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Tables are an intuitive and universally used way of presenting large sets of experimental
results  and research  findings, and as such,  they are the majority source  of significant
data  in scientific publications.  As no universal standardization exists for the format of
the reported data and the table layouts, two highly flexible algorithms are created to (i)
detect tables  within  documents and to (ii) recognize table column and row structures.
These algorithms enable completely automated extraction of tabular  data from  PDF
documents. 

PDF was chosen as the preferred target format for data extraction because of its pop-
ularity and the availability of research publications as natively digital PDF documents,
almost without exceptions. The extracted data is made available in HTML and XML for-
mats. These two formats were chosen because of their flexibility and ease of use for fur-
ther processing.

The software application that was created as a part of this thesis work enables future
research to take full advantage of existing research and results, by enabling gathering of
large volumes of data from various sources for a more profound statistical analysis.
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Lähes poikkeuksetta kaikki nykyisin tehtävä tutkimustyö julkaistaan verkossa, ja yhä
enenevässä  määrin  ”open  access”-journaaleissa.  Saatavilla  olevan  tutkimusdatan
räjähdysmäinen  kasvu  on  johtanut  monilla  aloilla  tilanteeseen,  jossa  sen  käsittely
manuaalisesti  on  erittäin  työlästä,  ellei  jopa  mahdotonta.  Jotta  tulevaisuuden
tutkimustyö  voisi  hyödyllisellä  tavalla  rakentua  jo  olemassa  olevan  tiedon  päälle,
tarvitaan siis automaattisia menetelmiä datan keräämiseen ja käsittelyyn.

Taulukot ovat intuitiivinen ja selkeä tapa esitellä pientä suurempia määriä tilastoja,
tutkimustuloksia  ja  muita  löydöksia.  Suuri  osa  tieteellisten  julkaisujen  tärkeistä
tuloksista  julkaistaankin juuri  taulukkomuodossa.  Mitään standardisointia taulukoillle
eri julkaisijoiden välillä ei kuitenkaan ole, ja taulukot esiintyvät julkaisuissa hyvinkin
monimuotoisina, hyvin vaihtelevilla rakenteilla ja ykstyiskohdilla.

Näitä ongelmia varten tämän diplomityön yhteydessä on kehitetty kaksi täysin uutta,
joustavaa  algoritmia  taulukkomuotoisen  datan  talteenottamiseen  ja  prosessoimiseen
tietokoneiden  paremmin  ymmärtämään  muotoon  (HTML,  XML).  Ensimmäisen
algoritmin  tehtävä  on  taulukoiden  paikantaminen  PDF (Adoben  Portable  Document
Format) dokumenttien sivuilta. Toinen algoritmi jäsentelee taulukoiden tietoalkiot data-
ja  otsikkoriveihin,  ja  määrittelee  niiden  rivi-  ja  sarakerakenteen.  Nämä kehitetyt
algoritmit mahdollistavat täysin automaattisen taulukoiden talteenoton ja jatkokäsittelyn
PDF-dokumenteista.  PDF-dokumentit  valittiin  kohdemediaksi,  niiden  yleisyyden  ja
tieteellisten  julkaisujen  saatavuuden  perusteella,  natiivisti  digitaalisina  PDF-
dokumentteina.

Tämä  opinnäytetyö  ja  sen  myötä  kehitetyt  algoritmit  ovat  etupäässä  suunnattu
bioinformatiikan  ja  bioteknologian  käyttötarkoituksiin,  toimimaan  osana  ”big  data”-
tyylistä tutmustyötä, jossa suuresta määrästä olemassa olevaa tutkimusdataa tiivistetään
muuten piiloon jääviä korrelaatioita ja muita olennaisia havaintoa. Mikään ei kuitenkaan
rajoita algoritmien käyttöä juuri tällaisiin tarkoituksiin.
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TERMS AND DEFINITIONS

Words and abbreviations appearing with an italicized font within this document are ex-
plained in the following table.

API “Application  Programming  Interface  is  a  protocol
intended  to  be  used  as  an  interface  by  software
components  to  communicate  with  each  other.”,
Wikipedia.

ASCII “The  American  Standard  Code  for  Information
Interchange is a character-encoding scheme originally
based on the English alphabet.”, Wikipedia.

C++ “The C++ programming language is a statically typed,
free-form, multi-paradigm, compiled, general-purpose
programming language.”, Wikipedia.

CPU “Central  Processing  Unit  is  the  hardware  within  a
computer  that  carries  out  the  instructions  of  a
computer  program  by  performing  the  basic
arithmetical, logical, and input/output operations of the
system.”, Wikipedia.

Flash “Adobe Flash (formerly called "Macromedia Flash") is
a multimedia and software platform used for authoring
of vector graphics, animation and games which can be
viewed, played and executed in Adobe Flash Player.”,
Wikipedia.

GPL “The GNU General Public License is the most widely
used free software license, which guarantees end users
(individuals,  organizations,  companies)  the  freedoms
to use, study, share (copy), and modify the software.
Software that ensures that these rights are retained is
called free software.”, Wikipedia.

GUI “A Graphical User Interface is a type of user interface
that  allows  users  to  interact  with  electronic  devices
using images rather than text commands.”, Wikipedia.

HTML “HyperText  Markup  Language  is  the  main  markup
language for creating web pages and other information
that can be displayed in a web browser.”, Wikipedia.

OCR “Optical  character  recognition  is  the  mechanical  or
electronic  conversion  of  scanned  images  of
handwritten, typewritten or printed text into machine-

http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Html
http://en.wikipedia.org/wiki/Gui
http://en.wikipedia.org/wiki/Gpl
http://en.wikipedia.org/wiki/Adobe_Flash
http://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/C++
http://en.wikipedia.org/wiki/ASCII
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encoded text.”, Wikipedia.

PDF Portable  Document  Format  (Adobe)  is  a  digital  file
format  with  small  file  size,  system  independent
representation,  portability  and  printability  as  its  key
features.

Proto-link Proto-links  describe  the  adjacency  relationships  of
cells in a table.

Python “Python is a programming language that lets you work
more  quickly  and  integrate  your  systems  more
effectively.”, source: http://www.python.org/

Qt “Qt  is  a  full  development  framework  with  tools
designed to streamline the creation of applications and
user  interfaces  for  desktop,  embedded  and  mobile
platforms.”, source: http://qt.digia.com/Product/

Unicode “Unicode  is  a  computing  industry  standard  for  the
consistent  encoding,  representation  and  handling  of
text expressed in most of the world's writing systems.”,
Wikipedia.

XML “Extensible  Markup Language is  a markup language
that defines a set of rules for encoding documents in a
format  that  is  both  human-readable  and  machine-
readable”, Wikipedia.

XSL “Extensible Stylesheet Language is used to refer to a
family of languages used to transform and render XML
documents.”, Wikipedia.

http://en.wikipedia.org/wiki/Xsl
http://en.wikipedia.org/wiki/Xml
http://en.wikipedia.org/wiki/Unicode
http://qt.digia.com/Product/
http://www.python.org/
http://en.wikipedia.org/wiki/Optical_character_recognition
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1 INTRODUCTION

Most, if not all contemporary scientific publishing is made available, and distributed on-
line.  The ubiquitousness of the Internet and the increasing popularity of open access
publishing are making an increasing amount of publications easily accessible to a global
audience. Our ever expanding collective knowledge and the rapidly increasing amounts
of available data in just about any field of study are making manual gathering and pro-
cessing of such reported data an inefficient and laborious task; if not altogether impossi-
ble. Therefore, in order for future research to be able to build adequately on top of exist-
ing results and data,  as well as being able to interpret the existing data correctly and
more profoundly, a system for automatic extraction and processing of data is needed. 

Regardless of the scientific discipline, results of studies and experiments are often re-
ported in  a  tabular format. Tables are an intuitive and efficient way of reporting large
sets of data.  However,  while  tabular representation of data is universally  used in  all
types of publications, no standardization of any kind exists in the way data is presented
between publications of  different publishers or organizations, or in some cases, even
within  the publications of a  single publisher. A software tool for extracting such data
will therefore need to be highly adaptable to be able to correctly extract data from an
eclectic corpora of different types of tables.

The main focus of this work is to develop a practical software tool for easy and auto-
matic extraction of relevant data from large volumes of PDF (Portable Document For-
mat, by Adobe) documents. PDF was chosen as the preferred target format for data ex-
traction, because of its popularity and the availability of publications as natively digital
PDF documents, almost without exceptions. In addition, the release of the patent rights
on the  PDF standard in  2008,  has made the  PDF format  even more supported and
widely accessible.

The biomedical domain currently offers the most exciting aspects for “big data” re-
search. The current and massive influx of genetic data has created a demand for systems
that are able to combine and process the available information from a variety of sources,
into a more meaningful ensemble. This thesis work is intended to be a part of a larger
system, capable of processing large volumes of published data, but in no way limited to
such use. 

However, for large enough number of documents, such a method can never achieve
perfect results. Therefore, it would be paramount to push publishers to make it a manda-
tory requirement for their publications' authors to include their relevant experimental
data and research findings in a more computer and algorithm friendly way. This could
easily be accomplished by including  hidden metadata objects in the  PDF documents
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(e.g. in  XML,  “Extensible  Markup Language”, format). Such features are  already well
supported by the PDF standard.

The technical background for this thesis is presented in Chapter 2. The problems that
need to be solved to create an automated table data extraction system are presented in
Chapter 3, while Chapter 4  addresses the methods that have been used to solve them.
Chapter 5 focuses on evaluating the performance of the used methods. Chapter 6 takes a
look at existing similar systems and compares them to the algorithms developed as a
part of this thesis. The final chapter (Chapter 7) discusses the overall achieved results.
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2 BACKGROUND

Tabular data extraction falls under a data processing category known as Information Ex-
traction (IE). “Information Extraction is a form of natural language processing in which
certain types of information must be recognized and extracted from text”  [1]. An Infor-
mation Extraction System (IES), such as the one proposed in this thesis work, analyzes
the input text in order to extract relevant portions. IESs do not attempt to understand the
meaning of the text, but they only analyze portions of input text that contain relevant in-
formation [2].

There are  roughly  two main approaches  to building IE systems: a rule-based ap-
proach, and an active  learning approach. Both have significant advantages and disad-
vantages. This thesis employs a rule-based approach, with some learning-based parame-
ter adjustments. The rule-based approach of the algorithm is rooted in the rules of writ-
ten language, in all the so-called western languages,  such as left-to-right and up-down
direction of writing.

In addition to the rules of the written languages, the only usable universal guideline
is, that all tables are meant to be read by humans.  Considering this rudimentary princi-
ple, two general rules for the arrangement of the elements that a table contains can be
established:

1. Alignment of rows, and
2. Alignment of columns.

There always exists a visual way for determining which elements within a table are
associated with each other. Without any association between the elements of a table, it
would simply be a list. Whether the elements are separated from each other by separator
lines, drawn rectangles, or just by spacing, there always exists a visual pattern to the
placement of the table elements, because otherwise, it would be impossible even for hu-
mans to interpret the presented data.

There are generally two different types of  PDF documents: natively digital  docu-
ments and scanned paper documents. The natively digital documents differ from  the
scanned paper documents in a few important ways. Scanned documents have their con-
tents drawn as images, while natively digital documents specify regions and text that is
drawn using fonts. To be able to process scanned documents in a useful way, the image
would first need to be processed using an optical character recognition (OCR) algorithm
to discover the written text in the image. Other issues with scanned documents include
poor quality images and tilted page orientation, which is the result when a scanned pa-
per is not placed completely straight on the scanning bed. These issues make processing
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scanned documents a very different task from processing natively digital documents,
and therefore, processing scanned PDF documents is left outside the scope of this thesis
work.

2.1 Table anatomy

One of the more well-known conceptual models of a table has been proposed by Wang
[3], and later extended by Hurst [4]. Wang defines the table being divided into four main
regions: (i) the stub that contains the row- and subheaders; (ii) the boxhead that contains
the  column headers  (excluding  the  stub  head);  (iii)  the  stub  head that  contains  the
header for the stub, and (iv)  the body that contains the actual data of the table.  In this
thesis, Wang's definitions have been adapted slightly, so that the stub head is considered
being included in the stub.

It is worth mentioning that, of course, not every table has all  of  the  four regions
present in it. For example, for a good percentage of tables, the stub and row headers do
not exist at all, and the column headers are not “boxed”. In addition to these definitions,
this thesis work uses the table definitions:  header,  column, row,  title,  caption, super-
header, nested header, subheader, block, cell and element. Figure 1 illustrates the defini-
tions. 

Figure 1: Table anatomy, terms and definitions of table elements.
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An element is defined as a single word or a number on a PDF page. The difference
between an element and a cell in a table, is that a cell can contain multiple elements.
This is the case in many tables where multiple words (elements) form a sentence inside
the table body or header, and the whole sentence is assigned with the same column and
row indices, becoming a single table cell.  A block consists of multiple cells.

While the title and the caption may not be considered to be a part of the actual table,
they are included in the definitions and the extraction process, because they often con-
tain important information about the contents of the table, and therefore should be ex-
tracted  and associated  with the table, especially when further functional or semantical
processing of the data is required.

A superheader is a column header that is associated with multiple columns and has
other column headers under it  (typically nested headers, each associated with a single
column). A subheader is a cell in a table that usually exists on a row that contains no ta-
ble body elements, and it is associated with all the stub elements below it,  or until the
next subheader  below is found.  Only in tables where the stub contains more than one
column, the subheaders may exist on body data containing rows.

