
MUHAMMAD SAJID HAROON
A COMMUNICATION MODULE FOR CAPTURING EVENTS IN
ORDER TO MONITOR A SERVICE-BASED AUTOMATED PRO-
DUCTION LINE
MASTER OF SCIENCE THESIS

Examiner: Prof. José Luis Martínez Lastra

Examiner and topic approved in the Automation,
Mechanical and Materials Engineering Faculty
Council Meeting on 05.06.2013

I

PREFACE

The research work presented in this thesis was carried out at Factory Automation Sys-
tems and Technology (FAST) Laboratory in Department of Production Engineering at
Tampere University of Engineering and Technology (TUT).

The funding for the research work came from eSONIA: Embedded Service Oriented
Monitoring, Diagnostics and Control: Towards Asset-Aware and Self-Recovery Facto-
ry.

I am highly thankful to Director FAST, Prof. José Luis Martínez Lastra for provid-
ing me the opportunity to work in the FAST lab, and for the guidance to achieve the
research targets during my stay at FAST. Secondly, I would like to thank Bin Zhang,
Hector Garcia, Luis Enrique and all staff members at FAST lab for their constant sup-
port and helping me out to accomplish my goals.

I would like to pay many thanks to Dr. Corina Postelnicu for her guidance, supervi-
sion and support at the time whenever I needed.

I would also like to thank all my friends in Tampere and back home for their best
wishes, backing and assistance.

Finally, I would like to acknowledge and pay my deepest gratitude to my parents
and all my family members for their prayers, care and kind support which helped me to
achieve all my goals at every stage of my life.

Tampere, July 18th 2013
Muhammad Sajid Haroon

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master of Science Degree Programme in Machine Automation
HAROON, MUHAMMAD SAJID: A Communication Module for capturing
Events in order to Monitor a Service-based Automated Production Line
Master of Science Thesis, 64 pages, 7 Appendix pages
July 2013
Major: Factory Automation
Examiner: Prof. José Luis Martínez Lastra
Supervisor: Dr. Corina Postelnicu

Keywords: Real-time Monitoring, SCADA, 3D Visualization, Unity3D, SOA,
DWR, SPRING, WEB Applications, Web Services

The efficiency, reliability and on time maintenance of a manufacturing process largely
relies on a highly efficient and rapidly responsive monitoring system. The increasing
demand of uninterrupted continuation of a production process emphasises the need of an
efficient real time monitoring mechanism of the process. The rapid advancements of
modern technology especially in the communication field have largely affected every
field of daily life as well as the industrial sector. The rise of wireless communication
technology has made it possible to develop wireless sensors for industrial monitoring
applications and revolutionize the monitoring techniques to a greater extent.

The work researches a web based monitoring approach for real time monitoring of
service-oriented production assembly with 3D visualization. The implementation deals
with the design and implementation of a communication framework for receiving, pro-
cessing and publishing events information of a service oriented assembly line. The pro-
cessed information is then linked and simulated with a 3D replica of the actual process
over the web in real time.

The work demonstrates the usefulness of versatile features of 3D visualization in in-
dustrial monitoring applications. The online accessibility of the monitoring application
enables all concerned individuals to access and monitor the manufacturing process in
real time from any remote location. The developed web application can also be simulat-
ed for a given set of historical data. Currently, the research work focuses on capturing
and simulating only two types of shop floor messages (Pallet activity notification mes-
sage and Robot activity equipment change state message), but can be enhanced to in-
clude more features of the robotic assembly line in future.

III

TABLE OF CONTENTS

1. Introduction... 1
1.1 Background .. 1
1.2 Problem Definition ... 2

1.2.1 Problem description .. 2
1.2.2 Justification of the work .. 2

1.3 Work Description ... 3
1.3.1 Objectives ... 3
1.3.1 Methodology ... 3

1.4 Thesis Outline... 4
2. Technology Overview ... 5

2.1. 3D Visualization Techniques .. 5
2.1.1. Virtual Simulation & Testing .. 5

2.2. 3D Modelling ... 6
1) CAD ... 7
2) CATIA .. 8
3) Unity3D GameEngine ... 8

2.3. 3D monitoring Systems... 9
2.4. Service Oriented Architecture (SOA) .. 10

2.4.1. SOA Design Principles ... 11
2.5. Potential Benefits of implementing SOA .. 13

1) Architecture Flexibility ... 14
2) Agility .. 14
3) Cost effectiveness ... 14
4) Technological Aspects .. 14
5) Business Aspects... 14
6) Supplementary Benefits .. 15

2.6. Web Services (WS)... 15
2.6.1. WS Architecture ... 15

2.7. WS Architecture models ... 16
1) Service Oriented Model .. 17
2) Resource Oriented Model .. 18
3) Policy Model... 18

2.8. Web-Services Architecture Stack .. 19
2.8.1. XML ... 19
2.8.2. SOAP.. 20
2.8.3. WSDL .. 20

2.9. CAMX Standard ... 22
2.9.1. CAMX standard family ... 22
2.9.2. IPC-2541 .. 22

2.10. JAVA Applications in Industrial Automation .. 24

IV

2.11. Spring Framework .. 25
2.11.1. Architectural benefits of Spring Framework 25
2.11.2. Spring WS (Web Service) ... 26
2.11.3. Spring MVC ... 27

2.12. Web Applications ... 28
2.12.1. HTML .. 29
2.12.2. JavaScript ... 29
2.12.3. AJAX.. 30
2.12.4. XML ... 30

2.13. Server Data Push .. 31
1) Data Streaming ... 31
2) Polling .. 32
3) Long Polling ... 33

2.14. Data Push Technologies .. 33
2.14.1. APE .. 34
2.14.2. COMET .. 34
2.14.3. DWR .. 34

3. Test Bed and Implementation Details .. 36
3.1. Testbed ... 36
3.2. Research Objectives and Available information .. 38

3.2.1. Message Types.. 38
3.3. Implementation Scheme .. 40

3.3.1. Project Implementation Overview ... 40
3.3.2. Project configuration in Java Eclipse (JEE) 41
3.3.3. Spring WS Implementation ... 43
3.3.4. Spring WS configuration ... 44
3.3.5. Endpoint Implementation .. 45
3.3.6. Web Application implementation .. 46
3.3.7. Spring MVCConfiguration .. 47
3.3.8. JSON controller .. 48
3.3.9. DWR implementation ... 49
3.3.10. Dwr.xml Configuration ... 49
3.3.11. Web.xml configuration.. 49
3.3.12. JavaScript configuration .. 50

4. Project Implementation & Results ... 51
4.1. Project Testing .. 51
4.2. Web Implementation... 52
4.3. Implementation details .. 53
4.4. Results .. 54

4.4.1. Real-time Monitoring Application ... 54
4.4.2. Periodic Data Simulation... 55

5. Conclusion .. 57

V

5.1. Performance Overview and achievements ... 57
5.2. Overall System review .. 57
5.3. Future work and recommendations ... 58

References .. 59
Appendix 1: Pallet Notification Message Wsdl ... 65
Appendix 2: Equipment Change State Message Wsdl ... 66
Appendix 3: JSON Controller class ... 67
Appendix 4: Information message class .. 68
Appendix 5: Info class .. 69
Appendix 6: Spring servlet configuratoin .. 70
Appendix 7: MVC dispatcher servlet configuratoin ... 71

VI

LIST OF FIGURES
Figure 1: Virtual 3D simulation of a Robot Operation [2] .. 5
Figure 2: Robot simulation using DELMIA [4] ... 6
Figure 3: A 3D model of robot vehicle in 3d-canvas [53] .. 7
Figure 4: CAD model of a robotic operation [54] ... 7
Figure 5: CATIA model of an assembly plant [55] .. 8
Figure 6: Typical example of a scene in Unity 3D [56] ... 9
Figure 7: Remote assembly facility developed in Java3D [9] 10
Figure 8: Event-based 3D-Monitoring of Material Flow [10] 10
Figure 9: Stateless and Stateful services [58] .. 13
Figure 10: WS basic architecture [19] .. 16
Figure 11: Simplified Message Oriented Model [18]... 17
Figure 12: Simplified Service Oriented Model [18] ... 17
Figure 13: Simplified Resource Oriented Model [18] .. 18
Figure 14: Simplified Policy Model [18] ... 18
Figure 15: Web Services Architecture Stack [18] .. 19
Figure 16: SOAP message Envelop [59] ... 20
Figure 17: A general WSDL structure [60] ... 21
Figure 18: CAMX Equipment State Diagram [33] .. 23
Figure 19 : State Transition Table for Equipment State Model [33] 24
Figure 20: A brief overview of Spring Framework [61] .. 25
Figure 21: The request processing workflow in Spring Web Services [38] 26
Figure 22: The request processing workflow in Spring Web MVC [39] 28
Figure 23: Ajax Architecture [62] ... 30
Figure 24: Data streaming [49] .. 32
Figure 25: Data Polling [49] .. 32
Figure 26: Long polling [49] .. 33
Figure 27: Ajax Push Engine (APE) working [51] .. 34
Figure 28: DWR working [52] .. 35
Figure 29: 3D isometric view of FASTory assembly line ... 36
Figure 30: Top view of FASTory assembly line ... 37
Figure 31: Front view of FASTory assembly line .. 37
Figure 32: Pallet Activity Notification Message Sample .. 39
Figure 33: Robot Activity Message Sample ... 39
Figure34: Project Implementation layout .. 40
Figure 35: Project configuration file web.xml ... 42
Figure 36: Spring WS implementation .. 43
Figure 37: Spring WS configuration ... 44
Figure 38: Endpoint Implementation... 45
Figure 39: Web application implementation.. 46
Figure 40: Spring MVC Configuration .. 47
Figure 41: JSON Controller class ... 48

VII

Figure 42: dwr.xml configuration ... 49
Figure 43: DWR Web.xml configuration ... 50
Figure 44: DWR JavaScript configurations ... 50
Figure 45: SOAP UI Message Interface .. 52
Figure 46: Web ImplementationOverview ... 52
Figure 47: CATIA model in Unity3D... 53
Figure 48: Regions in pallets flow... 54
Figure 49: 3D Real-time Monitoring Application .. 55
Figure 50: Execution with info display .. 56

VIII

LIST OF SYMBOLS AND ABBREVIATIONS

AJAX Asynchronous JavaScript and XML
ANSI American National Standards Institute
AOP Aspect Oriented Programming
APE AJAX Push Engine
API Application Programming Interface
CAD Computer-Aided Design
CAE Computer-Aided Engineering
CAM Computer-Aided Manufacturing
CAMX Computer Aided Manufacturing using XML
CATIA Computer Aided Three-dimensional Interactive Application
CICS Customer Information Control System
COM Component Object Model
CORBA Common Object Request Broker Architecture
CSRF Cross-Site Request Forgery
CSS Cascading Style Sheets
DCOM Distributed Component Object Model
DOM Document Object Model
DPWS Devices Profile for Web Services
DWR Direct Web Remoting
EJB Enterprise JavaBeans
ERP Enterprise resource planning
FIS Factory Information System
FTP File Transfer Protocol
HMI Human Machine Interface
HTML HyperText Markup Language
HTTP Hypertext Transfer Protocol
ICT Information and Communication Technologies
IMS IP Multimedia Subsystem
J2EE Java 2 Enterprise Edition
JAXB Java Architecture for XML Binding
JAXP Java API for XML Processing
JDOM Java-based document object model
JMS Java Message Service
JNDI Java Naming and Directory Interface
JSF Java Server Faces
JSON JavaScript Object Notation
MES Manufacturing Execution Systems
MIME Multipurpose Internet Mail Extensions
MOM Management Object Model
MVC Model–View–Controller
RMI Remote Method Invocation
ROM Resource Object Model
SCADA Supervisory Control & Data Acquisition
SMTP Simple Mail Transfer Protocol
SOA Service-Oriented Architecture
SOAP Simple Object Access Protocol
SOM Service Oriented Model
TCP Transmission Control Protocol

IX

URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium
WS-DD Web Services Dynamic Discovery
WSDL Web Services Description Language
WS-I Web Services Interoperability
XML Extensible Markup Language
XOM XML Object Model
XPATH XML Path Language
XSD XML Schema Definition
XSLT Extensible Stylesheet Language Transformations

1

1. INTRODUCTION

1.1 Background

Monitoring of an assembly line or a production system has always been an important
aspect in an efficient manufacturing system in order to achieve better productive out-
come and enhanced performance.

An industrial unit with adequate, accurate and efficient monitoring mechanism re-
sults in improved production and supports the optimization of resource consumption.
Monitoring not only helps to acquire understanding of normal production activity but
also facilitates the identification and resolution of possible defects in order to improve
efficiency of the production unit. Permanent monitoring of resources, processes and
components is always required to avoid problematic situation.

For real time monitoring of the events at the shop floor, it is essential to have highly
reliable and efficient data acquisition and some form of visualization facility to support
the analysis of the gathered data. Most of the production industries deploy large HMI
displays of the whole production unit, as in traditional SCADA systems.

Traditional monitoring systems are comprised of wired communication networks
spread all over the industrial vicinity to provide fast and efficient communication be-
tween field devices and central monitoring & control (M&C) station. Field device I/O’s
continuously send the information to the central control station through high speed
communication networks for monitoring, assessment and control of the production ac-
tivity in the field.

To ensure the amount of information collectible from the sensors is fully handled;
significant focus has been granted in automation field to the remote visualization of the
process data from field sensors. Conventional monitoring schemes like SCADA HMIs
use 2D graphs and figures to manipulate the information which have limited graphical
and interaction possibilities.

