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ABSTRACT 
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ABDULLAH, WAQAS: Visual Odometery: Feature Based Tracking and Velocity 
Estimation Based on Ground Looking Camera 
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Major subject: Mechatronics 
Examiner: Professor Kalevi Huhtala and Dr. Reza Ghabcheloo 
Keywords: camera, corner detection, corner matching, odometery, computer 
vision, robotics, optical flow. 

 
The computer vision field has close relation with autonomous robotics which is in use 

for several purposes which include mobile robot vision tasks, robot navigation, motion 

trajectory, object detection and tracking and security surveillance tasks. There are many 

techniques available which are being used for completing these tasks but many of them 

lead to problems like low resolution, limited applicability and high capital investment. 

This thesis examines the way in which we could achieve results within some tolerance 

level of accuracy and low cost. Visual odometery is one of the main objectives of this 

thesis which is achieved with simple and practical method. The algorithm is developed 

to estimate the velocity using a corner detection technique based on ground looking 

camera.  

 

The thesis is divided into three main parts. In the first part of the thesis, literature review 

and previous work done in the relevant field is explained. The theoretical background of 

the topic is also described in the first part of the thesis. Second part of the thesis 

demonstrates the development of the algorithm, pre and post processing and 

implementation of the algorithm. Last part of the thesis describes the different test 

environments where the developed algorithm is implemented. The test environments are 

further classified into two main categories. Conclusions, results, problems faced during 

the whole process and future tasks are also included in the last part of the thesis. 

 

The study indicates that, selection of the right pre-processing parameters can enhance 

the results quality. At the same time by providing the appropriate illumination for the 

camera system can also increase the efficiency of the outcome. This research and 

developed algorithm has the potential to be used for further implementation at 

commercial level by changing some necessary parameters in the algorithm and 

implementation. This research could be more useful by implementing addressed future 

tasks in Section 5.3.2, in order to achieve higher efficiency in the results. 

Implementation of all necessary parameters explained in this thesis and by considering 

future tasks will make this research more effective and beneficial for the business. 
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1. INTRODUCTION 

1.1. Background 

It is important in the field of autonomous robots to estimate the velocity of mobile robot 

within some tolerances in order to achieve higher-level motion and navigation tasks 

accurately. Image processing is one of the tools that are used for this purpose. The 

visual odometry process consists of three main stages: feature detection, feature 

matching and image transformation, as shown in the Figure 1.1. 

 

Feature Detection

Feature Matching

Image Transformation

 
Figure 1.1: Different stages for velocity calculation using image processing 

 

To calculate translation from on image to the other, the first feature detection. In this 

step a set of features e.g. corners, blobs are detected in both images. The most required 

property of the feature detection is repeatability, i.e. the method must find the same 

feature points in the processed images. Feature points are presented as feature vector 

(descriptors). Descriptors have to be unique and at the same time robust to noise. In the 

feature matching stage, the feature vectors are compared and matched between two 

images (current image and previous (second) image). The feature matching is based on 

a distance, e.g. the Euclidean distance [48] between the feature vectors. In the 3
rd

 stage, 

image transformation is calculated from the result of feature matching.  

 

This process is different from conventional “content-based image retrieval (CBIR)” 

[49], where the features have the same properties in all the images, e.g. red colour is 

considered as the point of relevancy between the images. So the difference is of colour 

relevancy and features detection in the process of CBIR and feature detection 

respectively.  
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Feature detection and feature matching have been the subject of research in different 

fields, namely mobile robot vision [50, 51], model based object recognition [52], 

panorama stitching [53, 54], video sequence matching [55], scalable object recognition 

[56]. 

 

Different types of image features are studied, for example, corners [57], interest-points 

[58], and moment invariants [59]. These all image features are declared as, depending 

upon their definition criteria. Corner points are the most significant features point in all 

of them. The “interest point” and “corners” are used equivalently in the literature but 

corners are also presented as the special subclass of interest-point [60]. Detail of corners 

is mentioned in Section 2.3.  

 

1.2. Objectives 

The main objectives of this thesis are as follows: 

 

Visual Odometery: In an autonomous navigation, the position estimation of mobile 

robot is an essential part. Wheel encoder based odometery is the first method used for 

dead-reckoning for wheeled ground vehicles. Dead-reckoning is the process of 

determining the current position by using the data of previous position. In this process 

the error is accumulated to the current position. Despite of its error accumulation and 

error computation due to wheel slippage, it is still one of the main localisation sensing 

tools in the majority of ground vehicles [61]. Reason for the popularity of this method is 

simplicity and practicality [62]. In our case, calculation for odometery is based on visual 

data. Main idea is to find good feature points in one frame with corresponding features 

in the next frame and the transformation calculation from these features points. Method 

is carried out using single camera looking downwards and related work example is 

mentioned in [63].  

 

Velocity estimation: Using idea of features detection in one frame and corresponding 

features in next frame, velocity estimation is also calculated in this thesis work. 

Distance between detected features in current frame and the corresponding features in 

the second frame is the key for the velocity calculation-using frame per second as a time 

factor.  

 

Application development: In order to achieve the above mentioned objectives, the 

application is developed using MATLAB Simulink and tested with two test 

environments, i.e. real image with simulated motion and real image with real motion. 
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1.3. Dissertation outline 

Chapter 2 describes the basic of terminology of image processing and fundamentals of 

corner detection. Another idea and technique which is used for the speed estimation is 

optical flow. An overview of optical flow algorithm is presented in chapter 3. 

Developed application using corner detection algorithm is presented in chapter 4. 

Chapter 5 contains implementations and practical results and conclusions for the 

proposed algorithm and is followed by the references of the research work.  
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2. FUNDAMENTALS OF CORNER 

DETECTION 

2.1. Introduction 

 

Recent years of research have witnessed major advancement in the field of 

autonomous mobile robot systems. Various techniques and concepts have increased 

the research   interest in this area. Many techniques and methods which had been 

used in the field of machine vision requires matching of two consecutive image 

frames in order to extract information from them. Corner detection is one of the 

leading concepts of interest in the field of machine vision used for autonomous robot 

systems.  

 

For example, it is possible to find out speed of the platform on which the camera is 

mounted, tracking of the object in the images, shape analysis, motion analysis etc. if 

feature matching is successful between two images frames. The matching of all the 

pixels from one frame to the next frame will be computationally very expensive; 

hence this is prohibitive for most of the applications. In order to overcome such 

situation some locations in the image are used to point out which are known as 

feature points or corner points. These corner points then execute association between 

two consecutive image frames. This will reduce the association point‟s 

computational time for further processing; however, corner detection time is still 

needed be to consider. Approximate reconstructions of the shape from corners are 

also one of the important aspects of corner detection that make it stand out among 

other techniques of machine vision [29-33].  

 

2.2. Image 

Image is acquired when the illumination coming from the source is reflected from the 

scene. Hence, image is the 2-D function relying on illumination source and reflection 

of the scene, which is captured and is mentioned in [64].  

 

 (   )   (   )   (   ) 
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where,          are (2-D spatial variables) denoting spatial coordinates on the 

image,  (   ) is the illumination function and   (   ) is the reflectance function. 

When the image is digitized, it is possible to represent it with matrix with m rows and 

n columns. Each element of this matrix is known as pixel [64]. Digital image can be, 

grey scale, colour and/or binary. In this thesis work, grey scale image is used because 

of the corner detection algorithm requirement. The grey scale image has the 

luminance intensity information only, without any colour information. If each pixel 

is represented by a b bit number, in this case each pixel in the image has certain 

value of intensity in the range of 0 to      [63]. A pixel in the image is the 

element, which contains small variations in intensity among themselves, and large 

variation from other groups of pixels. This pixel variation among themselves and 

from other groups of pixels is termed as object rising phenomenon [65].  