The left-to-right style of writing used by all western languages, is guarantee enough
that the stub can be trusted to be located at the left end of the table, in Column 1. There
are of course exceptions, but the percentage of such tables, where the stub columns are
not at the left end of the table is negligible. Slightly more commonly, a duplicate of the
stub can exist in the middle of, or at the rightmost column of a table.

2.2 Portable Document Format (PDF)

The portable document format (PDF) is a file format developed by Adobe Systems in
the early 1990s. The main purpose, or idea of the PDF file format is the ability to repre-
sent printable documents in a manner that is independent of software, hardware, and op-
erating systems [5]. In other words, a PDF document should look, read and print exactly
the same no matter what system it is used with. The PDF specification was made avail-
able free of charge in 1993, but it remained a proprietary format, until it was officially
released as an open standard in 2008 (ISO 32000-1:2008) [6][7], when Abode published
a Public Patent License to ISO 32000-1.  This license grants royalty-free rights for all
patents owned by Adobe that are necessary to make, use, sell and distribute PDF com-
pliant implementations [8]. In addition to these features,  PDFs offer a good compres-
sion ratio, reducing file size and making the format ideal for online distribution.  The
Adobe PDF logo in shown in Figure 2.
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 Figure 2: The Adobe PDF logo is recognizable to many because of the popularity of
the PDF file format.*

Because of these qualifications and attributes, the  PDF format has emerged as one
of, if not the most widely used “digital paper” of today, and as such, a preferred method
of online distribution of scientific publications for many publishers. 

The basic types of content in a  PDF are: text, vector graphics and raster graphics.
The format, however, supports a wide variety of other types of content, such as interac-
tive forms, audio, video, 3D artwork, and even  Flash applications (PDF-1.7). For the
purposes of table data extraction, only the text content and visual clues such as separator
lines are relevant.

 It is important to mention that the  PDF document format also supports metadata
streams  by  using  the  Extensible  Metadata  Platform  (XMP)  [9]  to  add  XML stan-
dards-based  extensible  metadata  to  PDF documents.  Using  embedded  metadata,  it
would be possible to include all reported data in a publication in a way that is easily
sorted, categorized and understood by computers. If such a practice would be enforced
or even encouraged by publishers, extracting and mining relevant data from large sets of
publications would become much easier and less error prone.

2.3 Poppler PDF rendering library

The Poppler  PDF rendering library [10] is  a  xpdf-3.0 [11]  based  C++ open source
project  (under GNU General Public License), that is freely available online. The Pop-
pler library provides  a convenient way of reading and handling the  PDF format and
files, giving easy access through an API to the text in the PDF document, as well as ren-
dered (image format) versions of its individual pages. 

Poppler is still a young and ongoing project, with the latest release being version
0.22 (released on 2013-02-10). Current relevant limitations of the library API include:
no proper font information is available (font family, size),  no text formatting informa-
tion is available (bolded,  italic)  and some problems with character encodings (some
special characters have wrong numerical code values).

* Image source: Wikimedia commons.
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The software tool that is developed as a part of this thesis project does not handle the
PDF files, and the PDF standard directly, but all reading and interpreting of the contents
of a PDF is done through the Poppler PDF rendering library.

2.4 Project goals

The goal of this thesis project is to create a useful software tool that is freely available
online to anyone interested in data extraction from PDF documents. While the focus of
the project is in scientific publishing, the usability of the created software application is
in no way limited to  any one type of publications.  The developed software tool is in-
tended for use with natively digital  PDF documents, written in western style, left-to
right languages. 

The application will be created in a way that allows standalone usage of the program
directly with PDF documents, as well as using it as a part of other software tools and
projects through an API. The output of the created software application is designed so
that it allows further automatic processing of the extracted data, and conversions be-
tween different digital formats.

All the source code of this thesis project will be made available online and it will be
released under the GNU General Public License (GPL), version 3*. 

*http://www.gnu.org/licenses/gpl.html  

http://www.gnu.org/licenses/gpl.html
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3 DATA EXTRACTION

The data  extraction process begins with defining the information the algorithms are
working with. The Poppler  PDF rendering library (Chapter  2.3) handles the  PDF file
format, and the data extraction algorithms of this thesis process only information inter-
preted and channeled through the Poppler library. 

The available data is not as detailed as one would imagine. For instance, no informa-
tion about the used font or the style of the font (such as bold or italics) is available. Nei-
ther is any information about the super- or subscript status of a word. 

The text in the  PDF document is received for each individual page in the form of
rectangular areas containing a single word of text called an (text) element. Each rectan-
gular element area (text box) is defined by coordinates, giving it a precise, unambiguous
location and size (width and height) on the page. The sides of the text boxes are always
aligned with the sides of the pages, i.e. there are no tilted or skewed rectangles. Figure 3
illustrates how the textual elements are available through the Poppler API.

 

Figure 3: The textual data in PDF documents is available as text boxes (grey areas)
with defined text content, location and size through the Poppler PDF rendering library.
The text boxes have no defined associations; further processing is needed to establish

which text boxes form sentences or tables together.

Each word in a PDF document is separated into a text box, and there exists no infor-
mation on which words together are intended to form sentences or table rows and col-
umns together, or which sentences would continue on the next line of text. Associating
words and forming sentences (and table cells) has to be done by the data extraction al-
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gorithms, by examining and processing the elements on the page. Also, if a word is hy-
phenated at the end of a line, and continues on the next, it is separated into two com-
pletely unassociated text boxes. Each element also contains the bounding rectangles of
each individual letter (or number, or other character) in the word it contains.

The coordinates of the text boxes are available as points (abbreviated as pt). A point
is a typographical unit that equals 1/72 of an inch. This is due to the nature of the PDF
standard, designed as a printable “digital paper”.  The actual,  physical distances when
printed out in physical paper format are not really relevant for the algorithmic data ex-
traction process (more relevant are the relative distances between the text boxes). How-
ever, the physical distance can help in determining the limits in which text boxes, con-
taining words, would be able to form readable sentences. The following equation shows
how points can be converted into other units of length.

Any other kind of information on a page, such as separator lines, images or any other
type of more complex embedded data that the  PDF standard supports,  is not directly
available through the Poppler API. Other methods must be used for taking such infor-
mation into consideration.

In addition to providing the textual data, the Poppler library can render the individual
pages of PDF documents into images. These images can be used for detecting rectangu-
larly outlined sections on a page, and either vertical or horizontal separator lines, which
often exist when information is displayed in a table format. These outlines are often es-
sential visual aids in being able to interpret (even for humans) the row and column asso-
ciations of elements in a table (see Chapter 3.1.3). This is especially true for tables that
do not align the contents of their cells vertically, so that the text elements of the table do
not appear on the same imaginary horizontal baseline between columns. Any more com-
plex shapes, tilted or handwritten lines are very rarely used in other purposes than visual
gimmickry (which is not often present in scientific publications), and good results can
be achieved without considering such shapes at all. 

3.1 Defining the problems that need to be solved

The extraction of data from tables in PDF documents with only limited information is
not a trivial task. The fully automatic data extraction process can be subdivided into
smaller individual tasks, that must each be completed successfully for correct extraction
results:

1 point=
1
72

inches=
25.4
72

mm=0.3527mm.
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1. Reading the contents of a PDF file.
2. Rotating the table to upright orientation.
3. Discovering separator lines and grids.
4. Discovering table areas in the document.
5. Defining the row and column structure of a table.
6. Defining the header rows of a table.
7. Formatting and outputting table data.

Failing at any of these defined sub-tasks of the extraction process will result in less-
than-desirable results. Defining the table stub is not mentioned in this list, because it is
not critical by itself for correct data extraction. The two main structural features of the
stub: (i) defining subheader rows and (ii) defining split data rows, are included in sub-
tasks 6 and 5 respectively.

The following chapters provide a more detailed look of each sub-task of the full ex-
traction process. In addition to these defined problems of the extraction process, some
consideration needs to  be given to possible issues with character  encoding (Chapter
3.1.8).

3.1.1 Reading the contents of a PDF file

As all the handling of the PDF file format is done by the Poppler PDF rendering library,
this sub-task is a problem that has already been solved, and does not need to be ad-
dressed further in this thesis.  The Poppler library makes the contents of  a PDF file
available as text boxes and rendered images, as described in the beginning of Chapter 3.

3.1.2 Rotating the table to upright orientation

Because the standard paper formats (such as A4, Letter, …) that are used in publishing
are not square in their dimensions, often the best fit, especially for large full-page sized
tables, is achieved by rotating the page 90 degrees; from portrait to landscape orienta-
tion. In order for algorithmic table detection and table cell associations to work prop-
erly, it is paramount that the table can be processed in upright orientation. 

The rules of written western languages and perhaps certain ubiquitous conventions
assert a few principles that most tables automatically follow. Such principles that seem
intuitive and self-explanatory include:

• The header of the table is most likely to be at the top of the table.

• The stub column is most likely to be at the leftmost column or columns of the ta-
ble.
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While these principles are not in any way mandatory rules of creating tables, a sim-
ple observation of tables  from a variety of different sources quickly establishes that
these principles are inherited by most tables by a very large margin. Furthermore, these
principles make it clear that the directions (up-down, left-right) within the table must be
known, in order to interpret its header, row, and column structure correctly. The Poppler
library (Chapter 2.3) makes no claims about what the intended upright orientation of a
page is, it simply serves the page as the author of the document has created it.

3.1.3 Discovering separator lines and grids

Tables that use a definitive grid structure, often do not align their contents into vertically
aligned rows, but instead rely on the alignment of the visible grid structure. Without the
information about the lines and rectangular areas on a PDF page, defining the cells cor-
rectly would be in  most  cases  a  nearly  impossible  task  (as  illustrated  in  Figure  4).
Therefore, a method of taking into account the drawn separator lines and rectangular ar-
eas that function as visual aids for the reader is needed.

Figure 4: Determining row and cell associations in a table can be difficult without
grid structure information.*

There are only two types of separator lines in natively digital  PDF documents that
need to be considered: straight vertical lines and straight horizontal lines. Because of
their rare, marginal existence, diagonal or curved lines do not need to be taken into ac-
count.

* Source: Optometric clinical practice guideline care of the patient with conjunctivitis, Reference guide
for clinicians, 2nd edition. American Optometric Association, 2002. 
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3.1.4 Discovering table areas in the document

PDF documents contain a lot of different elements other than text in a table format.
Therefore, a method of separating the non-table  text  elements of a page from the ele-
ments of a table is crucial. This also invites the question: what qualifies as a table? For
the purposes of this thesis work, it is not the actual definition of the term “table” that
needs to be concerned with, but rather with what kind of data should be extracted as a
table.

As the focus of this thesis work is on data extraction and collection for database stor-
age and further processing, the absolute minimum requirements for document page text
elements to qualify as a table can be set to a minimum size of 2 columns and 2 rows.
Any table that is below these limitations can be disregarded, for simply not being able to
have enough data. These limits cannot be straightforwardly applied to recognized table
grid structures, as many types of grids can contain subdivisions of rows and column
within the grid cells, as described in more detail in Chapter 3.2. There should be no up-
per limit to the size of a table, and tables can be split onto multiple pages.

The table areas should also be inclusive of the table title and caption texts, because
these table elements often contain important information about the table body elements
(actual table data), that is necessary for further functional and semantical processing of
the data.

There are four types of errors in table detection that should be recognized and taken
into consideration:

1. Table has an incomplete set of elements assigned to it (completeness).
2. Table has non-table elements assigned to it (purity).
3. Elements of a single table are assigned to multiple tables (split errors).
4. Elements from multiple tables are assigned to a single table (merge errors).

3.1.5 Defining row and column structure for the table

After some, or all of the elements on a page in a PDF document have been assigned be-
longing to a table, their row and column associations within the table need to be defined
in order to determine the cell structure of the table.

For tables with a fully defined grid structure (see Figure 5 below), this is a relatively
straightforward task. The cells of the grid determine the row and column structure of the
table autonomously, and no further processing in this regard is needed.
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Figure 5: Example of a table with a fully gridded structure. Source: PDF-TREX data set
[12].

Other types of gridded tables include table types that: only have their outermost out-
line defined, only have their header separated from the body, have their body elements
separated or any mixture of these. All grids that do not define the table row and column
structure completely are defined as tables with a supportive grid (Figure 6).

Figure 6: Example of a table with a supportive grid structure. Source: PDF-TREX data set
[12].

At the other end of the table grid structure spectrum lie the tables that have abso-
lutely no defined grid structure at all  (Figure 7). All these different types of tables are
commonly used, and need to be considered in creating an algorithm that extracts their
data.
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Figure 7: Example of a table completely without any grid structure. Source: PDF-TREX
data set [12].

For tables without a fully defined grid structure, the algorithm needs to be able to de-
termine which rows can me merged together. For example, when a cell in a table con-
tains so much text it has been split and continued on the next row  (line), these rows
should be merged together so that the whole text is assigned to a single table cell.

3.1.6 Defining the header rows of the table

For correct data association, an essential step of the data extraction process is finding
the header of the table. Without making a distinction between a header cell and a table
body data cell, it is impossible to further process the data in a table into more meaning-
ful categories. 

The textual elements in a table header can often span multiple columns and rows, be
nested under other headers and in general have a lot more varied structure than the body
of the table. Therefore, the table header elements need to be identified to process them
differently from the table body data elements.