A monitoring system capable of representing production phenomena as real time 3D
animation is strong support for the identification and localization of the production
flow, while providing highly interactive and reliable supervisory control.
 This thesis discusses an approach to real time web based monitoring and visualiza-
tion, applied to assembly line production activity. The proposed solution relies on 3D
graphical animation using Java, Unity 3D game engine and web tools.

2

1.2 PROBLEM DEFINITION

1.2.1 Problem description

The task is to model a production assembly line supported by web service based con-
trollers via 3D animation and to demonstrate remote web based real time monitoring of
the events occurring during production.

1.2.2 Justification of the work

“Powerful market trends of increasing product complexity, increased liability and war-
ranty costs, and escalating competitive cost pressures all drive the need to streamline
and improve the process of design verification and validation” [3].

Verification and validation indicates whether the design meets the specified re-
quirements, or respectively if the right thing is being built. With the introduction of 3D
mechanical drawings and CAD models along traditional 2D models, electrical schemat-
ics and programming soft wares, V&V processes have been largely improved. 3D virtu-
al models results in faster and cost effective development of assembly products. Early
detection of product imperfections while testing with 3D models ensures that design
defects can be dealt with before it is too late, thus saving unnecessary overheads of time
and cost. Potential benefits include increased product quality with lesser warranty ex-
penditure, optimum prototyping costs and reduced design cycle times [3].

3D visualization largely enhances the impact and influence of any design scheme.
Well documented 3D visualization and presentation of goods, services for the customers
are rapidly becoming successful and favourable for companies. A well-designed, highly
interactive and good quality animated model of a product or a product feature helps
companies to easily market their product and making it more appealing for the custom-
ers.

Many companies usually approach their clients by presenting their product through
3D animations and virtual simulations, thus emphasizing its vitality and effectiveness in
the practical usage that how this can be useful for the client. Moreover companies can
help their clients by providing animation and visualization of the processes with specifi-
cation and in order required by the client.
 Nowadays, many 2D graphical representational techniques are commonly found in
practice for representing various kinds of process data in industrial manufacturing sys-
tems. These include line charts, bar graphs, 2D diagrams and tables in Human Machine
Interface (HMI). However, the increasing demand for vital information representation
and efficient monitoring, these kinds of traditional visualization tools and techniques are
unable to address the required needs thereby impairing fast error detection [1]. A 3D
graphical model or animation model is much more intuitive and explanatory, capable of
presenting greater insight information thereby facilitating faster and better information
understanding of the situation at hand. Moreover, 3D visualization makes it possible to

3

better the tremendous amount of input data, including spatial and chronological infor-
mation.

Unexpected situations that might affect the production process are usually imposing
time and financial costs to predict and track possible causes of the problems, by investi-
gating huge historical data records of the production operation. In a production system,
it is difficult for the operators or company personnel to continuously monitor the pro-
duction operation outside the premises of the site because of limitations of traditionally
available resources. Furthermore, conventional monitoring methods are not sufficient to
provide real time information remotely located user, via the internet.
 3D real time visualization can be helpful not only for rendering of different process
functions in testing mode but for real world applications by introducing a sufficient
communication means between the real world and the simulation of the 3D model. 3D
model real time visualization can be even more useful if the designed model visualiza-
tion is accessible instantly via internet from any location in the world.
 The solution proposed in this thesis is addressing the above-mentioned issues. The
adopted monitoring approach is web based therefore allowing the users to access the
application remotely from any location without installing unnecessary supporting soft-
ware utilities.

1.3 WORK DESCRIPTION

1.3.1 Objectives

The main objectives of the research work are as follows:

1. To design and implement a communication framework for receiving events from a
service oriented robotic assembly line, processing the received information and ex-
posing the results on the web.

2. To utilize the received information for animating the 3D model replica of the real
world test bed setup on the web in real-time.

1.3.1 Methodology

The approach adopted to achieve the research objectives and goals is stated as below:

Review and discussion of real time 3D visualization based monitoring techniques espe-
cially focusing on web based 3D visualization techniques and application.
Perform an extensive study of possible communicating methods applicable to the test
bed setting of choice through JAVA Eclipse®, receiving and parsing of information and
for making it available to web applications.

4

Study of data acquisition techniques in web browser to access data from JAVA applica-
tions while forwarding the accessed information to Unity 3D web player for simulating
the data obtained.

1.4 Thesis Outline

The thesis work consists of 5 chapters. Chapter 2 focuses on 3D model design and web
services technologies, on one hand and software tools used in this research work, on the
other. Chapter 3 introduces the test bed setup, detailing its major components and their
roles. Chapter 4 discusses implementation details. Chapter 5 presents the conclusive
results of the research work, overall system overview and outlines future work possibili-
ties.

5

2. TECHNOLOGY OVERVIEW

This section is organized as follows. Section 2.1 presents a brief overview of some of
the available 3D visualization tools, their importance and application domains. Section
2.2 highlights and compares commonly used 3D design technologies including CAD,
CATIA and the game development engine Unity 3D. Section 2.3 gives an overview
about 3D monitoring systems, tools and applications. Sections 2.4, 2.5, 2.6, 2.7 and 2.8
include a detail review of SOA and web services technologies including SOA design
principles, WS architecture related details and properties. Section 2.9 discusses CAMX
standards and other details. Sections 2.10 and 2.11 give an overview of use of Java tools
and applications especially focusing on Spring frame work. Section 2.12 reviews some
of the web tools including HTML, AJAX, XML and JavaScript. Sections 2.13 and 2.14
present a review about server data push and available data push technologies.

2.1. 3D Visualization Techniques

This section is an overview of some of the applications that have been adopted so far
using 3D modelling and visualization techniques.

2.1.1. Virtual Simulation & Testing

3D design and simulation enables manufacturing engineers to create various compo-
nents of the manufacturing process (e.g. work cells, robots, machine tools etc.) based on
digital definitions of product. Machinery can be programmed offline and their behaviour
simulated even for highly complex machine operations, before deployment of the ma-
chine in the actual production environment [2]. Figure 1 shows virtual 3D simulation of
a robot operation.

Figure 1: Virtual 3D simulation of a Robot Operation [2]

Some examples of simulation tools include DELMIA and Geovia by Dassault Sys-
tems, 3D Create by Visual Components, FlexSim by FlexSim Softwares etc. Table 1

6

shows some of the commonly available virtual simulation and modelling techniques is
shown as under.

Table 1: Commonly used simulation softwares

These tools proved to be very useful for simulating precisely an individual machine
component, robot operation or even complete assembly line comprehensively and effi-
cient. Figure 2 shows 3D model arrangement of robots designed in DELMIA.

Figure 2: Robot simulation using DELMIA [4]

2.2. 3D Modelling

3D modelling is the representation of a physical object in mathematical form through
3D computer graphics soft wares as a result of combination of several points in 3D
space, curved surfaces, triangles, circles and other geometrical shapes. Figure 3 repre-
sents a 3D design of a robot vehicle in 3d-canvas.

7

Figure 3: A 3D model of robot vehicle in 3d-canvas [53]

3D models and designs nowadays are widely used in a number of fields including
medical research, aerospace and engineering research and development areas, enter-
tainment industries, computer application, video games and largely in industrial design
and automation applications. Some of the commonly used 3D modelling tools are brief-
ly presented as following.

1) CAD

CAD or (Computer Aided Design) is creation of technical drawings with the help of
computer design soft wares. CAD can be used to create, modify, analyse or optimize
computer designs. CAD has found application in many areas including architectural,
automotive, industrial and aerospace engineering and many others.

Unlike just designing or drafting drawings, a CAD design holds additional infor-
mation regarding part dimension, material, tolerance level and many other application
specific details. Together with animation, CAD is used to add special effects in multiple
applications like advertisement sector, movies & games, entertainment and in technical
drawings and models. Figure 4 shows CAD model of a robot operation.

Figure 4: CAD model of a robotic operation [54]

8

2) CATIA

CATIA (Computer Aided Three-dimensional Interactive Application) is a commercial
software suite developed by French aircraft manufacturer Dassault Systems. It’s a multi-
platform supporting multiple phases of product development e.g. CAD (Computer-aided
Design), CAM (Computer-aided Manufacturing) and CAE (Computer-aided Engineer-
ing).

CATIA provides designing and modelling solution from creation of 3D machine
parts, tools to a fully functional production assembly line. It also facilitates to create,
alter and validate even complex models and shapes with ease. In addition to drawing
mechanical design and shapes, CATIA also has the capability to draw electrical, elec-
tronics and fluid systems efficiently. Figure 5 demonstrates CATIA model of Toledo
Jeep Assembly Plant.

Figure 5: CATIA model of an assembly plant [55]

3) Unity3D GameEngine

Unity3D is a 3D game development tool capable of performing several other multi
functions under the same platform. Unity presents an integrated designing tool for a
high quality interactive real time architectural visualization with the compatibility of
execution on almost all traditionally available operating systems and platforms. A typi-
cal Unity 3D scene is depicted by Figure 6.

9

Figure 6: Typical example of a scene in Unity 3D [56]

Unity development editor is a virtual building tool, featuring an asset-aware archi-
tecture aimed (containing detailed descriptions and characteristics of available re-
sources) to give a better development environment for building applications. A Unity
application instance starts with a creation of scene in 3D space while objects are added
to it by defining their size and specification. The objects behaviours and also the dy-
namics of the scene in a unity application are then managed through programming using
Unity Scripts i.e. using JavaScript, Boo or C++ programming language.

CAD softwares have traditionally been used for a long time due to their easy to use
design interface. But the demand for higher accuracy and multiple functions such as
animation capability gave rise to the use of other 3D softwares e.g. CATIA, Pro/E etc.
However the issue of supporting all design formats and simulation capability on com-
monly used user platforms still remained. Unity has a great advantage of importing and
using 3D models and designs from other drawing soft wares like CAD soft wares, CAT-
IA etc. without requiring any complex conversion mechanisms and any loss of infor-
mation in the original design. Another unique feature of Unity 3D is Unity web player
which enables application developers to run applications in the web browser, thereby
facilitating inclusion of web features and functions in the applications.

2.3. 3D monitoring Systems

3D monitoring systems offers a wide range of advantages over 2D visualization based
systems. There are on-going efforts to have 3D visualization based monitoring systems
that are not only effective on factory floor but are also available remotely for all users
via the internet.

Java3D is one of the tools that have been successfully used in applications to
achieve real time web based monitoring with 3D visualization. The experimental ap-
proach presented by [9], uses Java3D API as development tool for an extensive variety
of 3D graphical application while justifies its importance and benefit for the develop-

10

ment of real time web based monitoring. Java 3D is also finding its applications in vari-
ous applications such as designing 3D visualization and virtual environments [9]. An
example of 3D modelling using Java3D is shown in figure 7.

Figure 7: Remote assembly facility developed in Java3D [9]

Another 3D real time monitoring approach was implemented by [10]; to develop an
event based 3D monitoring system to visualize shop floor-level state variations in real
time while taking advantage of SOA (Service Oriented Architecture). The experiment
uses mainly two tools for development in building the 3D based environment including
Ogre (open source 3D graphics engine) and Autodesk 3ds Max, whereas DPWS (De-
vice Profile for Web Services) is used as an infrastructure technology to address the
tasks related to SOA and web services. Figure 8 demonstrates the 3D model of afore-
mentioned monitoring approach.

Figure 8: Event-based 3D-Monitoring of Material Flow [10]

2.4. Service Oriented Architecture (SOA)

The rapidly increasing advancements of modern technologies have revolutionized every
field of daily life, has left a greater impact in the field of automated manufacturing as
well. Several new tools and methods have been evolved that have largely modernized

11

the traditional monitoring and control techniques in automation field. SOA’s have been
implemented via Web Services for many years effectively offering several benefits such
as autonomy, reusability, statelessness with fully documented interfaces. Due to their
effectiveness and efficiency, Web Services are taken into account in the field of automa-
tion to improve the monitoring and control technique.

Service Oriented Architecture (SOA) is covering all aspects of building and using
business process applications by furnishing an IT platform, allowing multiple applica-
tions to interact and share information in a business processes despite of their different
operating systems and programming languages [5]. Although the idea of Service Ori-
ented Architecture (SOA) is not new in the field of IT and communication technology,
its flexibility to work with different execution systems extended its viability and appli-
cation in multiple environments, providing users with system selection and tying them
together under a consistent architecture. Adoption of SOA in fields like business and
industrial sector gives companies a competitive advantage over other contenders, ena-
bling them to react more quickly and efficiently to varying business and industrial
needs.
 In industrial and manufacturing level scale, SOA is an evolution of distributed con-
trol based on the request/response design model for synchronous and asynchronous ap-
plications.

2.4.1. SOA Design Principles

 Following are the key design principles involved in SOA.

Abstraction Service abstraction binds together many aspects of the ser-
vices. Essentially, the stated principle underlines concealing
as much detail of a service as possible. Doing so not only
enable loosely coupled nature of services but also plays its
part to conserve it. Abstraction level results in various forms
of metadata during evaluation. The degree of abstraction ap-
plied may have an influence on service contract granularity
leading a direct impact on ultimate expense and effort re-
quired for hosting the service.

Autonomy Services have total control over the logic encapsulated with-
in the service and each service is fully autonomous and inde-
pendent of other nearby services in surrounding. The need of
considerable control over its resources and environment dur-
ing a logic implementation for a particular solution enables
services to achieve their capabilities constantly and reliably.
Service autonomy involves two distinct types of autonomy,
design-time and run-time. Design-time autonomy directs
towards autonomy of services evolution without effecting
service consumers. Run-time autonomy reflects the control
limit a service can have on its solution logic.

