TAMPEREEN TEKNILLINEN YLIOPISTO
TAMPERE UNIVERSITY OF TECHNOLOGY

ANSSI NURMINEN
ALGORITHMIC EXTRACTION OF DATA IN TABLES IN PDF

DOCUMENTS
Master's Thesis

Examiners:

Prof. Tapio Elomaa,

MSc. Teemu Heinimaki

Examiners and topic approved by the
Faculty Council of the Faculty of
Computing and Electrical
Engineering on 9 January 2013.



ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Degree Programme in Information Technology

NURMINEN, ANSSI: Algorithmic Extraction of Data in Tables in PDF
Documents

Master of Science Thesis: 64 pages, 4 appendices (8 pages)

April 2013

Majoring in: Embedded systems (software emphasis)

Examiners: Prof. Tapio Elomaa, MSc. Teemu Heinimaki

Keywords: PDF, portable document format, Qt, data extraction, data mining,
Adobe, tables, table row, table column, discovering tables, table discovery, table
recognition, HTML, XML, table structure recognition, table structure definition,
table detection, table extraction, convert PDF to HTML, convert PDF to XML,
layout analysis, document understanding, big data, information extraction,
information extraction system, Poppler

Tables are an intuitive and universally used way of presenting large sets of experimental
results and research findings, and as such, they are the majority source of significant
data in scientific publications. As no universal standardization exists for the format of
the reported data and the table layouts, two highly flexible algorithms are created to (i)
detect tables within documents and to (if) recognize table column and row structures.
These algorithms enable completely automated extraction of tabular data from PDF
documents.

PDF was chosen as the preferred target format for data extraction because of its pop-
ularity and the availability of research publications as natively digital PDF documents,
almost without exceptions. The extracted data is made available in HTML and XML for-
mats. These two formats were chosen because of their flexibility and ease of use for fur-
ther processing.

The software application that was created as a part of this thesis work enables future
research to take full advantage of existing research and results, by enabling gathering of
large volumes of data from various sources for a more profound statistical analysis.



II

TIVISTELMA

TAMPEREEN TEKNILLINEN YLIOPISTO

Tietotekniikan koulutusohjelma

NURMINEN, ANSSI: Algorithmic Extraction of Data in Tables in PDF
Documents

Diplomityd, 64 sivua, 8 liitesivua

Huhtikuu 2013

Paaaine: Sulautetut jarjestelmat (ohjelmistopainotuksella)

Tarkastajat: professori Tapio Elomaa, dipl.ins. Teemu Heinimaki

Avainsanat: PDF, taulukko, taulukot, data, talteenotto, big data, HTML, XML, Qt,
Poppler, big data

Lihes poikkeuksetta kaikki nykyisin tehtdvé tutkimustyd julkaistaan verkossa, ja yhi
enenevdssd midrin “open access’-journaaleissa. Saatavilla olevan tutkimusdatan
rdjadhdysméinen kasvu on johtanut monilla aloilla tilanteeseen, jossa sen késittely
manuaalisesti on erittdin tyoldstd, ellei jopa mahdotonta. Jotta tulevaisuuden
tutkimustyd voisi hyddylliselld tavalla rakentua jo olemassa olevan tiedon paille,
tarvitaan siis automaattisia menetelmié datan kerddamiseen ja késittelyyn.

Taulukot ovat intuitiivinen ja selked tapa esitelld pientd suurempia méérié tilastoja,
tutkimustuloksia ja muita 16ydoksia. Suuri osa tieteellisten julkaisujen tarkeistd
tuloksista julkaistaankin juuri taulukkomuodossa. Mitddn standardisointia taulukoillle
eri julkaisijoiden vélilld ei kuitenkaan ole, ja taulukot esiintyvét julkaisuissa hyvinkin
monimuotoisina, hyvin vaihtelevilla rakenteilla ja ykstyiskohdilla.

Naitd ongelmia varten tdmén diplomityon yhteydessd on kehitetty kaksi tdysin uutta,
joustavaa algoritmia taulukkomuotoisen datan talteenottamiseen ja prosessoimiseen
tietokoneiden paremmin ymmairtimddn muotoon (HTML, XML). Ensimméiisen
algoritmin tehtdvd on taulukoiden paikantaminen PDF (Adoben Portable Document
Format) dokumenttien sivuilta. Toinen algoritmi jdsentelee taulukoiden tietoalkiot data-
ja otsikkoriveihin, ja médrittelee niiden rivi- ja sarakerakenteen. N&mi kehitetyt
algoritmit mahdollistavat tdysin automaattisen taulukoiden talteenoton ja jatkokdsittelyn
PDF-dokumenteista. PDF-dokumentit valittiin kohdemediaksi, niiden yleisyyden ja
tieteellisten julkaisujen saatavuuden perusteella, natiivisti digitaalisina PDF-
dokumentteina.

Tamd opinndytetyd ja sen mydtd kehitetyt algoritmit ovat etupddssd suunnattu
bioinformatiikan ja bioteknologian kéyttdtarkoituksiin, toimimaan osana “big data”-
tyylistd tutmustyotd, jossa suuresta médrdstd olemassa olevaa tutkimusdataa tiivistetdin
muuten piiloon jddvia korrelaatioita ja muita olennaisia havaintoa. Mik&én ei kuitenkaan
rajoita algoritmien kayttod juuri téllaisiin tarkoituksiin.



III

PREFACE

This thesis work was completed in a time period of 5 months including the development
and implementation of the software algorithms. All the algorithms used and described in
this thesis work were developed by the author.

I would like to thank Prof. Tapio Elomaa for supervising this thesis work, and Teemu
Heiniméki for his careful proofreading and excellent suggestions on my writing. I
would also like to thank Tamir Hassan for his helpful correspondence for making the
performance evaluation metrics of the algorithms more standardized. Most of all, I
would like to thank my wonderful girlfriend Henna for her continuing patience and sup-
port throughout the whole process.

Last revised: 2013-04-16.

—Anssi Nurminen, anssi.nurminen@iki.fi



v

TABLE OF CONTENTS

1 INEEOAUCTION. ...ttt ettt ettt ettt et e e e easeeeas 1
2 Back@round...........oc.ooiuiiiiiiiecee e e 3
2.1 Table ANATOMMY.....cuvieeiiieeiiee et et eee et tee e et e e e e ear e e e e ennraeeeeeennsneeas 4

2.2 Portable Document Format (PDF).......c..ccccoviiiiiiiiiiiieee e 5

2.3 Poppler PDF rendering lIbrary..........cccooeveeieieeiiiie et 6

2.4 Project GOAS. ... .iiiuiiiiieiieee e 7

3 Data EXraCtION. ...cc..eiiuiiiiiiiieiieete ettt et et 8
3.1 Defining the problems that need to be solved..........ccccoeviriiiniiiiniineen. 9

3.1.1 Reading the contents of a PDF file.......c.ccccccvvvviiiiiiiiiiiiiiiieeeees 10

3.1.2 Rotating the table to upright orientation............cccceeevreveveerireeeennns 10

3.1.3 Discovering separator lines and grids.........ccccceeevveeveveencieencnnnnnnnn. 11

3.1.4 Discovering table areas in the document..............cccceeeevveerivereennns 12

3.1.5 Defining row and column structure for the table..............cc............ 13

3.1.6 Defining the header rows of the table............ccceevvieriiieciiieniies 14

3.1.7 Formatting and outputting table data.............cceeveveiievienieenerennne, 14

3.1.8  Character enCOdING.........ccceerrvieiiiieeeiiieeiiee et e e esieeeeireee e e e 15

3.2 Table eXamPIES....cceecciieiieeiieiieeie ettt ettt ettt e 16

4 ALZOTTERIMS. ...ttt ettt e et eebeestbeesbeessaeenbeessseesseesssennns 18
4.1 ROtation OF PAZES.....cevuieriieiieeieeiieeie ettt ettt et sate e seaesbe e nsaeeens 18

4.2 Edge deteCtiON......ccuieiiieiieiieeiieeie ettt ettt ettt s eeseebaaeenes 19

4.2.1 Finding horizontal @dges..........ccccueriieriieniiiiiieniie e 21

4.2.2 Finding vertical €d@es.........ccuerirerierieeiieieeie et 24

4.2.3 Finding and aligning crossing €dges..........cccceererernureeenieeeenieeenns 24

4.2.4 Finding rectangular areas..........ccecveveeeriienieenieenie e 25

4.3 Detecting tables.......ooiiiiiiiieeie e e 27

4.4 Defining table StrUCIUIE........c.eeviiiiiieiiieeiieie ettt e 32

4.5  Finding the header TOWS........ccooiiiiiiiiiiie e 35

4.5.1 Header predictor: NUMDETS........c.ccocueeriierieiiieniie e 37

4.5.2 Header predictor: Repetition...........ccccuvieeiieeeiieeeiiiiieeeeeiiieee e 38

4.5.3 Header predictor: Alphabet............ccooueeiiiiiiiiiiiiiieeeeeeee, 39

4.5.4 Header predictor: other methods..........c.coeeeveeviiieiiiiiieeeiieeees 40

4.6  Outputting extracted data...........ceceeiiiiiiiiiiiiieeeee e 40

4.6.1 Application programming interface............c.cceevevveercueeerreeerreeennee. 41

4.6.2  Standalone USAZE.........cccueeervieeiiieeiieeeiieeeieeeeree et e e e e sraeeae e 42

5 Empirical evaluation...........ccuiiiiiiiiiieeiiieeeeeeeee e e 44
5.1 Evaluation metrics and performance............cccocueeeeveeenieeeieeesiieeeieeeee e 44

5.1.1 Evaluating table structure recognition..............ccceeveeeereereeereveeennne. 44

5.1.2  Evaluating table detection............cccccueeeviieerieeeiiiiee e, 46



5.2 Performance evaluation implementation...........c.ccceeeveeeeiieenieeenieecieeennn 49

5.3 TeSt data.. oo e 50

5.4 Performance reSults.........coocieiiiieriiiiinieieieeee e 50

5.4.1 Table structure recognition performance results...............ccccuuveeene. 51

5.4.2 Table detection performance results...........cccoecveeereerieeiieeennieeennnen. 52

5.4.3 Performance in terms of tIMe........ccceevueeriiriiiniiiiiiieeeieceeieee 53

5.5 IMPlementation........cceeriieriienieeiierie ettt ettt e ete e eae et aaeas 53
Related WOTK.....cc.eeiiiiiiieeeeee e 55

6.1  PDF-TREX ..ottt st s 55

6.2 PAf2table.. ..o s 55

6.3 Other ProAUCTES........ooiuiiiiieiieeie ettt st e e 59
CONCIUSIONS. ..ottt ettt ettt st ettt st e st e e e st e sbe et e eebeeeaeean 61

7.1 DISCUSSION ON ACCUTACY .. ..eeeurieererureerseeereeseesseenseesnseesseessessseeessnseeesasseees 61

7.1.1 Edge detection performance...........coceecveerieerieeneeeiieeniieeeieeeenenes 62

7.1.2  Problematic tables and data set ambiguities............cccevceeerureeennee. 62

7.2 FULULE PLANS...eitiiiiieiieeie ettt ettt st e et e e 65
RETETEICES. ... eeeeiiiieeiiee ettt ettt e et e e et eeesaaee e s enaaaeeeeeeenssaaeeeeennnes 66
Appendix A — Structure recognition results — EU-data set...........ccccoveeveniinieneennieennen. 68
Appendix B — Structure recognition results — US-data set.........cccceevveeerieeeciee e, 70
Appendix C — Table detection results — EU-data set..........cccccoervieniineniiniciniceniceeens 72

Appendix D — Table detection results — US-data set.........ccceeeevvieriieeiiieeiiieee e, 74



VI

TERMS AND DEFINITIONS

Words and abbreviations appearing with an italicized font within this document are ex-

plained in the following table.

API

ASCII

C++

CPU

Flash

GPL

GUI

HTML

OCR

“Application Programming Interface is a protocol
intended to be used as an interface by software
components to communicate with each other.”,
Wikipedia.

“The American Standard Code for Information
Interchange is a character-encoding scheme originally
based on the English alphabet.”, Wikipedia.

“The C++ programming language is a statically typed,
free-form, multi-paradigm, compiled, general-purpose
programming language.”, Wikipedia.

“Central Processing Unit is the hardware within a
computer that carries out the instructions of a
computer program by performing the basic
arithmetical, logical, and input/output operations of the
system.”, Wikipedia.

“Adobe Flash (formerly called "Macromedia Flash") is
a multimedia and software platform used for authoring
of vector graphics, animation and games which can be
viewed, played and executed in Adobe Flash Player.”,
Wikipedia.

“The GNU General Public License is the most widely
used free software license, which guarantees end users
(individuals, organizations, companies) the freedoms
to use, study, share (copy), and modify the software.
Software that ensures that these rights are retained is
called free software.”, Wikipedia.

“A Graphical User Interface is a type of user interface
that allows users to interact with electronic devices
using images rather than text commands.”, Wikipedia.

“HyperText Markup Language is the main markup
language for creating web pages and other information
that can be displayed in a web browser.”, Wikipedia.

“Optical character recognition is the mechanical or
electronic conversion of scanned images of
handwritten, typewritten or printed text into machine-


http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Html
http://en.wikipedia.org/wiki/Gui
http://en.wikipedia.org/wiki/Gpl
http://en.wikipedia.org/wiki/Adobe_Flash
http://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/ASCII

PDF

Proto-link

Python

Qt

Unicode

XML

XSL

VIl

encoded text.”, Wikipedia.

Portable Document Format (Adobe) is a digital file
format with small file size, system independent
representation, portability and printability as its key
features.

Proto-links describe the adjacency relationships of
cells in a table.

“Python is a programming language that lets you work
more quickly and integrate your systems more
effectively.”, source: http://www.python.org/

“Qt is a full development framework with tools
designed to streamline the creation of applications and
user interfaces for desktop, embedded and mobile
platforms.”, source: http:/qt.digia.com/Product/

“Unicode is a computing industry standard for the
consistent encoding, representation and handling of
text expressed in most of the world's writing systems.”,
Wikipedia.

“Extensible Markup Language is a markup language
that defines a set of rules for encoding documents in a
format that is both human-readable and machine-
readable”, Wikipedia.

“Extensible Stylesheet Language is used to refer to a
family of languages used to transform and render XML
documents.”, Wikipedia.


http://en.wikipedia.org/wiki/Xsl
http://en.wikipedia.org/wiki/Xml
http://en.wikipedia.org/wiki/Unicode
http://qt.digia.com/Product/
http://www.python.org/
http://en.wikipedia.org/wiki/Optical_character_recognition

1 INTRODUCTION

Most, if not all contemporary scientific publishing is made available, and distributed on-
line. The ubiquitousness of the Internet and the increasing popularity of open access
publishing are making an increasing amount of publications easily accessible to a global
audience. Our ever expanding collective knowledge and the rapidly increasing amounts
of available data in just about any field of study are making manual gathering and pro-
cessing of such reported data an inefficient and laborious task; if not altogether impossi-
ble. Therefore, in order for future research to be able to build adequately on top of exist-
ing results and data, as well as being able to interpret the existing data correctly and
more profoundly, a system for automatic extraction and processing of data is needed.

Regardless of the scientific discipline, results of studies and experiments are often re-
ported in a tabular format. Tables are an intuitive and efficient way of reporting large
sets of data. However, while tabular representation of data is universally used in all
types of publications, no standardization of any kind exists in the way data is presented
between publications of different publishers or organizations, or in some cases, even
within the publications of a single publisher. A software tool for extracting such data
will therefore need to be highly adaptable to be able to correctly extract data from an
eclectic corpora of different types of tables.

The main focus of this work is to develop a practical software tool for easy and auto-
matic extraction of relevant data from large volumes of PDF (Portable Document For-
mat, by Adobe) documents. PDF was chosen as the preferred target format for data ex-
traction, because of its popularity and the availability of publications as natively digital
PDF documents, almost without exceptions. In addition, the release of the patent rights
on the PDF standard in 2008, has made the PDF format even more supported and
widely accessible.

The biomedical domain currently offers the most exciting aspects for “big data” re-
search. The current and massive influx of genetic data has created a demand for systems
that are able to combine and process the available information from a variety of sources,
into a more meaningful ensemble. This thesis work is intended to be a part of a larger
system, capable of processing large volumes of published data, but in no way limited to
such use.

However, for large enough number of documents, such a method can never achieve
perfect results. Therefore, it would be paramount to push publishers to make it a manda-
tory requirement for their publications' authors to include their relevant experimental
data and research findings in a more computer and algorithm friendly way. This could
easily be accomplished by including hidden metadata objects in the PDF documents



2

(e.g. in XML, “Extensible Markup Language”, format). Such features are already well
supported by the PDF standard.

The technical background for this thesis is presented in Chapter 2. The problems that
need to be solved to create an automated table data extraction system are presented in
Chapter 3, while Chapter 4 addresses the methods that have been used to solve them.
Chapter 5 focuses on evaluating the performance of the used methods. Chapter 6 takes a
look at existing similar systems and compares them to the algorithms developed as a
part of this thesis. The final chapter (Chapter 7) discusses the overall achieved results.



2 BACKGROUND

Tabular data extraction falls under a data processing category known as Information Ex-
traction (IE). “Information Extraction is a form of natural language processing in which
certain types of information must be recognized and extracted from text” [1]. An Infor-
mation Extraction System (IES), such as the one proposed in this thesis work, analyzes
the input text in order to extract relevant portions. IESs do not attempt to understand the
meaning of the text, but they only analyze portions of input text that contain relevant in-
formation [2].

There are roughly two main approaches to building IE systems: a rule-based ap-
proach, and an active learning approach. Both have significant advantages and disad-
vantages. This thesis employs a rule-based approach, with some learning-based parame-
ter adjustments. The rule-based approach of the algorithm is rooted in the rules of writ-
ten language, in all the so-called western languages, such as left-to-right and up-down
direction of writing.

In addition to the rules of the written languages, the only usable universal guideline
is, that all tables are meant to be read by humans. Considering this rudimentary princi-
ple, two general rules for the arrangement of the elements that a table contains can be
established:

1. Alignment of rows, and
2. Alignment of columns.

There always exists a visual way for determining which elements within a table are
associated with each other. Without any association between the elements of a table, it
would simply be a list. Whether the elements are separated from each other by separator
lines, drawn rectangles, or just by spacing, there always exists a visual pattern to the
placement of the table elements, because otherwise, it would be impossible even for hu-
mans to interpret the presented data.

There are generally two different types of PDF documents: natively digital docu-
ments and scanned paper documents. The natively digital documents differ from the
scanned paper documents in a few important ways. Scanned documents have their con-
tents drawn as images, while natively digital documents specify regions and text that is
drawn using fonts. To be able to process scanned documents in a useful way, the image
would first need to be processed using an optical character recognition (OCR) algorithm
to discover the written text in the image. Other issues with scanned documents include
poor quality images and tilted page orientation, which is the result when a scanned pa-
per is not placed completely straight on the scanning bed. These issues make processing



4

scanned documents a very different task from processing natively digital documents,
and therefore, processing scanned PDF documents is left outside the scope of this thesis

work.