Second, in order of importance, is defining the subheaders rows of the table. A sub-
header can be defined as a non-data row within the table body that is associated with all
the data rows below it (see Chapter 2.1, “Table anatomy”), or until another subheader is
encountered (moving down in the table). If the subheaders are misinterpreted as table
data, the association mapping between the table cells will be incomplete.

3.1.7 Formatting and outputting table data

The processed tables that become the output of the developed software tool should be
formatted in such a way that they can be easily imported into other software applica-
tions for further processing. Primary candidates for further processing of the extracted
table  data  could  include,  for  example,  databases,  spreadsheet  applications  and web-
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pages, among others. The output should be designed to accommodate all of these differ-
ent further processing methods.

3.1.8 Character encoding

Some special Unicode characters embedded in a variety of PDF documents have proven
problematic with the Poppler PDF rendering library. Part of the problem is also due to
the misuse of certain look-a-likes of more commonly used characters,  such as  the hy-
phen-minus (“-”) character (ASCII hexadecimal  code  2D). The full  Unicode character
set contains  more than 12 characters that look deceptively similar to  the common hy-
phen, as illustrated in Table 8. 

Hexadecimal
code

Character name View

002D HYPHEN-MINUS -

058A ARMENIAN HYPHEN ֊

05BE HEBREW PUNCTUATION MAQAF ־

2010 HYPHEN ‐
2011 NON-BREAKING HYPHEN -

2012 FIGURE DASH ‒

2013 EN DASH –

2014 EM DASH —

2015 HORIZONTAL BAR ―

2212 MINUS-SIGN −

FE63 SMALL HYPHEN-MINUS − 

FF0D FULLWIDTH HYPHEN-MINUS －

 

Table 8: A non-exhaustive table of Unicode hyphen look-a-likes.

Publication authors, whether they feel that the regular hyphen is too short or not visi-
ble enough, sometimes  choose to  use any of these look-a-likes in the  place of  regular
hyphens. For human readers, this is not a problem at all, but for machines and  algo-
rithms, all these “impostor” characters, that look almost or exactly alike on print, are as
different as A and B. This can affect the performance of an algorithm, for example when
trying to decide whether two rows should be combined in a table. If a line of text ends
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in a hyphen, it is likely to continue on the next line and these two lines can be safely
combined into a single table cell.

Another example of how the character encoding problem becomes evident, and could
have an effect on further processing of the table data, is when considering a data column
with Boolean yes/ no, on/ off values. Now, if instead “0” and “1” the author of the docu-
ment  has decided to use “+” and “-” to describe the two values,  but instead of “-”
(ASCII hexadecimal code 2D) she has used a “figure dash” (Unicode hexadecimal code
2012, see Table 8), the interpretation of the data fields becomes much harder for a ma-
chine that is only looking at the  character numerical  codes. This problem is not only
common, but involves a lot of different characters (such as “+”, “<”, “>”, “*”, “'”) for
similar reasons.

3.2 Table examples

There is understandably no single uniform or standard way of presenting data in a table
format,  and so, tables tend to have a plethora of unique features between them. These
features are best elucidated by taking a closer look at a few examples (Figures 9–11).

Figure 9: Typical table from the biomedical research domain features cleanly laid out
columns and rows.*

While  typical  tables  in  research  publications  in  the  biomedical  domain  are  well
aligned and cleanly laid out, for the algorithms to be applicable universally, a lot of dif-
ferent types of tables need to be considered. Comparison of Figure 9 to Figures 10 and
11 shows a contrast with typical low-complexity tables to more challenging table types.

* Source: Naïmi et al.”Molecular analysis of ANT1, TWINKLE and POLG inpatients with multiple 
deletions or depletion of mitochondrial DNA by a dHPLC-based assay”, European Journal of 
Human Genetics (2006).
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Figure 10: Table (light gray area) that is split mid-cell onto two consecutive pages. It
also features a semi-gridded structure, where only the middle column cells are encased

with four sided rectangles. Source: US-data set [13].

 

Figure 11: One or two tables? Source: US-data set [13].

With a large enough sample size, there will always exist a set of tables to break every
rule. Taking into account every type of exceptional table is practically impossible, not to
mention tables that are misleading and hard to interpret even for human readers. There-
fore, for a large enough number of tables from a variety of different sources, an algorith-
mic approach can never achieve perfect results. 
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4 ALGORITHMS

This chapter describes the various methods and algorithms that are required and used
for extracting tabular data from PDF documents. The algorithms described in this chap-
ter provide solutions to the data extraction problems presented in Chapter 3.1.

Some of the algorithms are described using C++ style pseudo-code, while some are
explained using illustrative images and textual descriptions. The algorithms, when com-
bined together, enable fully automatic PDF table data extraction. 

4.1 Rotation of pages

Each individual page in a PDF document can have its main body of text oriented in four
possible ways in reference to the upright (text written from left to right, from top to bot-
tom) orientation.  The four possible clockwise rotations are:  0°,  90°, 180°  and 270°;
where  pages with 0°  rotation  are already in an upright orientation. To distinguish be-
tween these different rotations, the following pseudo-code algorithm is applied for each
individual page (comments in green):

//Each element is examined in its original (unrotated) page 
//coordinates
Loop for each text element on page:
{

Skip element that has < 3 characters;

if( element.height > element.width )
{

distanceFromTop = DISTANCE( element.firstChar.top, element.top);
distanceFromBottom = DISTANCE( element.firstChar.btm, 

  element.btm);

//Increase word count for either 90 or 270 degrees rotated words
if(  distanceFromTop <  distanceFromBottom ) ++rotations90;
else ++rotations270;

}
else
{

distanceLeft = DISTANCE( element.firstChar.left, element.left);
distanceRight = DISTANCE( element.firstChar.right, 

element.right);

//Increase word count for either 0 or 180 degrees rotated words
if(  distanceLeft <  distanceRight ) ++rotations0;
else ++rotations180;

}
}

pageRotation = MAXIMUM( rotations0,  rotations90,  rotations180,  
rotations270 );
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The original rotation of a text element is defined here as the rotation that the element
is in the PDF file with unmanipulated page coordinates. The rectangular text box areas
for each element have no orientation themselves. The way to distinguish between up-
right (rotation 0°) and upside down written text (rotation 180°), because the element ar-
eas are exactly alike in shape, is to compare whether the first letter in the element area
resides closer to its left or right edge. For upright text, the first character will always be
closer to the left edge of the element area rectangle. The same applies for text with 90 or
270 rotations, but instead of comparing the first character of an element to the left or
right edges, it can be compared to the top and bottom edges of the element area rectan-
gle.

To distinguish between horizontally written text (0° and 180° rotations), and verti-
cally written text (90° and 270° rotations), element area widths and heights are com-
pared. For text elements that have three or more characters, this comparison will give a
good estimation on whether the text is written either horizontally (width > height) or
vertically (height > width). For text elements that have only one or two characters, this
is not a reliable estimate, because the length of the written word is too small in compari-
son to the height of the font it is written in. For example, an imagined rectangle drawn
around the word “in” would be approximately square in shape, where a three letter word
such as “out” would be encapsulated by a rectangle clearly wider in size than tall. This
effect is of course emphasized for even longer words.

By calculating the numbers of differently rotated text elements on a page, the algo-
rithm is eliminating the effect of a few words or sentences being written in a different
direction, affecting the estimated rotation of the page. This is the case with the publica-
tions of many publishers, where for example, the name of the publication or journal ap-
pears written in up-down direction in the side margin along the side of the page.

4.2 Edge detection

The edge detection algorithm processes rendered image files. The Poppler PDF render-
ing  library  API  provides  a  convenient  function  for  getting  rendered  versions of  the
pages. Example of how the rendered images of pages are acquired using the Poppler li-
brary Qt C++ API is shown here:

// Access page of the PDF file
Poppler::Page* pdfPage = document->page( pageNumber);  
// Document starts at page 0
if( pdfPage == 0) {
  // ... error message ...
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  return;
}
// Generate a QImage of the rendered page
QImage image = pdfPage->renderToImage( xres,yres,x,y,width,height);

After the image has been rendered, it is converted into gray-scale format, that con-
tains only shades of  gray in 255 steps  from black to white. Processing the image in a
gray-scale format is necessary, because the algorithm is only interested in the pixels in-
tensity values (can also be called brightness for gray-scale images) and their differences
between neighboring pixels.

An edge in an image is defined as an above-threshold change in  intensity value of
neighboring pixels. Choosing a threshold value too high, some of the more subtle visual
aids on a page will not be detected, while a threshold value too low can result in a lot of
erroneously interpreted edges. Figures 12 and 13 illustrate the goal for the edge detec-
tion algorithms.

 

Figure 12: A table for edge detection example. This table features low intensity edges
(white → light gray), graphical background, and edges partially obscured by text

elements.*

*  Source: adaptation from: Bethesda (MD). Clinical Guidelines on the Identification, Evaluation, and 
Treatment of Overweight and Obesity in Adults: The Evidence Report. Report No.: 98-4083, 1998.
http://www.nhlbi.nih.gov/guidelines/obesity/bmi_tbl.pdf, last retrieved: 2013-04-11.

http://www.nhlbi.nih.gov/guidelines/obesity/bmi_tbl.pdf
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Figure 13: Optimal edge detection result for the table in Figure 12.

The edge detection process is divided into four distinct steps that are described in
more detail in the following chapters:

1. Finding horizontal edges.
2. Finding vertical edges.
3. Finding crossing edges and creating “snapping points”.
4. Finding cells (closed rectangular areas).

4.2.1 Finding horizontal edges

The horizontal edge detection algorithm starts  by examining the pixels of a gray-scale
image from the top left corner. The algorithm compares every top-bottom pair of adja-
cent pixels, looking for intensity value changes above a set  threshold value.  Once a
pixel-pair with enough difference in their intensities is found, the algorithm proceeds to
the right, comparing multiple pixels (in up-down direction) until the edge is no longer
present or the right edge of the image is encountered. If the found edge is of sufficient
length, it is accepted and registered as a horizontal edge in the image. The flow of the
algorithm is visualized in Figure 14. 
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Figure  14: Graphical representation of the horizontal edge detection algorithm. The
algorithm moves down the first column of pixels from the top-left corner of an image
(1), comparing adjacent top-bottom pairs of pixels. Once it reaches the bottom of the
image, it moves on to the next column to the right (2). When a horizontal edge is found
(3), the algorithm proceeds along the edge to the right (4) comparing multiple pixels,
and  stopping  when  no  edge  is  detected  anymore  (not  shown).  The  search  is  then
continued from the previously found edge starting-point (3) downward.

Using multiple pixels for detecting horizontal edge preservation, after the initial edge
starting-point is  found,  helps  the  algorithm  deal  with  edges  that  are  not  perfectly
aligned, as well as with text elements that are on the edge, obscuring the underlying
edge for short lengths at a time. Sufficiently long edges that have been found are saved
into memory, so that when the algorithm encounters the same edge again in  a  subse-
quently  examined column of pixels, it  will  not be examined again,  but instead only
skipped over.

If the PDF page is rendered as an image too small in pixel size, the bottoms of ser-
ifed fonts can blend or blur together, forming horizontal pseudo lines,  as illustrated in
Figure 15. To avoid this from happening the processed image has to be rendered in large
enough size for the individual characters in a word to be separated adequately. Exclud-
ing the page text elements areas completely from the edge detection processed image ar-
eas, is not possible because in many tables the rows are packed together so tightly, that
the text element areas overlap on real horizontal grid edges. The text elements areas of-
ten have some extra space under the actual text rendering, to accommodate characters
that are partly drawn below the fonts baseline, such as characters “q”, “g” and “p” for
example.
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Figure 15: Image quality is important for edge detection. Blurry text  (rendered too
small) can cause false detections. The three highlighted areas form continuous

horizontal edge areas.

Figure 16: Common problems for edge detection are pointed out with red arrows. The
illustrated problems include: graphic backgrounds, misaligned rectangles (or lines),

edge-overlapping text, and low-threshold edges.
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Using multiple pixels for finding continuing edges, avoids a few common problems
as illustrated in Figure 16. Even though most PDF documents are created digitally (na-
tively digital), not all edges can be assumed being in perfect alignment. 

4.2.2 Finding vertical edges

The  vertical  edge  finding  process  works  much  alike  the  horizontal  edges  finding
process, with one major exception: the text element areas can be excluded from the pro-
cessing. Unlike with horizontal edges, the real vertical edges very rarely overlap with
the text element areas, because there are no issues with font baselines and empty areas
within  the  text  element  in  the  left-right  direction.  Excluding the  text  element  areas
avoids the problem of setting the minimum edge length.

Without the exclusion of text elements, many characters within a text element cause
false positive vertical edges. For example the leading edges of  “I”, “P”, “L” and other
long vertical lines containing characters are prime candidates for causing false positives.
If the minimum vertical edge length is set too low (under row character height), all these
characters are likely to show up as false positive edges. On the other hand, setting the
minimum edge length too high the vertical separators will not show up at all in tightly
gridded tables.

4.2.3 Finding and aligning crossing edges

Due to the nature of the edge finding algorithm, described in previous chapters, the
crossing points of greater than 1 pixel thick vertical and horizontal edges represent dis-
continuities in the edge, as shown in Figure 17. The horizontal edge has a gap in it at the
position of the original table separator line, and the same applies to the vertical edges.
For the edges and table cells to become connected at these points, some further process-
ing is required.
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Figure 17: Thick table separator lines produce an edge detection pattern that has
unconnected edges. “Snapping points” (red circles) are created to connect all the edge

end-points, withing the area of a snapping point, to a single point.