12

Loose Coupling Loosely coupled design principle endures minimizing de-
pendencies between services, service consumers and under-
lying service logic. The principle core emphasis is to pro-
mote independent design while maintaining interoperability
with consumers of utilizing service capabilities. A number of
couplings can be thought of during the designing of a service
that can have an impact on service contract content and its
granularity. SOA provides built in mechanisms to facilitate
loose couplings between services and ensures that the service
is decoupled from other components in protocol, time and
location.

Reusability An underlying solution’s logic is divided into services in
order to maximize reusability. Reusability has vital im-
portance within the service orientation and is considered as a
core part in service analysis and design process. The remark-
able advancement in the field of service technology has
largely facilitated to achieve maximum gain out of reusabil-
ity of multi-purpose logic on a distinctive level [6]. The ac-
tual idea of reuse is to employ services for multiple automat-
ed business applications instead of referring towards the fre-
quent usage of services. The reusability feature makes it pos-
sible to use single service that can be used by several appli-
cations while avoiding the creation of new service for each
application.

Granularity Service granularity determines the overall quantity of func-
tionality encapsulated by a service. A specific feature to de-
termine a service’s granularity is its functional context which
is often derived from one of three common service models.
Services with larger quantity of functional context will have
respective coarser service granularity. On the contrary, ser-
vices with better and modest level of service granularity ex-
hibit narrow or targeted functional contexts.

Composability The ability for services to achieve service-oriented goals lies
in their efficient and well-organized composition. Service
compos ability enables service composers to solve big prob-
lems efficiently by distributing the task into conveniently
handled smaller chunks. With the rising demand for sophis-
tication in service-oriented solutions gave rise to the com-
plexity of service composition. Service compos ability re-
sults in several useful outcomes specially design configura-
tion which empowers a service’s reuse during the service
composition.

Statelessness Services tend to minimize resource consumption by being
remained as stateless while stateful only when required. Like
autonomy, statelessness is another nice feature favouring
scalability and reusability. Ideally, a service is temporarily

13

stateful while receiving or processing a request message in
certain application. Figure 9 presents a simple comparison of
stateless and stateful services.

Figure 9: Stateless and Stateful services [58]

Service availability for many consumers at a time becomes
difficult if it retains a state for a longer period of time.

Interoperability Interoperability is a unique feature while discussing services
referring towards its effectiveness and versatility. Service’s
interoperability helps to provide easy application integration.
Interoperability provides scheme for wrapping existing ap-
plications which enables developers as well as consumers to
access services through standard scripting languages and
communication protocols. With this property, a service cre-
ated using Java platform can be called up by any client ap-
plication running on another platform, e.g. .Net. Since the
said property has a number of advantages but at the same
time requires huge amount of effort to resolve interoperabil-
ity issues by going through frequent development and testing
procedures to achieve the ultimate goals. For this purpose,
Web (WS-I) was formed to address issues such as coordina-
tion, cooperation and other related subjects regarding in-
teroperability.

Discoverability Services are equipped with communicative informational
metadata which helps them in discoverability and interpreta-
tion [6].In general, discoverability points to the process for
searching web services for a given task. A web service de-
scription language (WSDL) and a web service endpoint are
two fundamental requirements for web service consumers to
discover access and interpret the information contained by
the service. A common service discovery mechanism also
known as Web Services Dynamic Discovery (WS-DD) uses
a multicast communication protocol for discovering services
over a communication network.

2.5. Potential Benefits of implementing SOA

SOA has presented numerous amounts of benefits in various fields of daily life. Some
of the potential advantages are briefly discussed as under.

14

1) Architecture Flexibility

Service Oriented Architecture (SOA) and object-oriented design are quite similar in
many ways. Both of these technologies implement same kind of functional implementa-
tion by communicating with functions, capable of performing certain functionalities.
The architecture provides the flexibility for an application to act independently and
stand on its own. Additionally, the architecture also takes into account the requirements
of both service providers and consumers.

2) Agility

Since the variations in an industrial or business environment occur vigorously and rap-
idly, therefore requires an agile infrastructure to respond timely and rapidly. Generally
an industrial production setup may require adopting new configuration based on product
demands. With an SOA based approach, it’s easy to manage and reorganize the pro-
cesses involved with minimal time and cost consumption. In a traditional industrial en-
vironment, applications are tightly coupled and largely dependent on various other enti-
ties while SOA is based on a decentralized working methodology. The so-called “loose-
ly coupled” nature of SOA enables the services to be independently responsible for the
services they offer which increases their ability to respond quickly and efficiently no
matter what organizational changes occur in the system.

3) Cost effectiveness

Cost benefit is another significant outcome achieved together with agility and control
through implementation of SOA in businesses. In situation where business using ser-
vices, is required to be adjusted based on demands of new product, with services archi-
tecture can be rapidly and efficiently realized with merely involving business-level
knowledge of the services. This ultimately reduces time, cost and effort for adopting
new settings of the business process. Another benefit is the elimination of effort in-
volved required in complex programming collaboration, technicalities and manpower
utilization which is mainly replaced by available services knowledge and their function-
alities in a business process.

4) Technological Aspects

Implementation of SOA offers a wide range of advantages from technological point of
view. This includes businesses services flexibility across multiple platforms thereby
increasing overall efficiency and bypassing requirement of compatibility schemes
among platforms. Since SOA empowers services with location autonomy, hence ena-
bling services to be independent of residing on any specific network or domain. The
loosely coupled feature makes services in designing applications that are workable with
multiple hardware types and operating systems. Additional benefits achieved through
SOA implementation are services discoverability and dynamic connectivity with other
services within surrounding or running on the same network.

5) Business Aspects

SOA has also a lot to offer from business point of view as well. With the inclusion of
SOA in businesses especially in industrial sectors facilitates companies to meet custom-

15

er’s demands quickly and on time. Similar, it requires comparatively lesser amount of
investments and resources while adoption or maintenance of technology. Another
unique advantage that SOA exhibits is empowering existing technology resources for
implementation, while at the same time minimizes reliance on expensive custom devel-
opment

6) Supplementary Benefits

Some of the supplementary benefits of SOA can be regarded as interim and long-term
context. The short-term advantages include improved reliability, lesser hardware acqui-
sition cost, facilitation of operational and communication bridging among incompatible
platforms [7].
 The benefits that SOA serves in the longer run include composite applications devel-
opment capability, an agile and self-healing infrastructure, ability to build real-time self-
sufficient applications, providing a set of uniform classification of information across an
organization, its customers and collaborators [7].

2.6. Web Services (WS)

As defined by World Wide Web Consortium (W3C), web services are described as:
“A web service is a software system to design to support interoperable machine-to-
machine interaction over a network. It has an interface described in a machine-process
able format (specifically WSDL)” [18].

Web-services are platform and programming languages independent because they
use XML language as standard. Most of the web services use HTTP as transfer protocol,
since it is one of the most common, popular and widely used protocol. Each web service
contains an associated file which holds the description/functionality of the relevant web
service; also know a web services description language (WSDL).

2.6.1. WS Architecture

The basic web service architecture consists of combination of various technologies that
builds up the so-called web services “stack”. A detailed architecture further expresses
the details of stack or implementation subsets in a broader perspective.
The main features depicted in WS-architecture include [18].

Information exchange
Web services description
Web services descriptions discoverability and publishing

Following are some of the essential actions that should to take place for web services in
a service-oriented environment [19]:

The invocation methods and interface of a web service must be defined before
its creation

16

A web service should be published to one or more communications networks
and prospective users must be able to locate it.
A web service must respond when invoked by a user for certain function.
When availability or usage is not required, the service may need to be un-
published.

The three main participants in a WS implementation with their functionality are:

Service Provider- the host implementing a particular service
Service Requester- the entity requires accessing a service hosted by service pro-
vider
Service Broker- the mechanism that supports the service publishing and discov-
ery

Figure 10 shows a simplified form of Web Services (WS) Architecture.

Figure 10: WS basic architecture [19]

The above said fundamental players of the architecture in reality represent software
programmes also known as software agents. The basic web service architecture charac-
terizes the interaction between those software agents associated with each entity of the
architecture. All the information exchange involves three main functions find, bind and
publish. These roles and operations act upon the web service artifacts: the web service
software module and its description [18]. The service provider keeps the service’s de-
scription and publishes it to a service broker (also known as service registry or service
discovery) or service requester. The service requester finds the requested service de-
scription from service provider or service broker by using find operation, while interacts
with the service provider and web service through bind operation.

The major elements of the basic architecture are in general defined by XML lan-
guage (using XML standard data structuring and data types) whereas HTTP is used as
standard protocol for information transportation.

2.7. WS Architecture models

According to World Wide Web Consortium (w3.org), the web services architecture can
be characterized by four distinct models [18]. These architecture models are:

17

Message-Oriented Model
Service-Oriented Model
Resource Model
Policy Model

Message-Oriented Model
Message-Oriented model (MOM) highlights the main factors involving messages, mes-
sage transport and structure of the messages. A simplified message oriented model is
depicted by figure 11.

Figure 11: Simplified Message Oriented Model [18]

As illustrated from the figure above, the model represents agents capable of receiving
and sending of messages, message transportation and message structure components
(message body and headers). The main focus following this model is to deal with mes-
sages and their processing without taking into account their interaction with other mes-
sages or considering any semantic importance related to message contents.

1) Service Oriented Model

Service Oriented Model (SOM) is the most complex model of all of models that under-
lines the characteristics of services, actions and the messages enclosed within the ser-
vices. Figure 12 presents a simplified service oriented model.

Figure 12: Simplified Service Oriented Model [18]

18

The above mentioned model depicts the features encircling services in a SOM. Ser-
vices are realized and used by agents, by exchanging messages between requester and
provider agents. In addition, services are meant to be used and provide their functionali-
ty to the real world (person or organizations). The meta-data in SOM represents the pol-
icy restrictions, transport binding, interface details and the semantics of the services.

2) Resource Oriented Model

The Resource Oriented Model (ROM) focuses on those aspects of the architecture that
relate to resources, and are a fundamental concept that underpins much of the Web and
much of Web services; for example, a Web service is a particular kind of resource that
is important to this architecture [18]. A simplified resource oriented model is shown by
figure 13 as below.

Figure 13: Simplified Resource Oriented Model [18]

The ROM highlights the key features of the resources, regardless of the functions
performed by the specific resource in web services implementation. For example, a web
service is a particular resource with its own significance within the model.

3) Policy Model

According W3C (w3.org) definition, “the Policy Model focuses on constraints on the
behaviour of agents and services since policies can apply equally to documents (such as
descriptions of services) as well as active computational resources” [18]. Figure 14 pre-
sents a simplified policy model.

Figure 14: Simplified Policy Model [18]

19

The model obviously suggests that policies are mainly concerned with resources, for
example agents may subscribe to the resources which are deployed and maintained by
persons or organization. Policies on next level, address additional feature like security
and quality of services. Security mainly focuses on constraints related to functional be-
haviours of actions and accessing resources, while quality of service deals with con-
straints on services.

2.8. Web-Services Architecture Stack

Web services architecture stack as shown by the figure 15, represents various layers of
interrelated technologies. Each of the constituting layers, consist of a number imple-
mentation technologies families and their functions in a hierarchical manner. Web Ser-
vices

Figure 15: Web Services Architecture Stack [18]

The technologies depicted in the stack furnish information regarding designing,
building and deploying web services. The significant technologies which build the most
critical part of the stack are messages i.e. Service-Oriented Architecture Protocol
(SOAP), web services description i.e. Web Services Definition Language (WSDL) and
standard formatting language, i.e. Extensible Mark-Up Language (XML). A brief over-
view of aforementioned tools is expressed in the following section.

2.8.1. XML

Extensible Mark-up Language (XML) derived from SGML (ISO 8879), is a simple,
flexible and self-describing text format for encoding data for information interchange
both for machines and humans.

XML provides a mean of programming documents in a way which is conveniently
easy to understand both for humans and machines.XML proved to be a highly flexible
programming format for representing and storing information, successfully implement-
ed in various IT and business applications. The use of XML technology results in wide

20

range of benefits including, an efficiently management of web information system and
organizing digital resources, easy and dynamic processing of user’s complex infor-
mation requests and information extraction, virtual, supports interoperability and inte-
gration between multiple information systems and applications [22].

2.8.2. SOAP

Definition of Simple Object Access Protocol (SOAP) according to W3C organization
states: “SOAP 1.2 provides a standard, extensible, composable framework for packag-
ing and exchanging XML messages” [18]. The basic aim for designing SOAP is to find
an alternate to traditionally used remote communication methods like CORBA, DCOM
and RMI [26].

SOAP uses XML for messaging whereas HTTP or SMTP for communication.
SOAP provides the protocol information and message framework in building process of
web services. Although SOAP provides a number of advantages like interoperability
and universality while at the same reduces its application for larger applications due to
its considerable functional limitations [24]. Below given figure 16 presents a typical
SOAP message envelope structure.

Figure 16: SOAP message Envelop [59]

A SOAP message envelope consists of two major parts, SOAP header and SOAP
body. SOAP header contains XML structured application related information that is
processed by the message provider. SOAP body is also XML formed application specif-
ic data that effects the processing of application specific information.

One of the main advantages of SOAP is interoperability. SOAP is considered as a
versatile protocol capable of supporting various protocols. Although the SOAP standard
stack utilizes HTTP for transportation, while at the same time provides operational usa-
bility of JMS and SMTP as well.

