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maattisesta tunnistuksesta tai kuvassa olevan ihmisryhmän sosiaalisen alakulttuurin
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Tämä diplomityö käsittelee valokuvista tunnistettavien ihmisryhmien automaat-
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ABSTRACT
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As digital cameras and camera equipped smart phones have become commonplace

both the needs and the opportunities to automatically categorize photographs have

increased. The subject has been researched with several goals in mind, for example

how to �nd family relations in group photos or how to categorize a groups of people

by their subculture.

This thesis was made for Tampere University of Technology (TUT) department of

signal processing in 2013. In this thesis I review and analyze recent research into

face and face properties recognition. Speci�cally methods of identifying individuals

identity, age, gender and expression from known data sets for labeling purposes

are considered. Additionally labeling methods of photo categorization based on

groups of people in them are examined. Based on this analysis I then constructed

an example implementation of these methods as a part of a camera application on

Android mobile platform. Finally the suggested methods are evaluated in terms of

practical usability.
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1. INTRODUCTION

The problem machine learning is trying to solve is, broadly speaking, categorization.

For example a simple linear division over two variables can try to answer the question

�is this wood sample from a pine or a �r tree� when the input is the texture of a

sample and a density measurement. Tricky part is �nding the best way to split

the feature space for sample measurements in a way that the error rate is as low

as possible. Additionally the method to accomplish this task should be adaptive to

new input, therefore being a learning system.

These kind of learning systems can be split into two main categories, supervised

and unsupervised systems. The di�erence between the two is data labeling. Unsu-

pervised methods know only about the features of a sample, not its category. These

kind of methods are often used in data mining as they try to extract labeling infor-

mation from data. For example a question of �How many species of trees were these

samples collected from� might be solved using an unsupervised learning algorithm.

The line between supervised and unsupervised learning can be a blurry one though.

In some cases we want to learn categorizations like �how these samples can be ar-

ranged into 5 di�erent groups� or �We know these �ve samples are from pines and

these other �ve are from �rs. What would be a good classi�er for these species of

trees when there are samples from eight di�erent species in the data set?�

In this thesis the interest is on recently developed, supervised learning algorithms

which are used in and relating to face recognition. Commonly used mathematical

tools in these algorithms are introduced in chapter 2. In face recognition the goal is

to match a section of a photo (a window) against a previously learned model so the

algorithm can return the areas containing faces. Di�erent methods to achieve this

goal are discussed in chapter 3. From these face matches a new set of features can

be extracted through di�erent methods. Using these extracted features it is often

possible to recognize the identity and even emotional state of the target. These

methods are discussed in chapters 4 and 5 respectively. Additionally it is possible

to measure spatial relations from the found faces. This relational arrangement of

people can be used to further categorize photographs. These methods are discussed

in chapter 6. Finally in chapter 7 I discuss the implementation of these algorithms

in Android-based software and consider the practical e�ectiveness of these methods.
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2. MATHEMATICAL TOOLS USED IN FACE

AND PATTERN RECOGNITION

In this chapter some of the commonly used tools relevant for this thesis are presented.

They are used to either simplify larger datasets into more manageable forms or in

extraction of meaningful data. Principal Component Analysis is used in �Eigenfaces�

face identi�cation method, local binary patterns are used in nearly every recognition

method in this thesis and the Gabor �lters are used in the Gabor Volume LBP-

identity recognition method.

2.1 Principal Component Analysis, PCA

Principal Component Analysis [2], also known as discrete Karhunen-Loéve transform

is an orthogonal linear transformation of a dataset, one of the fundamental tools

used in any kind of high dimensional data analysis. The goal of PCA is to maximize

the variance along one dimension while minimizing it on others. If the variance is

small enough (below some arbitrary threshold) it may be considered irrelevant to

the problem in hand and discarded altogether. In the �gure 2.1 the two dimensional

dataset on the left side is processed through PCA and the result can be seen on the

right. The axis with the highest variance, the principal component, is now the �new

axis 1�. As this is two dimensional example the �new axis 2� is automatically the

least meaningful dimension when it comes to separating the samples. The process

to calculate a PCA solution can be seen in algorithms 2.1 and 2.2.

Although PCA is straightforward to use, the user must take care of keeping the

input set balanced with intended use in mind. The only parameter the analysis

cares is the sum of squared sample distances per dimension. If the samples are not

measuring the same type of variable in every dimension, they need to be somehow

normalized to avoid situations similar to the dataset in the lower right corner of

�gure 2.2.
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Figure 2.1. Example result of PCA-analysis. Generated with script A.3
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Algorithm 2.1 De�nition of PCA-analysis [2]

1: begin initialize Xk =Dataset to be analyzed,(k = 1, . . . , N), Xk ∈ IRD

2: Center the dataset so that
∑N

k=1Xk = 0

3: Covariance matrix C = 1
N

∑N
k=1XkX

T
k

4: C can be factorized into form Ψ∆ΨT where Ψ = [φ1, φ2, . . . , φN ] is a matrix

with Eigenvectors of C and ∆ = [∆1,∆2, . . . ,∆N ] which is the diagonal matrix

with Eigenvalues {λ1λ2 . . . λN} on its diagonal. Eigenvectors should be sorted

to descending order.

5: As �rst M Eigenvectors match M largest Eigenvalues,

create matrix Ψ∗ = [φ1, φ2, . . . , φM ], where M ≤ D is the wanted number of

remaining dimensions.

6: return Original dataset projected into new PCA space by Ψ∗

7: end

Algorithm 2.2 Practical implementation of PCA-analysis

1: begin initialize Xk =Dataset to be analyzed,(k = 1, . . . , N), Xk ∈ IRD

2: Subtract the mean X̄ from each member of X.

3: Per demands in algorithm 2.1, line 4:

Y T = XTW,Y is transformation of X by W

= (WΣV T )TW , Singular value decomposition (SVD) of X

= V ΣTW TW = V ΣT

4: The colums of Y T now hold the score values of their corresponding eigenvectors.

5: To get M �rst reduced dimensional representations of X the projection for WM

is Y = W T
MX = ΣMV

T , where ΣM = IM×mΣ, and IM×m is identity matrix of

suitable size.

As square roots of eigenvalues in Σ are relative to X:s covariance matrix XXT

the results are proportional to variance within X because we are calculating

with deviations from the mean X̄.

6: return PCA projection Y

7: end
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2.2 Local Binary Patterns, LBP

Local Binary Patterns are mostly non-parametric descriptors, originally used for

texture analysis by Ojala, Pietikäinen and Harwood [3]. Two dimensional face pic-

ture is texture in itself, but by applying LBP it can be seen as local texture feature

extractor, producing similar results to similar part of faces. LBP is simple, but

surprisingly powerful feature extraction method detecting per pixel gradients. The

whole operation is a small sliding window producing a binary image by comparing

its center pixel value to neighboring pixels. If windows center pixel value is fp :

LBP (pc) =
7∑

k=0

δ(fk+1 − fp)2k, per �g.2.3, δ(x) =

{
1, x ≥ 0

0, x < 0
(2.1)

In other words, the region values with numbering scheme from �gure 2.3 are de-

termined by thresholding area average pixel values against the middle pixel value of

the scanning window. The resulting binary values form an LBP-code by concatena-

tion in order, i.e. if areas 8 and 3 are the only areas with higher average value than

the middle pixel, the resulting LBP binary code will be 10000100b which can then be

interpeted as an 8-bit integer like in eq. 2.1. Areas outside the image are considered

to be removed from the area, both in value and area size when calculating averages

later on.

Other variants based on the original have been created for speci�c areas of re-

search. Naika, Das and Nair [4] have suggested an Asymmetric LBP speci�cally for

face recognition tasks. In this con�guration the LBP kernel is adjusted in size by

parameters n and m, scaling the size in width and height. The values compared

against the center pixel value are the averages of areas seen in �gure 2.3. With

n,m = 1 the AR-LBP is identical to the original LBP. The third variant of LBPs

used in this thesis is the Elliptical LBP, or Elongated LBP [5]. The basic operating

principle is the same than in original LBP but using a cell selection based on ellip-

tical path around the center. The length of the code can be adjusted by selecting

the number of divisions and size of the selection ellipse. An example of an ELBP

kernel can be seen in �gure 2.3.

Figure 2.3. The original LBP kernel, AR-LBP kernel and ELBP kernel. Indexing
matches to k in eq. 2.1
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2.3 Gabor �lters

Gabor �lters are adjustable bandwidth �lters originally de�ned by Dennis Gabor

in 1946. [6] In image processing Gabor �lters are extended to 2D space and used,

for example, in edge detection, feature extraction and �nding parallax shifts in

stereoscopic photographs. A Gabor �lter can be constructed by taking any complex

plane harmonic function and modulating it by a Gaussian function to envelope

it. They are specially interesting due to their similarity to real biological sensing

processes and are also computationally pleasant as they can be calculated with

Fourier transforms. If =(·) is a Fast Fourier Transform, z = (x, y)�coordinates and⊗
is convolution operator, then

Oµ,ν(z) = I(z)
⊗

ψµ,ν(z)

={Oµ,ν(z)} = ={I(z)}={ψµ,ν(z)}

Oµ,ν(z) = =−1{={I(z)}={ψµ,ν(z)}
Pre-calculable

}

where Oµ,ν is the �ltered result of image I using �lter ψµ,ν . A Gabor �lter in this

thesis (or a Gabor kernel) is de�ned like in [8].

ψµ,ν(z) =

∣∣∣∣∣∣∣∣k2
µ,ν

σ2

∣∣∣∣∣∣∣∣ e k2µ,νz22σ2 (eikµ,νz − e−
σ2

2 ) (2.2)

kν =
π/2

f ν
, f =

√
2, kµ,ν = kνe

iπµ
8 , σ = 2π (2.3)

This kernel can be used as a mother �lter to generate several kernels for di�erent

scales µ and rotations ν. The real parts of �lters generated using values µ = 0 . . . 7

and ν = 0 . . . 4 can be seen in �gure 2.4.