A special snap-to-grid feature in employed. The algorithm searches for both vertical
and horizontal positions in the image where many edges end. All edge end-points within
a, for example, 10 pixel range from each other are averaged, and this average value will
become a “snapping point” with a single pixel center point. All the edge end-points
within the snapping point's area are reassigned to this single pixel  center-point value.
This procedure will connect all the edges in the vicinity of a snapping point.

There are some limitations to this method however. If the snapping point radius is set
too big, some of the real grid crossing points become merged together, and if the radius
is set too small, some of the edge end-points do not become connected and some rectan-
gular areas are not found at all. Tables with thicker separator lines require longer snap-
ping point radius lengths to become properly connected at their crossings.

4.2.4 Finding rectangular areas

The final step of the edge detection process is  to identify closed rectangular spaces
within the vertical and horizontal separator lines, and separating unconnected rectangu-
lar areas into different tables. This is done is several steps.

After  the  horizontal  and vertical  edge  detection  processing  has  finished,  and the
edges are aligned into appropriate snapping-points, points where a horizontal edge con-
tacts a vertical edge are registered as crossing-points. The set of crossing-points is inclu-
sive of points where both a vertical and a horizontal edge end. In other words, one edge
does not have to continue through another, it is simply enough that the edges share a
common pixel coordinate point.
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The following pseudo-code algorithm is applied to find rectangular areas in a set of
edges with defined crossing points:

array foundRectangles;

//All crossing-points have been sorted from up to down,
//and left to right in ascending order
Loop for each crossing-point:
{

topLeft = NextCrossingPoint();

   //Fetch all points on the same vertical and horizontal
   //line with current crossing point
   array x_points = CrossingPointsDirectlyBelow( topLeft);
   array y_points = CrossingPointsDirectlyToTheRight( topLeft);

   Loop for each point x_point in x_points:
   {                                 //Skip to next crossing-point
      if( NOT EdgeExistsBetween( topLeft, x_point)) next crossing-
                                                         point;
      Loop for each point y_point in y_points:
      {            
         if( NOT EdgeExistsBetween( topLeft, y_point)) next crossing-
                                                            point;
         //Hypothetical bottom right point of rectangle
         btmRight = Point( y_point.x(), x_point.y());

         if( CrossingPointExists( btmRight) AND 
             EdgeExistsBetween( x_point, btmRight) AND
             EdgeExistsBetween( y_point, btmRight))
           {

   //Rectangle is confirmed to have 4 sides
               foundRectangles.append( Rectangle( topLeft, btmRight);
               //Each crossing point can be the top left corner
               //of only a single rectangle
               next crossing-point;               
           }
       }
    }
}

This method of finding rectangular areas ensures that the smallest possible rectangu-
lar areas are found with the more common types of table grids. Figure 18 shows some of
the possible ways of defining rectangular areas within a grid of horizontal and vertical
edges.
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Figure 18: Panels B through E show some of the possible ways of defining rectangular
areas within the edges (dashed gray lines) shown in Panel A. The algorithm described
in this chapter would define rectangles 1-9. For atypical table edges, such as in Panel
F, the algorithm would only define the a single rectangle, the smallest of the possible 3.

After the rectangles (grid cells) of a table have been defined, there is only one more
task left to do: assigning the rectangles to tables. In case of pages that contain multiple
tables, it is important to separate them from each other. To do this, the corner points of
a rectangle are examined. If rectangles share a common corner-point, they are assigned
to being in the same table. In case of a 3-by-3 grid table, such as depicted in Figure 18,
Panel B, Cell 1 shares two corners with Cell 2 and they are assigned to the same table.
Next, Cell 3 is examined, and as it shares corners with Cell 2, it is assigned to the same
table as cells 1 and 2. All found cells are examined this way and are assigned together
into tables if they themselves, or their connected table partner cells share common cor-
ner-points.

4.3 Detecting tables

Detecting tables from individual PDF document pages is essentially a segregation task.
The goal is to separate table elements from non-table elements on the page. After this
has been done, the table elements need to be further separated into different tables or
merged into a single table.
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The main challenge for the table detection algorithm is finding a balance between de-
tecting too much (low purity) and not detecting enough (low completeness). Discover-
ing areas on a page that contain text elements that could have a table structure, is done
in several consecutive high level steps:

1. Remove text elements in page margins

◦ The page  margins  often  contain  superfluous information  about  the  docu-
ment; such as page numbers, institution logos and names, or publisher infor-
mation. The first step is to ensure that this information that is irrelevant for
the extraction process is weeded out. All text that is displayed  in disagree-
ment with the upright orientation  of the page  is removed completely from
further processing.

2. Assign elements into rows

◦ A strict initial row assignment is made. Elements are required to be of the
same height and  to have almost identical  vertical coordinates to qualify of
being on the same row.  After this  initial  row assignment has been made,
some  of  the  rows  are  merged  together  based  on  overlapping  areas.  This
method ensures that super- or subscript text will be merged into the correct
row. Merging the super- and subscripts is vital for the next step of process-
ing.

3. Find text edges

◦ Text edges are defined to exist in locations where multiple rows have either
their element left edges, right edges or center-points at the same vertical line.
The minimum number of elements to define a text edge is defined as 4. Ele-
ments that break the edge line, also stop the edge from crossing over the ele-
ment. Figure 19 shows an example of the edges found on a page.
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Figure 19: Page excerpt shows the text edges found by the algorithm. Left element
edges are shown in blue, right edges by purple, and element center-lines by green

color.*

◦ Edges are mostly concentrated to page areas that are tabular in nature. Justi-
fied text blocks in multiple page columns need to be identified to not mistake
them for tabular areas. Some of the edges also extend beyond the table area
limits, connecting with an element that is positioned on the same edge, just
by chance.

4. Find justified text blocks

◦ Justified text blocks need to be identified to prevent mistaking them for tabu-
lar regions on the page. A page that has three text columns side by side will
contain 6 edges on each horizontal line drawn through the page width, and it
is easy for an algorithm to mistake such rows as being a part of a table. This
step of the process is illustrated in Figure 20.

*  Source: Baruffini et al., Predicting the contribution of novel POLG mutations to human disease 
through analysis in yeast model, 2011.
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Figure 20: Page excerpt shows regions that are identified as justified text
blocks by the algorithm with a red highlight.*

5. Rank each row for its probability of being a part of a table

◦ Each row on the page is ranked based on the number and the types of edges
it contains, as well as the justified text blocks the row contains.  This ap-
proach does have its limitations. Tables that contain a lot of justified text are
easily misclassified as non-table rows. This step of the process is illustrated
in Figure 21.

*  Source: Baruffini et al., Predicting the contribution of novel POLG mutations to human disease 
through analysis in yeast model, 2011.
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Figure 21: Page excerpt shows rows with a high probability of being a part of
a table highlighted in blue color. *

6. Assign table and extend table areas

◦ The last  step of  the  table  detection  process  entails  defining  the limits  or
boundaries of tables. If grids and defined rectangular areas exist on the page,
all four or more connected rectangular areas found by the edge detection al-
gorithm (Chapter  4.2) are classified as tables. In the absence of grids, the
rows defined as containing tabular content are unified to form rectangular ar-
eas. These areas are  then  extended to cover rows above and below them,
based  on  their  separation,  to  include  table  title  and  caption  areas.  This
method of extending the boundaries of tables can produce erroneous results
in documents with only narrow spacing between  the  table  boundaries  and
page body text.

* Source: Baruffini et al., Predicting the contribution of novel POLG mutations to human disease 
through analysis in yeast model, 2011.
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4.4 Defining table structure

The table structure definition (or recognition) process is the next step after the table has
been detected and the limits  of its area have been defined by the table detection algo-
rithm. The algorithm in this thesis has been designed to process table areas that include
their title and captions, even though most literature available on table structure defini-
tion does not recognize these elements as being a part of a table. This decision, to in-
clude the title and captions, was made based on their usefulness for further semantical
or functional analysis (see [14]). The table detection algorithm can make its own predic-
tions about where the table title and captions are, but further processing is still needed to
separate them from the table header and body.

The algorithm for recognizing the table structure processes the elements of the table
in several high level steps:

 

1. Find and merge super- and subscripts

◦ Super- and subscripts in a document can be problematic for table row detec-
tion. A superscript lying just between two rows can, in the worst cases, cause
splitting or merging of two separate rows. All text elements within the area
of a table are examined for super- or subscript status. Found super- and sub-
script elements are merged with the normal text elements in their immediate
vicinity to form a single element.

2. Assign to rows

◦ The algorithm needs to assign each table element to a row. All elements with
an adequate vertical alignment are defined as being on the same row. Even
this fairly simple sounding step has its own problems with elements that are
not completely aligned. In some cases better results would be obtained by
defining the rows more liberally and in others a more conservative method
of separating the rows would yield better results.

3. Merge spaces

◦ Sentences are created out of words assigned on the same rows. The spaces in
the document, between words that belong to the same sentence are decided
by averaging the spaces widths on the page. The average spacing length (in
PDF coordinates) is used to determine which words can be merged into a
single element. Elements are never merged over vertical separator lines or
from different grid cells. Justified text (aligned to both, left and right edge of
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the paragraph) is problematic for this step of the process, since it contains
sentences with variable  width  spacing, and often very wide spaces. Fortu-
nately, tables rarely contain justified text blocks without a grid structure.

4. Find obvious column edges

◦ Column edges are defined to locations where multiple rows have either ele-
ment left  edges, right  edges  or center-points at the same vertical line. The
minimum number of elements to define an edge is set as 4. This step of the
algorithm is identical to  Step 3 of the table detection process but includes
only the table area.

5. Find rows that do not fit the apparent column structure

◦ Every row that breaks the column edge structure defined in Step 4, is marked
as being a “column breaking row”. These rows have a higher probability of
belonging to either the title, header (superheader), subheader, or caption row
categories and they are excluded from Step 10, Assign to columns.

6. Examine the grid

◦ Find out if the edge detection algorithm has defined rectangular areas (Chap-
ter 4.2.4) to exist within the limits of the table area. The table is defined as
having one of the following grid styles: full, supportive, outline, none. A full
grid means that the cellular structure  of the table  is completely defined by
the rectangular areas and no further processing of the table body is needed,
and the algorithm skips to Step 11, Finding the header. All elements outside
a full or an outline style grid are set as being a part of the title or the caption.
A Supportive grid helps to determine cell row- and column spans, but other-
wise the elements are processed just like the grid would not exist at all. For
fully gridded tables, the performance of the edge detection algorithm is criti-
cal. Any mistakes, or missed borderlines, directly show up as errors in the
row and column definitions.

7. Examine underlines

◦ Underlines are horizontal lines defined by the edge detection algorithm, that
are not a part of a rectangular area, and do not cover more than 80% of the
table width. If a horizontal line covers more width, it is classified as a hori-
zontal separator. If an underline has only a single element on top of it, at a
reasonable distance, this element is extended to the width of the underline.
This procedure helps in discovering elements spanning multiple columns.
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8. Find super- and subheaders

◦ A superheader row is defined as a row that has elements that span over two
or more elements on either the row above or the row below. This is quite a
promiscuous way of defining superheader rows, and it will classify a lot of
rows erroneously. The main idea of this step is to remove rows that might be
problematic for the column definition step. A subheader row is simply a row
that only has elements in the table stub or the first column, if no stub exists.

9. Find title and caption

◦ The title and legend rows are segregated from the table header and body
rows. Several types of text withing the table area have a higher probability of
being a part of the table title text: text that is in the top rows of the table, text
that  is  defined as  “column breaking”  and  runs  through  almost  the  entire
width of the table, text that is above the first horizontal separator, text that is
centered to the table width or text that is placed only to the left side of the ta-
ble. Any text that fits these descriptions adequately is classified as a title. For
the caption (legend), similar qualities are looked for, but on the bottom rows
of the table.

10.Assign to columns

◦ Columns of the table are determined by finding empty vertical areas through
the table width. This empty area detection, excludes the rows that in the pre-
vious  steps  have  been  classified  as  either  “column breaking  rows”,  sub-
header rows, superheader rows, title rows, or caption rows. 

11. Finding the header 

◦ Separately described techniques are used for detecting the table header rows,
see Chapter 4.5.

12.Merge columns

◦ Columns without a header (if a boxhead has been found) or columns that do
not contain any data, are merged to the column on their left.

13.Format header

◦ The header rows often have more variance in their layout on the page, and
often  span multiple  rows  and columns.  Header  cells  that  are  adjacent  to
empty cells in the header are extended to fill these empty cells.
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14.Merge rows

◦ Based on the header row information (Step 11) and row indentations; some
of the rows are merged together.  This is an essential step in creating single
cells out of blocks of elements that have been split onto multiple rows. When
examining the rows, the algorithm looks for rows that contain no data in the
first column (stub), and contain data above every other non-empty cell. Be-
cause most tables contain a stub that includes only the first column of the ta-
ble,  this  approach can achieve good results.  For  rare  tables,  with a  more
complex, multi-column stub, a more sophisticated stub definition and pro-
cessing method would be required.

15.Set column and row spans for cells

◦ The final step is to extend elements within grid cells to fill their full avail-
able areas and define their row and column spans.