2.1 Table anatomy

One of the more well-known conceptual models of a table has been proposed by Wang
[3], and later extended by Hurst [4]. Wang defines the table being divided into four main
regions: (i) the stub that contains the row- and subheaders; (i) the boxhead that contains
the column headers (excluding the stub head); (iii) the stub head that contains the
header for the stub, and (iv) the body that contains the actual data of the table. In this
thesis, Wang's definitions have been adapted slightly, so that the stub head is considered
being included in the stub.

It is worth mentioning that, of course, not every table has all of the four regions
present in it. For example, for a good percentage of tables, the stub and row headers do
not exist at all, and the column headers are not “boxed”. In addition to these definitions,
this thesis work uses the table definitions: header, column, row, title, caption, super-
header, nested header, subheader, block, cell and element. Figure 1 illustrates the defini-

tions.
~ysubheaders boxhead -,
Pl superheader column ™
Vi fitle ,-’ i (table)header/ __ }
i - stub _— A nested 4 column headers ‘ H
1 - header block W

i Winter :
Spring

“-row header caption/ / ~ €lements  poqy row
legend matrix

Figure 1: Table anatomy, terms and definitions of table elements.



5

An element is defined as a single word or a number on a PDF page. The difference
between an element and a cell in a table, is that a cell can contain multiple elements.
This is the case in many tables where multiple words (elements) form a sentence inside
the table body or header, and the whole sentence is assigned with the same column and
row indices, becoming a single table cell. A block consists of multiple cells.

While the title and the caption may not be considered to be a part of the actual table,
they are included in the definitions and the extraction process, because they often con-
tain important information about the contents of the table, and therefore should be ex-
tracted and associated with the table, especially when further functional or semantical
processing of the data is required.

A superheader is a column header that is associated with multiple columns and has
other column headers under it (typically nested headers, each associated with a single
column). A subheader is a cell in a table that usually exists on a row that contains no ta-
ble body elements, and it is associated with all the stub elements below it, or until the
next subheader below is found. Only in tables where the stub contains more than one
column, the subheaders may exist on body data containing rows.

The left-to-right style of writing used by all western languages, is guarantee enough
that the stub can be trusted to be located at the left end of the table, in Column 1. There
are of course exceptions, but the percentage of such tables, where the stub columns are
not at the left end of the table is negligible. Slightly more commonly, a duplicate of the
stub can exist in the middle of, or at the rightmost column of a table.

2.2 Portable Document Format (PDF)

The portable document format (PDF) is a file format developed by Adobe Systems in
the early 1990s. The main purpose, or idea of the PDF’ file format is the ability to repre-
sent printable documents in a manner that is independent of software, hardware, and op-
erating systems [5]. In other words, a PDF document should look, read and print exactly
the same no matter what system it is used with. The PDF specification was made avail-
able free of charge in 1993, but it remained a proprietary format, until it was officially
released as an open standard in 2008 (ISO 32000-1:2008) [6][7], when Abode published
a Public Patent License to ISO 32000-1. This license grants royalty-free rights for all
patents owned by Adobe that are necessary to make, use, sell and distribute PDF com-
pliant implementations [8]. In addition to these features, PDF's offer a good compres-
sion ratio, reducing file size and making the format ideal for online distribution. The
Adobe PDF logo in shown in Figure 2.



Adobe

Figure 2: The Adobe PDF logo is recognizable to many because of the popularity of
the PDF file format.”

Because of these qualifications and attributes, the PDF format has emerged as one
of, if not the most widely used “digital paper” of today, and as such, a preferred method
of online distribution of scientific publications for many publishers.

The basic types of content in a PDF are: text, vector graphics and raster graphics.
The format, however, supports a wide variety of other types of content, such as interac-
tive forms, audio, video, 3D artwork, and even Flash applications (PDF-1.7). For the
purposes of table data extraction, only the text content and visual clues such as separator
lines are relevant.

It is important to mention that the PDF document format also supports metadata
streams by using the Extensible Metadata Platform (XMP) [9] to add XML stan-
dards-based extensible metadata to PDF documents. Using embedded metadata, it
would be possible to include all reported data in a publication in a way that is easily
sorted, categorized and understood by computers. If such a practice would be enforced
or even encouraged by publishers, extracting and mining relevant data from large sets of
publications would become much easier and less error prone.

2.3 Poppler PDF rendering library

The Poppler PDF rendering library [10] is a xpdf-3.0 [11] based C++ open source
project (under GNU General Public License), that is freely available online. The Pop-
pler library provides a convenient way of reading and handling the PDF format and
files, giving easy access through an AP/ to the text in the PDF document, as well as ren-
dered (image format) versions of its individual pages.

Poppler is still a young and ongoing project, with the latest release being version
0.22 (released on 2013-02-10). Current relevant limitations of the library AP/ include:
no proper font information is available (font family, size), no text formatting informa-
tion is available (bolded, ifalic) and some problems with character encodings (some
special characters have wrong numerical code values).

*  Image source: Wikimedia commons.



7

The software tool that is developed as a part of this thesis project does not handle the
PDF files, and the PDF standard directly, but all reading and interpreting of the contents
of a PDF is done through the Poppler PDF rendering library.

24 Project goals

The goal of this thesis project is to create a useful software tool that is freely available
online to anyone interested in data extraction from PDF documents. While the focus of
the project is in scientific publishing, the usability of the created software application is
in no way limited to any one type of publications. The developed software tool is in-
tended for use with natively digital PDF documents, written in western style, left-to
right languages.

The application will be created in a way that allows standalone usage of the program
directly with PDF documents, as well as using it as a part of other software tools and
projects through an API. The output of the created software application is designed so
that it allows further automatic processing of the extracted data, and conversions be-
tween different digital formats.

All the source code of this thesis project will be made available online and it will be
released under the GNU General Public License (GPL), version 3.

*http://www.gnu.org/licenses/gpl.html



http://www.gnu.org/licenses/gpl.html

3 DATA EXTRACTION

The data extraction process begins with defining the information the algorithms are
working with. The Poppler PDF rendering library (Chapter 2.3) handles the PDF file
format, and the data extraction algorithms of this thesis process only information inter-
preted and channeled through the Poppler library.

The available data is not as detailed as one would imagine. For instance, no informa-
tion about the used font or the style of the font (such as bold or italics) is available. Nei-
ther is any information about the super- or subscript status of a word.

The text in the PDF document is received for each individual page in the form of
rectangular areas containing a single word of text called an (text) element. Each rectan-
gular element area (text box) is defined by coordinates, giving it a precise, unambiguous
location and size (width and height) on the page. The sides of the text boxes are always
aligned with the sides of the pages, i.e. there are no tilted or skewed rectangles. Figure 3
illustrates how the textual elements are available through the Poppler API.

Figure 3: The textual data in PDF documents is available as text boxes (grey areas)
with defined text content, location and size through the Poppler PDF rendering library.
The text boxes have no defined associations; further processing is needed to establish
which text boxes form sentences or tables together.

Each word in a PDF document is separated into a text box, and there exists no infor-
mation on which words together are intended to form sentences or table rows and col-
umns together, or which sentences would continue on the next line of text. Associating
words and forming sentences (and table cells) has to be done by the data extraction al-



gorithms, by examining and processing the elements on the page. Also, if a word is hy-
phenated at the end of a line, and continues on the next, it is separated into two com-
pletely unassociated text boxes. Each element also contains the bounding rectangles of
each individual letter (or number, or other character) in the word it contains.

The coordinates of the text boxes are available as points (abbreviated as pt). A point
is a typographical unit that equals 1/72 of an inch. This is due to the nature of the PDF
standard, designed as a printable “digital paper”. The actual, physical distances when
printed out in physical paper format are not really relevant for the algorithmic data ex-
traction process (more relevant are the relative distances between the text boxes). How-
ever, the physical distance can help in determining the limits in which text boxes, con-
taining words, would be able to form readable sentences. The following equation shows
how points can be converted into other units of length.

N _254
1p01m‘—7—2mches——72 mm=0.3527 mm.

Any other kind of information on a page, such as separator lines, images or any other
type of more complex embedded data that the PDF standard supports, is not directly
available through the Poppler API. Other methods must be used for taking such infor-
mation into consideration.

In addition to providing the textual data, the Poppler library can render the individual
pages of PDF documents into images. These images can be used for detecting rectangu-
larly outlined sections on a page, and either vertical or horizontal separator lines, which
often exist when information is displayed in a table format. These outlines are often es-
sential visual aids in being able to interpret (even for humans) the row and column asso-
ciations of elements in a table (see Chapter 3.1.3). This is especially true for tables that
do not align the contents of their cells vertically, so that the text elements of the table do
not appear on the same imaginary horizontal baseline between columns. Any more com-
plex shapes, tilted or handwritten lines are very rarely used in other purposes than visual
gimmickry (which is not often present in scientific publications), and good results can
be achieved without considering such shapes at all.

3.1 Defining the problems that need to be solved

The extraction of data from tables in PDF documents with only limited information is
not a trivial task. The fully automatic data extraction process can be subdivided into
smaller individual tasks, that must each be completed successfully for correct extraction
results:



10

Reading the contents of a PDF file.

Rotating the table to upright orientation.
Discovering separator lines and grids.
Discovering table areas in the document.
Defining the row and column structure of a table.
Defining the header rows of a table.

NS R WD =

Formatting and outputting table data.

Failing at any of these defined sub-tasks of the extraction process will result in less-
than-desirable results. Defining the table stub is not mentioned in this list, because it is
not critical by itself for correct data extraction. The two main structural features of the
stub: (i) defining subheader rows and (if) defining split data rows, are included in sub-
tasks 6 and 5 respectively.

The following chapters provide a more detailed look of each sub-task of the full ex-
traction process. In addition to these defined problems of the extraction process, some
consideration needs to be given to possible issues with character encoding (Chapter
3.1.8).

3.1.1 Reading the contents of a PDF file

As all the handling of the PDF file format is done by the Poppler PDF rendering library,
this sub-task is a problem that has already been solved, and does not need to be ad-
dressed further in this thesis. The Poppler library makes the contents of a PDF file
available as text boxes and rendered images, as described in the beginning of Chapter 3.

3.1.2 Rotating the table to upright orientation

Because the standard paper formats (such as A4, Letter, ...) that are used in publishing
are not square in their dimensions, often the best fit, especially for large full-page sized
tables, is achieved by rotating the page 90 degrees; from portrait to landscape orienta-
tion. In order for algorithmic table detection and table cell associations to work prop-
erly, it is paramount that the table can be processed in upright orientation.

The rules of written western languages and perhaps certain ubiquitous conventions
assert a few principles that most tables automatically follow. Such principles that seem
intuitive and self-explanatory include:

* The header of the table is most likely to be at the top of the table.

* The stub column is most likely to be at the leftmost column or columns of the ta-
ble.



11

While these principles are not in any way mandatory rules of creating tables, a sim-
ple observation of tables from a variety of different sources quickly establishes that
these principles are inherited by most tables by a very large margin. Furthermore, these
principles make it clear that the directions (up-down, left-right) within the table must be
known, in order to interpret its header, row, and column structure correctly. The Poppler
library (Chapter 2.3) makes no claims about what the intended upright orientation of a
page is, it simply serves the page as the author of the document has created it.

3.1.3 Discovering separator lines and grids

Tables that use a definitive grid structure, often do not align their contents into vertically
aligned rows, but instead rely on the alignment of the visible grid structure. Without the
information about the lines and rectangular areas on a PDF page, defining the cells cor-
rectly would be in most cases a nearly impossible task (as illustrated in Figure 4).
Therefore, a method of taking into account the drawn separator lines and rectangular ar-
eas that function as visual aids for the reader is needed.

Onset/ Onset/
Efiology Condition Duration Symptoms Efiology Condition Duration Symptoms
Hyperacute - . Hyperacute - .
Spers Acute Purulent discharge. sometimes pain pers Acute Purulent discharge. sometimes pain
bacterial B bacterial -
Bacterial | Acute bacterial | Acute Tearing. lid crusting Bacterial  Acutebacterial  Acute Tearing. lid crusting
Chronic bacterial | Chronic | Lid crusting. foreign body sensation Chronic bacterial Chronic  Lid crusting, foreign body sensation

Tearing. lid crusting upon Tearing. lid erusting upon

Adenoviral Acute ; Adenoviral Acute :
awakening awakening
Viral Viral
Herpetic Acute Tearing Herpetic Acute Tearing

Seasonal Seasonal

Seasonal Ttching. tearing Seasonal Itching. tearing
recurrent = = recurrent = =
. Seasonal . Seasonal
. Vernal tching. mucous discharge . Vemal tching. mucous discharge
Allergic mal chronic Itching. mucous discharg: Allergic mal chronic Itching. mucous discharg:
. Acute/ Itching. contact lens intolerance. . . Acute/ Ttching. contact lens intolerance.
Giant papillary L . Giant papillary L o
clronic | mucous discharge chronic  mueous discharge
Acute/ Acute/
Chlamydial | Chlamydial Chronic | Tearing Chlamydial ~Chlamydial Chronic  Tearing

Figure 4: Determining row and cell associations in a table can be difficult without
grid structure information.”

There are only two types of separator lines in natively digital PDF documents that
need to be considered: straight vertical lines and straight horizontal lines. Because of
their rare, marginal existence, diagonal or curved lines do not need to be taken into ac-
count.

*  Source: Optometric clinical practice guideline care of the patient with conjunctivitis, Reference guide

for clinicians, 2" edition. American Optometric Association, 2002.



12

3.1.4 Discovering table areas in the document

PDF documents contain a lot of different elements other than text in a table format.
Therefore, a method of separating the non-table text elements of a page from the ele-
ments of a table is crucial. This also invites the question: what qualifies as a table? For
the purposes of this thesis work, it is not the actual definition of the term “table” that
needs to be concerned with, but rather with what kind of data should be extracted as a
table.

As the focus of this thesis work is on data extraction and collection for database stor-
age and further processing, the absolute minimum requirements for document page text
elements to qualify as a table can be set to a minimum size of 2 columns and 2 rows.
Any table that is below these limitations can be disregarded, for simply not being able to
have enough data. These limits cannot be straightforwardly applied to recognized table
grid structures, as many types of grids can contain subdivisions of rows and column
within the grid cells, as described in more detail in Chapter 3.2. There should be no up-
per limit to the size of a table, and tables can be split onto multiple pages.

The table areas should also be inclusive of the table title and caption texts, because
these table elements often contain important information about the table body elements
(actual table data), that is necessary for further functional and semantical processing of
the data.

There are four types of errors in table detection that should be recognized and taken
into consideration:

1. Table has an incomplete set of elements assigned to it (completeness).

2. Table has non-table elements assigned to it (purity).

3. Elements of a single table are assigned to multiple tables (split errors).

4. Elements from multiple tables are assigned to a single table (merge errors).

3.1.5 Defining row and column structure for the table

After some, or all of the elements on a page in a PDF document have been assigned be-
longing to a table, their row and column associations within the table need to be defined
in order to determine the cell structure of the table.

For tables with a fully defined grid structure (see Figure 5 below), this is a relatively
straightforward task. The cells of the grid determine the row and column structure of the
table autonomously, and no further processing in this regard is needed.



13

Descrizione Saldo iniz. Incrementi Decrementi Saldo finale

Ratei 1.669 0] 1.269 400
RATET ATTIVI 1.669 0] 1.269 400
Risconti 26.676 0 26.079 597
RISC. ATTIVI 26.676 0 26 .079 597
Ratei 49 734 0] 14.467 35.267
RATEI PASSIVI 49_734 0] 14.467 35.267

Figure 5: Example of a table with a fully gridded structure. Source: PDF-TREX data set
[12].

Other types of gridded tables include table types that: only have their outermost out-
line defined, only have their header separated from the body, have their body elements
separated or any mixture of these. All grids that do not define the table row and column
structure completely are defined as tables with a supportive grid (Figure 6).

DESCRIZIONE Consistenza | Acquisizioni | Spostamenti Alienazioni | Arr i | Ammortamento | Consistenza
1/01/2004 dalla voce 2004 31/12/2004
nella voce

Costi di nicerca, sviluppo e 38948 30240 - - - 16203 52.985
pubblicita

Concessioni, licenze e 5751 12595 - - - 4572 13774
marchi

Altre immobilizzazioni 78452 4164 - - - 16.245 66.370
immateriali

Immobilizzazioni in corso 0 46.137 0 46.137
|ToTaLl | 128a51] 93436 | | - 3701 179.266

Figure 6: Example of a table with a supportive grid structure. Source: PDF-TREX data set
[12].

At the other end of the table grid structure spectrum lie the tables that have abso-
lutely no defined grid structure at all (Figure 7). All these different types of tables are
commonly used, and need to be considered in creating an algorithm that extracts their
data.



14

PROSPETTO VARIAZIONI IMMOBILIZZAZIONI MATERIALT

DESCRIZIONE S.DO INIZ. VARIAZIONI AMM.II ~ SDOFIN.
ATTREZZ. COMMERCTALI 15219 7.048 2.633 19.634
IMPIANTI 919 0 77 342
ALTRIBENI 4.041 -4.041 0 0
TOTALE IMMOB. MAT. 20.179 3.007 2.710 20476

Figure 7: Example of a table completely without any grid structure. Source: PDF-TREX
data set [12].

For tables without a fully defined grid structure, the algorithm needs to be able to de-
termine which rows can me merged together. For example, when a cell in a table con-
tains so much text it has been split and continued on the next row (line), these rows
should be merged together so that the whole text is assigned to a single table cell.

3.1.6 Defining the header rows of the table

For correct data association, an essential step of the data extraction process is finding
the header of the table. Without making a distinction between a header cell and a table
body data cell, it is impossible to further process the data in a table into more meaning-
ful categories.

The textual elements in a table header can often span multiple columns and rows, be
nested under other headers and in general have a lot more varied structure than the body
of the table. Therefore, the table header elements need to be identified to process them
differently from the table body data elements.

Second, in order of importance, is defining the subheaders rows of the table. A sub-
header can be defined as a non-data row within the table body that is associated with all
the data rows below it (see Chapter 2.1, “Table anatomy”), or until another subheader is
encountered (moving down in the table). If the subheaders are misinterpreted as table
data, the association mapping between the table cells will be incomplete.

3.1.7 Formatting and outputting table data

The processed tables that become the output of the developed software tool should be
formatted in such a way that they can be easily imported into other software applica-
tions for further processing. Primary candidates for further processing of the extracted
table data could include, for example, databases, spreadsheet applications and web-



15

pages, among others. The output should be designed to accommodate all of these differ-
ent further processing methods.

