

SHAHZAD HUSSAIN
WEB BASED NETWORK SPEECH RECOGNITION
Master of Science Thesis

Examiners: Prof. Irek Defee, Prof. Jarmo Harju

Examiners and Topic approved in the

Faculty Council Meeting on

07.11.2012

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Information Technology

SHAHZAD HUSSAIN: Web based Network Speech Recognition

Master of Science Thesis, 38 pages

January 2013

Major: Communication Eningeering

Examiner: Prof. Irek Defee, Prof. Jarmo Harju

Keywords: Network Speech Recognition engine, CmuSphinx, Jetty, HTTP

Servlets, WebSockets, HTML5, doGet, doPost, Java API, ASR

In modern technological world there is a continuous flow of improvements, as it has

been with computers, tablets and smart phones. There is a need to explore alternatives

for effectively using those new devices and systems. Effective usage of those devices

may include: virtual keyboards rather than physical ones, the use of a touch screen in-

stead of a mouse, using location based services to find events that are happening around

us instead of accessing a Website in order to get the information, talking to a smart

phone or tablet in order to call, text or do tasks, thus replacing the physical interaction

via a touchscreen or keyboard. The main contribution of this thesis is to design and im-

plement a Web-based Network Speech Recognition system using Open Source compo-

nents and new emerging technologies. This system can take audio queries from a Web

browser, feeds them into the Speech engine and returns the result back to the Web

browser client. Web-based Network Speech Recognition systems already have been

built by Google, Nuance and many other companiess. Implementation however differs

in various ways, such as the use of WebSockets in real time or the use of HTTP Request

/ Response method. The system developed in the theis is entirely composed of open

source elements: the speech recognition engine that serves the speech recognition re-

quests, and a Web Server to receive the audio stream from the Web browser clients. The

designed system efficiency is high and it can serve multiple clients and it provides good

processing power making it able to manage heavy load operations with reasonable ef-

fort.

PREFACE

I would like to thank my parents for giving me high moral values through out my life;

this has helped me in my every life endeavour and has taught me the wonders of life.

I would like to express my deep gratitude to Prof. Irek Defee, and coordinator Elina

Orava for supporting me during my academic career. I would also like to thank Prof.

Jarmo Harju for assessing my thesis and providing comments.

I am also very thankful to Ericsson and part of the Ericsson Team such as Minna

Hallikainen (section Manager) Marko Seikola (section Manager), Jouni Mäenpää (No-

madic Lab section Manager) and Jaime Jiménez (thesis supervisor) for providing me

resources, information and help whenever I needed it.

Shahzad Hussain

January 2013

TABLE OF CONTENTS

1. INTRODUCTION .. 1

2. BACKGROUND .. 3

2.1 Speech Recognition .. 3

2.1.1 Speech Recognition Components .. 4

2.2 Network Speech Recognition ... 6

2.2.1 Network Speech Recognition Components 8

2.3 Emerging Standards and Web Technologies ... 11

3. SYSTEM IMPLEMENTATION .. 15

3.1 General Architecture .. 16

3.2. System Architecture Overview .. 17

4. EVALUATION ... 30

4.1 Testing Network Recognition System.. 30

4.2 Client .. 30

4.3 Server ... 32

4.2.1 Tests Comparison and Analysis .. 34

5. CONCLUSIONS ... 37

REFERENCES .. 39

LIST OF FIGURES

Figure 2.1: Network Speech Recognition Architecture using HTTP Request / Response6

Figure 2.2: HTTP Request / Response & doGet, doPost Interpretation to Servlet 10

Figure 2.3: WebRTC using Web Browser .. 12

Figure 3.1: High Level Network Speech Recognition System Architecture using

WebSocket .. 16

Figure 3.2: Component Level Architecture of Network Speech Recognition System

using WebSocket ... 18

Figure 3.3: Network Speech Recognition Client .. 20

Figure 3.4: Network Speech Recognition Client status .. 21

Figure 3.5: Network Speech Recognition Client Design Flow 22

Figure 3.6: Network Speech Recognition Server Design Flow 25

Figure 3.7: Network Speech Recognition System Sequence Flow 28

Figure 4.1: Network Speech Recognition Client Test layout ... 31

Figure 4.2: Google Canary Debug Console: Client Flow Logs 32

Figure 4.3: Network Speech Recognition System Tree Layout 33

Figure 4.4: Network Speech Recognition Server Instance running on Port 9999 33

Figure 4.5: Eclipse Debug Console: Server flow logs .. 34

Figure 4.6: Speech Recognition Engine Throughput using WebSocket 35

Figure 4.7: Nuance Network Speech Recognition engine throughput 35

Figure 4.8: Comparison of Our System vs. Nuance Networks Speech Recognition

system .. 36

LIST OF TABLES

Table 3.1: Comparison of WebSocket and HTTP Request / Response based Network

Speech Recognition ... 15

Table 4.1: Network Recognition System Hardware and OS... 30

Table 4.2: Speech Recognition throughput using WebSocket and CmuSphinx Engine. 34

Table 4.3: Speech Recognition using HTTP Request / Response and Nuance engine ... 35

TERMS AND DEFINITIONS

HTML HTML (Hyper Text Markup Language) is the markup lan-

guage that displays Web contents in the Web browser.

WebRTC WebRTC (Web Real Time Communication) is the new

emerging standard for the real time communication between

Web browsers.

Webrtc.org It’s a free Open Source project supported by Google, Opera

and Mozilla. It enables rich media real time communication

application development for the browser using HTML5 and

JavaScript.

BLOB BLOb (Binary Large Object) is an object containing binary

data. BLObs are usually images, audio and video obejcts.

HTML5 HTML5 (Hyper Text Markup Language 5) is the newest

standard and the fifth revision of HTML. HTML5 has brought

the possibility of using rich media content without using third

party plugins.

WebSocket WebSocket is the HTML5 feature for creating a socket con-

nection between Web browsers or Web browser to server. It

gives the possibility to have a real time communication.

Servlet/Web Applica-

tion

A Servlet or Web Application is a Java class deployed by the

Webserver in order to extend its capabilities.

Binary WebSocket A binary WebSocket enables user to send binary data to the

remotely connected host.

Jetty Jetty is an HTTP Webserver, HTTP client and a Servlet con-

tainer provided by Jetty.

ASR ASR (Automatic Speech Recognition) enables user to input

Speech to be recognized.

W3C W3C (World Wide Web Consortium) is an international

community for developing open Web standards.

HTTP Request HTTP Request is the request made by Web browser to the

Webserver for certain content or information. It may include a

query to be processed.

HTTP Response HTTP Response is the response replied by the Webserver

with the processed HTTP Request result.

HTTP Body HTTP Body is the body of HTTP Request header. It usually

includes data such as text, image or audio etc.

Live Web Audio It’s the HTML5 feature for capturing audio from microphone

in a Web browser.

SphinxServer SphinxServer is a Java class responsible for instantiating Jetty

Webserver instance. It listens for incoming WebSocket con-

nections. It registers all its connected WebSocket clients.

AudioCollector It’s a Java Servlet responsible for collecting audio from the

WebSocket clients. It also transcodes audio to the required

format.

SphinxRecognizer SphinxRecognizer is a Java class responsible for setting up

Recognition engine and its sub components.

Recognition engine Recognition engine is the main core of recognizing Speech. It

processes audio request and provides recognized result.

Recognizer Recognizer is a Java class provided by Recognition engine for

executing Speech Recognition.

