://www.shapeways.com/.

[38] RibbonSoft, “QCad open source CAD system for everyone.”
http://www.qcad.org/.

[39] M. Kintel and C. Wolf, “OpenSCAD – the programmer’s solid 3D CAD modeller.”
http://www.openscad.org/.

[40] G. D. Sirio, “ChibiOS/RT,” 2013.
http://chibios.org/.

[41] G. D. Sirio, “ChibiOS/RT features matrix,” 2013.
http://www.chibios.org/dokuwiki/doku.php?id=chibios:matrix.

[42] Micrium, “µC/OS-II – the real-time kernel,” 2013.
http://micrium.com/rtos/ucosii/overview/.

[43] HCC Embedded, “STM32F4 middleware,” 2013.
http://www.hcc-embedded.com/targetdevices/stmicro/stm32f4.

[44] G. Nutt, “NuttX real-time operating system,” 2013.
http://nuttx.org/.

[45] Real Time Engineers Ltd., “FreeRTOS,” 2013.
http://www.freertos.org/.

[46] Microsoft Corporation, “.NET Micro Framework,” 2013.
http://www.netmf.com/.

[47] Lua.org, “Lua programming language,” 2013.
http://www.lua.org/about.html.

http://www.atmel.com/products/microcontrollers/arm/sam4s.aspx
http://digikey.fi/
https://www.displaytech-us.com/3-5-inch-integrated-tft-driver-boards
http://www.protomold.com/
http://www.shapeways.com/
http://www.qcad.org/
http://www.openscad.org/
http://chibios.org/
http://www.chibios.org/dokuwiki/doku.php?id=chibios:matrix
http://micrium.com/rtos/ucosii/overview/
http://www.hcc-embedded.com/targetdevices/stmicro/stm32f4
http://nuttx.org/
http://www.freertos.org/
http://www.netmf.com/
http://www.lua.org/about.html

REFERENCES 54

[48] G. Nutt, “NxWidgets.”
http://nuttx.org/doku.php?id=documentation:nxwidgets.

[49] G. Nutt, “NuttX window manager.”
http://nuttx.org/doku.php?id=wiki:graphics:nxwm.

http://nuttx.org/doku.php?id=documentation:nxwidgets
http://nuttx.org/doku.php?id=wiki:graphics:nxwm

	Title page
	Tiivistelmä
	Abstract
	Preface
	Table of contents
	Terms and symbols
	1. Introduction
	2. Starting point for design
	2.1 Background on video playback performance
	2.1.1 Ideal video playback
	2.1.2 Limits of human perception
	2.1.3 Challenges in video playback
	2.1.4 Need for timing measurement
	2.1.5 Existing solutions

	2.2 Towards a measurement instrument
	2.2.1 Issues of the previous version
	2.2.2 Strengths of the previous version
	2.2.3 New market needs
	2.2.4 Similar products and methods

	2.3 The idea: a Video Multimeter
	2.3.1 Basic principle for new version
	2.3.2 New features

	3. Hardware design
	3.1 Design options
	3.1.1 High level concept
	3.1.2 Processor class
	3.1.3 Processor model

	3.2 Implementation of the main electronics
	3.2.1 Touchscreen
	3.2.2 Power management
	3.2.3 Data storage
	3.2.4 Built-in sensor

	3.3 Extension capabilities
	3.3.1 Sensor connectors
	3.3.2 Extension board connector

	3.4 Enclosure
	3.4.1 Options
	3.4.2 Implementation

	4. Software architecture
	4.1 Real-time operating system
	4.1.1 Requirements
	4.1.2 Options

	4.2 Programming language
	4.2.1 Options

	4.3 Implementation
	4.3.1 Device drivers
	4.3.2 Signal processing
	4.3.3 User interface

	5. Results
	5.1 Compared to previous version
	5.2 Achieving of goals
	5.3 Sales and customer feedback

	6. Summary
	References

