
FEDOR KUDASOV

CONTENT-BASED IMAGE FILTERING

Master's thesis

Examiners: Professor Karen Egiazarian

Examiners and topic approved by

the Faculty Council of the Faculty of

Computing and Electrical Engineering

on 07 December 2012.

I

PREPHASE

This work is a master thesis for the Master of Science programme in the Tampere

University of Technology. This is a result of two years of my study in Tampere.

I express my gratitude to everyone who provided me an ability to improve my

education: from the teaching sta� of Saint-Petersburg State University where I got

my Bachelor's to the sta� of TUT who accepted my application in 2011.

I would like to thank my supervisor professor Karen Egiazarian who believed in

my abilities, provided me funding and created comfortable atmosphere for perform-

ing the research work. Also, I would like to thank him for his incredible patience

and for his permanent support. I appreciate help of Aram Danielyan, Eugeniy

Belyaev and everyone in the signal processing department group who provided me

very important notes concerning my thesis work.

Moreover, I would like to thank my family. My mother and father for supporting

me during the �hard times�. My grandfather for being interested in my research

and for giving me useful advices. Finally, I especially appreciate the contribution of

my girlfriend, Katya, who gave me priceless comments on the thesis text and who

helped me to �nd the strength to �nish it.

18.08.2013

Fedor Kudasov

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master's Degree Programme in Information Technology

FEDOR KUDASOV : Content-based image �ltering

Master of Science Thesis, 50 pages, 6 Appendix pages

August 2013

Major: Signal Processing

Examiner: Professor Karen Egiazarian

Keywords: Denoising, classi�cation, DCT, image �ltering, Gaussian noise

This paper presents an adaptive content-based image denoising technique. This

technique uses image area classi�cation for two purposes: perform more precise

�ltering and decrease computation complexity compared to modern �lters of the

same quality performance.

Overview of several top image �ltering techniques was made. Spatial domain

(LPA-ICI), transform domain (SW-DCT) and combined �lters (SA-DCT and BM3D)

were studied in order to understand basic principles of image denoising. Image area

classi�cation which gives reasonable division into classes with clearly distinguishable

properties for image �ltering was observed. We have chosen block-wise classi�cation

that maps each block to �Texture�, �Smooth� and �Edge� classes. Performance of

discussed �lters on image area classes was shown. Adaptive free parameters choise

for �ltering quality improvement was analysed. It was shown that for some classes

best parameters set di�ers from the best parameter set for the entire image.

Methods to improve denoising algorithms speed which we were using in our adap-

tive solution were proposed. The most suitable algorithms with appropriate param-

eters set for each image area class were chosen. Modi�ed classi�cation algorithm

applied to noisy images was developed. Whereupon, a modi�ed BM3D-based adap-

tive denoising algorithm was proposed. Finally, multiple tests were performed and

veri�cation of speed and quality performances improvement compared to a baseline

BM3D algorithm was obtained.

III

CONTENTS

Terms and abbreviations . IV

List of tables . V

List of �gures . VI

1. Introduction . 1

2. Theoretical background . 3

2.1 Spatial domain �lters . 3

2.1.1 Anisotropic LPA-ICI . 6

2.2 Transform domain �lters . 8

2.2.1 Sliding window DCT �ltering . 9

2.2.2 Empirical Wiener �lter . 11

2.3 SA-DCT �ltering . 12

2.4 Block Matching 3D �ltering . 13

2.5 Image segmentation . 15

3. Image �ltering with classi�cation . 18

3.1 LPA-ICI with classi�cation . 18

3.1.1 SW-DCT with classi�cation . 21

3.2 SA-DCT with classi�cation . 23

3.3 BM3D �ltering with classi�cation . 24

4. SW-DCT modi�cations . 36

4.1 Block size . 36

4.1.1 Integer pseudo-DCT . 37

5. Content-based image �ltering . 40

5.1 Noisy image segmentation . 41

5.1.1 Processing of �Edge� blocks . 45

5.2 Adaptive integer BM3D . 46

5.3 Testing . 48

6. Conclusion . 50

A. Maximum likelihood solution . 51

B. Integer pseudo-DCT transform . 52

B.1 Integer 4×4 pseudo-DCT . 52

B.2 Integer 8×8 pseudo-DCT . 54

References . 57

IV

TERMS AND ABBREVIATIONS

BM3D (Block Matching 3D) a recent state-of-the-art denoising algorithm

which is based on grouping of similar 2D blocks into 3D structure

and performing linear decorrelating transforms

DCT (Discrete Cosine Transform) a linear transform on real number which

is widely used for signal decorrelation

DFT (Discrete Fourier Transform) a linear transform on complex number

which is widely used for signal decorrelation

FFT (Fast Fourier Transform) a fast implementation of DFT

KLT (Karhunen-Loeve Transform) a linear transform which optimally

compacts the signal energy, is calculated individually for a particular

signal

LPA-ICI (Local polynomial approximation - intersection of con�dence inter-

vals) an image denoising algorithms based on weighted averaging of

local pixel neighborhood

MSE (Mean Square Error) a measure of di�erence between two signals is

calculated as an average of squared point-wise signal di�erence

PSNR (Peak Signal to Noise Ratio) a measure of image quality is calculated

as 10·log10
2552

MSE(I,In)
, where I is an original image and In is degraded

image

SA-DCT (Shape adaptive DCT) an image denoising algorithm which is based

on 2D linear transforms applied to complex shape image areas

SW-DCT (Sliding window DCT) an image denoising algorithm which is based

on 2D block-wise linear transforms

V

LIST OF TABLES

3.1 Optimal Γ values for LPA-ICI �ltering. 20

3.2 Comparison of calculated PSNR for images �ltered with LPA-ICI

with the same Γ for the entire image and combined image. 21

3.3 Optimal λ values. 22

3.4 Comparison of calculated PSNR for images �ltered with SW-DCT

with the same λ for the entire image and combined image. 22

3.5 Optimal Γ values. 23

3.6 Optimal α values. 23

3.7 Optimal λ values. 25

3.8 Comparison of calculated PSNR for images �ltered with BM3D with

the same λ for the entire image and combined image. 25

4.1 SW-DCT �lter performance for di�erent �Barbara� image areas de-

pending on block size. 37

5.1 Comparison of speed performance. 47

5.2 Comparison of quality performance. 47

5.3 Comparison of quality performance on �ltering of Berkley Segmenta-

tion Dataset. 48

5.4 Average speed-up of content-dependent BM3D compared to BM3D. . 48

VI

LIST OF FIGURES

2.1 Test images . 4

2.2 Square averaging windows. 5

2.3 Diagonal averaging windows. 5

2.4 PSNR for smooth and texture images �ltered with di�erent square

windows. 5

2.5 Images �ltered with di�erent window shapes and sizes. 6

2.6 Approximation of optimal support and aggregation of directional es-

timates. 7

2.7 The ICI rule. 8

2.8 SA-DCT scheme. 13

2.9 BM3D scheme. 14

2.10 Coe�cients separation. 17

3.1 Test images . 19

3.2 Test image content classi�cation [9]: black � �smooth�, gray � �edge�,

white � �texture� . 19

3.3 Visual comparison between image �ltered with LPA-ICI and content-

dependant LPA-ICI. 27

3.4 Visual comparison between image �ltered with SW-DCT and content-

dependant SW-DCT. 28

3.5 Visual comparison between image �ltered with SW-DCT and content-

dependent SW-DCT. 29

3.6 Dependence of calculated PSNR on Γ for LPA-ICI �ltering. 30

3.7 Dependence of calculated PSNR on λ for SW-DCT �ltering. 31

3.8 Dependence of calculated PSNR on Γ for SA-DCT �ltering. 32

3.9 Dependence of calculated PSNR on α for SA-DCT �ltering. 33

3.10 Dependence of calculated PSNR on Γ for BM3D �ltering. 34

3.11 Dependence of calculated PSNR on radius of neighbourhood for BM3D

�ltering. 35

4.1 Dependence of calculated ∆PSNR on the noise level σ for di�erent

parameters. All the values are shown with respect to the result of

8× 8 block SW-DCT with weighted average aggregation. �Weighted�

means weighted average aggregation, �+Wiener� � use of Wiener �l-

tering, �simple� � simple average aggregation. 39

4.2 Comparison of SW-DCT algorithms real and integer DCTs. All values

are shown with respect to the result of 8×8 block real valued SW-DCT. 39

VII

5.1 Coe�cients separation. 42

5.2 Dependence of �ltering speed and quality performances on the thresh-

old level for σ = 20, 40, 60 noise levels. 43

5.3 Classi�cation of blocks for noiseless images. 44

5.4 Classi�cation of blocks for images with noise (σ=20). 45

5.5 First step of �edge distribution�. 46

5.6 Edge block-matching. 46

5.7 Visual comparison between image �ltered with BM3D and proposed

algorithm. 49

1

1. INTRODUCTION

Image processing methods and, in particular, image �ltering, becomes very im-

portant nowadays. In the last decades we can see a rapid development of digital

technology, widespread use of gadgets with photo and video cameras, such as smart-

phones, increase in computational power of embedded devices. Whereupon, we get

an ability to provide to the end-user such services which in past demanded stationary

computation complexes of highly specialized equipment but now can be performed

real-time, e. g. high de�nition video recording or on-line video �ltering.

With the growth of the computational abilities there are also qualitative improve-

ments in �ltering algorithms which, unfortunately, cost more and more computa-

tional resources and storage memory. Additionally, even negligible increase in PSNR

might dramatically slowdown the �ltering process. Note also that often theoretical

studies di�er from real implementation: even though in theory we may achieve

PSNR improvement, practically it either might not provide us visual enhancement

or an improvement might be insigni�cant compared to increase in computational

complexity. Hence, in order to be able to use recent achievements in image �ltering

one should �nd a way to simplify algorithms allowing an insigni�cant drop in quality

but keeping computational complexity low which would be appropriate for practical

implementations.

Image �ltering in digital cameras is a very broad concept. Generally, it means an

image enhancement by a proper tuning of the following parameters: white balance,

gamma correction, brightness level etc. Hereinafter in this work by image �ltering

we understand image denoising � suppression of additive zero mean white Gaussian

noise. This mathematical model of noise has several important attributes. It has

good mathematical properties (e. g. �at frequency spectrum). Poisson distribution

can be converted to a normal one. Poisson noise in turn along with Gaussian noise

are the main components of noise in image sensors (photo and video cameras) [1,

Chapter 4.6], [2]. Additionally, white Gaussian noise describes some natural noises

(heat) behaviour. Therefore, consideration of only that kind of noise allows us to

solve highly demanded problem and use extensive achievements from mathematical

tools since normal distribution is a well-studied mathematical model.

Even though recent developments in image �ltering yield great results in per-

formance, there is still some room for improvements. Complex algorithms, which

2

usually have several free parameters are applied to the entire image with the same

settings or even the same settings are used for every image to be processed. One

way of algorithm improvement, which is applied in [3], is to use an adaptive window

size and therefore perform di�erent �ltering for areas with di�erent pixel similarity.

More complex approach utilizes image patches along with adaptive window size to

calculate weighted sum of estimates with adaptive weights [4].

Another way to improve existing denoising methods is to use image segmenta-

tion/classi�cation and apply particular �lter with particular settings according to

the classi�cation on each image part individually. Separate handling of areas with

di�erent content and, therefore, di�erent properties (e. g. smooth and texture) can

not only improve �ltering, but also signi�cantly decrease computational complexity

of �ltering since some areas of image may not require advanced techniques for its

denoising. The main goals of this work are as follows:

1. Analyze basic principles and features of existing denoising algorithms.

2. Embed classi�cation approach in the �ltering process.

3. Use classi�cation and features of di�erent �lters for denoising quality improve-

ments.

Along with the mentioned objectives we aim to apply if possible some methods

to decrease algorithms computational complexity without sensible drop in denoising

quality.

3

2. THEORETICAL BACKGROUND

In order to understand in what way we can utilize di�erence in image content in

�ltering, we should study basics of modern �ltering techniques and recent state-of-

the-art approaches in image �ltering. Since that we will start our overview with

spatial domain �lters.

2.1 Spatial domain �lters

According to [5, Chapter 3] spatial domain is related to the image plane itself which

means that �ltering is based on direct manipulation with image pixels. Filtering in

spatial domain can be represented as:

g(x, y) = T [f(x, y)]

where f(x, y) is the input image, g(x, y) is the �ltered image and T is an opera-

tor on f which processes pixels in some neighborhood of (x, y). Neighborhood is

traditionally a square or rectangular shape subimage area centered at (x, y). This

center of subimage is moved from a pixel to pixel and operator T is applied to the

neighborhood at each location to yield the output g (�ltered image).

One can notice two key elements in spatial domain �ltering: selection of the neigh-

borhood and selection of the operator. Generally, knowledge of an image degradation

type facilitates the selection of the proper operator. For example, median �lter is

used in suppressing impulsive noise, such as �salt & pepper� [5, Chapter 3]. White

Gaussian noise will be considered as a main degradation source in this work. It can

be suppressed by the use of the local (weighted) averaging �lter. The choice of an

optimal neighborhood (window) in this case becomes one of the primary objectives.

From the mathematical point of view in �ltering process there is a trade-o�

between bias and variance [6, Chapter 2.3.1]: by taking large window size we are

greatly suppressing the noise, but loosing most of the image details; while using small

window for �ltering we preserve details, but keep noise less suppressed. Minimum

window size (only the original pixel value) guarantees no bias but keeps variance

at its initial level, while the window of all the image size will yield extremely small

variance and huge bias that blurs all the image content. Thus, as a window size

grows the variance decreases and a bias component increases. Therefore, as the

4

point-wise MSE that we want to decrease can be represented as a sum of two terms

depending on bias and variance, selection of window size depends on variability of

pixels taken from undistorted image in the window [12]. As long as pixels are close

in value, we can increase a window size to decrease a variance without growth of

bias and when pixels start to di�er much we should choose small window not to

loose details because of the bias.