3.1.8 Character encoding

Some special Unicode characters embedded in a variety of PDF documents have proven
problematic with the Poppler PDF rendering library. Part of the problem is also due to
the misuse of certain look-a-likes of more commonly used characters, such as the hy-
phen-minus (“-”) character (4SCII hexadecimal code 2D). The full Unicode character
set contains more than 12 characters that look deceptively similar to the common hy-
phen, as illustrated in Table 8.

Hexadecimal Character name View
code
002D HYPHEN-MINUS -
0584 ARMENIAN HYPHEN -
05BE HEBREW PUNCTUATION MAQAF -
2010 HYPHEN -
2011 NON-BREAKING HYPHEN -
2012 FIGURE DASH —
2013 EN DASH —
2014 EM DASH —
2015 HORIZONTAL BAR —
2212 MINUS-SIGN -
FE63 SMALL HYPHEN-MINUS -
FFOD FULLWIDTH HYPHEN-MINUS —

Table 8: A non-exhaustive table of Unicode hyphen look-a-likes.

Publication authors, whether they feel that the regular hyphen is too short or not visi-
ble enough, sometimes choose to use any of these look-a-likes in the place of regular
hyphens. For human readers, this is not a problem at all, but for machines and algo-
rithms, all these “impostor” characters, that look almost or exactly alike on print, are as
different as A and B. This can affect the performance of an algorithm, for example when
trying to decide whether two rows should be combined in a table. If a line of text ends



16

in a hyphen, it is likely to continue on the next line and these two lines can be safely
combined into a single table cell.

Another example of how the character encoding problem becomes evident, and could
have an effect on further processing of the table data, is when considering a data column
with Boolean yes/ no, on/ off values. Now, if instead “0” and “1” the author of the docu-
ment has decided to use “+” and “-” to describe the two values, but instead of “-”
(ASCII hexadecimal code 2D) she has used a “figure dash” (Unicode hexadecimal code
2012, see Table 8), the interpretation of the data fields becomes much harder for a ma-
chine that is only looking at the character numerical codes. This problem is not only
common, but involves a lot of different characters (such as “+7, “<”, “>»_ «*” <) for
similar reasons.

3.2 Table examples

There is understandably no single uniform or standard way of presenting data in a table
format, and so, tables tend to have a plethora of unique features between them. These
features are best elucidated by taking a closer look at a few examples (Figures 9-11).

Table 1 Clinical features of patients

Age Onset  Family Prosis/

Patient  Sex (vears)  (years) history PEQ  Other symptoms MDNA alterations
PA F 63 50  Sporadic + None Multiple deletions in muscle
PB' M 15 8  Sporadic + SANDO I
PC M 63 40 Sporadic + Weakness of lower limbs, ataxia, cognitive //
impairment
PD M 57 56  Sporadic + Exercise intolerance, dysphagia, diabetes, i
. sensory axonal neuropathy
PE' M 4 3 Recessive —  Alpers syndrome Depletion in liver
PF M 82 78  Sporadic + Myopathy, dysphagia, dysphonia, ataxia, Multiple deletions in muscle
tremor, hypoacousia, diabetes
PG F 45 18  Dominant + Myopathy, dysphagia, dysphonia, dyspnea [/
PH F 52 Ch  Recesive - Myopathy i
Pl M 62 58 Dominant - Myopathy, ataxia, frontal dementia i
Pl F 63 54  Dominant - Optic atrophy, myopathy, ataxia, sensory if
axonal neuropathy
PK M 54 18 Sporadic + Cardiomyopathy, myopathy, strokes, epilepsy //
PL F 27 20  Sporadic + SCAE I
PM F 30 5  Sporadic - Epilepsy, bilateral deafness, sensory-motor !
. axonal neuropathy
PN' F MNb Nb  Sporadic - Hepatocerebral failure Depletion in liver
PO' F 15m 7m  Sporadic —  Alpers syndrome I

PEO: progressive external ophthalmoplegia; SANDO: sensory ataxic neuropathy dysarthria ophthalmoplegia syndrome; SCAE: spinocerebellar ataxia
epilepsy syndrome; : Died; m: months; Ch: chidhood; Nb: newborn; (+): present; (—): absent; //: same as upper. Patients for whom the disease
causing mutations were identified are in bold.

Figure 9: Typical table from the biomedical research domain features cleanly laid out
columns and rows.”

While typical tables in research publications in the biomedical domain are well
aligned and cleanly laid out, for the algorithms to be applicable universally, a lot of dif-
ferent types of tables need to be considered. Comparison of Figure 9 to Figures 10 and
11 shows a contrast with typical low-complexity tables to more challenging table types.

*  Source: Naimi et al.”Molecular analysis of ANT1, TWINKLE and POLG inpatients with multiple
deletions or depletion of mitochondrial DNA by a dHPLC-based assay”’, European Journal of
Human Genetics (2006).



17

ComPLIANCE DATES AMD APPLICABLE STANDARDS FOR BARRIER REMOVAL AND SAFE HARBOR

Date Requirement Applicable standards

Before March 15, 2012 El ts that do not comply with the require- | 1991 Standards or 2010 Standards.
ments for those elements in the 1991 Standards
must be modified to the extent readily achiev-
abla.

1rot:0 pdfrot: 0

Federal Register/Vol. 75, No. 178/ Wednesday, September 15, 2010/ Rules and Regulations 56255

CompPLIANCE DATES AND APPLICABLE STANDARDS FOR BARRIER REMOVAL AND SAFE HarBoR—Continued

Date Requirement Applicable standards

HNote: Moncomplying newly constructed and al-
tered elements may also be subject to the re-
guirements of §36.406(a)(5).

On or after March 15, 2012 ... Elements that do not comply with the require- | 2010 Standards.
ments for those elements in the 1991 Standards
or that do not comply with the supplemental re-
guirements (ie., elements for which thera are
neither technical nor scoping specifications in
the 1991 Standards) must be modified to the
extent readily achievable.

MNote: Moncomplying newly constructed and al-
tered elements may also be subject to the re-
guirements of §36.406(a)(5).

Elements not altered after March 15, 2012 Elements that comply with the requirements for | Safe Harbor.

those elements in the 1931 Standards do not

need to be modified.

Figure 10: Table (light gray area) that is split mid-cell onto two consecutive pages. It
also features a semi-gridded structure, where only the middle column cells are encased
with four sided rectangles. Source: US-data set [13].

Number of Assets PRV ($B)
Buildings | Structures | Linear Structures Total Buildings | Structures | Linear Structures Total
Ammy 159,026 74,800 21,839 255,665 |Army 185965 4125]% 3673 | § 263.97
MNawy 68,711 39,37 8,591 116,673 |Nawvy § 10848 |5 4261 |5 19.85 | § 170.94
Air Force 80,722 56,402 16,767 163,891 |Air Force $ 13618 |5 6486|% 2710 | § 22813
Marine Corps 25278 14,056 1,646 40,980 |Marine Corps [ § 3022 % 1051 |§ 421|% 4493
WHS 130 155 25 310 [WHS $ 3228 047 [§ 054 |5 422
DoD 343,867 | 184,784 48,868 | 577,519 |DoD $ 464.07 | § 15870 | § 8843 [§ 712.20

Figure 2. DoD Facilities Portfolio

Figure 11: One or two tables? Source: US-data set [13].

With a large enough sample size, there will always exist a set of tables to break every
rule. Taking into account every type of exceptional table is practically impossible, not to
mention tables that are misleading and hard to interpret even for human readers. There-
fore, for a large enough number of tables from a variety of different sources, an algorith-
mic approach can never achieve perfect results.



18

4 ALGORITHMS

This chapter describes the various methods and algorithms that are required and used
for extracting tabular data from PDF documents. The algorithms described in this chap-
ter provide solutions to the data extraction problems presented in Chapter 3.1.

Some of the algorithms are described using C++ style pseudo-code, while some are
explained using illustrative images and textual descriptions. The algorithms, when com-
bined together, enable fully automatic PDF table data extraction.

4.1 Rotation of pages

Each individual page in a PDF document can have its main body of text oriented in four
possible ways in reference to the upright (text written from left to right, from top to bot-
tom) orientation. The four possible clockwise rotations are: 0°, 90°, 180° and 270°;
where pages with 0° rotation are already in an upright orientation. To distinguish be-
tween these different rotations, the following pseudo-code algorithm is applied for each
individual page (comments in green):

//Each element is examined in its original (unrotated) page
//coordinates

Loop for each text element on page:

{

Skip element that has < 3 characters;

if( element.height > element.width )
{
distanceFromTop = DISTANCE( element.firstChar.top, element.top);
distanceFromBottom = DISTANCE ( element.firstChar.btm,
element.btm) ;

//Increase word count for either 90 or 270 degrees rotated words
if( distanceFromTop < distanceFromBottom ) ++rotations90;
else ++rotations270;

}

else

{
distancelLeft = DISTANCE( element.firstChar.left, element.left);
distanceRight = DISTANCE ( element.firstChar.right,

element.right);

//Increase word count for either 0 or 180 degrees rotated words

if( distanceleft < distanceRight ) ++rotationsO;
else ++rotationsl180;

}

pageRotation = MAXIMUM( rotationsO, rotations90, rotationsl80,
rotations270 );



19

The original rotation of a text element is defined here as the rotation that the element
is in the PDF file with unmanipulated page coordinates. The rectangular text box areas
for each element have no orientation themselves. The way to distinguish between up-
right (rotation 0°) and upside down written text (rotation 180°), because the element ar-
eas are exactly alike in shape, is to compare whether the first letter in the element area
resides closer to its left or right edge. For upright text, the first character will always be
closer to the left edge of the element area rectangle. The same applies for text with 90 or
270 rotations, but instead of comparing the first character of an element to the left or
right edges, it can be compared to the top and bottom edges of the element area rectan-
gle.

To distinguish between horizontally written text (0° and 180° rotations), and verti-
cally written text (90° and 270° rotations), element area widths and heights are com-
pared. For text elements that have three or more characters, this comparison will give a
good estimation on whether the text is written either horizontally (width > height) or
vertically (height > width). For text elements that have only one or two characters, this
is not a reliable estimate, because the length of the written word is too small in compari-
son to the height of the font it is written in. For example, an imagined rectangle drawn
around the word “in” would be approximately square in shape, where a three letter word
such as “out” would be encapsulated by a rectangle clearly wider in size than tall. This
effect is of course emphasized for even longer words.

By calculating the numbers of differently rotated text elements on a page, the algo-
rithm is eliminating the effect of a few words or sentences being written in a different
direction, affecting the estimated rotation of the page. This is the case with the publica-
tions of many publishers, where for example, the name of the publication or journal ap-
pears written in up-down direction in the side margin along the side of the page.

4.2 Edge detection

The edge detection algorithm processes rendered image files. The Poppler PDF render-
ing library API provides a convenient function for getting rendered versions of the
pages. Example of how the rendered images of pages are acquired using the Poppler li-
brary Ot C++ API is shown here:

// Access page of the PDF file
Poppler: :Page* pdfPage = document->page( pageNumber) ;
// Document starts at page 0
if( pdfPage == 0) {
// ... error message ...



20

return;

}
// Generate a QImage of the rendered page
QImage image = pdfPage->renderTolmage( xres,yres,x,y,width,height);

After the image has been rendered, it is converted into gray-scale format, that con-
tains only shades of gray in 255 steps from black to white. Processing the image in a
gray-scale format is necessary, because the algorithm is only interested in the pixels in-
tensity values (can also be called brightness for gray-scale images) and their differences
between neighboring pixels.

An edge in an image is defined as an above-threshold change in intensity value of
neighboring pixels. Choosing a threshold value too high, some of the more subtle visual
aids on a page will not be detected, while a threshold value too low can result in a lot of
erroneously interpreted edges. Figures 12 and 13 illustrate the goal for the edge detec-
tion algorithms.

Normal Overweight Obese Extreme Obesity

BMI 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3B 39 40 41 42 &3 44 45 46 47 43 & 50 5 52 5 54

Height
(inches) Body Weight (pounds)

5 01 95 100 105 110 115 110 124 120 134 138 143 143 153 158 162 167 172 177 181 166 191 106 201 205 210 215 220 224 220 234 230 244 24 253 258
5 94 90 104 100 114 110 124 128 133 138 143 148 153 158 163 168 173 178 163 183 103 108 203 208 212 217 222 207 232 237 M2 247 262 267 262 267
€0 97 102107 112 118 123 128 133 138 143 148 153 158 163 163 174 170 184 160 104 100 204 200 215 220 225 230 235 240 245 250 255 261 268 271 276
61 100 106 111 116 122 127 132 137 143 148 153 158 164 160 174 160 185 190 195 201 206 211 217 222 227 232 238 243 243 254 250 264 260 275 280 285
62 104 100 115 120 126 131 135 142 147 153 158 164 160 175 180 186 191 196 202 207 213 218 224 220 235 240 240 251 256 262 267 273 278 264 269 205
62 107 113 118 124 120 135 141 146 152 158 163 160 175 180 183 101 197 203 208 214 220 225 231 237 242 248 254 250 265 270 278 262 267 263 20 4
64 110 116 122 123 134 140 145 151 157 163 160 174 180 186 162 197 204 200 215 221 227 232 23 244 250 266 262 267 273 279 285 201 206 02 WS 314
6 114 120 126 132 135 144 150 150 162 165 174 160 186 102 198 204 210 216 222 228 234 240 240 252 258 264 270 276 282 288 204 300 306 32 N8 AW

6 118 124 130 126 142 148 155 181 167 173 170 186 102 108 204 2 241 247 263 260 266 272 278 284 201 297 303 300 315 322 28 34

67 121 127 134 140 146 153 150 168 172 178 185 191 198 204 21 240 255 261 263 274 260 257 203 260 308 312 310 325 331 W5 W4

63 125 131 138 144 151 158 164 171 177 184 190 167 203 2 2 256 262 260 276 282 260 265 302 08 315 322 328 335 41 U8 4
6 128 135 142 149 15 162 160 176 182 189 196 203 200 3 270 277 284 291 207 304 311 313 324 331 338 M5 1 38 W5
70 132 120 146 153 160 167 174 181 188 195 202 200 216 1278 285 202 209 300 313 320 327 334 341 348 355 362 0 7

71 13 143 150 167 165 172 170 188 193 200 208 215 0 286 293 201 208 315 322 320 @ 43 351 356 365 72 IV W6

140 147 154 162 160 177 184 101 199 208 213 221 7 204 202 200 316 324 331 338 26 353 361 368 375 383 30 W7

T 1 151 150 160 174 182 169 197 204 212 219 27 2% 2 220 268 295 02 310 318 25 333 M0 8 365 %3 71 I8 390 NI 401 408
76 148155 183 171 170 188 104 202 210 218 225 233 241 249 258 264 212 260 267 206 303 311 310 8 34 2 360 36 365 I3 361 360 300 404 412 420
75 152 160 168 178 164 102 200 200 216 224 232 240 248 269 264 272 270 267 296 3 311 310 37 B U3 361 369 A7 375 83 01 0 A7 415 423 21
T8 158 164 172 160 169 197 205 213 221 230 238 249 254 263 271 270 257 206 304 312 32 326 3 44 363 361 W9 7T 366 34 A2 410 416 428 435 443
pry— = Ep——

Figure 12: A table for edge detection example. This table features low intensity edges
(white — light gray), graphical background, and edges partially obscured by text
elements.”

*  Source: adaptation from: Bethesda (MD). Clinical Guidelines on the Identification, Evaluation, and
Treatment of Overweight and Obesity in Adults: The Evidence Report. Report No.: 98-4083, 1998.
http://'www.nhlbi.nih.gov/guidelines/obesity/bmi_tbl.pdf, last retrieved: 2013-04-11.



http://www.nhlbi.nih.gov/guidelines/obesity/bmi_tbl.pdf

21

Figure 13: Optimal edge detection result for the table in Figure 12.

The edge detection process is divided into four distinct steps that are described in
more detail in the following chapters:

Finding horizontal edges.
Finding vertical edges.
Finding crossing edges and creating “snapping points”.

P Ddh =

Finding cells (closed rectangular areas).

4.2.1 Finding horizontal edges

The horizontal edge detection algorithm starts by examining the pixels of a gray-scale
image from the top left corner. The algorithm compares every top-bottom pair of adja-
cent pixels, looking for intensity value changes above a set threshold value. Once a
pixel-pair with enough difference in their intensities is found, the algorithm proceeds to
the right, comparing multiple pixels (in up-down direction) until the edge is no longer
present or the right edge of the image is encountered. If the found edge is of sufficient
length, it is accepted and registered as a horizontal edge in the image. The flow of the
algorithm is visualized in Figure 14.



22

@
EEE

\/

Figure 14: Graphical representation of the horizontal edge detection algorithm. The
algorithm moves down the first column of pixels from the top-left corner of an image
(1), comparing adjacent top-bottom pairs of pixels. Once it reaches the bottom of the
image, it moves on to the next column to the right (2). When a horizontal edge is found
(3), the algorithm proceeds along the edge to the right (4) comparing multiple pixels,
and stopping when no edge is detected anymore (not shown). The search is then
continued from the previously found edge starting-point (3) downward.

Using multiple pixels for detecting horizontal edge preservation, after the initial edge
starting-point is found, helps the algorithm deal with edges that are not perfectly
aligned, as well as with text elements that are on the edge, obscuring the underlying
edge for short lengths at a time. Sufficiently long edges that have been found are saved
into memory, so that when the algorithm encounters the same edge again in a subse-
quently examined column of pixels, it will not be examined again, but instead only
skipped over.

If the PDF page is rendered as an image too small in pixel size, the bottoms of ser-
ifed fonts can blend or blur together, forming horizontal pseudo lines, as illustrated in
Figure 15. To avoid this from happening the processed image has to be rendered in large
enough size for the individual characters in a word to be separated adequately. Exclud-
ing the page text elements areas completely from the edge detection processed image ar-
eas, 1s not possible because in many tables the rows are packed together so tightly, that
the text element areas overlap on real horizontal grid edges. The text elements areas of-
ten have some extra space under the actual text rendering, to accommodate characters
that are partly drawn below the fonts baseline, such as characters “q”, “g” and “p” for
example.



23

test graphs of higher complexity
than your program is prepared f
your iamplementation to be also
transform the unsustable test grz

if vou are onlv a user of an 1mipl

Figure 15: Image quality is important for edge detection. Blurry text (rendered too
small) can cause false detections. The three highlighted areas form continuous
horizontal edge areas.

mal Overws

22 23 2“25 26 27

Figure 16: Common problems for edge detection are pointed out with red arrows. The
illustrated problems include: graphic backgrounds, misaligned rectangles (or lines),
edge-overlapping text, and low-threshold edges.



24

Using multiple pixels for finding continuing edges, avoids a few common problems
as illustrated in Figure 16. Even though most PDF documents are created digitally (na-
tively digital), not all edges can be assumed being in perfect alignment.