2.8.3. WSDL

According to World Wide Web Consortium (w3.org); “A WSDL document de-
fines services as collections of network endpoints, or ports”. AWSDL document con-
tains abstract definitions of messages and endpoints separated from concrete service and
data format binding. This kind of classification allows reusability of abstract definitions
like messages (information interchange description) and ports types (abstract collections

21

of operations).Similarly, the concrete protocol and data format specification for a cer-
tain port type results in binding reusability [25].

A WSDL is essentially an XML based language having the description and access
detail of web services. A WSDL document for convenience is divided into two major
sections, ‘abstract’ and ‘concrete’ as shown in figure 17. Specifying the two sections
further enhances the flexibility and reusability of web services definition.

Figure 17: A general WSDL structure [60]

In a Service-Oriented environment, the WSDL portrays the functional features of a ser-
vice indicating what type of messages can be send and receive by a service. The ser-
vice’s point of view explains this kind of message exchange [27].

The six critical building elements in a WSDL document with a brief functional ex-
planation are revealed as below.

Types Describes the data type definitions defined in XML schema
definition (XSD)

Message Contains an abstract definition of informational data being
communicated

PortTypes Set of operations supported by some endpoints

Ports Shows a binding address, referring to a particular communi-
cation endpoint

Operation Description of the action performed by web service

Binding Holds the protocol and data format information for opera-
tional detail (operation, messages) specified by portType

Service A set of associated endpoints

22

A single WSDL contains the functional descriptions of a service and focuses only
the same service. By grouping messages into operations, a WSDL tells what messages a
service can sense and receive and how they are related to one another [27].

2.9. CAMX Standard

“CAMX (Computer Aided Manufacturing using XML) refers to set of standards that
specify web-based communication protocols for the electronics production industry,
intended to provide factory-wide communications for information-intensive manufac-
turing systems” [28].

CAMX was initially developed by the International Electronics Manufacturing Initi-
ative (iNEMI) and IPC along with collaboration of electronic production industries to
address information exchange between manufacturing equipments and electronics man-
ufacturing shop floor.

As the name suggests, CAMX utilizes XML data format for all of the IPC-25xx
messages descriptions. CAMX consists of the IPC-25xx standards family, which are
approved by IPC, Association Connecting Electronics Industries, an ANSI accredited
standards body having thousands of member companies and individuals [31].

2.9.1. CAMX standard family

CAMX standard family defines four major types of standards.

IPC-2501 “The IPC-2501 standard establishes the governing semantics and an XML
based syntax for shop floor communication between electronic assembly
equipment and associated software applications” [32].

IPC-2541 The IPC-2541 standard sets up the information interchange requirements
between Factory Information System (FIS) and electronic manufacturing
software.

IPC-2546 The IPC-2546 standard sets up the information interchange requirements
between Factory Information System (FIS) and shop floor assembly
equipment.

IPC-2547 The IPC-2546 standard sets up the information interchange requirements
between Factory Information System (FIS) and shop floor assembly
equipment inspection.

2.9.2. IPC-2541

According to IPC — Association Connecting Electronics Industries, the IPC-2541
standard can be de ned as ”an XML encoding schema, which enables a detailed de ni-

23

tion of electronics assembly, inspection, and test equipment, messages to be encoded at
a level appropriate to facilitate plug-and-play characteristics in a factory’s shop- oor
information system” [33].

The IPC 2541 presents a general event message content and requires to be used
along with IPC-2540 standard sectional documents, a CAMX Shop floor Equipment
Communication standard series defining an XML based encoding format for compre-
hensive specification for electronic inspection and test equipment messages.

IPC-2541 standard enlists equipment state model to furnish important equip-
ment/machine state information that determines the equipment’s availability and overall
utilization during its period of operation.

The CAMX IPC-2541 equipment state diagram is given by figure 18.

Figure 18: CAMX Equipment State Diagram [33]

The CAMX equipment state model aimed to address the following objectives [33]:

1. Presenting an equipment state model which is capable of defining states relevant to
the test, inspection and electronic assembly industry.
2. An equipment state model having least number of states which are vital for monitor-
ing and control purposes in a process.
 3. A model with in advance declared states so as to avoid any alterations in basic states
during implementation.

The equipment’s state transitions are result of several triggering factor like alarm,
system input or operator command. Figure 19 shows state transition table for equipment
state model [33].

24

Figure 19 : State Transition Table for Equipment State Model [33]

2.10. JAVA Applications in Industrial Automation

Being an object-oriented platform independent language, Java quickly got appreciation
in conventional enterprise application field as well as attention of researchers in manu-
facturing area [34].

Since Java by concept is an open platform, allows java applications to be executed
over numerous hardware and operating systems. Although use of Java is already been in
practice in various applications of higher levels of automation pyramid (Such as MES,
SCADA or ERP) since requirements are analogous to conventional software applica-
tions, however at lower/field level the usage is still very rare [35].

Use of Java in industrial application is endorsed by various potential benefits offered
by Java platform. Some of the noteworthy outcomes are:

The so-called ‘Write Once, Run Anywhere’ (WORA) concept enables an appli-
cation programmed on one platform, can run on other systems as well [35].
The elementary Java properties like polymorphism, inheritance and encapsula-
tion empowers code reusability.
Java provides the facility to easily build applications to be executed over internet
enhancing its capability and versatility.
The advanced field devices featuring alarming, configuration and maintenance
are using Java applications that can work with a number of available communi-
cation protocols like HTTP, SMT and FTP [35].
The built in features like automatic memory allocation, error recovery etc. adds
up to efficient software development with Java.
The wide-ranging and easily accessible networking capabilities of Java largely
reduce the complexity of distributed systems since the vital requirements for de-
veloping those systems are already available in the language [35].

25

2.11. Spring Framework

“Spring is an open source framework created to address the complexity of enterprise
application development [36]”. Spring framework was introduced to offer ease for pro-
grammers in application development in java platform. Spring framework is a multi-
layer platform supporting both Java and Java Enterprise (J2EE) applications develop-
ment. The framework uses java beans and is preferred for development because of being
lightweight and having lower processing overheads. Figure 20 highlights salient fea-
tures of Spring Framework.

Figure 20: A brief overview of Spring Framework [61]

Spring framework contains several distinct modules that are built on aspect oriented
programming and dependency injection, enriched with extensive amount of useful fea-
tures required for enterprise application development [36].

2.11.1. Architectural benefits of Spring Framework

Following are some of the architectural benefits that Spring framework implementation
offers as stated by [37]:

Spring efficiently provides not only an ease for organizing middle layer objects
but also configurationally management services at any architectural layer regard-
less of the runtime environment selection.
Spring eradicates the propagation of singletons, which cause reduction in testa-
bility and object orientation.
Spring facilitates in solving problems without using EJB and provides an alter-
native to EJB which is suitable for many applications, e.g. AOP (aspect-oriented
programming).
Spring uses JDBC or any other mapping product like Hibernate or a JDO im-
plementation for offering a reliable data access framework.

26

Spring provides an easy to program framework, reducing programming cost to a
minimal level. In addition, the applications developed using Spring depend on
few of its API’s as possible
Spring provides reliable and an easy to program model for many applications.
Spring approach towards various API’s including JDBC, JMS, JavaMail and
JNDI confirms the said statement.

2.11.2. Spring WS (Web Service)

Spring web services, is an open source framework, designed to build document-driven
web services. Spring Web Services aims to support contract-first SOAP services devel-
opment, allowing flexible web services building using various techniques to manipulate
XML payloads [38].

Web services creation mainly adopts either of the two development styles; contract
first or contract last. In contract-first web services approach, a WSDL contract is created
first while Java is used to implement the contract while on the contrary, in a contract-
last approach, a Java code is written first that later on generates the WSDL[38].

Spring web services present both server and client side support, for creating and ac-
cessing contract-first web services. A server side support is achieved by creating a Mes-
sageDispatcher, which forwards the incoming messages (XML) to endpoints with con-
figurable endpoint mappings. The endpoints, usually annotated as ‘@Endpoint’, hold
various handling methods and endpoint interceptors. These handling methods are anno-
tated as ‘@PayloadRoot’, each capable of handling certain parts of incoming XML
messages and generating response if required. Figure 21 demonstrates the request pro-
cessing workflow in Spring Web Services.

Figure 21: The request processing workflow in Spring Web Services [38]

Several XML handling and parsing alternatives are available with Spring WS.
Spring WS supports a large number of XML handling libraries for endpoints including
DOM family (W3C DOM, JDOM, dom4j, and XOM), XPath for message parsing, and
marshalling techniques for converting XML to objects such as JAXB, Castor,
XMLBeans, JiBX, or XStream [38].

27

2.11.3. Spring MVC

According to SpringSource [38] “the Spring Web model-view-controller (MVC)
framework is designed around a DispatcherServlet that dispatches requests to handlers,
with configurable handler mappings, view resolution, locale and theme resolution as
well as support for uploading files” [39].

Spring MVC follows typical MVC pattern to formulate an application into three dis-
tinct layers [40].

Model: Objects signifying data in an application. The model includes the infor-
mational data about the service host or service client.
View: Objects responsible for data presentation for the user. The view displays
the outcomes of application into visual interface element, webpage, graph, list,
table etc.
Controller: Processes responding to events, usually user actions. A controller
provides actions and means that can modify or customize the model object.

As like other web MVC frameworks, Spring's web MVC is essentially a request-
driven framework, where a central servlet dispatches incoming requests to controllers
and offers necessary functions and tools required for web applications development
[40].

The DispatcherServlet is absolutely integrated with the Spring IoC container; versa-
tile in functionality makes it possible to fully utilize almost all of the Spring features.
Spring MVC involves three major components.

Model & View: Holds the model and view objects of Spring MVC
DispatcherServlet: Acts as a front controller, configured through an XML file
(web.xml). All the desired URL patterns are mapped to DispatcherServlet.
Controller: Acts as FormController. Shows the validation errors or success sub-
missions on the form view.

The request process workflow in a Spring Web MVC application is shown by the
figure 22. The DispatcherServlet acting as Front controller encounters the incoming
request and directs it to the controller. The controller dispatches the request, processes
the contents through certain commands and actions, creates a model object and forwards
it again to the front controller. The front controller then passes on the model data to
view template and receives the response. Finally, the front controller returns back the
view response to the application requestor usually in the form of a webpage.

28

Figure 22: The request processing workflow in Spring Web MVC [39]

Spring MVC has the capability to integrate with other web frameworks like Struts,
JSF (Java Server Faces) and WebWork. Recent developments have also made it possi-
ble to enhance the view technologies with the addition of new features like excel sheets
and pdf documents.

2.12. Web Applications

Web applications, as the term expresses, are those applications which are located and
accessible for remote users over the web. Perhaps one of the major advantages of build-
ing and deploying web applications is their availability of easy access for all users, irre-
spective of their operating platform or accessing methods (e.g. browsers types). This is
because those applications are mainly created using HTML and JavaScript, which are
supported by a wide variety of available web browsers.

Web applications are becoming more and more common in everyday life especially
in e-commerce, online trading and hundreds of other fields, because of being convenient
and an inexpensive way of providing detailed product information and online buying
facilities to the online users [41].

The web is a rapidly growing technology that has heavily revolutionized communi-
cation and information access, whereas an increasing use of web is extended from indi-
viduals to thousands, industries and organizations [44].A java based web application
consists of two technologies: communication protocol HTTP (Hype Text Transport Pro-
tocol) and Java API. HTTP is essentially a request/response based protocol while gener-
ally the communication takes place over TCP/IP connection. Generally, a client request
to the server involves many factors including protocol version, request modifiers con-
tained in a MIME-like message, resource URI, information about the client and possible
body contents. Similarly, the server response also comprises some information such as
an error or a success code, protocol version of the message, server information con-
tained in MIME-like message and possible body content [42]. One of the major issues
faced by web applications is of network traffic and the frequency of network interac-
tions. The applications developed using Extensible Mark-up Language (XML) along

29

with XSLT, have the capability to be more compact than HTML and largely reduce
network traffic

The Java Servlet is an important API facilitating a simple framework in building ap-
plications that run on web servers [43]. Java Servlet API is a programming interface
(API), aimed to expose HTTP to java platform and facilitate building web applications.
Java Servlets are server-side java based entities that utilize HTTP interface to receive
incoming client requests. A servlet engine captures the HTTP requests and sends the
servlet output response back to the requester client.

2.12.1. HTML

HyperText Mark-up Language or HTML essentially a tag-based language is considered
as the building block of web applications [44]. Rapid emergence of new features and
introduction of novel tools in HTML has largely revolutionized the field of information
and communication technologies (ICT).

The reason for HTML to be more common in web development is because of being
globally acknowledged programming language, user friendly programming architecture,
free to use and requires no plug-ins or any specific development platform, supported by
all available web browsers, easy to understand and use, easier to identify errors and up-
date webpages.

Recent inclusion of HTML5 in web development has largely facilitated web design-
ers offering more powerful and unique features. The other web tools like JavaScript and
Cascading Style Sheet (CSS) are also more efficiently integrated with
HTML5.Presently combination of HTML 5 along with CSS is the most suitable tech-
nology for developing powerful web applications significantly enhancing web accessi-
bility [44].

2.12.2. JavaScript

JavaScript is a lightweight object-oriented web scripting language and key element in
web development. JavaScript is considered as the most prominent client-side program-
ming language adding dynamic elements and interactivity to web pages [44].