The importance of right bias/variance balance determination can be observed in

the following example. In Figures 2.1(a) and 2.1(b) two parts of �Barbara� image

with a smooth content and with a texture are shown. These subimages are degraded

with a white Gaussian noise having standard deviation of σ = 30 (see Figures

2.1(c), 2.1(d)). They are �ltered with averaging �lters with di�erent size and form

of windows. For both �Smooth� and �Texture� images square form of the windows

(Figure 2.2, usual choice in image processing) was used, additionally, for the texture

image we have used windows of the form of diagonal segments (Figure 2.3). This

choice is motivated by the fact that the texture image pattern has diagonal stripes,

thus it is interesting to study how the form of the window resembling image pattern

improves the �ltering. Figure 2.4 demonstrates the dependence between window

sizes and PSNR for each of the cases described above. From this naive observation

of �ltering results we can see that:

1. With the averaging �lter we can obtain higher PSNR improvement with the

�Smooth� image than that with the �Texture� image.

2. �Optimal� size of the window for a �Smooth� image is much larger than that

for a �Texture� one.

3. The better form of a window resembles the texture pattern the better �ltering

results can be obtained.

(a) �Smooth� (b) �Texture� (c) �Noisy �Smooth� (d) �Noisy �Texture�

Figure 2.1: Test images

Particular examples of the �ltered images for 3 × 3 and 9 × 9 windows and for

diagonal windows of length 3 and 9 for �Texture� image (see Figure 2.5) are shown

5

1

0.110.110.11

0.110.110.11

0.110.110.11

0.040.040.040.040.04

0.040.040.040.040.04

0.040.040.040.040.04

0.040.040.040.040.04

0.040.040.040.040.04

Figure 2.2: Square averaging windows.

1

0.33

0.33

0.33

0.2

0.2

0.2

0.2

0.2

Figure 2.3: Diagonal averaging windows.

0 2 4 6 8 10 12 14 16 18 20
18

20

22

24

26

28

30

32

34

36

38

Window size (pixels)

Y
−

P
S

N
R

 (
dB

)

Smooth image
Texture image
Texture image (diagonal window)

Figure 2.4: PSNR for smooth and texture images �ltered with di�erent square windows.

6

in order to demonstrate such a phenomena. Noisy �Smooth� image after �ltering

becomes closer to the undistorted one with the growth of the windows size, while a

�Texture� image looses most details (we can see that only the fold of the tissue is

left but the the pattern is generally lost).

(a) �Smooth�. Square, 3× 3. (b) �Texture�. Square, 3× 3. (c) �Smooth�. Square, 9× 9.

(d) �Texture�. Square, 9× 9. (e) �Texture�. Diagonal, 3×3. (f) �Texture�. Diagonal, 9×9.

Figure 2.5: Images �ltered with di�erent window shapes and sizes.

As it was mentioned above, an important task is the right choice in bias/variance

trade-o�. Since image pattern is usually not uniform this choice should be done

individually for every image location. As it was shown, a much noise suppression

with higher PSNR can be achieved in �Smooth� regions than in the area of edges.

Hence, to get better �ltering one should modify a window for every pixel in a way

that averaging (weighted averaging) is performed only among �similar� pixels. The

recently developed technique called Anisotropic LPA-ICI (local polynomial approxi-

mation � intersection of con�dence intervals) is based on this idea [6]. Consideration

of this approach is the �rst step in our study of determination of proper �ltering

parameter values based on the image content.

2.1.1 Anisotropic LPA-ICI

Let X ⊂ Z2 be an image domain, y(x) (x ∈ X) is an undistorted signal, z(x) =

y(x) + σ · η(x) is a noisy observation of the signal y(x) (η(x) ∼ N (0, 1)). The

7

goal of denoising is to determine the estimate ŷ(x) of signal y(x) which is as close

to the undistorted signal as possible (e. g. in MSE sense). We mentioned earlier

that this problem can be solved by using averaging �lter. Additionally, we have

shown that �ltering using windows which comprise only similar pixels from the

pixel neighborhood yield better estimate of the origin pixel compared to �ltering

using the general shape windows (squares). This can be explained by lower bias

component of estimate obtained from window of similar pixels.

Anisotropic LPA for each pixel determines its own neighborhood of similar pixels

which is used as a window for averaging [8]. Ideally, the optimal window should:

1) comprise as much as possible similar pixels to decrease variance of the estimate;

2) keep pixels similarity at a high level to decrease bias of the estimate.

It is hard to reach both of these conditions and obtain an optimal window which

comprises only desired pixels. Practically, optimal window is replaced by its approx-

imation which has some shape restrictions (e. g. start-shaped)[14].

These restrictions allow to obtain approximation of optimal window as a union of

windows of some particular shape. For example, neighborhood of the pixel can be

divided into conical sectors (origin pixel � their apex) or as a set of rays (origin pixel

� their initial point). The task of optimal window determination can be reduced to

the separate determinations of the optimal windows in particular directions, union

of which comprises approximation of the optimal window (see Figure 2.6). These

windows can be characterized by their linear size or scale parameter [7]. Further

simpli�cation of this process can be achieved by approximation of the optimal scale

parameter with one picked from a �xed set of scales. To determine which scale

corresponds to the optimal window (for a particular direction) so-called ICI-rule

was developed [13].

Figure 2.6: Approximation of optimal support and aggregation of directional estimates.

The idea of the ICI method is in following: for every scale (denoted by h) from

a scale set with some probability p true value y(x) is located in the vicinity of its

estimate ŷh(x). This vicinity depends on the scale and is called as a con�dence

interval (denoted by D). It can be shown [6] that the radius of the con�dence

interval is σŷh(x) · Γ (D = [ŷh(x) − σŷh(x) · Γ, ŷh(x) + σŷh(x) · Γ]), where σŷh(x) is a

standard deviation of an estimate ŷh(x) and Γ is some parameter that depends on

the probability p and a pixel similarity in the signal y.

8

Figure 2.7: The ICI rule.

Con�dence intervals may intersect. This intersection with some probability con-

tains true value of y(x). As scale h increases, corresponding window size increases

and σŷh(x) decreases. Therefore, radius of the con�dence interval decreases with the

growth of h. ICI-rule states that as an optimal scale one should choose the largest

scale for which intersection of all con�dence intervals corresponding to the scales less

or equal than this is not empty (see Figure 2.7). In other words, ifH = {h1, h2, ...hN}
is a set of the scales in the ascendant order, then an optimal scale is de�ned as:

hopt = max
i
{hi :

⋂
j≤i

Dj 6= ∅}. (2.1)

Thus, the optimal scales for each direction are found, therefore, an optimal window

for each direction can be found and from the union of these windows the approxi-

mation of the optimal window can be obtained.

Anisotropic LPA-ICI is an example of one of the most powerful spatial domain

image �lters. Even though it is an adaptive �lter which means that the window

for each pixel is selected individually and the selection depends on image content,

it still has a free parameter Γ � the source of our further investigation and which

impact we will see in the Chapter 3.

2.2 Transform domain �lters

Transform (frequency) domain �lters constitute another class of �lters. The key

feature in transform domain �ltering is that before any enhancement image (or its

9

part) pixels are transformed. The transform is done to perform a decorrelation of

image pixels. First order Markov process with a correlation parameter close to 1 is a

well established model for pixels in a small size image blocks. Since that neighboring

image pixels usually have very high correlation, decorrelation helps us to separate

very e�ectively a signal from noise. This correlation of pixels is local, hence a best

processing is achieved by dividing image into subimages and performing �ltering

of each subimage independently. These subimages are usually called blocks (for

simplicity they have a rectangular shape). Often block is of 8 or 16 pixel width since

many transforms with the power of 2 length have fast implementation algorithms

despite of those of arbitrary length (e.g. FFT instead of DFT).

Evidently, the best decorrelating transform matrix depends on the particular data

and is known as a Karhunen-Loeve Transform (KLT) [15, Chapter 1]. The great

drawback of KLT is that its matrix should be computed every time for every image

block. The transform that is usually used instead of image-dependent KLT in image

processing is a Discrete Cosine Transform (DCT). DCT transform matrix has:

1) a �xed structure;

2) very good decorrelation properties assuming �rst order Markov process model

(approximates well KLT matrix);

3) fast computational algorithm [19].

The simplest but at the same time very powerful technique of transform domain

�ltering is a sliding window DCT �ltering ([16], [17]).

2.2.1 Sliding window DCT �ltering

Sliding window DCT (SW-DCT) performs denoising of the image by block-wise

�ltering. Blocks are of the �xed size and may overlap. If an image pixel belongs to

several blocks, the �nal estimate of it is calculated from estimates of this pixel in all

the blocks it belongs to. Usually, the more blocks contain the pixel, the better �nal

estimate for this pixel we can obtain. This can be explained by more complete use

of a pixel neighborhood.

Filtering of a block is performed as follows. Block (B) is transformed by 2D DCT

and a block of DCT coe�cients is obtained(BT = DCT2D(B)). Usually, 2D-DCT

is replaced by the consequent application of 1D DCT to block rows and to block

columns, which is called 2D separable DCT transform.

As we stated above chosen degradation model can be represented as follows:

z(x) = y(x) + n(x), where x represents 2D coordinates and n(x) ∼ N (0, σ2). This

model takes place for every image block since it takes place for the entire image.

Hence, noise is distributed in transform coe�cients uniformly (�at spectrum) while

10

useful information is decorrelated and is mostly localized in the �low frequency�

coe�cients. Therefore, the transform coe�cients which absolute value are below

some level contain mainly noise. They are suppressed (set to zero) and thereby,

some noise components are suppressed as well.

Thus, in the next step transform coe�cients are processed with the hard thresh-

olding operation (B̂T = HT (BT)):

HT (a) =

a, if |a| ≥ T

0, otherwise
,where T is a threshold.

Threshold depends (linearly) on the noise standard deviation level (λ · σ). The

factor λ before σ characterizes how hard the noise is suppressed. It was shown that,

in general, the best threshold level is around 2.7 · σ [18].

Hard thresholding is a main part of denoising itself. After that, inverse 2D-DCT

is applied to the block of �ltered coe�cients: B̂ = IDCT2D(B̂T). As an output the

�ltered image block in spatial domain is obtained.

Since the �lter is applied block-wise, there are have two possible choices:

1. Divide an image into non-overlapping blocks and obtain �ltered image as a set

of �ltered blocks.

2. Filter all possible blocks (or some of them) so that for each pixel there is at

least one estimate (there is at least one block that contains that pixel).

The �rst choice provides poorly reconstructed image, but no aggregation is needed.

Non-overlapping block processing in 2D DCT domain resembles the principle of

JPEG [27] image compression. Second option demands some aggregation to com-

bine estimates of the same pixel from di�erent blocks into the �nal estimate. Two

types of aggregation are usually used:

1. Simple averaging of all estimates.

2. Weighted averaging where a weight for an estimate from each block equals to

the reciprocal of amount of non-zero DCT coe�cients in this block after hard

thresholding.

The second aggregation type corresponds to the maximum likelihood solution [22]

(see Appendix A). This aggregation type gives a larger weight to the homogeneous

blocks. Thus, e. g. blocks with edges have smaller weight than those around the

edge. Therefore, the border e�ect of edge denoising can be reduced.

Worth to mention that instead of DCT transform one can use other transforms

for sliding window �ltering. For example, Haar or wavelet transforms may be used

11

to save the computational time or perform better decorrelation if image pixels model

is di�erent.

There are several parameters in SW-DCT algorithm: block size, block shift (or

more generally distribution of the blocks within the image) and thresholding coe�-

cient λ. Each of them has di�erent impact on �ltering quality depending on image

content. We will study this dependence in Chapters 3 and 4.

2.2.2 Empirical Wiener �lter

Empirical Wiener �lter is a modi�cation that can be applied to SW-DCT �ltering.

In most of the cases it gives �ltered image quality improvement. Empirical Wiener

�lter is based on the idea of Wiener �lter.

Suppose, we have a signal y(t) and an observation of this signal degraded with

an additive noise n(t):

z(t) = y(t) + n(t) (2.2)

Assume, we would like to get a signal g(t) which being convolved with the de-

graded signal z(t) yields an estimate of the original signal y(t):

ŷ(t) = g(t) ? z(t) (2.3)

Wiener �lter allows to determine optimal signal g(t) that minimizes MSE of the

estimate. Assuming that, N(f) is the noise signal and Y (f) is the original signal in

the transform domain, we can get by the formula for g(t) in transform domain as

follows:

G(f) =
1

1 + |N(f)|2
|Y (f)|2

. (2.4)

Therefore, the estimate in the transform domain is:

Ŷ (f) = G(f) · Z(f). (2.5)

Signal g(t) is usually applied in the frequency domain since it has very simple form

there, but it can be applied in the spatial domain too. An image can be considered

as a locally stationary signal[20]. Hence, the signal g(t) can be windowed and

convolution g(t) ? z(t) which provides an optimal estimate of signal y(t) can be

performed locally. Therefore, �ltering can be performed locally in the frequency

domain: determine G(f) for each local part of a signal (block) and apply it in

frequency domain.

Since we do not have an original signal (y(t)), empirical approach implies a use

of some estimate of this signal. In application to SW-DCT as an original signal we

12

use an estimate obtained from SW-DCT �ltering [21].