An image can be Gabor-�ltered spatially using the example implementation in

script A.2. The result from this �ltering can be seen in �gure 2.5. For more complete

practical implementation guide, see the research report on the subject by Ilonen,

Kämäräinen and Kälviäinen [7]. As the guide recommends the �ltering in the appli-

cation is done in frequency domain as it is noticeably faster in face recognition. This

is due to large enough face images resulting high feature dimensionality. Comparison

between spatial and frequency domain e�ciency can be found in [7, p. 23].
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Figure 2.4. Real parts of Gabor �lter bank used later on in this thesis. Scale ν
increases downwards, rotation µ increases from left to right. White indicates positive
value, black negative. Generated using script A.1

Figure 2.5. Filtering results from script A.1 with �rst image replaced with the
original face.
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3. METHODS OF MACHINE LEARNING

The goals of machine learning are achieved through learning classi�ers. Classi�er

itself is a system which splits the feature space into segments corresponding to labels.

When a set of features (a pattern) is fed into a classi�er it computes a label for that

pattern. If this label is externally found correct or incorrect the classi�er then

corrects itself accordingly, trying to minimize the error rate of the classi�er. For

example a classi�er with input pattern {red light, clear way, engine running} might

produce a label {accelerate}. The wanted result should most likely be {idle}, so after

teaching this error to the classi�er it would then adjust itself towards producing the

correct label in the future.

Classi�er system can usually be split into commonly found parts. Firstly the

pattern to be recogniced must be sensed. This phase can be any kind of transducer,

for example a microphone or like in our case, a camera. The resulting signal might

then be segmented into parts depending on the goal of the classi�er. For example

a photo could be split into areas of interest and irrelevance based on skin color

thresholding. Green areas are most likely not faces so they can be ignored.

Figure 3.1. Common stages of a pattern classi�er

The line between next two phases, feature extraction and classi�cation, is of-

ten blurry. After the signal is segmented into regions of interest these areas are

processed into recognizable features. This phase might include preprocessing like

deformation of elongated pictures or sensing and reacting for occlusions covering

parts of faces. In face recognition these sensed features are mostly spatial distances

of facial features or statistically generated similarity measurements. Whatever the

features are the feature extraction should be invariant to irrelevant transformations.

In facial recognition the classi�er system should �nd faces regardless of rotation or

scale. In speech recognition the classi�ers should label the same utterance with the

same label regardless of signal amplitude and so on.
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After the features are extracted and processed they can be then classi�ed through

di�erent methods. The literal classi�cation itself is usually the easiest part as it only

evaluates the learned classi�cation function for the pattern. Finally the classi�er

might do some post-processing, like discarding results with too low probability to

be a good match or take advantage of contextual hints like not classifying two faces

in the same photo with the same identity. In the example seen in �gure 3.2 a

classi�cation system has been taught to separate the feature space into two parts.

If a sample is measured to be on the left side of the dividing line it is deamed to

belong in the class on that side of the line.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1

0

1

2

Feature 1

F
ea

tu
re

 2

Figure 3.2. A two feature linear classi�er separating two categories
(a dichotomizer)

The simple linear classi�er

The simplest general classi�er possible is a two category dichotomizer like in �gure

3.2. In order to split a feature space in two, we can de�ne a weight vector w, and a

discriminant function g(·).

g(x) = wtx+ w0 = r‖w‖ (3.1)

y =

{
ω1 if g(x) < 0

ω2 if g(x) > 0
(3.2)

In the simplest, linear and one dimensional case this vector will de�ne a point

splitting the feature space in two. In two dimensional case w will de�ne a line and

in general the w de�nes an hyperplane. The decision rule for this kind of classi�er

is the sign-function like in eq. 3.2. The equation can be also interpreted using r,

which is the distance of a sample from the closest point on the hyperplane.

In order to use this kind of categorization in multi-class cases, that is, cases where

the answer can be from larger label set than two, the discriminant function g(·) can
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be generalized as

g(x) = w0 +
d∑
i=1

wixi (3.3)

where d is the number of dimensions in the feature space and wi and xi are compo-

nents of weight vector w and input sample x. To use this kind of linear machine

[9, p. 218] to categorize a sample, a set of several discriminant functions need to be

de�ned as :

gi(x) = wt
ix+ wi0, i = 1, . . . , c (3.4)

where c is the number of categories. Finding the correct category is done by compar-

ing the pairwise categorizations and assigning x to ωi when gi(x) > gj(x),∀i 6= j.

R1 R2

R3 R4

R5

H12

H25H13

R1

R2

R3 R4

H14

?

Figure 3.3. Example of a possible (left �gure) and impossible (right �gure) two
dimensional linear machine

The H:s in �gure 3.3 are the boundaries gi(x) = gj(x) between regions of R:s

corresponding to labels ωi. In many cases a linear machine like this is su�cient to

solve a learning task, often resulting a decision tree for e�cient repetition. This

kind of classi�er is however limited by the need to have only convex regions which

can be separable but only singly connected. For example in right side of the �gure

3.3 regions 1 and 4 have two separate connections which is impossible to express in

one linear equation. The concave area of R2 leaves an unclassi�able area between

R1 and R2. A way to overcome this limitation is discussed in section 3.2.
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3.1 Boosting methods

Boosting methods are collection of pick-and-choose operations for selecting itera-

tively the most descriptive features from a set of all possible features, or the best

categorizer from set of all possible categorizers and using them in parallel to produce

better results than any of them could achieve alone. For the sake of brevity only

the ADA-boost algorithm is discussed.

Figure 3.4. The idea behind boosting methods

Adaptive boosting, ADA-boost

Adaptive boosting (see [10]) is a technique to improve pattern recognition methods

based on creating several cascading weak classi�ers to form one strong classi�er.

In context of this thesis it is notable for being the basis for the methods used in

Viola-Jones [11] face recognition.

In algorithm 3.1 describing the ADA-boost method of creating an cascade classi-

�er, D is a teaching set of matching patterns and labels, xi and yi respectively. Wk(i)

is voting coe�cient which is initialized to be equal between pattern-label pairs in D.

Zk is a normalizing constant, and hk(x
i) is the resulting label from classi�er Ck with

pattern xi. As Wk(i) is set to be equal in the beginning the �rst round of sample

selection from D is random. The creation of a weak learner classi�er on line 5 in

algorithm 3.1 is done by �rst creating any kind of classi�er (C1) with classi�cation

error under 1
2
. In other words, any kind of classi�er better than pure chance. In

basic boosting the following classi�ers are then created by picking new training sets

from D by evenly choosing as many samples the earlier classi�er fails and succeeds

to classify correctly. This way there will be enough of an classi�er overlap on areas

harder to label. In other words, areas with apparent complexity will be given more

attention. Compared to basic boosting, adaptive boosting adds per sample tracking

of classi�cation di�culty Wk(i). The harder a sample is to classify, the more likely
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it is to be included into the next classi�er to be created. As each classi�er must

have error rate smaller than 1
2
the total classi�cation error is guaranteed to decrease

every iteration of the algorithm.

Algorithm 3.1 ADA-boost aided classi�er creation algorithm [9]

1: begin initialize D = {x1, y1, . . . , x
n, yn}, kmax,W1(i) = 1

n
, i = 1, . . . , n

2: k ← 0
3: repeat

4: k ← k + 1
5: train weak learner Ck using D sampled according to Wk(i)
6: Ek ← training error of Ck measured on D using Wk(i)
7: αk ← 1

2
ln[(1− Ek)/Ek]

8: Wk+1(i)← Wk(i)
Zk
×
{
e−αk if hk(x

i) = yi (correctly classi�ed)
eαk if hk(x

i) 6= yi (incorrectly classi�ed)
9: until k = kmax or Ek is small enough

10: return Ck and αk for k = 1 to kmax (ensemble of classi�ers with weights)
11: end

Algorithm 3.2 Creation of a weak learner-classi�er [9]

1: begin initialize

2: i← 0, D0 ∈ D
3: repeat

4: i← i+ 1
5: while selection of s is possible do
6: r ← random value N(0, 1)
7: if r < 1

2
then

8: �nd: s ∈ D ∧ s /∈ Di so that hi−1(xs) 6= ys
9: else

10: �nd: s ∈ D ∧ s /∈ Di so that hi−1(xs) = ys
11: end if

12: Di ← {Di, s}
13: s /∈ Drest

14: end while

15: until

16: end

The �nal classi�cation (eq. 3.5) for any sample x is the weighted sum of all

the classi�cation results from simple classi�ers Ck for that sample and correctness

coe�cients of those classi�ers. In case of two class problem the simple and original

way is to use labels {−1, 1} and Sgn(g(x)) as the �nal classi�er from eq. 3.5.

Sgn(x) =

{
−1 x ≤ 0

1 x > 0
g(x) =

kmax∑
k=1

αkhk(x) (3.5)
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3.2 Support Vector Machines

Support Vector Machines (SVM) are often used in machine learning problems as

they give good results while being relatively simplistic. The original idea of optimal

hyperplanes is from 1963 by Vladimir Vapnik, but the most commonly used soft-

margin SVM [12] is from 1998.

The problem SVM solves when compared to linear machines is the ability to clas-

sify linearly non-separable cases. Firstly the dimensionality of feature space can be

increased using nonlinear mapping Φ(·) until the data becomes lineary separable.

In this larger space di�erent classes are then separated using any classi�er. Com-

monly used example to visualize this kind of case is the XOR-classi�cation problem.

If we have samples x = {(−1, 1), (1, 1), (−1,−1), (1,−1)} and their correspond-

ing labels y = {ω1, ω2, ω2, ω1} they cannot be separated using a linear classi�er

in their own space. In the XOR example the {x1, x2} feature space is mapped

into {
√

2x1x2,
√

2x1} space. In this space the optimal classi�er is found to be

g(x1, x2) = x1x2 = 0.
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Figure 3.5. SVM Solution for XOR classi�cation [9]

With SVM the underlying classi�cation equation is similar to linear machines.