2.3. Corners 

Interest points and corner points are termed as same in the literature [60].  Guru et al 

[66] defined corners as the intersection of two contiguous, comparatively straight 

curve segments. A main criterion of confirmation for a point as corner is that the 

direction of the curve changes significantly and sharply. The corners are shown in 

following two image examples:  

 

 

Figure 2.1: (a) Leaf image available at [67] original image on the left hand side and 

edged image with corners on the right hand side [copied from source 16] 
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Figure 2.2: Detected corners at test image [copied from source 11] 

2.4. Corner detectors 

There are many different corner detectors proposed depending upon their definitions 

for corners point in an image. Some of the corner detectors find corners on the basis 

of local symmetry, some of them work to locate the corners and others find out the 

changes in the texture. Corner points are interesting points because they define the 

edges and came into existence when two or more edges of the two different or part of 

the same objects define its boundaries. The motions at edges are ambiguous by virtue 

of the aperture problem [34] but corners being 2D feature do not cause such 

ambiguity specifically in motion analysis.  

 

2.4.1. Corner detectors requirement 

Corner detector should meet the following criteria‟s in order to reveal correct result, 

 True corners should be detected 

 Removal of false corners and/or outliers 

 Corner points should be well localized 

 Corner detector should be robust with noise 

 Corner detector should be computationally efficient 

 

There are three main and popular corner detection algorithms available, which are 

namely as follows [71]; 

 Shi & Tomas detection method (minimum eigenvalue) [69-70] 

 Harris & Stephen corner detection [8] 

 Rosten & Drummond method (local intensity comparison) [10] 

All of the above stated methods have their own significance with respect to the 

criteria they use to find the corner points.  
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2.4.2. Harris & Stephen corner detector 

This is a popular corner detector in the field of machine vision because of its strong 

invariance to illumination variation, scaling, rotation and image noise [7]. The 

working principle of the detector is based on a matrix related to the local auto-

correlation function of the signal and this function calculates the local changes of the 

signal from small amount of the moment of pixel in different directions. After auto-

correlation operation is execution, the two eigenvalues are calculated for each pixel. 

From the eigenvalues a number or point is associated to each pixel in the image [9]. 

If this number or points is above certain threshold value, then the corresponding 

pixel is defined as corner. The whole method and criteria on which corners are 

allocated in an image is described briefly in [8].   

2.4.3. Shi & Tomasi corner detector 

Shi & Tomasi corner detector is entirely based on the Harris & Stephens corner 

detector but with some changes in the detection method and its criteria. Shi & 

Tomasi proposed direct use of eigenvalues instead of function manipulation with the 

points. The results are more accurate.  

 

A score is associated to each pixel in the coordinate (x, y) on the image. The 

calculation of score in Harris and Shi & Tomasi is as follows;  

 

For Harris & Stephens [9]: 

         (      )  

             

                

For Shi & Tomasi [9]: 

        (     ) 

 

where M denotes the covariance matrix or scatter matrix, K is an adjustable constant 

and known as sensitivity factor. R denotes the score,       are the eigenvalues. 

Notice that M is 2x2 positive definite matrix, thus the eigenvalues are non-negative 

values [35, 36]. From values of        we can define whether a pixel is associated to 

an edge or a corner point. There are three cases to be considered [36]: 

 

 If both            are small, local auto-correlation function is flat and 

targeted image region is of approximately constant intensity. The change in 

the matrix M(x, y) is little in any direction. 

 If one eigenvalue is high and the other is low local auto-correlation is ridge 

shaped. It shows little change in matrix M(x, y) in the direction of ridge and 

significant change in the orthogonal direction, which will indicate an edge 

surface. 
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 If both eigenvalues are high, then the local auto-correlation function is 

sharply peaked then the change in matrix M(x, y) in any direction will be 

significant, which indicates a corner. 

  

2.4.4. Rosten & Drummond corner detector 

It is an algorithm proposed by Rosten and Drummond for recognizing the features or 

interest points in an image. An interest point or feature in an image is a pixel which 

has a well-defined position and can be robustly detected. This corner detector is 

known as FAST corner detector where FAST is an abbreviation of Features from 

Accelerated Segment Test. Typically like the name of this corner detector it is 

recognized as fast corner detector as compared to other available corner detectors 

[10]. 

 

2.5. Corner detection steps 

Most of the corner detectors follow same steps to detect interest or corner points in 

an image. Those corner detectors are as follows [11]; 

 Moravec 

 Harris/Plessey 

 Trajkovic and Hedley (4-neigbhours) 

 Trajkovic and Hedley (8-neigbhours) 

 

Mainly corner detection is done in three consecutive steps: 

1. Corner operator application  

2. Threshold application 

3. Non-maximal suppression 

 

Corner operator application: This is the first step in which a corner detector is 

supplied with an image as input. Corner operator requires few parameters to 

determine whether the pixel in an input image is a corner or not. The “cornerness 

measure [11]” is the measure which simply defines the degree to which corner 

operator consider the pixel as corner in an input image. All the corner detectors 

manipulate this first step and they only differ with each other on the basis of measure 

used for manipulation. The output image of this step is named as “cornerness map 

[11]”. Output image is an image with the same dimension as input image but it could 

be consider as processed version of the input due to corner operator‟s application to 

each pixel of the input image.  
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Threshold application: Corner operators define the corners as local maximum in the 

output image (cornerness map) of the first step. At the second step there are many 

local maximum in the cornerness map which contain small cornerness measure and 

hence are not true corners. In order to avoid these un-true corners for further 

processing threshold application is used. All the local maxima under threshold value 

are set to zero and thus the image is considered as thresholded cornerness map. The 

threshold selection requires repeated judgments and error experimentation tests. The 

threshold value should be consider high enough to avoid un-true corners and low 

enough to hold true corners, therefore, trade-off policy needs to be adopted in this 

scenario. It is very rare to find ideal threshold value to have ideal corners in an 

image.  

 

Non-maximal suppression: The non-maximal suppression is applied to define the 

location of the local maxima in the thresholded cornerness map. At this stage the 

cornerness map contains the non-zero values around local maximums which are 

declare as corners. Cornernerness measure for each pixel in the thresholded 

cornerness map is set to zero by non-maximal suppression if its cornerness measure 

is not larger than the cornerness measure of all other points within a certain distance. 

After non-maximal suppression application, the remaining points are non-zero points 

in the cornerness map and are true corners.  
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Following flow diagram shows how these steps are processed; 

 

Start 

Process

Input Image

Corner Operator 

application

Threshold 

application

Cornerness 

measure

Thresholded 

Cornerness 

measure

Non.maximal 

suppression 

application

True Corners 

Output

Output

End 

Process
 

Figure 2.3: Flow diagram for corner detection [11 modified] 

 

The visual presentation of each step of the corner detection is mentioned in [11] and 

is as follows: 
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Figure 2.4: Pictorial representation of corner detection step at Lena’s image [11] 

2.6. Corner matching 

The problem of corner matching between two images and at the same time, avoiding 

mismatches is an ultimate problem in machine vision application and it has been 

studied for couple of decades [13]. After an intensive research in this domain, there 

are noteworthy numbers of algorithms available for this purpose but no one is 

universal and reliable enough to survive with all situations and work environment 

[14]. The difficulties might be the corner detection and then the relative matching 

between two images. The solution for such problems might be computationally 

expensive and the algorithm could generates some false corners due to noise in the 

images and even algorithm might lose true corners due to the noise caused by the 

illumination and the corner strength which if presented with some numerical value 

could be tentative [15].  