Empirical Wiener �lter can be considered as a more advanced way of thresholding.

In hard thresholding coe�cients are either totally suppressed (set to zero) or remain

unchanged. In the case of Wiener �lter every coe�cient is multiplied by some factor

≤ 1 which performs suppression more accurately.

In the previous section of this thesis we were studying spatial and frequency

domain �lters. Each of these types of �lters use di�erent information from the image

and even though frequency domain �lters generally perform better, they do not take

into account spatial similarity of image pixels coming from di�erent blocks. Most of

modern �lters are actually combined (SA-DCT[22], BM3D[25]). In these algorithms

�ltering is performed by a modi�cation of transform domain hard thresholding.

But the data for �ltering are collected from the spatial domain considering pixel

similarity. This is an important step which helps to decorrelate data in a better way

and, therefore, to �lter it more qualitatively. In the following sections we will brie�y

review features of SA-DCT and BM3D.

2.3 SA-DCT �ltering

Shape adaptive DCT (SA-DCT) �lter for better denoising uses complex-shaped

windows which comprise neighborhood of similar pixels [23, Chapter 3]. It lets to

achieve stronger pixel decorrelation which in turn yields better noise suppression.

SA-DCT can be described as a combination of elements from LPA-ICI and SW-

DCT. Complex-shaped blocks are �ltered with 2D DCT hard thresholding. It is

performed as two 1D transforms row-wise and column-wise as in SW-DCT. Blocks

for processing are determined pixel-wise via LPA-ICI algorithm.

In the considered implementation [22] block of similar pixels is determined for each

pixel using several LPA-ICI runs for rays in (eight) di�erent directions. All the ray

start at the original pixel. Determination of best ray length is performed according

to ICI rule, which uses Γ parameter as well as anisotropic LPA-ICI algorithm. End

positions of rays form a (possibly concave) polygon (octagon). This polygon is

considered as a region of similar pixels.

Compared to SW-DCT there are several modi�cations in the block denoising

phase in SA-DCT. The length of the rows generally may be di�erent. Since that,

coe�cients obtained after �rst 1D transform are aligned. Alignment is performed in

a way that coe�cients representing similar frequencies are processed together during

the second 1D transform along the columns[24, Chapter 2].

Block in SA-DCT is not rectangular, therefore order of execution of 1D transforms

a�ects the result. If the longest column is longer that the longest row, columns are

processed �rst, otherwise rows are processed �rst.

Additionally, di�erent length of rows and columns may cause so called �mean

13

weighting defect� [33]. To prevent this phenomenon before separable 2D DCT an

average value of the block is subtracted from all its pixels.

Since block in SA-DCT has a variable size, hard thresholding coe�cient in SA-

DCT depends on the amount of pixels in a block (denoted by N). In general λ is

calculated by the following formula: λ = α
√

2 logN + 1. Coe�cient α represents

the strength of the noise suppression. In the considered implementation of SA-DCT

it has a constant value: α = 0.77.

The entire process is illustrated in Figure 2.8([22]).

Figure 2.8: SA-DCT scheme.

There are two parameters which have to be set for �ltering: Γ and α. As we

studied in LPA-ICI, the �rst parameter is responsible for bias/variance trade-o�, i.

e. in this case it is a criterion of pixel similarity in the block. The second parameter

is a thresholding coe�cient very similar to the one used in SW-DCT but since in

SA-DCT the shape and size of the block vary and correlation of pixels is generally

higher than in SW-DCT, there are some feature of this coe�cient. The in�uence of

these parameters will be studied in the Chapter 3.

Finally, we will brie�y overview BM3D algorithm as a state-of-the-art image

denoising algorithm.

2.4 Block Matching 3D �ltering

The basic idea of Block Matching 3D �ltering (BM3D) is a collaborative �ltering.

Similarly to SW-DCT, BM3D is performed block-wise and it uses blocks of �xed

size. But for better decorrelation similar 2D blocks are grouped up to 3D structures,

which are thresholded in transform domain. After that each block from a �ltered

3D structure is aggregated with some weight to form a �nal image estimate.

14

When �ltering a block, BM3D searches for similar blocks in some neighborhood

of the current one. Similarity is usually determined by MSE di�erence. If the MSE

is below some threshold block is considered to be �similar�, otherwise it is not. MSE

can be also calculated between blocks of 2D transform (DCT) coe�cients. Several

most similar block along with the current one are grouped up into a 3D structure.

Size of the 3rd dimension is determined depending on how many �similar� blocks

can be found in the neighborhood.

Each block in a 3D structure is transformed with a 2D transform. In addition to

the 2D transforms, a 3rd dimension transform is applied to reduce between-block

correlations. Transform in the 3rd dimension may di�er from 2D transform used. It

may be a simpler transform (e. g. Haar).

After �ltering of a 3D structure, each of the obtained �ltered blocks is placed to

the accumulative bu�er to its corresponding position multiplied by a corresponding

weight. Weight is determined according to one of the techniques described in the

previous chapter (SW-DCT). The scheme of BM3D is shown in the Figure 2.9([25]).

Figure 2.9: BM3D scheme.

BM3D algorithm has several parameters, which are �xed during the �ltering

process. It inherits all parameters from SW-DCT and, additionally, has settings

responsible for block matching. Examples of these parameters are: range of search

and thresholding MSE (which limits the maximum MSE for the blocks similarity).

15

BM3D is the last denoising algorithm that we review in this chapter. It is currently

one of the best image noise suppression approaches [34, Chapter 7.2] and in out study

we will mostly focus on the classi�cation-based improvement of this algorithm.

Speaking about image areas we were using only empirical criteria for its de�ni-

tion. However, for automatic adaptive denoising one should use some classi�cation

algorithm to separate image areas. Hence, before we start the analysis we have to

introduce an image segmentation tool.

2.5 Image segmentation

Image pixel classi�cation algorithm is very important part of our study since smart

classi�cation allows us to utilize features of particular class for better �ltering, while

inappropriate classi�cation won't provide us any bene�ts. Even though there are

many image segmentation techniques it is very hard to �nd an appropriate one.

Some of them provide division of an image only into two classes [10], others demand

long time processing [11]. In this work, we use classi�cation algorithm based on

processing of 2D DCT image blocks [9].

In this algorithm three types of image areas are distinguished:

1. Plain areas. We can utilize high pixels similarity of these regions, using larger

windows or suppressing noise harder with larger thresholding coe�cients.

2. Texture areas. Pixel similarity is very low, thus estimates based on averaging

will have high bias. Complex �ltering approaches should be used to preserve

image details.

3. Edge areas. One can utilize strict shape of an edge to decrease computational

time (e. g. simplify block matching in BM3D) or improve quality (preserve

edges).

For the classi�cation of image pixels block classi�cation is used. It is not so accu-

rate as a classi�cation of each pixel independently, but fast enough not to in�uence

�ltering algorithm speed which is important. Additionally, BM3D and SW-DCT

need 2D DCT blocks for their processing, hence overhead for classi�cation is even

more negligible in case one uses these algorithms for �ltering.

For the classi�cation, an image is divided into 8 × 8 blocks and 2D DCT is

calculated for each of these blocks. After that, in each block all AC coe�cients are

divided into three groups: low frequencies, high frequencies and those coe�cients

corresponding to edges (Figure 2.10). For each group, sum of the absolute values

of the coe�cients is calculated (three numbers). Based on these sums, all pixels

belonging to a block are classi�ed to one of three classes. Several conditions which

16

indicate belonging to the particular class were experimentally determined. In details,

let's denote the sum of absolute values of edge coe�cients as E and sum of absolute

values of low and high frequency coe�cients as L and H, respectively. Then, a

classi�cation algorithm can be written as in the following pseudo-code:

mu_1 = 125

mu_2 = 900

alpha_1 = 2.3

alpha_2 = 1.4

beta_1 = 1.6

beta_2 = 1.1

gamma = 4

kappa = 290

IF(E+H > mu_1) THEN

IF(E+H > mu_2) THEN

IF(((L/E >= alpha_2) AND ((L+E)/H >= beta_2)) OR

((L/E >= beta_2) AND ((L+E)/H >= alpha_2)) OR

((L+E)/H >= gamma)) THEN

EDGE

ELSE

TEXTURE

ELSE

IF(((L/E >= alpha_1) AND ((L+E)/H >= beta_1)) OR

((L/E >= beta_1) AND ((L+E)/H >= alpha_1)) OR

((L+E)/H >= gamma)) THEN

EDGE

ELSEIF(E+H > kappa) THEN

TEXTURE

ELSE

SMOOTH

ELSE

SMOOTH

Using this classi�cation we can perform adaptive processing schemes for the

blocks. Separation to smooth and texture areas helps us to obtain the right value for

the coe�cients which represent bias/variance trade-o�. Therefore, one can achieve

either better noise suppression or more accurate details preservation. Determination

of edge regions may help to pay more attention to the color change preservation.

Additionally, one can use it to decrease a computational time for similar blocks

17

DC

AC: high frequencies

AC: responsible for edge

AC: low frequencies

Figure 2.10: Coe�cients separation.

determination (e. g. in BM3D algorithm).

18

3. IMAGE FILTERING WITH CLASSIFICATION

In the previous chapter we reviewed basic principles of several �ltering techniques of

di�erent types (spatial domain, transform domain, combined spatial and transform

domain). Additionally, we reviewed a segmentation tool that provides us an ability

to analyze separately features of di�erent image content classes, namely what �lters

and what settings are the most suitable for each class.

In this chapter we will study dependence of the �ltering quality (measured in

PSNR) on di�erent �lter parameters. We want to show optimal (from PSNR of

�ltered image point of view) values of parameters individual for each content class.

Therefore, content-dependent �ltering can improve a quality of the �ltered image

compared to the baseline approach, where the same settings are applied to the entire

image.

For this purpose we will perform image �ltering with the range of values for its

parameters. After that, we will observe change of the PSNR for the entire image and

for each content class separately. From these observations we can determine optimal

values of the parameters for the entire image and compare them with the optimal

values of the parameters for each of the content classes. Knowing optimal parameters

for each class we can perform �ltering with adaptive parameter application. From

this application we expect to get more qualitative �ltering.

For the experiments we will use test image set of widely used images: �Barbara�,

�Cameraman� and �Lenna� (Figure 3.1). Their content classi�cation which is used

further in this chapter is shown in Figure 3.2. We perform our study of the algo-

rithms in the same order as in the previous chapter: from simple to more complex

ones. Hence our �rst step is LPA-ICI.

3.1 LPA-ICI with classi�cation

As it was mentioned in the previous chapter, parameter Γ in the LPA-ICI algorithm

is responsible for the pixel neighborhood size. Γ controls neighborhood size by

controlling the pixel similarity in the pixel neighborhood, because if we accept less

similar pixels the size of the neighborhood can be larger. Since that, the choice of

this parameter value depends on the bias/variance trade-o� and its optimal value

should be di�erent for di�erent image content classes.

In order to determine optimal Γ's we observed dependence of calculated PSNR

19

(a) Barbara (b) Cameraman (c) Lenna

Figure 3.1: Test images

(a) Barbara (b) Cameraman (c) Lenna

Figure 3.2: Test image content classi�cation [9]: black � �smooth�, gray � �edge�, white �
�texture�

on this parameter. We degraded each image with white Gaussian noise of di�erent

magnitudes and after that we �ltered degraded images with the range of Γ values

from 0.5 to 2.0 with the step 0.05. Dependences of PSNR on Γ for the entire image

and content classes can be seen in Figure 3.6.

In the original article it is recommended to use Γ = 1.05[6, Chapter 2.4.4]) as the

optimal value for the entire image. Optimal Γ for the entire image in our experiments

agrees with this value for the low noise. Heavy noise usually demands higher values

for the optimal �ltering. Dependences of calculated PSNR on Γ are show in Figure

3.6. Optimal Γ are the argument values corresponding to the peaks of the shown

curves. For convenience the exact values are shown in Table 3.1. Ideally, each of the

classes should be �ltered with the corresponding optimal Γ value. We can get two

important observations from the consideration of separate content classes �ltering:

1. The result of the �ltering of smooth areas gives much higher PSNR than that

of texture and edge areas of the image.

2. Optimal Γ's for the �Texture� and �Smooth� areas di�er from the optimal Γ

20

Γ
Image Entire Smooth Edge Texture

Barbara, σ = 20 1.0 1.25 1.10 0.9
Cameraman, σ = 20 1.05 1.30 1.05 1.0

Lenna, σ = 20 1.1 1.25 1.1 0.95
Barbara, σ = 40 1.05 1.30 1.10 0.95

Cameraman, σ = 40 1.10 1.45 1.0 1.0
Lenna, σ = 40 1.2 1.35 1.1 1.0
Barbara, σ = 60 1.15 1.35 1.15 1.1

Cameraman, σ = 60 1.1 1.5 1.0 1.05
Lenna, σ = 60 1.2 1.4 1.15 1.1

Table 3.1: Optimal Γ values for LPA-ICI �ltering.

for the entire image.

The �rst observation means that from PSNR point of view error of estimate

for the �Smooth� class is much lower than that for the �Texture� class. Therefore,

improvement in �Texture� class is more important than that in the �Smooth� class.

Hence, drop in quality in the �Smooth� class impacts less on the overall image PSNR

than the same drop in �Texture� class.