If we have a mapping of patterns xk to arbitrarely high dimension vector of zk

and labels yk ∈ [ω1 = −1, ω2 = 1] then we can de�ne a to be an augmented weights

vector.

a =

[
w0

w

]
=


w0

w1

...

wd

 , x =

[
1

x

]
=


1

x1

...

xd

 , zk = Φ(xk) (3.6)
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By augmenting the sample vector x with a leading 1 the discriminant function is

g(x) = atz =
d∑
i=0

wizi

Unlike in linear machines, the goal of SVM is not to �nd a vector that mini-

mizes any kind of error function, but to �nd support vectors which lie as close to

class borders as possible. The best categorizer is then between these vectors. Like

in equation 3.1 the distance from any sample to any hyperplane w is r = |g(zk)|
‖w‖ .

Therefore the goal of �nding the best separating hyperplane is done by maximising

the function in eq. 3.7.

ykg(zk)

‖w‖
≥ b, k = 1, . . . , n [9, chapter 5, eq.106] (3.7)

where b is a margin between two classes. Additionally by requiring that ‖a‖b = 1 the

resulting hyperplanes will be unique. Because the labels are de�ned as (yk ∈ [−1, 1])

the margins can be described by

w · x− b = −1 for ω1

w · x− b = 1 for ω2

which then lead to demads for keeping the marginal clean of any samples.

w · x− b ≤ −1 for ω1

w · x− b ≥ 1 for ω2

→ yi(w · xi − b) ≥ 1 for all 1 ≤ i ≤ n (3.8)

wx
-b
=1

wx
-b
=-
1

wx
-b
=0

w

||w||
2

x1

x2

||w||
b

Figure 3.6. SVM support vectors and classi�cation hyperplane
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Training and use of SVMs

SVMs can be trained similarly to linear machines by using the currently worst

pattern to update the weights, instead of any randomly selected pattern. This is

however impractically slow excluding the most basic cases. More e�ective way to

train a SVM is to use Lagrange undetermined multipliers (αk). Like shown in

[9, chapter 5, eq. 108] the minimization of ‖a‖ can be done by minimizing the

function with respect to a. This can be reformulated into maximization of equation

3.10. Both of these are so called quadratic programming problems where linear

requirements limit the optimization.

L(a,α) =
1

2
‖a‖2 −

n∑
k=1

αk[zkyka
t − 1] (3.9)

L(α) =
n∑
k=1

αk −
1

2

n∑
k,j

αkαjykyjz
t
jzk [9, eq. 109] (3.10)

When applying these with constraints of
∑n

k=1 ykαk = 0, αk ≥ 0, k = 1, . . . , n.

The Karush-Kuhn-Tucker rule [21] states that the resulting classi�er must be a linear

combination of all the training samples with αk = 0 in most indices.

a =
n∑
k=1

αkykzk

Those indices which have αk > 0 are the support vector candidates as they satisfy

the equation 3.8. Finding the values for these Lagrangian multipliers is processing

power consuming task and methods to improve this search are being researched.

Commonly used process to do this search is the sequential minimal optimization-

method described by Platt [13]. After the suitable support vectors are found (if any

are found) the �nal classi�er can be calculated by �nding the correct translation

from origin to the resulting vector from equation 3.8. The notation ∗ signi�es the

found values for this training set.

b∗ = −1

2
( max
i:yi=−1

at∗xi + min
i:yi=1

at∗xi) (3.11)

To classify a new sample based on this training, only a sign-function is needed for

the hyperplane-equation. Note that the inner product of the new sample and the

training set samples needs to be calculated only if αi > 0.

wt∗x+ b∗ = (
n∑
i=1

αiyixi)
tx+ b∗ =

n∑
i=1

αiyi〈xi,x〉+ b∗ (3.12)
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4. FACE RECOGNITION FROM PHOTOS

Figure 4.1. Examples of positive and negative face matches [14]

The underlying process of recognizing faces is similar to any machine learning prob-

lem. Using any method a set of features are extracted from a photo or video frame.

These features are compared against a learned model where the categories are �these

features represent a face�, or �these features do not represent face.� In the example

photo 4.1 the white windows are the supposed face matches and black windows are

failed matches. The areas in this photo were handpicked to demonstrate few key

problems in face recognition as reasons for a face to be unmatchable are numerous.

Even perfectly tuned system will miss obvious face matches from a human perspec-

tive due to practical limitations in arti�cial vision systems. As mentioned earlier

in chapter 3, a face recognition system should be immune to scale and rotation of

faces. In practice this is a hard task and often the ranges of these properties are

limited. Several sensing problems can be solved by preprocessing but in some cases,

for example, a face might simply have too low dynamic range for a classi�er to �nd

a match.
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4.1 Pre- and post�processing

The process of face searching can be enhanced by limiting the search space only to

areas with possible faces. One way to eliminate areas with no possible face areas

is by thresholding the image with skin color value ranges. In his paper on using

chrominance information characteristics Lin [15] suggests using the procedure de-

scribed in algorithm 4.1. Thresholding limits were the result of manually picking

face areas and clustering those samples in HSI-color space using standard Gaussian

model. (see eq. 4.1)

x = sample in (H,S)-subspace

ū =
1

n

n∑
i=1

xi, C = (x− ū)(x− u)T

G(x) =
1

(2π)n/2|C|1/2
e−

1
2

(x−ū)TC−1(x−ū) (4.1)

Algorithm 4.1 Skin color masking by [15]

1: begin initialize I=Input image
2: Apply gamma correction to I so that ≈ 3% of pixels can be quantizised as

�reference black� and ≈ 5% can be quantized as �reference white�

3: Rhs =

{
H ∈ (0, 16) ∪ (5.6, 2π)
S ∈ (0.01, 0, 95)

4: Pixel x is interesting if (x ∈ Rhs) ∩ (G(x) > 0.75)
5: return Masked image I

Another model which was �nally used in this work for skin color thresholding was

proposed by Kovac, Peer and Solina [16]. In their model the skin color is thresholded

and processed by algorithm 4.2.

Algorithm 4.2 Skin color masking by [16]

1: begin initialize I=Input image
2: Threshold the image to interesting and irrelevant pixels by

Pixel is interesting if


{R > 95, G > 40, B > 20}
max{R,G,B} −min{R,G,B} > 15
|R−G| > 15 ∧R > G ∧R > B

3: return Masked image I
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In practice this kind of preprocessing wasn't that useful as it increased both pro-

cessing time and the chance of cutting o� areas with faces. However the secondary

use for this thresholding was to reduce the number of false face matches by count-

ing the number of skin colored pixels in every potential face match and discarding

matches with too low ratio of pixels per face area. Experimentally this ratio was set

to 0.4 so only a rare correct match was removed falsely while improving the overall

accuracy of the application.

Local normalization

Uneven lighting conditions is a common source for problems when the goal is to

extract features for recognition. One way to tackle this problem is local normaliza-

tion. In [17] Xie and Lam describe a method to e�ectively remove the local lighting

variation while still retaining statistical properties of the image.

fp(x, y) =
f(x, y)− E(f(x, y))

V ar(f(x, y))
, (x, y) ∈ W (4.2)

Here the W is the window under consideration, E(f(x, y)) is the local intensity

mean value and V ar(f(x, y)) is the local variance. In this step the low frequency

components are seen as part of the mean, and the interesting high frequency compo-

nents are part of the variance. The result is therefore free of globally varying e�ect

of lighting levels but retains and normalizes the edges and other possible identifying

features. The whole post processing chain can be seen in �gure 4.2.

Figure 4.2. Example of post processing steps using FACES [18] model 140. From
left to right: Original in black and white - cropped, histogram equalization, gamma
correction with γ = 0.5, local normalization using eq.4.2, window size 7× 7

This kind of processing was applied to recognized faces before classi�cation steps

in attempt to increase recognition rates. The results weren't positive, most likely

due to both training sets and testing photos being high quality with only little to

gain from this kind of processing.
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4.2 Viola-Jones method

Viola-Jones is the current de-facto face recognition system and commonly used

baseline to compare the e�ectiveness of a new system. The original de�nition [11]

is from early 2000's and describes an e�cient method of face matching while being

computationally light when compared to earlier works. The main improvements to

achieve this result were the replacement of image pyramids with integral images and

using ADA-boost-like categorizer for fast negative match rejection.

Features

The common method of picture pyramids in image processing creates a set of down

sampled copies of the original photo. By creating a set of di�erent sized photos to

match against the matching itself can be simpli�ed to �xed size targets. Downside

is the computational need for such operation. In Viola-Jones method this prepro-

cessing phase was made redundant by selecting a feature set which can be easily

calculated from integral images.

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (4.3)

s(x, y) = s(x, y − 1) + i(x, y)

ii(x, y) = ii(x− 1, y) + s(x, y) (4.4)

The two descriptions seen in equations 4.3 and 4.4 calculate the integral image

from grayscale image i. As it can be seen this colour conversion and calculation can

be done while loading an image in common, top down, left to right fashion. On the

�rst glance this kind of image seems to have no real use. The usefulness becomes

aparent however when it is used to calculate Haar-like features from the image.

Figure 4.3. Haar-like feature masks

A Haar-like feature is a simple mask for calculating a sum of pixel values. In �gure

4.3 are some very basic feature masks used in Viola-Jones. Black areas represent

mask to be counted as addition and white areas as subtraction. The sum of these

areas is a feature to be used to match face shapes. The two diagonal masks can

be used just like any square based construction, but they require a second integral

image which needs to be built diagonally.
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A C

B D

P1 P2

P3 P4

Figure 4.4. Calculating area values from an integral image [11]

If we want to know the sum of all pixel values in area A with upper left corner at

(0, 0) all we need to do is read the value of the integral image at point P1. The area

value of B is ii(P3)− ii(P1), C is ii(P2)− ii(P1) and �nally D, which can be used

to calculate any square in an integral image is ii(P4)− ii(P3)− ii(P2) + ii(P1) as

A is removed twice with B and C. With these kind of features the feature extraction

is then a matter of few table lookups and sums per mask square.