 

2.6.1. Corner point representations 

Corner point representation is one of the important aspects in the corner matching. In 

corner matching each feature must be represented with its unique information. The 

more the information is unique, the less is the chance to have false matching at 

matching stage. The set of information about feature is known as descriptors.  

 

The descriptors are categorized into two types and are as follows; 

 Geometric information 

 Neighbourhood intensity 
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Geometric representation of the feature consists of curvature, angle and the distance 

from its neighbouring corner points.  Geometric representation is used in [37].  

 

Neighbourhood intensity representation is based on pixel intensity values in a 

specific neighbourhood around each corner point.  Neighbourhood representation is 

knows as local descriptors. Mikolajczyk and Schmid [25] presented the comparative 

study of local descriptors. Examples of such descriptors are differential invariants 

[38-40], central moment invariants [41], SIFT-based descriptors [42, 43] and 

steerable filters [44] among others.   

2.6.2. Image matching Categories 

The corner matching is generally divided into two categories that are “area based and 

feature based” corner matching [17, 18]. Following pictorial presentation will show 

the tree diagram for the corner matching subdivision categories.  

 

Image Matching 

Categories

Area Based 

Matching

Feature Based 

Matching

Neighborhood 

Matching 

Geometric 

Based Matching

Nearest Neighbor 

distance ratio based
Nearest neighbor

Threshold based 

matching

 
Figure2.5: Image matching categories and sub-division [modified 16] 

 

2.6.2.1 Area based matching 

This method will use grey patch area of the current image to relate with the previous 

image using cross-correlation or least-square technique. The area based matching 

algorithm assigns some value to the grey patch in the current image and tries to 

locate related value in the second image in order to have ultimate matching between 

two images. This method needs image pre-processing in order to avoid or minimize 
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sensitivity to noise within the image. One of the drawbacks of this matching is that it 

is computationally expensive. 

2.6.2.2 Feature based matching 

Feature based matching entirely depends upon the features, e.g., corners, from the 

current image and relate those features to those in the second image. The 

correspondences between the features of two images rely on their descriptors 

information. This type of matching is more robust and reliable than their counterpart 

that is area based matching. But they could also be computationally expensive if 

large numbers of features have been encountered in the images.  

 

2.6.2.3 Neighbourhood matching 

Combination of aforementioned matching methods has also been used in the 

matching algorithms. They are named as neighbourhood based matching as shown in 

the Figure 2.5. This method uses information around the features for matching. 

Example of such implementation is present in [18-22]. One of the research articles 

[25] contains further sub-division of neighbourhood based matching techniques. In 

[25] Mikolajczyk and Schmid use descriptor information for matching. These 

matching techniques are as follows; 

 

 Threshold based matching: In the threshold based matching, threshold is the 

decisive element for the selection of features matching. It works in a way that 

two features (feature from current and second image) are matched if the 

distance between their descriptors is less than certain predefined threshold. It 

is quite possible for the feature to have many matches in this strategy. 

 

 Nearest neighbour based matching (NN matching): In the nearest neighbour 

based matching the decisive element is the distance between the two 

descriptors. If the features are corner points and named as    and    (corner 

points from current and second image) with descriptors    and    

respectively. These descriptors will match if    is the nearest neighbour of    

and the distance is beneath the threshold. Using this approach corner point 

should have at most one match. 

 

 Nearest neighbour distance ratio based matching (NNDR matching): This 

technique is same as aforementioned technique. Certain threshold is defined 

before the matching. The threshold is applied for the distance ratio for the 

first two (1
st
 and 2

nd
) nearest neighbour matches. The two corners    and      

with descriptors    and      respectively will be matched if 
|       |

|       |
  , 
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where      is descriptor of     , 2
nd

 nearest neighbour match-to   . This 

technique will also have at most one match.  

 

All the three matching techniques are different from each other in a way that the first 

one is relying on threshold, second approach is relying on the distance between 

descriptors and the third matching method is deciding upon the distance ratio 

between descriptors.  

2.6.2.4 Geometric based matching 

Matching methods which do not use neighbourhood information around features are 

categorized as geometric point matching methods. Research papers [23-24] are the 

example of such implementation.  

 

Geometric based matching use the set of correspondence element in order to decide 

the ultimate matching between the features. The set of correspondence descriptors 

consists of curvature, distance from the neighbour features, angle etc. The set of 

correspondence descriptors finally decide for best matches while depending upon the 

threshold value.  

 

2.7. Removal of outliers 

Outliers are the points which are true corners in an image and may lead wrong 

feature matching. In order to have true corner points in an image and then to match 

the true corners of current image to the second image, outlier‟s removal is necessary. 

RANSAC abbreviated as “RANdom SAmple Consensus” [26] algorithm is one the 

method for removing outliers. Example of RANSAC based outliers removal is noted 

in [27]. 
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3. OPTICAL FLOW ALGORITHM, AN 

OVERVIEW 

Optical flow is a concept, which describes the apparent motion of the objects in an 

image by the relative motion between an observer or eye or visual sensor (camera) 

and the scene or environment. Optical flow provides information about the 

environment of the image, which could be used for the control purpose. In particular, 

optical flow has the information of observer‟s movement [5], distance travelled from 

one image to the next image, 3-D shape of environmental shape [6].  

 

Optical flow is also one of the leading concepts of interest in the field of machine 

vision used for autonomous robot systems. Optical flow has a long history of 

research. This term was studied and introduced by Gibson J.J in 1950‟s. He 

published this concept in 1950 [1] and later in 1960 [2]. In the history of research 

about optical flow most of the time it is argued that all the methods discovered some 

variation of the same subject. Mainly, the research in the field of optical flow 

revolves around two concepts, that is: brightness pattern and spatial arrangements 

[3]. The brightness pattern is typically derived from the study that surfaces normally 

persist over time and hence change in the position cause no change in the value of 

intensity of small region [4]. The spatial smoothness constraint (spatial term) reveals 

that neighbouring pixels generally belong to the same surface and so have almost the 

same image motion [3]. These terms in optical flow have a long history but despite 

of it, there have been few attempts to research about these terms [46]. Latest research 

[47] in the field of optical flow has provided image sequences with ground truth 

optical flow available to make this practical.  

 

 

3.1. The Optical Flow field 

The pattern created with the moment of the visual sensor (camera) relative to the 

environment is an optical flow field. It is represented by the instantaneous velocity 

field, where every vector corresponds to the optical motion of a point in the 

environment. Generally, rigid motion is decomposed into two components that are- 

translation and rotation which state that the pattern created with the relative moment 

of a visual sensor projected at the spherical shape object has two components: a 

rotational component depending upon the rotational flow due to the rotation of an 
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observer whereas the translational component is due to translation of the observer. 

The following figure shows the phenomenon; 

 

 
Figure 3.1: (a) Translational component (b) Rotational component 

 

Above Figure 3.1 (a) is revealing the translational component of the optical flow 

field where an observer is making translation along the axis. Figure 3.1 (b) shows the 

rotational component of the optical flow field. This is due to the observer‟s eye 

rotation along the axis producing cylindrical flow along the spherical object without 

sources. These concepts are explained in detail below. 

 

3.1.1. Translational component 

It is important to consider an extraction and contraction of the focus with the moment 

of an observer while discussing translational component of optical flow. With the 

moment of an observer along the axis, focus usually expands in the direction of 

moment and contraction takes place in the opposite direction. The optical flow field 

pattern formed with the direction of the vector is dependent in the direction of 

moment of the observer. The environmental distance of the moment has no effect on 

the pattern of the optical flow field. This is the reason we can simply identify the 

direction of the moment by an observer. The distance from the matching point, 

velocity of the observer‟s moment and the angle from the focus of expansion reveals 

the magnitude of each vector. So, it is possible to reveal relative depth from the 

information delivered by the magnitude of the optical flow and from the moment of 

the observer.  

