
 1

WAQAS ABDULLAH

VISUAL ODOMETRY: FEATURE BASED TRACKING AND
VELOCITY ESTIMATION BASED ON GROUND LOOKING
CAMERA

Master of Science Thesis

Examiner: Professor Kalevi Huhtala
 Dr. Reza Ghabcheloo

Examiner and topic approved by the
Faculty Council of Engineering
Sciences meeting on 06 March

2013.

 I

Preface
The Master‟s thesis work is carried out in the Department of Intelligent Hydraulics and

Automation, Tampere University of Technology, Finland. First of all, I would like to

thank The Almighty for giving me the courage and knowledge to do this research work.

Secondly, I pay my deepest gratitude to Professor Dr. Kalevi Huhtala for providing me

with the opportunity to work in the diversified and vivacious group of Mobile Machine

and also for examining the work. Next, I would like to thank my mentor and supervisor,

Dr. Reza Ghabcheloo, from the depth of my heart for not only introducing me to this

topic but also for his long term support, guidance and advice throughout the research

work. It could not have been done without his support, supervision and patience with

my work, especially with my writing. I am also thankful to Dr. Mika Hyvönen,

Mohammad Mohammadiaref and Antti Kolu for their positive feedback and motivation

they had provided me during my work.

I am highly indebted to the people and Government of Finland for providing with the

opportunity to study here and perform this research work. I am also thankful to all the

people of the Intelligent Hydraulics and Automation group for providing me with such

kind of conductive environment for the research work, especially my office colleagues

for their kind support and helping hands.

I would also like to thank all my friends in Finland, Pakistan and everywhere else. It

was due to their constant moral support and encouragement that I am able to perform

this work. Special thanks to all my Pakistani friends in Tampere whose nice company,

support and get-together never let me feel lonely and away from my home.

Last but not least, I would like to pay my deepest gratitude to my loving family

especially my Parents (Shahnaz Mansha and Inayat Ullah Gohar) whose kindness, care,

encouragement and unlimited love helped me during my studies here and made me able

to do this work.

I would like to dedicate my thesis to my niece Zainab Duaa (late).

Tampere, Finland, February 05, 2013

Waqas Abdullah

 II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Degree Programme in Machine Automation
ABDULLAH, WAQAS: Visual Odometery: Feature Based Tracking and Velocity
Estimation Based on Ground Looking Camera
Master of Science Thesis, 64 pages, 6 Appendix pages
March 2013
Major subject: Mechatronics
Examiner: Professor Kalevi Huhtala and Dr. Reza Ghabcheloo
Keywords: camera, corner detection, corner matching, odometery, computer
vision, robotics, optical flow.

The computer vision field has close relation with autonomous robotics which is in use

for several purposes which include mobile robot vision tasks, robot navigation, motion

trajectory, object detection and tracking and security surveillance tasks. There are many

techniques available which are being used for completing these tasks but many of them

lead to problems like low resolution, limited applicability and high capital investment.

This thesis examines the way in which we could achieve results within some tolerance

level of accuracy and low cost. Visual odometery is one of the main objectives of this

thesis which is achieved with simple and practical method. The algorithm is developed

to estimate the velocity using a corner detection technique based on ground looking

camera.

The thesis is divided into three main parts. In the first part of the thesis, literature review

and previous work done in the relevant field is explained. The theoretical background of

the topic is also described in the first part of the thesis. Second part of the thesis

demonstrates the development of the algorithm, pre and post processing and

implementation of the algorithm. Last part of the thesis describes the different test

environments where the developed algorithm is implemented. The test environments are

further classified into two main categories. Conclusions, results, problems faced during

the whole process and future tasks are also included in the last part of the thesis.

The study indicates that, selection of the right pre-processing parameters can enhance

the results quality. At the same time by providing the appropriate illumination for the

camera system can also increase the efficiency of the outcome. This research and

developed algorithm has the potential to be used for further implementation at

commercial level by changing some necessary parameters in the algorithm and

implementation. This research could be more useful by implementing addressed future

tasks in Section 5.3.2, in order to achieve higher efficiency in the results.

Implementation of all necessary parameters explained in this thesis and by considering

future tasks will make this research more effective and beneficial for the business.

 1

CONTENTS
Abstract ... ii

1. Introduction ... 3

1.1. Background .. 3

1.2. Objectives ... 4

1.3. Dissertation outline .. 5

2. Fundamentals of Corner detection .. 6

2.1. Introduction .. 6

2.2. Image .. 6

2.3. Corners ... 7

2.4. Corner detectors ... 8

2.4.1. Corner detectors requirement ... 8

2.4.2. Harris & Stephen corner detector ... 9

2.4.3. Shi & Tomasi corner detector .. 9

2.4.4. Rosten & Drummond corner detector .. 10

2.5. Corner detection steps .. 10

2.6. Corner matching ... 13

2.6.1. Corner point representations .. 13

2.6.2. Image matching Categories .. 14

2.7. Removal of outliers .. 16

3. Optical flow algorithm, an overview .. 17

3.1. The Optical Flow field ... 17

3.1.1. Translational component .. 18

3.1.2. Rotational component .. 19

3.2. Optical flow algorithm ... 19

3.3. Results analysis and problems.. 21

4. Corner detection algorithm ... 26

4.1. Standard Coordinate System Camera Model ... 26

4.2. Camera Calibration .. 27

4.3. Camera Setup for Velocity Estimation... 29

4.4. Image Pre-processing ... 30

4.5. Algorithm Implementation ... 30

4.5.1. Image acquisition ... 32

4.5.2. Colour space and data type conversion .. 32

4.5.3. Corner detection ... 32

4.5.4. Corner matching ... 34

4.5.5. Estimate geometric transformation block 34

4.5.6. Velocities calculation ... 35

4.6. Visual presentation ... 35

4.6.1. Corners display .. 35

4.6.2. Robot position and trajectory display .. 37

5. Results and conclusions .. 38

 2

5.1. Real image with simulated motion ... 38

5.2. Real test environment ... 43

5.2.1. Heading angle accuracy test ... 49

5.3. Discussions ... 50

5.3.1. Inside corridor test ... 50

5.3.2. Future work and suggestions.. 52

References ... 54

Appendix 1: Optical flow algortihm code ... 59

Appendix 2: Corner DETECTION algorithm ... 63

 3

1. INTRODUCTION

1.1. Background

It is important in the field of autonomous robots to estimate the velocity of mobile robot

within some tolerances in order to achieve higher-level motion and navigation tasks

accurately. Image processing is one of the tools that are used for this purpose. The

visual odometry process consists of three main stages: feature detection, feature

matching and image transformation, as shown in the Figure 1.1.

Feature Detection

Feature Matching

Image Transformation

Figure 1.1: Different stages for velocity calculation using image processing

To calculate translation from on image to the other, the first feature detection. In this

step a set of features e.g. corners, blobs are detected in both images. The most required

property of the feature detection is repeatability, i.e. the method must find the same

feature points in the processed images. Feature points are presented as feature vector

(descriptors). Descriptors have to be unique and at the same time robust to noise. In the

feature matching stage, the feature vectors are compared and matched between two

images (current image and previous (second) image). The feature matching is based on

a distance, e.g. the Euclidean distance [48] between the feature vectors. In the 3
rd

 stage,

image transformation is calculated from the result of feature matching.

This process is different from conventional “content-based image retrieval (CBIR)”

[49], where the features have the same properties in all the images, e.g. red colour is

considered as the point of relevancy between the images. So the difference is of colour

relevancy and features detection in the process of CBIR and feature detection

respectively.

 4

Feature detection and feature matching have been the subject of research in different

fields, namely mobile robot vision [50, 51], model based object recognition [52],

panorama stitching [53, 54], video sequence matching [55], scalable object recognition

[56].

Different types of image features are studied, for example, corners [57], interest-points

[58], and moment invariants [59]. These all image features are declared as, depending

upon their definition criteria. Corner points are the most significant features point in all

of them. The “interest point” and “corners” are used equivalently in the literature but

corners are also presented as the special subclass of interest-point [60]. Detail of corners

is mentioned in Section 2.3.

1.2. Objectives

The main objectives of this thesis are as follows:

Visual Odometery: In an autonomous navigation, the position estimation of mobile

robot is an essential part. Wheel encoder based odometery is the first method used for

dead-reckoning for wheeled ground vehicles. Dead-reckoning is the process of

determining the current position by using the data of previous position. In this process

the error is accumulated to the current position. Despite of its error accumulation and

error computation due to wheel slippage, it is still one of the main localisation sensing

tools in the majority of ground vehicles [61]. Reason for the popularity of this method is

simplicity and practicality [62]. In our case, calculation for odometery is based on visual

data. Main idea is to find good feature points in one frame with corresponding features

in the next frame and the transformation calculation from these features points. Method

is carried out using single camera looking downwards and related work example is

mentioned in [63].