Classi�er training

Training a basic Viola-Jones classi�er is done by �rst creating a positive set of

face images in �xed window size and similar sized set of random, non face images.

The original paper suggested using 24×24 pixel window as it performed reasonably

while being computationally frugal. Inside a 24×24 window there can be more than

160000 ways to select a rectangular feature location, so the training process is aided

by ADA-boost-like feature selection process. (See chapter 3.1) Even with boosting

the learning phase is time consuming process as the candidate features need to be

matched against every face and non face sample to calculate the error rate. With

a reasonable amount of thousands of training samples the total number of possible

features to be evaluated rises to hundreds of millions.

In the feature selection process the aim is to pick features which can categorize

a sample with error rate as low as possible. As Haar-like features produce a single

integer as feature value the evaluation of a feature is simply

h(x, f, p, θ) =

{
1 pf(x) < pθ

0 otherwise
(4.5)

If feature f is applied to window x the weak classi�er h produces a binary clas-

si�cation depending on the value being either above or under a threshold value θ.

The actual parameter to be learned is then the threshold value witch splits the value

range of f best to separate faces and not faces. p is polarity function to choose the

direction of inequality. As the goal is to create a cascade classi�er the error rate of

a single feature doesn't need to particularly low. In case of these features even the
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best classi�er might have error rate as high as 0.3. The method to rank features by

their classi�cation capability is described in algorithm 4.3.

Algorithm 4.4 will produce a chain of classi�ers with still relatively high error

rates per layer. If the false positive rate of a single stage is fi and the detection rate

of a single stage di then the false positive rate and total detection rate of the entire

cascade with K stages is

F =
K∏
i=1

fi D =
K∏
i=1

di (4.6)

Therefore to achieve a total detection rate of 0.9 in a 10 stage cascade a single stage

classi�er must have a detection rate of 0.99. Although this is a high rate to achieve

the �ip side is that the false positive rate of a single stage needs to be only 0.3. In a

10-stage cascade this would lead only to 0.310 ≈ 6× 10−6 rate of total false positive

matches.

Face search

In order to scan faces from a photo a sliding window is moved across the image

starting with desired size. From each window a set of features from the �rst stage

of the cascade classi�er is evaluated against the learned model. In the �rst stage

are the strongest classi�ers, so by evaluating only few features the obviously bad

matches are discarded immediately. If the sample passes the threshold value of the

�rst stage it is then passed to second stage and so on. Face match is found if the

entire cascade agrees the sample represents a face.
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Figure 4.5. Face search from an image using Viola-Jones method

After the image has been scanned the sampling window can be scaled to search

di�erent sized faces by simply multiplying every feature coordinate with a desirable

value. The original paper used geometric scaling of 1.25 and window step size of
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1.5 pixels. Because testing face matches is done by sampling the integral image the

scale of the sampling window doesn't a�ect the speed of testing at all. Compared

to image pyramid methods this results at least 15 times faster processing.

4.3 Local binary pattern based method

As discussed in section 2.2, the local binary pattern-descriptor is a low impact

method to extract texture information from an image. LBP require only a miniscule

amount of processing power when compared to methods like image pyramids and yet

give surprisingly good results in describing local image properties. Another bene�t

in image wide LBP calculation is the need to do only a single pass over the search

area just like in integral images, but the resulting image doesen't need as much as

64 bits per pixel. The overall training is done similarly than in Viola-Jones, only

using uniform LBP histogram features instead of Haar-like features.

In the application the user has the choice to use LBP detector instead of the

Viola-Jones detector, but it does have a higher miss rate using the given default

classi�er data and might thus skip �nding existing faces from group photos.
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Algorithm 4.3 Selecting the best features by evaluating a feature against every
training sample. (T total samples) [11]

1: begin initialize

2: P = (x1, y1), . . . , (xn, yn) where xn are the image samples and yn = [0, 1] for
negative and positive training samples (faces and not faces) repectively

3: w1,i =

{
1

2m
yi = 0

1
2l

yi = 1
where m,l are the number of positive,negative samples.

4: for t = 1→ T do

5: Normalize weights, wt,i ← wt,i∑n
j=1 wt,j

6: Select the best weak calassi�er ht with respect to the weighted error εt
εt = minf,p,θ

∑
iwi|h(xi, f, p, θ)− yi|

ht = h(x, ft, pt, θt) where ft, pt and θt are the minimizers of εt.
7: Update the weights: wt+1,i = wtiβ

1−ei
t

where ei = 0 if xi is classi�ed correctly, ei = 1 otherwise.
βt = εt

1−εt
8: end for

9: return The �nal strong classi�er:

C(x) =

{
1

∑T
t=1 αtht(x) ≥ 1

2

∑T
t=1 αt

0 otherwise

where αt = log 1
βt

10: end

Algorithm 4.4 Training an ADA-boost-like cascade detector [11]

1: begin initialize

2: f = maximal acceptable false positive rate
3: d = minimum acceptable detection rate per layer.
4: Ftarget = target total false positive rate
5: P = set of face images, N = set of not face images, F0 = 1.0, D0 = 1.0, i = 0
6: while Fi > Ftarget do
7: i← i+ 1
8: ni = 0;Fi = Fi−1

9: while Fi > f × Fi−1 do

10: ni ← ni + 1
11: Train a classi�er with ni features using P and N with ADAboost.
12: Evaluate current cascaded classi�er on validation set to determine Fi and

Di.
13: Decrease threshold for the ith classi�er until ht ecurrent cascaded classi�er

has a detection rate of at least d×Di−1 (this also a�ects Fi)
14: end while

15: N ← ∅
16: If Fi > Ftarget then evalueate the current cascaded detector on the set of

non-face images and put any false detections into the set N
17: end while

18: return Cascade classi�er chain
19: end
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5. IDENTIFICATION OF FACES AND FACIAL

PROPERTIES

After a face is found from a photo, a number of methods can be used to extract

features for further categorization. The most common task is to try to identify the

target in the picture from a database of previously collected feature sets. Other

tasks considered in this thesis are the extraction of facial expression, gender and age

range.

The main di�erence from algorithmic view is that �nding a face is a two category

problem � search window either contains or does not contain a face. When trying

to match a pattern against multiple possibilities the task turns into a probabilistic

multi class matching problem. This task can be divided again into several common

steps.

Figure 5.1. Common stages of face identi�cation and labeling

In controlled conditions where it is possible to take an ideal photo system can be

trained to attempt to remove any expression the target might have. By having only

neutral samples to compare the recognition system can be more accurate, provided

that the removal is successful. In this thesis the expressions are only detected and

used to label faces as samples to be identi�ed are picked from group photos.
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5.1 Methods of face identi�cation

Several methods have been developed during last few decades to gather biometric

data by measurements made on images. One of the more obvious methods is the

distance measurements between salient facial feature points like mouth edges and eye

socket dimensions. These kind of measurements are relatively simple to extract in

ideal conditions but won't necessarily survive many real life photography hindrances

like occlusion or bad pose. In this thesis I used statistics based methods as the targets

are from �real life� situations. Speci�cally I used the �Eigenfaces� method described

in subsection 5.1.1 and the Gabor-volume local binary patterns method described

in subsection 5.1.2.

5.1.1 Eigenfaces

The staple of face recognition and one of the earliest practical methods, �Eigenfaces�

[19] uses PCA-analysis to produce an average image of all available sample photos

and a set of most di�erentiating photo mixtures. In �gure 5.5 is an example of

�Eigenface� classi�er trained with 25 di�erent face photos. On the left is the mean

photo and then four di�erence faces given by PCA-analysis.

Figure 5.2. Example of �Eigenfaces� components.

Any of the original photos can be reconstructed, to a degree, by combining these

photos. Accuracy and processing power requirements can be adjusted by choosing

the number of mixture photos created and used. Every identity can be expressed,

per picture, as a vector of coe�cients for the di�erence photos. For example, start

with the mean photo, add 10% of the intensity values of di�erence photo 1, -20%

from the second and so on. The identity vector for that photo is then, for example

[0.1,−0.2, 0.0, 0.0]. When matching a new identity against pre-calculated vectors

the sample is projected into this models PCA-space and classi�ed using any suitable

distance based method, for example an SVM or a simple pairwise comparison. If

the distance between the best match and the sample is small enough the face is

considered to be an identity match.

�Eigenfaces� produces usable results but it does have several downsides. In order

to get a good match the lighting, pose and expression need to be near ideal as the
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matching is against �xed pixel positions. Any movement will lead to a negative

distance value shift in both old and new location.

5.1.2 Gabor volume local binary patterns, GV-LBP

Gabor Volume-LBP by Lei, Liao and Pietikäinen [20] uses images to create a 3D

volumes using Gabor �lters. This volume is then processed with specialized LBP

operator to produce a classi�able pattern. As the pattern is result of an LBP-

thresholding the result is more robust against lighting conditions than most methods.

In this method an identity vector for a face image is calculated by �rst processing

it with a Gabor �lter bank (see section 2.3) with orientation range (µ) from 0 to

7 and scale range (ν) from 0 to 4. To the resulting 3D volume a LBP is applied

per every plane, i.e. a set of 2D LBPs are calculated by �viewing� and summing up

the cube from orthogonal base directions (j = 0 : XY ; 1 : XT ; 2 : Y T ). This will

produce a representation of a face fj by taking sub image histograms from each of

the slices.

Hj(l) =
∑
x,y

I(fj(x, y) = l), l = 0, 1, . . . , Lj − 1 (5.1)

in which I(·) ∈ {0, 1} is the binary value of fj. Lj is the last LBP code on that

plane. Finally the resulting three histograms are concatenated into a singe feature

vector H = [H1, H2, H3]. To improve computational e�ciency the same result can

be achieved by scanning through the volume with a 3 dimensional LBP.