 

It is very forthright to find out the direction of the optical flow field from the flow 

pattern of the translational component. In order to have consistent estimation for the 

focus of expansion the pair of vectors can be arranged in a triangular manner so that 

their point of origin could be determined and hence they will produce the focus of 

expansion.  
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3.1.2. Rotational component 

The rotational component illustrates the flow pattern as solenoidal due to the rotary 

motion of the observer‟s head or eye and in the case of camera the rotary motion due 

to rotation of the camera lens. Moreover, the parallel flow pattern is due to the yaw 

of the observer and rotation about the line of sight produce rotational flow pattern. 

This rotational pattern of the optical flow field brings information about the 

rotational moment of the observer as well as it is sovereign of the distance factor. 

The direction of the observer is possible to illustrate by the vector direction which is 

relying on the axis of rotation.  

 

The observer‟s rotation rate depends upon the vector magnitude which is possible to 

reveal with the visual angle from the rotation axis and the speed of rotation. This 

organized and related space of flow pattern in the optical flow field allows 

determining the direction and speed of the observer. 

3.2. Optical flow algorithm 

Optical flow is the apparent velocities of movement of brightness patterns which is 

distributed in an entire image.[1] Optical flow is always generated with the relative 

moment of the object and observer which becomes the reason for changes in the 

brightness pattern and hence produce optical flow. Horn [1] developed the algorithm 

or optical flow techniques, which are based on spatiotemporal difference from 

consequent images. Since, these methods are developed as differential method, 

region based matching method etc. are used for the optical flow calculation. It is 

possible to enlighten the spatial arrangements of the object viewed with optical flow 

concept and at which proportion these spatial arrangements are changing [2].  

 

Optical flow algorithm for the velocity calculation of mobile robot is divided 

generally into following steps. 

 Selection of tracking context 

 Image acquisition 

 Estimation of optical flow across the image sequence using Kanade-

Lucas-Tomasi (KLT) algorithm for selection of features  

 Selected features are then tracked in the later images  

 Storing the results of feature tracking 

 Replacement of the old image with the new image 

 Velocity calculation 

 

The optical flow algorithm calculates the changes in the moment between two frames 

of images which are taken at time t and t+∆t. [1]. In this method, suppose J is the 

grey scale image captured at time t and J+1 is the next image captured at time t+∆t.  
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Figure 3.2: Optical flow features [3] 

 

In Figure 3.2 (A) is the feature window in the grey scale Image J and (B) is the same 

feature window in the grey scale image J+1. The feature (A) has moved distances of 

dx and dy in X and Y coordinates respectively. Figure 3.2 is presenting the moment 

of the feature (A) and (B) between two sequences of images. The main objective is to 

find the displacement between features (A) and (B) and the the velocity vector is 

determined using optical flow output. Constraints like geometrical (shape) 

comparison, grey scale intensities comparison and/or feature from one image to be 

match with the feature in second image are the possible way to determine the optical 

flow pattern.  

 

Calculation part starts with the calculation of pixels per centimetre just by moving 

the object manually at known distance. Then the pixel values have been converted to 

real world coordinates and general gain factor has been established.  

 

Displacement from image J to J+1 is determined with feature tracking algorithm. The 

features in the image J are selected by the gradients calculation when the image is 

smooth and these gradients are one in x direction and one in y direction. Then these 

selected features are tracked entirely based on tracking context. The tracking context 

consists of “min-dist”, “min_eigenvalue” and “point_threshold”.  Where, “min-dist” 

is the minimum distance between features, min_eigenvalue is the minimum 

allowable eigenvalue for the features need to be track. The eigenvalue is selected in a 

way that its minimum value remains above the threshold. These features need to be 

within the border (x-axis) and border (y-axis) of the image.  

 

The displacement from x and y coordinates of features are being selected and then 

tracked which gives the optical flow d which is then divided by the time of frame per 

second to calculate the velocity of the mobile robot. 
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3.3. Results analysis and problems 

The code for the optical flow algorithm is mention in Appendix 1. With provided 

code, the tracking context mention in Section 3.2, the image acquisition, selection of 

features, the tracking of selected features and velocity calculation has been done.  

 

The test setup was same as it is explained in Section 5.3. The test was done in such a 

way that both the camera and the object remain at same place i.e. there was no 

moment. In an acceptable test results, there should be no change in the features 

position, neither in X nor in Y-coordinates. Following plots shows the position of 

features in X and Y coordinates separately. 

 

 

Figure 3.3: Feature’s position in X-coordinates 
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Figure 3.4: Feature’s position in Y-coordinates 
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Figure 3.5: XY-coordinates values for selected and tracked features 

 

 

The coordinate position in an image is shown in above figure. For example, 1-

Feature # 90 ans 2-Feature # 90 is showing the position of the features in current and 

previous image. The position in XY coordinate of 1-Feature # 90 and 2-Feature # 90  

is (156.99, 177.08) and (343.98, 123.02) respectively. Practically, moment in XY-

coordinates was near to zero but still this algorithm was detecting large displacement 

of the position of the features.  
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The robustness of the algorithm was also not enough to cope up with the moment of 

camera. Algorithm‟s detection capability for the feature points with fast moment of 

the camera was also not enough to reveal result of the velocity. Hence, at the fast 

moment speed it shows no feature points detection. Following Figure, illustrate this 

problem; 

 

 

Figure 3.6: Zero detection of feature points at high-speed moments 
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The incorrect distance measurement between the tracked features from image J to 

J+1 leads to the incorrect velocity calculation. Tracked features from the algorithm 

are as shown in the following Figure 3.7; 

 

 

 
Figure 3.7: Selected features in image J and J+1 when there was no moment, Red 

dots are features. Black circles shows those features, which are detected in image J 

and missed or not detected in image J+1 or vice-versa 
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4. CORNER DETECTION ALGORITHM 

This chapter is consists of theoretical and practical setup of the research work. This 

chapter will also highlight the pre and post processing algorithms. First, it is worthy 

to consider the standard coordinate system camera model, which is as follows; 

4.1. Standard Coordinate System Camera Model 

Camera coordinate system model gives the relationship between what appears on 

image plane and where it is located in 3D world. The standard coordinate system 

camera model is shown in Figure 4.1. 

 

 

Figure 4.1: The Standard Coordinate System Camera [4] 

 

In this model, light is entered the camera through a very tiny aperture. The geometry 

of the perspective projection is accurately captures by using this model [45]. The 

camera model has assumptions that the centre of projection of the image coincides 

with the world coordinates and z-axis (optical axis) is perpendicular to the terrain 

surface. It is also assume that image is placed in front of centre of projection as 

shown in Figure 4.1.  

 

The camera model consists of intrinsic (image centre and focal length) parameters 

and extrinsic (location of the centre and 3D orientation of the projective method) 

parameters.  
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With an overview of the above mentioned standard camera model, it is mandatory to 

consider and implement camera calibration for intrinsic and extrinsic parameters. 

Camera calibration will help to have picture data on image coordinate for further 

analysis and results. 