1

1. INTRODUCTION

In the modern technological world, information processing tasks are shifting from desk-

top computers and laptops to small handheld devices such as smart phones, tablets and

other small gadgets for retrieving information on the go. Tremendous amount of energy

has been placed on bringing the world closer by creating smart applications that provide

information just by pressing few buttons or tapping the touch screen.

Speech recognition and Text-to-Speech technology is currently being used in many

systems such as handheld devices, infotainment system in cars, etc [1]. Their purpose is

to facilitate interacting with these systems. For example: A person is lost while driving

somewhere in a remote town in Finland, not knowing how to return to the capital Hel-

sinki. This person can tell the infotainment system to find a route for him by command-

ing it: “Navigate to Helsinki”. The infotainment system will give the detailed route via

voice instructions produced by speech synthesis i.e. Text-to-Speech. In the same way

when someone wants to use phone to call, text, or find a route while driving, that person

can talk to his mobile phone and the system will give direction to the destination.

Speech recognition technologies use a speech recognition engines. These engines

are usually fed with a grammar, which is a set of words/sentence created with certain

rules. The engine recognizes speech by matching the input to the grammar.

There are many companies like Nuance or Voxeolabs which provide speech recog-

nition engines. There is also an open source version available called CmuSphinx [2].

These engines need more processing power and posses a very limited grammar set of

few thousand words. Moreover, such engines are not capable of recognising a large per-

centage of the input due to the grammar limitation.

In this thesis, a Network Speech Recognition engine with efficient throughput is

provided. Speech recognition computation is done remotely, thus saving processing

power on handheld devices. Recorded speech is sent to the remote server via the Inter-

net.

The principal Web technology usually used in network speech recognition is the

HTTP Request / Response [3] mechanism where the audio is usually sent in chunks in

HTTP Request message body. The result is received in the body of HTTP Response.

Preliminary research has been done trying two different approaches to the problem:

HTTP Request / Response and WebSockets. The HTTP Request/Response uses HTTP

Request to post audio stream to the network speech recognition server in order to pro-

cess the audio stream. The other alternative uses WebSockets [4] to stream the captured

audio data from the microphone to the network speech recognition server, where the

input speech is processed and the results are returned back to the client.

The aim of this thesis is to build a more efficient and real time Network Speech

Recognition system using WebSockets. The implementation of this thesis focuses only

on network speech recognition using WebSockets, however comparison and test results

2

using HTTP Request / Response as well as WebSockets are mentioned in the later chap-

ter. Following technologies are used in the implemention of our Network Speech

Recognition;

 CmuSphinx, an open source speech recognition engine

 HTML5 Live Web Audio [5] feature to record audio.

 Jetty WebServer to host Web application to receive audio stream for post pro-

cessing.

 WebSocket to send/receive plain text messages or binary audio stream.

3

2. BACKGROUND

Speech recognition, network based speech recognition, Web-based network speech

recognition and the technologies that are used to enable network speech recognition

across network have been discussed in this chapter. Research on this topic has been

done in collaboration with an Ericsson team and the open source community.

2.1 Speech Recognition

Speech Recognition enables a user’s speech and spoken words to be translated into text.

Speech Recognition uses a set of complex modules and sub-systems to recognize input

audio Speech. It’s also known as ASR (Automatic Speech Recognition) or STT (Speech

to Text).

There are many third party speech recognition systems which use various audio

formats for efficient speech recognition. To deal with this situation usually encod-

ers/decoders are placed before the speech recognition system to provide it with usable

audio format stream.

Speech recognition engine uses grammar or language models for recognizing

speech. A grammar is a set of word pattern or small sentences built with sets of rules,

provided to speech recognition system to tell it the expectation of meaning of spoken

words. Speech recognition systems usually allows user to input grammar with certain

rules.

A group of actions can be performed upon recognized speech results based on the

design of the relevant application. For example a user inputs search queries in Google’s

search box field using Google’s speech recognition system.

Speech recognition is not only about transcribing but can be extended to the needs.

Some of the important applications of Speech Recognition are in many areas such as:

 Aerospace (space exploration, spacecraft: Mars Polar Lander used Speech

Recognition from Sensory, Inc)

 Automatic translation

 Automotive speech recognition

 Court reporting (speech writing)

 Hands-free computing

 Home automation

4

 Health Care etc.

2.1.1 Speech Recognition Components

 Open Source Speech Recognition Engine

CmuSphinx (also known as Sphinx) is an open source speech recognition toolkit devel-

oped at Carnegie Mellon University [2]. It includes a series of Speech recognizers such

as Sphinx, Sphinx 2, Sphinx 3 and Sphinx4. It has an acoustic-model-trainer also

known as SphinxTrain.

Acoustic model [6] is created by the input speech recordings and their transcription.

Certain tools are used to create a statistical representation of sounds that are mapped

with the words. Sphinx in general is composed of the following libraries and tools:

 Pocketsphinx: lightweight recognizer library written in C.

 Sphinxbase: support library required by Pocketsphinx

 Sphinx4: adjustable, modifiable recognizer written in Java

 CMUclmtk: language model tools

 Sphinxtrain: acoustic model training tools

 Sphinx3: decoder for speech recognition research written in C.

 Grammar

The grammar describes the language based on rules of the type command and control.

They can be created manually or can be software generated.

Here we have an example of writing a grammar of phone contacts with command con-

trol:

Command: John, Bil, Ralph, Lisa, Einstein

Control: Call, Hangup, Text, Sms, Send MMS, email to, to, Send

Rule: Command + Control

So the final grammar can be: Call John, Call Bil, Hangup John, Text Lisa, Send MMS

to Einstein, Send Sms to Ralph, Send Text to John, Send Text John etc.

 JSGF (Java Speech Grammar Format)

CmuSphinx supports JSGF based grammar [7] . It follows Java programming language

conventions developed by Sun Microsystems. CmuSphinx JSGF based grammar exam-

ple is following:

JSGF Grammar Basic Example

#JSGF V1.0;

grammar phonecontrol;

5

grammar <phonecontrol> = <command> <object> <optional> <entity>

<command> = (Send | Open | Close | Please)

<object> = (Text | Sms | Email | Call)

<optional> = [to | of | for]

<entity> = (John | Bil | John | Lisa | Einstein)

Resulting Grammar:

Send Text to John

Open Sms of Lisa

Please Call Bil etc.

 Statistical Language Model

The Statistical Language Model [8] provides probability distribution P(s) over strings S,

which tries to define how frequently a string S occurs in a sentence. They are used in

many applications such as natural language processing, speech recognition, machine

translation, Speech tagging, parsing and information retrieval. CmuSphinx provides

CMUSLM (CmuSphinx Statisical Language Modelling) toolkit for building Statistical

Language Model.

 Third Party Speech Recognition engines

Speech recognition engines are developed by many companies around the globe. Most

of those companies have developed their own engines for their own products rather than

to sell to third parties. Some of the high calibre ASR engines including commercial and

open source are Nuance, iSpeech, Lumenvox, Voxsigma, CmuSphinx.

This thesis main goal is to enable network speech recognition, not the implementa-

tion of recognition engine itself. A general overview of CmuSphinx will be presented in

this thesis. The details of its integration into the network will be discussed later in the

following chapters. However the detailed description of CmuSphinx is out of this thesis

scope. The Sphinx4 recognizer [9] has been used in this thesis project.

The recognition engine relies on the grammar and the statistical language model in

order to successfully recognize the input speech pattern. The statistical language model

is out of the scope of this thesis and only JSGF based grammar has been used in re-

search.