Velocity estimation: Using idea of features detection in one frame and corresponding

features in next frame, velocity estimation is also calculated in this thesis work.

Distance between detected features in current frame and the corresponding features in

the second frame is the key for the velocity calculation-using frame per second as a time

factor.

Application development: In order to achieve the above mentioned objectives, the

application is developed using MATLAB Simulink and tested with two test

environments, i.e. real image with simulated motion and real image with real motion.

 5

1.3. Dissertation outline

Chapter 2 describes the basic of terminology of image processing and fundamentals of

corner detection. Another idea and technique which is used for the speed estimation is

optical flow. An overview of optical flow algorithm is presented in chapter 3.

Developed application using corner detection algorithm is presented in chapter 4.

Chapter 5 contains implementations and practical results and conclusions for the

proposed algorithm and is followed by the references of the research work.

 6

2. FUNDAMENTALS OF CORNER

DETECTION

2.1. Introduction

Recent years of research have witnessed major advancement in the field of

autonomous mobile robot systems. Various techniques and concepts have increased

the research interest in this area. Many techniques and methods which had been

used in the field of machine vision requires matching of two consecutive image

frames in order to extract information from them. Corner detection is one of the

leading concepts of interest in the field of machine vision used for autonomous robot

systems.

For example, it is possible to find out speed of the platform on which the camera is

mounted, tracking of the object in the images, shape analysis, motion analysis etc. if

feature matching is successful between two images frames. The matching of all the

pixels from one frame to the next frame will be computationally very expensive;

hence this is prohibitive for most of the applications. In order to overcome such

situation some locations in the image are used to point out which are known as

feature points or corner points. These corner points then execute association between

two consecutive image frames. This will reduce the association point‟s

computational time for further processing; however, corner detection time is still

needed be to consider. Approximate reconstructions of the shape from corners are

also one of the important aspects of corner detection that make it stand out among

other techniques of machine vision [29-33].

2.2. Image

Image is acquired when the illumination coming from the source is reflected from the

scene. Hence, image is the 2-D function relying on illumination source and reflection

of the scene, which is captured and is mentioned in [64].

 () () ()

 7

where, are (2-D spatial variables) denoting spatial coordinates on the

image, () is the illumination function and () is the reflectance function.

When the image is digitized, it is possible to represent it with matrix with m rows and

n columns. Each element of this matrix is known as pixel [64]. Digital image can be,

grey scale, colour and/or binary. In this thesis work, grey scale image is used because

of the corner detection algorithm requirement. The grey scale image has the

luminance intensity information only, without any colour information. If each pixel

is represented by a b bit number, in this case each pixel in the image has certain

value of intensity in the range of 0 to [63]. A pixel in the image is the

element, which contains small variations in intensity among themselves, and large

variation from other groups of pixels. This pixel variation among themselves and

from other groups of pixels is termed as object rising phenomenon [65].

2.3. Corners

Interest points and corner points are termed as same in the literature [60]. Guru et al

[66] defined corners as the intersection of two contiguous, comparatively straight

curve segments. A main criterion of confirmation for a point as corner is that the

direction of the curve changes significantly and sharply. The corners are shown in

following two image examples:

Figure 2.1: (a) Leaf image available at [67] original image on the left hand side and

edged image with corners on the right hand side [copied from source 16]

 8

Figure 2.2: Detected corners at test image [copied from source 11]

2.4. Corner detectors

There are many different corner detectors proposed depending upon their definitions

for corners point in an image. Some of the corner detectors find corners on the basis

of local symmetry, some of them work to locate the corners and others find out the

changes in the texture. Corner points are interesting points because they define the

edges and came into existence when two or more edges of the two different or part of

the same objects define its boundaries. The motions at edges are ambiguous by virtue

of the aperture problem [34] but corners being 2D feature do not cause such

ambiguity specifically in motion analysis.

2.4.1. Corner detectors requirement

Corner detector should meet the following criteria‟s in order to reveal correct result,

 True corners should be detected

 Removal of false corners and/or outliers

 Corner points should be well localized

 Corner detector should be robust with noise

 Corner detector should be computationally efficient

There are three main and popular corner detection algorithms available, which are

namely as follows [71];

 Shi & Tomas detection method (minimum eigenvalue) [69-70]

 Harris & Stephen corner detection [8]

 Rosten & Drummond method (local intensity comparison) [10]

All of the above stated methods have their own significance with respect to the

criteria they use to find the corner points.

 9

2.4.2. Harris & Stephen corner detector

This is a popular corner detector in the field of machine vision because of its strong

invariance to illumination variation, scaling, rotation and image noise [7]. The

working principle of the detector is based on a matrix related to the local auto-

correlation function of the signal and this function calculates the local changes of the

signal from small amount of the moment of pixel in different directions. After auto-

correlation operation is execution, the two eigenvalues are calculated for each pixel.

From the eigenvalues a number or point is associated to each pixel in the image [9].

If this number or points is above certain threshold value, then the corresponding

pixel is defined as corner. The whole method and criteria on which corners are

allocated in an image is described briefly in [8].

2.4.3. Shi & Tomasi corner detector

Shi & Tomasi corner detector is entirely based on the Harris & Stephens corner

detector but with some changes in the detection method and its criteria. Shi &

Tomasi proposed direct use of eigenvalues instead of function manipulation with the

points. The results are more accurate.

A score is associated to each pixel in the coordinate (x, y) on the image. The

calculation of score in Harris and Shi & Tomasi is as follows;

For Harris & Stephens [9]:

 ()

For Shi & Tomasi [9]:

 ()

where M denotes the covariance matrix or scatter matrix, K is an adjustable constant

and known as sensitivity factor. R denotes the score, are the eigenvalues.

Notice that M is 2x2 positive definite matrix, thus the eigenvalues are non-negative

values [35, 36]. From values of we can define whether a pixel is associated to

an edge or a corner point. There are three cases to be considered [36]:

 If both are small, local auto-correlation function is flat and

targeted image region is of approximately constant intensity. The change in

the matrix M(x, y) is little in any direction.

 If one eigenvalue is high and the other is low local auto-correlation is ridge

shaped. It shows little change in matrix M(x, y) in the direction of ridge and

significant change in the orthogonal direction, which will indicate an edge

surface.

 10

 If both eigenvalues are high, then the local auto-correlation function is

sharply peaked then the change in matrix M(x, y) in any direction will be

significant, which indicates a corner.

2.4.4. Rosten & Drummond corner detector

It is an algorithm proposed by Rosten and Drummond for recognizing the features or

interest points in an image. An interest point or feature in an image is a pixel which

has a well-defined position and can be robustly detected. This corner detector is

known as FAST corner detector where FAST is an abbreviation of Features from

Accelerated Segment Test. Typically like the name of this corner detector it is

recognized as fast corner detector as compared to other available corner detectors

[10].

2.5. Corner detection steps

Most of the corner detectors follow same steps to detect interest or corner points in

an image. Those corner detectors are as follows [11];

 Moravec

 Harris/Plessey

 Trajkovic and Hedley (4-neigbhours)

 Trajkovic and Hedley (8-neigbhours)

Mainly corner detection is done in three consecutive steps:

1. Corner operator application

2. Threshold application

3. Non-maximal suppression

Corner operator application: This is the first step in which a corner detector is

supplied with an image as input. Corner operator requires few parameters to

determine whether the pixel in an input image is a corner or not. The “cornerness

measure [11]” is the measure which simply defines the degree to which corner

operator consider the pixel as corner in an input image. All the corner detectors

manipulate this first step and they only differ with each other on the basis of measure

used for manipulation. The output image of this step is named as “cornerness map

[11]”. Output image is an image with the same dimension as input image but it could

be consider as processed version of the input due to corner operator‟s application to

each pixel of the input image.

 11

Threshold application: Corner operators define the corners as local maximum in the

output image (cornerness map) of the first step. At the second step there are many

local maximum in the cornerness map which contain small cornerness measure and

hence are not true corners. In order to avoid these un-true corners for further

processing threshold application is used. All the local maxima under threshold value

are set to zero and thus the image is considered as thresholded cornerness map. The

threshold selection requires repeated judgments and error experimentation tests. The

threshold value should be consider high enough to avoid un-true corners and low

enough to hold true corners, therefore, trade-off policy needs to be adopted in this

scenario. It is very rare to find ideal threshold value to have ideal corners in an

image.

Non-maximal suppression: The non-maximal suppression is applied to define the

location of the local maxima in the thresholded cornerness map. At this stage the

cornerness map contains the non-zero values around local maximums which are

declare as corners. Cornernerness measure for each pixel in the thresholded

cornerness map is set to zero by non-maximal suppression if its cornerness measure

is not larger than the cornerness measure of all other points within a certain distance.

After non-maximal suppression application, the remaining points are non-zero points

in the cornerness map and are true corners.