4.2.2 Finding vertical edges

The vertical edge finding process works much alike the horizontal edges finding
process, with one major exception: the text element areas can be excluded from the pro-
cessing. Unlike with horizontal edges, the real vertical edges very rarely overlap with
the text element areas, because there are no issues with font baselines and empty areas
within the text element in the left-right direction. Excluding the text element areas
avoids the problem of setting the minimum edge length.

Without the exclusion of text elements, many characters within a text element cause
false positive vertical edges. For example the leading edges of “I”, “P”, “L” and other
long vertical lines containing characters are prime candidates for causing false positives.
If the minimum vertical edge length is set too low (under row character height), all these
characters are likely to show up as false positive edges. On the other hand, setting the
minimum edge length too high the vertical separators will not show up at all in tightly
gridded tables.

4.2.3 Finding and aligning crossing edges

Due to the nature of the edge finding algorithm, described in previous chapters, the
crossing points of greater than 1 pixel thick vertical and horizontal edges represent dis-
continuities in the edge, as shown in Figure 17. The horizontal edge has a gap in it at the
position of the original table separator line, and the same applies to the vertical edges.
For the edges and table cells to become connected at these points, some further process-
ing is required.



25

Figure 17: Thick table separator lines produce an edge detection pattern that has
unconnected edges. “Snapping points” (red circles) are created to connect all the edge
end-points, withing the area of a snapping point, to a single point.

A special snap-to-grid feature in employed. The algorithm searches for both vertical
and horizontal positions in the image where many edges end. All edge end-points within
a, for example, 10 pixel range from each other are averaged, and this average value will
become a “snapping point” with a single pixel center point. All the edge end-points
within the snapping point's area are reassigned to this single pixel center-point value.
This procedure will connect all the edges in the vicinity of a snapping point.

There are some limitations to this method however. If the snapping point radius is set
too big, some of the real grid crossing points become merged together, and if the radius
is set too small, some of the edge end-points do not become connected and some rectan-
gular areas are not found at all. Tables with thicker separator lines require longer snap-
ping point radius lengths to become properly connected at their crossings.

4.2.4 Finding rectangular areas

The final step of the edge detection process is to identify closed rectangular spaces
within the vertical and horizontal separator lines, and separating unconnected rectangu-
lar areas into different tables. This is done is several steps.

After the horizontal and vertical edge detection processing has finished, and the
edges are aligned into appropriate snapping-points, points where a horizontal edge con-
tacts a vertical edge are registered as crossing-points. The set of crossing-points is inclu-
sive of points where both a vertical and a horizontal edge end. In other words, one edge
does not have to continue through another, it is simply enough that the edges share a
common pixel coordinate point.



26

The following pseudo-code algorithm is applied to find rectangular areas in a set of

edges with defined crossing points:

array foundRectangles;

//Al1l crossing-points have been sorted from up to down,
//and left to right in ascending order
Loop for each crossing-point:

{

topleft = NextCrossingPoint () ;

//Fetch all points on the same vertical and horizontal
//1line with current crossing point

array x_points = CrossingPointsDirectlyBelow( topLeft);
array y points = CrossingPointsDirectlyToTheRight ( topLeft);

Loop for each point x point in x points:

{

//Skip to next crossing-point

if ( NOT EdgeExistsBetween( topLeft, x point)) next crossing-

point;

Loop for each point y point in y points:

{

if ( NOT EdgeExistsBetween( topLeft, y point)) next crossing-
point;

//Hypothetical bottom right point of rectangle

btmRight = Point( y point.x(), x point.y());

if( CrossingPointExists( btmRight) AND
EdgeExistsBetween( x point, btmRight) AND
EdgeExistsBetween( y point, btmRight))
{

//Rectangle is confirmed to have 4 sides
foundRectangles.append( Rectangle( topLeft, btmRight);
//Each crossing point can be the top left corner
//of only a single rectangle
next crossing-point;

This method of finding rectangular areas ensures that the smallest possible rectangu-

lar areas are found with the more common types of table grids. Figure 18 shows some of

the possible ways of defining rectangular areas within a grid of horizontal and vertical

edges.



27

11213 10
41516
7189 11
A B C
13 I I
Rp—_—1 |} e e I SO
14 16
s
D E F

Figure 18: Panels B through E show some of the possible ways of defining rectangular
areas within the edges (dashed gray lines) shown in Panel A. The algorithm described
in this chapter would define rectangles 1-9. For atypical table edges, such as in Panel
E the algorithm would only define the a single rectangle, the smallest of the possible 3.

After the rectangles (grid cells) of a table have been defined, there is only one more
task left to do: assigning the rectangles to tables. In case of pages that contain multiple
tables, it is important to separate them from each other. To do this, the corner points of
a rectangle are examined. If rectangles share a common corner-point, they are assigned
to being in the same table. In case of a 3-by-3 grid table, such as depicted in Figure 18,
Panel B, Cell 1 shares two corners with Cell 2 and they are assigned to the same table.
Next, Cell 3 is examined, and as it shares corners with Cell 2, it is assigned to the same
table as cells 1 and 2. All found cells are examined this way and are assigned together
into tables if they themselves, or their connected table partner cells share common cor-
ner-points.

4.3 Detecting tables

Detecting tables from individual PDF document pages is essentially a segregation task.
The goal is to separate table elements from non-table elements on the page. After this
has been done, the table elements need to be further separated into different tables or
merged into a single table.



28

The main challenge for the table detection algorithm is finding a balance between de-

tecting too much (low purity) and not detecting enough (low completeness). Discover-

ing areas on a page that contain text elements that could have a table structure, is done

in several consecutive high level steps:

1. Remove text elements in page margins

(@]

The page margins often contain superfluous information about the docu-
ment; such as page numbers, institution logos and names, or publisher infor-
mation. The first step is to ensure that this information that is irrelevant for
the extraction process is weeded out. All text that is displayed in disagree-
ment with the upright orientation of the page is removed completely from
further processing.

2. Assign elements into rows

o

A strict initial row assignment is made. Elements are required to be of the
same height and to have almost identical vertical coordinates to qualify of
being on the same row. After this initial row assignment has been made,
some of the rows are merged together based on overlapping areas. This
method ensures that super- or subscript text will be merged into the correct
row. Merging the super- and subscripts is vital for the next step of process-
ing.

3. Find text edges

@)

Text edges are defined to exist in locations where multiple rows have either
their element left edges, right edges or center-points at the same vertical line.
The minimum number of elements to define a text edge is defined as 4. Ele-
ments that break the edge line, also stop the edge from crossing over the ele-
ment. Figure 19 shows an example of the edges found on a page.



29

E Baruffini et al. ; Mitochondrion 17 (2001) 152-1590 185
Fable 1
utations considered and case histories.
fmino acid substimtion  Fquivalent substitution in - Pisease Fenetics Pisease course
n human POLG peast Mip1
(303K (259K Ipers omgpound A4ETT] Patient died at 11 month
n trafs
(303K 255K Ipers ompound AABTT| Patient died at 5 month
n trafs
305R-P1073L F261R-PE29L Ipers ompound h Pnset at 9 months, patient died ar 2 years
305K [261R pilepsy i if emgound h [nset of epilepsy at 5 years, ataxia, neuropathy
with R6270) Heveloped in|his teens
RIBEH 334H Ipers Heterozygous [Inset at 1 yepr, no follow up
RS7AW RAGTW Ipers ompound HAMETT| Pnset at 3 yers, alive ar age 10 years, affected sister
n traps Hied at 27 yehrs of age
ISR SERS Igers omgound R AMETT Pinget at 1 yepr with epilepsy, patient died of liver
n trahs ailure at age 2 years
pu3on PN Igers mgound b wlth pmet at 3 months, patient died az 19 months
W748S in trans
GA7R =l LT3 PED, avarian failure [rempound h with pudlile onser PED, facial weakness, proximal
Expansion of a paly-Q) (18 O} strefch| fnyopathy and avarian failure [amenorrhea from
bze 15 years)
Hevelopmental delay. liver involvement and elevated blood lactatg pge. Genomic DHA and also cDNA analysis identified only a single,

evels. The clinical significance and the contribution to the pathology heterozygous S305R and no second pathogenic mutation; however|
[Gernan parents, presented with muscular hypotonia, intractable petite and rho” frequency was dramatically increased in the mip 7<%
eizlires, status epilepticus and repeated vomiting. Severe lacti]  firain. The frequency of petite mutants in the heteroallelic strain
hcidosis and liver failure developed. leading to death at 2 years of|

Lo . .
2% glucose 2% ethanol leatile 2
Percentage of pefite (Fho~ and rbo”] mutants, percentage of rin” muthnts and E|
mutants frequency prodjiced in different MIPT genetic backgrpunds.

M-5A  28'C B7°C I 7]
AmipT)
rw Petires [£) rhot (%) Petites (%) I o7 (%) ( H
”[l:;::“ " l Zagps ]ull ;g[.@ 4.7 . .
M;ru'i[fj ! 9.5H] B ooal+o0®  foo”
(hR3YAW)
Figure 19: Page excerpt shows the text edges found by the algorithm. Left element

edges are shown in blue, right edges by purple, and element center-lines by green
color.”

oo
mip G2 (hGI03R) =m
mip IR (RS TAW)

mibspsisanpezsry [N W [N

o Edges are mostly concentrated to page areas that are tabular in nature. Justi-
fied text blocks in multiple page columns need to be identified to not mistake
them for tabular areas. Some of the edges also extend beyond the table area
limits, connecting with an element that is positioned on the same edge, just
by chance.

4. Find justified text blocks
o Justified text blocks need to be identified to prevent mistaking them for tabu-
lar regions on the page. A page that has three text columns side by side will
contain 6 edges on each horizontal line drawn through the page width, and it
is easy for an algorithm to mistake such rows as being a part of a table. This
step of the process is illustrated in Figure 20.

E3

Source: Baruffini et al., Predicting the contribution of novel POLG mutations to human disease
through analysis in yeast model, 2011.



30

E Baruffini et al. | Mitochondrion: 11 {2011) 182-150 185
Table 1
Murations considered and case histories

Amino acid substiturion  Equivalent substiturion in Disease Genetics Disease course

in human POLG yeast Mip1

G303R G259K Alpers Compound Nelerozygous Wil A4E7T ggegnt died at 11 month
In trans

G303R GI59R Alpers o TeEreTeyanuE WItTAGETT) giggpnt died at S month
in trans

S305R-P1073L C261R-PE2OL Alpers Compaund hetemaygous ggoy, Onset at 8 months, patient died az 2 years

S305R C261R Epllepsy-aaslneurty  Compaund NeterizyIon g o, tmset of epilepsy at 5 years, ataxia, newropathy
with RE270 developed in his teens

R3B6H [334H Alpers Heterozygous Onset at 1 year, no follow |

RE74W RAGTW Alpers Compaund NelerOzyEoUs WILTARETT) gt at 3 years, alive at age 10 years, affected sister
in trans died at 27 years of age

PE25R PS13R Alpers oMU NEterozyEos Wit A467T] gggt at | year with epilepsy, patient died of liver
in trans Tailure at age 2 years

Da3ON D7I2N Alpers Comgiimd NEEraavEeDs wihy, Onset at 3 months, patient died at 19 months
‘W748S in trans

KeM7R K748R PED, avarian failure Compaund heterazyEous ik, Adult onset PEG, faclal weakness, proximal
EXANEIoN o & poly=C) 118 OF strerch ggwgpathy and avarian fallure (amenorrhea from

age 18 years)

developmental delay, Tiver involvement and elevated blood [actate gpepge. Genomic DNA and also cDNA analysis identified only a single] 7%,
levels. The clinical significance and the contribution fo the pathology g2efieterozygous S305K and no second pathogenic mutation; NOWEVer 919,

were however unclear. fwe had a limited amount of patient DNA that prevented us from g4%
In the present study, the mutation was found in two unrelated carrying out additional analysis.
gubjects. The first patient, a 25 year old German man, developed 343 The serine 305 inPal is conservatively i by cysteing 913

generalized seizures and myoclonic jerks at 5 years of age, followed by 93%@61 in Mipl, Therefore we constructed two vanants, the “humanized 89%
German parents, presenfed with muscular hypotonia, intractable 89°/jpetite and o’ (reqUency Was dramarically increased in the mipT==* gpey
selzures, starus epilepticus and repeated vomiting. Severe lacric ggograin. The frequency of perie murants in the heteroallelic straim was g39;
acidosis and liver tailure developed, leading to death ar 2 years of g5o,

2% glucose 2% ethanol Table 2
n PercEntage of petife (flia—and o] M, percentage of iin" mukants and Ery 579,
MrP? 0 mutants frequency produced in different MIPT genetic backgrounds.
e DWM-5A 28°C 37 E™ {510 g3o,
PFL39 {Amip1)

Petites (%) rho® (%) Petltes (%) rhe® (%)

. MiPt ZAE00% 11 WO+LAT 42 17404
W mipr = 1000 w0 NT N ND
mip ™7V (HRSTAW) . . ‘?gr.‘ 7 (hGI03R) "100% .
- iyt S05E0Hne, 820 10004£00° 1007 BAETSY ggey,
mip P33 R{hP625R) . .‘.’?‘-I [m (RRS74W) A . .

Figure 20: Page excerpt shows regions that are identified as justified text
blocks by the algorithm with a red highlight.”

5. Rank each row for its probability of being a part of a table

o Each row on the page is ranked based on the number and the types of edges
it contains, as well as the justified text blocks the row contains. This ap-
proach does have its limitations. Tables that contain a lot of justified text are
easily misclassified as non-table rows. This step of the process is illustrated
in Figure 21.

*  Source: Baruffini et al., Predicting the contribution of novel POLG mutations to human disease
through analysis in yeast model, 2011.



E Baruffini et al. / Mitochandrion 11 [2071) 182-190

185

“Table 1
MuatioR@nRidersd and case histories. pas
Amino acid substitution  Equivalent substitution in - Disease Genetics Disease course
i human POLG yeast Mip1 pi0.5
G303k GrsaR Alpers Compaund heterozygous with A467T Patient died at 11 month
in trans p7.98
G303R (ST Alpers CompauRT keterozygous with A467T Patient died ar 5 month
in trans p7.58
SI0SR-PIOTAL C261R-PE2SL Algers CompouflT heterazygous Onset at @ manths. patient died at 2 years
SI05R C261R Epilepsy-ataxia-neuropathy Compound heterazygous Onset of epilepsy at 5 years, ataxia, neuro)
with RE27Q. developed in his teens pl4l
H3BEH 3344 Alpers Heserozypous Onset at 1 year, ng folldd@up
RS7AW RABTW Alpers Compound heterozygous With A467T Onset at 3 years, alive ar age 109r] affecred sister
in trans died at 27 years of age p21.88
PEZSR P513R Alpers Compaund heterozygous with A4GTT Onset at 1 year with epRbiy, patient died of liver
in trans failure at age 2 years p39.43
930N DFIEN Alpers Compaund heterazygous with Onset at 3 months, paRldnt died ar 19 months
W748S in trans p3L74
94T K7ABR PED, ovarian fallure Compound heter@#gzds with Adult onset PED, facial weakness, praximal

expansion of a poly-£} (18 Q) stretch

myopathy and ovarian failure (amenorrhea naé-24?
p-7.

age 18 years) 68

developmental delay, liver involvement and elevated blood lactate
levels. The clinical significance and the contribution to the pathology

were however unclear.

In the present study, the mutation was found in two unrelated
subjects. The first patient, a 25 year old German man, developed
German parents, presented with muscular hypotonia, intractable
seizures, status epilepticus and repeated vomiting. Severe lactic
acidosis and liver failure developed. leading to death at 2 years m‘p

2% glucose
s
mip G298 (HGIOIR) m
mip T (HRSTAW) ’ ﬁ

2% ethanol

-11.2

Table 2

age. Cenomic DNA and also cDNA analysis identified only a single,
heterozygous S305R and no second pathogenic mutation; however
we had a limited amount of patient DNA that prevented us from
carrying out additional analysis.
The serine 305 in Pol-gamma is'
petite and rho” frequency was dramatically increased in the mip1©t2% 78
strain. The frequency of petite mutants in the heteroallelic strain was =i

PercentdBE i perite {rho~ and rho) mutants, percentage of rha mutants and Ery*
‘musants frequency produced in different MIPT genetic backgrounds.

25
=

p-3.944
p-10.92
p-10.08

%ﬁ%’s‘r:znratwe]ysubstitubed by cysteine

p-6.06

p-10.44
no.s

DWM-5A 28°C 7 Eny® (x10°7)
(AmipT) p8.34
PO beites () rho (%) Perles (%) tho (%) _

Mt 24£03 1 A90+a7 4z 1704

mipl==*  oozop’  we' T NE ND pa6.5
(MG303R) p46

mipr* PO 595402 2" wooion’ w0’ saz13”
(BRS7AW) p50.72

31

Figure 21: Page excerpt shows rows with a high probability of being a part of
a table highlighted in blue color.”

6. Assign table and extend table areas

o The last step of the table detection process entails defining the limits or

boundaries of tables. If grids and defined rectangular areas exist on the page,

all four or more connected rectangular areas found by the edge detection al-

gorithm (Chapter 4.2) are classified as tables. In the absence of grids, the

rows defined as containing tabular content are unified to form rectangular ar-

eas. These areas are then extended to cover rows above and below them,
based on their separation, to include table title and caption areas. This

method of extending the boundaries of tables can produce erroneous results

in documents with only narrow spacing between the table boundaries and

page body text.

E3

Source: Baruffini et al., Predicting the contribution of novel POLG mutations to human disease

through analysis in yeast model, 2011.



32

4.4 Defining table structure

The table structure definition (or recognition) process is the next step after the table has
been detected and the limits of its area have been defined by the table detection algo-
rithm. The algorithm in this thesis has been designed to process table areas that include
their title and captions, even though most literature available on table structure defini-
tion does not recognize these elements as being a part of a table. This decision, to in-
clude the title and captions, was made based on their usefulness for further semantical
or functional analysis (see [14]). The table detection algorithm can make its own predic-
tions about where the table title and captions are, but further processing is still needed to
separate them from the table header and body.

The algorithm for recognizing the table structure processes the elements of the table
in several high level steps:

1. Find and merge super- and subscripts

©  Super- and subscripts in a document can be problematic for table row detec-
tion. A superscript lying just between two rows can, in the worst cases, cause
splitting or merging of two separate rows. All text elements within the area
of a table are examined for super- or subscript status. Found super- and sub-
script elements are merged with the normal text elements in their immediate
vicinity to form a single element.

2. Assign to rows

o The algorithm needs to assign each table element to a row. All elements with
an adequate vertical alignment are defined as being on the same row. Even
this fairly simple sounding step has its own problems with elements that are
not completely aligned. In some cases better results would be obtained by
defining the rows more liberally and in others a more conservative method
of separating the rows would yield better results.