In the past few years, JavaScript has emerged as a great web tool providing newer
tools and method, enhancing framework simplicity and efficiency. In addition, JavaS-
cript provides various multimedia features like allows playing visual and audio media
files on webpages, textual and graphical animation and various data representation tech-
niques. JavaScript make possible for the programmers to change web page dynamically
at run time, thereby allowing more rapid and in time websites update

Generally a JavaScript environment involves three main active participants [45].
JavaScript engine: Required for successful JavaScript code execution
JavaScript context: Consists of all type of objects defined by JavaScript or Ja-
vaScript standard
Host objects: The objects furnished by the host environment, e.g. DOM etc.

30

2.12.3. AJAX

Asynchronous JavaScript and XML (AJAX) is a client-side tool meant to communicate
server-side script, in order to retrieve and use server-side data content. An
An AJAX Application commonly based on JavaScript, is a form of dynamic web appli-
cation specified at a known URL presenting dynamically changing states to the user
through UI events [46].

AJAX by nature is “asynchronous”, which allows it to offer its functionality even
without refreshing the webpage. AJAX itself is not a new technology rather it’s a cluster
of various other technology, each having its own specific functions and features. The
technologies included within Ajax domain include JavaScript, XML & XSLT,
XMLHttpRequest, XHTML & CSS and DOM. AJAX also offers to work with a variety
of generally used data formats including text files, JSON, XML etc.
The general AJAX architecture is depicted by figure 23.

Figure 23: Ajax Architecture [62]

AJAX introduces a mediator between the client and server application, named as
AJAX engine. AJAX engine, allows web application to run asynchronously without
waiting for response from server. The browser loads the Ajax engine at the start of the
session instead of loading the webpage. The engine is solely responsible for users’ inter-
face rendering and correspondence with the server. A JavaScript call to the Ajax engine
is resulted every time the user action causes an HTTP request, whereas the engine han-
dles user response by itself if does not require to send a reply to the server [47].

2.12.4. XML

Extensible Mark-up Language (XML) is a tag based mark-up language for representing,
storing and transporting data. The data format supported by XML is both human and
machine-readable. XML offers simple, platform independent, easy to understand and
parse data format. Its generality, flexible data structure and reusability make it an ideal
candidate for web use.

31

The combination of XML with different web technologies results in rendering and
processing data differently among users, tools and adaptive technology [44].

XML has found a great deal of applications over the internet. Its self-describing data
structure behaviour has immensely attracted developers to employ XML in various web
applications. Some of the considerable advantages achieved in XML web applications
include [48]:

Data interchange Use of XML has largely simplified the data interchange be-
tween applications. Since various applications are built with
their own set of tools, this makes them difficult to communi-
cate with other applications. The problem can be overcome
by transforming the applications internal data formats into
XML thereby facilitating the information interchange.

Smart Code The simplified and self-descriptive nature of XML docu-
ments makes it easy to identify and extract any useful infor-
mation, hence directs writing smart code for XML pro-
cessing without human intervention [48].

Smart Searches Another great advantage of XML based documents is their
capability of easy searching and understanding. Unlike any
other scripting or tag based language, data extraction and in-
terpretation from an XML document saves time with mini-
mum chances of erroneous results [48].

2.13. Server Data Push

Data pushing technologies are the ones which are used to push data from a server to
client. This data push actually follows a publisher/subscriber communication model.
Therefore, firstly it’s essential for the subscriber to subscribe to the server for retrieval
of any updated information. In the same way, whenever there is a new data content,
server publishes it to all the subscribers who have accessed it. Sometimes it’s also re-
quired to push data from server to client after certain period of time. Three commonly
used data pushing modes are:

Streaming
Polling and
Long polling

1) Data Streaming

Streaming is the most advanced data push technique in which a data transfer from server
to clients takes place for undetermined interval. In data streaming scenarios, data should
be pulled by end users rather than pushed to computational resources in the form of

32

streams of tuples, and processing is continuous over these streams as if data were al-
ways available from local storage.
A general data streaming working is shown by figure 24:

Figure 24: Data streaming [49]

Generally tuples are live and are considered as the most recent data packets received
during the transmission process. Data streaming is often termed as forever response that
takes place over HTTP. The statelessness of HTTP protocol causes the connection to
close the connection between server and client after each response.

In order to evade data overflow where data processing is slower than data transmit-
ted per tuple, the data transmission should be intermittent instead of continuous. The
major advantage data streaming results is the availability of information without delay.

2) Polling

In polling, the connection between client and host is terminated each time the response
from host ends. During data polling, the client application requests for data from server
at specified fixed time intervals. Generally, a polling data flow is symbolized as shown
by figure 25.

Figure 25: Data Polling [49]

33

Any updated information on the server side is received by the client, the next time when
client makes request. The main advantage of polling is its simple implementation in web
applications. Many applications employing data polling require only JavaScript and
AJAX for implementation.

3) Long Polling

Long polling someway works in the same fashion as data streaming. In long polling, a
client request is sent whenever the application is loaded, however the request remains
suspended and response is received only when a data update on server side is available.
After data receipt, the connection is closed while a new connection is established result-
ing in the connection being active most of the time. The request/response workflow in
long polling is illustrated by Figure 26.

Figure 26: Long polling [49]

The sleep time is the duration in which the server holds the client query until there is
a new data update to be sent. Usually, long polling is also named as Comet. The key
benefit of long polling is immediate retrieval of updated information to client from
server.

2.14. Data Push Technologies

Data push occurs when a server intends to publish the latest data available to all the po-
tential clients which are already in contact with the server. Data push is opposite to data
pull, where the request for data transfer is initiated by the subscriber client, whereas
publisher or server initiates the data transmission in data push. There are several tech-
nologies available for data push from server, like

APE (AJAX Push Engine)
COMET
DWR (Direct Web Remoting)

34

2.14.1. APE

AJAX Push Engine or APE, originally based on JavaScript, is an open source web tool
introduced for AJAX data push APE comprising mainly AJAX technology features, is
quite easy to implement tool excluding need of installing any special plugin software.
Figure 27 gives an illustration of APE’s working methodology [51].

Figure 27: Ajax Push Engine (APE) working [51]

Information from various sources is routed towards an APE server which then waits
for client application subscription. APE server starts pushing the real-time live data up-
dates to all the web applications who have subscribed to the server. The APE supports
all commonly used operating systems and mobile devices having generally available
web browsers.

2.14.2. COMET

COMET is a data push technology, which maintains a long-lasting connection with a
browser through an HTTP request, allowing real time data push without browser’s need
to request data. COMET eliminates the need of polling for real time data access by re-
taining a continual HTTP connection between the client and server.

In principle, COMET uses two major data push techniques in its implementation:
long polling and data streaming. COMET in some applications makes use of one of the
key AJAX tool XMLHTTPRequest (XHR) for server to browser communication.

2.14.3. DWR

Direct Web Remoting or DWR as defined by [52]: ‘is a Java library that enables Java on
the server and JavaScript in a browser to interact and call each other as simply as possi-
ble’.

DWR is a rather a novel emerging web tool aimed to facilitate the communication
between a server side java application and a client side web application for real time
data transmission. The working mechanism of DWR application is shown in Figure 28.

35

Figure 28: DWR working [52]

There are two main components that form a DWR web application: a Java Servlet
and a JavaScript implementation function. The Java Servlet is the one which manages
all the incoming web requests and related responses. The JavaScript function is the one
which repeatedly asks for any data update from the java application while updates the
webpage based on the information update received.

DWR provides the facility to retrieve and use the informational data on web from
java classes by dynamically generating JavaScript’s without requiring any supportive
software or plug-in to make it functional. DWR also provides the opportunity to effi-
ciently collaborate and integration with generally used server-side Java technologies,
e.g. Spring, Guice etc. In addition, other benefits include data handling support for al-
most all available data format between Java and JavaScript, call batching and Cross-Site
Request Forgery (CSRF) protection [52].

36

3. TEST BED AND IMPLEMENTATION DETAILS

This chapter gives details on the test bed used for implementation and results evaluation
as well as a detailed description of implementation scheme, steps and application de-
ployment.

3.1. Testbed

The test bed considered in this thesis is a multi-robot assembly line located at Factory
Automation Systems and Technology (FAST) laboratory, Department of Production
Engineering Tampere University of Technology (TUT). The testbed is sometimes de-
noted in this thesis by the name FASTory.

The line is a pallet-flow based assembly line consisting of 10 robotic workstations,
eight assembly stations, one sorting station and one conveyor connecting two rows of
workstations. Each of the 10 robotic workstations consists of a robot, a pen feeder, one
normal and one bypass conveyor. All the robotic work cells are connected through the
conveyors resulting in a continuous pallet flow across the assembly line. Below is the3D
model of the assembly line. Figure 29, 30 and 31 present3D isometric, top and front
views of FASTory assembly line respectively.

Figure 29: 3D isometric view of FASTory assembly line

37

As can be seen from the above model, each line side comprised of 5 interconnected
work cells connected to the 5 work cells of the other side via a conveyor. Finally, the
loading station completes the closed loop the whole assembly line.

Pallets travel all the way through the line and taken up by the specific cell which is
programmed to operate that particular pallet. The loading station ultimately picks up the
finished pallet and unloads it to the pallet storage, while at the same time places a new
pallet on the line.

Figure 30: Top view of FASTory assembly line

Each line work cell contains two conveyors: normal and a bypass, a SCARA robot with
a pen feeder attached. The robot performs the specified operation by drawing certain
patterns on pallet surface. The pallets are diverted from the main line through bypass
conveyor if the robot is already in operation or the pallet does not require any operation
to be carried out.

Figure 31: Front view of FASTory assembly line

S1000 is a java based smart RTU, providing various industrial control solutions having
web services support. These controllers can be configured to perform certain operations

38

and publish events using web services. The control logic is designed using Structured
Text (ST) programming language. The device supports web services discovery and pro-
vides references to WSDL files for hosted service containing events information, in-
put/output message formats and the operations carried out.

Within current testbed setup, S1000 controllers are employed in each cell of the
FASTory assembly line. The controllers are capable of taking inputs from user as SOAP
messages and trigging output functions such as movement and controlling various con-
veyors or activating robots for drawing desired product sketches etc. In addition, the
controllers also enable users to access and configure the controllers online through
Ethernet. The output status of an action is published as SOAP message for all the sub-
scribers over the network.

3.2. Research Objectives and Available information

The goals and objectives to be achieved are presented as follows:
Receive and parse XML informational messages from line using Java Eclipse
Expose the informational messages as JSON messages on browser
Access the parsed information from Java application into browser
Link the data with 3D animation and simulate on browser

3.2.1. Message Types

This work mainly deals two types of XML messages: Pallet Activity (Notification Mes-
sage, see Figure 33) and Robot Activity (Equipment change state Message, see Figure
34).

The pallet activity message (Figure 33) contains information about the pallet and its
path through zones specification. Each message has a unique timestamp value, pallet
and cell id, event id and zone information. The zone information specifies either the
pallet would follow main conveyor path or bypass conveyor path. In case of main con-
veyor path, the pallet follows its path through zone 1 to 2 and 2 to 3. For bypass con-
veyor path, the pallet follows its path through zone 1 to 4. The notification message
sample format is shown under by figure 32.

39

Figure 32: Pallet Activity Notification Message Sample

The robot activity message as depicted by Figure 33, mainly describes information
about its current and previous state. These states are specified according to CAMX IPC-
2541 Equipment change state chart. As like the pallet activity message, robot activity
message also keeps record of the similar information like timestamp, pallet and cell id,
event id and tool id, device type and recipe number.

Figure 33: Robot Activity Message Sample

40

3.3. Implementation Scheme

3.3.1. Project Implementation Overview

Figure 34gives a brief illustration of overall project implementation.

The project implementation is based upon three stages: data acquisition and processing,
model design and addition of animation adding, plus merger of the aforementioned
segments on web.

The data acquisition part performed in Java, mainly addresses information gathering
from the events received from the test bed FASTory assembly line. Spring framework
(WS and MVC) is used to implement the required tasks. The information messages re-
ceived are parsed and the extracted information is processed for further use. The ob-
tained data is further treated to publish as JSON information message through a REST-
ful web service or made available to be called from the web application.

The model designing and animation section elaborates the details concerning 3D
model designing and adding animation action. The models are first drawn considering

FASTory Line
Events

Information Extraction &
Processing

DWR Data push

Blender

CATIA Models

Unity3D
Game Engine

3D Real Time Monitoring
Application

JavaScript, DWR Engine

Java Applications

Web Application

CAD Models

3D Models

Unity3D Webplayer

3DModels+Action
Scripts

Figure34: Project Implementation layout

41

the specifications and dimensions of real world test bed apparatus using CATIA soft-
ware and are later used with Unity3D game engine. However, the constructed models
are required to be made compatible to work with Unity3D functional environment. For
this purpose, an intermediate application called ‘Blender’ is introduced to accomplish
the job. Finally, the refined models are imported in Unity3D and provided with action
scripts for desired animation and visualization.

In the end, both the Java and Unity3D applications outputs are merged together in
Java to visualize the results on web browser. The output from the Java application is
called into the browser using DWR functions while the animation function is imported
from Unity3D asset folder to Java application project folder. The gathered information
is then linked to the animation function and sent for simulation on web. The Unity3D
WebPlayer is included to the project folder to allow 3D animation simulation in the
browser.