4.2. Camera Calibration 

Camera calibration is also considered as pre-processing step of the work. Camera 

calibration is required for conversion of the image transformation estimation into 

measured body motions in the real world. Two sets of parameters namely, extrinsic 

and intrinsic parameters are the output of camera calibration part. Extrinsic 

parameters are not constant and are related to the camera orientation with respect to 

the setup environment. Intrinsic parameters are the parameters that are used to relate 

the pixel position of the conforming object in real space. Both these parameters are 

calibrated using Camera Calibration Toolbox using Matlab. They are important as 

they are used to determine the pixel position in real world. Those parameters are as 

follows; 

 

• Focal length               

• Principle point                

• Skew coefficient  =    

• Distortion                        

 

If the camera is assumes to have negligible skew coefficient and distortion then the 

     and                      . 

 

Camera calibration has been done using 50 images. All the images are captured using 

by the device “Microsoft LifeCam Cinema”.  “Microsoft LifeCam Cinema” is also 

used in the later test experiments. Image acquisition has been done using different 

positions of the grid and camera. Some of the images used for calibration are as 

follows; 
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Figure 4.2: Images used for camera calibration 

 

By following the steps provided at [12], calibration has been done. Following Figure 

4.3 is showing the extraction of the grid corners using this above mentioned 

procedure.  

 

Figure 4.3: Extracted corners at one of the calibration image 

 

 

With the following assumption of    and   , the data for the intrinsic parameters of 

the camera has following values as output; 
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Skew:             alpha_c = [ 0.00000 ] ± [ 0.00000  ]   => angle of pixel axes = 

90.00000 ± 0.00000 degrees 

Distortion:            kc = [ 0.00000   0.00000   0.00000   0.00000  0.00000 ] ± [ 

0.00000   0.00000   0.00000   0.00000  0.00000 ] 

 

 

Focal Length:          fc = [ 493.59478   493.59478 ] ± [ 1.13663   1.13663 ] 

Principal point:       cc = [ 334.58054   174.66069 ] ± [ 0.74193   0.89226 ] 

Pixel error:          err   = [ 0.18868   0.19682 ] 

 

4.3. Camera Setup for Velocity Estimation 

The camera setup for velocity estimation is as shown in the figure 4.4. The camera is 

looking downward towards the ground and mounted over the mobile robot. As it is 

assumed in the previous section that camera has negligible distortion, hence 

distortion parameter will become kc = |0 0 0 0 0 | and αc = 0. 

 

 

Figure4.4: Camera Setup [3] 

 

On the basis of intrinsic, velocity component in image coordinate frame, minimum 

eigenvalue, principle point and distance between the features is calculated. 

 

With the camera setup as shown in above Figure 4.4, it is necessary to do image pre-

processing in order to have more reasonable and acceptable image for further 

processing. 
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4.4. Image Pre-processing 

Image processing‟s aim is to enhance quality of the image data and help to suppress 

the distortion and noise in order to have better image for further processing. 

 

Image pre-processing is the initial step towards practical implementation of the 

algorithm and above mentioned setup. The autofocus of the camera is switched to 

fixed focus and configured according to the camera‟s height requirement. It is very 

important to turn off the autofocus because with automatic setting of the focus, it is 

possible to have false corner points and so, the false results.  

 

Illumination adjustment is one of the basic and another unique parameter in machine 

vision applications. Illumination parameter of the camera is also tuned automatically 

with the help of “imaqtool” of Matlab according to the height and test environment 

so that optimum level of illumination would help to find true corners. 

 

Backlight compensation, exposure mode and white balancing is been set to automatic 

adjustment mode. Other parameters for pre-processing like saturation, sharpness and 

contrast mode are also been adjusted to a level to have an acceptable image.  

 

All of these parameters are adjusted before commencing the main process.  

4.5. Algorithm Implementation 

The algorithm used for corner detection is been developed in Matlab/Simulink 

environment. The algorithm consists of the following steps; 

 Image acquisition 

 Colour space conversion 

 Corner detection 

 Corner matching 

 Estimation of geometric transformation 

 Velocities calculation 

 

Entire Simulink Model is presented in Figure 4.5: 
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Figure 4.5: Simulink Model for motion detection  
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Detail code of the blocks like “corner matching”, “velocities calculation” and “robot 

trajectory” is presented in the Appendix 2.  

4.5.1. Image acquisition 

Image acquisition is the input of the algorithm. In order to capture images “Image 

Acquisition Tool” is been used. Before acquisition as described in section 4.4, image 

pre-processing is necessary to have better images in order to have better result. For 

this purpose all the parameters of pre-processing like, focus, saturation, white 

balancing, back light compensation, sharpness, contrast and exposure are set. White 

balancing, backlight compensation and exposure tuned to auto mode and rest of them 

are tune to manual mode. The image acquisition is done at 20fps (frames per 

second). The image resolution is set to 640x360 pixels. Very high resolution like 

720x1280 or 1920x1080 pixels can reduce the computational speed of the algorithm 

and very low resolution like 320x240 can reduce the algorithm efficiency for finding 

feature points. So trade off policy was adopted and 640x360 pixels were selected. 

The colour space of the image is selected as RGB (Red, Green and blue channels).  

 

In case of saving the video stream at the test stage of the algorithm and for the 

camera calibration purpose; all the images are been acquired under these adjustments 

and save as “.avi” (uncompressed) file. The compressed feature is not been used 

because of the reason that it might loss some information from the image.  

4.5.2. Colour space and data type conversion 

Most of the machine vision algorithm works with grey scale image. Corner detection 

is also one of them and needs to have grey scale image for further processing. In 

order to convert RGB to grey scale image, colour space conversion block is been 

used. The data type that is supported by the corner detection algorithm is double and 

the data, which is coming as input, is single. So data type conversion from single to 

double is been also done using data type conversion block. After colour space and 

data type conversion, image is input to corner detection block.  

 

4.5.3. Corner detection 

Corner detection block is an important block of the algorithm. The input of this block 

is grey scale image with data type of double. Corner detection block finds corner 

points (feature points or point of interest) in an image. There are three methods as 

options available in this block for this purpose. Those methods namely are Harris 

corner detection, Shi & Tomasi corner detection and Rosten and Drummond. Details 

of these methods have been discussed in Section 2.2. Harris Corner detection is 

preferred among other available options because it is trade-off between accuracy and 
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computation speed. The print screen for the corner detection parameters is as 

follows; 

 

Figure 4.6: Corner detection parameters 

 

 

The sensitivity factor “K” is been adjusted between limits of 0<K<0.25. The smaller 

the value of sensitivity factor is, more likely sharper corners are detected as 

explained in Section 2.2. After several test runs the sensitivity factor “k” was 

adjusted to the 0.001. Maximum number of corner which algorithm needs to find in 

an input image can also be adjusted in this block and the number used here is 80 

corners.  The minimum metric value is the score R that indicates a corner, can be 

adjusted in this block. It was set to 0.001. Non-maximal suppression as explained in 

Section 2.3 is done with in certain range of neighbourhood around the corners. It is 

possible to tune this range in one of the options of corner detection block namely 

“Neighbourhood size”. It is required to define two element vector of positive odd 

integers that is [r c] where „r‟ is the number of rows and „c‟ is the number of column 

in the neighbourhood. With adjustment of all these parameters in the corner detection 

block we get corner location and number of corners (count) as output of this block. 

The corner location and count is the input of the corner matching block.     
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4.5.4. Corner matching 

Corner matching is the block that is use to match the corner points from current 

image to the previous image. Detail code of the corner matching is block is mention 

in Appendix 2. The input of this block is the output of corner detection block. Detail 

of corner matching algorithm is discussed in section 2.4. In this algorithm the 

Neighbourhood matching is used for this purpose. Nearest neighbourhood based 

corner matching that is sub-category of neighbourhood matching is been used for this 

purpose. Distance is the decisive element for the selection of matching. All other 

matching options are explained in section 2.3. The output of this block is those 

matched points in current image and previous images that are name as Pts. 1 and Pts. 