6

2.2 Network Speech Recognition

Figure 2.1: Network Speech Recognition Architecture using HTTP Request / Response

Figure 2.1 shows the Network Speech Recognition system using HTTP Request / Re-

sponse system. The Network Speech Recognition system provides a more efficient way

for more accurate speech recognition results. It includes a recognition engine, sitting on

top of a very high calibre processing computer, having intense collection of grammar, to

provide more accurate results than the local recognizing engine in a phone or any elec-

tronic device which has the speech recognition capabilities and has limited grammar and

outputting less accurate results.

The Network Speech Recognition engine has the capability to serve multiple users

at the same time while still providing a robust output. It can work in a LAN, WAN /

MAN enviornment depending on its network implementation design.

7

Many companies use the above architecture to serve speech recognition requests.

Before giving a detailed explaination of how the above network speech recognition

works, some of the terms in the aforementioned figure need to be explained.

The client side can be implemented in any language such as Java, Ruby, Python,

Perl, C/C++, etc. The client side might also record audio using the microphone or send

an audio stream over the network to the server by reading recorded audio from file. It

uses HTTP Request / Response mechanism to send audio and to receive Speech results.

HTTP Post Request is send to the Webserver with specific set of HTTP headers and

a body message. It may include the following headers or additional headers depending

on the requirements of third party companies who are on the receiving side of the audio

Speech Recognition requests. HTTP Header contains the following entities;

 Content-Type

 Content-Language

 Accept-Language

 Accept

 Accept-Topic

 Transfer-Encoding

A typical example of HTTP Headers can be:

Content-Type: audio/x-wav;codec=pcm;bit=16;rate=16000

Content-Language: en_US

Accept-Language: en_US

Accept: text/plain

Accept-Topic: en_US

Transfer-Encoding: chunked

The WebServer receives user’s requests as HTTP Requests and after post processing

sends the result back as HTTP Response. HTTP Servlets [10] are Web applications that

are deployed by the Web server and used for special purposes. In the above figure when

the audio is collected from the client it is then forwarded to the HTTP Servlet “Audio-

Collector” where post processing may be done to ensure the input stream fits the recog-

nition engine and after which it is fed into the engine for recognition processing.

The Recognition Server is the main part of the whole system which takes an audio

input stream, processes it for recognition and returns the result back in plain text. It has

a versatile list of grammar for enhanced throughput.

A client records audio from the microphone or reads an input stream from an audio

file, sets up HTTP request with audio stream as a body message and sends it to the re-

mote Web server hosting speech recognition engine. The stream is received in the Web

server where it is forwarded to HTTP Servlet “AudioCollector” for post processing

(maybe) and then fed into the recognition engine. The input speech is processed and the

results are provided back to the HTTP Servlet. HTTP Servlet sends the result back by

8

creating a custom HTTP Response with the speech result as plain/text body message.

Client receives the result from the Web server as HTTP Response.

2.2.1 Network Speech Recognition Components

 Browser and Webserver Concept

In client server terminology a browser is a client application used for retrieving, travers-

ing, presenting information resources, acquiring files from remote over plain or secure

connection with HTTP or HTTPS protocol. Information resources can be images, text,

Web pages, files, etc. There are many Web browsers available on Internet. The most

popular ones are Mozilla Firefox, Chrome, Internet Explorer, Safari, Opera, etc.

A Web server on the other hand serves browsers requests over the network. Web

server holds information of contents deployed to it. It may contain Web pages, pictures,

text contents or HTTP Servlets to do specific tasks. As mentioned earlier it gets a re-

quest from Web browser, processes it and sends the response back to the browser. There

are many Webservers present on the Internet. Most popular ones are Apache, IIS and

Jetty

[11] etc.

A resource is identified by URI (uniform resource identifier) and the mechanism

used in establishing connection with remote server and presenting information sources

is done on HTTP Request / Response Mechanism.

HTTP Request is a request made by Web browser to the Web server for certain in-

formation resources and HTTP Response is the response by Webserver providing the

Web browser with resource information (if available) pointed by URI when it was mak-

ing an HTTP Request. HTTP Request contains relevant headers and body message to be

sent to Webserver. HTTP Response has acknowledgment headers with a body message

to be sent back to the Web browser on successful processing of requests. An HTTP re-

quests may contain request for some information resources which may not be present at

the specific URI in which case the Webserver sends an HTTP Error response stating the

Error type.

Typical Example of HTTP Request Header:

GET HTTP://www.example.com/ HTTP/1.0

Proxy-Connection: Keep-Alive

User-Agent: Mozilla/5.0 [en] (X11; I; Linux 2.2.3 i686)

Host: www.example.com

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, im-

age/png, */

*

Accept-Encoding: gzip

Accept-Language: en

9

Typical Example of its HTTP Response Header:

HTTP/1.0 200 OK

Date: Fri, 13 Nov 2009 06:57:43 GMT

Content-Location: http://www.example.com/index.html

Etag: "07db14afa76be1:1074"

Last-Modified: Mon, 05 Nov 2012 20:01:38 GMT

Content-Length: 7931

Content-Type: text/html

Server: Microsoft-IIS/4.0

Age: 922

Proxy-Connection: close

 Web server and Get/Post Requests

Webserver serves requests for the user clients in HTTP Request / Response mechanism.

It uses a Web root directory for the Web pages to be placed from where the contents are

usually served. It also provides a way of putting Web contents outside Web root directo-

ry known as virtual-directories where the contents can be placed other than Web root

directory.

A Web browser can send HTTP request in the form of Get and Post request. A Get

request contains a URI to specific content information which upon processing by Web

server is shown to the user on the Web browser where as in Post request the information

is send to a Web server for further processing.

If one opens a Web site, for example www.example.com Webpage, the request

made by the Web browser is a HTTP Get request. A Web page containing a form to be

filled and submitted to the Web server is an HTTP Post request.

 HTTP Servlets / Web Applications

An HTTP Servlet or Web Application is a server-side Web technology based on Java. It

is a Java class, coded in Java EE based on Java-Servlet-API

[12]. HTTP Servlet can

respond to any type of requests but usually they are used with HTTP protocol. Dynamic

Web contents can be deployed to Webserver using Servlets [11]. Web container is used

to deploy a Servlet [13].

A Servlet overrides two methods doGet() and doPost() while inheriting from HTTP

servlet Class in Java using . Both of these methods used in the Servlet are used for inter-

acting with HTTP Get and HTTP Post requests generated by the user in the Web brows-

er.

10

 Figure 2.2: HTTP Request / Response & doGet, doPost Interpretation to Servlet

Figure 2.2 shows the HTTP Request interpretation at the HTTP Servlet. The HTTP Get

and Post Request are received at the HTTP Servlet in doGet() and doPost() methods

respectively. Following is a sample code of a very basic HTTP Servlet:

Basic HTTP Servlet
import java.io.*;
import javax.Servlet.*;
import javax.Servlet.http.*;

public class HelloWorld extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 res.setContentType("text/html");
 PrintWriter out = res.getWriter();

 out.println("<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.0 Strict//EN\"
\"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd\">");
 out.println("<html xmlns=\"http://www.w3.org/1999/xhtml\" xml:lang=\"en\" lang=\"en\">");
 out.println("<head><title>Hello World</title></head>");
 out.println("<body>");
 out.println("<h1>Hello World</h1>");
 out.println("</body></html>");
 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)
 throws ServletException, IOException {

 }
}

 Webserver Instantiation using API

Web servers can be run using their provided API in addition to its binary provided in a

package. Configurations can be coded for configuring connectors, handlers, Servlets,

etc.