3.3.2. Project configuration in Java Eclipse (JEE)

Project configuration is mainly done in web.xml file located inside web content directo-
ry. The file resides under WEB-INF folder and holds information related to incoming
requests and their respective dispatcher servlets mapping in web.xml document. Figure
35 given below shows the web.xml configuration file followed by explanation of the
elements involved:

42

Figure 35: Project configuration file web.xml

The MessageDispatcherServlet is the one which encounters an incoming request
and dispatches to certain endpoints. In this case, the dispatcher servlet is named
as ‘spring-ws’. As the web.xml shows, MessageDispatcherServlet is specified to
look for incoming request containing ‘fastory/informationservice’ as URL pat-
tern.
The DispatcherServlet is responsible for requests handling and referring to
Spring MVC controller for dispatching. In this case, the dispatcher servlet is
named as ‘mvc-dispatcher’. Two kinds of requests are defined in web.xml’s de-
scription. Firstly, all the web requests specifying an html request are defined by
‘/.html/’ tag. Secondly, the RESTful web services requests are defined by
‘/rest/’. In this way, the URL’s containing ‘/.html/’ and ‘/rest/’ as web address
endings are taken up by DispatcherServlet and are sent forward to Spring MVC
controller for further processing.
The load-on-startup element is used to inform the web container about loading
of a particular servlet. Without specifying this parameter, the web container
would load the servlet whenever it feels necessary or when a request related to

43

the servlet arrives. This may lead to an unnecessary delay in response time from
the particular servlet for handling the request. The load-on-startup parameter
tells the web container for servlet loading during deployment time of the appli-
cation.
The ContextLoadListener is a servletlistener which loads Spring configuration
files associated with the servlets. The ContextLoadListener loads the particular
servlet as defined by any of their dispatcher servlet class. For example: in this
project, MessageDispatcherServlet and DispatcherServlet are named as ‘spring-
ws’ and ‘mvc-dispatcher’ respectively. The ContextLoadListener looks and au-
tomatically loads relevant servlets during initialization, i.e. spring-ws-servlet and
mvc-dispatcher-servlet.
The welcome-file-list element depicts the start-up page of the application as
specified by the user. The desired webpage is required to reside within the same
WebContent folder to show up during application start-up.

3.3.3. Spring WS Implementation

Spring web service is implemented by employing Spring endpoint feature to handle
incoming SOAP requests arriving from the robotic assembly line cells of the used test
bed arrangement.
Spring WS implementation in the project is shown as below by figure 36.

Figure 36: Spring WS implementation

FASTory Line
Events

MessageDispatcherServlet

Endpoint Mapping

Data Extraction
& Processing

3D RealTime Monitoring
Web Application

JSON Controller DWR Application

44

The events from the test bed are generated and sent through S1000 controller
while Spring WS application on server side, receives and processes those SOAP
requests.
The MessageDispatcherServlet handles the messages and maps them to their re-
spective endpoint in Java application.
The message contents are extracted and are sent to their respective methods for
further processing.
The information is then used by a JSON controller class which utilizes the in-
formation and exhibits the result as a RESTful web service containing the in-
formation as a JSON Message.
The received information is also used by a DWR class which transforms the data
into an array in order to make it available for web application having DWR data
push engine.
The information is then forwarded to

3.3.4. Spring WS configuration

Following figure 37 shows spring WS configuration done within Spring WS servlet
during the project configuration.

Figure 37: Spring WS configuration

The Spring WS configuration needs to include number of springframework files
to make the web service application working, shown as bean element in the fig-
ure above.
The ‘context:component-scan’ element scans the defined package and automati-
cally registers the beans within the application. In general, the beans are sepa-
rately declared so that Spring bean container can detect and register those com-
ponents. The ‘context:component-scan’ element simplifies the code by exclud-

45

ing the definition of individual endpoints and allows to manage the dependency
directly in the java class. Therefore, the annotations used in the project like
@Endpoint, @Autowired and @ Payload are automatically scanned and regis-
tered in Spring bean container within the application.
SOAP request messages are defined by their service contracts. Since Spring WS
supports contract-first web service, therefore requires the in advance specifica-
tion of WSDL document describing the messages. The location of the static-
WSDL file is described as ‘WEB-INF/fast.wsdl’. The description of the WSDL
document together with their XSD schema files having robot and equipment
change messages details are shown in Appendices 1 and 2.
The web service messages are implemented using a WebServiceMessageFacto-
ry. In this project, since the project is based on java therefore WebServiceMes-
sageFactory used is Saaj. Based on DOM (Document Object Model), SaajMes-
sageFactory uses SOAP with Attachments API for Java for creating message
implementations.

3.3.5. Endpoint Implementation

Following is the description of an information endpoint for receiving and dispatching
robot activity notification messages. Figure 38 shows spring WS endpoint implementa-
tion.

Figure 38: Endpoint Implementation

46

A Spring WS endpoint is a java class annotated by the @ Endpointas shown by
the figure above. The MessageDispatcherServlet receives the incoming message
requests and maps them according to their respective endpoints. The messages
are identified by a specific namespace defined in the message. An error will be
generated if the message containing namespace is different from the one defined
in namespace of the endpoint configuration.
XPath is used to extract data from the received XML SOAP messages. XPath is
a query, language, used for selecting and extracting node information in an XML
document.
The @Autowiredannotation is included to autowire bean on the setter method by
matching data type. Here @Autowired annotation used with setter method at-
tempts to execute byType autowiring on the method.
The @PayloadRoot annotation maps requests to the method by looking at the
root element of the payload. The PayloadRoot annotation requires two elements:
localPart and namespace. Therefore, the incoming requests messages containing
the defined localPart and target namespace are dispatched and processed by the
method to extract values of the message parameters.

3.3.6. Web Application implementation

The web application is implemented following a ModelViewController (MVC) pattern
running on Apache Tomcat Server. The model is implemented with JSON data and pro-
cessed information, the controller on top of Spring MVC and the view implementation
is done with JavaScript, JSP and Jquery. The following figure 39 briefly underlines the
project web implementation.

Web Browser

DispatcherServlet

Controller

Service layer

View

HTML

Model

ModelHTTP

Data Processing

Figure 39: Web application implementation

47

The 3D Real time monitoring application and other available information can be
accessed on the browser using valid URLs.
The DispatcherServlet receives the HTTP web requests and forwards them to
their respective controllers, invoking particular methods to respond to received
web requests.
The methods in the service layer fulfil the request by retrieving the processed
data.
The data is then forwarded to the controller and later on to DispatcherServlet
with model information to view layer.
The view’s response through DispatcherServlet is then sent back to the browser
as HTML for data visualization

3.3.7. Spring MVC Configuration

Spring MVC configuration is done in mvc dispatcher servlet is shown by figure 40.

Figure 40: Spring MVC Configuration

The Spring MVC configuration requires inclusion of number of spring frame-
work configuration files for application implementation, shown as beans element
in the figure above.
As stated previously in Spring WS Configuration, the ‘context:component-scan’
element scans the defined package and automatically registers the beans within
the application. The ‘context:component-scan’ element simplifies the code by
excluding the definition of individual endpoints and allows to manage the de-
pendency directly in the java class.
The ‘mvc:annotation-driven’ tag adds a number of features to the spring mvc
application. These include: support for Spring Type ConversionService, allows
reading/writing options for XML and JSON, support for date, time data format-
ting.
The ‘mvc:resources’ tag allows ResourceHttpRequestHandler to dispatch all the
web requests following the specified mapping and resource location revealed by
URL. Therefore, all the web requests followed by ‘/resource/’ part as URL are

48

taken up and the corresponding web application in ‘WebContent/resource/’ is
displayed in the browser.

3.3.8. JSON controller

In terms of controller in a Spring MVC, following is a brief description of the JSON
controller implemented to publish the received information as a JSON message. An
illustration depicting endpoint mappings of JSON controller class is shown here by fig-
ure 41.

Figure 41: JSON Controller class

The @Controller annotation acts as reference to a particular class, signifying its
role as controller. The dispatcher then looks for subsequent mapped methods
used in the annotated class.
The @RequestMapping annotation specifies a URL mapping onto a particular
handler method. Here, the URL format is specified is ‘/StopperInfoMsg’. There-
fore, the web request containing ‘/rest/StopperInfoMsg’ is taken up and handled
by the DispactherServlet which maps the request according to its respective con-
troller method.
The purpose of adding @ResponseBody annotation is to refer writing return type
directly to HTTP response body instead of taken up by model or view element.

49

3.3.9. DWR implementation

Direct Web Remoting (DWR) provides the facility to retrieve and use the informational
data on web from java classes by dynamically generating JavaScript’s without requiring
any supportive software or plug-in to make it functional. The event messages containing
status information from the assembly line are processed while extracted data is setup as
an array of string variables in another class. In order to implement DWR on web, two
kinds of configurations are required: Java and JavaScript. The DWR configuration file
dwr.xml and DWR servlet configuration in web.xml is required beforehand in Java. The
dwr.xml is a standard practice for DWR configuration and generally placed in WebCon-
tent/WEB-INF/ project folder.

3.3.10. Dwr.xml Configuration

Following figure 42 highlights the XML configuration file of DWR application, located
in Java project folder.

Figure 42: dwr.xml configuration

The allow tag indicates which JavaScript class is to be created by DWR and through
which creator. Here the JavaScript class ‘dwrClass’ is created using new creator. The
new creator uses the default constructor to create an instance of the class specified by
param tag. The java class com.fastory.fast.dwr.dwr is converted to JavaScript dwrClass,
so that a new instance of the class is created each time when a reply dwrClass.toString
is called in JavaScript function. The response together with the data is then returned to
JavaScript reply function.

3.3.11. Web.xml configuration

DWR servlet configuration in web.xml is given by figure 43 as below.

50

Figure 43: DWR Web.xml configuration

The configuration begins with the servlet name and the associated servlet class
as shown by the figure above.
The URL pattern for the named servlet is then defined in servlet mapping, so
that all the web request having the specified URL pattern are handle and dis-
patch by the DispatcherServlet.
In addition, several other servlet parameters (shown as init-param) are also re-
quired for DWR implementation. The debug parameter enables or disables test
mode. The crossDomainSessionSecurity parameter is used to allow or forbid re-
quests from other domains. The acitveReverseAjaxEnabled parameter enables or
disables polling and Comet mode.

3.3.12. JavaScript configuration

The last step in DWR implementation requires inclusion of few JavaScript library func-
tions as shown by the figure 44. This include DWR engine (engine.js), utility functions
(utils.js), the JavaScript class created in dwr.xml (e.g. in this case dwrclass.js). The en-
gine.js is the most vital element which offers a number of deployment options and mar-
shal’s calls from dynamically generated JavaScript functions [25]. The utils.js contains
a variety of utility functions to deal with the received information to facilitate dynamic
data update of the web page [25].

Figure 44: DWR JavaScript configurations

51

4. PROJECT IMPLEMENTATION & RESULTS

Apart from CAD model design, the 3D animation of the information extracted from test
bed events messages is carried out using Unity3D, which essentially is a game devel-
opment platform. The research work consists of two major tasks: data acquisition and
web based visualization.

The data acquisition of the event messages is done in Java Eclipse. Spring web ser-
vice is used as the java tool for capturing the useful data from the test bed controller
SOAP messages. The representation of the results as a web application is done using an
mvc design pattern. Spring MVC is used as an overall framework for deploying web
application. Apache Tomcat is employed as web server to implement the designed web
application.

The web based development is mainly done with the help of JavaScript, HTML and
web tools. Direct Web Remoting (DWR) is implemented as web tool for fetching data
among java and web application. The animation function is scripted in C++ in Unity3D
game development engine. The obtained information from java is then linked to the
animation function with the help of JavaScript, jQuery and Ajax. Finally, the web based
3D animated simulation of the events is accomplished through Unity3D Webplayer. The
application testing is performed through generating SOAP messages using SOAP UI.
Each of these stages is further detailed as follows.

4.1. Project Testing

The project application testing is done with SOAP UI software. SOAP UI is an open
source cross-platform tool mainly introduced for application testing providing number
of options and features. SOAP UI has the capability to work with commonly used
standard protocols and web services technologies as well. It efficiently employs various
testing modes like functional, load, security as well as service simulation.
Figure 45 shows the message generation using SOAP UI utility.

52

Figure 45: SOAP UI Message Interface

In order to generate soap messages by SOAP UI, the WSDL files containing the
message format, data types, and namespace should to be documented beforehand. The
WSDL files for both the messages are given in Appendices 1 and 2. The files are locat-
ed in WebContent directory of the project folder and are made accessible through mak-
ing a web request with their location as web addresses. The WSDL files are then refer-
enced into SOAP UI which loads the files and creates message formats accordingly. The
empty request message parameters are provided with the original data formats used in
the real world simulation and the requests are sent to the java application for further
processing.

4.2. Web Implementation

Below given is an overview of web implementation of the project as shown in figure 46.

53

The events from the FASTory assembly line or SOAP UI (in testing mode), are re-
ceived through Spring web service. The information is then processed and made availa-
ble for both as Restful web service containing JSON data and DWR web application.
The DWR caller function scripted in JavaScript calls the Java class for any updated in-
formation based on latest arrived events. The Java class responds with the desired re-
quested information and sends it back to the web application function. The received data
is parsed and checked if the data is a new set of events based on timestamp value. The
parsed data is then sent to the animation function which plays the animation using Uni-
ty3D WebPlayer in browser.

4.3. Implementation details

The project CAD models are designed in CATIA by Dassault Systems and are imported
in Unity3D game engine to give animation functionality. However, the CAD models are
firstly made compatible to work with Unity3D project building requirement. The com-
patibility is achieved by introducing an intermediate application called Blender. The
Blender is yet another open source free to use 3D graphics tool, designed to create 3D
models and to add visual effects and animation to them. In this project implementation,
the Blender application refines the CAD models and makes them compatible in Uni-
ty3D scene environment. Figure 47 shows the imported project model in Unity3D.