4.5 Finding the header rows

After the table data has been sorted into appropriate rows and columns, it is time to find
its header rows (if any). As described in  Chapter  2.3, the information provided by the
Poppler PDF library is somewhat limited. An even larger obstacle for the header finding
algorithm to identify the column header rows, in contrast to  the abilities of a human
reader, is the lack of contextual and semantical understanding of the table data. For an
(English speaking) human reader, identifying the header rows is  a  quite trivial  task in
most cases, as illustrated in Table 22.

1 2 3 4 5 6 7

1 Patient Sex Onset LA Depletion Gene Allele1
2 A M 28 months NA 10% TK2 c.C462W
3 B F 15 months ++ 22% POLG p.Y154N
4 C M 2 years normal 12% TK2 c.Q340S
5 D M 15 months normal 11% TK2 c.T460A
6 E F 5 years normal 32% POLG p.A155P
7 F M 30 years ++ 8% TK2 c. G34T
8 G F 34 months normal 21% TK2 c. A35T

 Table 22: For a human reader, identifying the column header rows 

(only Row 1) is a trivial task.
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1 2 3 4 5 6 7

1 ? ? ????????? ?? ???? ???? ????? ?
2 ? ? ?? ?????? ?? ??? ??? ?? ????
3 ? ? ?? ?????? ?? ??? ???? ?? ????
4 ? ? ? ????? ?????? ??? ??? ?? ????
5 ? ? ?? ?????? ?????? ??? ??? ?? ????
6 ? ? ? ????? ?????? ??? ???? ?? ????
7 ? ? ?? ????? ?? ?? ?? ?? ????
8 ? ? ?? ?????? ?????? ??? ?? ?? ????

 

Table 23: For an algorithm, without any contextual or semantical understanding,
Table 22 looks effectively like this. As some tables do not have separator lines or

rectangles, they have been removed from this example, along with font family and style
information, because it is not available through the Poppler API (2.3).

Table 23 illustrates the starting-point for the header detection algorithm. Because ev-
ery table does not have separator lines (or has lines between every row), they alone are
not an adequate way of determining the column header rows. Also, the Poppler API does
not provide information about the font families, or font styles used in the table. Because
of the eclectic and non-standardized nature of tables, no single method can work on ev-
ery table. Therefore, an “expert” voting system is implemented.

A “toolkit” of different algorithms is used to examine the contents of the table cells.
Each algorithm casts a vote on the probability of each row being a column header row.
Once every algorithm in the toolkit has had its chance to cast a vote, all the votes are
collated, and a  final conclusion (consensus)  is drawn. The following chapters present
some of the algorithms in the toolkit.

Each  of  these  individual  header  prediction  components  is  parametrized  with  a
“weight” for its vote. So that the  predictor  components that are more often correct in
their predictions for certain kinds of tables, are given extra votes for the final evaluation
and decision making. Future plans include automating the parametrization of the com-
ponents using a machine learning-based method. This, however, requires developing a
testing data set that has ground truth values for the correct amount of header rows in
each table of the data set, against which the predicted values can be compared.
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4.5.1 Header predictor: Numbers

Numbers, if they exist in a table, are quite a reliable source of column header row iden-
tification. The Numbers algorithm looks for columns that have cells with only text in
the top rows, and a long list of cells  with numerical content below them. This type of
prediction is illustrated in Table 24. This method is very effective with tables that con-
tain numerical data in their body.

1 2 3 4 5 6 7

1 ? ? Onset ?? Depletion ???? ????? ?
2 ? ? 28 months ?? 10% ??? ?? ????
3 ? ? 15 months ?? 22% ???? ?? ????
4 ? ? 2 years ?????? 12% ??? ?? ????
5 ? ? 15 months ?????? 11% ??? ?? ????
6 ? ? 5 years ?????? 32% ???? ?? ????
7 ? ? 30 years ?? 8% ?? ?? ????
8 ? ? 34 months ?????? 21% ?? ?? ????

 

Table 24: The Numbers algorithm looks for columns that have text-format cells on top
of a column of numerical cells. Recognized column headers are shown in red.

The Numbers predictor cannot make any predictions with tables that do not contain
any numerical data. Also, problematic  for the predictor are tables that have  numerical
column headers. These types of  columns are quite common, especially with financial
data tables, where the column header can simply contains a year-number for the column
body data.

Another type of pitfall for the Numbers predictor involves column headers that have
only a few, or a single word per row. Imagine a column header such as “Number of fam-
ilies with income less than $50 000”, where “$50 000” is set alone on the last row (line)
in the header cell. If the column body below the header then contains only numerical
data, the Numbers predictor could easily mistake the last row of the column header as
being a part of the table body.

4.5.2 Header predictor: Repetition

Repetition of row values within a column can be used as an indicator on where the
header stops. There usually exists no reason to repeat rows within the column header,
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and therefore, looking for repeated cells within a column can be used as an effective
measure for determining, which rows cannot be a part of the header. The Repetition al-
gorithm needs to be more conservative and reserved in its voting for positive header
rows, because if the first data cell in a column happens to be not repeated, it would be
easily mistaken as a header row, as illustrated in Table 25, Column 4.

1 2 3 4 5 6 7

1 ? Sex ????????? LA ???? Gene ????? ?
2 ? F ?? ?????? NA ??? TK2 ?? ????
3 ? M ?? ?????? ++ ??? POLG ?? ????
4 ? M ? ????? normal ??? TK2 ?? ????
5 ? F ?? ?????? normal ??? TK2 ?? ????
6 ? M ? ????? normal ??? POLG ?? ????
7 ? F ?? ????? ++ ?? TK2 ?? ????
8 ? F ?? ?????? normal ??? TK2 ?? ????

 

Table 25: While less reliable in making an accurate prediction of the exact number of
header rows than the Numbers algorithm, the Repetition algorithm, is very efficient in

identifying rows that are not a part of the column header.

While the Repetition algorithm is less reliable in determining what is the last row of
the header, it is very reliable in telling which rows cannot be a part of the column head-
ers. In the case illustrated in Table 25, the Repetition algorithm can say with a good de-
gree of reliability that Row 2, is not a part of the header. This prediction is made by ob-
serving that the cell contents “F” and “TK2” are repeated multiple times in Columns 2
and 6 respectively. 

4.5.3 Header predictor: Alphabet

Many tables, especially ones that have a stub and row headers, order their rows under
the stub header alphabetically, or numerically, in either ascending or descending order.
A long line of alphabetically ordered cells below non-ordered cells, is a tell-tale sign of
the column header rows, as illustrated in Table 26.  In small tables, the ordering in the
stub can sometimes be coincidental, therefore, the amount of consecutive ordered cells
needs to be limited to a minimum size of four or five, depending on the table size for ac-
curate predictions. 
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1 2 3 4 5 6 7

1 Patient ? ????????? ?? ???? ???? ????? ?
2 A ? ?? ?????? ?? ??? ??? ?? ????
3 B ? ?? ?????? ?? ??? ???? ?? ????
4 C ? ? ????? ?????? ??? ??? ?? ????
5 D ? ?? ?????? ?????? ??? ??? ?? ????
6 E ? ? ????? ?????? ??? ???? ?? ????
7 F ? ?? ????? ?? ?? ?? ?? ????
8 G ? ?? ?????? ?????? ??? ?? ?? ????

 

Table 26: A long list of alphabetically ordered consecutive cells in a column, under
non-ordered cells (“Patient”) in the table stub, is often clear indication of where the

header starts and stops.

A common pitfall for this type of predictor is an accidental stub header ordering.
Imagine a stub column that has the following cells from up to down: “Country”, “Fin-
land”,  “Germany”, “Italy”, “Sweden”; with “Country” being the only cell of the stub
header. For the Alphabet predictor it is easy to mistake the whole column not having a
header at all, because it has alphabetical ordering starting from Row 1.

4.5.4 Header predictor: other methods

Sometimes, none of the easy ways of identifying the table header rows are effective. In
such cases some more subtle methods in the header prediction toolkit are required. Such
methods include:

• Empty stub header: If the stub head is empty, the first non-empty cell in the
stub indicates the first row of the table body.

• Font size: Some tables have their header in  a  larger font size. Comparing ele-
ment heights withing a column can help identify the header rows.

• Data types: If a column has integer numbers in the top rows and decimal num-
bers in all the rows below, it could be an indication of the header rows.

• Lists: The table header is less likely to have comma-separated lists than the cells
of the table body.

• Natural Language: If the top rows have natural language-like words (3 or more
consecutive characters of the alphabet), while the rows below contain only non-
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alphabet characters (such as “+” or “*”), or a mixture of numbers and letters,
this is a good indication of the header rows.

• Text alignment: If the elements are aligned to the center of the column in the
top rows, and to the left or the right edge of the column in the rows below, it
could be an indication of the header rows.

• Separators or boxed areas: Horizontal separator lines often separate the header
from the table body.

• Superheaders and nested headers: It is uncommon for a column to have only a
shared header with another column. If a cell in the top rows of the table spans
multiple columns, the row below it is more likely to be a header row as well.

See Chapter 2.1, “Table anatomy”, for a description of the used terms for the table parts
and elements.

4.6 Outputting extracted data

The extracted data is outputted in two possible formats:  HTML and  XML. The  HTML
output  can be viewed on any web browser  without  modification,  and imported into
modern spreadsheet applications with ease. The XML format output is quite similar to
the HTML style output with the exception that its tags (“<tag>”) can be customized with
an XSL stylesheet, for easy integration to existing software components.

4.6.1 Application programming interface

The C++ API provided by the software application developed as a part of this thesis en-
ables easy access to the table data through different functions. The processed page data

is available through the  API as  Table and  TableCell objects. First, a class  Tab-

lerInstance object is created to extract and retrieve the table information. It is also

possible to provide specific regions where the tables are located. This feature enables
the possibility of using a different algorithm for detecting the tables. The following 
C++ code shows the main interface functions of the TablerInstance class:

  class TABLER_LIB TablerInstance
    {
      public:
        //Extract tables from a PDF document 
        //Ownership of returned Table pointers transferred to caller
        QList<Table*> ExtractTables( const QString& aFilePath, const 

       QString& aPageRange = QString());

...
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        //Extracts Tables from specified regions in a Poppler Document

        //Ownership of returned Table pointers transferred to caller
        QList<Table*> SortTables( Poppler::Document* aPopDoc, const 

    QList<TableRect>& aTableRects );
...    

};

If a PDF document has already been opened using the Poppler PDF rendering Library
extracting table information is done in the following way:

Tabler::TablerInstance* tabler = Tabler::Instance();
QList<Tabler::Table*> tables = tabler->GetTables( iPopDoc);
delete tabler;

The Table class provides easy access to the extracted table's structured contents:

  class Table
    {
      public:

        int PageNum() const;
        int NumberOfHeaderRows() const;
        int Rows() const;
        int Cols() const;

        QList<TableCell*> Cells() const;

        TableCell* Cell( int aRow, int aCol ) const;

        QRectF TableArea() const;
        QRectF CellArea( int aRow, int aCol ) const;

        QString XMLDescription() const;
        QString HTMLDescription() const;

        QString HTMLCellData( int aRow, int aCol ) const;
        QString CellData( int aRow, int aCol ) const;

        Poppler::Page::Rotation Rotation() const;
        QSizeF PageSize() const;

        QStringList TableInfoTypes();
        TableInfoList GetTableInfo( const QString& aInfoType);

        …

    };
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4.6.2 Standalone usage

Extracting table data can also be done using an executable file and the command line in-
terface of the operating system (for more details see Chapter 5.5). Extracting table data
from an PDF file is done by typing the following command:

tabler.exe --html --pages=1-6 tables.pdf > output.html,

where “tabler.exe” is the executable program (containing the algorithms), “tables.pdf” is
a PDF file containing tables, and “output.html” is the desired name for the file where
the output of the program is written. “--html” and “--pages=1-6” are optional “flags” for
the program, specifying that the desired output format is HTML, and that only pages 1
through 6 should be processed. All of the possible options for command line usage of
the program can be viewed by using the flag “--help”.
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5 EMPIRICAL EVALUATION

The focus and purpose of this thesis work is in practical applications of extracting data
from scientific publications. These publications often employ a conservative color pal-
ette and a limited amount of visual gimmickry. The publications are, for the most part,
carefully written and their layouts are designed by professionals working for different
publishers. The typical tables in such publications have multiple header rows that are as-
sociated with the entire body of the table. 

For these reasons, getting a good evaluation on the “good”, lucid, and well formed
tables is more important than it  is on the nonconforming, very complex, or “badly”
formed tables. In other words to get a perfect score on easy tables is more important
than to get a good score on difficult tables.

5.1 Evaluation metrics and performance

The  evaluation of a table data extraction algorithm is not a completely trivial matter.
The evaluation is divided into two separate parts: evaluating table detection and bound-
ary recognition, and evaluating table structure recognition. This method of evaluation
has been proposed by Göbel et al. [14] and it provides a reasonable, standardized way
of comparing the performance of different algorithms.

5.1.1 Evaluating table structure recognition

The performance of the table structure recognition algorithm is based on the cellular
structure of the table. The cell structure is defined as a matrix of cells. Ground truth val-
ues are  set manually for each table in the test  data  set for comparison as described in
Chapter 5.2.

Instead  of  comparing  absolute  row and  column index values  for  each  cell,  only
neighboring cell relationships are evaluated. This method of table structure evaluation
has been  proposed by Hurst [15] and it has a number of advantages against the more
simple row and column index number evaluation.  