3. Merge spaces ‘

o Sentences are created out of words assigned on the same rows. The spaces in
the document, between words that belong to the same sentence are decided
by averaging the spaces widths on the page. The average spacing length (in
PDF coordinates) is used to determine which words can be merged into a
single element. Elements are never merged over vertical separator lines or
from different grid cells. Justified text (aligned to both, left and right edge of



33

the paragraph) is problematic for this step of the process, since it contains
sentences with variable width spacing, and often very wide spaces. Fortu-
nately, tables rarely contain justified text blocks without a grid structure.

4. Find obvious column edges

@)

Column edges are defined to locations where multiple rows have either ele-
ment left edges, right edges or center-points at the same vertical line. The
minimum number of elements to define an edge is set as 4. This step of the
algorithm is identical to Step 3 of the table detection process but includes
only the table area.

5. Find rows that do not fit the apparent column structure

o

Every row that breaks the column edge structure defined in Step 4, is marked
as being a “column breaking row”. These rows have a higher probability of
belonging to either the title, header (superheader), subheader, or caption row
categories and they are excluded from Step 10, Assign to columns.

6. Examine the grid ‘

o

Find out if the edge detection algorithm has defined rectangular areas (Chap-
ter 4.2.4) to exist within the limits of the table area. The table is defined as
having one of the following grid styles: full, supportive, outline, none. A full
grid means that the cellular structure of the table is completely defined by
the rectangular areas and no further processing of the table body is needed,
and the algorithm skips to Step 11, Finding the header. All elements outside
a full or an outline style grid are set as being a part of the title or the caption.
A Supportive grid helps to determine cell row- and column spans, but other-
wise the elements are processed just like the grid would not exist at all. For
fully gridded tables, the performance of the edge detection algorithm is criti-
cal. Any mistakes, or missed borderlines, directly show up as errors in the
row and column definitions.

7. Examine underlines

o

Underlines are horizontal lines defined by the edge detection algorithm, that
are not a part of a rectangular area, and do not cover more than 80% of the
table width. If a horizontal line covers more width, it is classified as a hori-
zontal separator. If an underline has only a single element on top of it, at a
reasonable distance, this element is extended to the width of the underline.
This procedure helps in discovering elements spanning multiple columns.



34

8. Find super- and subheaders

(@]

A superheader row is defined as a row that has elements that span over two
or more elements on either the row above or the row below. This is quite a
promiscuous way of defining superheader rows, and it will classify a lot of
rows erroneously. The main idea of this step is to remove rows that might be
problematic for the column definition step. A subheader row is simply a row
that only has elements in the table stub or the first column, if no stub exists.

9. Find title and caption

@)

The title and legend rows are segregated from the table header and body
rows. Several types of text withing the table area have a higher probability of
being a part of the table title text: text that is in the top rows of the table, text
that is defined as “column breaking” and runs through almost the entire
width of the table, text that is above the first horizontal separator, text that is
centered to the table width or text that is placed only to the left side of the ta-
ble. Any text that fits these descriptions adequately is classified as a title. For
the caption (legend), similar qualities are looked for, but on the bottom rows
of the table.

10. Assign to columns

O

Columns of the table are determined by finding empty vertical areas through
the table width. This empty area detection, excludes the rows that in the pre-
vious steps have been classified as either “column breaking rows”, sub-
header rows, superheader rows, title rows, or caption rows.

11. Finding the header

@)

Separately described techniques are used for detecting the table header rows,
see Chapter 4.5.

12. Merge columns

o

Columns without a header (if a boxhead has been found) or columns that do
not contain any data, are merged to the column on their left.

13.Format header

(@]

The header rows often have more variance in their layout on the page, and
often span multiple rows and columns. Header cells that are adjacent to
empty cells in the header are extended to fill these empty cells.



35

14.Merge rows

o Based on the header row information (Step 11) and row indentations; some

of the rows are merged together. This is an essential step in creating single

cells out of blocks of elements that have been split onto multiple rows. When

examining the rows, the algorithm looks for rows that contain no data in the

first column (stub), and contain data above every other non-empty cell. Be-

cause most tables contain a stub that includes only the first column of the ta-

ble, this approach can achieve good results. For rare tables, with a more

complex, multi-column stub, a more sophisticated stub definition and pro-

cessing method would be required.

15.Set column and row spans for cells

o The final step is to extend elements within grid cells to fill their full avail-

able areas and define their row and column spans.

4.5 Finding the header rows

After the table data has been sorted into appropriate rows and columns, it is time to find

its header rows (if any). As described in Chapter 2.3, the information provided by the

Poppler PDF library is somewhat limited. An even larger obstacle for the header finding

algorithm to identify the column header rows, in contrast to the abilities of a human

reader, is the lack of contextual and semantical understanding of the table data. For an

(English speaking) human reader, identifying the header rows is a quite trivial task in

most cases, as illustrated in Table 22.

1 2 3 4 5 6 7
1 Patient Sex Onset LA  Depletion Gene Allelel
2 A M 28 months NA 10% TK2 c¢.C462W
3 B F 15 months ++ 22%  POLG p.Y154N
4 C M 2 years normal 12% TK2 ¢.Q340S
5 D M 15 months  normal 11% TK2 ¢.T460A
6 E F  5years normal 32%  POLG p.Al55P
T F M 30 years ++ 8% TK2 c. G34T
8 G F 34 months normal 21% TK2 c¢.A35T

Table 22: For a human reader, identifying the column header rows

(only Row 1) is a trivial task.



36

1 2 3 4 5 6 7
L9 20NN ?? 77?7 777 1MNM?
2 7 2NN ?? ?7? 7 NN
3 7 MM ?? 77 777 NN
4 7 ?077MN 272777 ?7? 7 NN
S ? 2N 2727777 ?7? 77 NN
6 ? ?029M 2727707 77 777 NN
N ? ?77MMN ?? ?? ?? 22277
8 9 292999979 999972 299 2 229777

Table 23: For an algorithm, without any contextual or semantical understanding,
Table 22 looks effectively like this. As some tables do not have separator lines or
rectangles, they have been removed from this example, along with font family and style
information, because it is not available through the Poppler API (2.3).

Table 23 illustrates the starting-point for the header detection algorithm. Because ev-
ery table does not have separator lines (or has lines between every row), they alone are
not an adequate way of determining the column header rows. Also, the Poppler API does
not provide information about the font families, or font styles used in the table. Because
of the eclectic and non-standardized nature of tables, no single method can work on ev-
ery table. Therefore, an “expert” voting system is implemented.

A “toolkit” of different algorithms is used to examine the contents of the table cells.
Each algorithm casts a vote on the probability of each row being a column header row.
Once every algorithm in the toolkit has had its chance to cast a vote, all the votes are
collated, and a final conclusion (consensus) is drawn. The following chapters present
some of the algorithms in the toolkit.

Each of these individual header prediction components is parametrized with a
“weight” for its vote. So that the predictor components that are more often correct in
their predictions for certain kinds of tables, are given extra votes for the final evaluation
and decision making. Future plans include automating the parametrization of the com-
ponents using a machine learning-based method. This, however, requires developing a
testing data set that has ground truth values for the correct amount of header rows in
each table of the data set, against which the predicted values can be compared.



37

4.5.1 Header predictor: Numbers

Numbers, if they exist in a table, are quite a reliable source of column header row iden-
tification. The Numbers algorithm looks for columns that have cells with only text in
the top rows, and a long list of cells with numerical content below them. This type of
prediction is illustrated in Table 24. This method is very effective with tables that con-
tain numerical data in their body.

1 2 3 4 5 6 7
i ? 7 Onset ?7? Depletion 77?7 777777
2 7 ? 28 months 7? 10% 77 7777
32 ? 15 months 7? 22% 7277 NN
4 9 ? 2 years 727" 12% 77 727N
> ? ? 15 months ?7??777? 11% 77 72777
6 7 ?  Syears 70777 32% 7277 NN
T 7 ? 30 years 7? 8% 7? 7777
8 2 ? 34 months ?7777? 21% ?? 72777

Table 24: The Numbers algorithm looks for columns that have text-format cells on top
of a column of numerical cells. Recognized column headers are shown in red.

The Numbers predictor cannot make any predictions with tables that do not contain
any numerical data. Also, problematic for the predictor are tables that have numerical
column headers. These types of columns are quite common, especially with financial
data tables, where the column header can simply contains a year-number for the column
body data.

Another type of pitfall for the Numbers predictor involves column headers that have
only a few, or a single word per row. Imagine a column header such as “Number of fam-
ilies with income less than $50 0007, where “$50 000” is set alone on the last row (line)
in the header cell. If the column body below the header then contains only numerical
data, the Numbers predictor could easily mistake the last row of the column header as
being a part of the table body.

4.5.2 Header predictor: Repetition

Repetition of row values within a column can be used as an indicator on where the
header stops. There usually exists no reason to repeat rows within the column header,



38

and therefore, looking for repeated cells within a column can be used as an effective
measure for determining, which rows cannot be a part of the header. The Repetition al-
gorithm needs to be more conservative and reserved in its voting for positive header
rows, because if the first data cell in a column happens to be not repeated, it would be
easily mistaken as a header row, as illustrated in Table 25, Column 4.

1 2 3 4 5 6 7
19 Sex 277777772 LA 2 | Geme 77777
2 9 BN 22222 NA 2 TR2 . 2
39 M 20 [ 2 OGN
4 9 M 222222 normal 727 | TK2 227772
5 9 22992227 | mormal 77?7 | TK2 2277

6 9 M 292779 normal 7?7 JBOBGN 272777
....... N 2 ke o

8 9 99999992 normal 299 TK2 = 229977

~J
~
~
~
~
~
~
~
~o

Table 25: While less reliable in making an accurate prediction of the exact number of
header rows than the Numbers algorithm, the Repetition algorithm, is very efficient in
identifying rows that are not a part of the column header.

While the Repetition algorithm is less reliable in determining what is the last row of
the header, it is very reliable in telling which rows cannot be a part of the column head -
ers. In the case illustrated in Table 25, the Repetition algorithm can say with a good de-
gree of reliability that Row 2, is not a part of the header. This prediction is made by ob-
serving that the cell contents “F” and “TK2” are repeated multiple times in Columns 2
and 6 respectively.

4.5.3 Header predictor: Alphabet

Many tables, especially ones that have a stub and row headers, order their rows under
the stub header alphabetically, or numerically, in either ascending or descending order.
A long line of alphabetically ordered cells below non-ordered cells, is a tell-tale sign of
the column header rows, as illustrated in Table 26. In small tables, the ordering in the
stub can sometimes be coincidental, therefore, the amount of consecutive ordered cells
needs to be limited to a minimum size of four or five, depending on the table size for ac-
curate predictions.



1 2 3 4
1 Patient 207N ??
2 W 2NN ??
3 B 7NN ??
4 C ?029M 2727777
5 D NN MMM
6 |E ?029M 272777
7 |F 29799992 2
8 |G 292997972 929972

Table 26: A long list of alphabetically ordered consecutive cells in a column, under

777
7?7
77?
7?7
77?
7?

??

7

7?77
277?
777
277?
77?
777
??

?7?

39

non-ordered cells (“Patient”) in the table stub, is often clear indication of where the
header starts and stops.

A common pitfall for this type of predictor is an accidental stub header ordering.

Imagine a stub column that has the following cells from up to down: “Country”, “Fin-

2 (13

land”, “Germany”, “Italy”, “Sweden”; with “Country” being the only cell of the stub

header. For the Alphabet predictor it is easy to mistake the whole column not having a

header at all, because it has alphabetical ordering starting from Row 1.

4.5.4 Header predictor: other methods

Sometimes, none of the easy ways of identifying the table header rows are effective. In

such cases some more subtle methods in the header prediction toolkit are required. Such

methods include:

*  Empty stub header: If the stub head is empty, the first non-empty cell in the

stub indicates the first row of the table body.

* Font size: Some tables have their header in a larger font size. Comparing ele-

ment heights withing a column can help identify the header rows.

* Data types: If a column has integer numbers in the top rows and decimal num-

bers in all the rows below, it could be an indication of the header rows.

* Lists: The table header is less likely to have comma-separated lists than the cells

of the table body.

* Natural Language: If the top rows have natural language-like words (3 or more

consecutive characters of the alphabet), while the rows below contain only non-



40

alphabet characters (such as “+” or “*”), or a mixture of numbers and letters,
this is a good indication of the header rows.

* Text alignment: If the elements are aligned to the center of the column in the
top rows, and to the left or the right edge of the column in the rows below, it
could be an indication of the header rows.

* Separators or boxed areas: Horizontal separator lines often separate the header
from the table body.

* Superheaders and nested headers: It is uncommon for a column to have only a
shared header with another column. If a cell in the top rows of the table spans
multiple columns, the row below it is more likely to be a header row as well.

See Chapter 2.1, “Table anatomy”, for a description of the used terms for the table parts
and elements.

4.6 Outputting extracted data

The extracted data is outputted in two possible formats: HTML and XML. The HTML
output can be viewed on any web browser without modification, and imported into
modern spreadsheet applications with ease. The XML format output is quite similar to
the HTML style output with the exception that its tags (“<tag>") can be customized with
an XSL stylesheet, for easy integration to existing software components.

4.6.1 Application programming interface

The C++ API provided by the software application developed as a part of this thesis en-
ables easy access to the table data through different functions. The processed page data
is available through the AP/ as Table and TableCell objects. First, a class Tab-
lerInstance object is created to extract and retrieve the table information. It is also
possible to provide specific regions where the tables are located. This feature enables
the possibility of using a different algorithm for detecting the tables. The following

C++ code shows the main interface functions of the TablerInstance class:

class TABLER LIB TablerInstance
{
public:
//Extract tables from a PDF document
//Ownership of returned Table pointers transferred to caller
QList<Table*> ExtractTables( const QStringé& aFilePath, const
QStringé& aPageRange = QString());



41

//Extracts Tables from specified regions in a Poppler Document

//Ownership of returned Table pointers transferred to caller
QList<Table*> SortTables( Poppler::Document* aPopDoc, const
QList<TableRect>& aTableRects );

If a PDF document has already been opened using the Poppler PDF rendering Library

extracting table information is done in the following way:

Tabler::TablerInstance* tabler = Tabler::Instance();
QList<Tabler::Table*> tables = tabler->GetTables( iPopDoc);
delete tabler;

The Table class provides easy access to the extracted table's structured contents:

class Table

{

public:

int PageNum() const;

int NumberOfHeaderRows () const;
int Rows () const;
int Cols() const;

QList<TableCell*> Cells () const;
TableCell* Cell( int aRow, int aCol ) const;

QRectF TableArea () const;
QRectF CellArea( int aRow, int aCol ) const;

QString XMLDescription () const;
QString HTMLDescription () const;

QString HTMLCellData( int aRow, int aCol ) const;
QString CellData( int aRow, int aCol ) const;

Poppler::Page::Rotation Rotation() const;
QSizeF PageSize () const;

QStringList TableInfoTypes();
TableInfolist GetTableInfo( const QStringé& aInfoType);



42

4.6.2 Standalone usage

Extracting table data can also be done using an executable file and the command line in-
terface of the operating system (for more details see Chapter 5.5). Extracting table data
from an PDF file is done by typing the following command:

tabler.exe --html --pages=1-6 tables.pdf > output.html,

where “tabler.exe” is the executable program (containing the algorithms), “tables.pdf” is
a PDF file containing tables, and “output.html” is the desired name for the file where
the output of the program is written. “--html” and “--pages=1-6" are optional “flags” for
the program, specifying that the desired output format is HTML, and that only pages 1
through 6 should be processed. All of the possible options for command line usage of
the program can be viewed by using the flag “--help”.



43

5 EMPIRICAL EVALUATION

The focus and purpose of this thesis work is in practical applications of extracting data
from scientific publications. These publications often employ a conservative color pal-
ette and a limited amount of visual gimmickry. The publications are, for the most part,
carefully written and their layouts are designed by professionals working for different
publishers. The typical tables in such publications have multiple header rows that are as-
sociated with the entire body of the table.

For these reasons, getting a good evaluation on the “good”, lucid, and well formed
tables is more important than it is on the nonconforming, very complex, or “badly”
formed tables. In other words to get a perfect score on easy tables is more important
than to get a good score on difficult tables.

5.1 Evaluation metrics and performance

The evaluation of a table data extraction algorithm is not a completely trivial matter.
The evaluation is divided into two separate parts: evaluating table detection and bound-
ary recognition, and evaluating table structure recognition. This method of evaluation
has been proposed by Gobel et al. [14] and it provides a reasonable, standardized way
of comparing the performance of different algorithms.

5.1.1 Evaluating table structure recognition

The performance of the table structure recognition algorithm is based on the cellular
structure of the table. The cell structure is defined as a matrix of cells. Ground truth val-
ues are set manually for each table in the test data set for comparison as described in
Chapter 5.2.

Instead of comparing absolute row and column index values for each cell, only
neighboring cell relationships are evaluated. This method of table structure evaluation
has been proposed by Hurst [15] and it has a number of advantages against the more
simple row and column index number evaluation.

The method developed by Hurst evaluates the performance of a table structure recog-
nition algorithm with an abstract geometric model, where spatial associations between
the table cells are known as proto-links, that exist between immediate neighboring cells.
With this model, a variety of errors that may occur can be considered separately (e.g.
cells can be split in one direction, merged in another; entire blank columns can appear).
The main idea is that the model allows for errors that are insignificant for the overall
structure of a table. One extra column in the middle of the table does not ruin the scor-



44

ing for the remaining columns. A visualization of proto-links in a table is shown in Fig-

ure 27.

Description +]nilia| balance MIncrease Decrease Final balance
n a i L L

Accrued income 1 fm'-\"+ 1 269 40}
L L B .

Deferred income + '?l‘:u fn'."l‘:u+ {}+ Ef:u{}'."':il+ 597
L L L L

Accrued expenses + 4'-J '.""-4+ {}+ 14 467 35 267

(a) Orginal table as in ground truth

Description +]mlm| balance +]ntri-me LJII:]DEHEME Final balance
. .

Accrued income + 1 hh'-ill.JI::] {}+ 1 Ef:u':€'+ (M)
a i i

Deferred income + '?l‘:u h?ﬁd::] + Ef:u{}'."':\"+ 597
L L L

Accrued expenses + 4'-J Tl"’--il_JI::] + 14 467 35 267

(b) lncorrectly recognized cell structure with split column

B Correct adjacency relations O Incorrect adjacency relations

Figure 27: Comparison of an incorrectly detected cell structure with the ground truth.
source: Gobel et al. [14]

Table structure recognition evaluation uses an F-score to quantify the performance of
the structure definition algorithm. F-score is defined as:
5. precision-recall

F=
precision+recall’

where recall and precision are defined as:

correct adjacency relations
Recall = J 4

total adjacency relations

correct adjacency relations
detected adjacency relations

Precision=

Panel a in Figure 27 shows the correct proto-links as dark squares, of which there are 31
(total adjacency relations). Panel b in Figure 27 shows an example case of algorithm
output, with an incorrectly split 3™ column, resulting in only 24 correct adjacency rela-
tions, and 4 incorrect adjacency relations, making the total of detected adjacency rela-
tions 28 (24+4). In this example case the F-score would be calculated as follows:



45

Recall = i—éll ~T77.4%

24
Precision==—~85.79
recision o3 %

0.857-0.774

F=20857+0774

~81,3%

The F-score is calculated so that each document in the test set has the same weight in
the average precision and recall scores, no matter how many tables it contains. Tables
found within the pages of a single document are usually quite uniform in their layout.
Calculating the F-score on a document level, rather than table level, eliminates the ef-
fects of long documents with a lot of similarly (or identically) laid out tables affecting
the score disproportionately.