The second observation is consistent with the assumption about pro�tability of

a content-dependent parameter usage. As it was mentioned, in general the optimal

value for the �ltering is Γ = 1.05. Therefore, one can see that texture regions

demand lower than average Γ, while smooth regions require greater than average

Γ. Thus, by using separate values for Γ for di�erent classes we get PSNR gain in

the combined image for the cost of classi�cation. Let's denote an image, which is a

union of pixels from three classes each of which is �ltered with its own optimal Γ,

as a combined image. Table 3.2 shows that combined image has better PSNR than

the image which is entirely �ltered with the same Γ value (Γ = 1.05).

Figure 3.3 demonstrates visual comparison between LPA-ICI and LPA-ICI with

adaptive Γ selection. One can see that fragments with adaptive approach have been

clearly �ltered and have more pleasant looking smooth areas with less noise.

Thereby, a use of additional information such as image area classi�cation can

improve image �ltering quality for the spatial domain �ltering. This result will be

considered further in SA-DCT �ltering. We will see later that restoration quality of

LPA-ICI is very poor compared to other �ltering algorithms and its processing does

not suit well for our block-wise classi�cation. The next step is to study possible

improvements for transform domain algorithms.

21

PSNR
Image LPA-ICI Combined LPA-ICI

Barbara, σ = 20 27.47 27.64
Cameraman, σ = 20 29.28 29.42

Lenna, σ = 20 30.71 30.87
Barbara, σ = 40 23.83 24.02

Cameraman, σ = 40 25.52 25.79
Lenna, σ = 40 27.50 27.73
Barbara, σ = 60 22.54 22.59

Cameraman, σ = 60 23.30 23.62
Lenna, σ = 60 25.72 25.95

Table 3.2: Comparison of calculated PSNR for images �ltered with LPA-ICI with the same
Γ for the entire image and combined image.

3.1.1 SW-DCT with classi�cation

Optimal value of thresholding coe�cient (λ) of SW-DCT may depend on the image

content as well as the value of Γ in LPA-ICI. It is recommended to use �xed value

of thresholding coe�cient (λ = 2.7) which is usually an optimal value for the entire

image (yields highest PSNR). But, as it was mentioned above, the optimal value can

di�er for di�erent types of image content. To test this hypothesis we made series of

denoising experiments with di�erent λ value from 1.3 to 4.0 with step 0.1 applied

to test images, which were degraded with white Gaussian noise with several levels

of standard deviations.

Results of the experiments are shown in Figure 3.7. Table 3.3 presents arguments

of curve peaks from Figure 3.7. One can see that for plane region the optimal hard

thresholding coe�cient λ is higher than default one and for the texture region it

is lower. Moreover, the diversity of the optimal value for the same noise and the

same region type for di�erent images is low (±0.1). Therefore, e. g. for noise σ = 20

we can use separate values for λ: 2.4 for texture and around 3.0 for smooth areas.

Optimal λ for the edge region varies from image to image and single value can not

be determined. The last observation can be explained by the fact that edge area is

heterogeneous and two di�erent areas meet there: smooth and smooth area, smooth

and texture area or texture and texture area. Therefore, in average it does not have

any special properties except the pixel color intensity leap.

Comparison of PSNR for images which are entirely �ltered with the same value

of λ and images with own λ value for each region is shown in Table 3.4.

Visual comparison of SW-DCT and SW-DCT with adaptive λ selection (Figure

3.4) shows that adaptive approach allows to suppress more noise in the image. In

a fragment �ltered with simple SW-DCT one can notice some pattern left by the

unsuppressed high frequency coe�cients on the �at areas. In the adaptive SW-DCT

22

λ
Image Entire Smooth Edge Texture

Barbara, σ = 20 2.6 3.0 2.7 2.4
Cameraman, σ = 20 2.5 3.1 2.5 2.3

Lenna, σ = 20 2.7 3.0 2.7 2.4
Barbara, σ = 40 2.6 3.2 2.8 2.4

Cameraman, σ = 40 2.6 3.4 2.4 2.5
Lenna, σ = 40 2.8 3.4 2.7 2.5
Barbara, σ = 60 2.6 3.4 2.8 2.5

Cameraman, σ = 60 2.7 3.5 2.5 2.5
Lenna, σ = 60 2.9 3.5 2.8 2.6

Table 3.3: Optimal λ values.

PSNR
Image LPA-ICI Combined SW-DCT

Barbara, σ = 20 30.07 30.23
Cameraman, σ = 20 29.61 29.99

Lenna, σ = 20 32.15 32.34
Barbara, σ = 40 26.21 26.50

Cameraman, σ = 40 26.22 26.56
Lenna, σ = 40 28.80 29.14
Barbara, σ = 60 24.16 24.43

Cameraman, σ = 60 24.29 24.63
Lenna, σ = 60 26.82 27.20

Table 3.4: Comparison of calculated PSNR for images �ltered with SW-DCT with the
same λ for the entire image and combined image.

this pattern is weaker and the image seems to be �ltered clearer.

In case of SW-DCT image blocks classi�cation demands less computations than

that in the spacial domain case (since forward 2D DCT is calculated anyway). At

the same time, we can make an important observation: classi�cation provides an

information that improves �ltering.

Additionally, classi�cation is not only helping us to increase �ltering quality but

also may speed up �ltering. Larger thresholding coe�cient for smooth regions leaves

less DCT coe�cients and, therefore, the inverse DCT can be performed faster in a

reduced way (e. g. if all coe�cient except the DC value are zeros, all the values in

the block after the inverse DCT are the same).

SW-DCT showed acceptable �ltering quality performance, presence of ways for

its acceleration and convenience for classi�er use. Here we �nish our study of pure

�lters and move to the combined ones. The �rst algorithm to analyze is a Shape-

adaptive DCT.

23

Γ
Image Entire Smooth Edge Texture
Barbara, σ = 20 3.0 1.6 3.0 3.0
Cameraman, σ = 20 1.4 1.5 1.6 1.4
Lenna, σ = 20 1.8 1.6 1.7 2.2
Barbara, σ = 40 3.0 1.5 2.0 3.0
Cameraman, σ = 40 1.2 1.5 1.1 1.1
Lenna, σ = 40 1.6 1.6 1.4 2.4
Barbara, σ = 60 3.0 1.5 2.4 3.0
Cameraman, σ = 60 1.4 1.6 1.1 1.1
Lenna, σ = 60 1.6 1.6 1.4 1.7

Table 3.5: Optimal Γ values.

α
Image Entire Smooth Edge Texture
Barbara, σ = 20 0.75 0.85 0.8 0.75
Cameraman, σ = 20 0.75 0.9 0.8 0.7
Lenna, σ = 20 0.8 0.85 0.8 0.75
Barbara, σ = 40 0.75 0.9 0.8 0.7
Cameraman, σ = 40 0.75 0.95 0.75 0.75
Lenna, σ = 40 0.8 0.9 0.8 0.75
Barbara, σ = 60 0.8 0.9 0.8 0.75
Cameraman, σ = 60 0.8 0.95 0.7 0.75
Lenna, σ = 60 0.85 0.95 0.8 0.75

Table 3.6: Optimal α values.

3.2 SA-DCT with classi�cation

In this section we will observe impact of Γ and α parameters on SA-DCT �ltering.

Parameter Γ is responsible for the size of the block and homogeneity of pixels in the

block. While α is used in hard thresholding. From [22] we know that in average the

best values for the entire image are α = 0.77, Γ = 1.5. In our analysis we �x one of

these parameters to the optimal value for the entire image and vary the other one.

In the �rst experiment we �x α = 0.75 and vary Γ from 0.5 to 5.0 with the step

0.05. In the second experiment we �x Γ = 1.5 and vary α from 0.5 to 1.2 with the

step 0.05. The results for both of these experiments are shown in Figures 3.8 and

3.9 respectively. Arguments for the curve peaks for these �gures are presented in

Tables 3.6 and 3.5.

From the Figure 3.8 one can see that, unfortunately, we can not get improvement

from adaptive Γ parameter use. For the smooth and edge areas the best value of Γ is

close to one used for the entire image. The optimal value for the Γ in texture areas

can be both larger and less than the optimal value for the entire image. Large value

24

of optimal Γ for the �Texture� in the �Barbara� image is caused by �phenomenon

of trousers pattern� This phenomenon we will observe in the next chapter about

SW-DCT (Table 4.1). Thus, we can not utilize di�erent values of Γ since we do not

have a tool that can determine such kind of texture, which demands large window

size for its �ltering.

Figure 3.9 depicts the same behaviour for α as for λ in SW-DCT: smooth areas

should be �ltered with larger than average (0.77) values of hard thresholding coef-

�cient, while smaller values should be used for the texture areas. Unfortunately, in

case of SA-DCT an adaptive approach yield very low PSNR increase (less than 0.1

dB) and low improvement of visual quality (indistinguishable) compared to usual

SA-DCT. Since that we will not use it in our future development.

From comparison in Figures 3.7 and 3.9 one can notice that the value of PSNR in

�Smooth� areas �ltered with SA-DCT is higher than that in the smooth areas �ltered

with SW-DCT. From PSNR point of view one should use SA-DCT for smooth region

instead of SW-DCT. But in terms of time consumption in SA-DCT we pay for the

block shape determination (the process which is absent in SW-DCT). Additionally,

in block processing we cannot use only fast transforms since block size is not �xed.

Moreover, PSNR improvement in smooth areas is not as signi�cant as in others.

The PSNR there is higher than in any other areas, hence, the contribution made to

the entire image from this area improvement is minor. Therefore, we will not use

SA-DCT for �Smooth� areas.

We nearly �nish our analysis of possible contributions, which can be made by the

classi�cation being applied to the �ltering process. The last algorithm, which is left

to analyse is a powerful BM3D.

3.3 BM3D �ltering with classi�cation

As in SW-DCT case, separate use of hard thresholding coe�cient λ for di�erent

classes may signi�cantly improve the quality of �ltering. It is directly responsible

for the noise suppression. Thus, we will study it �rst. As in the SW-DCT, range

for λ for the experiments was chosen from 1.3 to 4 with the step 0.1. The results of

these experiments are shown in Figure 3.10 and the arguments for the curve peaks

(optimal values of λ) from this �gure are shown in the Table 3.7.

From the graphs one can see that the optimal thresholding coe�cients are lower

in �Texture� areas than the coe�cient for the entire image and higher in �Smooth�.

We observed the same behaviour in the cases of SW-DCT and SA-DCT. Particular

values for λ in BM3D case di�er from λ in SW-DCT because the possibility to sup-

press noise depends on pixels correlation. The higher correlation the larger λ should

be used. Here the additional decorrelation is obtained from 3rd dimension, there-

fore, optimal thresholding coe�cients for corresponding image classes are higher in

25

λ
Image Entire Smooth Edge Texture

Barbara, σ = 20 2.8 3.2 3.0 2.6
Cameraman, σ = 20 2.6 3.5 2.6 2.4

Lenna, σ = 20 2.9 3.2 2.9 2.6
Barbara, σ = 40 2.8 3.2 3.0 2.6

Cameraman, σ = 40 2.7 3.8 2.6 2.5
Lenna, σ = 40 3.0 3.7 2.9 2.6
Barbara, σ = 60 2.9 3.7 3.0 2.7

Cameraman, σ = 60 2.9 4.0 2.7 2.7
Lenna, σ = 60 3.2 3.9 3.0 2.8

Table 3.7: Optimal λ values.

PSNR
Image BM3D Combined BM3D

Barbara, σ = 20 31.31 31.37
Cameraman, σ = 20 30.08 30.34

Lenna, σ = 20 32.56 32.67
Barbara, σ = 40 27.19 27.36

Cameraman, σ = 40 26.63 26.93
Lenna, σ = 40 29.02 29.35
Barbara, σ = 60 25.19 25.45

Cameraman, σ = 60 24.86 25.20
Lenna, σ = 60 26.97 27.56

Table 3.8: Comparison of calculated PSNR for images �ltered with BM3D with the same
λ for the entire image and combined image.

BM3D than in SW-DCT (compare Figures 3.7 and 3.10).

Comparison of quality measured in PSNR for combined images (where λ is chosen

individually for each content class) and for images where the same λ for the entire

image is presented in Table 3.8. Visual comparison is shown in Figure 3.5. One

can notice that fragments related to BM3D with content-dependent λ selection are

clearer and, therefore, better �ltered than the corresponding fragments �ltered with

BM3D.

Since we are interested in decrease of computational complexity we will also con-

sider if it is possible to decrease similar blocks search range without loosing quality.

This parameter is crucial for BM3D speed performance since block searching im-

plies MSE calculation between source block and all blocks within some range. Since

amount of MSE to be computed is approximately 4 · R2 for each block, where R is

a search range, this part takes most of the algorithm processing time. One can see

that halving the R causes reduction of computational complexity by a factor of 4. To

determine a dependence of calculated PSNR of search range we have performed ex-

26

periments with variable search range for the numbers from a set: {0, 1, 2, 4, 8, 16, 32}.
Worth to be noticed that BM3D degenerates to SW-DCT when the search range is

set to zero. Results of experiments are shown in Figure 3.11.

From the latter Figure one can see that usually the best value for search range

is 16, but it is also noticeable that for smooth area PSNR for 16 and 0 does not

di�er much. Therefore, we can use simple SW-DCT in the smooth area and greatly

decrease computational complexity. With that simpli�cation quality does not drop

much. Additionally, possible lose is located in the area where quality is high enough

anyway. In the other areas signi�cant drop in PSNR can be observed for the search

range bellow 8, while PSNR for 8 and 16 does not di�er much. Hence, we can use

value 8 instead of 16 for these areas and reduce computations almost by a factor of

4.