GV LBP (Ic) =
7∑
p=0

2PS(Ip − Ic) (5.2)

S(Ip − Ic) =

{
1 Ip − Ic ≥ 0

0 Ip − Ic < 0
(5.3)

Ic is the pixel under test, Ip is the pixels around Ic so that I0 and I4 are the

neighboring pixels in orientation plane, I2 and I6 are the neighbors in scale plane,

while the rest are neighbors in spatial plane. (See �gure 5.3) On edge cases, for

example when µ = 0, the code for I0 is set to 0.

The histogram is built by splitting the image into 64 non-overlapping areas and

adding up values from all orientation and scale pictures. As there are 8 orientations

and 5 scales the resulting single sub-image histogram is a sum of 40 histograms.

Finally the histograms are multiplied by preset weight and normalized to emphasize

the importance of eyes and mouth area in identifying people. After the full histogram

has been acquired the best face match is found by calculating the best correlation

from known samples.
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Figure 5.3. Pixel neighbour selection for 3D LBP operation.

5.2 Facial properties recognition

In order to classify photographs several methods were used to calculate further

classi�cations for faces. Each face is classi�ed by gender, age range and expression.

Gender as a binary choice between man and a woman, age range is split into three

categories and expression into six categories by convention used in FACES database

[18]. These properties are used later on to match group similarities in group photos.

5.2.1 Gender classi�cation

Gender classi�cation was implemented using three methods which were considered

after review of recent papers on the subject. Baseline choice was the well known

and commonly used �Fisherfaces�-method which uses LDA [24] to separate classes

and is suitable for gender classi�cation as there is only two clearly separable classes

created from a large dataset. LDA is similar to PCA, but it has added arti�cial

class separation when projecting to model space.

The second method chosen was SVM based classi�er trained on uniform LBP

patterns [27]. The idea behind uniform LBP patterns is to use only the patterns

which match gradients in the picture. This is done by selecting only LBP codes

which have maximum of two binary transitions in them. Some details are lost, but

these details are irrelevant in gender classi�cation. By reducing the number of LBP

codes to only 58 cyclic uniform patterns in an 8-bit code the histogram used to

train and classify genders is only one fourth of the original length. Cyclic means

here treating the binary pattern as if the �rst and last bits were neighboring each
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other. This way a pattern like in the center of �gure 5.4 is clearly uniform. Any

LBP code which doesn't match an uniform pattern is discarded.

Figure 5.4. From left, two uniform LBP patterns and a non-uniform LBP pattern

The third method, which was found to be the best using FACES training data is

by A. R. Ardakany and A. M. Joula [28]. In their method a photo is transformed into

an edge map by convoluting it with simple edge �lters {−1, 0, 1} and its transpose

into horizontal (dy) and vertical (dx) edge maps. These maps are then combined

into full magnitude and direction maps by eq. 5.4 and 5.5. After quantizing the

results by M for magnitudes and by N for directions these maps are combined into

a single per pixel value of (m−1)×N+θ+1. The �nal feature vector is a histogram

concatenated from sub-images just like in LBP methods. The best values for these

parameters were picked from the article as M = 10, N = 8 and 8× 8 sub-images for

the histogram building.

m =
√
d2
x + d2

y (5.4)

θ = tan−1

(
dy
dx

)
(5.5)

5.2.2 Expression classi�cation

For expression classi�cation I used method suggested by Naika, Das and Nair [4].

In their method a variable sized LBP operator is used to generate a histogram

sequence which in turn is used to train an SVM. The LBP operator in question is

the AR-LBP shown in section 2.2. In AR-LBP the operator works like in normal

LBP but compares neighboring area averages instead of neighboring pixel values.

The averaging area size of the operator was set to three pixels high times �fteen

pixels wide as it was the smallest size still producing the best possible classi�cation

performance. (95.71% in the original paper)
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5.2.3 Age classi�cation

The age classi�cation was implemented based on method by Ylioinas, Hadid and

Pietikäinen [30]. Like other methods in this thesis this is a LBP-histogram based

method using the elliptical LBP variant. ELBP is a variant of LBP where the kernel

is de�ned by two semi-axes, division count and a possible phase addition.

Figure 5.5. ELBP kernels. From left to right (horizontal distance, vertical dis-
tance, phase, divisions): (2,1,0,4), (1,2,π

2
,4) and the kernel used to classify ages

(3,2,π
2
,10). Arrow points to �rst pixel in LBP code, moving counter-clockwise.

The generated histogram is a concatenation of two ELBP operations. First part

is the normal LBP histogram and the second, known as completed LBP magnitude

(eq. 5.6) is calculated from pixel magnitude di�erences. This operation de�ned in

[29] is similar to normal LBP but instead of comparing pixel intensity values the

comparison is between mean of local absolute di�erences (mp) and the global mean

(c) of these di�erences. This process is visualized in �gure 5.6. After concatenating

these two histograms the result is normalized before using it to teach a SVM.

CLBPMP,R =
P−1∑
p=0

t(mp, c)2
p (5.6)

Figure 5.6. The process to calculate CLBPM images
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6. SPATIAL AND SOCIAL ARRANGEMENTS

OF PEOPLE IN PHOTOS

The �nal classi�cation task in this thesis is the attempt to categorize photos by their

spatial and socialy relevant content into general categories and to �nd photos closely

resembling each others. To do this I chose two methods. For general situational

classi�cation I chose the method described in [31]. In this method described by Shu,

Gallagher, H. Chen and T. Chen the information gathered from earlier recognition

tasks is combined with spatial distances between found faces. The goal in this

method is to �nd similarity values between every photo pair and then cluster the

photos into groups representing di�erent classes based on those distances. Like in

the original paper the simplest method of nearest neighbor was used as it is readily

available as part of OpenCV.

The calculation of these pairwise similarities is done by �rst forming a fully con-

nected graph between the two photos under inspection. For photos I1 and I2 con-

taining set of faces xi and xj the edge weights in the graph are calculated by

wi,j = α ||xi − xj||+
∑
l

βlhl(al(i), al(j)) (6.1)

which simply compares the properties (a) of each face against each other and applies

a weight function (h) to them for tuning purposes. In this case the used properties

are gender and age. The weights α and β are adjustable by the user.

To account for photos taken from di�erent distances the in�photo distances be-

tween the faces are normalized and mean corrected to match each other. The edge

matrix wi,j is then processed with the Hungarian Algorithm [32, 33] in order to pick

the smallest assignment to match every face in the photo with fewest faces. As this

method favors photo pairs with large di�erence in face count a penalty is added as

a �nal step to the selected weights. This penalty weight γ is also adjustable by the

user. The �nal distance is then

d(I1, I2) ≡ w∗I1,I2 + γ ||I1 − I2||faces (6.2)

The w∗ in eq. 6.2 are the edge values picked by the Hungarian algorithm. By cal-

culating these distance values between all photographs the most similar photos can

be found by simply sorting by this distance. By using these distances to train a K-
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nearest neighbors classi�er a photograph can be then assigned to general categories

like wedding photos or friend gatherings by calculating distances to training photos.

This method doesn't however take account for the structure of the group.

For the task of �nding best possible group photo matches I used a very recent

method to describe groups by Y. Chiu, C. Li, C. Huan, P. Chung and T. Chen in

their paper �E�cient graph based spatial face context representation and matching�

[34]. In their method the faces from a group photo are arranged to an Urquhart

graph. This graph is calculated by forming a Delaunay triangulation Tc by using

the face locations as vertices and then removing the longest edge from each triangle.

Spesi�cly the Urquhart graph is de�ned as

{AUij = 1 | ||vi − vj|| < max{||vi − vk|| , ||vj − vk||}&{vi, vj, vk} ∈ Tc} (6.3)

Figure 6.1. Full Delaunay graph applied to face matches and matching Urquhart
map. Photo taken from [35]

After �nding the Urquhart graph the edges of it can be used to form the adjacency

matrix A for the graph. An undirected connection between face i and j is made

by setting Ai,j = Aj,i = 1. Equation 6.4 is an example matching the photograph in

�g. 6.1. This matrix thus de�nes the structure of the graph. When extracting this

graph the selection of indexing can not be guaranteed to match the locations in the

photos. To match the order of vertices a permutation matrix needs to be found.

A permutation matrix is a square matrix, matching the size of the adjacency

matrix with column and row sums of 1. An example of an permutation matrix can

be found in eq. 6.4. With P any suitably sized adjacency matrix can be rearanged

to match another by matrix multiplication, A′ = PAP T .



6. Spatial and social arrangements of people in photos 32

Ai,j =



0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0

0 0 1 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0


Pi,j =



0 0 0 0 0 1

1 0 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0


(6.4)

The most straightforward method to �nd a best structural match is by Umeyama

[36]. In his method two graphs are matched by eq. 6.6. The absolute values of

eigenvectors of adjacency matrices are calculated and then multiplied in order to

get a cost matrix for selecting each vertex combination.

A1 = U1Λ1U
T
1 , A2 = U2Λ2U

T
2 (6.5)

C = |U1||UT
2 | (6.6)

The optimal permutation matrix can be then found by applying the Hungarian algo-

rithm to this cost matrix. The Hungarian algorithm solves the assignment problem

by selecting one value from each row in a way that the sum of these selections is

the maximum when only one assignment per column is allowed. By de�nition these

selections de�ne an permutation matrix.

When testing this method it gave rather unreliable results while having the addi-

tional downside of needing each of the graphs to have the same number of vertices.

In practice the most realistic solution was to permutate every possible P with ma-

trix sized Nx ×Nx where Nx is the vertex count of largest graph of the two under

comparison. While testing every possible permutation is usually moronic from algo-

rithmic viewpoint, in group photos the number of vertices is relatively low (N < 10)

so using a graph matching algorithm like PATH [37] wouldn't help.

To test each P candidate a similarity measurement function seen in eq. 6.7 was

used. In it an adjacency matrix Ay is rearranged to match Ax using a Pi,j candidate.