 12

Following flow diagram shows how these steps are processed;

Start

Process

Input Image

Corner Operator

application

Threshold

application

Cornerness

measure

Thresholded

Cornerness

measure

Non.maximal

suppression

application

True Corners

Output

Output

End

Process

Figure 2.3: Flow diagram for corner detection [11 modified]

The visual presentation of each step of the corner detection is mentioned in [11] and

is as follows:

 13

Figure 2.4: Pictorial representation of corner detection step at Lena’s image [11]

2.6. Corner matching

The problem of corner matching between two images and at the same time, avoiding

mismatches is an ultimate problem in machine vision application and it has been

studied for couple of decades [13]. After an intensive research in this domain, there

are noteworthy numbers of algorithms available for this purpose but no one is

universal and reliable enough to survive with all situations and work environment

[14]. The difficulties might be the corner detection and then the relative matching

between two images. The solution for such problems might be computationally

expensive and the algorithm could generates some false corners due to noise in the

images and even algorithm might lose true corners due to the noise caused by the

illumination and the corner strength which if presented with some numerical value

could be tentative [15].

2.6.1. Corner point representations

Corner point representation is one of the important aspects in the corner matching. In

corner matching each feature must be represented with its unique information. The

more the information is unique, the less is the chance to have false matching at

matching stage. The set of information about feature is known as descriptors.

The descriptors are categorized into two types and are as follows;

 Geometric information

 Neighbourhood intensity

 14

Geometric representation of the feature consists of curvature, angle and the distance

from its neighbouring corner points. Geometric representation is used in [37].

Neighbourhood intensity representation is based on pixel intensity values in a

specific neighbourhood around each corner point. Neighbourhood representation is

knows as local descriptors. Mikolajczyk and Schmid [25] presented the comparative

study of local descriptors. Examples of such descriptors are differential invariants

[38-40], central moment invariants [41], SIFT-based descriptors [42, 43] and

steerable filters [44] among others.

2.6.2. Image matching Categories

The corner matching is generally divided into two categories that are “area based and

feature based” corner matching [17, 18]. Following pictorial presentation will show

the tree diagram for the corner matching subdivision categories.

Image Matching

Categories

Area Based

Matching

Feature Based

Matching

Neighborhood

Matching

Geometric

Based Matching

Nearest Neighbor

distance ratio based
Nearest neighbor

Threshold based

matching

Figure2.5: Image matching categories and sub-division [modified 16]

2.6.2.1 Area based matching

This method will use grey patch area of the current image to relate with the previous

image using cross-correlation or least-square technique. The area based matching

algorithm assigns some value to the grey patch in the current image and tries to

locate related value in the second image in order to have ultimate matching between

two images. This method needs image pre-processing in order to avoid or minimize

 15

sensitivity to noise within the image. One of the drawbacks of this matching is that it

is computationally expensive.

2.6.2.2 Feature based matching

Feature based matching entirely depends upon the features, e.g., corners, from the

current image and relate those features to those in the second image. The

correspondences between the features of two images rely on their descriptors

information. This type of matching is more robust and reliable than their counterpart

that is area based matching. But they could also be computationally expensive if

large numbers of features have been encountered in the images.

2.6.2.3 Neighbourhood matching

Combination of aforementioned matching methods has also been used in the

matching algorithms. They are named as neighbourhood based matching as shown in

the Figure 2.5. This method uses information around the features for matching.

Example of such implementation is present in [18-22]. One of the research articles

[25] contains further sub-division of neighbourhood based matching techniques. In

[25] Mikolajczyk and Schmid use descriptor information for matching. These

matching techniques are as follows;

 Threshold based matching: In the threshold based matching, threshold is the

decisive element for the selection of features matching. It works in a way that

two features (feature from current and second image) are matched if the

distance between their descriptors is less than certain predefined threshold. It

is quite possible for the feature to have many matches in this strategy.

 Nearest neighbour based matching (NN matching): In the nearest neighbour

based matching the decisive element is the distance between the two

descriptors. If the features are corner points and named as and (corner

points from current and second image) with descriptors and

respectively. These descriptors will match if is the nearest neighbour of

and the distance is beneath the threshold. Using this approach corner point

should have at most one match.

 Nearest neighbour distance ratio based matching (NNDR matching): This

technique is same as aforementioned technique. Certain threshold is defined

before the matching. The threshold is applied for the distance ratio for the

first two (1
st
 and 2

nd
) nearest neighbour matches. The two corners and

with descriptors and respectively will be matched if
| |

| |
 ,

 16

where is descriptor of , 2
nd

 nearest neighbour match-to . This

technique will also have at most one match.

All the three matching techniques are different from each other in a way that the first

one is relying on threshold, second approach is relying on the distance between

descriptors and the third matching method is deciding upon the distance ratio

between descriptors.

2.6.2.4 Geometric based matching

Matching methods which do not use neighbourhood information around features are

categorized as geometric point matching methods. Research papers [23-24] are the

example of such implementation.

Geometric based matching use the set of correspondence element in order to decide

the ultimate matching between the features. The set of correspondence descriptors

consists of curvature, distance from the neighbour features, angle etc. The set of

correspondence descriptors finally decide for best matches while depending upon the

threshold value.

2.7. Removal of outliers

Outliers are the points which are true corners in an image and may lead wrong

feature matching. In order to have true corner points in an image and then to match

the true corners of current image to the second image, outlier‟s removal is necessary.

RANSAC abbreviated as “RANdom SAmple Consensus” [26] algorithm is one the

method for removing outliers. Example of RANSAC based outliers removal is noted

in [27].

 17

3. OPTICAL FLOW ALGORITHM, AN

OVERVIEW

Optical flow is a concept, which describes the apparent motion of the objects in an

image by the relative motion between an observer or eye or visual sensor (camera)

and the scene or environment. Optical flow provides information about the

environment of the image, which could be used for the control purpose. In particular,

optical flow has the information of observer‟s movement [5], distance travelled from

one image to the next image, 3-D shape of environmental shape [6].

Optical flow is also one of the leading concepts of interest in the field of machine

vision used for autonomous robot systems. Optical flow has a long history of

research. This term was studied and introduced by Gibson J.J in 1950‟s. He

published this concept in 1950 [1] and later in 1960 [2]. In the history of research

about optical flow most of the time it is argued that all the methods discovered some

variation of the same subject. Mainly, the research in the field of optical flow

revolves around two concepts, that is: brightness pattern and spatial arrangements

[3]. The brightness pattern is typically derived from the study that surfaces normally

persist over time and hence change in the position cause no change in the value of

intensity of small region [4]. The spatial smoothness constraint (spatial term) reveals

that neighbouring pixels generally belong to the same surface and so have almost the

same image motion [3]. These terms in optical flow have a long history but despite

of it, there have been few attempts to research about these terms [46]. Latest research

[47] in the field of optical flow has provided image sequences with ground truth

optical flow available to make this practical.

3.1. The Optical Flow field

The pattern created with the moment of the visual sensor (camera) relative to the

environment is an optical flow field. It is represented by the instantaneous velocity

field, where every vector corresponds to the optical motion of a point in the

environment. Generally, rigid motion is decomposed into two components that are-

translation and rotation which state that the pattern created with the relative moment

of a visual sensor projected at the spherical shape object has two components: a

rotational component depending upon the rotational flow due to the rotation of an

 18

observer whereas the translational component is due to translation of the observer.

The following figure shows the phenomenon;

Figure 3.1: (a) Translational component (b) Rotational component

Above Figure 3.1 (a) is revealing the translational component of the optical flow

field where an observer is making translation along the axis. Figure 3.1 (b) shows the

rotational component of the optical flow field. This is due to the observer‟s eye

rotation along the axis producing cylindrical flow along the spherical object without

sources. These concepts are explained in detail below.

3.1.1. Translational component

It is important to consider an extraction and contraction of the focus with the moment

of an observer while discussing translational component of optical flow. With the

moment of an observer along the axis, focus usually expands in the direction of

moment and contraction takes place in the opposite direction. The optical flow field

pattern formed with the direction of the vector is dependent in the direction of

moment of the observer. The environmental distance of the moment has no effect on

the pattern of the optical flow field. This is the reason we can simply identify the

direction of the moment by an observer. The distance from the matching point,

velocity of the observer‟s moment and the angle from the focus of expansion reveals

the magnitude of each vector. So, it is possible to reveal relative depth from the

information delivered by the magnitude of the optical flow and from the moment of

the observer.

It is very forthright to find out the direction of the optical flow field from the flow

pattern of the translational component. In order to have consistent estimation for the

focus of expansion the pair of vectors can be arranged in a triangular manner so that

their point of origin could be determined and hence they will produce the focus of

expansion.