One more modi�cation which decreases computational complexity is fast block-

matching algorithm. During the processing full block-matching search is performed

even though search range is decreased to the local region. As it was mentioned ear-

lier, this process takes a lot of computational resources and therefore time. Several

modi�cations such as two-dimensional logarithmic search [29], diamond search [30]

and hexagon search [31] were developed and were proved to perform fast and accu-

rate block matching without signi�cant MSE growth. These techniques can further

speed-up the algorithm and they are already used in several BM3D-like implemen-

tation [32]. In this work we do not focus on the improvement of these algorithms

and none of the fast search techniques is used in the implementations.

27

(a) Barbara fragment. LPA-ICI (b) Barbara fragment. Content-dependant
LPA-ICI

(c) Cameraman fragment. LPA-ICI (d) Cameraman fragment. Content-dependant
LPA-ICI

Figure 3.3: Visual comparison between image �ltered with LPA-ICI and content-dependant
LPA-ICI.

28

(a) Barbara fragment. SW-DCT (b) Barbara fragment. Content-dependant SW-
DCT

(c) Cameraman fragment. SW-DCT (d) Cameraman fragment. Content-dependant
SW-DCT

Figure 3.4: Visual comparison between image �ltered with SW-DCT and content-
dependant SW-DCT.

29

(a) Barbara fragment. BM3D (b) Barbara fragment. Content-dependent
BM3D

(c) Cameraman fragment. BM3D (d) Cameraman fragment. Content-dependent
BM3D

Figure 3.5: Visual comparison between image �ltered with SW-DCT and content-
dependent SW-DCT.

30

0.5 1 1.5 2
20

22

24

26

28

30

32

34

Γ

P
S

N
R

 (
dB

)

(a) �Barbara�. σ = 20.

0.5 1 1.5 2
22

24

26

28

30

32

34

36

38

Γ

P
S

N
R

 (
dB

)

(b) �Cameraman�. σ = 20.

0.5 1 1.5 2
22

24

26

28

30

32

34

36

Γ

P
S

N
R

 (
dB

)

(c) �Lena�. σ = 20.

0.5 1 1.5 2
16

18

20

22

24

26

28

30

32

Γ

P
S

N
R

 (
dB

)

(d) �Barbara�. σ = 40.

0.5 1 1.5 2
16

18

20

22

24

26

28

30

32

34

Γ

P
S

N
R

 (
dB

)

(e) �Cameraman�. σ = 40.

0.5 1 1.5 2
18

20

22

24

26

28

30

32

Γ

P
S

N
R

 (
dB

)

(f) �Lena�. σ = 40.

0.5 1 1.5 2
14

16

18

20

22

24

26

28

30

Γ

P
S

N
R

 (
dB

)

(g) �Barbara�. σ = 60.

0.5 1 1.5 2
14

16

18

20

22

24

26

28

30

32

Γ

P
S

N
R

 (
dB

)

(h) �Cameraman�. σ = 60.

0.5 1 1.5 2
14

16

18

20

22

24

26

28

30

Γ

P
S

N
R

 (
dB

)

Entire image

Smooth

Edge

Texture

(i) �Lena�. σ = 60.

Figure 3.6: Dependence of calculated PSNR on Γ for LPA-ICI �ltering.

31

1.5 2 2.5 3 3.5 4
25

26

27

28

29

30

31

32

33

34

35

λ

P
S

N
R

 (
dB

)

(a) �Barbara�. σ = 20.

1.5 2 2.5 3 3.5 4
24

26

28

30

32

34

36

38

λ

P
S

N
R

 (
dB

)

(b) �Cameraman�. σ = 20.

1.5 2 2.5 3 3.5 4
24

26

28

30

32

34

36

λ

P
S

N
R

 (
dB

)

(c) �Lena�. σ = 20.

1.5 2 2.5 3 3.5 4
20

22

24

26

28

30

32

34

λ

P
S

N
R

 (
dB

)

(d) �Barbara�. σ = 40.

1.5 2 2.5 3 3.5 4
18

20

22

24

26

28

30

32

34

36

λ

P
S

N
R

 (
dB

)

(e) �Cameraman�. σ = 40.

1.5 2 2.5 3 3.5 4
20

22

24

26

28

30

32

34

λ

P
S

N
R

 (
dB

)

(f) �Lena�. σ = 40.

1.5 2 2.5 3 3.5 4
16

18

20

22

24

26

28

30

32

λ

P
S

N
R

 (
dB

)

(g) �Barbara�. σ = 60.

1.5 2 2.5 3 3.5 4
16

18

20

22

24

26

28

30

32

λ

P
S

N
R

 (
dB

)

(h) �Cameraman�. σ = 60.

1.5 2 2.5 3 3.5 4
16

18

20

22

24

26

28

30

32

λ

P
S

N
R

 (
dB

)

Entire image
Smooth
Edge
Texture

(i) �Lena�. σ = 60.

Figure 3.7: Dependence of calculated PSNR on λ for SW-DCT �ltering.

32

0.5 1 1.5 2 2.5 3
22

24

26

28

30

32

34

36

Γ

P
S

N
R

 (
dB

)

(a) �Barbara�. σ = 20.

0.5 1 1.5 2 2.5 3
24

26

28

30

32

34

36

38

Γ

P
S

N
R

 (
dB

)

(b) �Cameraman�. σ = 20.

0.5 1 1.5 2 2.5 3
24

26

28

30

32

34

36

Γ

P
S

N
R

 (
dB

)

(c) �Lena�. σ = 20.

0.5 1 1.5 2 2.5 3
18

20

22

24

26

28

30

32

Γ

P
S

N
R

 (
dB

)

(d) �Barbara�. σ = 40.

0.5 1 1.5 2 2.5 3
20

22

24

26

28

30

32

34

Γ

P
S

N
R

 (
dB

)

(e) �Cameraman�. σ = 40.

0.5 1 1.5 2 2.5 3
20

22

24

26

28

30

32

34

Γ

P
S

N
R

 (
dB

)

(f) �Lena�. σ = 40.

0.5 1 1.5 2 2.5 3
16

18

20

22

24

26

28

30

Γ

P
S

N
R

 (
dB

)

(g) �Barbara�. σ = 60.

0.5 1 1.5 2 2.5 3
16

18

20

22

24

26

28

30

32

Γ

P
S

N
R

 (
dB

)

(h) �Cameraman�. σ = 60.

0.5 1 1.5 2 2.5 3
18

20

22

24

26

28

30

Γ

P
S

N
R

 (
dB

)

Entire image
Smooth
Edge
Texture

(i) �Lena�. σ = 60.

Figure 3.8: Dependence of calculated PSNR on Γ for SA-DCT �ltering.

33

0.6 0.8 1 1.2
24

26

28

30

32

34

36

α

P
S

N
R

 (
dB

)

(a) �Barbara�. σ = 20.

0.6 0.8 1 1.2
24

26

28

30

32

34

36

38

α

P
S

N
R

 (
dB

)

(b) �Cameraman�. σ = 20.

0.6 0.8 1 1.2
26

27

28

29

30

31

32

33

34

35

36

α

P
S

N
R

 (
dB

)

(c) �Lena�. σ = 20.

0.6 0.8 1 1.2
20

22

24

26

28

30

32

34

α

P
S

N
R

 (
dB

)

(d) �Barbara�. σ = 40.

0.6 0.8 1 1.2
20

22

24

26

28

30

32

34

36

α

P
S

N
R

 (
dB

)

(e) �Cameraman�. σ = 40.

0.6 0.8 1 1.2
20

22

24

26

28

30

32

34

α

P
S

N
R

 (
dB

)

(f) �Lena�. σ = 40.

0.6 0.8 1 1.2
18

20

22

24

26

28

30

32

α

P
S

N
R

 (
dB

)

(g) �Barbara�. σ = 60.

0.6 0.8 1 1.2
18

20

22

24

26

28

30

32

34

α

P
S

N
R

 (
dB

)

(h) �Cameraman�. σ = 60.

0.6 0.8 1 1.2
18

20

22

24

26

28

30

32

α

P
S

N
R

 (
dB

)

Entire image
Smooth
Edge
Texture

(i) �Lena�. σ = 60.

Figure 3.9: Dependence of calculated PSNR on α for SA-DCT �ltering.

34

1.5 2 2.5 3 3.5 4
24

26

28

30

32

34

36

λ

P
S

N
R

 (
dB

)

(a) �Barbara�. σ = 20.

1.5 2 2.5 3 3.5 4
24

26

28

30

32

34

36

38

λ

P
S

N
R

 (
dB

)

(b) �Cameraman�. σ = 20.

1.5 2 2.5 3 3.5 4
24

26

28

30

32

34

36

λ

P
S

N
R

 (
dB

)

(c) �Lena�. σ = 20.

1.5 2 2.5 3 3.5 4
20

22

24

26

28

30

32

34

λ

P
S

N
R

 (
dB

)

(d) �Barbara�. σ = 40.

1.5 2 2.5 3 3.5 4
20

22

24

26

28

30

32

34

36

λ

P
S

N
R

 (
dB

)

(e) �Cameraman�. σ = 40.

1.5 2 2.5 3 3.5 4
20

22

24

26

28

30

32

34

λ

P
S

N
R

 (
dB

)

(f) �Lena�. σ = 40.

1.5 2 2.5 3 3.5 4
16

18

20

22

24

26

28

30

32

λ

P
S

N
R

 (
dB

)

(g) �Barbara�. σ = 60.

1.5 2 2.5 3 3.5 4
16

18

20

22

24

26

28

30

32

34

λ

P
S

N
R

 (
dB

)

(h) �Cameraman�. σ = 60.

1.5 2 2.5 3 3.5 4
16

18

20

22

24

26

28

30

32

λ

P
S

N
R

 (
dB

)

Entire image
Smooth
Edge
Texture

(i) �Lena�. σ = 60.

Figure 3.10: Dependence of calculated PSNR on Γ for BM3D �ltering.

35

0 10 20 30
27

28

29

30

31

32

33

34

35

Radius of neighbourhood

P
S

N
R

 (
dB

)

(a) �Barbara�. σ = 20.

0 10 20 30
26

28

30

32

34

36

38

Radius of neighbourhood

P
S

N
R

 (
dB

)

(b) �Cameraman�. σ = 20.

0 10 20 30
28

29

30

31

32

33

34

35

Radius of neighbourhood

P
S

N
R

 (
dB

)

(c) �Lena�. σ = 20.

0 10 20 30
23

24

25

26

27

28

29

30

31

32

Radius of neighbourhood

P
S

N
R

 (
dB

)

(d) �Barbara�. σ = 40.

0 10 20 30
22

24

26

28

30

32

34

Radius of neighbourhood

P
S

N
R

 (
dB

)

(e) �Cameraman�. σ = 40.

0 10 20 30
24

25

26

27

28

29

30

31

32

Radius of neighbourhood

P
S

N
R

 (
dB

)

(f) �Lena�. σ = 40.

0 10 20 30
21

22

23

24

25

26

27

28

29

30

Radius of neighbourhood

P
S

N
R

 (
dB

)

(g) �Barbara�. σ = 60.

0 10 20 30
21

22

23

24

25

26

27

28

29

30

31

Radius of neighbourhood

P
S

N
R

 (
dB

)

(h) �Cameraman�. σ = 60.

0 10 20 30
22

23

24

25

26

27

28

29

30

Radius of neighbourhood

P
S

N
R

 (
dB

)

Entire image
Smooth
Edge
Texture

(i) �Lena�. σ = 60.

Figure 3.11: Dependence of calculated PSNR on radius of neighbourhood for BM3D �lter-
ing.

36

4. SW-DCT MODIFICATIONS

In the previous chapter while considering SW-DCT we were using its version with

the following options:

1) �oating point calculation;

2) weighted aggregation;

3) 8× 8 block size

4) no Wiener �lter.

In this chapter we will consider how block size, aggregation type, Wiener �lter and

transition to the integer variable calculation impacts on �ltering quality and speed

performance.

4.1 Block size

We start SW-DCT analysis with a study of block size, aggregation and Wiener

�lter contribution to the �ltering quality. For that purpose our test image set was

corrupted with white Gaussian noise with di�erent levels and �ltered with SW-DCT

with di�erent settings.

For �ltering we used 4 × 4, 8 × 8 and 16 × 16 block sizes and two types of

aggregation (average and weighted average), additionally Wiener post-�ltering was

applied to weighted average aggregation. Results for each image are shown in Figure

4.1. For better visualization, all the graphs are drown relatively to 8× 8 SW-DCT

with weighted average aggregation, which is shown as the x-axis.

From these graphs we can make several conclusions:

1. Generally, 8 × 8 is the best in quality/complexity block size for the �ltering.

The exception in Barbara image (16 × 16 is better than 8 × 8) is caused by

�trousers texture� (Table 4.1), which is very speci�c texture pattern. Addi-

tionally, 16 × 16 DCT is at least 16
8
· log8 16 = 8

3
times slower than 8 × 8 one

since fast implementations of DCT usually have time complexity proportional

to N · log2N , where N is the window size. One more drawback of 16×16 block

is that necessity to operate with 4 times larger block may cause delays related

to memory processing. Thus, we will further consider 8×8 as a standard block

size for the �ltering.

37

PSNR
Block size Overall Smooth Edge Texture
8× 8 30.01 34.85 30.96 27.38
16× 16 30.55 34.84 30.89 28.17

Table 4.1: SW-DCT �lter performance for di�erent �Barbara� image areas depending on
block size.

2. Wiener �lter can yield up to 0.5 dB better quality. But it requires repetition

of the �ltering process and, therefore, doubles the time. Thus, we will not use

it further for experiments and implementations.