Ai,j is set to zero when �lling the smaller graph to match the larger graph. Overall

the best structural match is found by minimizing F0(P ), which is the Frobenius

norm of di�erence between the two graphs being compared. Trace is the sum of

values on matrix diagonal.

min
Pi,j∈P

F0(P ) =
∣∣∣∣Ax − AP (y)

∣∣∣∣2
F

=
∣∣∣∣Ax − Pi,jAyP T

i,j

∣∣∣∣2
F

(6.7)

where ||E||2F = trace(EET )



6. Spatial and social arrangements of people in photos 33

We also have labeling data (Ci,j) in form of gender, age and expression. With

these a �tness matrix can be calculated by comparing them between each face from

both photos. As expression is not a property on a scale like age a or single di�er-

ence between genders I decided to de�ne a distance table for pairwise expression

distances. For example, it makes intuitive sense that the value for distance of a

happy expression to a sad expression is greater than distance of a happy expression

to a neutral expression. The distance mapping for expression can be seen in table

6.1.

Table 6.1. Expression distance function values for di�erent pairwise comparisons.
Large=1, Medium=0.5, Small=0.1

Distance Happy Sad Angry Disg. Afraid Neutral

Happy 0 L L L L S

Sad L 0 M M M M

Angry L M 0 M M L

Disgusted L M M 0 M L

Afraid L M M M 0 L

Neutral S M L L L 0

Additionally an identity match can be used to mark two faces to be an exact match.

Using this matrix a best possible labeling P can be found with eq. 6.8. By mixing

these two metrics with adjustable variable α ∈ [0, 1] a good graph matching Pi,j can

be found with eq. 6.9.

min
Pi,j∈P

tr(CTP ) =
Nx∑
i

Nx∑
i

Ci,jPi,j (6.8)

min
Pi,j∈P

(1− α)F0(P ) + α trace(CTP ) (6.9)

Using this best P the vertices from the second photo (described by Ay) can be

then rearranged to match the vertices in the �rst photo (Ax). To calculate the �-

nal distance value from these matching vertices the assumption is that the edges

connecting similar vertices are orientated the same way. If an edge is de�ned as

eij = {vxi , vxj } where vi and vj are the normalized vertex coordinates from a photo

then the di�erence in the edge orientations between these two photos can be ex-

pressed as

O(exij, e
x′

ij ) =

∣∣∣∣∣
∣∣∣∣∣ vxj − vxi∣∣∣∣vxj − vxi ∣∣∣∣ − P Tvyj − P Tvyi∣∣∣∣P Tvyj − P Tvyi

∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ (6.10)
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With this de�nition the value of O increases as the angle between matching edges

in photos increases. If P matches an edge to a �ller vertex (exij = 0 or ex
′
ij = 0)

the distance value gets a value of 1. This is not too punishing but still adds large

enough penalty to push results with di�erent number of vertices between the photos

down the matching list. The same value results from a real match when the angle

between the edges is 90°. The �nal distance between two photos is the sum of edge

similarities.

D(photo1, photo2) =
∑
ij

O(exij, e
x′

ij ) (6.11)

By using this metric to compare photos against the example query photo in �gure

6.2 the photos seen in �gure 6.3 will have a small distance (are more similar) and

the photos in �gure 6.4 will have a large distance.

Figure 6.2. Example query photo from [38]

Figure 6.3. Photos with short distance to the query photo. (Similar to the query
photo) [38]

Figure 6.4. Photos with large distance to the query photo. (Dissimilar to the query
photo) [38]
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7. IMPLEMENTATION OF AN PHOTOGRAPH

CLASSIFIER APPLICATION ON ANDROID

The main goal of this thesis was to build a mobile camera application capable to

demonstrate automatic photo categorization with the aid of several face recogni-

tion and classi�cation methods. The application was written to Android operating

system using Java and C++-languages.

7.1 Software Platform

The Android operating system was selected as it is well established mobile operating

system with open source based development tools and Java-based ecosystem provid-

ing C++ support through the Native Development Kit. Additionally OpenCV soft-

ware library was chosen to speed up the development process as it is open sourced,

well maintained and commonly used library in machine vision projects. The very

�rst plan was to use Qt�Necessitas package of development tools, but it didn't sup-

port all needed features. Qt 5.2 would have been preferable as it is promised to have

full Android support while running natively, but at the time it wasn't released yet.

On table 7.1 are the details on used software.

Table 7.1. Software used in this thesis project.

Software Version
Android OS API-Level 11 (3.0 Honeycomb)
Android SDK Tools 21.1
Native Development Kit rev. 8e
OpenCV 2.4.5

7.2 Implemented methods

Implemented methods were selected by comparing given results from articles while

limiting the choice to methods relying on statistical measurements. This limit was

due to uncertainty of photo quality and the fact that the methods were to be used

to classify faces picked from group photos. As the photos were small selections
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from larger photo it was likely that they would be of small resolution and therefore

unlikely to be less useful in methods relying on anthropometric methods.

The face identity and property feature calculations were implemented as a native

library and called through JNI. Originally the goal was to implement some of these

functions in Java, but the result was unbearably slow as the methods operate on

per pixel level. This is either slow through JNI by calling matrix functions for every

pixel or wasteful memory-wise by having to use matrix copies in memory.

The group distance calculations were implemented on Java as they weren't so

dependent on raw processing speed throughput. For classi�cation several readily

available OpenCV methods were used. These can be seen in table 7.2.

Table 7.2. Used classi�cation methods in OpenCV

Operation Class in OpenCV
SVM CvSVM (Java)
K-nearest neighbors CvKNearest (Java)
Face detection (photos) CascadeClassi�er (Java)
Face detection (video) DetectionBasedTracker (Java)
Eigenfaces and Fisherfaces FaceRecognizer (C++)

7.3 Camera software

The software is based on OpenCV face search example as it demonstrates all neces-

sary parts for basic camera operations and provides a basic foundation to implement

user interaction and face recognition methods discussed in this thesis. By default

the program tries to recognize and process any faces in real time video feed captured

from the devices primary camera.

The user interface is minimal (see �gure 7.1) as user input is required only to set

up the wanted camera parameters and choose the wanted recognition methods. The

main view when the application is started is the CameraView retrieved directly from

OpenCV video capture method. When the application has found a face it will be

highlighted with a green square by default. If the application is able to identity the

target the name is added on top of the face square. When the user selects the option

button the application will display the option menu used to select the used processing

methods. From the menu the user can access all functions of the application. All

group classi�cation related tasks are found in �Photo Gallery�. By selecting �Update

matches� from photo gallery (�g. 7.3) the application will calculate the best matches

for all pictures in the default android photo directory. (usually \DCIM\Camera) If

the user wants to adjust the weights of the group classi�ers (see eq. 6.1 and the
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Ci,j�matrix in eq. 6.8) they can be adjusted by selecting �Set weights�. By selecting

the �Similar photos�-button the application will show the best matching photos for

the currently shown photo. In �gure 7.5 the swipe operated result viewer is in mid

change between two results.

Figure 7.1. The system menu of the application over live camera feed.

Figure 7.2. Face recognized and categorized from live video feed.
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Figure 7.3. The photo gallery.

Figure 7.4. The weights adjustment for group classi�ers.

Figure 7.5. The photo gallery match results viewer between two selections.
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8. RESULTS AND DISCUSSION

Testing di�erent identi�cation and labeling methods was done using pre-labeled

datasets built just for such tasks. Most tests were done using the FACES-dataset.

[18] FACES contains labeled photo sets from 171 individuals of di�erent age and

gender with range of expressions. Each expression is duplicated by having two sets

of six photos per individual, resulting in 2052 unique photos. These photos were

used to train gender, age and expression classi�ers discussed earlier by selecting the

�rst 1800 photos to train classi�ers and using the remaining 252 photos to test the

trained classi�ers. In other words, the classi�er was used only on test samples which

were not used in training sets.

8.1 Identity classi�cation methods

To test identi�cation methods number of samples were selected per identity and

the classi�er was trained using a number of identities. These identities were selected

randomly from the FACES data. The classi�er was then tested against the remaining

samples from the selected identities and a �xed number of other identities.

When testing �Eigenfaces�-method the results were reasonable, peaking at 70%

recognition rate, but this was on ideal data matching single portrait photos. When

testing with faces extracted from group photos the recognition rate was too low to

be considered to be usable. This wasn't a real surprise as the training data was

made up from several expressions and so resulting to large in-class di�erences which

are problematic for �Eigenfaces�. Overall the use of �Eigenfaces� was rejected as

impractical.

When testing the Gabor LBP-method the number of selected sets and the number

of samples used to train classi�ers was varied as can be seen the �gures 8.1 and 8.2.

By adjusting the acceptable correlation match limit the relation of false positives

and recognition rate could be adjusted. Overall the method works quite well and so

it is used to match identity similarities in this thesis.
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Figure 8.1. Recognition test results for Gabor Volume LBP using FACES
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Figure 8.2. False positive test results for Gabor Volume LBP using FACES
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8.2 Face property classi�cation methods

Gender classi�cation was tested with three di�erent methods described earlier in

section 5.2.1. The results of these classi�cations can be seen in tables 8.1 � 8.3.

As it can be seen the edge-method was the best and it was selected to be used as

a gender classi�er. The �Fisherface�-method was tested using the implementation

found in OpenCVs contrib�module. Two others were implemented based on the

original papers and the resulting feature vectors were classi�ed using OpenCVs multi

class SVM without smoothing.

Table 8.1. Gender confusion matrix for Fisherfaces method using FACES (N=253)

Truth Male Female

Recognized as male 113 20

Recognized as female 41 79

Table 8.2. Gender confusion matrix for LBP-histograms using FACES (N=253)

Truth Male Female

Recognized as male 71 62

Recognized as female 6 114

Table 8.3. Gender confusion matrix for Edge histograms using FACES (N=240)

Truth Male Female

Recognized as male 126 6

Recognized as female 19 89

Table 8.4. Used parameters and results for gender classi�ers

Method SVM kernel Kernel parameters Classi�cation acc.
Fisherfaces 75.9%
LBP histograms Radial Basis Function C = 100, γ = 0.01 73.1%
Edge histograms Linear C = 100 89.6%
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The resulting accuracies are calculated from these measurements as number of cor-

rect classi�cations divided by number of all samples shown to the classi�er. The

tally of gender classi�er results can be seen in table 8.4.