The method developed by Hurst evaluates the performance of a table structure recog-
nition algorithm with an abstract geometric model, where spatial associations between
the table cells are known as proto-links, that exist between immediate neighboring cells.
With this model, a variety of errors that may occur can be considered separately (e.g.
cells can be split in one direction, merged in another; entire blank columns can appear).
The main idea is that the model allows for errors that are insignificant for the overall
structure of a table. One extra column in the middle of the table does not ruin the scor-
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ing for the remaining columns. A visualization of proto-links in a table is shown in Fig-
ure 27.

 

Figure 27: Comparison of an incorrectly detected cell structure with the ground truth.
source: Göbel et al. [14]

Table structure recognition evaluation uses an F-score to quantify the  performance of
the structure definition algorithm. F-score is defined as:

where recall and precision are defined as:

Panel a in Figure 27 shows the correct proto-links as dark squares, of which there are 31
(total adjacency relations). Panel b in  Figure 27 shows an example case of algorithm
output, with an incorrectly split 3rd column, resulting in only 24 correct adjacency rela-
tions, and 4 incorrect adjacency relations, making the total of detected adjacency rela-
tions 28 (24+4). In this example case the F-score would be calculated as follows:

F=2⋅
precision⋅recall
precision+recall

,

Recall=
correct adjacency relations
total adjacency relations

,

Precision=
correct adjacency relations
detected adjacency relations

.
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The F-score is calculated so that each document in the test set has the same weight in
the average precision and recall scores, no matter how many tables it contains.  Tables
found within the pages of a single document are usually quite uniform in their layout.
Calculating the F-score on a document level, rather than table level, eliminates the ef-
fects of long documents with a lot of similarly (or identically) laid out tables affecting
the score disproportionately.

Establishing the correct adjacency relations requires manual examination of each ta-
ble in the used data set, and sometimes the correct division of cells is ambiguous. This
method of comparison does not allow for either-or relationships between the table cells.
Cells that span through multiple columns or rows can have more than four neighboring
cells.

Because the table  proto-links that are compared to the ground truth  proto-links, do
not have any cell coordinates, only the cell contents are matched to asses if the right ad-
jacency relationship exists. In the implementation of the structure performance analysis
method, in case of tables where multiple cells contains the exact same content, the same
proto-link can exists multiple times, without any problems. For example if the ground
truth table would contain the relationship “A above B” two times, and the comparison
table three times, recall for this particular relationship is 2/2, and precision 2/3.

5.1.2 Evaluating table detection

Table detection, in its essence, is a segregation task. The goal is to separate the elements
of a page into table-, and non-table elements.  The table detection evaluation measures
the ability of the algorithm to find tables within the pages of a PDF document in terms
of completeness and purity.  The definitions of completeness and purity are taken from
Silva [16]. The two terms are defined in the context of table detection evaluation as fol-
lows:

• Completeness: proportion of tables containing all of their elements with respect
to the total number of tables on the page. In order for a table to be complete, it
must contain all of its elements.

Recall=
24
31

≈77.4%

Precision=
24
28

≈85.7%

F=2⋅
0.857⋅0.774
0.857+0.774

≈81,3%

Completeness=
completely identified tables

total ground truth tables
.
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• Purity: proportion of tables containing only correctly assigned elements with re-
spect to the total number of tables on the page. In order for a table to be pure, it
must contain only correctly assigned elements.

The harmonic mean of completeness and purity (CPF) is used as the measure for the
overall performance of the table detection algorithms. It is defined as:

CPF is calculated so that each document in the test data set, no matter how many tables
it contains, has the same weight in the purity and completeness average score.

The resulting purity-score is an indicator for how well the recognized area is within
the bounds of the ground truth area. The completeness-score is an indicator of how well
the recognized area covers the whole defined ground truth table area. The CPF score, is
an indicator of the overall performance of the algorithms. 

Why this method of comparison is chosen over the element-based F-score compari-
son used in table structure recognition, is that it provides a more useful indication in
typical table recognition error scenarios. Comparing a single table on a page to another
table using the element based F-score would work just fine. The usefulness of the com-
pleteness and purity is best described by examining a few examples such as a table de-
tection split error, shown in Figure 28.

CPF=2⋅
Completeness⋅Purity
Completeness+ Purity

.

Purity=
purely identified tables
total identified tables

.
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Figure 28: Split errors are common in table detection. Table elements in the ground
truth definition for the page are shown as black rectangles, and non-table elements as

white rectangles.

One ground truth table is associated with only one comparison table (if any). The as-
sociation is determined by comparing the elements on the page. For each ground truth
table, the association is established with a comparison table that shares the most ele-
ments with it. In rare cases, such as depicted in Figure 28, where two tables share the
exactly same amount of common elements with a ground truth table (8 in this case), the
table with the least amount of overall elements (Table B) is chosen as the associated ta-
ble. In the case shown in Figure 28, the unassociated, detected Table A would be classi-
fied as a false detection.

Another  type  of  common table  detection errors  is  a  merge error,  where  multiple
ground truth tables are recognized as a single table (Figure 29). The difference between
merge- and split errors, is that a split error affects the completeness score negatively,
while a merge error affects the purity score negatively.
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 Figure 29: Merge errors are common in table detection. Table elements in the ground
truth definition for the page are shown as black rectangles, and non-table elements as

white rectangles.

There is no additional false detection penalty scoring; the falsely detected tables only
increase the purity score denominator, lowering the purity score. With table merge er-
rors, the purity score is affected directly, because two or more  ground truth tables de-
tected as one, are never pure.

The tables are rated as either pure or impure, complete or incomplete; there is no
middle ground. If a table area contains even a single non-table element, or an element
from another table, it is  assigned as  being  impure.  This method of evaluating perfor-
mance requires quite a large set of test data documents to give an accurate estimation of
the algorithm's performance. 

5.2 Performance evaluation implementation

For performance evaluation, the algorithm outputs an  XML file that is compared to a
ground truth XML file. Comparison is done using a Python script. The script reads as its
inputs an element file, that defines the text elements of a page; a ground truth file, that
defines “the correct answers”; and a comparison file, that contains the “opinion” of the
algorithm on the table locations and cellular structure. The element file is needed for de-
termining association between the ground truth and comparison tables.
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Due to the way that the PDF standard is specified, the word boundaries for textual
elements can be somewhat ambiguous. In other words, the PDF standard does not de-
fine a single correct way of defining words in a document, and two different PDF read-
ers or libraries can have some differences in the way words are specified.  To avoid
problems with unwanted textual elements becoming included inside a table area, only
the element center-points are considered when determining whether an element is a part
of a table area or not.

5.3 Test data

The performance evaluations for the algorithms are done using two different data sets,
provided by Göbel et al. [14], called the EU-data set and the US-data set. The EU-data
set currently consists of 34 public domain documents, gathered from various European
Union  government  websites.  The  US-data  set  consists  of  25  public  domain  United
States government website PDF documents. Both data sets contain an eclectic set of ta-
bles, that for the most part surpass the typical scientific publication table complexities
by a large margin (see Chapter 3.2). The test data ground truth table areas exclude both
the table title and legend. The table detection algorithm had to be modified to accommo-
date these changes for the testing phase.

The two used data sets (EU and US) sets are a part of an International Conference on
Document Analysis  and Recognition (ICDAR) 2013  table  competition* and they are
freely available on the Internet [13]. The data sets are likely to be expanded in the fu-
ture, while the authors of Göbel et al. [14] are working towards a more unified toolkit
for  standardized  testing  methods  for  table  detection  and  structure  recognition.  The
ground truths for the data sets are provided by Göbel et al. [14]. Some examples of the
test set tables are shown in Chapter 3.2.

5.4 Performance results

The performances of the table structure recognition algorithm and table detection algo-
rithm were evaluated using two sets of PDF documents, the EU- and the US-data sets
[13]. Measuring the structure recognition performance was done by using manually de-
termined ground truth areas for tables. In other words: completely independently of the
table detection algorithm. 

The documents in both test data sets represent a disproportionate amount of complex
tables, compared to average tables found in scientific publications. Also, both data sets
contain many documents with tables that are either split into multiple table areas on a
single page, or tables that are seemingly connected to each other but should be separated

* http://www.ic  dar2013.org/  

http://www.icdar2013.org/
http://www.icdar2013.org/
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into two or more tables. Both of these types of tables are quite a rare occurrence in sci-
entific publications.

5.4.1 Table structure recognition performance results

Long continuous strings of dots and underscores (“.”, “_”) were removed from the table
cell contents before comparison. These characters are commonly used as visual aids in
tables to align stub row headers with their table body data. While these strings of char-
acters can be considered being a part of the textual content of a table, they serve no se-
mantical purpose, and therefore do not need to be extracted. Chapter 5.1.1 describes the
evaluation methods in more detail. The results of the table structure recognition perfor-
mance analysis are presented in Table 30. 

Data
set

Documents Perfect
scores

Precision Recall F-Score

EU 34 18 96.70% 96.43% 96.57%

US 25 9 86.34% 87.38% 86.85%

 

Table 30: Table Structure recognition performance results.

The overall performance of the algorithm could be evaluated as “very good” or “ex-
cellent” based on the results. A major part of the incorrect output of the structure detec-
tion algorithm is due to erroneous output of the edge detection algorithm. The measured
performance score is somewhat affected by the complexity of the test data set tables,
and not directly by the performance of the algorithm, but by ambiguity of some of the
adjacency relations (proto-links)  of the  table elements.  See chapter  7.1 for a more de-
tailed look at the low scoring tables, and for a more in-depth discussion on the perfor-
mance of the algorithm.

Future plans for developing the algorithm include creating a  new test data set with
typical scientific publication tables, for an even more accurate evaluation of the perfor-
mance of the algorithm for its intended purpose. Output of the table structure precision
and recall script is supplied for the EU- and the US-data sets as appendices A and B re-
spectively. 

5.4.2 Table detection performance results

The table detection algorithm was adapted to exclude table titles and caption texts, to
suit the test data set ground truth definitions. Table 31 presents the achieved results of
the table detection algorithm.
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Data
set

Documents Perfect
scores

Purity Completeness CPF

EU 34 9 77.82% 49.12% 60.22%

US 25 11 73.96% 64.00% 68.62%

 

Table 31: Table detection performance results.

Overall performance of the algorithm could be evaluated as “modest” based on the re-
sults. The table detection scores are influenced by at least five significant factors:

1. The algorithm has not  been designed to detect  tables  without  a  defined grid
structure with less than 4 rows (minimum size for gridded tables is 2x2).

2. The algorithm has been designed to include table titles and captions.

◦ Including a title or a caption sets purity to 0% for a table when compared to
the used data sets' ground truth definitions. The algorithm was adapted to ex-
clude table titles and captions for the comparison, but performs better with
them included.

3. Strict yes/ no method of assigning completeness and purity for each table.

◦ One single extra or missing element sets the purity or completeness score of
a table to 0%; there are no almost correct answers.

4. Merging  multiple separate table areas into a single table has not been imple-
mented.

5. Splitting unified table areas into multiple separate tables has not been imple-
mented.

Output of the table detection purity and completeness script is supplied for the EU- and
the US-data sets as appendices C and D respectively. 

5.4.3 Performance in terms of time

Most of the processing time used by the algorithm is spent by the edge detection algo-
rithm. The  Poppler library renders the document pages into greater than 1000 x 1000
pixel images, depending on the average font size on the page. The large size of the ren-
dered image is required to avoid blurring and cluttering of the table separator lines and
text. There are still a lot of options available for optimizing and improving the edge de-
tection process in the future. 
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Table  32 shows actual  measured  times  for  different  parts  of  the  table  extraction
process, on a typical 2013 desktop 64-bit computer with Intel i7-2600k  CPU,  for an
idea of the time required to process PDF documents. 

Data set Page Rendering
(Poppler)

Edge
Detection

Table
Detection

Table
Structure
recognition

EU 49.8 ms 647.7 ms 20.7 ms 75.3 ms

US 217.0 ms 679.1 ms 18.3 ms 68.5 ms

 

Table 32: Average page processing times for the algorithms.

Typically processing a single page that contains tables takes under 1 second. Pages
that do not contain any tables are processed approximately 100 ms faster. Both used test
data sets contain tables on most pages, but also pages that do not contain any tables. The
pages that do not contain any tables are not calculated for the table structure recognition
algorithm processing time. The Poppler library page rendering time for the US-data set
was offset from the EU-data set result by a few documents with over 2000 ms page ren-
dering times. The Poppler library does not yet provide a thread safe interface (planned)
which would allow processing multiple pages with multiple threads at the same time.

5.5 Implementation

The practical implementation of the algorithms is made with  Qt C++.  Qt is an open
source framework for developing applications for multiple platforms, such as Windows,
Mac and Linux systems and various mobile phone platforms. It allows for easy portabil-
ity between these systems and offers an extensive GUI framework. Qt is available under
the LGPL 2.1 and GPL version 3 licenses, and also offers a commercial license  for a
fee.

The implementation is made into  two separate parts:  a shared dynamic link library
module (DLL) and a GUI application for visualizing and debugging the performance of
the algorithm. The DLL is also compiled into a self-standing executable file, for direct
command line usage. Both parts of the implementation are made available online, in-
cluding their source codes.