For example a very basic Web server instance without any configuration can be cre-

ated using Web server API as follows:

WebServer server = new WebServer (8080);

 server.run ();

11

Assuming Web server is the class provided by its API we are creating an instance of

Server with 8080 as a port parameter. We then run it using server.run () method. Web

server can be configured through their API like setting up connectors, handlers and

Servlets [14].

2.3 Emerging Standards and Web Technologies

 HTML 5

Since 1999 when Hyper Text Mark-up Language (HTML) 4.01 came, the Web has

changed a lot from displaying static contents to dynamic contents. The progress shift of

the Web has brought new ways of presenting contents such as Flash or even live media

contents from a streaming server using third party plugins. However there has been al-

ways a hassle to install certain plugins or applications, so that the rich media content

could be presented properly on the Web. Such examples could be, for Java applets, one

needs to have Java runtime and for Flash contents one needs to have Flash plugin in-

stalled in the machine. There are many other examples like watching a stream from Mi-

crosoft media streaming server, one needs to have windows media plugins in the brows-

er to watch the contents.

To overcome such issue and with new features demand, a new standard HTML5

[15] [28] is developed. It provides access to multimedia resources natively inside the

browser without any plugins or extensions. One of the exciting features of HTML5 is

WebSocket, which provides communication between between server and client.

The HTML5 is developed with the focus on how the World Wide Web is going to

evolve in the future. There has been tremendous amount of interest growing for Web

applications that can communicate with each other. This has been taken in to account in

HTML5 which defines API [16] to support such Web application development.

HTML5 is backward compatible and still supports XML syntax.

HTML5 has introduced many new elements to the language such as canvas, audio,

video for displaying webcam, playing audio and video respectively. The new elements

have made it easy for the Web developers to embed audio and video contents.

The Live Web Audio feature [5] which provides access to microphone for capturing

audio has been introduced in HTML5.

WebSocket [16] is the bi-directional communication protocol introduced in

HTML5. It allows communication between server and client on a full duplex TCP

channel. Bi-directional communication here means that the server and client can estab-

lish connection, send and receive data on the same channel at will, thus allowing the

server and client to transmit data on need basis.

Currently HTML5 is not official standard yet and not all the browser supports

HTML5 features. However there are number of browsers who have HTML5 support.

They include Firefox, chrome, Safari, Opera and Internet Explorer.

12

 Web Real Time Communication (WebRTC)

WebRTC [30] is an emerging standard of HTML5 for real-time communication be-

tween Web browsers. The open source project Webrtc.org [17] is supported by Google,

Mozilla and Opera. It enables developer to create rich content, high quality RTC (Real

Time Communication) applications using JavaScript API and HTML5. Some examples

of the RTC application are P2P file sharing, Video Chat, Audio Streaming, Video Con-

ferencing, etc. Its API

is drafted by World Wide Web Consortium (W3C)

[18].

 Figure 2.3: WebRTC using Web Browser

Figure 2.3 shows a general scenario of WebRTC based chat application in the Web

browsers.

With the provided easy API, it’s now very convenient to access microphone,

webcam and stream the audio and video in real time to the client. Many audio visual

effects can be applied to the stream according to the needs and then finally send it in

real time to the client browser.

Code snippet below shows how to access microphone using JavaScript.

Navigator.WebkitGetUserMedia({audio:true, video:true}, function(stream){

// stream is the stream while capturing from mic and Webcam.

// Do rest of stuff here

});

13

 WebSockets

Sockets are a way to communicate between applications or different serv-

ers/workstations. In UNIX server / client programming, a socket using TCP connection

is said to be a full duplex connection.

There had not been any sockets concept in Web technologies, until recently when

full duplex communication channel over a single TCP connection has been implement-

ed known as WebSockets. A WebSocket can be used between two Web browsers or by

a Web application deployed by Webserver. By using full duplex communication chan-

nels over a single TCP connection it produces a real time data transfer [29]. Protocol

used by WebSocket is an independent TCP-based protocol. The data transmitted be-

tween server and client can be either UTF-8 text, binary frames or special control

frames which are used for connection handling. The handshake mechanism follows the

routine:

 WebSocket sends a handshake Request to the server.

 Server interprets the handshake Request as an Upgrade request.

 Server sends back handshake Response to the WebSocket client.

To initiate a WebSocket connection, a URI for the remote server is required. URI is

identified by “ws” (Web Socket) following by a port number. An example of URI to

connect can be; ws://somehost.com:portnumber (replace port number with the port

number of your choice).

Let’s assume we have request URL ws://somehost.com:9999/ and our Request

Method is GET, the handshake mechanism is then as follows:

WebSocket to Server Handshake Request

Get ws://somehost.com:9999 HTTP/1.1

Connection: Upgrade

Host: localhost:8080

Origin: http://localhost:8080

Sec-WebSocket-Key1: xxx xxx xxx

Sec-WebSocket-Key2:xxx xxx xxx

Upgrade: WebSocket

(Key3): XX:XX:XX:XX:XX:XX:XX:XX

Server to WebSocket Handshake Response
Connection: Upgrade

Sec-WebSocket-Location: ws://somehost.com:9999/

Sec-WebSocket-Origin: http://localhost:8080

Upgrade: WebSocket

(Challenge Response): XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX

WebSocket protocol has been standardized as RFC 6455 by the Internet Engineering

Task Force (IETF) and its API [19] is being standardized by the World Wide Web Con-

sortium (W3C). Following is an example of WebSocket client opening a connection to a

server:

14

WebSocket JavaScript Example

<script type=”text/JavaScript”>

var wsURL = ws://someipaddressorhost:7777;

var wsocket = new WebSocket(wsURL);

// When Web socket is opened, this handler is called

wsocket.onopen = function(evt) {

 // do something here

 // send plain text or binary data

 wsocket.send(“send plain/text or binary data as blobs
1
”);

}

// When we socket is closed, this handler is called

wsocket.onclose = function(evt) {

 // do something here

}

// when incoming data arrives; plain/text or binary

// this handler is called

wsocket.onmessage = function(evt) {

 // do something here

}

// If error occurs, this handler will be called

wsocket.onerror = function(evt) {

 // do something here

}

// if socket is closed, then this handler is called

wsocket.onclose = function(evt) {

 // do something here

}</script>

Data that can be sent via WebSockets are plain/text and binary data in the form of blobs

[20]. WebSocket has been implemented in Firefox, IE, Opera, Safari and Google

Chrome. It is required that the application hosted by server also supports WebSocket.

15

3. SYSTEM IMPLEMENTATION

This chapter describes the implementation of a Web-based Network Speech Recogni-

tion system. The general architecture, detailed architecture and system flow are pre-

sented in the following diagrams of this chapter.

While designing our system we came to a crossroad when choosing the Network

Speech Recognition systems, we had to choose between one of the available alterna-

tives. One of the alternatives were using WebSockets with Network Speech Recognition

and the other HTTP Request / Response mechanism by embedding audio in the HTTP

Post message. In the following table we present the main advantages and drawbacks of

the two alternatives.

 WebSocket based

Network Speech Recognition

HTTP Request / Response Based

Network Speech Recognition

Handshake Uses standard WebSocket connection to

the server using “Upgrade request” in

HTTP Header during handshake.

Uses standard HTTP request headers.

Real time live Content WebSocket connection to the server pro-

vides real time contents transmission.

Doesn’t provide real time contents transmis-

sion.