2 respectively. The third output “Num.” is the number of corners been matched. 

These outputs are the input of next block, which is geometric transformation 

estimation. Print screen of the corner-matching block is as follows; 

 

 

Figure 4.7: Corner-matching blocks 

4.5.5. Estimate geometric transformation block 

Estimate geometric transformation block is use to find the transformation matrix 

between number of point pairs between two images (current and previous). This 

block supports three types of transformations that is non-reflective similarity, affine 

and projective transformation. We are interested in Non-reflective similarity in this 

application. Non-reflective similarity algorithm contains four degrees of freedom. 

The input of this block is two pairs of points namely as Pts. 1, and Pts. 2. In this way, 

ultimate logical connection is established between corner matching and estimate 

geometric transformation blocks. One of the important functions this block performs 

is the removal of outliers as explained in section 2.5. With available options of 

RANdom SAmple Consensus (RANSAC) and Least Median Squares algorithm, 
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RANSAC is been selected for finding and removal of outliers. Detail of RANSAC 

algorithm is available in [27] and [28].  

 

With the selection of non-reflective similarity and RANSAC algorithm, it is possible 

to set the upper limit distance for the points that is called threshold for determining 

inliers. With this limit, a point can differ from the projection location of its 

associative points. It is possible to limit the percentage of random sampling 

performed by the algorithm for finding inliers from the input points. With the 

number of test runs the parameters of this block is fixed to the acceptable level in 

order to have optimum results. The output of this block is transformation matrix. 

This transformation matrix is been required by the velocities calculation and is 

working as input of velocities calculation block.   

 

4.5.6. Velocities calculation 

With transformation matrix as an input to the velocities calculation (Matlab function) 

block, velocities in X and Y direction and angular velocity is calculated. Hence, 

output of this calculation block is velocity vector (along x-y axis) and angular 

velocity (along z-axis). The result and test data is presented in the following chapter.  

 

4.6. Visual presentation 

In order to present the corners location in an image and robot trajectory, two blocks 

were added which are explained as follows: 

4.6.1. Corners display 

This block provides visual display of the corner points on the image. The input of 

this block consists of RGB image which is been provided before the conversion of 

image colour space to grey scale. The corner points are located with Pts 1 and Pts 2 

for current and previous image respectively. Following figure will show their 

practical implementations which are translated images.  
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Figure 4.8: Corner point’s visual display with blue stars (image J) and red circle 

(J+1) 

 

 

 
Figure 4.9: Corner point’s visual display when both corner points are completely 

overlapped with each other from current image (image J) to second image (image 

J+1) 
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4.6.2. Robot position and trajectory display 

In order to find robot position, “discrete time integrator block” is been added to the 

model and it is presenting the position of the robot versus time. With the plot of 

robot‟s position, robot‟s trajectory is been plotted as well. The test data of position 

and trajectory graph of the robot are presented in the next chapter.  
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5. RESULTS AND CONCLUSIONS 

In this chapter, result of the algorithm is presented.  The result we are presenting here are the 

outcome of the methods from the literature [7-9] and the methods mentioned in Section 2.2. 

Moreover, comparison and different problems while testing algorithm at different test setup is 

also mentioned in the chapter. Results are obtained by applying these methods in two test 

environments. Those environments are as follows; 

 

 Real image with simulated motion 

 Real test environment 

5.1. Real image with simulated motion 

Control test environment is consisting of MATLAB supported test setup. The main 

image is acquired using MATLAB toolbox “Imaqtool”. The motion of the image is 

simulated using translation commands in MATLAB. The input image has motion in 

a circular pattern. Motion of the input image is named as estimated output and it is 

used for the comparison to the actual output of the algorithm. Then the motion is 

detected using corner detection and matching algorithm as explained before in 

previous chapter 4.  

 

The test image used for further processing is the part of the main image which is 

shown in Figure 5.1: 
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Figure 5.1: Test image of the floor (image ‘testpic’) (dimensions 1920 x 1080 

pixels²) 
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The detected corner on the test image is shown in Figure 5.2: 

 

 

Figure 5.2: (image ‘testpic’) Circles (red) are the corner points in image (J) 

followed by Plus sign (blue) in image (J +1) and both corner points are plotted on 

image J (dimensions 320 x 480 pixels²) 

 

Following plot (Figure 5.3 and 5.4) shows the comparison of an estimated vs. actual 

velocity with simulated test environment in X-Y directions.  
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Figure 5.3: Estimated vs. Actual Velocity in X-direction (image ‘testpic’) 

 

Figure 5.4: Estimated vs. Actual Velocity in Y-direction (image ‘testpic’) 

 

Figure 5.5 shows the moment graph data of the estimated velocity, which is, 

compared with the actual graph data of the actual velocity.  
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Figure 5.5: Moment graph data (image ‘testpic’) 

 

 

The algorithm is processed with different images and error percentage and variance 

percentage is calculated for each image. The table that shows data for each image is 

as follows; 

 

Input Image Name 
Simulation Moment  Average Average  Variance Variance 

Time Sec. direction 
Error 
pixels error %  pixels sq. 

% 

Testpic-1 12 
X-direction -0,629 -0,025 92,673 3,968 

Y-direction -0,266 -0,005 274,208 4,626 

              

Testpic-2    
(testpic) 

12 
X-direction -0,536 -0,023 91,782 3,929 

Y-direction -0,242 -0,004 273,500 4,449 

              

Testpic-3  
(normal3) 

12 
X-direction -0,523 -0,022 96,377 4,127 

Y-direction -0,345  -0,0058 271,906 4,589 

              

Testpic-4 
          (dark4) 

12 
X-direction -0,400 -0,017 93,775 4,014 

Y-direction -0,220 -0,004 275,544 4,649 

              

 

Table 5.1: Table showing the data for different images 

 

Major difference in all those above mentioned test images was illumination. The 

algorithm was tested with different illumination conditions in order to check the 

strength of the algorithm.  
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Testpic-1 and Testpic-2: Testpic-1 and Testpic-2 was the image having good 

illumination. Both the images have considerable difference in illumination 

parameters to each other. The average error % shows that difference of illumination 

has effect on results. Similarly the variance factor also reveals the difference of 

illumination. Because good and proper illumination helps to find true corners and it 

helps to have better results.  

Testpic-3(normal3): This image has normal environment and illumination but also 

having two spots of light in the middle of the image. The average error% and 

variance% shows that this normal condition without any aid for the improvement of 

illumination has a lot effect on results if we compared to previous Testpic-1 and 

Testpic-2. The spot light in the middle of the image has also affected the results and 

similar problem was also faced in real tests and stated later in the Section 5.3.1.  

Testpic-4(dark4): This image has less illumination than normal environment 

condition but no spots of light in the image. Average error% is less than the image 

(Testpic-3) having spots of light in it.  

 

So after reviewing all the results by keeping in mind the illumination and 

environmental conditions of the images, it is concluded that illumination has also 

affect in simulated test environment. Spots due to reflection of light from the floor 

are also a reason of errors in calculation.  

 

5.2. Real test environment 

In the real test environment, the image was acquired using MATLAB toolbox 

“Imaqtool”. The entire prerequisite settings for the image acquisition are explained 

earlier in Section 5.5.1. Image pre-processing as explained in Section 5.4 is also 

adjusted using “imaqtool toolbox”.  

 

The algorithm was tested with different test environment and conditions. The 

problems raised from very 1
st
 to the last test, are mentioned later in the Section 5.3.   
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The test setup is shown in Figure 5.6.  