The test set division for expression classi�cation was the same as in gender clas-

si�cation. Results were reasonable at 80% recognition rate although in real life

situations the classi�cation accuracy drops. The classi�er also has some issues sep-

arating negative expressions from each other. This problem is mitigated by having

these expressions mapped to shorter distances from each other when classifying ex-

pressions in group photos. This distance mapping can be seen in table 6.1 and

an example test run results in table 8.5. The SVM was trained using the default

grid search method [25, p.5] in OpenCV using the radial basis function kernel with

parameters of C = 100, γ = 0.01.

Table 8.5. Expression confusion matrix for AR-LBP histograms method. (N=240)

Truth Happy Sad Angry Disg. Afraid Neutral

Recognized as happy 39 0 0 1 0 0

Recognized as sad 3 26 1 3 5 2

Recognized as angry 0 3 26 6 0 5

Recognized as disgusted 0 1 0 39 0 0

Recognized as afraid 2 5 0 1 31 1

Recognized as neutral 1 0 0 6 2 31

The testing of age classi�er was done similarly to gender and expression classi�ers.

The �nal classi�cation error rate hovered between 85-90%. For the test run seen in

table 8.6 the classi�cation error was 87.9% when using similar SVM parameters as

the expression classi�er.

Table 8.6. Age confusion matrix for ELBP histogram method using FACES
(N=240)

Truth Young Middle-aged Old

Recognized as young 96 0 0

Recognized as middle-aged 16 56 0

Recognized as old 9 4 59
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8.3 Photo classi�cation and group similarity methods

To test photo categorization I used the �Images of Groups Dataset� [38] which con-

tains 5080 images split into three categories � wedding pictures, family gatherings

and other group pictures. All 28 231 faces in these photos has been hand labeled by

age and gender. To train the classi�er equally sized random sets of photos were cho-

sen from each class with equally sized test set. These sets do not overlap. A distance

matrix between these photos like in �gure 8.3 was then used as a training set. As

these are distances, note that that d(i, j) = d(j, i) and d(i, i) = 0. The best result

was achieved when the classi�er was trained using 115 samples per class and using

5 closest neighbors to vote. This resulted to 72.3% accuracy which is clearly above

random chance. (1/3 in three classes case) Overall the classi�er works reasonably

well whenever using more than 30 samples per class to train.

Figure 8.3. Training data structure for the k-NN classi�er.

To test the photo similarity matching a group of images taken from [38] were

processed using results from the face recognizer and trained property classi�ers while

ignoring the dataset labeling. The weights for di�erent properties were set to the

same value. The used example α�values are near extremes to avoid tied scorings.

The resulting matches can be seen in tables 8.7 and 8.8. As it can be seen the

matching process results to subjectively good matchings. When browsing through

di�erent queries it was also noticeable that the overall ordering of pictures was

mostly reasonable. The most common type of picture out of its place were photos

with small groups of people in a loop structure or in line with large height di�erences.

As this kind of structure can be matched inside a larger one the distance score can

be arti�cially small. It was however rare that this kind of score skewing led to best

matches to be replaced with such photos.
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Table 8.7. Examples of best matches using di�erent α-values. Wedding picture,
faces in single line.

Parameters Query Best match Second match

α = 0.05
(Structure)

α = 0.95
(Label)

α = 0.5
(Mix)

Table 8.8. Examples of best matches using di�erent α-values. Party picture, faces
as a complex group.

Parameters Query Best match Second match

α = 0.05
(Structure)

α = 0.95
(Label)

α = 0.5
(Mix)



45

9. CONCLUSIONS

In this thesis the goal was to review methods of automatic group photo classi�cation

and implement an Android photo classi�cation application using those methods. In

order to implement these methods a further review was made to gender, age and

expression classi�cation from face photos. The methods of detecting and identifying

faces from photos were also discussed.

Based on the review of all these methods an application was written by imple-

menting several feature classi�ers. The accuracy of these classi�ers were measured

by using labeled sample data from FACES [18] database and they were deemed to

be practically accurate. Using these classi�ers two group photo classifying methods

were then implemented and tested using the �Images of groups dataset� [38]. These

photo classi�ers produced reasonably good results enough to be called successful

methods to classify photographs by their face group content. The concept of a good

match in this context is subjective but it is arguable that these methods delivered

on what they promised as they could be used, for example, to automatically create

photo albums by using handful of photos as training hints.

For future work a good approach would be to creatively mix the two methods

used in this thesis. The result of photo similarity matching might be improved if the

classi�er included the labeling data in scoring after the graph matching. Although

the group structure alone is good enough metric it ignores hints clear to the human

sensibilities and leads to occasional bad scoring.



46

REFERENCES

[1] Available at: www.opencv.org

[2] Pearson, K.; �On Lines and Planes of Closest Fit to Systems of Points in Space�,

Philosophical Magazine, Vol. 2, No. 6. (1901), pp. 559�572

[3] Ojala, T.; Pietikäinen, M.; Harwood, D.; �Performance evaluation of texture

measures with classi�cation based on Kullback discrimination of distributions�,

Proceedings of the 12th IAPR International Conference on Pattern Recognition

(ICPR 1994), vol. 1, pp. 582�585.

[4] Naika, C.L.S.; Das, P.K.; Nair, S.B.; �Asymmetric Region Local Binary Pattern

Operator for Person-dependent Facial Expression Recognition�, Communica-

tion and Applications (ICCCA), 2012 International Conference on Computing,

DOI: 10.1109/ICCCA.2012.6179199

[5] Liao, S.; Chung, Albert C. S.; �Face Recognition by Using Elongated Local Bi-

nary Patterns with Average Maximum Distance Gradient Magnitude�, Lecture

Notes in Computer Science Volume 4844, 2007, pp 672�679. DOI: 10.1.1.75.8354

[6] Gabor, D.; �Theory of communication. Part 1: The analysis of information�,

Electrical Engineers � Part III: Radio and Communication Engineering, Jour-

nal of the Institution of, vol.93, no.26, pp.429�441, November 1946, DOI:

10.1049/ji-3-2.1946.0074

[7] Online, Referenced 6.11.2013, Available at: http://www2.it.lut.fi/

project/simplegabor/downloads/laitosrap100.pdf

[8] Liu, C.; Wechsler, H.; �Gabor feature based classi�cation using the en-

hanced �sher linear discriminant model for face recognition�, Image Pro-

cessing, IEEE Transactions on, vol.11, no.4, pp.467�476, Apr 2002, DOI:

10.1109/TIP.2002.999679

[9] Richard O. Duda, Peter E. Hart, David G. Stork, �Pattern classi�cation�, Wiley-

Interscience; 2nd edition, November 9, 2000

[10] Yoav, F.; Schapire, Robert E.; �A Decision-Theoretic Generalization of on-Line

Learning and an Application to Boosting�, 1995, CiteSeerX:10.1.1.56.9855

[11] Viola, P.; Jones, M.; �Robust Real-time Object Detection�, International Jour-

nal of Computer Vision, 2001, DOI: 10.1.1.110.4868

www.opencv.org
http://www2.it.lut.fi/project/simplegabor/downloads/laitosrap100.pdf
http://www2.it.lut.fi/project/simplegabor/downloads/laitosrap100.pdf


REFERENCES 47

[12] Corinna, C.; and Vapnik, Vladimir N.; �Support-Vector Networks�, Machine

Learning, 20, 1995. Available http://link.springer.com/article/10.1007%

2FBF00994018

[13] Online, Referenced 9.5.2013, Available at: http://research.microsoft.com/

en-us/um/people/jplatt/smo-book.pdf

[14] Toni Frissell: Fado singer in Portuguese night club, Lisbon, 1946, http://www.

flickr.com/photos/trialsanderrors/3108655995/

[15] Lin, Hai-bo; �A Kind of Human Face Region Detection and Recognition Method

Based on Chrominance Information Characteristics�, 2012 International Con-

ference on Control Engineering and Communication Technology, pp. 469�472,

DOI: 10.1109/ICCECT.2012.82

[16] Kovac, J.; Peer, P.; Solina, F.; �Human Skin Color Clustering for Face Detec-

tion�, EUROCON 2003. Computer as a Tool. The IEEE Region 8 (Volume:2),

pp. 144�148, DOI: 10.1109/EURCON.2003.1248169

[17] Liao, P.; Wang, Y.; Wang, M.; Ding, S.; Ma, H.; �An E�ective Preprocessing

Scheme for Face Recognition Based on Local Gabor Binary Pattern Histogram

Sequence�, Computer Science and Automation Engineering (CSAE), 2012 IEEE

International Conference on (Volume 3), DOI: 10.1109/CSAE.2012.6273020

[18] Ebner, N.; Riediger, M.; Lindenberger, U.; (2010). �FACES�A database of

facial expressions in young, middle-aged, and older women and men: De-

velopment and validation.�, Behavior research Methods, 42, pp. 351�362.