Transmission mechanism Full-duplex communication channels over

a single TCP connection.

Not full-duplex.

Audio Transmission Audio transmitted over socket to socket.

(Audio received as byte stream without

any headers)

Audio transmitted in HTTP Post body mes-

sage is received via HTTP request header

object in the server side.

Low overhead Data can be transmitted as like on normal

sockets i.e. no headers overhead.

Headers overhead.

Live Web Audio Audio can be recorded by standardized

HTML 5 Live Web Audio input feature.

Not possible (certain non-standard mecha-

nism by third parties like embedding FLASH

applet to record audio present)

Audio sending to server WebSocket is created, audio is sent over it

as in normal socket.

a. HTTP client is created.

b. HTTP Post is created.

c. Header is added to HTTP Post.

d. Audio is embedded in HTTP Post.

Audio receiving at the server Audio is received as byte stream on client

side.

a. Audio is received in HTTP Request

header object.

b. Audio is stored in Byte stream by

reading HTTP Request header

body.

Audio Forwarding Audio is fed into the Recognition engine. Audio is fed into the Recognition engine.

Speech Recognition Speech recognized returns result as string

array.

Speech recognized returns result as string

array.

Returning Result Return result to the client on WebSocket. Return result to the client by embedding

“result” in the body message of the header.

Result receiving Results retrieved in real time as string

array.

Results retrieved in the form of HTTP header

body message.

Table 3.1: Comparison of WebSocket and HTTP Request / Response based Network Speech

Recognition

16

As we can see that HTTP Request / Response mechanism lacks substantial features and

has an overhead of headers. Therefore we came to conclusion that Web-based Network

Speech Recognition engine using WebSocket was much more reliable, faster and effi-

cient method than traditional HTTP Request / Response mechanism.

3.1 General Architecture

In this subsection we will elaborate on the general architecture of our system using

WebSockets, as it is shown in figure 3.1.

 Figure 3.1: High Level Network Speech Recognition System Architecture using WebSocket

In the aforementioned figure 3.1, a user uses Google Canary Web Browser (in this case

the custom development version) having the capability of recording audio from micro-

phone using JavaScript.

Jetty is our Web server accepting incoming WebSocket connections; it forwards da-

ta between client and deployed Servlet.

We have AudioCollector HTTP Audio Post Processing / Forwarding Servlet de-

ployed by Jetty. The main purpose of the AudioCollector is to post process audio data to

the required format for the Speech Recognition engine. It also serves the Recognition

engine with audio and returns recognized result back via WebSocket to the client.

Our speech recognition engine is using CmuSphinx for recognizing speech and re-

turning recognized results back to the Servlet.

17

The client creates a WebSocket connection to the Jetty Webserver. The Google Ca-

nary browser can capture Live Web Audio from the microphone using simple JavaS-

cript, this is a new feature enabled by HTML5. Audio is recorded in the form of blob

chunks using JavaScript and is sent over the Web socket to the Jetty Webserver.

The AudioCollector listens for incoming audio data to be fetched. Audio blobs are

fetched by the AudioCollector Servlet. Audio is post processed to the format required

by the Speech Recognition engine. Once audio is transcoded to the required format, it is

forwarded/fed into the CmuSphinx Recognition engine. CmuSphinx processes Speech

and returns the result in the form of string array to the AudioCollector Servlet which is

then send back to the client on the WebSocket connection.

3.2. System Architecture Overview

The system architecture of the Web-based Network Speech Recognition has been

shown in figure 3.2., detailed client design flow is shown in figure 3.5 and the server

design flow is detailed in figure 3.6.

18

Figure 3.2: Component Level Architecture of Network Speech Recognition System using WebSock-

et

19

As can be seen from figure 3.2 the system architecture is divided into three parts. i.e.

User Client, Jetty Webserver holding the AudioCollector Servlet and the CmuSphinx

engine. Jetty Webserver serves client pages in addition to the AudioCollector Servlet.

The client part is responsible for creating the WebSocket connection to the server,

setting up incoming event listener (for incoming messages via WebSocket), capturing

audio from microphone and sending audio data as blobs with 1 second interval to the

Jetty Webserver using WebSocket. It also updates the page layout with the real time

information of speech recognition or any error information.

The Jetty Webserver deploys AudioCollector Servlet. It serves incoming request for

client Webpages and also listens for incoming WebSocket connections. When a Web-

Socket connection request is received, it registers the WebSocket connection. The de-

ployed Servlet is the main core which does multiple functionalities. AudioCollector

Servlet implements two event listeners named “onMessage” which has same names but

different signatures i.e. onMessage(byte[] stream, int offset, int length) can be referred

to as binary data event listener, which is used for collecting binary data such as audio

blob in our case, onMessage(String message) is used for sending / receiving plain text

messages. Audio is collected in the form of blobs every second on binary data event

listener as mentioned above. The collected blobs are appended to a wav file until there

are no more audio blobs (which is stopped by client). Recognition engines usually have

a limitation of processing input audio with certain audio format, thus it is necessary to

check collected audio at the server against the required audio format. For such purpose

there is transcoding functionality to transcode the wav file containing audio blobs to the

Recognition engine’s required format. The AudioCollector Servlet is directly connected

with Speech Recognition engine in order to provide it with transcoded audio Speech file

and receive the processed Speech result.

CmuSphinx is an open source engine responsible for serving multiple user client

speech recognition requests. It takes transcoded audio from AudioCollector, processes it

and returns the result back to AudioCollector.

All communication including binary data transmission or plain text messages are

done through WebSocket connection.

 Tools and Technologies

In the thesis implementation part the following tools and technologies are used:

 Server side technologies

 Jetty Webserver, HTTP Servlets, WebSocket, Java language, CmuSphinx

Speech Recognition server, Java Audio System [22]

 Server side tools

 Maven2 [23], Eclipse, Java compiler

20

 Client side technologies

 HTML 5, JavaScript, WebSocket, Live Web Audio, Jetty Webserver

 Client side tools

 Eclipse, Maven2

 Client Design Flow

Client is the starting point of speech recognition process where audio is captured, sent to

the Jetty Webserver over WebSocket.

Figure 3.3 shows the client user interface.

Figure 3.3: Network Speech Recognition Client

 The client page resides in Jetty Webserver and is served at 8080 port.

 The page is loaded in the Google Canary Web browser.

 User is asked to allow/deny capturing audio from microphone.

 Record and Recognize button serves the functionality of recording and recogniz-

ing Speech respectively.

 Status frame shows the current status of overall system.

 User is entitled to speak the default grammar shown at the end of the page.

The part of the page layout that gets updated on different events is shown in above fig-

ure. It shows status such as recording, WebSocket status, and speech recognition status

and its results.

One important entity that can be seen in above figure is the WebSocket status,

which is connected as soon the client page loading is completed. The following proce-

dure leads to a successful Recognition using client page.

 Google Canary Web Browser asks user to allow / deny permission for capturing

audio from microphone.

 User clicks on “Allow” button to allow capturing audio from microphone.

 User clicks “Record” button and start speaking.

21

 User clicks “Recognize” button to stop recording and start Speech Recognition

process.

 The Speech is processed by the Network Speech Recognition server.

 Results are returned back to the user client.

 Client page “Recognition Result” status label is updated with the result.

Figure 3.4 shows page layout update for Recognition in progress phase and success-

ful Speech Recognition phase.