3. Generally, weighted average aggregation performs better than simple average

aggregation (up to 0.5 dB in �Cameraman� image). The source of this ad-

vantage is �edges� in the image where weighted average aggregation increases

impact of smooth blocks around the �edges�. For that reason we will use

weighted average aggregation further. However, in case of very fast implemen-

tations simple averaging will be performed, because it can be computed with

the help of less multiplication and division operations.

From the comparison of Figures 3.6 and 3.7 we can also infer that SW-DCT, which

represents frequency domain �ltering, shows better quality performance compared

to LPA-ICI �ltering. The drawback of the SW-DCT method is the amount of the

complex computations per pixel in average (computation of forward and inverse

DCT's and thresholding). Our goal is not only improvement of quality but also

decrease of complexity. We aim to use all possibilities to reduce computational

complexity and study what is the cost for such accelerations from a quality point of

view. Since that, we will consider integer version of SW-DCT.

4.1.1 Integer pseudo-DCT

The replacement of real number calculations with integer ones can lead to worse

PSNR due to rounding errors. At the same time it increases speed of computations

for processor architectures where �oating point operations are performed slower than

integer ones. Basic algorithms for integer transforms were taken from H.264/AVC

standard [26].

The main bene�t of the integer transform is that some processors (especially in

mobile devices) perform calculations with integer variables faster than with �oating

point. Another advantage of integer pseudo-DCT is that it does not use multipli-

cations and divisions in transforms themselves. Multiplications are used in normal-

ization step (one multiplication per pseudo-DCT coe�cient) and in aggregation (if

38

we use weighted average aggregation). Divisions are used only in aggregation step

(one division per image pixel).

Integer pseudo-DCT in addition to forward and inverse transforms (similar to the

real number DCT) have normalization step. Normalization step is introduced be-

cause forward and inverse pseudo-DCT transforms are not orthonormal. In this step

pseudo-DCT coe�cients are multiplied by coe�cients so that after inverse pseudo-

DCT values close to the original are obtained.

In real valued DCT hard thresholding step is performed right after forward trans-

form. In integer case it can be performed after forward pseudo-DCT but threshold

in hard thresholding is di�erent for each coe�cient since they are not normalized.

These individual thresholds can be computed ones before the processing. Proposed

threshold modi�cation allows to decrease computational complexity since normal-

ization step (which includes multiplication operation) can be performed after hard

thresholding for non-zero (non-suppressed) coe�cients only. For the detailed de-

scription see Appendix B.

As it was already mentioned, switch from real-valued to integer-valued arithmetic

may lead to worse �ltering PSNR. Depending on the architecture of the processing

unit one may switch to integer processing if the speed performance gain is more

substantial than minor drop in quality. Figure 4.2 demonstrates that the quality

of integer processing �ltering is negligibly lower. Drop in PSNR is very small (at

most 0.1 dB for the considered noise levels), some curves corresponding to the PSNR

of real and integer �ltering of the same images are even indistinguishable. Thus,

integer pseudo-DCT is a good alternative to the real-valued DCT and can be used

in our implementations.

Thus, in most of the cases we can change �oating point computations to ap-

proximate integer ones with pseudo transforms and decrease computational time

(especially in mobile devices, where �oating point operations sometimes is a �bottle

neck�). In some cases this change can be done without any drop in quality.

39

20 30 40 50 60
−2

−1.5

−1

−0.5

0

0.5

1

1.5

σ

∆
P
S
N
R

(d
B
)

(a) �Barbara�

20 30 40 50 60
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

σ
∆
P
S
N
R
(d
B
)

(b) �Cameraman�

20 40 60
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

σ

∆
P
S
N
R

(d
B
)

(c) �Lena�

204060
−1

−0.5
0

σ∆
P
S
N
R
(d
B
)

4x4, simple
8x8, simple
16x16, simple
4x4, weighted
8x8, weighted
16x16, weighted
4x4, +Wiener
8x8, +Wiener
16x16, +Wiener

Figure 4.1: Dependence of calculated ∆PSNR on the noise level σ for di�erent parameters.
All the values are shown with respect to the result of 8× 8 block SW-DCT with weighted
average aggregation. �Weighted� means weighted average aggregation, �+Wiener� � use of
Wiener �ltering, �simple� � simple average aggregation.

20 40 60
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

σ

∆
P
S
N
R

(d
B
)

(a) �Barbara�

20 30 40 50 60
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

σ

∆
P
S
N
R
(d
B
)

(b) �Cameraman�

20 30 40 50 60
−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

σ

∆
P
S
N
R
(d
B
)

(c) �Lena�

204060
−1

−0.5

0

σ∆
P
S
N
R

(d
B
)

4x4, real

8x8, real

4x4, integer

8x8, integer

Figure 4.2: Comparison of SW-DCT algorithms real and integer DCTs. All values are
shown with respect to the result of 8× 8 block real valued SW-DCT.

40

5. CONTENT-BASED IMAGE FILTERING

After performance analysis of the �lters described in the previous chapters, in this

chapter we propose an algorithm that uses di�erent �lters for di�erent image content

classes with individual optimal parameters for each class. Image classi�cation not

only helps to get an improved image quality, but also it is crucial in saving the

computational time (Chapter 3, BM3D serach range). Examples of both quality

and time improvements we will see further in this chapter.

In the previous chapters we saw that the �Texture� region should be processed

as accurate as possible, since in this area there is a low pixel similarity. In general,

the highest PSNR for �Texture� class among all of the presented algorithms can

be achieved by use of BM3D. Thereby, the best decision of �ltering for �Texture�

is BM3D with corresponding optimized parameters (hard thresholding coe�cient

etc.).

The �Smooth� region does not need very accurate and detailed �ltering algorithm

as �Texture� does. Therefore, the best choice is to use either simple SW-DCT

or SA-DCT. The latter �ltering approach demands more computational resources

than SW-DCT but provides better �ltering quality. This can be explained by the

fact that pixel similarity in the block is much higher and can be controlled by

Γ coe�cient. One certain advantage of SW-DCT is that chosen image content

classi�cation approach is based on 8× 8 DCT coe�cients blocks which are used in

SW-DCT as well. Blocks in SA-DCT are adaptive and rarely of the square 8 × 8

shape. Thus, we cannot simplify classi�cation calculation while using SA-DCT.

The �Edge� region is generally a region of low pixel similarity as well (except the

case when two �at surfaces meet), but �ltering with maximum possible accuracy of

this area is very computationally expensive process. In this case, we can use the

idea that the most similar blocks to the original �Edge� block are situated only along

some direction (namely, along the edge detected). Thereby, the block search can be

performed only in the vicinity of the edge itself and the BM3D processing time can

be reduced.

Considered image classi�cation algorithm provides an accurate method of noise-

less image segmentation to three regions with di�erent pixel correlation behaviour.

For test purposes the segmentation of noise-free images was su�cient. However,

since we are aiming to perform real image �ltering without having an �oracle� which

41

provides the noiseless image, presence of (probably heavy) noise in images to be �l-

tered is a drawback of this algorithm. Thus, we have to present a modi�ed version,

that can handle segmentation for noisy images as well.

5.1 Noisy image segmentation

In this section we propose a modi�ed algorithm for image segmentation. The generic

classes of the image regions (�Smooth�, �Edge� and �Texture�) in the modi�ed algo-

rithm remain the same. This division is very convenient and natural from �ltering

point of view for the reasons explained earlier. But the exact content of the classes

in modi�ed classi�cation slightly changes. The trend of these changes is as follows.

First, some blocks with large low frequency coe�cients which originally are clas-

si�ed as �Texture� can be included in the �Edge� class. These large low frequency

coe�cients represent some slow but signi�cant changes in pixels intensity level and

can be visually noticed. Thus, in the neighboring blocks along some direction large

low frequency coe�cients should remain large. This happens due to continuity of

real life images.

Second, with the growth of the noise some area that is considered to be �Texture�

on the noise-free image can not be determined as such in the noisy one. In other

words, texture pattern is weak and noise completely destroys it. Therefore, the

pixels from this area can be included in the �Smooth� class.

The modi�cations proposed above might decrease �ltered image PSNR (but not

necessarily, since false block classi�cation may decrease PSNR as well). However,

from computational complexity point of view, it improves the algorithm, since

�Smooth� and �Edge� block processing according to the technique described ear-

lier is faster than that for the �Texture�.

Decision on the belonging of image pixels to the particular class is made block-wise

based on 2D DCT coe�cients blocks. Block-wise processing reminds one describes

in [9], we divide coe�cients into groups (see Figure 5.1). But in this case we focus

only on 2 groups: high frequency coe�cients and low frequency coe�cients. From

the analysis of 2D DCT coe�cients of multiple true edge blocks we decided that

coe�cients marked as �low frequency� are mostly responsible for the presence of the

edge.

Thus, �rst, we want to have robust to moderate noise edge detection. There are

two ideas of the selected determination approach:

1. Among low frequency coe�cients should be those which have large enough

value, so that visually an edge can be recognized.

2. Values of these coe�cients should exceed high frequency coe�cient values

(otherwise a result of classi�cation is �Texture�).

42

DC

AC: high frequencies

AC: low frequencies

Figure 5.1: Coe�cients separation.

Therefore, it can be formally written as: max{LA} ≥ TE and max{LA} ≥ CLH ·
max{HA}, where LA is a set of absolute values of low frequency coe�cients, HA is a

set of absolute values of high frequency coe�cients, TE is some threshold and CLH
is a coe�cient. From the series of experiments values for TE and CLH which provide

reasonable visible edge determination were found.

Second, we want to have a clear segmentation of �Smooth� and �Texture� regions.

AC coe�cients indicate presence of some texture pattern in a block. Therefore, if

the absolute value of some coe�cients is large enough the block can be classi�ed as

�Texture�. Additionally, noise linearly enhances AC coe�cients, thus, the threshold

which indicates �large enough� coe�cients has to be dependent on the noise level.

Hence, we decide that pixels belonging to a �Texture� class can be determined with

a formula: max{max{LA},max{HA}} ≥ f(σ), where f is a function of σ.

The exact formula for function f(σ) is unknown. Since that we study impact

of the threshold (value of f for a particular noise) on the �ltering results. Too low

value of the threshold leads to misclassi�cation that assigns most of the image pixels

to the �Texture� area. Therefore, most of the image will be �ltered with BM3D with

hard thresholding coe�cient optimal for �Texture� class. This coe�cient is slightly

lower than that for the entire image because we consider such for the �Texture�.

Otherwise, if the value of f is too large the �ltering degenerates to the SW-DCT

with over-suppressed noise. Noise is over-suppressed since optimal hard thresholding

coe�cient for �Smooth� area is larger. Figure 5.2 shows what happens with �ltering

speed and quality performances with varying f(σ) for images from testing set for

noise levels σ = 20, 40, 60.

43

0 50 100 150
1

2

3

4

5

6

T
im

e(
s)

Threshold
0 50 100 150

29.5

30

30.5

31

31.5

32

P
S

N
R

(d
B

)

(a) �Barbara�. σ = 20.

0 50 100 150
0

1

2

T
im

e(
s)

Threshold
0 50 100 150

29

30

31

P
S

N
R

(d
B

)

(b) �Cameraman�. σ = 20.

0 50 100 150
0

5

10

T
im

e(
s)

Threshold
0 50 100 150

32

32.5

33

P
S

N
R

(d
B

)

(c) �Lena�. σ = 20.

50 100 150 200
0

2

4

6

T
im

e(
s)

Threshold
50 100 150 200

25

26

27

28

P
S

N
R

(d
B

)

(d) �Barbara�. σ = 40.

50 100 150 200
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
im

e(
s)

Threshold
50 100 150 200

26.2

26.3

26.4

26.5

26.6

26.7

26.8

26.9

P
S

N
R

(d
B

)

(e) �Cameraman�. σ = 40.

50 100 150 200
0

5

10

T
im

e(
s)

Threshold
50 100 150 200

28.5

29

29.5

P
S

N
R

(d
B

)

(f) �Lena�. σ = 40.

100 150 200 250
0

5

10

T
im

e(
s)

Threshold
100 150 200 250

22

24

26

P
S

N
R

(d
B

)

(g) �Barbara�. σ = 60.

100 150 200 250
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
im

e(
s)

Threshold
100 150 200 250

24.4

24.5

24.6

24.7

24.8

24.9

25

25.1

P
S

N
R

(d
B

)

(h) �Cameraman�. σ = 60.

100 150 200 250
0

5

10

T
im

e(
s)

Threshold

100 150 200 250
26

27

28

P
S

N
R

(d
B

)

Time

PSNR

(i) �Lena�. σ = 60.

Figure 5.2: Dependence of �ltering speed and quality performances on the threshold level
for σ = 20, 40, 60 noise levels.

44

One can see that in each of the graphs shown there is always lower limit for f

below which we do not gain neither speed nor quality improvement. The values

of threshold below this limit are useless. The values above this limit is the area

where one can �nd the trade-o� of quality/complexity. One can see that starting

from this lower limit with the growth of the threshold the value of PSNR goes up

while the time graph falls down. This can be explained by the fact that more blocks

are classi�ed as �Smooth� and in these blocks BM3D is being replaced by SW-DCT

which is faster. At some value of f(σ) PSNR graph reaches its peak but with further

growth of the threshold it starts to fall down.

By using values larger than that corresponding to the peak we can either achieve

quality improvement with a small speed-up or any speed-up (up to the speed of SW-

DCT) with some drop in quality. In this work for �Smooth�/�Texture� thresholding

we were using values slightly higher than those corresponding to the peaks, since we

wanted to show speed-up without quality loss.