 19

3.1.2. Rotational component

The rotational component illustrates the flow pattern as solenoidal due to the rotary

motion of the observer‟s head or eye and in the case of camera the rotary motion due

to rotation of the camera lens. Moreover, the parallel flow pattern is due to the yaw

of the observer and rotation about the line of sight produce rotational flow pattern.

This rotational pattern of the optical flow field brings information about the

rotational moment of the observer as well as it is sovereign of the distance factor.

The direction of the observer is possible to illustrate by the vector direction which is

relying on the axis of rotation.

The observer‟s rotation rate depends upon the vector magnitude which is possible to

reveal with the visual angle from the rotation axis and the speed of rotation. This

organized and related space of flow pattern in the optical flow field allows

determining the direction and speed of the observer.

3.2. Optical flow algorithm

Optical flow is the apparent velocities of movement of brightness patterns which is

distributed in an entire image.[1] Optical flow is always generated with the relative

moment of the object and observer which becomes the reason for changes in the

brightness pattern and hence produce optical flow. Horn [1] developed the algorithm

or optical flow techniques, which are based on spatiotemporal difference from

consequent images. Since, these methods are developed as differential method,

region based matching method etc. are used for the optical flow calculation. It is

possible to enlighten the spatial arrangements of the object viewed with optical flow

concept and at which proportion these spatial arrangements are changing [2].

Optical flow algorithm for the velocity calculation of mobile robot is divided

generally into following steps.

 Selection of tracking context

 Image acquisition

 Estimation of optical flow across the image sequence using Kanade-

Lucas-Tomasi (KLT) algorithm for selection of features

 Selected features are then tracked in the later images

 Storing the results of feature tracking

 Replacement of the old image with the new image

 Velocity calculation

The optical flow algorithm calculates the changes in the moment between two frames

of images which are taken at time t and t+∆t. [1]. In this method, suppose J is the

grey scale image captured at time t and J+1 is the next image captured at time t+∆t.

 20

Figure 3.2: Optical flow features [3]

In Figure 3.2 (A) is the feature window in the grey scale Image J and (B) is the same

feature window in the grey scale image J+1. The feature (A) has moved distances of

dx and dy in X and Y coordinates respectively. Figure 3.2 is presenting the moment

of the feature (A) and (B) between two sequences of images. The main objective is to

find the displacement between features (A) and (B) and the the velocity vector is

determined using optical flow output. Constraints like geometrical (shape)

comparison, grey scale intensities comparison and/or feature from one image to be

match with the feature in second image are the possible way to determine the optical

flow pattern.

Calculation part starts with the calculation of pixels per centimetre just by moving

the object manually at known distance. Then the pixel values have been converted to

real world coordinates and general gain factor has been established.

Displacement from image J to J+1 is determined with feature tracking algorithm. The

features in the image J are selected by the gradients calculation when the image is

smooth and these gradients are one in x direction and one in y direction. Then these

selected features are tracked entirely based on tracking context. The tracking context

consists of “min-dist”, “min_eigenvalue” and “point_threshold”. Where, “min-dist”

is the minimum distance between features, min_eigenvalue is the minimum

allowable eigenvalue for the features need to be track. The eigenvalue is selected in a

way that its minimum value remains above the threshold. These features need to be

within the border (x-axis) and border (y-axis) of the image.

The displacement from x and y coordinates of features are being selected and then

tracked which gives the optical flow d which is then divided by the time of frame per

second to calculate the velocity of the mobile robot.

 21

3.3. Results analysis and problems

The code for the optical flow algorithm is mention in Appendix 1. With provided

code, the tracking context mention in Section 3.2, the image acquisition, selection of

features, the tracking of selected features and velocity calculation has been done.

The test setup was same as it is explained in Section 5.3. The test was done in such a

way that both the camera and the object remain at same place i.e. there was no

moment. In an acceptable test results, there should be no change in the features

position, neither in X nor in Y-coordinates. Following plots shows the position of

features in X and Y coordinates separately.

Figure 3.3: Feature’s position in X-coordinates

 22

Figure 3.4: Feature’s position in Y-coordinates

 23

Figure 3.5: XY-coordinates values for selected and tracked features

The coordinate position in an image is shown in above figure. For example, 1-

Feature # 90 ans 2-Feature # 90 is showing the position of the features in current and

previous image. The position in XY coordinate of 1-Feature # 90 and 2-Feature # 90

is (156.99, 177.08) and (343.98, 123.02) respectively. Practically, moment in XY-

coordinates was near to zero but still this algorithm was detecting large displacement

of the position of the features.

 24

The robustness of the algorithm was also not enough to cope up with the moment of

camera. Algorithm‟s detection capability for the feature points with fast moment of

the camera was also not enough to reveal result of the velocity. Hence, at the fast

moment speed it shows no feature points detection. Following Figure, illustrate this

problem;

Figure 3.6: Zero detection of feature points at high-speed moments

 25

The incorrect distance measurement between the tracked features from image J to

J+1 leads to the incorrect velocity calculation. Tracked features from the algorithm

are as shown in the following Figure 3.7;

Figure 3.7: Selected features in image J and J+1 when there was no moment, Red

dots are features. Black circles shows those features, which are detected in image J

and missed or not detected in image J+1 or vice-versa

 26

4. CORNER DETECTION ALGORITHM

This chapter is consists of theoretical and practical setup of the research work. This

chapter will also highlight the pre and post processing algorithms. First, it is worthy

to consider the standard coordinate system camera model, which is as follows;

4.1. Standard Coordinate System Camera Model

Camera coordinate system model gives the relationship between what appears on

image plane and where it is located in 3D world. The standard coordinate system

camera model is shown in Figure 4.1.

Figure 4.1: The Standard Coordinate System Camera [4]

In this model, light is entered the camera through a very tiny aperture. The geometry

of the perspective projection is accurately captures by using this model [45]. The

camera model has assumptions that the centre of projection of the image coincides

with the world coordinates and z-axis (optical axis) is perpendicular to the terrain

surface. It is also assume that image is placed in front of centre of projection as

shown in Figure 4.1.

The camera model consists of intrinsic (image centre and focal length) parameters

and extrinsic (location of the centre and 3D orientation of the projective method)

parameters.

 27

With an overview of the above mentioned standard camera model, it is mandatory to

consider and implement camera calibration for intrinsic and extrinsic parameters.

Camera calibration will help to have picture data on image coordinate for further

analysis and results.

4.2. Camera Calibration

Camera calibration is also considered as pre-processing step of the work. Camera

calibration is required for conversion of the image transformation estimation into

measured body motions in the real world. Two sets of parameters namely, extrinsic

and intrinsic parameters are the output of camera calibration part. Extrinsic

parameters are not constant and are related to the camera orientation with respect to

the setup environment. Intrinsic parameters are the parameters that are used to relate

the pixel position of the conforming object in real space. Both these parameters are

calibrated using Camera Calibration Toolbox using Matlab. They are important as

they are used to determine the pixel position in real world. Those parameters are as

follows;

• Focal length

• Principle point

• Skew coefficient =

• Distortion

If the camera is assumes to have negligible skew coefficient and distortion then the

 and .

Camera calibration has been done using 50 images. All the images are captured using

by the device “Microsoft LifeCam Cinema”. “Microsoft LifeCam Cinema” is also

used in the later test experiments. Image acquisition has been done using different

positions of the grid and camera. Some of the images used for calibration are as

follows;

 28

Figure 4.2: Images used for camera calibration

By following the steps provided at [12], calibration has been done. Following Figure

4.3 is showing the extraction of the grid corners using this above mentioned

procedure.

Figure 4.3: Extracted corners at one of the calibration image

With the following assumption of and , the data for the intrinsic parameters of

the camera has following values as output;

 29

Skew: alpha_c = [0.00000] ± [0.00000] => angle of pixel axes =

90.00000 ± 0.00000 degrees

Distortion: kc = [0.00000 0.00000 0.00000 0.00000 0.00000] ± [

0.00000 0.00000 0.00000 0.00000 0.00000]

Focal Length: fc = [493.59478 493.59478] ± [1.13663 1.13663]

Principal point: cc = [334.58054 174.66069] ± [0.74193 0.89226]

Pixel error: err = [0.18868 0.19682]

4.3. Camera Setup for Velocity Estimation

The camera setup for velocity estimation is as shown in the figure 4.4. The camera is

looking downward towards the ground and mounted over the mobile robot. As it is

assumed in the previous section that camera has negligible distortion, hence

distortion parameter will become kc = |0 0 0 0 0 | and αc = 0.

Figure4.4: Camera Setup [3]

On the basis of intrinsic, velocity component in image coordinate frame, minimum

eigenvalue, principle point and distance between the features is calculated.

With the camera setup as shown in above Figure 4.4, it is necessary to do image pre-

processing in order to have more reasonable and acceptable image for further

processing.

 30

4.4. Image Pre-processing

Image processing‟s aim is to enhance quality of the image data and help to suppress

the distortion and noise in order to have better image for further processing.