Figure 47: CATIA model in Unity3D

54

The model animation involves two kinds of animation functions: pallet flow move-
ment and robot activity. The robot activity mainly follows CAMX equipment change
state messages, as stated previously in Section 3.6.2. The used case scenario holds two
main events for the robot activity, OFF and READY-PROCESSING-EXECUTING. In
OFF state, the robot makes no movement while READY-PROCESSING-EXECUTING
corresponds to sketch drawing on pallets.

The pallet movement includes pallet flow through various regions/zones across the
assembly line as depicted by the figure 48 below.

Figure 48: Regions in pallets flow

The zones 1, 2 and 3 are located on the main conveyer while zone 4 is on bypass
conveyer. Each of these zones is equipped with their respective stoppers. The notifica-
tion message holds the information of pallet movement from one zone to another by
receiving their respective stopper information status. Each notification message contains
information of two zones. When the pallet is required to go through a robotic operation,
it follows the main conveyer line passing through zones 1, 2, 3. The case where the pal-
let is required to avoid the main conveyer, the pallet follows the bypass path moving
from zone 1 to 4. The zone 1’ indicates the entry point of the next and exit point of cur-
rent cell.

4.4. Results

This section summarizes the outcomes achieved through project implementation.

4.4.1. Real-time Monitoring Application

The web implementation of the real time monitoring application follows execution of
the events as depicted by the web application flowchart (Section 4.2).The java class
presents the received informational data in the form of an array of strings. The DWR
caller function calls the dynamically created java script class and retrieves the infor-
mation. The data is parsed and formatted as variables which are then sent to the anima-

55

tion functions. The received data is categorized on the basis of events timestamp in or-
der to ensure only newly acquired information, while rejecting any repetitive data.
Below given figure 49 shows the 3D real-time monitoring of service oriented FASTory
assembly line using Unity3D WebPlayer.

Figure 49: 3D Real-time Monitoring Application

The monitoring interface is provided with multiple view options and navigation
keys to customize the view from different angles. The robot animation function re-
sponds to EquipmentChangeState messages while the pallet movement to stopper Noti-
ficationMessages.

4.4.2. Periodic Data Simulation

The designed application can also be used to simulate historic database events. This
type of simulation can be useful for the cases where someone wants to track down
changes that might occurred at some specific time in past. The following figure 50
shows resulted simulation of the monitoring application for historic database events.

56

Figure 50: Execution with info display

The historic data events are stored in an XML file and are accessed through making an
Ajax call. Once the data is uploaded, the information is filtered since the stored infor-
mation occurs with random sequence. The data is then sent to the animation function
which simulates them as one data chunk at a time. Similarly, the information is further
forwarded to another function which displays the status of the current simulation for
tracking as shown by the figure above.

57

5. CONCLUSION

5.1. Performance Overview and achievements

Combining real-time monitoring with 3D visualization deploying Service Oriented Ar-
chitecture provides an advanced level of monitoring in an industrial production system.
The application enables all users of the organization to remotely access the on-going
production activity from any remote place without requiring any complicated simulation
platform or extra plug-in through traditional communication means such the Internet.
One of the major plus points of the application is its compatibility with all normally
used browsers.

The proposed monitoring system provides an alternate approach to traditionally
available monitoring schemes where production activity can be visually assessed and
analysed at a central location on a graphical user interface like SCADA systems. The
monitoring system developed offers a convenient way of monitoring a system for all
types of clients, from shop floor operators to higher level executives and corporate per-
sonnel.

Real-time monitoring also provides an efficient way to deal with certain uneven in-
cidents with preciseness. By closely monitoring every single event of the production
process, the application user can easily figure out the exact cause and location of the
problem whenever the production activity is suspended. The simulation of historical
data events helps to track the manufacturing activity for any given time.

The monitoring system also offers easy customization capabilities and addition of
new and updated features to the application without having an impact on the al-
ready working system. Therefore the developed solution is independent of the control
mechanism of the considered system and only concerns about the event messages from
the process, therefore any modification to the overall control strategy of the production
process does not affect the monitoring application as long as the monitoring require-
ments are true.

5.2. Overall System review

The designing and simulation of 3D CAD models of machines, machine parts or even
the whole industrial process has already been in practice for many years. However, the
design of monitoring system using 3D models has not been adopted on a large scale.
This is because of their complexity, time consumption and availability of all the re-
quired resources for developing such applications. Similarly, visualizing and monitoring

58

a production process from any remote location using standard internet means is also not
so common in conventional monitoring practices.

This thesis presents a detailed and highly interactive 3D visualization based assem-
bly line monitoring system as compared to traditionally 2D based monitoring tech-
niques. Another noticeable feature of the researched approach is that it addresses a web
based 3D monitoring scheme using SOA enabling online access of the monitoring ap-
plication for users irrespective of their location.

5.3. Future work and recommendations

The developed application presently is able to take on only two types of event messag-
es, stopper notification and robot activity. However, the application’s application do-
main can be extended to undertake and visualize more information with certain modifi-
cations to the existing design.

Different methods and techniques for project implementation can be exercised to
achieve the desired goals. The XPATH (XML Path Language) is a java tool used for
parsing XML data contained in the SOAP event messages. JAXP (Java API for XML
Processing) can be used as an alternate to XPATH. The application is capable of pub-
lishing the processed information as JSON message, which may be useful for some oth-
er application. The Direct Web Remoting (DWR) is adopted as a solution for data fetch-
ing from java application to web application, however other data push technologies like
Ajax Push Engine (APE), Pushlet or COMET may also be realized as substitute for the
desired results.

The test bed setup keeps record of various statistical informations in a central data-
base. The visualization of those vital statistical variables such as number and type of
frames drawn on pallets by robot operation as line graphs, overall efficiency of the indi-
vidual machines for certain period of time viewed as pie charts (using equipment
change state historical data), energy consumption and consequently the cost of operation
may also be represented using Google charts or analogous web tools.

In addition, the designed approach was tested and implemented for a single test bed
cell, which in future can be broadened to address the monitoring of all available cells of
the same arrangement.

59

REFERENCES

[1] Pantforder, D.; Vogel-Heuser, B. “Benefit and evaluation of interactive 3D pro-
cess data visualization in operator training of plant manufacturing industry”,
IEEE International Conference on Systems, Man and Cybernetics (SMC) 2009.
Page(s): 824-829.

[2] Patrick Michel (vice-president, DELMIA Solutions & Marketing, Dassault Sys-
tèmes) “The power of simulation: Virtual 3D simulation tools bring increased
productivity and ROI”,
http://www.automationmag.com/features/the-power-of-simulation-virtual-3d-
simulation-tools-bring-increased-productivity-and-roi.html

[3] Parametric Technology Corporation (PTC), 2006 “Verification and Validation”,
http://www.ptc.com/WCMS/files/43562/en/VV2089_v3.pdf

[4] DELMIA Overview.
http://www.cdcza.co.za/software/delmia-overview

[5] C. C. Ko;Ben M. Chen; C. D. Cheng “Web-Based 3D Real Time Experimenta-
tion”, National University of Singapore, Singapore.

[6] Gurpreet Singh Modi; “Seminar report on Service Oriented Architecture & Web
2.0” Department of Computer Science and Engineering Guru Tegh Bahadur In-
stitute of Technology, New Delhi India.
www.gsmodi.com/files/SOA_Web2 Report.pdf

[7] Service-Orientation Design Principles
http://serviceorientation.com/index.php/

[8] Benefits of SOA - Web Services
http://www.devshed.com/c/a/Web-Services/Introduction-to-Service-Oriented-
Architecture-SOA/2/

[9] Lihui Wang;Mohammad Givehchi; Göran Adamson;Magnus Holm “A sensor-
driven 3D model-based approach to remote real-time monitoring”, Virtual Sys-
tems Research Centre, University of Skövde, Sweden.

[10] Xiongming Zhou;Wenqun Su;Jun Xu; Xiyang Xu, “3D real-time display system
of cable temperature” , International Conference on Electricity Distribution
(CICED), 2010 China. Page(s): 1 - 4

60

[11] Bo Tang; Ait-Boudaoud, D.; Lik-Kwan Shark; Matuszewski, B.J. “Pseudo Real-
Time System for Visualisation of 3D Scenes”, Geometric Modeling and Imaging
(GMAI), 2007. Page(s): 8 – 13

[12] Feldhorst, S.; Fiedler, M.; Heinemann, M.; ten Hompel, M.; Krumm, H. “Event-
based 3D-monitoring of material flow systems in real-time”, 8th IEEE Interna-
tional Conference on Industrial Informatics (INDIN), 2010. Page(s): 195 - 200

[13] Kularatna, N.; McDowall, J.; Melville, B.; Kularatna-Abeywardana, D.; Hu,
A.P.; Dwivedi, A. “Low-Cost Autonomous 3-D Monitoring Systems for Hy-
draulic Engineering Environments and Applications With Limited Accuracy Re-
quirements”IEEE Sensors Journal Volume: 10, Issue: 2, Feb 2010 Page(s): 331
– 339.

[14] Hojaji, F.; Shirazi, M.R.A, “Developing a more comprehensive and expressive
SOA governance framework”, The2nd IEEE International Conference
on Information Management and Engineering (ICIME), 2010.Page(s): 563 - 567

[15] Susanti, F.; Sembiring, J.” The mapping of interconnected SOA governance and
ITIL v3.0”, International Conference on Electrical Engineering and Informatics
(ICEEI),2011. Page(s): 1 - 5

[16] Yu Chen Zhou; XinPeng Liu; Xi Ning Wang; Liang Xue; Chen Tian; Xiao Xing
Liang, “Context Model Based SOA Policy Framework” IEEE International
Conference on Web Services (ICWS), 2010. Page(s): 608 - 615

[17] Chapter 1: Introduction to SOA with Web
http://www.aw-bc.com/ samplechapter/032118 0860.pdf

[18] Web Services Architecture
http://www.w3.org/TR/ws-arch/

[19] IBM Services Architecture Team, IBM, Software Group “Web Services archi-
tecture overview”
http://www.ibm.com/developerworks/webservices/library/w-ovr/

[20] Extensible Markup Language (XML)
http://www.w3.org/XML/

[21] Thomas Soddemann, RZG “Web Services and Service Oriented Architectures”,
Delaman Workshop, 2004
http://www.mpi.nl/delaman/workshop/ppt/soddemann.pdf)

61

[22] Weichao Li; Yong Liu “Application of XML in E-commerce”, WRI World
Congress on Software Engineering (WCSE), 2009. Page(s): 262 - 264

[23] Checiu, Laurentiu; Ionescu, Dan,
“A new algorithm for mapping XML Schemato XML Schema” International
Joint Conference on Computational Cybernetics and Technical Informatics
(ICCC-CONTI), 2010. Page(s): 625 - 630

[24] BalasubramanianSeshasayee; Schwan, K.; Widener, P. “SOAP-binQ: high-
performance SOAP with continuousquality management”, 24th International
Conference on Distributed Computing Systems, 2004 Proceedings. Page(s): 158
- 165

[25] Web Services Description Language (WSDL) 1.1
http://www.w3.org/TR/wsdl

[26] Kwong Yuen Lai; ThiKhoiAnhPhan; Tari, Z. “Efficient SOAP binding for mo-
bile Web services”, The IEEE Conference on Local Computer Networks, 2005
30th Anniversary. Page(s): 218 - 225

[27] Nitzsche, J.; van Lessen, T.; Leymann, F. “WSDL2.0 Message Exchange Pat-
terns: Limitationsand Opportunities”, Third International Conference on Internet
and Web Applications and Services, 2008 (ICIW '08). Page(s): 168 – 173.

[28] Delamer, I.M.; Lastra, J.L.M. “Service-Oriented Architecture for Distributed
Publish /Subscribe Middleware in ElectronicsProduction”, IEEE Transactions
on Industrial Informatics, 2006. Page(s): 281 – 294.