Figure 3.4: Network Speech Recognition Client status

22

Figure 3.5: Network Speech Recognition Client Design Flow

23

Figure 3.5 shows detailed client design flow. This design flow is tested to work with

MAC OSX due to the limitation in Microsoft Windows and Linux, in which the “Live

Web Audio Input” feature is still under development. Also, there has been no way of

accessing raw audio data, so to realize this RecorderJS [24] JavaScript library is used. It

allows the user to capture audio, set an interval of time and returns an audio blob worth

of the specified interval amount of data.

Figure 3.5 shows that user loads the speech recognition client Web page served by

Jetty Webserver in Google Canary development version. The page has two buttons

“Record” and “Recognize” linked to record and recognize method respectively.

When the Webpage loading is completed, a WebSocket connection is tried to the

remote server. A condition is set to check if the connection is successful. Upon failure

the user is informed about the error information (mostly if Web browser doesn’t support

WebSocket) and to exit the Web browser. If the connection is successful, four event

listeners are setup for listening different events:

 Incoming Message Event Listener

This event listens for incoming messages via connected WebSockets from the

remote Jetty Webserver. It may include binary data or simple text messages. In

this design we have used it for simple plain text messages. Message includes

‘Speech Recognized’ result. Page layout is updated for user with recognized

speech result.

 Connection Close Event Listener

This event listens for WebSocket closing status. WebSocket may close due to

inactivity, manually or some error. The user is informed with appropriate mes-

sage.

a. If it is closed manually, the user is informed about closed WebSocket sta-

tus. The user is guided to close Web browser.

b. If it is closed due to inactivity or error, the user is informed with appropri-

ate information. The user is asked if he/she wants to continue. If the user

wants to continue the user is guided to refresh the page which will setup

the client page again. If user intends to not continue, the user is guided to

close the Web browser.

 Error Event Listener

In case of error during WebSocket connection creation, the user is informed

and is guided to close Web browser. The error may be caused of no support of

WebSocket in current Web browser.

24

 Open Connection Event

When a Web socket connection is opened to remote Jetty Webserver, this event

gets called informing user of Web socket connection opened. Page layout is

updated with Web socket connection open status information.

As the user is now connected to the remote Jetty Webserver using WebSocket, the user

can use two buttons for interaction to start the speech recognition process.

User clicks on Record Button and recording setup proceeds with checking if the user

client has the ability to capture audio i.e. checking Live Web Audio Input feature. In

unsuccessful case the user is informed with the information that the user client is not

supporting “Live Web Audio Input” feature and guides it to close the user client. In case

of success, the page layout is updated.

An instance of RecorderJS is created. Audio capturing is started and a stream object

is provided to RecorderJS instance method “record” to record and encode audio and

return audio blobs in its call back method. The audio blobs are sent on WebSocket to

the Webserver every second until it is stopped by RecorderJS instance “stop” method,

page layout is updated.

When user clicks on Recognize button, it checks for condition to see if it is already

recording or not. In case of no recording, user is informed to start recording by clicking

on the “Record” button and the page layout is updated or else a signal is sent to Record-

erJS instance to stop recording. The audio blob sending is stopped.

 Server Design Flow

The detailed server design flow is shown in figure 3.6. Few terms have to be explained

before going through elaboration of detailed design flow. SphinxServer is main Java

class responsible for executing Webserver instance on Port 9999. It listens for incoming

WebSocket connection and forwards the connection requests to the WebSocket Han-

dler. WebSocket Handler is responsible for handling incoming WebSocket connection

and registers them for tracking. SphinxRecognizer [25] is the Java class responsible for

executing audio speech queries from WebSocket clients to CmuSphinx to process

speech and return result back to the WebSocket client. The term Recognizer is used by

recognition engine as a recognition engine object to recognize speech.

25

Figure 3.6: Network Speech Recognition Server Design Flow

26

The SphinxServer is initiated by creating a SphinxServer instance on Port 9999 (in our

implementation). The WebSocket Handler for handling incoming WebSocket connec-

tion is created immediately. As mentioned above WebSocket handler handles the in-

coming WebSocket connection and registers them, so it waits for incoming connection

and as soon a WebSocket connection request is received, it creates a WebSocket con-

nection and registers its information for tracking purposes. As soon as the WebSocket

connection is created for the client, a SphinxRecognizer instance is created for that cli-

ent to process its Speech requests queries. Every WebSocket client uses its own instance

of SphinxRecognizer to avoid usage of each other resources resulting in conflicts during

Speech Recognition. When the WebSocket connection is created for the client, its event

listeners are setup. Following are the list of event listeners’ setup for any events that

may occur:

 On Connection Opening

This event gets called when a connection is opened between server and client.

We register client information in this event and set the binary message size to

enable WebSocket to receive audio blobs over it.

 On Connection Closing

Information is logged and displayed to users for a possible closing of connec-

tion with the appropriate information i.e. “WebSocket Connection Closed due

to inactivity for 230 ms”. It may appear due to inactivity or some error.

 On Incoming Messages (Binary Audio data)

Audio blobs are received in this message event. We get audio blob of 1 second

as byte stream and append it to a .wav file with temporary file name. Audio

blobs are appended to the same temporary file till the last blob received. Once

audio blob receiving is finished (means the User has clicked the “Recognize”

button on client Web page results in stopping recording and eventually stop-

ping audio blobs sending) the file is saved to disk with the name of the remote

client IP address. The reason that the file is stored as the name of client IP ad-

dress is due to the fact that, the IP addresses are unique and the audio record-

ings can be saved with the IP address name to avoid conflict of using same file

by multiple clients during Speech Recognition, which may result in erroneous

result.

 On Incoming Messages (Plain/text Messages)

As soon as the client clicks on “Recognize” button on the client Web page, the

recording is stopped and a string “recognize” is sent to the server which is be-

ing received in this event. The check is done for the incoming message if it has

a string “recognize”. If it fails, the message is ignored and the recognition pro-

cess is halted. If it succeeds we create an audio input stream from the .wav file

27

which we created in the above mentioned Incoming Binary Message event lis-

tener i.e. .wav file with the name of IP address of remote client. We need to

create audio input stream for the reason that CmuSphinx engine requires spe-

cific parameter encoded with .waw file i.e. “16000, PCM Signed, mono, Big

endian false”. So to transcode the above saved file we need to create an audio

input Stream from above mentioned stored .wav file and transcode it to the re-

quired format and save it again as a .wav file with the same name. As AudioIn-

put Stream is created, we create an AudioFormat object provided by Java to

create a new required audio format and then write the new .wav file with the

newly created audio format to the same remote client IP address name .wav

file. Once transcoding of the .wav file is fisnihed an URL object of that trans-

coded file is created. Before feeding the URL file to the CmuSphinx we need

to setup the Recognizer.

We setup Recognizer by reading the recognizer config file [26] which is an

xml file and has all the information to setup Recognition engine such as using

grammar or language models, tuning parameters, allocating memory for differ-

ent sub components of the Recognition engine, using different type of stream

sources to process (in our case File stream source), etc. Memory is allocated

for the recognizer; stream is setup from above mentioned file URL. ArrayList

object of string is created for storing processed speech result. Recognition

starts and results are returned as ArrayList. ArrayList is converted to String and

send it back on the connected WebSocket connection to the client.

28

 System Sequence Flow

Complete sequence flow diagram is shown in figure 3.7.