Image pre-processing is the initial step towards practical implementation of the

algorithm and above mentioned setup. The autofocus of the camera is switched to

fixed focus and configured according to the camera‟s height requirement. It is very

important to turn off the autofocus because with automatic setting of the focus, it is

possible to have false corner points and so, the false results.

Illumination adjustment is one of the basic and another unique parameter in machine

vision applications. Illumination parameter of the camera is also tuned automatically

with the help of “imaqtool” of Matlab according to the height and test environment

so that optimum level of illumination would help to find true corners.

Backlight compensation, exposure mode and white balancing is been set to automatic

adjustment mode. Other parameters for pre-processing like saturation, sharpness and

contrast mode are also been adjusted to a level to have an acceptable image.

All of these parameters are adjusted before commencing the main process.

4.5. Algorithm Implementation

The algorithm used for corner detection is been developed in Matlab/Simulink

environment. The algorithm consists of the following steps;

 Image acquisition

 Colour space conversion

 Corner detection

 Corner matching

 Estimation of geometric transformation

 Velocities calculation

Entire Simulink Model is presented in Figure 4.5:

 31

Figure 4.5: Simulink Model for motion detection

 32

Detail code of the blocks like “corner matching”, “velocities calculation” and “robot

trajectory” is presented in the Appendix 2.

4.5.1. Image acquisition

Image acquisition is the input of the algorithm. In order to capture images “Image

Acquisition Tool” is been used. Before acquisition as described in section 4.4, image

pre-processing is necessary to have better images in order to have better result. For

this purpose all the parameters of pre-processing like, focus, saturation, white

balancing, back light compensation, sharpness, contrast and exposure are set. White

balancing, backlight compensation and exposure tuned to auto mode and rest of them

are tune to manual mode. The image acquisition is done at 20fps (frames per

second). The image resolution is set to 640x360 pixels. Very high resolution like

720x1280 or 1920x1080 pixels can reduce the computational speed of the algorithm

and very low resolution like 320x240 can reduce the algorithm efficiency for finding

feature points. So trade off policy was adopted and 640x360 pixels were selected.

The colour space of the image is selected as RGB (Red, Green and blue channels).

In case of saving the video stream at the test stage of the algorithm and for the

camera calibration purpose; all the images are been acquired under these adjustments

and save as “.avi” (uncompressed) file. The compressed feature is not been used

because of the reason that it might loss some information from the image.

4.5.2. Colour space and data type conversion

Most of the machine vision algorithm works with grey scale image. Corner detection

is also one of them and needs to have grey scale image for further processing. In

order to convert RGB to grey scale image, colour space conversion block is been

used. The data type that is supported by the corner detection algorithm is double and

the data, which is coming as input, is single. So data type conversion from single to

double is been also done using data type conversion block. After colour space and

data type conversion, image is input to corner detection block.

4.5.3. Corner detection

Corner detection block is an important block of the algorithm. The input of this block

is grey scale image with data type of double. Corner detection block finds corner

points (feature points or point of interest) in an image. There are three methods as

options available in this block for this purpose. Those methods namely are Harris

corner detection, Shi & Tomasi corner detection and Rosten and Drummond. Details

of these methods have been discussed in Section 2.2. Harris Corner detection is

preferred among other available options because it is trade-off between accuracy and

 33

computation speed. The print screen for the corner detection parameters is as

follows;

Figure 4.6: Corner detection parameters

The sensitivity factor “K” is been adjusted between limits of 0<K<0.25. The smaller

the value of sensitivity factor is, more likely sharper corners are detected as

explained in Section 2.2. After several test runs the sensitivity factor “k” was

adjusted to the 0.001. Maximum number of corner which algorithm needs to find in

an input image can also be adjusted in this block and the number used here is 80

corners. The minimum metric value is the score R that indicates a corner, can be

adjusted in this block. It was set to 0.001. Non-maximal suppression as explained in

Section 2.3 is done with in certain range of neighbourhood around the corners. It is

possible to tune this range in one of the options of corner detection block namely

“Neighbourhood size”. It is required to define two element vector of positive odd

integers that is [r c] where „r‟ is the number of rows and „c‟ is the number of column

in the neighbourhood. With adjustment of all these parameters in the corner detection

block we get corner location and number of corners (count) as output of this block.

The corner location and count is the input of the corner matching block.

 34

4.5.4. Corner matching

Corner matching is the block that is use to match the corner points from current

image to the previous image. Detail code of the corner matching is block is mention

in Appendix 2. The input of this block is the output of corner detection block. Detail

of corner matching algorithm is discussed in section 2.4. In this algorithm the

Neighbourhood matching is used for this purpose. Nearest neighbourhood based

corner matching that is sub-category of neighbourhood matching is been used for this

purpose. Distance is the decisive element for the selection of matching. All other

matching options are explained in section 2.3. The output of this block is those

matched points in current image and previous images that are name as Pts. 1 and Pts.

2 respectively. The third output “Num.” is the number of corners been matched.

These outputs are the input of next block, which is geometric transformation

estimation. Print screen of the corner-matching block is as follows;

Figure 4.7: Corner-matching blocks

4.5.5. Estimate geometric transformation block

Estimate geometric transformation block is use to find the transformation matrix

between number of point pairs between two images (current and previous). This

block supports three types of transformations that is non-reflective similarity, affine

and projective transformation. We are interested in Non-reflective similarity in this

application. Non-reflective similarity algorithm contains four degrees of freedom.

The input of this block is two pairs of points namely as Pts. 1, and Pts. 2. In this way,

ultimate logical connection is established between corner matching and estimate

geometric transformation blocks. One of the important functions this block performs

is the removal of outliers as explained in section 2.5. With available options of

RANdom SAmple Consensus (RANSAC) and Least Median Squares algorithm,

 35

RANSAC is been selected for finding and removal of outliers. Detail of RANSAC

algorithm is available in [27] and [28].

With the selection of non-reflective similarity and RANSAC algorithm, it is possible

to set the upper limit distance for the points that is called threshold for determining

inliers. With this limit, a point can differ from the projection location of its

associative points. It is possible to limit the percentage of random sampling

performed by the algorithm for finding inliers from the input points. With the

number of test runs the parameters of this block is fixed to the acceptable level in

order to have optimum results. The output of this block is transformation matrix.

This transformation matrix is been required by the velocities calculation and is

working as input of velocities calculation block.

4.5.6. Velocities calculation

With transformation matrix as an input to the velocities calculation (Matlab function)

block, velocities in X and Y direction and angular velocity is calculated. Hence,

output of this calculation block is velocity vector (along x-y axis) and angular

velocity (along z-axis). The result and test data is presented in the following chapter.

4.6. Visual presentation

In order to present the corners location in an image and robot trajectory, two blocks

were added which are explained as follows:

4.6.1. Corners display

This block provides visual display of the corner points on the image. The input of

this block consists of RGB image which is been provided before the conversion of

image colour space to grey scale. The corner points are located with Pts 1 and Pts 2

for current and previous image respectively. Following figure will show their

practical implementations which are translated images.

 36

Figure 4.8: Corner point’s visual display with blue stars (image J) and red circle

(J+1)

Figure 4.9: Corner point’s visual display when both corner points are completely

overlapped with each other from current image (image J) to second image (image

J+1)

 37

4.6.2. Robot position and trajectory display

In order to find robot position, “discrete time integrator block” is been added to the

model and it is presenting the position of the robot versus time. With the plot of

robot‟s position, robot‟s trajectory is been plotted as well. The test data of position

and trajectory graph of the robot are presented in the next chapter.

 38

5. RESULTS AND CONCLUSIONS

In this chapter, result of the algorithm is presented. The result we are presenting here are the

outcome of the methods from the literature [7-9] and the methods mentioned in Section 2.2.

Moreover, comparison and different problems while testing algorithm at different test setup is

also mentioned in the chapter. Results are obtained by applying these methods in two test

environments. Those environments are as follows;

 Real image with simulated motion

 Real test environment

5.1. Real image with simulated motion

Control test environment is consisting of MATLAB supported test setup. The main

image is acquired using MATLAB toolbox “Imaqtool”. The motion of the image is

simulated using translation commands in MATLAB. The input image has motion in

a circular pattern. Motion of the input image is named as estimated output and it is

used for the comparison to the actual output of the algorithm. Then the motion is

detected using corner detection and matching algorithm as explained before in

previous chapter 4.

The test image used for further processing is the part of the main image which is

shown in Figure 5.1:

 39

Figure 5.1: Test image of the floor (image ‘testpic’) (dimensions 1920 x 1080

pixels²)

 40

The detected corner on the test image is shown in Figure 5.2:

Figure 5.2: (image ‘testpic’) Circles (red) are the corner points in image (J)

followed by Plus sign (blue) in image (J +1) and both corner points are plotted on

image J (dimensions 320 x 480 pixels²)

Following plot (Figure 5.3 and 5.4) shows the comparison of an estimated vs. actual

velocity with simulated test environment in X-Y directions.