Establishing the correct adjacency relations requires manual examination of each ta-
ble in the used data set, and sometimes the correct division of cells is ambiguous. This
method of comparison does not allow for either-or relationships between the table cells.
Cells that span through multiple columns or rows can have more than four neighboring
cells.

Because the table proto-links that are compared to the ground truth proto-links, do
not have any cell coordinates, only the cell contents are matched to asses if the right ad-
jacency relationship exists. In the implementation of the structure performance analysis
method, in case of tables where multiple cells contains the exact same content, the same
proto-link can exists multiple times, without any problems. For example if the ground
truth table would contain the relationship “A above B” two times, and the comparison
table three times, recall for this particular relationship is 2/2, and precision 2/3.

5.1.2 Evaluating table detection

Table detection, in its essence, is a segregation task. The goal is to separate the elements
of a page into table-, and non-table elements. The table detection evaluation measures
the ability of the algorithm to find tables within the pages of a PDF document in terms
of completeness and purity. The definitions of completeness and purity are taken from
Silva [16]. The two terms are defined in the context of table detection evaluation as fol-
lows:

* Completeness: proportion of tables containing all of their elements with respect
to the total number of tables on the page. In order for a table to be complete, it
must contain all of its elements.

completely identified tables
total ground truth tables

Completeness=



46

* Purity: proportion of tables containing only correctly assigned elements with re-
spect to the total number of tables on the page. In order for a table to be pure, it
must contain only correctly assigned elements.

_ purely identified tables
total identified tables

Purity

The harmonic mean of completeness and purity (CPF) is used as the measure for the
overall performance of the table detection algorithms. It is defined as:

Completeness - Purity

CPF=2- —
Completeness + Purity

CPF is calculated so that each document in the test data set, no matter how many tables
it contains, has the same weight in the purity and completeness average score.

The resulting purity-score is an indicator for how well the recognized area is within
the bounds of the ground truth area. The completeness-score is an indicator of how well
the recognized area covers the whole defined ground truth table area. The CPF score, is
an indicator of the overall performance of the algorithms.

Why this method of comparison is chosen over the element-based F-score compari-
son used in table structure recognition, is that it provides a more useful indication in
typical table recognition error scenarios. Comparing a single table on a page to another
table using the element based F-score would work just fine. The usefulness of the com-
pleteness and purity is best described by examining a few examples such as a table de-
tection split error, shown in Figure 28.



47

o o |
I I | ] / Detected table A
I | rd
r Gl I .= - - -
2 detected : B B . -I
table ..
Detected table B
(gray) .. |
1 B K R 1
Ground >, - - T == = Algorithm
truth for | 93— performance:
table area | —— O Completeness
(dash) OCJC a3 | 91=0%
1 11 Purity
1/2 = 50%

Figure 28: Split errors are common in table detection. Table elements in the ground
truth definition for the page are shown as black rectangles, and non-table elements as
white rectangles.

One ground truth table is associated with only one comparison table (if any). The as-
sociation is determined by comparing the elements on the page. For each ground truth
table, the association is established with a comparison table that shares the most ele-
ments with it. In rare cases, such as depicted in Figure 28, where two tables share the
exactly same amount of common elements with a ground truth table (8 in this case), the
table with the least amount of overall elements (Table B) is chosen as the associated ta-
ble. In the case shown in Figure 28, the unassociated, detected Table A would be classi-
fied as a false detection.

Another type of common table detection errors is a merge error, where multiple
ground truth tables are recognized as a single table (Figure 29). The difference between
merge- and split errors, is that a split error affects the completeness score negatively,
while a merge error affects the purity score negatively.



48

I I I
1 detected (N I | N
table " L L IR T

area (9ray) | o W W,

2 ground [ -
truth tab|e< 10
areas e —-' n Algorithm
(dash) ‘|= — =I performance:
| |
L I Completeness
P 172 = 50%
OCJC I3 | pury
1 | 103 0/1 = 0%

Figure 29: Merge errors are common in table detection. Table elements in the ground
truth definition for the page are shown as black rectangles, and non-table elements as
white rectangles.

There is no additional false detection penalty scoring; the falsely detected tables only
increase the purity score denominator, lowering the purity score. With table merge er-
rors, the purity score is affected directly, because two or more ground truth tables de-
tected as one, are never pure.

The tables are rated as either pure or impure, complete or incomplete; there is no
middle ground. If a table area contains even a single non-table element, or an element
from another table, it is assigned as being impure. This method of evaluating perfor-
mance requires quite a large set of test data documents to give an accurate estimation of
the algorithm's performance.

5.2 Performance evaluation implementation

For performance evaluation, the algorithm outputs an XML file that is compared to a
ground truth XML file. Comparison is done using a Python script. The script reads as its
inputs an element file, that defines the text elements of a page; a ground truth file, that
defines “the correct answers”; and a comparison file, that contains the “opinion” of the
algorithm on the table locations and cellular structure. The element file is needed for de-
termining association between the ground truth and comparison tables.



49

Due to the way that the PDF standard is specified, the word boundaries for textual
elements can be somewhat ambiguous. In other words, the PDF standard does not de-
fine a single correct way of defining words in a document, and two different PDF read-
ers or libraries can have some differences in the way words are specified. To avoid
problems with unwanted textual elements becoming included inside a table area, only
the element center-points are considered when determining whether an element is a part
of a table area or not.

5.3 Test data

The performance evaluations for the algorithms are done using two different data sets,
provided by Gobel et al. [14], called the EU-data set and the US-data set. The EU-data
set currently consists of 34 public domain documents, gathered from various European
Union government websites. The US-data set consists of 25 public domain United
States government website PDF documents. Both data sets contain an eclectic set of ta-
bles, that for the most part surpass the typical scientific publication table complexities
by a large margin (see Chapter 3.2). The test data ground truth table areas exclude both
the table title and legend. The table detection algorithm had to be modified to accommo-
date these changes for the testing phase.

The two used data sets (EU and US) sets are a part of an International Conference on
Document Analysis and Recognition (ICDAR) 2013 table competition” and they are
freely available on the Internet [13]. The data sets are likely to be expanded in the fu-
ture, while the authors of Gobel et al. [14] are working towards a more unified toolkit
for standardized testing methods for table detection and structure recognition. The
ground truths for the data sets are provided by Gébel et al. [14]. Some examples of the
test set tables are shown in Chapter 3.2.

5.4 Performance results

The performances of the table structure recognition algorithm and table detection algo-
rithm were evaluated using two sets of PDF documents, the EU- and the US-data sets
[13]. Measuring the structure recognition performance was done by using manually de-
termined ground truth areas for tables. In other words: completely independently of the
table detection algorithm.

The documents in both test data sets represent a disproportionate amount of complex
tables, compared to average tables found in scientific publications. Also, both data sets
contain many documents with tables that are either split into multiple table areas on a
single page, or tables that are seemingly connected to each other but should be separated

* http://www.icdar2013.org/



http://www.icdar2013.org/
http://www.icdar2013.org/

50

into two or more tables. Both of these types of tables are quite a rare occurrence in sci-
entific publications.

5.4.1 Table structure recognition performance results

€ 9 ¢ 9

Long continuous strings of dots and underscores (“.”, “ ") were removed from the table
cell contents before comparison. These characters are commonly used as visual aids in
tables to align stub row headers with their table body data. While these strings of char-
acters can be considered being a part of the textual content of a table, they serve no se-
mantical purpose, and therefore do not need to be extracted. Chapter 5.1.1 describes the
evaluation methods in more detail. The results of the table structure recognition perfor-

mance analysis are presented in Table 30.

Data Documents Perfect Precision Recall F-Score
set scores
EU 34 18 96.70% 96.43% 96.57%
Us 25 9 86.34% 87.38% 86.85%

Table 30: Table Structure recognition performance results.

The overall performance of the algorithm could be evaluated as “very good” or “ex-
cellent” based on the results. A major part of the incorrect output of the structure detec-
tion algorithm is due to erroneous output of the edge detection algorithm. The measured
performance score is somewhat affected by the complexity of the test data set tables,
and not directly by the performance of the algorithm, but by ambiguity of some of the
adjacency relations (proto-links) of the table elements. See chapter 7.1 for a more de-
tailed look at the low scoring tables, and for a more in-depth discussion on the perfor-
mance of the algorithm.

Future plans for developing the algorithm include creating a new test data set with
typical scientific publication tables, for an even more accurate evaluation of the perfor-
mance of the algorithm for its intended purpose. Output of the table structure precision
and recall script is supplied for the EU- and the US-data sets as appendices A and B re-
spectively.

5.4.2 Table detection performance results

The table detection algorithm was adapted to exclude table titles and caption texts, to
suit the test data set ground truth definitions. Table 31 presents the achieved results of
the table detection algorithm.



51

Data Documents Perfect Purity Completeness CPF
set scores
EU 34 9 77.82% 49.12% 60.22%
US 25 11 73.96% 64.00% 68.62%

Table 31: Table detection performance results.

Overall performance of the algorithm could be evaluated as “modest” based on the re-
sults. The table detection scores are influenced by at least five significant factors:

1. The algorithm has not been designed to detect tables without a defined grid
structure with less than 4 rows (minimum size for gridded tables is 2x2).
2. The algorithm has been designed to include table titles and captions.
© Including a title or a caption sets purity to 0% for a table when compared to
the used data sets' ground truth definitions. The algorithm was adapted to ex-
clude table titles and captions for the comparison, but performs better with
them included.
3. Strict yes/ no method of assigning completeness and purity for each table.
©  One single extra or missing element sets the purity or completeness score of
a table to 0%; there are no almost correct answers.
4. Merging multiple separate table areas into a single table has not been imple-
mented.
5. Splitting unified table areas into multiple separate tables has not been imple-
mented.

Output of the table detection purity and completeness script is supplied for the EU- and
the US-data sets as appendices C and D respectively.

5.4.3 Performance in terms of time

Most of the processing time used by the algorithm is spent by the edge detection algo-
rithm. The Poppler library renders the document pages into greater than 1000 x 1000
pixel images, depending on the average font size on the page. The large size of the ren-
dered image is required to avoid blurring and cluttering of the table separator lines and
text. There are still a lot of options available for optimizing and improving the edge de-
tection process in the future.



52

Table 32 shows actual measured times for different parts of the table extraction
process, on a typical 2013 desktop 64-bit computer with Intel 17-2600k CPU, for an
idea of the time required to process PDF documents.

Data set Page Rendering Edge Table Table
(Poppler) Detection Detection Structure
recognition
EU 49.8 ms 647.7 ms 20.7 ms 75.3 ms
US 217.0 ms 679.1 ms 18.3 ms 68.5 ms

Table 32: Average page processing times for the algorithms.

Typically processing a single page that contains tables takes under 1 second. Pages
that do not contain any tables are processed approximately 100 ms faster. Both used test
data sets contain tables on most pages, but also pages that do not contain any tables. The
pages that do not contain any tables are not calculated for the table structure recognition
algorithm processing time. The Poppler library page rendering time for the US-data set
was offset from the EU-data set result by a few documents with over 2000 ms page ren-
dering times. The Poppler library does not yet provide a thread safe interface (planned)
which would allow processing multiple pages with multiple threads at the same time.

5.5 Implementation

The practical implementation of the algorithms is made with Qf C++. Qf is an open
source framework for developing applications for multiple platforms, such as Windows,
Mac and Linux systems and various mobile phone platforms. It allows for easy portabil-
ity between these systems and offers an extensive GUI framework. Q¢ is available under
the LGPL 2.1 and GPL version 3 licenses, and also offers a commercial license for a
fee.

The implementation is made into two separate parts: a shared dynamic link library
module (DLL) and a GUI application for visualizing and debugging the performance of
the algorithm. The DLL is also compiled into a self-standing executable file, for direct
command line usage. Both parts of the implementation are made available online, in-
cluding their source codes.

Scripts for performance evaluations are created with Python scripting language. The
scripts read in XML files in a specified format [13], and evaluate the performance of the
algorithms as described in Chapters 5.1.1 and 5.1.2.



53

The whole project consists of more than 20 000 lines of C++ and Python code, and
took several months to complete. The project is initially made available only as source
code, but future plans include releasing it as an installable application package. The
working title for the project GUI is “Harvezter” and “Tabler” for the component con-
taining the table extraction algorithms.



54

6 RELATED WORK

The need for automatic table data extraction has been recognized by others as well. A
few such systems for PDF document table extraction are represented in this chapter.
The lack of standard data sets and performance evaluation methods hinders the compari-
son of the performance of different approaches to other existing similar approaches. A
standard test set and testing methods would be required for better comparisons.

6.1 PDF-TREX

The PDF-TREX table data extraction system was published in 2009 by Oro and Ruffolo
[17]. The PDF-TREX system employs a heuristic approach (experience based) to table
detection and structure definition. In comparison to the software application created as a
part of this thesis work, it has the following limitations:

*  Only single column documents are supported.

* Ruling lines or other visual aids on the page are not considered.

The PDF-TREX system itself is not reported to be available for public use, but the
data set used for evaluating its performance is currently (March, 2013) available on the
Internet [12]. The test data set is provided without any ground truth definitions, and it
consists of 100 Italian, single column PDF documents (mostly financial data). The au-
thors of the PDF-TREX system report an F-score of 91.97% for table detection and
84.61% for table structure definitions. These reported results are not directly compara-
ble to the scores obtained in the performance evaluation of this thesis work (Chapter 5),
due to the different data sets, as well as, and more significantly, the performance evalua-
tion methods.

A somewhat more comparable measurement is reported for the PDF-TREX system
by Hassan [18], who is one of the authors of the suggested performance evaluation
method [14] adapted by this thesis work. Hassan reports a table detection F-score of
55.9% and table structure recognition F-score of 85.1% for the PDF-TREX system.

6.2 Pdf2table

Pdf2Table is a PDF table extraction system developed by Yildiz as a Master's thesis
work at Vienna University of Technology in 2004 [19]. It uses a software tool called
“pdf2html” to converting the contents of a PDF document to HTML which it processes
further to detect table areas and table structures. The pdf2table system is designed as a
semi-automatic extraction system with a GUI that allows for the user to make modifica-



55

tions to the table structures proposed by the extraction algorithm. The author writes:
“You should expect that a post-process in form of changes in the user interface must be
done in almost each case.”.

In a later paper in 2005 by Yildiz et al. [20], the pdf2table system is reported of hav-
ing a table detection F-score of 92.33% and table structure recognition F-score of
85.42%. As the test data set, the authors report to have used 150 PDF documents gath-
ered using web search engines. The test data set of 150 document was further divided
into 50 lucid or unsophisticated tables and 100 complex tables without further explana-
tions. It is also unclear if the system had been developed further into a more automated
version considering the achieved scores. The pdf2table system and its source code are
available on the Internet [21]. The used data set is not available, and so, a direct com-
parison with the approach is impossible.

86rC

Table 1. Patient phenotypes

OF “ON “LT “104 'QOOT ‘SIPUDL) DNIFOFY upMNE

Identifier  Sex  Mutation Mutation  Cellular Age miDNA content (%) Epilepsy  Hepatopathy  Movement disorder
(Ref)) Location  Depletion?  Onset Liver Muscle  Fibroblasts  Valproate

A(2227) M T914P4RI0%C PP Yes <1 year 7 23 19-27 (+)
B M : PLE Yes 6 months ) 32 36-60

C M PP Yes 5 months 16-55

D (38) F E+[EL]  Yes 5 months ) 22-97

E (29) M P+L Borderline  Birth 5 54 30-77

F M 748 PiL No 1 year 32 38 (+)
C M P+L No 2 years 3 months 2 37

H F A46TT +T914P P+L No 7 months 39 62

1 M WSS +T914P P+L No 4 years 15 84

12127 M EST3X+ A46TT L+X Borderline 18 months 25 30 51

K M Ad6TT+W347_LieSdel  E+L Unknown 7 months . i (+)
L F WT48S -+ WT48S L+L Unknown 16 years 108 : : +) (+)
M F L304R homozyg E+E Unknown 10 year 17

N M W7485 r+L Unknown 13 months 43

0 F PiL Unknown 6 years

P F PiL Unknown 15 years

Q F P+L Unknown 18 months ¢ (+)

R F Ad6TT +L966R PiL Unknown 4 years

s F A46TT +RI74X L+X Unknown 4 months (+)
T M Ad6TT+RAITT E+L Unknown 2 years

U M H569Q homozygous L+L Unknown 78

v M W748S+[PSRTLPSROL]  L+L Unknown

W F Ad6TT +AS6TT L+L Unknown

X F A46TT +CAI8R LiL Unknown y

Mean (%) 131 54.6

Controls 40-152  60-140  39-193

P, mutation in polymerase domain; P+P, two mutations in polymerase domain; L, Linker domain; E, exonuclease domain; X, nonsense mutation.
Blanks denote unknown; -+, present; (+); present but not prominent; —, absent
Fibroblast miDNA content were measured on several occasions on the lines containing tho zero cells, range shown.

Figure 33: Original table used for pdf2table test run.”

*  Source: Ashley et al., ”Depletion of mitochondrial DNA in fibroblast cultures from patients with
POLG1 mutations is a consequence of catalytic mutations”. Human Mol. Genetics, 2008.