[29] Parimala, N.; Saini, A. “Web service with criteria: Extending WSDL”, Sixth
International Conference on Digital Information Management (ICDIM),
2011. Page(s): 205 - 210

[30] D'Ambrogio, A. “A Model driven WSDL Extension for Describing the QoS of
Web Services”, International Conference on Web Services, 2006 ICWS '06.
Page(s): 789 - 796

[31] Delamer, I.M.; Lastra, J.L.M.; Tuokko, R. “Unified service-oriented architec-
ture for federatedand locally distributed CAMX publish/subscribe middleware”,
3rd IEEE International Conference on Industrial Informatics, 2005(INDIN
'05). Page(s): 117 - 122

62

[32] IPC-2501 Definition for Web-Based Exchange of XML Data (Message Broker)
http://www.webstds.ipc.org/2501/IPC2501Pub.pdf

[33] IPC-2541 Generic Requirements for Electronics Manufacturing Shop-Floor
Equipment Communication Messages (CAMX)
http://www.fed.de/downloads/IPC-2541.pdf

[34] Thramboulidis, K.; Zoupas, A. “Real-time Java in control and automation: a
model driven development approach” 10th IEEE Conference on Emerging
Technologies and Factory Automation (ETFA), 2005. Page(s): 8 pp. - 46

[35] Peschke, J. , “Real-time Java for industrial controls in flexible manufacturing
systems”, IEEE International Conference on Industrial Informatics (INDIN),
2003. Page(s): 325 - 331

[36] Mukherjee, A.; Tari,Z.; Bertok,P.
“A Spring Based Framework for Verification of ServiceComposition”, IEEE In-
ternational Conference on Services Computing (SCC), 2011. Page(s): 258 - 265

[37] Rod Johnson, “Introduction-to-the-Spring-Framework”,
http://www.theserverside.com/news/1364527/Introduction-to-the-Spring-
Framework

[38] Spring Web Services - Reference Documentation
http://static.springsource.org/spring-ws/site/reference/pdf/spring-ws-
reference.pdf

[39] Introduction to Spring Web MVC framework
http://static.springsource.org/spring/docs/3.0.x/reference/mvc.html

[40] Mela, M.; Sakowicz, B.; Chlapinski, J. “Advertising service based on Spring
Framework” Proceedings of International Conference on Modern Problems of
Radio Engineering, Telecommunications and Computer Science, 2008. Page(s):
406 - 408

[41] Chien-Hung Liu; Kung, D.C.; Pei Hsia; Chih-Tung Hsu “Structur-
al testing of Web applications”, 11th International Symposium on Software Re-
liability Engineering (ISSRE), 2000. Page(s): 84 - 96

[42] Hypertext Transfer Protocol -HTTP/1.1
http://www.w3.org/Protocols/rfc2616/ rfc2616-sec1.html

63

[43] Java Servlet Technology
http://www.peterindia.net/ServletOverview.html

[44] Perrenoud, C.; Phan, K. “Emergence of web technology: An implementation of
web accessibility design in organizations”, Technology Management for Emerg-
ing Technologies (PICMET), 2012: Page(s): 633 - 645

[45] Kailas Patil; Xinshu Dong; Xiaolei Li; Zhenkai Liang, “Towards Fine-Grained
Access Control in JavaScript Contexts”, School of Computing National Univer-
sity of Singapore.
http://www.comp.nus.edu.sg/~liangzk/papers/icdcs11.pdf

[46] Duda, C.; Frey, G.; Kossmann, D.; Matter, R.; Chong Zhou “AJAX Crawl
:Making AJAX Applications Searchable”, IEEE 25th International Conference
on Data Engineering (ICDE), 2009. Page(s): 78 - 89

[47] Jesse James Garrett “Ajax-New-Approach-Web-Applications”
http://www. adaptivepath.com/ideas/ajax-new-approach-web-applications

[48] Doug Tidwell (XML Evangelist), EMC “Introduction to XML”
www.ibm.com/developerworks/xml/tutorials/xmlintro/

[49] Kevin Nilson, “Pushing Data to the Browser with Comet”
http://www.developer.com/tech/article.php/3756841/Pushing-Data-to-the-
Browser-with-Comet.htm

[50] Wen Zhang, Junwei Cao, YishengZhong, Lianchen Liu, Cheng Wu: “Block-
Based Concurrent and Storage-Aware Data Streaming for Grid Applications
with Lots of Small Files”,
http://stuff.mit.edu/~caoj/pub/doc/jcao_c_block.pdf

[51] Ajax Push Engine
http://www.ape-project.org/ajax-push.html

[52] Direct Web Remoting
http://directwebremoting.org/dwr/introduction/index.html

[53] 3D Canvas
[http://3d-canvas.en.softonic.com/]

[54] University of Bristol’s Department of Mechanical Engineering “From human
bite to robot jaws”

64

http://www.bristol.ac.uk/news/2009/6432.html

[55] Toledo Assembly Plants and Supplier Park
http://www.allpar.com/corporate/factories/toledo.html

[56] Kean Walmsley, “Calling a web-service from a Unity3D scene”
http://through-the-interface.typepad.com/through_the_interface/2012/04/calling-
a-web-service-from-a-unity3d-scene.html

[57] Managing SOA environments
http://publib.boulder.ibm.com/infocenter/tivihelp/v24r1/index.jsp?topic
=%2Fcom.ibm.itcamsoa.doc_6.2.2%2FOfferingGuide15.htm

[58] Service Statelessness
http://www.exforsys.com/tutorials/soa/service-autonomy/1.html

[59] The structure of a SOAP message
http://publib.boulder.ibm.com/infocenter/wmbhelp/v8r0m0/index.jsp?topic=%2
Fcom.ibm.etools.mft.doc%2Fac55780_.htm

[60] Web Services, Part 2: WSDL and WADL
http://www.ajaxonomy.com/2008/xml/web-services-part-2-wsdl-and-wadl

[61] Spring Framework Introduction
http://static.springsource.org/spring/docs/2.0.x/reference/introduction.html

[62] Ajax and Service Oriented Architecture
http://www.openajax.org/member/wiki/Market_Overview_Whitepaper

65

APPENDIX 1: PALLET NOTIFICATION MESSAGE WSDL
<wsdl:definitions
target-
Namespace="http://fastory.com/fast/definitions"xmlns:wsdl="http://schemas.
xmlsoap.org/wsdl/"xmlns:sch="http://fastory.com/fast/schemas"xmlns:soap="h
ttp://schemas.xmlsoap.org/wsdl/soap12/"xmlns:tns="http://fastory.com/fast/
definitions">
<wsdl:types>
<xs:schemaelementFormDefault="qualified"
targetNamespace=http://fastory.com/fast/schemas
xmlns:hr=http://fastory.com/fast/schemas
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:elementname="NotificationMessage">
<xs:complexType>
<xs:attributeform="unqualified"name="dateTime"type="xs:string"/>
<xs:attributeform="unqualified"name="eventId"type="xs:string"/>
<xs:attributeform="unqualified"name="palletId"type="xs:string"/>
<xs:attributeform="unqualified"name="fromZoneId"type="xs:string"/>
<xs:attributeform="unqualified"name="toZoneId"type="xs:string"/>
<xs:attributeform="unqualified"name="cellID"type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:schema>
</wsdl:types>
<wsdl:messagename="NotificationMessage">
<wsdl:partelement="sch:NotificationMessage"name="NotificationMessage"/>
</wsdl:message>
<wsdl:portTypename="FASTline">
<wsdl:operationname="information">
<wsdl:inputmessage="tns:NotificationMessage"
name="NotificationMessage"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:bindingname="FASTlineSoap11"type="tns:FASTline">
<soap:bindingstyle="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operationname="information">
<soap:operationsoapAction=""/>
<wsdl:inputname="NotificationMessage">
<soap:bodyuse="literal"/>
</wsdl:input>
</wsdl:operation>
</wsdl:binding>
<wsdl:servicename="FASTlineService">
<wsdl:portbinding="tns:FASTlineSoap11"name="FASTlineSoap11">
<soap:addresslocation="http://localhost:8080/fast
 /fastory/informationService/"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

66

APPENDIX 2: EQUIPMENT CHANGE STATE MESSAGE WSDL

<wsdl:definitions
target-
Namespace="http://fastory.com/Fast2/definitions"xmlns:wsdl="http://schemas.xm
lsoap.org/wsdl/"xmlns:sch="http://fastory.com/Fast2/schemas"xmlns:soap="http:
//schemas.xmlsoap.org/wsdl/soap12/"xmlns:tns="http://fastory.com/Fast2/defini
tions">
<wsdl:types>
<xs:schemaelementFormDefault="qualified"
targetNamespace=http://fastory.com/Fast2/schemas
xmlns:hr=http://fastory.com/Fast2/schemas
xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:elementname="EquipmentChangeState">
<xs:complexType>
<xs:attributeform="unqualified"name="dateTime"type="xs:string"/>
<xs:attributeform="unqualified"name="currentState"type="xs:string"/>
<xs:attributeform="unqualified"name="previousState"type="xs:string"/>
<xs:attributeform="unqualified"name="eventId"type="xs:string"/>
<xs:attributeform="unqualified"name="palletId"type="xs:string"/>
<xs:attributeform="unqualified"name="recipeNum"type="xs:string"/>
<xs:attributeform="unqualified"name="toolId"type="xs:string"/>
<xs:attributeform="unqualified"name="cellId"type="xs:string"/>
<xs:attributeform="unqualified"name="devType"type="xs:string"/>
</xs:complexType>
</xs:element>
</xs:schema>
</wsdl:types>
<wsdl:messagename="EquipmentChangeState">
<wsdl:partelement="sch:EquipmentChangeState"
name="EquipmentChangeState"/>
</wsdl:message>
<wsdl:portTypename="FASTline">
<wsdl:operationname="information">
<wsdl:inputmessage="tns:EquipmentChangeState"
name="EquipmentChangeState"/>
</wsdl:operation>
</wsdl:portType>
<wsdl:bindingname="FASTlineSoap11"type="tns:FASTline">
<soap:bindingstyle="document"
transport="http://schemas.xmlsoap.org/soap/http"/>

<wsdl:operationname="information">
<soap:operationsoapAction=""/>
<wsdl:inputname="EquipmentChangeState">
<soap:bodyuse="literal"/>
</wsdl:input>
</wsdl:operation>

</wsdl:binding>
<wsdl:servicename="FASTlineService">
<wsdl:portbinding="tns:FASTlineSoap11"name="FASTlineSoap11">
<soap:address
location="http://localhost:8080/fast/fastory/informationService/"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

67

APPENDIX 3: JSON CONTROLLER CLASS
importorg.jdom.Element;
importorg.jdom.JDOMException;
importorg.springframework.stereotype.Controller;
importorg.springframework.web.bind.annotation.PathVariable;
importorg.springframework.web.bind.annotation.RequestMapping;
importorg.springframework.web.bind.annotation.RequestMethod;
importorg.springframework.web.bind.annotation.ResponseBody;

importcom.fastory.fast.model.Info;
importcom.fastory.fast.model.Informationmessage;
importcom.fastory.fast.model.abc;
importcom.fastory.fast.ws.InformationEndpoint;

importjava.util.HashMap;
importjava.util.Iterator;
importjava.util.Map;
importjava.util.Set;

@Controller
@RequestMapping("/StopperInfoMsg")
publicclassJSONController {

@RequestMapping(method = RequestMethod.GET)
public@ResponseBody Info getdataInJSON() throwsJDOMExcep-

tion {
String cellId= abc.cellID;
String datetime=abc.dateTime;
String eventid= abc.eventId ;
String tozoneid= abc.toZoneId ;
String palletid= abc.palletId;
String fromzoneid= abc.fromZoneId ;

Info info = newInfo();
Informationmessage info1= newInformationmessage();

info.setName("StopperInfoMsg");

info1.setCellID(cellId);
info1.setDateTime(datetime);

info1.setPalletId(palletid);
info1.setEventId(eventid);
info1.setFromZoneId(fromzoneid);
info1.setToZoneId(tozoneid);

info.setInformationMessage(info1);

return info;
}

}

68

APPENDIX 4: INFORMATION MESSAGE CLASS
packagecom.fastory.fast.model;

publicclassInformationmessage {

String eventId;
String toZoneId;
String palletId;
String cellID;
String fromZoneId;

String dateTime;

public String getDateTime() {
returndateTime;

}
publicvoidsetDateTime(String dateTime) {

this.dateTime = dateTime;
}
public String getEventId() {

returneventId;
}
publicvoidsetEventId(String eventId) {

this.eventId = eventId;
}
public String getToZoneId() {

returntoZoneId;
}
publicvoidsetToZoneId(String toZoneId) {

this.toZoneId = toZoneId;
}
public String getPalletId() {

returnpalletId;
}
publicvoidsetPalletId(String palletId) {

this.palletId = palletId;
}
public String getCellID() {

returncellID;
}
publicvoidsetCellID(String cellID) {

this.cellID = cellID;
}
public String getFromZoneId() {

returnfromZoneId;
}
publicvoidsetFromZoneId(String fromZoneId) {

this.fromZoneId = fromZoneId;
}

}

69

APPENDIX 5: INFO CLASS
packagecom.fastory.fast.model;

importcom.fastory.fast.model.Informationmessage;

publicclass Info {

String Message;

InformationmessageInformationMessage;

public String getName() {
returnMessage;

}
publicvoidsetName(String Message) {

this.Message = Message;
}
publicInformationmessagegetInformationMessage() {

returnInformationMessage;
}
publicvoidsetInformation-

Message(InformationmessageinformationMessage) {
InformationMessage = informationMessage;

}
public Info() {
}

}

70

APPENDIX 6: SPRING SERVLET CONFIGURATOIN
<?xmlversion="1.0"encoding="UTF-8"?>

<beansxmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:context="http://www.springframework.org/schema/contex

t"

xmlns:util="http://www.springframework.org/schema/util"

xmlns:sws="http://www.springframework.org/schema/web-
services"

xsi:schemaLocation="http://www.springframework.org/schema/b
eans http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/web-services
http://www.springframework.org/schema/web-services/web-services-
2.0.xsd
 http://www.springframework.org/schema/context
http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/util
 http://www.springframework.org/schema/util/spring-util-2.0.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">
<context:component-scanbase-package="com.fastory.fast"/>

<sws:annotation-driven/>
<sws:static-wsdllocation="/WEB-INF/fast.wsdl"/>

<beanid="messageFactory"class="org.springframework.ws.soap.saaj.SaajSo
apMessageFactory">
<propertyname="soapVersion">
<util:constantstatic-
field="org.springframework.ws.soap.SoapVersion.SOAP_12"/>
</property>
</bean>

</beans>

71

APPENDIX 7: MVC DISPATCHER SERVLET CONFIGURATOIN
<beansxmlns="http://www.springframework.org/schema/beans"

xmlns:context="http://www.springframework.org/schema/contex
t"

xmlns:mvc="http://www.springframework.org/schema/mvc"xmlns:
xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-
3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-
3.0.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd">

<context:component-scanbase-
package="com.fastory.fast.controller"/>

<mvc:annotation-driven/>
<mvc:resourcesmapping="/resource/**"location="/resource/"/>

</beans>