 41

Figure 5.3: Estimated vs. Actual Velocity in X-direction (image ‘testpic’)

Figure 5.4: Estimated vs. Actual Velocity in Y-direction (image ‘testpic’)

Figure 5.5 shows the moment graph data of the estimated velocity, which is,

compared with the actual graph data of the actual velocity.

 42

Figure 5.5: Moment graph data (image ‘testpic’)

The algorithm is processed with different images and error percentage and variance

percentage is calculated for each image. The table that shows data for each image is

as follows;

Input Image Name
Simulation Moment Average Average Variance Variance

Time Sec. direction
Error
pixels error % pixels sq.

%

Testpic-1 12
X-direction -0,629 -0,025 92,673 3,968

Y-direction -0,266 -0,005 274,208 4,626

Testpic-2
(testpic)

12
X-direction -0,536 -0,023 91,782 3,929

Y-direction -0,242 -0,004 273,500 4,449

Testpic-3
(normal3)

12
X-direction -0,523 -0,022 96,377 4,127

Y-direction -0,345 -0,0058 271,906 4,589

Testpic-4
 (dark4)

12
X-direction -0,400 -0,017 93,775 4,014

Y-direction -0,220 -0,004 275,544 4,649

Table 5.1: Table showing the data for different images

Major difference in all those above mentioned test images was illumination. The

algorithm was tested with different illumination conditions in order to check the

strength of the algorithm.

 43

Testpic-1 and Testpic-2: Testpic-1 and Testpic-2 was the image having good

illumination. Both the images have considerable difference in illumination

parameters to each other. The average error % shows that difference of illumination

has effect on results. Similarly the variance factor also reveals the difference of

illumination. Because good and proper illumination helps to find true corners and it

helps to have better results.

Testpic-3(normal3): This image has normal environment and illumination but also

having two spots of light in the middle of the image. The average error% and

variance% shows that this normal condition without any aid for the improvement of

illumination has a lot effect on results if we compared to previous Testpic-1 and

Testpic-2. The spot light in the middle of the image has also affected the results and

similar problem was also faced in real tests and stated later in the Section 5.3.1.

Testpic-4(dark4): This image has less illumination than normal environment

condition but no spots of light in the image. Average error% is less than the image

(Testpic-3) having spots of light in it.

So after reviewing all the results by keeping in mind the illumination and

environmental conditions of the images, it is concluded that illumination has also

affect in simulated test environment. Spots due to reflection of light from the floor

are also a reason of errors in calculation.

5.2. Real test environment

In the real test environment, the image was acquired using MATLAB toolbox

“Imaqtool”. The entire prerequisite settings for the image acquisition are explained

earlier in Section 5.5.1. Image pre-processing as explained in Section 5.4 is also

adjusted using “imaqtool toolbox”.

The algorithm was tested with different test environment and conditions. The

problems raised from very 1
st
 to the last test, are mentioned later in the Section 5.3.

 44

The test setup is shown in Figure 5.6.

Figure 5.6: Test setup

Test setup was established inside the corridor near the glass door in front of

information desk at Konetalo building in order to have rich and distributed

illumination across the test surface. The camera was mounted with the small white

box hanging away from the base red box at 90° as it is shown in Figure 5.6, the same

principle as in Figure 4.4. In order to have corner points entirely from ground surface

it was also made sure that camera should not have front side of the box in its frame

of view. It is also possible to crop the image from entire frame of view in order to

avoid the front end of the body.

The detected corners on the test surface are shown in the Figure 5.7. The dimensions

of the image are 360 x 480 pixels².

 45

Figure 5.7: Matched corner points in one of the test video

The position of the robot after completion of one square round of 90 cm in X-

direction and 90 cm in Y-direction (practically on ground), is shown in the following

Figure 5.8. The starting XY-coordinate value is (-0.4517,-0.1416) and the last value

of XY-coordinates at which the robot end its moments is (-2.377, 0.6431).

Figure 5.8: Position data for the robot’s moment

 46

In order to have a detail error analysis, the path of camera is divided into four parts

as shown in the following Figure 5.9. It starts from the point (A) from where the

robot starts it‟s travelling and ends its path at point named as end point as shown in

the following Figure 5.9.

Figure 5.9: Robot travelling path showing all start and ends

The end point is highlighted in triangle just to make it different from other point on

the trajectory.

 47

The error analysis table is as follows:

Direction of
moment

Start point (cm) End point (cm) Total motion
Error value

coordinate value
(x,y)

coordinate value (x,y) (Actual) cm

X-axis A (-0.4517, -0.1416) B (-90.91, 1.083) 90 1.51%

Y-axis B (-90.91, 1.083) C (-96.75, 91.32) 90 2.67%

X-axis C (-96.75, 91.32) D (-10.68, 91.99) 90 4.3%

Y-axis D (-10.68, 91.99)
End Point(-2.377,

0.6431)
90 2.9%

Table 5.2: Error analysis

The velocity plots for above-mentioned test in XY-direction are as follows:

Figure 5.10: Velocity in X-direction

 48

Figure 5.11: Velocity in Y-direction

 49

All the three velocities for XY-direction and angular velocity are as shown in Figure

5.12.

Figure 5.12: VelX, VelY and angular velocity

5.2.1. Heading angle accuracy test

In order to find the heading angle accuracy, one separate test was conducted. The test

was conducted manually for moving the camera in a circular pattern path. In this test

the camera was moving tangent to the path of moment. The whole test was consisting

of moment in a complete one circle. The circular moment ended approximately at the

same place where it is started from. By completing one rotation we can compare the

heading angle estimated value with the actual value of the angle after one rotation.

And by considering the difference between them, heading angle accuracy is

calculated. Figure 5.13 shows the heading angle final value and angle error is given

after that.

 50

Figure 5.13: Heading Angle moment in radians

Heading angle accuracy plot is plotted with time (seconds) at X-axis and angle

(radians) of heading on Y-axis. The heading angle accuracy is 0.5859%.

5.3. Discussions

In this section, all the problems and challenges that were faced during several phases

of research work is mentioned.

5.3.1. Inside corridor test

The very first test of the algorithm is done inside the corridor. The test setup of the

test is shown in the following Figure 5.9.

 51

Figure 5.14: The test setup and environment at inside corridor

Autonomous robot was used for the test with the camera mounted at its front part as

shown in Figure 5.9. Apparently illumination was looking fine. The algorithm was

failed to detect corners in such illuminated environment because of few reasons; one

of them was the spotlights, which accompanied the robot‟s moment throughout the

path.

Secondly, the dark shadows created by the front head of the robot and from the sides

of the wall created the problem for the detection of corners. The corners were not

detected at all in the dark places of the image.

Moreover, it was observed that corner points start moving with and around the

spotlights by considering the edges of spotlights as a corner feature. See Figure 5.10.

As it is discussed in the Section 4.4 that focusing on the test surface is a very

important factor in an image pre-processing. In the first test with “auto-focus” on, it

was difficult for the algorithm to detect corner points as focus was changing all the

time during the test.

The surface of the floor was highly reflective and the lights were reflected by it

throughout the test, and this thing caused problem for the corner detection. These

reasons are visible in Figure 5.15. The right parameters selection and with distributed

 52

light system installation along the camera, can reduce the surface reflection. Surface

reflection is the particular problem with the test surface of our tests which were

conducted inside the corridors.

Figure 5.15: Spotlights, un-distributed light and shadows are the reasons for almost

zero corner detection

From this test, it is concluded that spotlights and shadows are needed to be avoid in

the future tests.

The test surface used in the future tests was very less reflective as shown in Figure

5.6.

The illumination problem was eliminated by using an environment where rich and

distributed light was available as shown in Figure 5.6 and 5.7. The image pre-

processing as described in detail in the Section 4.4, is very important before

commencing of the tests. Image pre-processing options were available in MATLAB

Imaqtool toolbox and were settled according to the environment.

5.3.2. Future work and suggestions

In the future work, it is possible to improve the results by doing some additional

tasks. Those tasks options could be as follows:

 By using Kalman Filters, it is possible to reduce the current position error

percentage and noise (random variations if there is any) of the algorithm.

 By using Kalman filters, inaccuracies of the estimation and efficiency of the

algorithm could also be improved.

 Data fusion is another option to improve the results.

 53

 Fusion of data from some absolute source and the current technology could

improve the output of the algorithm.

 Illumination problems can be improved with some distributed light system,

installed along the camera.

 In order to improve illumination problem, we can also use the camera looking

in forward direction. Flat surface can be cropped from the frame of view for

the tracking purpose while using same algorithm.

 Another solution to improve the algorithm results is to use the camera

looking at ceiling but then these tests should be conducted inside the building.