 

 

 

Figure 5.6: Test setup 

 

Test setup was established inside the corridor near the glass door in front of 

information desk at Konetalo building in order to have rich and distributed 

illumination across the test surface. The camera was mounted with the small white 

box hanging away from the base red box at 90° as it is shown in Figure 5.6, the same 

principle as in Figure 4.4. In order to have corner points entirely from ground surface 

it was also made sure that camera should not have front side of the box in its frame 

of view. It is also possible to crop the image from entire frame of view in order to 

avoid the front end of the body.  

 

The detected corners on the test surface are shown in the Figure 5.7. The dimensions 

of the image are 360 x 480 pixels².  
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Figure 5.7: Matched corner points in one of the test video 

 

The position of the robot after completion of one square round of 90 cm in X-

direction and 90 cm in Y-direction (practically on ground), is shown in the following 

Figure 5.8. The starting XY-coordinate value is (-0.4517,-0.1416) and the last value 

of XY-coordinates at which the robot end its moments is (-2.377, 0.6431).  

 

 
Figure 5.8: Position data for the robot’s moment 
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In order to have a detail error analysis, the path of camera is divided into four parts 

as shown in the following Figure 5.9. It starts from the point (A) from where the 

robot starts it‟s travelling and ends its path at point named as end point as shown in 

the following Figure 5.9. 

 

 
Figure 5.9: Robot travelling path showing all start and ends 

 

The end point is highlighted in triangle just to make it different from other point on 

the trajectory.   
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The error analysis table is as follows: 

 

Direction of 
moment 

Start point (cm) End point (cm) Total motion 
Error value 

coordinate value 
(x,y) 

coordinate value (x,y) (Actual) cm 

X-axis A (-0.4517, -0.1416) B (-90.91, 1.083) 90 1.51% 

Y-axis B (-90.91, 1.083) C (-96.75, 91.32) 90 2.67% 

X-axis C (-96.75, 91.32) D (-10.68, 91.99) 90 4.3% 

Y-axis D (-10.68, 91.99) 
End Point(-2.377, 

0.6431) 
90 2.9% 

Table 5.2: Error analysis 

 

The velocity plots for above-mentioned test in XY-direction are as follows: 

 

 

Figure 5.10: Velocity in X-direction 
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Figure 5.11: Velocity in Y-direction 
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All the three velocities for XY-direction and angular velocity are as shown in Figure 

5.12. 

 

 

Figure 5.12: VelX, VelY and angular velocity 

 

5.2.1. Heading angle accuracy test 

In order to find the heading angle accuracy, one separate test was conducted. The test 

was conducted manually for moving the camera in a circular pattern path. In this test 

the camera was moving tangent to the path of moment. The whole test was consisting 

of moment in a complete one circle. The circular moment ended approximately at the 

same place where it is started from. By completing one rotation we can compare the 

heading angle estimated value with the actual value of the angle after one rotation. 

And by considering the difference between them, heading angle accuracy is 

calculated. Figure 5.13 shows the heading angle final value and angle error is given 

after that.  
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Figure 5.13: Heading Angle moment in radians 

 

Heading angle accuracy plot is plotted with time (seconds) at X-axis and angle 

(radians) of heading on Y-axis. The heading angle accuracy is 0.5859%.  

5.3. Discussions   

In this section, all the problems and challenges that were faced during several phases 

of research work is mentioned.  

5.3.1. Inside corridor test 

The very first test of the algorithm is done inside the corridor. The test setup of the 

test is shown in the following Figure 5.9.  
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Figure 5.14: The test setup and environment at inside corridor 

 

Autonomous robot was used for the test with the camera mounted at its front part as 

shown in Figure 5.9. Apparently illumination was looking fine. The algorithm was 

failed to detect corners in such illuminated environment because of few reasons; one 

of them was the spotlights, which accompanied the robot‟s moment throughout the 

path.  

 

Secondly, the dark shadows created by the front head of the robot and from the sides 

of the wall created the problem for the detection of corners. The corners were not 

detected at all in the dark places of the image.  

 

Moreover, it was observed that corner points start moving with and around the 

spotlights by considering the edges of spotlights as a corner feature. See Figure 5.10.  

 

As it is discussed in the Section 4.4 that focusing on the test surface is a very 

important factor in an image pre-processing. In the first test with “auto-focus” on, it 

was difficult for the algorithm to detect corner points as focus was changing all the 

time during the test.  

 

The surface of the floor was highly reflective and the lights were reflected by it 

throughout the test, and this thing caused problem for the corner detection. These 

reasons are visible in Figure 5.15. The right parameters selection and with distributed 
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light system installation along the camera, can reduce the surface reflection. Surface 

reflection is the particular problem with the test surface of our tests which were 

conducted inside the corridors.  

 

 

Figure 5.15: Spotlights, un-distributed light and shadows are the reasons for almost 

zero corner detection 

 

From this test, it is concluded that spotlights and shadows are needed to be avoid in 

the future tests.  

 

The test surface used in the future tests was very less reflective as shown in Figure 

5.6.  

 

The illumination problem was eliminated by using an environment where rich and 

distributed light was available as shown in Figure 5.6 and 5.7. The image pre-

processing as described in detail in the Section 4.4, is very important before 

commencing of the tests. Image pre-processing options were available in MATLAB 

Imaqtool toolbox and were settled according to the environment. 

5.3.2. Future work and suggestions 

In the future work, it is possible to improve the results by doing some additional 

tasks. Those tasks options could be as follows: 

 

 By using Kalman Filters, it is possible to reduce the current position error 

percentage and noise (random variations if there is any) of the algorithm.  

 By using Kalman filters, inaccuracies of the estimation and efficiency of the 

algorithm could also be improved.  

 Data fusion is another option to improve the results.  
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 Fusion of data from some absolute source and the current technology could 

improve the output of the algorithm.  

 Illumination problems can be improved with some distributed light system, 

installed along the camera. 

 In order to improve illumination problem, we can also use the camera looking 

in forward direction. Flat surface can be cropped from the frame of view for 

the tracking purpose while using same algorithm.  

 Another solution to improve the algorithm results is to use the camera 

looking at ceiling but then these tests should be conducted inside the building.  
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APPENDIX 1: OPTICAL FLOW ALGORTIHM CODE 
 

 

#include "pnmio.h" 

#include "klt.h" 

 

#include "stdafx.h" 

#include "cv.h"  

#include "highgui.h"  

#include <stdio.h> 

#include <iostream> 

#include <iomanip> 

using namespace std; 

 

#define REPLACE 

 

 // A Simple Camera Capture Framework  

 int main() { 

 

 

// Initialization of the KLT 

unsigned char *img1, *img2; 

KLT_TrackingContext tc; 

KLT_FeatureList flOld; 

KLT_FeatureList flNew; 

KLT_FeatureTable ft; 

int nFrames = 10; 

int nFeatures = 100; 

int ncols=640;  

int nrows=480; 

int i=0; 

float d = 0; 

float x = 0; 

float v = 0; 

float y = 0; 

float y_tot=0; 

float y_average=0; 

float v_average=0; 

float y_pixel=0; 

float Y_tot=0; 

 

tc = KLTCreateTrackingContext(); 

//tc->min_eigenvalue=1; 

 

  

KLTPrintTrackingContext(tc); 

flNew = KLTCreateFeatureList(nFeatures); 

flOld = KLTCreateFeatureList(nFeatures); 

 

ft = KLTCreateFeatureTable(nFrames, nFeatures); 

tc->sequentialMode = TRUE; 

 

// Capture first image before starting loop 

CvCapture* capture = cvCaptureFromCAM( CV_CAP_ANY ); 

if ( !capture ) { 

fprintf( stderr, "ERROR: capture is NULL \n" 

); 

getchar(); 

return -1; 