 Figure 3.7: Network Speech Recognition System Sequence Flow

29

Now we are going to demonstrate the sequence flow of an input speech recognition

request in aforementioned sequence diagram. User opens Google Canary Web Browser

loads the client page i.e. index.html served by Jetty Server running on 8080 port. Once

the page is loaded a WebSocket connection is created to the SphinxServer which is run-

ning on Port 9999. As soon as the SphinxServer receives the request it gives it to the

WebSocket handler [27] and at the same time a SphinxRecognizer instance is created

for that particular WebSocket connection. SphinxServer opens the connection for the

remote WebSocket client. The client page asks user if he wants access to microphone

(Allow/Deny). User clicks “Allow” button allowing microphone access, access is grant-

ed and a Live Web Audio stream is created in the form of stream object.

User clicks on “Record” button on the client page, an instance for RecorderJS class

is requested. RecorderJS returns an instance to the client. An interval of 1 second is set

for audio recording. Audio recording is started by inputting Live Web Audio stream

from microphone to the RecorderJS instance method “record” and 1 second worth of

audio is return in form of audio blob. The audio blob is sent over the WebSocket con-

nection to the SphinxServer every second. Recording and sending of audio blobs every

second is done in a loop until otherwise signalled by User. The Audio blobs sent to

SphinxServer every second is received as byte stream and it is appended to a temporary

file output.wav file.

User clicks on the “Recognize” button on the client page. It sends a signal to Re-

corderJS to stop recording by using RecorderJS method “stop” and the audio blob send-

ing is also stopped at the same time. The temporary file “output.wav” is renamed to the

remote client IP address name i.e. remote.client.ip.address.wav file. A string “recog-

nize” is also send on the WebSocket connection to the SphinxServer which is received

on incoming plain/text message event listener. Once it recognizes the message, a trans-

coded audio wav file URL is created by transcoding the above mentioned re-

mote.user.ip.address.wav file and then creating a URL object of it.

Recognizer is setup to recognize speech from the above mentioned transcoded wav

file. A stream is setup from the transcoded file in recognition engine by input its URL

object and then starting recognition.

The results are returned back to te SphinxServer from where it is send back on

WebSocket connected connection to the client page. Client page is updated when it re-

ceives the result and displayed it to the user of recognized result.

30

4. EVALUATION

The evaluation has been done in the form of testing our implemented Network Recogni-

tion System and traditional HTTP Request / Response based Nuance Network Speech

Recognition system. The system throughput has been compared at the end of the test

later in this chapter.

4.1 Testing Network Recognition System

In this chapter the tests of our implementation are described. Two systems were pre-

pared for testing, i.e. the server and the client. The server hosts two Jetty Webservers,

one for serving the client Website and other for accepting incoming WebSocket connec-

tions. Following table shows the hardware used for this testing.

 Server Client

Processor Intel Core 2 Duo Intel iCore 3

RAM 2 GB 4GB

HDD 80 GB 320 GB

OS Linux MAC OSX

Connectivity Wireless (802.11) Wireless 802.11 (802.11)

Table 4.1: Network Recognition System Hardware and OS

Our client uses Google Canary Web browser on Mac OSX to record audio and send

the audio data to the server via WebSocket. The client then waits for the recognized

speech result.

The test were also done using third party engine i.e. Nuance Network Speech Recogni-

tion engine using HTTP Request / Response using the third party Nuance Network

Speech Recognition Client application in order to compare its throughput with our de-

signed system.

4.2 Client

The client part includes the client Web page, responsible for initiating the recording and

recognition process. It requires user interaction for allowing access to the microphone or

starting / stopping recording.

31

The main purpose of this test was to check a successful recorded speech recognition

request in real time via WebSocket. An audio speech was recorded for 10 seconds. The

audio data was then transmitted every second, to the remote server, in the form of audio

blobs. The recording is stopped once the 10 seconds have elapsed.

Logging was enabled for debugging purposes. Log shows the flow of application,

from allowing microphone until stopping the sending of audio blobs, by signalling re-

corder to stop recording.

The test has been done on Mac OSX with Google Canary browser running. Logs are

collected via console provided in Google Canary browser.

Figure 4.1 shows the client page loaded in the browser. The status layout shows the

current status of the page layout. The recognition engine has been set with the grammar

listed on the client page, means it can only understand the specific set of grammar. As it

was mentioned earlier, the recognition engine can be tuned and extended with a bigger

list of grammar upon requirements.

In this test the user clicked the record button, upon which the highlighted text was

spoken and the result was returned via the speech recognition engine.

Figure 4.1: Network Speech Recognition Client Test layout

Figure 4.2 shows the detailed log with the flow of application and the audio blobs that

were sent to the remote server every second. The user interaction can also be seen in the

logs.

32

Figure 4.2: Google Canary Debug Console: Client Flow Logs

The following table shows an analysis of the speech recognition engine. Provided all the

audio data has arrived at the server, it takes only 2 seconds for recognition engine to

recognize 4 seconds worth of input audio speech. The total time elapsed including re-

cording and speech recognition is equivalent to 6 seconds. The speech recognition time

can vary with audio speech length, as it requires more processing of the recorded audio

in order to accumulate the results.

 Audio Speech of 4 second

4 Second worth of
audio Speech
Recognition analysis

Audio Recording Timestamp Speech Recognition Time Stamp

14:02:19 14:02:22

14:02:20 14:02:24

14:02:21

14:02:22

Time 0:00:04 0:00:02

Total Time Elapsed 0:00:04 + 0:00:02 = 0:00:06

 Table 4.2: Network Speech Recognition test

4.3 Server

The Server part includes two Webservers; a Sphinx Server that processes speech recog-

nition requests and another server to serve the client page to the client. Figure 4.3 shows

the directory structure of two servers. It also shows the Webserver running on port 8080

serving client page for audio recording and sending audio blobs to the server.

33

Figure 4.3: Network Speech Recognition System Tree Layout

Figure 4.4 shows the SphinxServer running on Port 9999, waiting for incoming Web-

Socket connections. It does the audio post processing as well.

 Figure 4.4: Network Speech Recognition Server Instance running on Port 9999

In the test, WebSocket connection was created to the SphinxServer. Audio Speech was

recorded through client page and audio blobs were sent to the SphinxServer through

34

WebSocket connection. Audio was post processed to the CmuSphinx requirement and

then fed into the engine to get Recognition result.

The detailed flow of SphinxServer serving a client’s Speech Recognition request

can be found from the figure 4.5.

Figure 4.5: Eclipse Debug Console: Server flow logs

Figure 4.5 states the test result for speech recognition request processing. The log in-

cludes the detail of appending audio blobs to audio file, transcoding, setting up the

Recognition engine and recognizing speech. The results of processed Speech Recogni-

tion can be seen at the end. Note: The timestamp differs in the client and server due to

the non-synchronization of clocks.

4.2.1 Tests Comparison and Analysis

A group of tests for different audio Speech intervals is performed to estimate the aver-

age throughput of speech recognition engines using WebSocket and traditional Nuance

HTTP Request / Response mechanism.

Following table shows the audio speech recorded time and its recognition per test.

Test # Audio Speech (time in seconds) Elapsed time for Speech Recognition (in seconds)

1 5 3

2 2 2

3 8 3

4 3 2

5 5 3

 Table 4.2: Speech Recognition throughput using WebSocket and CmuSphinx Engine

35

Figure 4.6 shows throughput of speech recognition for above mentioned 5 tests.

Figure 4.6: Speech Recognition Engine Throughput using WebSocket

The same audio recordings that were made in above tests were tested against Nuance’s

Network Speech Recognition using HTTP Request / Response. Following is the table

showing the throughput.