 54

REFERENCES

[1] Gibson, J.J., “The Perception of the Visual World” (Riverside Press,

Cambridge, 1950)

[2] Gibson, J.J., “The Senses Considered as Perceptual Systems” (Houghton-

Mifflin, Boston, MA. 1966).

[3] Deqing Sun, Stefan Roth, J.P. Lewis 3 and Michael J. Black “Learning Optical

Flow” Proceedings of the 10th European Conference on Computer Vision, 2008.

[4] Black, M.J., Anandan, P. “The robust estimation of multiple motions: Parametric

and piecewise-smooth flow field” CVIU 63, 75-104 (1996)

[5] Pepping, G. J. and Grealy, M. L. (ed.) “Closing the Gap”: The Scientific Writings

of David N. Lee, Erlbaum” 2007

[6] Todd, J. T. “The Visual Perception of Three-Dimensional Structure from

Motion” In: Perception of Space and Motion (eds. W. Epstein and S. Rogers), p. 201.

Academic press, 1995.

[7] C. Schmid, R. Mohr, and C. Bauckhage., “Evaluation of interest point detectors”

International Journal of Computer Vision, 37(2):151–172, June 2000.

[8] C. Harris and M.J. Stephens., “A combined corner and edge detector” In Alvey

Vision Conference, pages 147–152, 1988.

[9] Available at http://www.aishack.in/2010/05/the-shi-tomasi-corner-detector/

[10] Edward Rosten, Reid Porter and Tom Drummond “Faster and better: a machine

learning approach to corner detection” IEEE Trans. Pattern analysis and Machine

intelligence, 2010.

[11] D.Parks, J.P. Gravel, “Corner detection” available at

http://ftp.utcluj.ro/pub/users/nedevschi/AV/3_CornerDetectors/CornerDetection.pdf

[12] Jean-Yves Bouguet, “Camera Calibration Toolbox for Matlab” available at

http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

[13] I. -K. Jung and S. Lacroix, “A robust interest points matching algorithm,” in

Proc. Int. Conf. on Comp. Vis., 2, 538–543, 2001.

[14] D. Zhou, G. Li, and Y. -H. Liu, “Effective corner matching based on

Delaunay triangulation,” in Proc. Int. Conf. on Robotics and Automation, 3, 2730–

2733, Apr. May 2004.

[15] E. R. Davies, Machine vision: theory, algorithms, practicalities,

Academic Press, London, 1990.

[16] Mohammad Awrangjeb, “Contour-based Corner Detection and Robust

Geometric Point Matching Techniques” thesis submitted for PHD at Monash

University, Australia July 2008.

[17] D. M. Mount, N. S. Netanyahu and J. L. Moigne, “Efficient algorithms for

robust feature matching”, Pattern Recognition, vol. 32, no. 1, pp. 17–38, January

1999.

[18] F. Zhao, Q. Huang and W. Gao, “Image matching by multiscale oriented corner

correlation”, in Proc. Asian Conference on Computer Vision, vol. LNCS 3851, pp.

http://www.aishack.in/2010/05/the-shi-tomasi-corner-detector/
http://ftp.utcluj.ro/pub/users/nedevschi/AV/3_CornerDetectors/CornerDetection.pdf
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

 55

928-937, Hyderabad, India, January 2006.

[19] Y. Dufournaud, C. Schmid and R. Horaud, “Matching images with different res-

olutions”, in Proc. International Conference on Computer Vision and Pattern Recog-

nition, vol. 1, pp. 612–618, South Carolina, USA, June 2000.

[20] M. I. A. Lourakis, A. A. Argyros and K. Marias, “A graph-based approach to

cor-ner matching using mutual information as a local similarity measure”, in Proc.

International Conference on Pattern Recognition, vol. 2, pp. 827–830, Cambridge,

UK, August 2004.

[21] F. Mokhtarian and F. Mohanna, “Performance evaluation of corner detectors

using consistency and accuracy measures”, Computer Vision and Image Under-

standing, vol. 102, no. 1, pp. 81–94, April 2006.

[22] F. Zhao and W. Gao, “Singular value decomposition based image matching”, in

Proc. International Conference on Image and Graphics, pp. 192–195, Hong Kong,

China, December 2004.

[23] D. P. Huttenlocher, “Fast affine point matching: an output-sensitive method”, in

Proc. International Conference on Computer Vision and Pattern Recognition, pp.

263-268, Maui, HI, USA, June 1991.

[24] D. Zhou, G. Li and Y. Liu, “Effective corner matching based on delaunay trian-

gulation”, in Proc. International Conference on Robotics and Automation, vol. 3, pp.

2730–2733, New Orleans, LA, USA, April-May 2004.

[25] K. Mikolajczyk and C. Schmid, ”A performance evaluation of local

descriptors”, IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 27, no.

10, pp. 1615– 16309, October 2005.

[26] M.A. Fischler and R.C. Bolles, “Random sample consensus: A paradigm for

model fitting with applications to image analysis and automated cartography”

Commu-nications of the ACM, 24(6):381–395, 1981.

[27] Bernd Kitt, Andreas Geiger and Henning Lategahn, “Visual Odometry based on

Stereo Image Sequences with RANSAC-based Outlier Rejection Scheme”, 2010

IEEE Intelligent Vehicles Symposium University of California, San Diego, CA, USA

June 21-24, 2010

[28] Estimate geometric transformation block description available at

http://www.mathworks.se/help/toolbox/vision/ref/estimategeometrictransformation.h

tml

[29] ATTALI D. “R-regular shape reconstruction from unorganized points”. In

Processing of ACM Symp. on Comp. Geometry (1997), pp. 248–253

[30] Ran Gal, Ariel Shamir, Tal Hassner, Mark Pauly, Daniel Cohen-Or, “Surface

Reconstruction using Local Shape Priors” EUROGRAPHICS ‟0x / N.N. and N.N.,

The Eurographics Association 2007.

[31] H.Hoppe, T. DeRose, T. Duchamp, J. Mcdonnald, and W. Stuetzle. “Surface

reconstruction from unorganized points” SIGGRAPH‟92. Computer graphics.

26(2):71-77. 1992.

http://www.mathworks.se/help/toolbox/vision/ref/estimategeometrictransformation.html
http://www.mathworks.se/help/toolbox/vision/ref/estimategeometrictransformation.html

 56

[32] Philipp Jenke, Bastian Kr¨uckeberg, Wolfgang Straßer, “Surface Reconstruction

from Fitted Shape Primitives” WSI/GRIS, University of Tuebingen, Germany, VMV

2008.

[33] Fernando de Goes, David Cohen-Steiner, Pierre Alliez,, Mathieu Desbrun, “An

Optimal Transport Approach to Robust Reconstruction and Simplification of 2D

Shapes” Volume 30 (2011), Number 5, Eurographics Symposium on Geometry

Processing 2011.

[34] McDermott, J., Weiss, Y., Adelson, E.H., “Beyond junctions: nonlocal form

constraints on motion interpretation” Perception, 2001, volume 30, pages 905-923.

[35] The material is available at the website with the link:

http://www.seas.upenn.edu/~derpanis/steerable_filter_harris_corner_binomial_filter_

lecture.pdf

[36] The material is available at the website with the link:

http://undergraduate.csse.uwa.edu.au/units/CITS4240/Lectures/tracking.pdf

[37] D. Zhou, G. Li and Y. Liu, ”Effective corner matching based on delaunay trian-

gulation”, in Proc. International Conference on Robotics and Automation, vol. 3,

pp.2730–2733, New Orleans, LA, USA, April-May 2004.

[38] Y. Dufournaud, C. Schmid and R. Horaud, ”Matching images with different res-

olutions”, in Proc. International Conference on Computer Vision and Pattern Recog-

nition, vol. 1, pp. 612–618, South Carolina, USA, June 2000.

[39] B. Platel, E. Balmachnova, L. M. J. Florack and B. M. ter Haar Romeny, ”Top-

points as interest points for image matching”, in Proc. European Conference on

Computer Vision, vol. LNCS 3951, no. 1, pp. 418–429, Graz, Austria, May 2006.

[40] C. Schmid and R. Mohr, ”Local grayvalue invariants for image retrieval”, IEEE

Trans. on Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp. 530–534,

May 1997.

[41] T. Tuytelaars and L. J. Van Gool, ”Content-based image retrieval based on local

affinely invariant regions ”, in Proc. International Conference on Visual Information

and Information Systems, vol. LNCS 1614, pp. 493–500, Amsterdam, The

Netherlands, June 1999.

[42] Y. Ke and R. Sukthantar, ”PCA-SIFT: a more distinctive representation for local

image descriptors”, in Proc. International Conference on Computer Vision and

Pattern Recognition, vol. 2, pp. 506–513, Washington, DC, USA, June-July 2004 .