Scripts for performance evaluations are created with Python scripting language. The
scripts read in XML files in a specified format [13], and evaluate the performance of the
algorithms as described in Chapters 5.1.1 and 5.1.2.
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The whole project consists of more than 20 000 lines of C++ and Python code, and
took several months to complete. The project is initially made available only as source
code, but future plans include releasing it as an installable application package.  The
working title for the project  GUI is “Harvezter”  and “Tabler” for the component con-
taining the table extraction algorithms.
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6 RELATED WORK

The need for automatic table data extraction has been recognized by others as well. A
few such systems  for  PDF  document table extraction are represented in this chapter.
The lack of standard data sets and performance evaluation methods hinders the compari-
son of the performance of different approaches to other existing similar approaches.  A
standard test set and testing methods would be required for better comparisons.

6.1 PDF-TREX

The PDF-TREX table data extraction system was published in 2009 by Oro and Ruffolo
[17]. The PDF-TREX system employs a heuristic approach (experience based) to table
detection and structure definition. In comparison to the software application created as a
part of this thesis work, it has the following limitations: 

• Only single column documents are supported.

• Ruling lines or other visual aids on the page are not considered.

The PDF-TREX system itself is not reported to be available for public use,  but the
data set used for evaluating its performance is currently (March, 2013) available on the
Internet [12].  The test  data set is provided without any ground truth definitions, and it
consists of 100 Italian, single column PDF documents (mostly financial data). The au-
thors  of the PDF-TREX system  report an F-score  of 91.97% for table detection and
84.61% for table structure definitions. These reported results are not directly compara-
ble to the scores obtained in the performance evaluation of this thesis work (Chapter 5),
due to the different data sets, as well as, and more significantly, the performance evalua-
tion methods. 

A somewhat more comparable measurement is reported for the PDF-TREX system
by Hassan [18],  who is one of the authors of the suggested performance evaluation
method  [14]  adapted by this thesis work. Hassan reports a  table detection  F-score of
55.9%  and table structure recognition F-score of 85.1% for the PDF-TREX system.

6.2 Pdf2table

Pdf2Table is a PDF table extraction system developed by Yıldız as a Master's thesis
work at  Vienna University of Technology in 2004  [19].  It uses a software tool called
“pdf2html” to converting the contents of a PDF document to HTML which it processes
further to detect table areas and table structures. The pdf2table system is designed as a
semi-automatic extraction system with a GUI that allows for the user to make modifica-
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tions to the table structures proposed by the extraction algorithm. The author writes:
“You should expect that a post-process in form of changes in the user interface must be
done in almost each case.”. 

In a later paper in 2005 by Yildiz et al. [20], the pdf2table system is reported of hav-
ing  a  table  detection  F-score  of  92.33% and  table  structure  recognition  F-score  of
85.42%. As the test data set, the authors report to have used 150 PDF documents gath-
ered using web search engines. The test data set of 150 document was further divided
into 50 lucid or unsophisticated tables and 100 complex tables without further explana-
tions. It is also unclear if the system had been developed further into a more automated
version considering the achieved scores. The pdf2table system and its source code are
available on the Internet [21]. The used data set is not available, and so, a direct com-
parison with the approach is impossible.

Figure 33: Original table used for pdf2table test run.*

* Source: Ashley et al.,”Depletion of mitochondrial DNA in fibroblast cultures from patients with 
POLG1 mutations is a consequence of catalytic mutations”. Human Mol. Genetics, 2008.
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Figure 33: The pdf2table system test run results. The pdf2table table extraction system
was able to recognize the table structure quite well with the column headers defined
correctly. The mistakes in this example table (red arrows) were: 4 incorrectly merged
rows and an extra column at the table right edge. These errors are most likely due to
text written in up-down direction in the page right margin that interferes with the row

structure.

A few example tables were used to test pdf2table performance. Figure 33 shows the
original example table and Figure 34 shows the pdf2table HTML output. Most signifi-
cant mistakes were made with tables in multiple column documents (clearly an unsup-
ported document type for pdf2table).  Tables with subheader rows were often split into
multiple tables erroneously.

6.3 Other products

An Internet search turns up a few other products for the purposes of PDF table extrac-
tion.  None of  them offer the same automated functionality as the software application
created as a part of this thesis work.
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• VeryPDF PDF Table Extractor.

◦ According to the VeryPDF website, the tool allows the user to manually (us-
ing a GUI) specify the table limits and row and column structures. Commer-
cial license.

• Okular PDF reader

◦ The Okular PDF reader allows the user to manually specify table area limits,
row and column separators and to extract a table.  The interface of the pro-
gram is shown in Figure 35. Freeware.

Figure 35: The Okular PDF reader lets the user manually specify table areas and to
define the column and row limits. The table can then be exported to other

applications.

• Adobe Professional

◦ The commercial version of the free Adobe PDF reader has a functionality to
export table areas defined manually. Commercial license.
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7 CONCLUSIONS

As a tool for “big data” extraction, the created software application performs very well
in defining table structure in correctly defined table areas. The table detection algorithm
performs well with tables that have more than 2 columns, but is still not very accurate in
including all the relevant elements at the top and bottom extremities of the tables. 

Tables that are split on to multiple pages or unified table areas that should be split
into multiple tables are not supported by the table detection algorithm. These are not es-
sential features in most practical applications for the algorithms, because in most cases,
the relevant data will still be extracted with correct header-element associations.

7.1 Discussion on accuracy

Several different factors, that are trade-offs with each other, affect the performance of
the algorithms.  Fine-tuning of several  of the  parameters of the  algorithm could still
yield significant improvements. Most room for improvement exists in the table detec-
tion and edge detection algorithms.

Few distinct features of the algorithms that have not been evaluated with any quan-
tifiable way are: header row recognition, title row recognition, and caption row recogni-
tion. These features of the algorithm serve an important role in further semantical or
functional processing of the table data. 

The header row recognition algorithm (Chapter 4.5) is a major part of the table struc-
ture recognition algorithm (Chapter 4.4). Thus, its performance directly affects the per-
formance of the table structure recognition algorithm (Chapter 5.4.1).  As a rough esti-
mation it would seem to be performing equally as well as the full table structure recog-
nition algorithm.

Evaluating the title and caption row recognition parts of the algorithm is a bit more
difficult, because they were completely removed when adapting the algorithm for evalu-
ation according to the test data set ground truth definitions. As a rule of thumb, they are
able to find the most common types of titles (centered on tables or running the entire
width of a table), with some difficulties in recognizing more imaginative ways of pre-
senting table titles and captions. Overall, errors in this part of the algorithm usually only
result  in  the  title  becoming a  column header  or  vice  versa,  a  column header  being
marked as a table title. Erroneously detected captions are typically insignificant, since
the caption text will typically only become a part of the table body.
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7.1.1 Edge detection performance

The main source of errors for the edge detection algorithm, are edges that should not ex-
ist at all. One such example is shown in Figure 36. The problems in edge detection in
this example are not caused by erroneous function of the algorithm, but rather by the de-
sign and construction of the document and the table, that have resulted in unwanted
white lines around textual elements in the table header.

Figure 36: The top panel shows the original PDF document table. Due to the way the
document has been constructed, white outlines surround column header text blocks.

The lower panel shows the raw output of the edge detection algorithm, with
incorrectly detected rectangular areas highlighted with red arrows.  Source: EU-data set

[13].

To address these kind of problems in edge detection, the robustness of the algorithm
could be further improved by adding more rules to the formation of grid cells. One vi-
able  strategy to avoid such unwanted behavior by the algorithm, would be to enforce
minimum sizes (width) for empty rectangular areas.

7.1.2 Problematic tables and data set ambiguities

The used data set ground truth values for the table locations and table structure defini-
tions have been evaluated by three experts in the area of table structure recognition [14],
and all tables that they could not agree on were removed from the data set before it was
published. However, some definitions of the ground truth can still be argued in a few
different directions. Figures 37 through 39 show some of the worst scoring tables in the
US- and EU-data sets. 
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Figure 37: Structure recognition score P/ R: 0.82/ 0.81. Highlighted (red outline)
areas show problematic stub, and bottom header row. The algorithm merges the table
stub incorrectly into a single column. The data set ground truths define highlighted

row as merged into the header text cells above it. The algorithm sees it as a separate
row.  Source: EU-data set [13].

Figure  37 shows a table where a row of incremental numbers,  under the column
header texts is included in the same cell with the column header text  in the data set
ground truths. For a human reader of the document it makes very little difference, but an
algorithm will be scored for 20 imprecise and 16 unrecalled proto-links in this case (not
counting issues with the stub). A more sophisticated performance testing system could
allow for either-or types of proto-linkages for such special cases.

Figure 38 shows a table, or perhaps two tables marked as one in the ground truth def-
initions of the US-data set. In either case, the $-signs, because they appear in a separate
column, that has no obvious column header directly above it, get merged incorrectly
into the columns on their left side. This causes all the cells that are either missing or
have gained the $-signs into their contents (cells on both sides of the dollar signs), to
evaluate having imprecise and unrecalled  proto-links. This is  due to the way that the
proto-links are compared; by comparing the connected cells contents. A more sophisti-
cated comparison methods could maybe only penalize either the cell that has gained ex-
tra content or the one that has lost it, but not both. This particular table also features the
possibility to keep the $-signs in their separate columns, because now, only the top and
bottom amounts for each year in each column will have the $-signs associated with
them.
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Figure 38: Structure recognition score P/ R: 0.55/ 0.58. Highlighted (red outline)
areas show problematic “$”-sign columns. The algorithm merges these columns

erroneously to the left. The header cell “2011” is not extended to span all of the 4
correct columns. Source: US-data set [13].

 Figure 39: Structure recognition score P/ R: 0.64/ 0.40. Highlighted (red outline)
header row features words (year numbers) in too close proximity to be recognized as
separate columns, which leads to poor performance. Vertical separator lines do not

extend into the header. Source: US-data set [13].

Figure 39 shows a table with very narrow spacing between the words in the header. For
an algorithm, a row with many narrowly spaced words (the year numbers), that run the
entire length of the table, it is very easy to mistake it for a table title text row. Perhaps a
strategy of looking at obvious column breaks defined by the table body data with its
separator lines and good alignment of the body elements could serve as a clue for keep-
ing the header words in separate cells.
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7.2 Future plans

There are numerous ways that the project could still be improved. Here is a list of a few
ideas, that would make the software application more useful for interested users:

• Improvements

◦ Further improvement of the table structure recognition algorithm.

◦ Further improvement of the table detection algorithm.

◦ Further improvement of the edge detection algorithm.

◦ Speed improvement of the edge detection algorithm.

◦ Evaluation and fine-tuning of the performance of the header prediction algo-
rithm.

• Expansions

◦ Expansion of the GUI part of the project to serve as a ground truth definition
tool to create new data sets that include table titles, headers and captions.

◦ Installable application package.

◦ Support for image files and text recognition.

◦ Online server implementation.

◦ An easy to  set up,  comprehensive  testing suite  for  table  extraction  algo-
rithms.

◦ Expansion of the API to allow for use of external edge detection algorithm.

The developed algorithms are also submitted to a competition for table detection and
structure recognition: International Conference on Document Analysis and Recognition
(ICDAR)  2013* Table Competition [13].  The results of the competition were not yet
available by the last revision date of this thesis.

* http://www.icdar2013.org/

http://www.icdar2013.org/
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APPENDIX A – STRUCTURE RECOGNITION 
RESULTS – EU-DATA SET