DOI:10.3758/BRM.42.1.351

[19] Turk, M.; Pentland, A.; �Face recognition using eigenfaces�, Proc. IEEE Con-

ference on Computer Vision and Pattern Recognition, 1991, pp. 586�591, DOI:

10.1109/CVPR.1991.139758

[20] Lei, Z.; Liao, S.; Pietikainen, M.; Li, S.Z.; �Face Recognition by Explor-

ing Information Jointly in Space, Scale and Orientation�, Image Process-

ing, IEEE Transactions on , vol.20, no.1, pp.247�256, Jan. 2011, DOI:

10.1109/TIP.2010.2060207

[21] Online, Referenced 7.8.2013, Available at: http://www.encyclopediaofmath.

org/index.php/Karush-Kuhn-Tucker_conditions

[22] Modi�ed, originally from https://commons.wikimedia.org/wiki/File:

Eigenfaces.png, Referenced 18.4.2013

http://link.springer.com/article/10.1007%2FBF00994018
http://link.springer.com/article/10.1007%2FBF00994018
http://research.microsoft.com/en-us/um/people/jplatt/smo-book.pdf
http://research.microsoft.com/en-us/um/people/jplatt/smo-book.pdf
http://www.flickr.com/photos/trialsanderrors/3108655995/
http://www.flickr.com/photos/trialsanderrors/3108655995/
http://www.encyclopediaofmath.org/index.php/Karush-Kuhn-Tucker_conditions
http://www.encyclopediaofmath.org/index.php/Karush-Kuhn-Tucker_conditions
https://commons.wikimedia.org/wiki/File:Eigenfaces.png
https://commons.wikimedia.org/wiki/File:Eigenfaces.png


REFERENCES 48

[23] Online, Referenced 6.11.2013, Available at: http://www.gnu.org/software/

gsl/

[24] Fisher, R. A.; �The Use of Multiple Measurements in Taxonomic Problems�, An-

nals of Eugenics 7 (2): 179�188, 1936, DOI:10.1111/j.1469-1809.1936.tb02137.x.

hdl:2440/15227.

[25] Online, Referenced 6.11.2013, Available at: http://www.csie.ntu.edu.tw/

~cjlin/papers/guide/guide.pdf

[26] Han, B.; Luo, Y.; �Accurate Face Detection by Combining Multiple Classi�ers

using Locally Assembled Histograms of Oriented Gradients�, Audio, Language

and Image Processing (ICALIP), 2012 International Conference on, pp. 106�

111, DOI: 10.1109/ICALIP.2012.6376595

[27] Shan, C.; �Learning local binary patterns for gender classi�cation on real-world

face images�, Pattern Recognition Letters, Volume 33 Issue 4, March, 2012, pp.

431�437, DOI: 10.1016/j.patrec.2011.05.016

[28] Ardakany, A. R.; Joula, A. M.; �Gender Recognition Based on Edge Histogram�,

International Journal of Computer Theory and Engineering Vol. 4, No. 2, pp.

127�130, April 2012

[29] Guo, Z.; Zhang, L.; Zhang, D.; �A completed modeling of local binary pattern

operator for texture classi�cation�, Image Processing, IEEE Transactions on

(Volume:19 , Issue: 6 ), 19(6):1657�1663, 2010, DOI: 10.1109/TIP.2010.2044957

[30] Ylioinas, J.; Hadid, A.; Pietikäinen, M.; �Age Classi�cation in Unconstrained

Conditions Using LBP Variants�, Pattern Recognition (ICPR), 2012 21st In-

ternational Conference on, November 2012, pp. 1257�1260

[31] Shu, H.; Gallagher, A.; Chen, H.; Chen, T.; �Face-graph matching for classi-

fying groups of people�, International Conference on Image Processing (ICIP),

September 2013.

[32] H.W. Kuhn, �The Hungarian method for the assignment problem,� in Naval

Research Logistics Quarterly, Volume 2, Issue 1�2, pages 83�97, March 1955,

DOI: 10.1002/nav.3800020109

[33] Online, Referenced September 2013, Available at: https://github.com/

KevinStern/software-and-algorithms/blob/master/src/main/java/

blogspot/software_and_algorithms/stern_library/optimization/

HungarianAlgorithm.java

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/optimization/HungarianAlgorithm.java
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/optimization/HungarianAlgorithm.java
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/optimization/HungarianAlgorithm.java
https://github.com/KevinStern/software-and-algorithms/blob/master/src/main/java/blogspot/software_and_algorithms/stern_library/optimization/HungarianAlgorithm.java


REFERENCES 49

[34] Chiu Y.; Li C.; Huang C.; Chung P.; Chen T.; �E�cient graph based spatial

face context representation and matching�, IEEE ICASSP 2013, pp. 2001�2005,

DOI: 10.1109/ICASSP.2013.6638004

[35] Online, Referenced October 2013, Available at: http://www.theroyalforums.

com/attachments/blogs/uploads/2013/05/ip5kcn.jpg 10.9.2013

[36] Umeyama, S.; �An eigendecomposition approach to weighted graph matching

problems�, Pattern Analysis and Machine Intelligence, IEEE Transactions on

(Volume 10, Issue 5), pp. 695�703, September 1988, DOI: 10.1109/34.6778

[37] Zaslavskiy, M.; Bach, F.; Vert, J.-P.; �A Path Following Algorithm for the

Graph Matching Problem�, Pattern Analysis and Machine Intelligence, IEEE

Transactions on (Volume 31, Issue 12), p.2227�2242, October 2008, DOI:

10.1109/TPAMI.2008.245

[38] Gallagher, A.; Chen, T.; �Understanding Images of Groups of People�, Proc.

CVPR 2009

http://www.theroyalforums.com/attachments/blogs/uploads/2013/05/ip5kcn.jpg
http://www.theroyalforums.com/attachments/blogs/uploads/2013/05/ip5kcn.jpg


50

A. APPENDICES

A.1 Matlab scripts used in �gure generation

Script A.1 gaborgenerator.m

close a l l ; clear a l l ;
colourmap ( g r ay s c a l e ) ;
for s c a l e = 0 :4
for ro t = 0 :7

[G,GIMAGE]= g a b o r f i l t e r ( I , 0 . 0 5 , s ca l e , rot , 0 ) ;
subplot (5 , 8 , n ) ; n=n+1;

t =127.5/max(max(abs (G) ) ) ;
image ( u int8 ( t * real (G)+127 . 5 ) ) ;
axis square ;
set (gca , ' XTickLabelMode ' , 'Manual ' ) ;
set (gca , ' YTickLabelMode ' , 'Manual ' ) ;
set (gca , ' XTick ' , [ ] ) ; set (gca , ' YTick ' , [ ] ) ;

end

end

Script A.2 gabor�lter.m

[G,GIMAGE]=GABORFILTER( Image , Sigma , Freq , Rotation , Phase )
s ize=f ix ( 1 . 5/ Sigma ) ;
for x=−s ize : s ize
for y=−s ize : s ize

theta = pi*Rotation /8 ;
kv=(pi /2)/( sqrt (2)^ Freq ) ;
k = kv*exp(1 i * theta ) ;
G( s ize+x+1, s ize+y+1)=(k^2/(4*pi^2))* . . .
exp( −(abs ( k )^2*( x*x+y*y ) ) / (8*pi^2))* . . .
(exp(1 i * ( real ( k )*x + imag( k )*y))−exp(−2*pi^2+(1 i *Phase ) ) ) ;

end

end

GIMAGE=conv2 ( Image , double (G) , ' same ' ) ;
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Script A.3 pcademo.m

close a l l ; clear a l l ;
a = 10 ; b = 90 ; x = a + (b−a ) . * rand ( 5 0 , 1 ) ;
c = 20 ; d = 80 ; y = c + (d−c ) . * rand ( 5 0 , 1 ) ;
y=y+(x−50);
z=[x y ] ;
subplot ( 1 , 2 , 1 ) ;
s c a t t e r (x , y , 3 0 , ' f i l l e d ' ) ;
hold on ; axis ( [ 0 100 0 1 0 0 ] ) ; axis square ;
xlabel ( ' Or i g i na l  1 s t ' ) ; ylabel ( ' Or i g i na l  2nd ' ) ;
subplot ( 1 , 2 , 2 ) ;
[ pc , score , l a t e n t ]=princomp ( z s co r e ( z ) ) ;
b i p l o t ( pc ( : , 1 : 2 ) , ' Scores ' , s c o r e ( : , 1 : 2 ) , ' VarLabels ' , . . .

{ ' Or i g i na l  1 s t ' ' Or i g i na l  2nd ' } ) ;
axis square ; xlabel ( 'New ax i s  1 ' ) ; ylabel ( 'New ax i s  2 ' ) ;

Script A.4 pcasteps.m

X = rand ( 20 , 3 )*10 ; subplot ( 2 , 2 , 1 ) ;
s c a t t e r 3 (X( : , 1 ) ,X( : , 2 ) ,X( : , 3 ) , ' f i l l e d ' ) ; axis square
t i t l e ( 'The o r i g i n a l  3D s e t  X ' ) ;
subplot ( 2 , 2 , 2 ) ;
for a=1:3 X( : , a ) = X( : , a ) − mean(X( : , a ) ) ; end

s c a t t e r 3 (X( : , 1 ) ,X( : , 2 ) ,X( : , 3 ) , ' f i l l e d ' ) ; axis square
hold on
P = [0 0 0 ] ;
for p=1: s ize (X, 1 ) P = [P;X(p , : ) ; [ 0 0 0 ] ] ; end

l ine (P( : , 1 ) ,P( : , 2 ) ,P ( : , 3 ) ) ;
t i t l e ( ' Centered s e t  XX^T producing  mean d i s t an c e s ' ) ;
subplot ( 2 , 2 , 3 ) ;
[ pc , score , l a t e n t ]=princomp (X) ; %means c a l c u l a t e d i n s i d e
b i p l o t ( pc ( : , 1 : 2 ) , ' Scores ' , s c o r e ( : , 1 : 2 ) , ' VarLabels ' , . . .

{ ' Or i g i na l  1 s t ' ' Or i g i na l  2nd ' ' Or i g i na l  3 rd ' } ) ;
t i t l e ( ' 3D s e t  reduced  to  2D' ) ; axis square
subplot ( 2 , 2 , 4 ) ;
X( : , 2 ) = X( : , 2 ) * 5 ;
[ pc , score , l a t e n t ]=princomp (X) ;
b i p l o t ( pc ( : , 1 : 2 ) , ' Scores ' , s c o r e ( : , 1 : 2 ) , ' VarLabels ' , . . .

{ ' Or i g i na l  1 s t ' ' Or i g i na l  2nd ' ' Or i g i na l  3 rd ' } ) ;
t i t l e ( ' Or i g i na l  2nd component mu l t i p l i e d  with 5 ' ) ; axis square
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