Test # Audio Speech (time in seconds) Elapsed time for Speech Recognition (in seconds)

1 5 3

2 2 2

3 8 6

4 3 2

5 5 4

Table 4.3: Speech Recognition using HTTP Request / Response and Nuance engine

Figure 4.7 shows throughput for Nuance Network Speech Recognition engine.

Figure 4.7: Nuance Network Speech Recognition engine throughput

5
2

8

3
5

3

2

3

2
3

1 2 3 4 5

Speech Recognition throughput using
WebSocket and CmuSphinx Engine

Elapsed time for speech recognition (time in seconds)

Audio Speech (Time in seconds)

5
2

8

3
5

3 2

6

2
4

1 2 3 4 5

Nuance Speech Recognition Engine
throughput

Audio Speech (in seconds)

Elapsed time for Speech Recognition using nuance (in seconds)

36

Figure 4.8 shows throughput comparison of CmuSphinx engine and Nuance Network

Speech Recognition engine.

 Figure 4.8: Comparison of Our System vs. Nuance Networks Speech Recognition system

Based on the above comparison, it was concluded that the network speech recognition

using WebSocket performs better in the lengthy input speech request than the traditional

HTTP Request Response mechanism. However it should be noted as well, that these

two recognition engines rely on two very different networks. CmuSphinx resides in lo-

cal network with a lot of other users’ network traffic, whereas Nuance engine resides in

their own private network, accessible over the Internet.

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5

Audio Speech (in seconds)

Elapsed time for Speech
Recognition using nuance (in
seconds)

Elapsed time for Speech
Recognition using
websockets (in seconds)

37

5. CONCLUSIONS

The Network Speech Recognition system architecture using HTTP Request / Response

has limitations and overhead of headers. To overcome such limitations, a Network

Speech Recognition system using WebSocket has been implemented. The utilization of

new WebSocket feature provides a more robust and efficient way of transmitting data in

real time using its full duplex transmission channels without overhead of headers.

The Network Speech Recognition system architecture using WebSockets has been

implemented using several new technologies. However, our system architecture is lim-

ited by some of them due to their early stage of development.

The Live Web Audio feature for capturing audio, using Google Canary Browser,

limits users to access raw PCM frames, which in turn requires transcoding audio to the

required format.

To overcome this problem, we have used RecorderJS library to encode audio to a

default standard of 44100Hz sampling rate, which is rarely required by the recognition

engines. Thus, our solution has added some overhead of having to transcode the audio

to the required audio format.

The designed system can be improved with increased throughput and efficiency by

adding the feature of transcoding audio on the fly, during capturing the Live Web Audio

stream. This will provide option of transcoding audio to the required format on the cli-

ent side. Thus, it would reduce the overhead of audio post processing on the server side.

Client machines have more processing power nowadays. It is thanks to that extra

processing power, that they can overcome the extra computation required to receive the

audio blobs of the server side in order to append them to a file. This could have been

much improved by creating a live transcoded audio stream with the required format

from the client side, and then directly fed it into the speech recognition engine. There

would be no need of appending audio blobs to a file at the server side for transcoding

and then providing it to the recognition engine.

One of the major improvements in speech recognition is silence detection. Providing

that the aforementioned mentioned features have been implemented, the silence detec-

tion feature would be a major improvement to the system, enhancing throughput of the

Network Speech Recognition systems. The network congestion and high latency of au-

dio frames that are arriving late at the server which are causing a silence to the engine,

may lead the speech recognition engine to give wrong results.

A Network Speech Recognition engine that uses WebSockets provides a more ro-

bust and versatile way for processing and replying to speech recognition requests from

38

the clients. It provides clients with a vast vocabulary and language model, and a high

processing power to analyse the speech recognition requests in real time.

39

REFERENCES

[1] Infotainment system, http://www.whyhighend.com/infotainment-system.html

[2] CmuSphinx Open Source Speech Recognition Engine,

http://cmusphinx.sourceforge.net/

[3] HTTP Request / Response Mechanism,

http://geekexplains.blogspot.com/2008/06/whats-http-explain-http-request-and.html

[4] WebSocket Protocol RFC, http://tools.ietf.org/html/rfc6455

[5] HTML5’s Live Web Audio feature, http://updates.html5rocks.com/2012/09/Live-

Web-Audio-Input-Enabled

[6] Acoustic Model, http://en.wikipedia.org/wiki/Acoustic_model

[7] Java Speech Grammar Format (JSGF) Grammar, http://www.w3.org/TR/jsgf/

[8] Language Modeling for Speech Recognition, http://research.microsoft.com/en-

us/projects/language-modeling/

[9] Sphinx4 Recognizer, http://cmusphinx.sourceforge.net/sphinx4/

[10] HTTP Servlets, http://www.novocode.com/doc/servlet-essentials/chapter1.html

[11] Dynamic Web contents, http://suite101.com/article/static-and-dynamic-web-

content-a97262

[12] Jetty Webserver, http://Jetty.codehaus.org/

[13] HTTP Servlet API,

http://docs.oracle.com/javaee/1.4/api/javax/servlet/http/HttpServlet.html

[14] Web containers for Servlets, http://www.servletworld.com/servlet-tutorials/j2ee-

web-container-introduction.html

[15] Jetty Configuration and example code,

http://www.eclipse.org/jetty/documentation/current/

[16] HTML5, http://www.w3schools.com/html/html5_intro.asp

40

[17] HTML5 API, http://www.w3.org/TR/html5/

[18] Web Real Time Communication (WebRTC) project, http://www.webrtc.org

[19] World Wide Web Consortium (W3C), http://www.w3.org

[20] WebSocket API, http://www.w3.org/TR/2011/WD-websockets-20110419/

[21] Binary Large Object (BLOB), https://developer.mozilla.org/en-

US/docs/DOM/Blob

[22] Java Audio System for audio post processing,

http://docs.oracle.com/javase/1.4.2/docs/api/javax/sound/sampled/AudioSystem.htm

l

[23] Maven2, HTTP Servlets Deployment tool, http://maven.apache.org/

[24] RecorderJS, JavaScript Library for recording audio,

https://github.com/mattdiamond/Recorderjs

[25] SphinxRecognizer class for recognizing Speech,

http://cmusphinx.sourceforge.net/sphinx4/javadoc/edu/cmu/sphinx/jsapi/SphinxRec

ognizer.html

[26] CmuSphinx Configuration for setting up Recognition engine,

http://CmuSphinx.sourceforge.net/sphinx4/javadoc/edu/cmu/sphinx/util/props/doc-

files/ConfigurationManagement.html

[27] WebSocketHandler class for handling WebSocket connections,

http://www.jarvana.com/jarvana/view/org/eclipse/jetty/jetty-

websocket/8.0.0.M1/jetty-websocket-8.0.0.M1-

javadoc.jar!/org/eclipse/jetty/websocket/WebSocketHandler.html

[28] Xing Yan, Lei Yang, Shanzhen Lan, Xiaolong Tong, Application of HTML5

multimedia, Computer Science and Information Processing (CSIP) 2012 Interna-

tional Conference, pp. 871 – 874, 24-26 August 2012.

[29] Pimentel V, Nickerson B.G, Communicating and Displaying Real-Time Data with

WebSocket, IEEE Internet Computing, vol. 16, pp. 45 – 53, July - August 2012.

41

[30] Loreto S, Romano S.P, Real-Time Communications in the Web: Issues,

Achievements, and Ongoing Standardization Efforts, IEEE Internet Computing,

vol. 16, pp. 68 - 73, Sept – Oct 2012.