EU-data set results

PDF document: 'eu-001.pdf'
PRECISION:  495/ 495 = 1.0000      100.00%
RECALL:     495/ 495 = 1.0000      100.00%
PDF document: 'eu-002.pdf'
PRECISION:  140/ 143 = 0.9583       97.90%
RECALL:     140/ 146 = 0.9231       95.89%
PDF document: 'eu-003.pdf'
PRECISION:  295/ 295 = 1.0000      100.00%
RECALL:     295/ 295 = 1.0000      100.00%
PDF document: 'eu-004.pdf'
PRECISION:  146/ 146 = 1.0000      100.00%
RECALL:     146/ 146 = 1.0000      100.00%
PDF document: 'eu-005.pdf'
PRECISION:  497/ 499 = 0.9697       99.60%
RECALL:     497/ 499 = 0.9697       99.60%
PDF document: 'eu-006.pdf'
PRECISION:   34/  34 = 1.0000      100.00%
RECALL:      34/  37 = 0.9189       91.89%
PDF document: 'eu-007.pdf'
PRECISION:  292/ 296 = 0.9841       98.65%
RECALL:     292/ 296 = 0.9841       98.65%
PDF document: 'eu-008.pdf'
PRECISION:   67/  67 = 1.0000      100.00%
RECALL:      67/  67 = 1.0000      100.00%
PDF document: 'eu-009.pdf'
PRECISION:   78/  78 = 1.0000      100.00%
RECALL:      78/  84 = 0.9286       92.86%
PDF document: 'eu-010.pdf'
PRECISION:   45/  45 = 1.0000      100.00%
RECALL:      45/  45 = 1.0000      100.00%
PDF document: 'eu-011.pdf'
PRECISION:  380/ 380 = 1.0000      100.00%
RECALL:     380/ 380 = 1.0000      100.00%
PDF document: 'eu-012.pdf'
PRECISION:  204/ 206 = 0.9903       99.03%
RECALL:     204/ 206 = 0.9903       99.03%
PDF document: 'eu-013.pdf'
PRECISION:  273/ 273 = 1.0000      100.00%
RECALL:     273/ 273 = 1.0000      100.00%
PDF document: 'eu-014.pdf'
PRECISION:  127/ 131 = 0.9695       96.95%
RECALL:     127/ 129 = 0.9845       98.45%
PDF document: 'eu-015.pdf'
PRECISION:  160/ 164 = 0.9836       97.56%
RECALL:     160/ 166 = 0.9758       96.39%
PDF document: 'eu-016.pdf'
PRECISION:   70/  70 = 1.0000      100.00%
RECALL:      70/  70 = 1.0000      100.00%
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PDF document: 'eu-017.pdf'
PRECISION:  513/ 513 = 1.0000      100.00%
RECALL:     513/ 513 = 1.0000      100.00%
PDF document: 'eu-018.pdf'
PRECISION:  297/ 299 = 0.9933       99.33%
RECALL:     297/ 299 = 0.9933       99.33%
PDF document: 'eu-019.pdf'
PRECISION:  101/ 103 = 0.9806       98.06%
RECALL:     101/ 103 = 0.9806       98.06%
PDF document: 'eu-020.pdf'
PRECISION: 1148/1148 = 1.0000      100.00%
RECALL:    1148/1148 = 1.0000      100.00%
PDF document: 'eu-021.pdf'
PRECISION:  329/ 421 = 0.7765       78.15%
RECALL:     329/ 346 = 0.9219       95.09%
PDF document: 'eu-022.pdf'
PRECISION:  109/ 134 = 0.8786       81.34%
RECALL:     109/ 139 = 0.8611       78.42%
PDF document: 'eu-023.pdf'
PRECISION:  534/ 539 = 0.9907       99.07%
RECALL:     534/ 539 = 0.9907       99.07%
PDF document: 'eu-024.pdf'
PRECISION:  138/ 138 = 1.0000      100.00%
RECALL:     138/ 138 = 1.0000      100.00%
PDF document: 'eu-025.pdf'
PRECISION:   74/  74 = 1.0000      100.00%
RECALL:      74/  74 = 1.0000      100.00%
PDF document: 'eu-026.pdf'
PRECISION:   25/  25 = 1.0000      100.00%
RECALL:      25/  25 = 1.0000      100.00%
PDF document: 'eu-027.pdf'
PRECISION:  134/ 134 = 1.0000      100.00%
RECALL:     134/ 134 = 1.0000      100.00%
PDF document: 'eu-028.pdf'
PRECISION:  328/ 328 = 1.0000      100.00%
RECALL:     328/ 328 = 1.0000      100.00%
PDF document: 'eu-029.pdf'
PRECISION:  648/ 794 = 0.8156       81.61%
RECALL:     648/ 803 = 0.8068       80.70%
PDF document: 'eu-030.pdf'
PRECISION: 1068/1181 = 0.9041       90.43%
RECALL:    1068/1198 = 0.8907       89.15%
PDF document: 'eu-031.pdf'
PRECISION:  499/ 569 = 0.8770       87.70%
RECALL:     499/ 566 = 0.8816       88.16%
PDF document: 'eu-032.pdf'
PRECISION:  370/ 459 = 0.8075       80.61%
RECALL:     370/ 465 = 0.7839       79.57%
PDF document: 'eu-033.pdf'
PRECISION:  112/ 112 = 1.0000      100.00%
RECALL:     112/ 112 = 1.0000      100.00%
PDF document: 'eu-034.pdf'
PRECISION:   22/  22 = 1.0000      100.00%
RECALL:      22/  22 = 1.0000      100.00%

Processed 34 files

PRECISION AVG: 0.967042     (9752/10315 relations, in 59 tables in 34 files)
RECALL AVG:    0.964284     (9752/10286 relations, in 59 tables in 34 files)

F-SCORE: 0.965661     (96.57%)
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APPENDIX B – STRUCTURE RECOGNITION 
RESULTS – US-DATA SET

US-data set results
PDF document: 'us-001.pdf'
PRECISION:  142/ 146 = 0.9726       97.26%
RECALL:     142/ 142 = 1.0000      100.00%
PDF document: 'us-002.pdf'
PRECISION:  148/ 148 = 1.0000      100.00%
RECALL:     148/ 148 = 1.0000      100.00%
PDF document: 'us-003.pdf'
PRECISION:   59/  59 = 1.0000      100.00%
RECALL:      59/  59 = 1.0000      100.00%
PDF document: 'us-004.pdf'
PRECISION:   95/  95 = 1.0000      100.00%
RECALL:      95/  95 = 1.0000      100.00%
PDF document: 'us-005.pdf'
PRECISION:  198/ 203 = 0.9811       97.54%
RECALL:     198/ 203 = 0.9811       97.54%
PDF document: 'us-006.pdf'
PRECISION:   67/ 113 = 0.5929       59.29%
RECALL:      67/  94 = 0.7128       71.28%
PDF document: 'us-007.pdf'
PRECISION:   46/  52 = 0.8846       88.46%
RECALL:      46/  50 = 0.9200       92.00%
PDF document: 'us-008.pdf'
PRECISION:   68/  85 = 0.8000       80.00%
RECALL:      68/  77 = 0.8831       88.31%
PDF document: 'us-009.pdf'
PRECISION:   17/  17 = 1.0000      100.00%
RECALL:      17/  17 = 1.0000      100.00%
PDF document: 'us-010.pdf'
PRECISION:    9/  11 = 0.8182       81.82%
RECALL:       9/  22 = 0.4091       40.91%
PDF document: 'us-011.pdf'
PRECISION:   27/  27 = 1.0000      100.00%
RECALL:      27/  27 = 1.0000      100.00%
PDF document: 'us-012.pdf'
PRECISION:  149/ 213 = 0.8090       69.95%
RECALL:     149/ 208 = 0.7412       71.63%
PDF document: 'us-013.pdf'
PRECISION:  149/ 149 = 1.0000      100.00%
RECALL:     149/ 149 = 1.0000      100.00%
PDF document: 'us-014.pdf'
PRECISION:  174/ 193 = 0.9016       90.16%
RECALL:     174/ 189 = 0.9206       92.06%
PDF document: 'us-015.pdf'
PRECISION:  170/ 341 = 0.4985       49.85%
RECALL:     170/ 187 = 0.9091       90.91%
PDF document: 'us-016.pdf'
PRECISION:   85/ 123 = 0.6911       69.11%
RECALL:      85/ 104 = 0.8173       81.73%
PDF document: 'us-017.pdf'
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PRECISION:   47/  47 = 1.0000      100.00%
RECALL:      47/  47 = 1.0000      100.00%
PDF document: 'us-018.pdf'
PRECISION:   40/  40 = 1.0000      100.00%
RECALL:      40/  40 = 1.0000      100.00%
PDF document: 'us-019.pdf'
PRECISION:  112/ 183 = 0.5948       61.20%
RECALL:     112/ 176 = 0.6150       63.64%
PDF document: 'us-020.pdf'
PRECISION:  123/ 223 = 0.5441       55.16%
RECALL:     123/ 213 = 0.5677       57.75%
PDF document: 'us-021.pdf'
PRECISION:  125/ 135 = 0.9259       92.59%
RECALL:     125/ 125 = 1.0000      100.00%
PDF document: 'us-022.pdf'
PRECISION:  173/ 173 = 1.0000      100.00%
RECALL:     173/ 173 = 1.0000      100.00%
PDF document: 'us-023.pdf'
PRECISION:   37/  37 = 1.0000      100.00%
RECALL:      37/  37 = 1.0000      100.00%
PDF document: 'us-024.pdf'
PRECISION:   28/  30 = 0.9333       93.33%
RECALL:      28/  29 = 0.9655       96.55%
PDF document: 'us-025.pdf'
PRECISION:   70/ 110 = 0.6364       63.64%
RECALL:      70/ 174 = 0.4023       40.23%

Processed 25 files

PRECISION AVG: 0.863361     (2358/2953 relations, in 33 tables in 25 files)
RECALL AVG:    0.873792     (2358/2785 relations, in 34 tables in 25 files)

F-SCORE: 0.868545     (86.85%)
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APPENDIX C – TABLE DETECTION RESULTS – 
EU-DATA SET

PDF document: 'eu-001.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'eu-002.pdf'
PURITY:       2/3 = 0.6667       66.67%
COMPLETENESS: 0/2 = 0.0000        0.00%
PDF document: 'eu-003.pdf'
PURITY:       5/6 = 0.8333       83.33%
COMPLETENESS: 1/5 = 0.2000       20.00%
PDF document: 'eu-004.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-005.pdf'
PURITY:       2/2 = 1.0000      100.00%
COMPLETENESS: 2/3 = 0.6667       66.67%
PDF document: 'eu-006.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-007.pdf'
PURITY:       3/3 = 1.0000      100.00%
COMPLETENESS: 1/3 = 0.3333       33.33%
PDF document: 'eu-008.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-009.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'eu-010.pdf'
PURITY:       1/3 = 0.3333       33.33%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-011.pdf'
PURITY:       3/3 = 1.0000      100.00%
COMPLETENESS: 3/3 = 1.0000      100.00%
PDF document: 'eu-012.pdf'
PURITY:       2/4 = 0.5000       50.00%
COMPLETENESS: 0/2 = 0.0000        0.00%
PDF document: 'eu-013.pdf'
PURITY:       1/2 = 0.5000       50.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-014.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-015.pdf'
PURITY:       2/2 = 1.0000      100.00%
COMPLETENESS: 2/2 = 1.0000      100.00%
PDF document: 'eu-016.pdf'
PURITY:       0/0 = 0.0000        null
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'eu-017.pdf'
PURITY:       2/4 = 0.5000       50.00%



70

COMPLETENESS: 2/2 = 1.0000      100.00%
PDF document: 'eu-018.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-019.pdf'
PURITY:       1/2 = 0.5000       50.00%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'eu-020.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'eu-021.pdf'
PURITY:       5/5 = 1.0000      100.00%
COMPLETENESS: 5/5 = 1.0000      100.00%
PDF document: 'eu-022.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/2 = 0.5000       50.00%
PDF document: 'eu-023.pdf'
PURITY:       1/3 = 0.3333       33.33%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'eu-024.pdf'
PURITY:       2/7 = 0.2857       28.57%
COMPLETENESS: 2/2 = 1.0000      100.00%
PDF document: 'eu-025.pdf'
PURITY:       1/5 = 0.2000       20.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-026.pdf'
PURITY:       1/4 = 0.2500       25.00%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'eu-027.pdf'
PURITY:       1/3 = 0.3333       33.33%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-028.pdf'
PURITY:       2/2 = 1.0000      100.00%
COMPLETENESS: 0/2 = 0.0000        0.00%
PDF document: 'eu-029.pdf'
PURITY:       2/2 = 1.0000      100.00%
COMPLETENESS: 0/3 = 0.0000        0.00%
PDF document: 'eu-030.pdf'
PURITY:       2/3 = 0.6667       66.67%
COMPLETENESS: 0/2 = 0.0000        0.00%
PDF document: 'eu-031.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'eu-032.pdf'
PURITY:       2/2 = 1.0000      100.00%
COMPLETENESS: 0/2 = 0.0000        0.00%
PDF document: 'eu-033.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'eu-034.pdf'
PURITY:       0/0 = 0.0000        null
COMPLETENESS: 0/1 = 0.0000        0.00%

Processed 34 files

COMPLETENESS AVG: 0.491176     (29/59 tables, in 34 files)
PURITY AVG:       0.778199     (54/81 tables, in 32 files)

CPF: 0.602238        (60.22%)
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APPENDIX D – TABLE DETECTION RESULTS – 
US-DATA SET

PDF document: 'us-001.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-002.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-003.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 0/2 = 0.0000        0.00%
PDF document: 'us-004.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-005.pdf'
PURITY:       2/3 = 0.6667       66.67%
COMPLETENESS: 1/2 = 0.5000       50.00%
PDF document: 'us-006.pdf'
PURITY:       1/2 = 0.5000       50.00%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'us-007.pdf'
PURITY:       0/0 = 0.0000        null
COMPLETENESS: 0/2 = 0.0000        0.00%
PDF document: 'us-008.pdf'
PURITY:       0/2 = 0.0000        0.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-009.pdf'
PURITY:       1/2 = 0.5000       50.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-010.pdf'
PURITY:       1/4 = 0.2500       25.00%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'us-011.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-012.pdf'
PURITY:       1/3 = 0.3333       33.33%
COMPLETENESS: 2/4 = 0.5000       50.00%
PDF document: 'us-013.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-014.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-015.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-016.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-017.pdf'
PURITY:       1/2 = 0.5000       50.00%
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COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-018.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-019.pdf'
PURITY:       2/4 = 0.5000       50.00%
COMPLETENESS: 0/2 = 0.0000        0.00%
PDF document: 'us-020.pdf'
PURITY:       2/3 = 0.6667       66.67%
COMPLETENESS: 0/2 = 0.0000        0.00%
PDF document: 'us-021.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-022.pdf'
PURITY:       1/2 = 0.5000       50.00%
COMPLETENESS: 2/2 = 1.0000      100.00%
PDF document: 'us-023.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 1/1 = 1.0000      100.00%
PDF document: 'us-024.pdf'
PURITY:       1/3 = 0.3333       33.33%
COMPLETENESS: 0/1 = 0.0000        0.00%
PDF document: 'us-025.pdf'
PURITY:       1/1 = 1.0000      100.00%
COMPLETENESS: 0/1 = 0.0000        0.00%

Processed 25 files

COMPLETENESS AVG: 0.640000     (19/34 tables, in 25 files)
PURITY AVG:       0.739583     (26/43 tables, in 24 files)

CPF: 0.686198        (68.62%)