In practical implementation where processing time is a crucial parameter from

the graph similar one to shown in Figure 5.2 one can �nd the value for the threshold

which yields desired time and approximately determines possible PSNR drop. In our

experiments, e. g. for σ = 20, 40, 60, we used thresholds 60, 120, 176, respectively.

From the observations described above we developed a classi�cation technique,

which provides a satisfactory image segmentation. Brie�y, algorithm works as fol-

lows: we check a block for being �Edge�, if it is not an �Edge� then it is either

�Texture� (high AC) or �Smooth�. Since neighboring blocks most probably belong

to the same class and noise introduces high probability of misclassi�cation, we addi-

tionally perform median �ltering of block classi�cation for �Smooth� and �Texture�

classes. Some examples of segmentation of images from test image set can be seen

in Figures 5.3 and 5.4.

(a) �Barbara� (b) �Cameraman� (c) �Lena�

Figure 5.3: Classi�cation of blocks for noiseless images.

45

(a) �Barbara� (b) �Cameraman� (c) �Lena�

Figure 5.4: Classi�cation of blocks for images with noise (σ=20).

5.1.1 Processing of �Edge� blocks

As it was stated earlier, in the vicinity of the edges one can improve block matching

speed performance by simpli�cation of the block search. The algorithm of the search

optimization is simple and uses spatial features of edge.

Optimization is done as follows. We start the search in the 5× 5 square (neigh-

borhood range = 2). At the border of this square we detect the block which gives

the lowest MSE with the initial block (the most similar one). This block roughly

denotes the direction of the edge. Since we believe that the edge is locally straight,

the opposite block to the detected one is considered to denote the direction of the

edge as well. From this moment we have two blocks each of which denotes edge

direction. These blocks have unprocessed neighboring blocks. For each neighbor-

hood of two blocks the block with the least MSE to the initial one is independently

determined. Both these determined blocks now denote the edge direction and the

process of this �edge distribution� is repeated. Amount of these recursive steps can

be bounded by the same value as was used for neighborhood range search.

An example of the �rst step is shown in Figure 5.5. Each pixel denotes the upper

left corner of a block. Red � initial block. Dark gray � border blocks. Black � block

with the minimum MSE and opposite to it (blocks which denote the edge direction).

Light gray � unprocessed neighbours of blocks which denote edge direction.

Examples of the complete search for some blocks of the test images is shown in

Figure 5.6. A colored pixel denotes an upper-left corner of a block. Green pixel �

initial block, blue � blocks processed by the original full-search algorithm, magenta

� blocks which were processed by optimized search. The speed-up of the search is

the ratio of blue and magenta areas.

Since all the parts are complete (classi�cation and processing for each class), we

can perform �ltering of the entire images with the proposed algorithm and make

comparisons. Quality and speed performances of BM3D and BM3D with content-

46

Figure 5.5: First step of �edge distribution�.

(a) �Barbara� (b) �Cameraman� (c) �Lenna�

Figure 5.6: Edge block-matching.

dependent optimizations for several images are shown in Tables 5.1 and 5.2. One

can observe that the quality of �ltered images in average remains the same. Time

spent for �ltering is always less for an adaptive scheme. The speed-up is 1.5 − 2.5

times depending on the ratio of smooth/edge/texture area of the particular image.

For visual comparison of BM3D and content-dependent BM3D some examples

of �ltered fragments from �Barbara� and �Cameraman� images are shown in Figure

5.7. One can see that fragments �ltered with the proposed algorithm have less noise

artefacts.

5.2 Adaptive integer BM3D

Another way to decrease a computational complexity of BM3D is to substitute

�oating point variables and operations to integer ones. In the previous chapter

such a substitution for SW-DCT was shown. BM3D compared to SW-DCT has 2

more operations: block matching and transform for 3rd dimension. Integer block

47

Time spent for images (seconds)
Algorithm Barbara Cameraman Lenna Hill Couple House Peppers
BM3D 8.13 1.80 8.14 8.30 8.21 1.85 1.81

CD-BM3D 5.36 0.80 3.48 4.69 5.04 0.76 1.09
CD-intBM3D 4.68 0.75 3.10 4.07 4.42 0.65 0.98

Table 5.1: Comparison of speed performance.

PSNR for images (dB)
Algorithm Barbara Cameraman Lenna Hill Couple House Peppers
BM3D 31.24 30.03 32.54 30.36 30.24 33.28 30.84

CD-BM3D 31.19 30.02 32.62 30.31 30.27 33.28 30.91
CD-intBM3D 31.21 29.68 32.61 30.28 30.19 33.13 30.70

Table 5.2: Comparison of quality performance.

matching is performed by an analogy to a �oating point one. The feature that one

should take into account is that values of integer 2D pseudo-DCT blocks are larger

than those of usual �oating point 2D DCT blocks. Therefore, MSE threshold for

similarity determination should be larger as well. Integer form of Haar transform

which is used as the third dimension transform in BM3D is very similar to the usual

Haar. Therefore, with minor changes we can convert our �oating point BM3D to

an integer one.

Our adaptive scheme uses a classi�cation which in turn uses 2D DCT blocks.

However, using integer transforms we calculate only pseudo DCT. Fortunately, these

pseudo DCT coe�cients are very close to the real DCT coe�cients multiplied by

some factor (see B.1). Therefore, we can use pseudo DCT coe�cient blocks for

classi�cation and save computational time in the same manner as in �oating point

case.

We performed comparisons of PSNR and time performance for the proposed

content-dependant integer BM3D �lter for the extended image set too (see Tables

5.1 and 5.2). Integer transform yield lower PSNR while being used in �ltering

compared to the �oating point one. However, in all cases we get improvement in

time performance.

Since tests were performed on a desktop computer with Intel R© processor we did

not obtain signi�cant speed-up related to the transition from �oating to integer

transforms. However, for processors used in mobile devices this transition speed-

ups computations dramatically. Additionally, most of the modern mobile devices

use ARM R© architecture which supports NEON
TM

[36] instruction set. It can further

decrease computational time up to a factor of 4 for computationally demanding

parts. Nevertheless, further computational improvements are beyond our main scope

(adaptive approach) and may be considered in the future work.

48

Average PSNR (dB)
Algorithm σ=20 σ=40 σ=60
BM3D 28.94 25.59 24.00

Content-dependent BM3D 29.03 25.65 24.09

Table 5.3: Comparison of quality performance on �ltering of Berkley Segmentation Dataset.

σ=20 σ=40 σ=60
Speed-up 1.7292 2.8750 3.6800

Table 5.4: Average speed-up of content-dependent BM3D compared to BM3D.

5.3 Testing

All the previous comparison results between BM3D and Adaptive BM3D were made

only on small set of test images. In order to understand the real changes in quality

and time consumption we have performed experiments on a large set of real-life

images. Test images were taken from Berkeley Segmentation Dataset [35] (300

images). All the images are of the same size (481 × 321 pixels), since that one can

perform averaging in terms of time and MSE to calculate mean values among all

images. Each image was �ltered independently, however, in addition to individual

time and MSE we also calculated average values.

Comparison of average results which were obtained from �ltering of Berkley Seg-

mentation Dataset degraded with di�erent noise levels is shown in Tables 5.3 and

5.4. We can see that in average on all noise levels content-dependent BM3D yields

images with better PSNR than simple BM3D. Additionally, content-dependent ap-

proach speeds-ups �ltering. With the growth of noise level speed-up is larger. Thus,

content-based approach helps us to achieve better �ltering quality and at the same

time highly increase �ltering speed.

49

(a) Barbara fragment. BM3D (b) Barbara fragment. Proposed algorithm

(c) Cameraman fragment. BM3D (d) Cameraman fragment. Proposed algorithm

Figure 5.7: Visual comparison between image �ltered with BM3D and proposed algorithm.

50

6. CONCLUSION

In this work, we have shown an adaptive approach, that uses image classi�cation

and existing image denoising �lters for more accurate and time-saving denoising.

At �rst, analysis of modern state-of-the-art �ltering algorithms which utilize var-

ious techniques for image denoising was performed. The features of these algorithms

and mathematical principles which are used to �lter out obstructive part of the sig-

nal were studied. An image area classi�cation method was introduced. Based on

classi�cation, performance of denoising techniques on di�erent classes was investi-

gated and various comparisons were made. For each class desired �ltering algorithms

properties were determined.

Afterwards, several algorithm optimizations and simpli�cations were tested. Com-

putational and quality performance results obtained from these changes were com-

pared individually for each image class. Useful modi�cations were taken into account

for the implementation. A modi�ed block-based image classi�cation tool was devel-

oped, which allows to save computations by embedding into �ltering process.

Finally, a solution that uses image content classi�cation to perform advanced �l-

tering was presented. Several performance tests were made and the increase in both

quality and computational performances compared to baseline �lters was shown.

Additionally, an integer solution which is more appropriate for mobile platforms

with further development prospects related to practical implementations was pro-

posed.

Therefore, we performed all the tasks stated at the beginning of this work. We

developed competitive algorithm that outstrips its analogs in several parameters.

However, we left various ways of possible improvements, thus, opened a niche for

further study and developments.

51

A. MAXIMUM LIKELIHOOD SOLUTION

Let's assume that estimate from each block is unbiased: ŷi(x) ∼ N (y(x), σ2
i,loc). The

formula for local variance after thresholding is σ2
i,loc =

Ni,T ·σ2

BS2 , where BS � side of the

block size, Ni,T � number of nonzero coe�cients after thresholding. Log-likelihood:

L = ln
∏
i

(2πσ2
i,loc)

− 1
2 e
− 1

2σ2
i,loc

(ŷi(x)−y(x))2
=

= −1

2

∑
i

1

σ2
i,loc

(ŷi(x)− y(x))2 + ln 2πσ2
i,loc

To maximize L we should solve δL
δy

= 0 and we obtain maximum likelihood solu-

tion ŷML:

0 =
∑
i

1

σ2
i,loc

(ŷi(x)− ŷML(x))2

ŷML(x) =

∑
i

1
σ2
i,loc

ŷi(x)∑
i

1
σ2
i,loc

=

∑
i

1
Ni,T

ŷi(x)∑
i

1
Ni,T

52

B. INTEGER PSEUDO-DCT TRANSFORM

In this appendix we observe features of integer transforms which were used in this

work. In our experiments we used pseudo-DCT of 4 × 4 and 8 × 8 block sizes.

The matrices for these transforms were taken from the H.264/AVC standard [26].

Since these matrices are not orthonormal in H.264/AVC coe�cients obtained by the

forward transform are processed by 2-stage quantization-normalization process: in

the transmitter and in the receiver. This process in accordance with its name is

performed for two purposes:

1. Normalization of pseudo-DCT coe�cients since forward and inverse transforms

are not orthonormal.

2. Quantization of the coe�cients to compress them for transport means.

In the H.264/AVC standard there are several quantization-normalization matri-

ces characterized quantization parameter for di�erent compression powers. All these

pairs of matrices (one for transmitter and one for receiver) yield the approximately

(because of the integer values) the same matrix after element-wise multiplication.

The di�erence is that the larger the quantization parameter the harder the �rst

matrix quantizes the coe�cients. In our work we do not have the data transmis-

sion. Since that for normalization purpose we can use only one matrix which is

the element-wise product of pair of quantization-normalization matrices. In order

to demonstrate principles of this pseudo-DCT transform we will show examples for

4× 4 and 8× 8 case with matrices for quantization parameter = 0.

B.1 Integer 4×4 pseudo-DCT

We start with 4× 4 pseudo-DCT. Basic steps implemented in H.264/AVC are:

1. Forward integer transform. For 4×4 case each row and then each column of

the block, that we denote as x is multiplied by matrix T [28], in other words:

X = T · x · T>, where:

T =

1 1 1 1

2 1 −1 −2

1 −1 −1 1

1 −2 2 −1

53

2. Forward pseudo-quantization. For 4×4 case it means element-wise multipli-

cation of block transformed by previous step by pseudo-quantization matrix

XQ1 = X ⊕Q1, where:

Q1 =

13107 8066 13107 8066

8066 5243 8066 5243

13107 8066 13107 8066

8066 5243 8066 5243

 · 1

215

Multiplication by 1
215

is performed by right shift.

3. Inverse pseudo-quantization. For 4×4 case it means element-wise multipli-

cation of block transformed by previous step by pseudo-quantization matrix

XQ2 = XQ1 ⊕Q2, where:

Q2 =

10 13 10 13

13 16 13 16

10 13 10 13

13 16 13 16

 · 1

24

4. Inverse integer transform. For 4×4 case each row and then each column of

the block, that we denote as x is multiplied by matrix H, in other words:

x = H ·X ·H>, where:

H =

1 1 1 1

2

1 1
2
−1 −1

1 −1
2
−1 1

1 −1 1 −1
2

As we have no need in implementation forward and inverse normalizations-quantizations

separately, forward and invcerse normalization-quantization matrices were replaced

with one pseudo-normalization matrix. Its coe�cients were recalculated in a follow-

ing way: Q3 = Q2 ⊕Q1. Thus:

Q3 =

131072 104858 131072 104858

104858 83886 104858 83886

131072 104858 131072 104858

104858 83886 104858 83886

 · 1

219

This merge not only decreases amount of multiplications but also slightly increases

accuracy (one inaccurate operation instead of two).