56

TABLE ON PAGE 1

Identifier [|Sex Mutati ion| Cellular | Age m::e?:;:i-] Epile psy|| Hepatapathy “;‘::r':i‘::"
(Ref.) Location |[Depletion? || Onset || Liver || Muscle ||Fibroblasts||V alproate; tics,
g @21 ;: Eg;ﬁ%ﬁ%‘;‘gm PP PPE |ves Yes 1! (f‘]’:'[‘"f 74 [2332 19273660 bb bb o 2008,
C M R1096C h«*\ls PpP Yes |5 months 16 35 b b
I E 13 “pIE s :
BPA T Sl Ty Tl TN TR ST S T T S
) M WT485p _ 1 year 2
FG \i [[RE52CG1 ||. PPLPL [NoNo  [years3 |32 |2 3837 b2 bb b Ib) 2 17,
A46TTh[R: 1D imonths
HI N ;‘;‘fgg’;ﬁp PpL PpL. |[No No ;c’;;”"’“ Ms o Jease b bp [pp b b No
It EST3XpA46TT LpX Borderline ||18 months |25 |30 51 b b b 16
K M :;2;3“’347, EpL  ||Unknown |[7 months 2 b b b
L F||[W748SpW745S LpL Unknown |16 years 108 b b &) b
M L304R homozyg EpE Unknown  |[10 year 117 2 2 2 2
N M ||[W748SpTo14P PpL Unknown |13 months 13 b b b
0 [ |[W748SpGedss PpL Unknown |Gyears |2 |2 2 b 2 b
P F  [A4GTTPT914P PpL Unknown  |[13 years |2 2 2 b
Q F |A467TpCS48S PpL Unknown |18 months 2 b (p)
R F  [A46TTPLOGER PpL Unknown |4 years b =
S F|A46TTPRITLX LpX Unknown |4 months 2 b b i)
T M [A46TTPR41TT EpL Unknown |2 years 2 2 2 2
U M [H5690 homozygous  [[LpL Unknown  |[15 years 78 2 2
v M [‘;’;g;’ﬁPSSQLI LpL Unknown  ||17 years |2 2 2 p 2
w F  [A46TTpA46TT LpL Unknown  ||16 years |2 2 2 b b
X F |A46TTPC41ER LpL Unknown  |[3 years p 2 b
Mean (%) 13.1 |54.6
Controls 195 |ls0 140 J0 103

Figure 33: The pdf2table system test run results. The pdf2table table extraction system
was able to recognize the table structure quite well with the column headers defined
correctly. The mistakes in this example table (red arrows) were: 4 incorrectly merged
rows and an extra column at the table right edge. These errors are most likely due to
text written in up-down direction in the page right margin that interferes with the row
Structure.

A few example tables were used to test pdf2table performance. Figure 33 shows the
original example table and Figure 34 shows the pdf2table HTML output. Most signifi-
cant mistakes were made with tables in multiple column documents (clearly an unsup-
ported document type for pdf2table). Tables with subheader rows were often split into
multiple tables erroneously.

6.3 Other products

An Internet search turns up a few other products for the purposes of PDF table extrac-
tion. None of them offer the same automated functionality as the software application
created as a part of this thesis work.



57

* VeryPDF PDF Table Extractor.

© According to the VeryPDF website, the tool allows the user to manually (us-
ing a GUI) specify the table limits and row and column structures. Commer-
cial license.

e Okular PDF reader
o The Okular PDF reader allows the user to manually specify table area limits,
row and column separators and to extract a table. The interface of the pro-
gram is shown in Figure 35. Freeware.

Environmental objectives and guid elines - Okular

com | | TableSelection | |ViewMode 1/ Presentation

File Edit View Go Bookmarks Tools Settings Help

e ShowMenubar | 48 Prevous ® Next |[13496% €@ v] @ zoomout @ zoomin | |,

E e > e NS DALPINISHE UIAA A
nten
UIAA UsA Australia UK France South
.................. Africa
Adjectival Tech
I 52 1
n 53 11 2
1l 54 DIff. — 3 9
3 55 12 |v.Dif 3+ 10
IV 56 4 11
1V 13 4a 4 12
1V: 57 14 8 13
V- 58 15 1 4 4t
V. 16 3 Sa
= |
v 2 5a
VI 59 17 [ 3 | %a 5b
VI 18 B L L] 5c
5.10a 15 5 €a 18
VI I 19
Vil 5,100 20 m F— Gat 20
5.10c ~ sc ) 21
Vil 5.10d 21 = m Bb+ 22
VI 5.11a 22 6a Bc 23
VI 5110 — ] 5 2]
VIIL 5.11C | 6b. Ta
Vil 511d L] — 7at
VIS 5.12a ] Tb
2 5.12b/c = = ToHTe
X 5.12c/0 S [ o+
5.73a 7 — Ba
T+ 5.13b 29 7a Ba+
X- 5.13c/d 30 8b
5.14a 31 Bb+ 33
X 5.14b 32 Ej 8c 34
XI- 5.14c 33 Bo+ 35
5.14¢c 36
XI 5.14d 7b %a
X 5.15a 9a+
5.156 b I~
” 4 (1)1 b

Figure 35: The Okular PDF reader lets the user manually specify table areas and to
define the column and row limits. The table can then be exported to other
applications.

e Adobe Professional

o The commercial version of the free Adobe PDF reader has a functionality to
export table areas defined manually. Commercial license.



58

7 CONCLUSIONS

As a tool for “big data” extraction, the created software application performs very well
in defining table structure in correctly defined table areas. The table detection algorithm
performs well with tables that have more than 2 columns, but is still not very accurate in
including all the relevant elements at the top and bottom extremities of the tables.

Tables that are split on to multiple pages or unified table areas that should be split
into multiple tables are not supported by the table detection algorithm. These are not es-
sential features in most practical applications for the algorithms, because in most cases,
the relevant data will still be extracted with correct header-element associations.

71 Discussion on accuracy

Several different factors, that are trade-offs with each other, affect the performance of
the algorithms. Fine-tuning of several of the parameters of the algorithm could still
yield significant improvements. Most room for improvement exists in the table detec-
tion and edge detection algorithms.

Few distinct features of the algorithms that have not been evaluated with any quan-
tifiable way are: header row recognition, title row recognition, and caption row recogni-
tion. These features of the algorithm serve an important role in further semantical or
functional processing of the table data.

The header row recognition algorithm (Chapter 4.5) is a major part of the table struc-
ture recognition algorithm (Chapter 4.4). Thus, its performance directly affects the per-
formance of the table structure recognition algorithm (Chapter 5.4.1). As a rough esti-
mation it would seem to be performing equally as well as the full table structure recog-
nition algorithm.

Evaluating the title and caption row recognition parts of the algorithm is a bit more
difficult, because they were completely removed when adapting the algorithm for evalu-
ation according to the test data set ground truth definitions. As a rule of thumb, they are
able to find the most common types of titles (centered on tables or running the entire
width of a table), with some difficulties in recognizing more imaginative ways of pre-
senting table titles and captions. Overall, errors in this part of the algorithm usually only
result in the title becoming a column header or vice versa, a column header being
marked as a table title. Erroneously detected captions are typically insignificant, since
the caption text will typically only become a part of the table body.



59

7.1.1 Edge detection performance

The main source of errors for the edge detection algorithm, are edges that should not ex-
ist at all. One such example is shown in Figure 36. The problems in edge detection in
this example are not caused by erroneous function of the algorithm, but rather by the de-
sign and construction of the document and the table, that have resulted in unwanted
white lines around textual elements in the table header.

Importance of Creating European centres | Launching European Stimulating the creativity of
the objective of excellence through technology initiatives basic research through
collaboration between competition between teams
laboratories. at European level
very important 48.4% 41.9% 45.9%
Important 42 4% 44.1% 35.3%
not important 4.5% 6.3% 8.1%
Unnecessary 2.8% 1.5% 6.4%
don't know 1.3% 6.1% 4.2%
0,0 rs:4 cs:2 0,2 rs:4 Lil 7(&;4 rsid %5 rsid !L-
T 5T LI!" - T L‘!
Il I
m‘c Er |T!
4,0cs:2 4,2 cs:2 4.4 4,552
| YT I | ﬁ* e *
[s,ncs:z— 6,2 512 |E4 6,552
[70cs2 7.2 052 [7.4 75 052
&b Ocs:2 (52 cs:2 [P 8.5 cs:2

Figure 36: The top panel shows the original PDF document table. Due to the way the
document has been constructed, white outlines surround column header text blocks.
The lower panel shows the raw output of the edge detection algorithm, with
incorrectly detected rectangular areas highlighted with red arrows. Source: EU-data set

[13].

To address these kind of problems in edge detection, the robustness of the algorithm
could be further improved by adding more rules to the formation of grid cells. One vi-
able strategy to avoid such unwanted behavior by the algorithm, would be to enforce

minimum sizes (width) for empty rectangular areas.

7.1.2 Problematic tables and data set ambiguities

The used data set ground truth values for the table locations and table structure defini-
tions have been evaluated by three experts in the area of table structure recognition [ 14],
and all tables that they could not agree on were removed from the data set before it was
published. However, some definitions of the ground truth can still be argued in a few
different directions. Figures 37 through 39 show some of the worst scoring tables in the
US- and EU-data sets.



60

Liabilities Beel worth
Tolal | BT Recunbes Fhares and Tnsuranes lechnical reserves
received other|  ather equity

than shares Melequily of | Nel equily of] Prepayments al

Total|  househadds | houssholds insurance

in life in pension premiums and

insurance fund reserves for

resves reserves|  outstanding claims
[ 1 2 3 4 3 & 7 [ 9 1t
2005 (4 [NEER] ETEE] 317 4221 51788 M2 [REEE] [REX 1426 4%
2009 )1 6.129K ETRE] ETH ITE6 SR 20375 14602 ®4110 1429 552
Q2 BZX1589 3114 33l 35.1 S35 5 30055 1ATT A 425 1404 1141
3 63637 338 3a.1 ik il 54386 IMAE 157 8422 145.1 1536
i) 64413 284 6 EEE] 4362 $317R 31686 15198 ¥303 1533 1
20101 6AI12S 2036 ETE] 4554 13602 RELLS 1575 2413
Q2 Bl 4 a0 o4 4279 1589.1 Hh32 16ikAF 293
3 B.TTT 31501 kL E 4357 16295 BAS 1552 2856
i) 6EI6K 2845 423 4446 16513 %62 4 1498 16210
2001 01 B9 M2 4o.1 4597 1B 5 HEH3 150 AF 1315
Q2 B354 35 6 32 474 1ATdd B75.6 144 4 14iks
03 BEYZ 2 ill4 424 &5 1ATES 8716 1643 1683

Figure 37: Structure recognition score P/ R: 0.82/0.81. Highlighted (red outline)
areas show problematic stub, and bottom header row. The algorithm merges the table
stub incorrectly into a single column. The data set ground truths define highlighted
row as merged into the header text cells above it. The algorithm sees it as a separate
row. Source: EU-data set [13].

Figure 37 shows a table where a row of incremental numbers, under the column
header texts is included in the same cell with the column header text in the data set
ground truths. For a human reader of the document it makes very little difference, but an
algorithm will be scored for 20 imprecise and 16 unrecalled proto-links in this case (not
counting issues with the stub). A more sophisticated performance testing system could
allow for either-or types of proto-linkages for such special cases.

Figure 38 shows a table, or perhaps two tables marked as one in the ground truth def-
initions of the US-data set. In either case, the $-signs, because they appear in a separate
column, that has no obvious column header directly above it, get merged incorrectly
into the columns on their left side. This causes all the cells that are either missing or
have gained the $-signs into their contents (cells on both sides of the dollar signs), to
evaluate having imprecise and unrecalled proto-links. This is due to the way that the
proto-links are compared; by comparing the connected cells contents. A more sophisti-
cated comparison methods could maybe only penalize either the cell that has gained ex-
tra content or the one that has lost it, but not both. This particular table also features the
possibility to keep the $-signs in their separate columns, because now, only the top and
bottom amounts for each year in each column will have the $-signs associated with

them.



61

{Amounts in Thousands) 2011
Appropriated Donated Earmarked
Funds Funds Funds Total
Obligated H 11684724 | % 45,845 (% 266999 |§| 119975068
Unobligated Available 13,409 52,242 59959 125610
Unobligated Unavaikable 102,227 93 970 103.290
Less:  Budgetary Non-FBWT - (51,380) - (51.380)
Total FBWT S| 11800360 % 46,800 (% 327928 |$| 12,175,088
{Amounts in Thousands) 200
Appropriated Donated Earmarked
Funds Funds Funds Total
Obhgated g 11974777 | $ 34,174 (% 287886 |$| 12296837
Unobligated Available 12,451 45,625 47026 105,102
Unobligated Unavaikable 98,304 4 3,124 101,432
Less:  Budgetary Non-FBWT - (44,683) - (44.683)
Total FBWT S| 12,085,532 (% 35,120 (% 338036 |$| 12.458.688

Figure 38: Structure recognition score P/ R: 0.55/ 0.58. Highlighted (red outline)
areas show problematic “$”-sign columns. The algorithm merges these columns
erroneously to the left. The header cell “2011” is not extended to span all of the 4
correct columns. Source: US-data set [13].

Year

I Pesticide 1979 1980 1981 1982 1983 1984 1985 1986 19; 1988 1989 1990 1991 1992 1993 1994 1995 I
Millions of Ibs. a.i.

500 532| 557
188 152 161
108 100 99
138 133 137
278 269 266

Herbicides 610
255
124
155

343

622
228
122
149
321

631
218
122
152
307

620
210
117
149
298

573
204
115
148
287

634
197
109
145
284

611
193
110
138
284

567
154]

98
154
251

564
148

a1
173
252

546
141

86|
182
226

554
143

81
189
246

527
130|

80
192
248

583
138

79
199|
244

556
137

77
203
249

Insecticides
Fungicides
Other Conv.
Other Chems.

Total 1487|1442( 1430|1394 | 1327|1369 (1336 | 1303|1186|1220| 12241228 | 1181|1213 | 1177|1243 | 1222

Figure 39: Structure recognition score P/ R: 0.64/ 0.40. Highlighted (red outline)
header row features words (year numbers) in too close proximity to be recognized as
separate columns, which leads to poor performance. Vertical separator lines do not

extend into the header. Source: US-data set [13].

Figure 39 shows a table with very narrow spacing between the words in the header. For
an algorithm, a row with many narrowly spaced words (the year numbers), that run the
entire length of the table, it is very easy to mistake it for a table title text row. Perhaps a
strategy of looking at obvious column breaks defined by the table body data with its
separator lines and good alignment of the body elements could serve as a clue for keep-
ing the header words in separate cells.



62

7.2 Future plans

There are numerous ways that the project could still be improved. Here is a list of a few
ideas, that would make the software application more useful for interested users:

* Improvements
o Further improvement of the table structure recognition algorithm.
© Further improvement of the table detection algorithm.
© Further improvement of the edge detection algorithm.
© Speed improvement of the edge detection algorithm.
o Evaluation and fine-tuning of the performance of the header prediction algo-
rithm.
* Expansions
o Expansion of the GUI part of the project to serve as a ground truth definition
tool to create new data sets that include table titles, headers and captions.
o Installable application package.
o Support for image files and text recognition.
©  Online server implementation.
© An easy to set up, comprehensive testing suite for table extraction algo-
rithms.
o Expansion of the API to allow for use of external edge detection algorithm.

The developed algorithms are also submitted to a competition for table detection and
structure recognition: International Conference on Document Analysis and Recognition
(ICDAR) 2013" Table Competition [13]. The results of the competition were not yet
available by the last revision date of this thesis.

* http://www.icdar2013.org/



http://www.icdar2013.org/

(1]

(2]

(3]
(4]
(5]

(6]

(9]

63

REFERENCES

E. Riloff. Information extraction as a stepping stone toward story understanding. In Ram, A.,
Moorman, K., eds.: Understanding Language Understanding: Computational Models of Reading. MIT
Press, 1999.

A. Bagga. A Short Course on Information Extraction: A Proposal. Department of Computer Science,
Duke University, Durham, 1998.

X. Wang. Tabular Abstraction, Editing and Formatting. PhD thesis, University of Waterloo, 1996.
M. Hurst. The Interpretation of Tables in Texts. PhD thesis, University of Edinburgh, 2000.

Adobe Systems Incorporated, PDF Reference, Sixth edition, version 1.23. 2006.
Retrieved 2013-02-24: http://www.adobe.com/devnet/acrobat/pdfs/pdf reference 1-7.pdf

ISO 32000-1:2008, Document management — Portable document format — Part 1: PDF 1.7. Iso.org.,

2008.

Retrieved 2013-02-24: http://www.is0.0r:
ber=51502

/iso/iso_catalogue/catalogue tc/catalogue detail.htm?csnum-

E. Orion. PDF 1.7 is approved as ISO 32000. The Inquirer, 2007.
Retrieved 2013-02-24: http://www.theinquirer.net/gb/inquirer/news/2007/12/05/pdf-approved-iso-
32000

Adobe Systems Incorporated, Public Patent License, ISO 32000-1: 2008 — PDF 1.7
Retrieved 2013-02-24: http://www.adobe.com/pdf/pdfs/ISO32000-1PublicPatentLicense.pdf

Adobe Extensible Metadata Platform (XMP) becomes an ISO standard
Retrieved 2013-02-24: http://www.iso.org/iso/home/news_index/news_archive/news.htm?
refid=Ref1525

[10]Poppler PDF rendering library

Retrieved 2013-02-24: http://poppler.freedesktop.org/

[11] Xpdf, an open source viewer for Portable Document Format (PDF) files.

Retrieved 2013-02-24: http://www.foolabs.com/xpdf/

[12]M. Ruffolo and E. Oro. PDF-TREX dataset

Retrieved 2013-02-24: http:/staff.icar.cnr.it/ruffolo/files/PDF-TREX-Dataset.zip

[13] Website: http://www.tamirhassan.com/ (last-retrieved: 13-03-2013)


http://www.tamirhassan.com/
http://staff.icar.cnr.it/ruffolo/files/PDF-TREX-Dataset.zip
http://www.foolabs.com/xpdf/
http://poppler.freedesktop.org/
http://www.iso.org/iso/home/news_index/news_archive/news.htm?refid=Ref1525
http://www.iso.org/iso/home/news_index/news_archive/news.htm?refid=Ref1525
http://www.adobe.com/pdf/pdfs/ISO32000-1PublicPatentLicense.pdf
http://www.theinquirer.net/gb/inquirer/news/2007/12/05/pdf-approved-iso-32000
http://www.theinquirer.net/gb/inquirer/news/2007/12/05/pdf-approved-iso-32000
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=51502
http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

64

[14]M. Gobel, T. Hassan, E. Oro, G. Orsi. 4 Methodology for Evaluating Algorithms for Table Understand-
ing in PDF Documents. DocEng, 2012.
Retrieved 2013-02-24: http://www.orsigiorgio.net/wp-content/papercite-data/pdf/gho*12.pdf

[15]M. Hurst. A constraint-based approach to table structure derivation. In Proc. of International
Conference on Document Analysis and Recognition, pages 911-915, 2003.

[16] A. C. e Silva. Metrics for evaluating performance in document analysis: application to tables.
International Journal on Document Analysis and Recognition, 14(1):101-109, 2011.

[17]M. Ruffolo and E. Oro. PDF-TREX: An approach for recognizing and extracting tables from PDF
documents. In Proc. Of ICDAR 2009, pages 906-910, 2009.

[18]T. Hassan. Towards a Common Evaluation Strategy for Table Structure Recognition Algorithms,
DocEng2010, September 21-24, 2010.

[19]B. Yildiz. Information Extraction — Utilizing Table Patterns. Master's thesis, Vienna University of
Technology, 2004.

[20]B. Yildiz, K. Kaiser, and S. Miksch. pdf2table: A method to extract table information from PDF files. In
Proc. of Indian Intl. Conf. on AI 2005, pages 1773—-1785, 2005.