          } 
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// Create a window in which the captured images will be presented 

cvNamedWindow( "mywindow", CV_WINDOW_AUTOSIZE ); 

 

// Get one frame 

IplImage* frame = cvQueryFrame( capture ); 

IplImage* frame1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); 

cvCvtColor(frame,frame1,CV_BGR2GRAY); 

  

/*  

frame->dataOrder = 0; 

cout << (frame->nChannels) <<  endl;  

cout << (frame->depth) <<  endl; 

cout << (frame->dataOrder) <<  endl; 

cout << (frame->origin) <<  endl; 

cout << (frame->width) <<  endl; 

cout << (frame->height) <<  endl; 

*/ 

if ( !frame ) { 

  fprintf( stderr, "ERROR: frame is null...\n" 

); 

  getchar(); 

  return 0; 

           } 

 

 

// grab the image data from IplImage 

img2 = (unsigned char*)frame1->imageData; 

img1 = new unsigned char[nrows*ncols]; 

 

//img1 = new unsigned char[frame->width*frame->height]; 

  

//printf("\nwidth :%d\n" ,frame->width ); 

//printf("\nheigth:%d\n" ,frame->height); 

 

 

for(int j=0; j<nrows*ncols; j++){ 

img1[j]=img2[j]; 

   } 

 

//KLTSelectGoodFeatures(tc, img1, ncols, nrows, flOld); 

KLTSelectGoodFeatures(tc, img1, ncols, nrows, flNew); 

KLTStoreFeatureList(flNew, ft, 0); 

 

//printf("\nIn first image:\n"); 

//for (i = 0 ; i < ft->nFeatures ; i++)  { 

//printf("Feature #%d:  (%f,%f) with value of %d\n", 

// i, ft->feature[0][i]->x, ft->feature[0][i]->y, 

// ft->feature[0][i]->val); 

 

printf("\nIn first image:\n"); 

for (i = 0 ; i < flNew->nFeatures ; i++)   

{ 

printf("Feature #%d:  (%f,%f) with value of %d\n", 

i, flNew->feature[i]->x, flNew->feature[i]->y, 

flNew->feature[i]->val); 

} 

 

//KLTWriteFeatureListToPPM(flNew, img1, ncols, nrows, "feat1.ppm"); 

//KLTWriteFeatureList(flOld, "feat1.txt", "%3d"); 

 

Y_tot =0;  
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// Show the image captured from the camera in the window and repeat 

 

 

while ( 1 ) { 

 

// Get one frame 

frame = cvQueryFrame( capture ); 

 if ( !frame ) { 

  fprintf( stderr, "ERROR: frame is null...\n" 

); 

  getchar(); 

  break; 

     } 

IplImage* frame2=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1); 

cvCvtColor(frame,frame2,CV_BGR2GRAY); 

 

 

// Get the actual image data(pixel values) 

img2 = (unsigned char*)frame2->imageData; 

// Track feature between two adjacent 

KLTTrackFeatures(tc, img1, img2, ncols, nrows, flNew); 

 

KLTStoreFeatureList(flNew, ft, 1); 

y_tot=0; 

//conversion of pixels values to real life, 25pixels/cm 

x=0.01/52; 

// loop around the features  

printf("\nIn second image:\n"); 

for (i = 0 ; i < ft->nFeatures ; i++) 

{   

    

if((ft->feature[1][i]->x < 0.0) || (ft->feature[1][i]->y 

< 0.0)){ 

//std::cout << "skip" << std::endl; 

 continue; 

     } 

 

printf("1-Feature #%d:  (%f,%f) with value of %d\n", 

 i, ft->feature[0][i]->x, ft->feature[0][i]->y,ft->feature[0][i]-

>val); 

printf("2-Feature #%d:  (%f,%f) with value of %d\n", 

i, ft->feature[1][i]->x, ft->feature[1][i]->y,ft->feature[1][i]-

>val); 

 

//printf("Feature #%d:  (%f,%f) with value of %d\n", 

//i, flOld->feature[i]->x, flOld->feature[i]->y, 

//flOld->feature[i]->val); 

 

// TODO: calculate the difference in pixels between two features 

// ,calculate the movement in meters 

// , calculate the speed based on the movement in meters and the 

framerate. 

    

//movement difference of features between two images 

d = ft->feature[0][i]->x - ft->feature[1][i]->x; 

//distance moved in real life 

y=x*d; 

//velocity calcultaion, 0.1 is FramePerSecond 

v=y/0.1; 

y_tot += y; 
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  } 

y_average = y_tot/flNew->nFeatures; 

v_average = y_average/0.5; 

y_pixel = y_average/x; 

 

cout<< " -- Dis:" << setiosflags(ios::fixed) << setprecision(2) << 

y_average<< " " << "Velocity: "<< setprecision(2) << v_average << "-

-Movement of pixel: "<< setprecision(2) << y_pixel<< endl; 

cout<< "------"<<endl; 

 

Y_tot += y_average; 

cout<< " -- Total Dis:" << setprecision(2) << Y_tot << endl; 

 

 

KLTStoreFeatureList(flNew, ft, 0); 

 

#ifdef REPLACE 

KLTReplaceLostFeatures(tc, img2, ncols, nrows, flNew); 

#endif 

 

KLTWriteFeatureListToPPM(flNew, img1, ncols, nrows, "feat1.ppm"); 

KLTWriteFeatureListToPPM(flNew, img2, ncols, nrows, "feat2.ppm"); 

KLTWriteFeatureList(flNew, "feat2.fl", NULL);      /* binary file */ 

KLTWriteFeatureList(flNew, "feat2.txt", "%5.1f");  /* text file   */ 

 

cvShowImage( "mywindow", frame2 ); 

// Do not release the frame! 

//If ESC key pressed, Key=0x10001B under OpenCV 0.9.7(linux 

version), 

//remove higher bits using AND operator 

int keyPress = cvWaitKey(10); 

if ( (keyPress & 255) == 27 ) break; 

//if ( keyPress == '\r' ) continue; 

 

//KLTSelectGoodFeatures(tc, img2, ncols, nrows, flOld); 

//KLTSelectGoodFeatures(tc, img2, ncols, nrows, flNew); 

 

//img1=img2; 

delete[] img1; 

cout << "size of Image 2, pixels: "<<nrows*ncols<<" bytes: 

"<<sizeof(img2) << endl; 

img1 = new unsigned char[nrows*ncols]; 

for(int j=0; j<nrows*ncols; j++){ 

   img1[j]=img2[j]; 

            } 

   } 

    

// Release the capture device housekeeping 

cvReleaseCapture( &capture ); 

cvDestroyWindow( "mywindow" ); 

 

return 0; 

 } 
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APPENDIX 2: CORNER DETECTION ALGORITHM 
 

Corner matching detail code: 
 
Following is the under the mask code for corner matching. 

 
 

 
Figure: Corner matching under the mask code 

 
Velocities calculation: 
 
Following is the code of velocities calculation (Velocity in X and Y direction and Angular 
velocity).  
 
function [LinearVelx,LinearVely,AngularVel] = fcn(H) 
%#codegen 

  
R=(H(1:2,1:2)); 
EE=eig(R); 
AA=180/pi*(angle(EE(1))); 
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T=(H(3,:)); 

  
%LinVel=26*double(-norm(T)*sign(H(3,2))); 
LinearVelx=double(H(3,2)*20); 
LinearVely=double(H(3,1)*20); 
AngularVel=AA; 

 
Robot trajectory:  
 
Robot trajectory display code is as follows.  
 
function fcn(u) 
%#codegen 
coder.extrinsic('plot','hold'); 
plot(u(1),u(2),'.') 
hold on 

 
 