54

Thresholding step that is necessary for �ltering is done not after quantization but

before it, therefore for all the coe�cients with zero value after thresholding we do

not need to do quantization and therefore we save computational time. Of course we

need to have di�erent thresholds for di�erent coe�cients as quantization operation

is not uniform, but this task is easily solved by storing precalculated matrix of

thresholds, where each coe�cient is calculated as:

Thres[i, j] = 2.7 · σ ·Q[i, j]

Where σ is noise standard deviation and Q is a matrix that performs normalization

of transform T :

Q =

2

2
√

2.5

2

2
√

2.5

 · (2 2
√

2.5 2 2
√

2.5
)

=

4 4

√
2.5 4 4

√
2.5

4
√

2.5 10 4
√

2.5 10

4 4
√

2.5 4 4
√

2.5

4
√

2.5 10 4
√

2.5 10

Matrix Q is calculated from the product of column and row, those are formed

from the reciprocals of the coe�cients which are to be used to normalize rows of

matrix T .

B.2 Integer 8×8 pseudo-DCT

Integer 8×8 DCT was taken from H.264/AVC standard as well as 4×4 one. Nearly
the same procedures of simpli�cation were made except that numerators and de-

nominators of quantization coe�cients were divided by 2, as otherwise they would

cause 32-bit integer bit over�ow. As in 4× 4 case forward transform is simply mul-

tiplication of each row and then column of the block by matrix: X = T · x · T>,
where matrix T :

1 1 1 1 1 1 1 1
3
2

5
4

3
4

3
8
−3

8
−5

4
−5

4
−3

2

1 1
2
−1

2
−1 −1 −1

2
1
2

1
5
4
−3

8
−3

2
−3

4
3
4

3
2

3
8
−5

4

1 −1 −1 1 1 −1 −1 1
3
4
−3

2
3
8

5
4
−5

4
−3

8
3
2
−3

4
1
2
−1 1 −1

2
−1

2
1 −1 1

2
3
8
−3

4
5
4
−3

2
3
2
−5

4
3
4
−3

8

55

Inverse transform is again multiplication of each row and then column of the block

by matrix: x = H ·X ·H>, where matrix H:

1 3
2

1 5
4

1 3
4

1
2

3
8

1 5
4

1
2
−3

8
−1 −3

2
−1 −3

4

1 3
4
−1

2
−3

2
−1 3

8
1 5

4

1 3
8
−1 −3

4
1 5

4
−1

2
−3

2

1 −3
8
−1 3

4
1 −5

4
−1

2
3
2

1 −3
4
−1

2
3
2
−1 −3

8
1 −5

4

1 −5
4

1
2

3
8
−1 3

2
−1 3

4

1 −3
2

1 −5
4

1 −3
4

1
2
−3

8

Original pseudo-quantization matrices Q1 and Q2 are:

13107 12222 16777 12222 13107 12222 16777 12222

12222 11428 15481 11428 12222 11428 15481 11428

16777 15481 20972 15481 16777 15481 20972 15481

12222 11428 15481 11428 12222 11428 15481 11428

13107 12222 16777 12222 13107 12222 16777 12222

12222 11428 15481 11428 12222 11428 15481 11428

16777 15481 20972 15481 16777 15481 20972 15481

12222 11428 15481 11428 12222 11428 15481 11428

· 1

216

20 19 25 19 20 19 25 19

19 18 24 18 19 18 24 18

25 24 32 24 25 24 32 24

19 18 24 18 19 18 24 18

20 19 25 19 20 19 25 19

19 18 24 18 19 18 24 18

25 24 32 24 25 24 32 24

19 18 24 18 19 18 24 18

· 1

26

56

And recalculated matrix for pseudo-quantization is Q3 = Q2 ·Q1:

131070 116109 209713 116109 131070 116109 209713 116109

116109 102852 185772 102852 116109 102852 185772 102852

209713 185772 335552 185772 209712 185772 335552 185772

116109 102852 185772 102852 116109 102852 185772 102852

131070 116109 209712 116109 131070 116109 209713 116109

116109 102852 185772 102852 116109 102852 185772 102852

209713 185772 335552 185772 209713 185772 335552 185772

116109 102852 185772 102852 116109 102852 185772 102852

· 1

221

And thresholding is performed as in previous 4× 4 case:

Thres[i, j] = 2.7 · σ ·Q[i, j],

where

Q =

2
√

2√
9.03125√

5√
9.03125

2
√

2√
9.03125√

5√
9.03125

·
(

2
√

2
√

9.03125
√

5
√

9.03125 2
√

2
√

9.03125
√

5
√

9.03125
)

=

=

8
√

72.25
√

40
√

72.25 8
√

72.25
√

40
√

72.25√
72.25 9.03125

√
45.15625 9.03125

√
72.25 9.03125

√
45.15625 9.03125√

40
√

45.15625 5
√

45.15625
√

40
√

45.15625 5
√

45.15625√
72.25 9.03125

√
45.15625 9.03125

√
72.25 9.03125

√
45.15625 9.03125

8
√

72.25
√

40
√

72.25 8
√

72.25
√

40
√

72.25√
72.25 9.03125

√
45.15625 9.03125

√
72.25 9.03125

√
45.15625 9.03125√

40
√

45.15625 5
√

45.15625
√

40
√

45.15625 5
√

45.15625√
72.25 9.03125

√
45.15625 9.03125

√
72.25 9.03125

√
45.15625 9.03125

(B.1)

All the threshold matrices can be computed fromQmatrices before �ltering know-

ing σ only once and then can be used in each block thresholding step. Additionally,

in practice, multiplication by pseudo-transform matrices is implemeneted only with

the help of sum and shift operations, which are simple and fast operations.

57

BIBLIOGRAPHY

[1] Charles Boncelet, Alan C. Bovik, �Image Noise Models�, Handbook of Image

and Video Processing. Academic Press. 2005.

[2] F. Luisier, Blu, T., and Unser, M., �Image Denoising in Mixed Poisson-Gaussian

Noise�, IEEE Transactions on Image Processing, vol. 20, no. 3, p. 696-708,

2011.

[3] Karen Egiazarian, Vladimir Katkovnik and Jaakko Astola, �Local transform-

based image de-noising with adaptive window size selection�, Proceedings of

SPIE Vol. 4170 (2001) 2001 SPIE

[4] Charles Kervrann and Jérôme Boulanger, �Optimal Spatial Adaptation for

Patch-Based Image Denoising�, IEEE Transactions on Image Processing, vol.

15, no. 10, October 2006

[5] Rafael C. Gonzalez and Richard E. Woods, �Digital Image Processing�, Pearson

Education, second edition, 2000.

[6] Alessandro Foi, �Anisotropic nonparametric image processing: Theory, algo-

rithms and applications�, Tesi, Dipartimento di Matematica, Politecnico di Mi-

lano, Italy, 2005.

[7] S. Mallat, �A wavelet tour of signal processing, second edition�, Academic Press,

New York, 1999.

[8] V. Katkovnik, A. Foi, K. Egiazarian and J. Astola, �Directional varying scale

approximations for anisotropic signal processing�, Proceedings of XII European

Signal Processing Conference, EUSIPCO 2004, Vienna, Austria, 6-10 Sept.

2004, 101-104.

[9] Tong, H.H.Y. and Venetsanopoulos, A.N., �A perceptual model for JPEG appli-

cations based on block classi�cation, texture masking, and luminance masking�,

ICIP 1998, Chicago, IL, USA, 4-7 Oct 1998, pp.428-432.

[10] Chee Sun Wont, Kyungsuk Pyun, and Robert M. Gray, �Automatic object seg-

mentation in images with low depth of �eld�, IEEE Proc. Of Image Processing,

vol III, pp.805-808, 2002.

[11] Breiman, L., Friedman, J. H., Olshen, R. A., Stone, C. J. (1984), �Classi�ca-

tion and regression trees�, Monterey, CA: Wadsworth & Brooks/Cole Advanced

Books & Software.

58

[12] Katkovnik, V., K. Egiazarian, and J. Astola, �Adaptive window size image

denoising based on intersection of con�dence intervals (ICI) rule�, J. of Math.

Imaging and Vision, vol. 16, no. 3, pp. 223-235, 2002.

[13] Katkovnik, V., �A new method for varying adaptive bandwidth selection�, IEEE

Trans. on Signal Proc., vol. 47, issue 9, pp. 2567-2571, 1999.

[14] Alessandro Foi, Vladimir Katkovnik, Karen Egiazarian and Jaakko Astola �A

novel anisotropic local polynomial estimator based on directional multiscale op-

timizations�, Proc. 6th Int. Conf. Mathematics in Signal Processing, Cirences-

ter, UK, pp. 79-82, 2004.

[15] K . R . Rao and P . C . Yip, �The Transform and Data Compression Handbook�,

Boca Raton, CRC Press LLC, 2001.

[16] R. Öktem, L. Yaroslavsky, K. Egiazarian and J.Astola, �Transform domain

image restoration methods: review, comparison and interpretation�, TICSP, 9,

pp. 15, December 2000.

[17] R. Öktem, L. Yaroslavsky and K. Egiazarian, �Signal and Image Denoising in

Transform Domain and Wavelet Shrinkage: A Comparative Study�, Eusipco'98,

Signal Processing IX, Theories and Applications, Island of Rhodes, Greece, 4,

pp. 2269-2272, 8-11 September 1998.

[18] R. Öktem, K. Egiazarian, V. V. Lukin, N. N. Ponomarenko, O. V. Tsymbal, �Lo-

cally Adaptive DCT Filtering for Signal-Dependent Noise Removal�, EURASIP

Journal on Advances in Signal Processing, Vol. 2007, Article ID 42472, 10 p.

[19] Christoph Loe�er, Adriaan Lieenberg, and George S. Moschytz, �Practical dast

1-D DCT algorithms with 11 multiplications�, Acoustics, Speech, and Signal

Processing, 1989. ICASSP-89, 1989. pp 988-991.

[20] F. Jin, P. Fieguth, L. Winger and E. Jernigan, �Adaptive wiener �ltering of

noisy images and image sequences�, ICIP 2003, vol. 3, pp 349-52.

[21] Hyeokho Choi and Richard Baraniuk, �Analysis of wavelet-domain wiener �l-

ters�, Proceedings of SPIE, San Diego, 1997.

[22] Foi, A., �Pointwise shape-adaptive DCT image �ltering and signal-dependent

noise estimation�, Tampere University of Technology, Publication 710, ISBN

978-952-15-1922-2, December 2007.

[23] Alessandro Fio, Kostadin Dabov, Vladimir Katkovnik, Karen Egiazarian,

�Shape-Adaptive DCT for Denoising and Image Reconstruction�, Proc. SPIE

59

Electronic Imaging 2006, Image Processing: Algorithms and System V, San

Jose, 2006.

[24] Alessandro Foi, Vladimir Katkovnik and Karen Egiazarian, �Pointwise shape-

adaptive DCT as an overcomplete denoising tool�, In The International Work-

shop on Spectral Methods and Multirate Signal Processing, number 5, June

2005.

[25] K. Dabov, A. Foi, V. Katkovnik, and K. Egiazarian, �Image denoising with

block-matching and 3D �lterin�, Proc. SPIE Electronic Imaging '06, no. 6064A-

30, San Jose, California, USA, January 2006.

[26] ISO/IEC 14496-10 and ITU-T Rec. H.264, Advanced Video Coding, 2003.

[27] ISO/IEC 10918-1 and ITU-T Rec. T.81, Coding of still pictures, 1992.

[28] Iain E. G. Richardson, �H.264 and MPEG-4 Video Compression: Video Coding

for Next-generation Multimedia�, John Wiley and Sons Publisher, 2003.

[29] Jaswant R. Jain, Anil K. Jain, �Displacement measurement and its application

in interframe image coding�, IEEE Transactions on Communications, Volume

COM-29, Number 12, pp 1799-1808, December 1981.

[30] Shan Zhu and Kai-Kuang Ma, �A new diamond search algorithm for fast block

matching motion estimation�, Proceedings of International Conference on Com-

munications and Signal Processing, 1:292-296, 1997.

[31] Ce Zhu, Xiao Lin and Lap-Pui Chau, �Hexagon-based search pattern for fast

block motion estimation�, IEEE Transactions on Circuits and Systems for

Video Technology, 13(7):614-619, July 2003.

[32] Junsheng Fu, �A real-time rate-distortion oriented joint video denoising and

compression algorithm�, Master of Science Thesis, Tampere University of Tech-

nology, 2011.

[33] Peter Kau� and Klaas Schüür, �An Extension of Shape-Adaptive DCT (SA-

DCT) Towards DC Separation and ∆DC Correction�, Proc. of 1997 Picture

Coding Symposium, pp. 647-652, Sep. 1997.

[34] Marc Lebrun, �An Analysis and Implementation of the BM3D Image Denoising

Method�, Image Processing On Line 2012 (2012).

[35] http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/

BSDS300/html/images/plain/normal/gray/

[36] http://www.arm.com/products/processors/technologies/neon.php

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/images/plain/normal/gray/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/BSDS300/html/images/plain/normal/gray/
http://www.arm.com/products/processors/technologies/neon.php

	Terms and abbreviations
	List of tables
	List of figures
	Introduction
	Theoretical background
	Spatial domain filters
	Anisotropic LPA-ICI

	Transform domain filters
	Sliding window DCT filtering
	Empirical Wiener filter

	SA-DCT filtering
	Block Matching 3D filtering
	Image segmentation

	Image filtering with classification
	LPA-ICI with classification
	SW-DCT with classification

	SA-DCT with classification
	BM3D filtering with classification

	SW-DCT modifications
	Block size
	Integer pseudo-DCT

	Content-based image filtering
	Noisy image segmentation
	Processing of ``Edge'' blocks

	Adaptive integer BM3D
	Testing

	Conclusion
	Maximum likelihood solution
	Integer pseudo-DCT transform
	Integer 44 pseudo-DCT
	Integer 88 pseudo-DCT

	References