[21]Pdf2Table website: http://ieg.ifs.tuwien.ac.at/projects/pdf2table/ (last-retrieved: 21-03-2013)



http://ieg.ifs.tuwien.ac.at/projects/pdf2table/
http://www.orsigiorgio.net/wp-content/papercite-data/pdf/gho*12.pdf

APPENDIX A - STRUCTURE RECOGNITION
RESULTS - EU-DATA SET

EU-data set results

PDF document:

'eu-001.pdf"

PRECISION: 495/ 495 = 1.0000 100.00%
RECALL: 495/ 495 = 1.0000 100.00%
PDF document: 'eu-002.pdf'
PRECISION: 140/ 143 = 0.9583 97.90%
RECALL: 140/ 146 = 0.9231 95.89%
PDF document: 'eu-003.pdf'
PRECISION: 295/ 295 = 1.0000 100.00%
RECALL: 295/ 295 = 1.0000 100.00%
PDF document: 'eu-004.pdf'
PRECISION: 146/ 146 = 1.0000 100.00%
RECALL: 146/ 146 = 1.0000 100.00%
PDF document: 'eu-005.pdf’
PRECISION: 497/ 499 = 0.9697 99.60%
RECALL: 497/ 499 = 0.9697 99.60%
PDF document: 'eu-006.pdf"'
PRECISION: 34/ 34 = 1.0000 100.00%
RECALL: 34/ 37 = 0.9189 91.89%
PDF document: 'eu-007.pdf'
PRECISION: 292/ 296 = 0.9841 98.65%
RECALL: 292/ 296 = 0.9841 98.65%
PDF document: 'eu-008.pdf'
PRECISION: 67/ 67 = 1.0000 100.00%
RECALL: 67/ 67 = 1.0000 100.00%
PDF document: 'eu-009.pdf'
PRECISION: 78/ 78 = 1.0000 100.00%
RECALL: 78/ 84 = 0.9286 92.86%
PDF document: 'eu-010.pdf'
PRECISION: 45/ 45 = 1.0000 100.00%
RECALL: 45/ 45 = 1.0000 100.00%
PDF document: 'eu-011l.pdf'
PRECISION: 380/ 380 = 1.0000 100.00%
RECALL: 380/ 380 = 1.0000 100.00%
PDF document: 'eu-012.pdf'
PRECISION: 204/ 206 = 0.9903 99.03%
RECALL: 204/ 206 = 0.9903 99.03%
PDF document: 'eu-013.pdf'
PRECISION: 273/ 273 = 1.0000 100.00%
RECALL: 273/ 273 = 1.0000 100.00%
PDF document: 'eu-014.pdf'
PRECISION: 127/ 131 = 0.9695 96.95%
RECALL: 127/ 129 = 0.9845 98.45%
PDF document: 'eu-015.pdf'
PRECISION: 160/ 164 = 0.9836 97.56%
RECALL: 160/ 166 = 0.9758 96.39%
PDF document: 'eu-016.pdf"'
PRECISION: 70/ 70 = 1.0000 100.00%
RECALL: 70/ 70 = 1.0000 100.00%



PDF document:

'eu-017.pdf’

PRECISION: 513/ 513 = 1.0000

RECALL:
PDF document:

513/ 513 = 1.0000

'eu-018.pdf"

PRECISION: 297/ 299 = 0.9933

RECALL:
PDF document:

297/ 299 = 0.9933

'eu-019.pdf"

PRECISION: 101/ 103 = 0.9806

RECALL:
PDF document:

101/ 103 = 0.9806

'eu-020.pdf"

PRECISION: 1148/1148 = 1.0000

RECALL:
PDF document:

1148/1148 = 1.0000

'eu-021.pdf"

PRECISION: 329/ 421 = 0.7765

RECALL:
PDF document:

329/ 346 = 0.9219

'eu-022.pdf’

PRECISION: 109/ 134 = 0.8786

RECALL:
PDF document:

109/ 139 = 0.8611

'eu-023.pdf"

PRECISION: 534/ 539 = 0.9907

RECALL:
PDF document:

534/ 539 = 0.9907

'eu-024.pdf"'

PRECISION: 138/ 138 = 1.0000

RECALL:
PDF document:
PRECISION:
RECALL:

PDF document:
PRECISION:
RECALL:

PDF document:

138/ 138 = 1.0000

'eu-025.pdf’

74/ 74 = 1.0000
74/ 74 = 1.0000

'eu-026.pdf"

25/ 25 = 1.0000
25/ 25 = 1.0000

'eu-027.pdf"’

PRECISION: 134/ 134 = 1.0000

RECALL:
PDF document:

134/ 134 = 1.0000

'eu-028.pdf"

PRECISION: 328/ 328 = 1.0000

RECALL:
PDF document:

328/ 328 = 1.0000

'eu-029.pdf"

PRECISION: 648/ 794 = 0.8156

RECALL:
PDF document:

648/ 803 = 0.8068

'eu-030.pdf’

PRECISION: 1068/1181 = 0.9041

RECALL:
PDF document:

1068/1198 = 0.8907

'eu-031.pdf"

PRECISION: 499/ 569 = 0.8770

RECALL:
PDF document:

499/ 566 = 0.8816

'eu-032.pdf"’

PRECISION: 370/ 459 = 0.8075

RECALL:
PDF document:

370/ 465 = 0.7839

'eu-033.pdf’

PRECISION: 112/ 112 = 1.0000

RECALL:
PDF document:
PRECISION:
RECALL:

112/ 112 = 1.0000

'eu-034.pdf"

22/ 22 = 1.0000
22/ 22 = 1.0000

Processed 34 files

PRECISION AVG:

RECALL AVG:

F-SCORE: 0.965661

0.967042
0.964284

(96.57%)

100.00
100.00

98.0
98.06

100.0
100.00

78.15
95.09

81.
8.

99.07
99.07

100.00
100.00

100.00
100.00

100.0
100.00

100.00
100.00

100.0
100.00

81.6
80.

90.
89.15

87.
88.16

80.
79.57

100.0
100.00

100.0
100.00

o

o

.33%
99.

33%

o

o°

o
o

o° ol

oo

oe°

w
i
o

42%

oe

o°

oo

oe

oe°

o

o
oo o0 oo

o°

o

oe°

(9752/10315 relations,
(9752/10286 relations,

in 59 tables in 34 files)
in 59 tables in 34 files)

66



APPENDIX B - STRUCTURE RECOGNITION
RESULTS - US-DATA SET

US-data set results

PDF document: 'us-001.pdf'
PRECISION: 142/ 146 = 0.9726 97.26%
RECALL: 142/ 142 = 1.0000 100.00%
PDF document: 'us-002.pdf'
PRECISION: 148/ 148 = 1.0000 100.00%
RECALL: 148/ 148 = 1.0000 100.00%
PDF document: 'us-003.pdf’
PRECISION: 59/ 59 = 1.0000 100.00%
RECALL: 59/ 59 = 1.0000 100.00%
PDF document: 'us-004.pdf'
PRECISION: 95/ 95 = 1.0000 100.00%
RECALL: 95/ 95 = 1.0000 100.00%
PDF document: 'us-005.pdf"
PRECISION: 198/ 203 = 0.9811 97.54%
RECALL: 198/ 203 = 0.9811 97.54%
PDF document: 'us-006.pdf"'
PRECISION: 67/ 113 = 0.5929 59.29%
RECALL: 67/ 94 = 0.7128 71.28%
PDF document: 'us-007.pdf’'
PRECISION: 46/ 52 = 0.8846 88.46%
RECALL: 46/ 50 = 0.9200 92.00%
PDF document: 'us-008.pdf"'
PRECISION: 68/ 85 = 0.8000 80.00%
RECALL: 68/ 77 = 0.8831 88.31%
PDF document: 'us-009.pdf'
PRECISION: 17/ 17 = 1.0000 100.00%
RECALL: 17/ 17 = 1.0000 100.00%
PDF document: 'us-010.pdf'
PRECISION: 9/ 11 = 0.8182 81.82%
RECALL: 9/ 22 = 0.4091 40.91%
PDF document: 'us-011l.pdf'
PRECISION: 27/ 27 = 1.0000 100.00%
RECALL: 27/ 27 = 1.0000 100.00%
PDF document: 'us-012.pdf'
PRECISION: 149/ 213 = 0.8090 69.95%
RECALL: 149/ 208 = 0.7412 71.63%
PDF document: 'us-013.pdf"
PRECISION: 149/ 149 = 1.0000 100.00%
RECALL: 149/ 149 = 1.0000 100.00%
PDF document: 'us-014.pdf'
PRECISION: 174/ 193 = 0.9016 90.16%
RECALL: 174/ 189 = 0.9206 92.06%
PDF document: 'us-015.pdf’
PRECISION: 170/ 341 = 0.4985 49.85%
RECALL: 170/ 187 = 0.9091 90.91%
PDF document: 'us-016.pdf"'
PRECISION: 85/ 123 = 0.6911 69.11%
RECALL: 85/ 104 = 0.8173 81.73%

PDF document:

'us-017.pdf"’



relations,

PRECISION: 47/ 47 = 1.0000 100.00%
RECALL: 47/ 47 = 1.0000 100.00%
PDF document: 'us-018.pdf'

PRECISION: 40/ 40 = 1.0000 100.00%
RECALL: 40/ 40 = 1.0000 100.00%
PDF document: 'us-019.pdf'

PRECISION: 112/ 183 = 0.5948 61.20%
RECALL: 112/ 176 = 0.6150 63.64%
PDF document: 'us-020.pdf"

PRECISION: 123/ 223 = 0.5441 55.16%
RECALL: 123/ 213 = 0.5677 57.75%
PDF document: 'us-021.pdf'

PRECISION: 125/ 135 = 0.9259 92.59%
RECALL: 125/ 125 = 1.0000 100.00%
PDF document: 'us-022.pdf'

PRECISION: 173/ 173 = 1.0000 100.00%
RECALL: 173/ 173 = 1.0000 100.00%
PDF document: 'us-023.pdf'

PRECISION: 37/ 37 = 1.0000 100.00%
RECALL: 37/ 37 = 1.0000 100.00%
PDF document: 'us-024.pdf'

PRECISION: 28/ 30 = 0.9333 93.33%
RECALL: 28/ 29 = 0.9655 96.55%
PDF document: 'us-025.pdf"

PRECISION: 70/ 110 = 0.6364 63.64%
RECALL: 70/ 174 = 0.4023 40.23%
Processed 25 files

PRECISION AVG: 0.863361 (2358/2953
RECALL AVG: 0.873792 (2358/2785

F-SCORE: 0.868545

(86.85%)

relations,

in 33 tables in 25 files)
in 34 tables in 25 files)

68



APPENDIX C — TABLE DETECTION RESULTS -

EU-DATA SET

PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

'eu-001
1/1 =1
0/1 =0
'eu-002
2/3 =0
0/2 =0
'eu-003
5/6 =0
1/5 =0
'eu-004
1/1 =1
1/1 =1
'eu-005
2/2 =1
2/3 =0
'eu-006
1/1 =1
1/1 =1
'eu-007
3/3 =1
1/3 =0
'eu-008
1/1 =1
1/1 =1
'eu-009
1/1 =1
0/1 =0
'eu-010
1/3 =0
1/1 =1
'eu-011
3/3 =1
3/3 =1
'eu-012
2/4 =0
0/2 =0
'eu-013
1/2 =0
1/1 =1
'eu-014
1/1 =1
1/1 =1
'eu-015
2/2 =1
2/2 =1
'eu-016
0/0 =0
0/1 =0
'eu-017

.pdf!
.0000
.0000
.pdf’!
.6667
.0000
.pdf!
.8333
.2000
.pdf’
.0000
.0000
.pdf’
.0000
.6667
.pdf!
.0000
.0000
.pdf’
.0000
.3333
.pdf!
.0000
.0000
.pdf!
.0000
.0000
.pdf’!
.3333
.0000
.pdf!
.0000
.0000
.pdf’
.5000
.0000
.pdf’
.5000
.0000
.pdf!
.0000
.0000
.pdf’
.0000
.0000
.pdf!
.0000
.0000
.pdf!
.5000

100.00

100.0
100.00

100.0
66.67

100.0
100.00

100.
33.

100.00
100.00

100.00

33.

100.

100.00
100.00

50.0
100.00

100.00
100.00

100.00
100.00

o° o

o

o

00%

o°

o°

o

oo

00%

o

oe

o

o

o° o

o

o

oe°

oe°

null

0.

50.

00%

00%

69



COMPLETENESS: 2/2 = 1.0000 100.00%
PDF document: 'eu-018.pdf'

PURITY: 1/1 = 1.0000 100.00%
COMPLETENESS: 1/1 = 1.0000 100.00%
PDF document: 'eu-019.pdf'

PURITY: 1/2 = 0.5000 50.00%

COMPLETENESS: 0/1 = 0.0000
PDF document: 'eu-020.pdf'

oe°

PURITY: 1/1 = 1.0000 100.00%
COMPLETENESS: 0/1 = 0.0000 0.00%
PDF document: 'eu-021.pdf'
PURITY: 5/5 = 1.0000 100.00%
COMPLETENESS: 5/5 = 1.0000 100.00%
PDF document: 'eu-022.pdf'
PURITY: 1/1 = 1.0000 100.00%
COMPLETENESS: 1/2 = 0.5000 50.00%
PDF document: 'eu-023.pdf'
PURITY: 1/3 = 0.3333 33.33%
COMPLETENESS: 0/1 = 0.0000 0.00%
PDF document: 'eu-024.pdf'
PURITY: 2/7 = 0.2857 28.57%
COMPLETENESS: 2/2 = 1.0000 100.00%
PDF document: 'eu-025.pdf"
PURITY: 1/5 = 0.2000 20.00%
COMPLETENESS: 1/1 = 1.0000 100.00%
PDF document: 'eu-026.pdf'
PURITY: 1/4 = 0.2500 25.00%
COMPLETENESS: 0/1 = 0.0000 0.00%
PDF document: 'eu-027.pdf'
PURITY: 1/3 = 0.3333 33.33%
COMPLETENESS: 1/1 = 1.0000 100.00%
PDF document: 'eu-028.pdf'
PURITY: 2/2 = 1.0000 100.00%
COMPLETENESS: 0/2 = 0.0000 0.00%
PDF document: 'eu-029.pdf'
PURITY: 2/2 = 1.0000 100.00%
COMPLETENESS: 0/3 = 0.0000 0.00%
PDF document: 'eu-030.pdf'
PURITY: 2/3 = 0.6667 66.67%
COMPLETENESS: 0/2 = 0.0000 0.00%
PDF document: 'eu-031.pdf'
PURITY: 1/1 = 1.0000 100.00%
COMPLETENESS: 0/1 = 0.0000 0.00%
PDF document: 'eu-032.pdf'
PURITY: 2/2 = 1.0000 100.00%
COMPLETENESS: 0/2 = 0.0000 0.00%
PDF document: 'eu-033.pdf'
PURITY: 1/1 = 1.0000 100.00%
COMPLETENESS: 1/1 = 1.0000 100.00%
PDF document: 'eu-034.pdf'
PURITY: 0/0 = 0.0000 null
COMPLETENESS: 0/1 = 0.0000 0.00%

Processed 34 files

COMPLETENESS AVG: 0.491176 (29/59 tables, in 34 files)
PURITY AVG: 0.778199 (54/81 tables, in 32 files)

CPF: 0.602238 (60.22%)



APPENDIX D — TABLE DETECTION RESULTS -

US-DATA SET

PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS:
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

COMPLETENESS :
PDF document:

PURITY:

'us-001
1/1 = 1.
1/1 = 1.
'us-002
1/1 = 1.
1/1 = 1.
'us-003
1/1 = 1.
0/2 = 0.
'us-004
1/1 = 1.
1/1 = 1.
'us-005.
2/3 = 0.
1/2 = 0.
'us-006.
1/2 =0
0/1 =0
'us-007
0/0 =0
0/2 = 0.
'us-008
0/2 = 0.
1/1 = 1.
'us-009.
1/2 = 0.
1/1 = 1.
'us-010
1/4 = 0.
0/1 = 0.
'us-011
1/1 =1
1/1 = 1.
'us-012
1/3 =0
2/4 = 0.
'us-013.
1/1 = 1.
1/1 = 1.
'us-014
1/1 = 1.
1/1 = 1.
'us-015.
1/1 = 1.
1/1 = 1.
'us-016.
1/1 = 1.
1/1 = 1.
'us-017

.pdf"

0000
0000

.pdf’!

0000
0000

.pdf’

0000
0000

.pdf’

0000
0000
pdf’
6667
5000
pdf!’

.5000
.0000
.pdf’
.0000

0000

.pdf"

0000
0000
pdf'
5000
0000

.pdf’!

2500
0000

.pdf’
.0000

0000

.pdf’
.3333

5000
pdf’
0000
0000

.pdf"

0000
0000
pdf’
0000
0000
pdf!’
0000
0000

.pdf"
1/2 = 0.

5000

100.00%
100.00%

100.00%
100.00%

100.00%

100.00%

100.00%

66.67%
50.00

oe°

(e}
o\

null
0.00%

o o

100.00

50.00
100.00

o

oo

100.00
100.00

o

oe

33.3
50.00%

o

100.00
100.00

oo

o

100.00
100.00

o

o

100.00
100.00

oe°

oe°

100.0
100.00

o°

o°

50.00%

71



COMPLETENESS:
PDF document:
PURITY:
COMPLETENESS:
PDF document:
PURITY:
COMPLETENESS :
PDF document:
PURITY:
COMPLETENESS :
PDF document:
PURITY:
COMPLETENESS :
PDF document:
PURITY:
COMPLETENESS:
PDF document:
PURITY:
COMPLETENESS :
PDF document:
PURITY:
COMPLETENESS :
PDF document:
PURITY:
COMPLETENESS:

Processed 25

COMPLETENESS AVG:

PURITY AVG:

CPF: 0.686198

1/1 = 1.0000
'us-018.pdf"
1/1 = 1.0000
1/1 = 1.0000
'us-019.pdf"
2/4 = 0.5000
0/2 = 0.0000
'us-020.pdf"'
2/3 = 0.6667
0/2 = 0.0000
'us-021.pdf"'
1/1 = 1.0000
1/1 = 1.0000
'us-022.pdf"
1/2 = 0.5000
2/2 = 1.0000
'us-023.pdf"
1/1 = 1.0000
1/1 = 1.0000
'us-024.pdf"
1/3 = 0.3333
0/1 = 0.0000
'us-025.pdf"’
1/1 = 1.0000
0/1 = 0.0000
files
0.640000
0.739583

(68.62%)

100.00%

100.0
100.00

o

o

o° o

100.00
100.00

o

oo

50.00
100.00

oe°

oe°

100.00
100.00

o

oe

100.00

oo

(19/34 tables, in 25 files)
(26/43 tables, in 24 files)

72