[43] D. G. Lowe, ”Distinctive image features from scale-invariant keypoints”,

Interntional Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, November 2004.

[44] W. T. Freeman and E. H. Adelson, ”The design and use of steerable filters”,

IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 13, no. 9, pp. 891–

906, September 1991.

http://www.seas.upenn.edu/~derpanis/steerable_filter_harris_corner_binomial_filter_lecture.pdf
http://www.seas.upenn.edu/~derpanis/steerable_filter_harris_corner_binomial_filter_lecture.pdf
http://undergraduate.csse.uwa.edu.au/units/CITS4240/Lectures/tracking.pdf

 57

[45] Owens, R. [1997] \Pinhole camera model," online

avaialable:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.

html#x1-30003

[46] Roth, S., Black, M.J. “On the spatial statistics of optical flow” IJCV 74, 33–50

(2007)

[47] Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R. “A database

and evaluation methodology for optical flow” In: ICCV (2007)

[48] H. Bay and T. Tuytelaars and L. V. Gool, ”SURF: speeded up robust features”,

in Proc. European Conference on Computer Vision, vol. LNCS 3951, no. 1, pp. 404–

417, Graz, Austria, May 2006

[49] G. Lu, Multimedia Database Management Systems, Artech House Inc.,

Norwood, MA, USA, October 1999

[50] T. T. H. Tran and E. Marchand, ”Real-time keypoints matching: application to

visual servoing”, in Proc. International Conference on Robotics and Automation, pp.

3787–3792, Roma, Italy, April 2007

[51] J. Wang, H. Zha and R. Cipolla, ”Coarse-to-fine vision-based localization by

indexing scale-Invariant features”, IEEE Trans. on Systems, Man and Cybernetics,

Part B, vol. 36, no. 2, pp. 413–422, April 2006

[52] D. G. Lowe, ”Distinctive image features from scale-invariant keypoints”, Inter-

national Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, November 2004

[53] S. Alkaabi and F. Deravi, ”Iterative corner extraction and matching for mosaic

construction”, in Proc. Canadian Conference on Computer and Robot Vision, pp. 468

-475, Victoria, BC, Canada, May 2005

[54] M. Brown, R. Szeliski and S. Winder, ”Multi-image matching using multi-scale

oriented patches”, in Proc. International Conference on Computer Vision and Pattern

Recognition, vol. 1, pp. 510–517, San Diego, CA, USA, June 2005

[55] Y. Caspi, D. Simakov and M. Irani, ”Feature-based sequence-to-sequence

match-ing”, International Journal of Computer Vision, vol. 68, no. 1, pp. 53–64, June

2006

[56] D. Nister and H. Stewenius, ”Scalable recognition with a vocabulary tree”, in

Proc. International Conference on Computer Vision and Pattern Recognition, vol. 2,

pp. 2161–2168, New York, NY, USA, June 2006

[57] F. Mokhtarian and R. Suomela, ”Robust image corner detection through

curvature scale space”, IEEE Trans. on Pattern Analysis and Machine Intelligence,

vol. 20, no. 12, pp. 1376–1381, December 1998

[58] C. J. Harris and M. Stephens, ”A combined corner and edge detector”, in Proc.

Alvey Vision Conference, pp. 147–151, Manchester, UK, August-September, 1988

[59] L. V. Gool, T. Moons and D. Ungureanu, ”Affine/photometric invariants for

planar intensity patterns”, in Proc. European Conference on Computer Vision, vol.

LNCS 1064, no. 1, pp. 642–651, Cambridge, UK, April 1996

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html#x1-30003
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html#x1-30003

 58

[60] C. Schmid, R. Mohr and C. Bauckhage, ”Comparing and evaluating interest

points”, in Proc. International Conference on Computer Vision, pp. 230–235,

Bombay, India, January 1998

[61] J. Borenstein, H. R. Everett, and L. Feng, “Where am i? sensors and methods for

mobile robot positioning,” University of Michigan, Tech. Rep., April 1996

[62] Navid Nourani-Vatani, Jonathan Roberts, Mandiam V. Srinivasan “Practical

Visual Odometry for Car-like Vehicles” 2009 IEEE International Conference on

Robotics and Automation Kobe International Conference Center Kobe, Japan, May

12-17, 2009

[63] D. Nister, O. Naroditsky, and J. Bergen, “Visual odometry for ground vehicle

applications” Journal of Field Robotics, vol. 23, no. 1, pp. 3–20, 2005

[64] R.C. Gonzalez and R.E. Woods, “Digital image processing” Prentice Hall,

Second edition, 2002

[65] I-M. Sintorn, “Segmentaion methods and shape description in digial images:

Application in 2-D and 3-D microscopy” Swedish university of agricultural sciences

[66] D. S. Guru, R. Dinesh and P. Nagabhushan, ”Boundary based corner detection

and localization using new ‟cornerity‟ index: a robust approach”, in Proc. Canadian

Conference on Computer and Robot Vision, pp. 417–423, London, Ontario, Canada,

May 2004

[67] Available at http://www.acclaimimages.com/ provided with persmission for

research and non-commercial uses

[68] Available at http://www.petitcolas.net/fabien/ courtesy of University of

Southeren California

[69] J. Shi and C. Tomasi "Good Features to Track," 9
th

 IEEE Conference on

Computer Vision and Pattern Recognition, June 1994

[70] C. Tomasi and T. Kanade "Detection and Tracking of Point Features" Pattern

Recognition 37: 165–168, 2004

[71] Linda G. Shapiro and George C. Stockman “Computer Vision” A book

published in Feb. 2, 2001

http://www.acclaimimages.com/
http://www.petitcolas.net/fabien/
http://citeseer.ist.psu.edu/shi94good.html
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V14-49D6WH0-1&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_version=1&_urlVersion=0&_userid=10&md5=cecb6ab80d45107f1cedb17aa4b211fb

 59

APPENDIX 1: OPTICAL FLOW ALGORTIHM CODE

#include "pnmio.h"

#include "klt.h"

#include "stdafx.h"

#include "cv.h"

#include "highgui.h"

#include <stdio.h>

#include <iostream>

#include <iomanip>

using namespace std;

#define REPLACE

 // A Simple Camera Capture Framework

 int main() {

// Initialization of the KLT

unsigned char *img1, *img2;

KLT_TrackingContext tc;

KLT_FeatureList flOld;

KLT_FeatureList flNew;

KLT_FeatureTable ft;

int nFrames = 10;

int nFeatures = 100;

int ncols=640;

int nrows=480;

int i=0;

float d = 0;

float x = 0;

float v = 0;

float y = 0;

float y_tot=0;

float y_average=0;

float v_average=0;

float y_pixel=0;

float Y_tot=0;

tc = KLTCreateTrackingContext();

//tc->min_eigenvalue=1;

KLTPrintTrackingContext(tc);

flNew = KLTCreateFeatureList(nFeatures);

flOld = KLTCreateFeatureList(nFeatures);

ft = KLTCreateFeatureTable(nFrames, nFeatures);

tc->sequentialMode = TRUE;

// Capture first image before starting loop

CvCapture* capture = cvCaptureFromCAM(CV_CAP_ANY);

if (!capture) {

fprintf(stderr, "ERROR: capture is NULL \n"

);

getchar();

return -1;

 }

 60

// Create a window in which the captured images will be presented

cvNamedWindow("mywindow", CV_WINDOW_AUTOSIZE);

// Get one frame

IplImage* frame = cvQueryFrame(capture);

IplImage* frame1=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

cvCvtColor(frame,frame1,CV_BGR2GRAY);

/*

frame->dataOrder = 0;

cout << (frame->nChannels) << endl;

cout << (frame->depth) << endl;

cout << (frame->dataOrder) << endl;

cout << (frame->origin) << endl;

cout << (frame->width) << endl;

cout << (frame->height) << endl;

*/

if (!frame) {

 fprintf(stderr, "ERROR: frame is null...\n"

);

 getchar();

 return 0;

 }

// grab the image data from IplImage

img2 = (unsigned char*)frame1->imageData;

img1 = new unsigned char[nrows*ncols];

//img1 = new unsigned char[frame->width*frame->height];

//printf("\nwidth :%d\n" ,frame->width);

//printf("\nheigth:%d\n" ,frame->height);

for(int j=0; j<nrows*ncols; j++){

img1[j]=img2[j];

 }

//KLTSelectGoodFeatures(tc, img1, ncols, nrows, flOld);

KLTSelectGoodFeatures(tc, img1, ncols, nrows, flNew);

KLTStoreFeatureList(flNew, ft, 0);

//printf("\nIn first image:\n");

//for (i = 0 ; i < ft->nFeatures ; i++) {

//printf("Feature #%d: (%f,%f) with value of %d\n",

// i, ft->feature[0][i]->x, ft->feature[0][i]->y,

// ft->feature[0][i]->val);

printf("\nIn first image:\n");

for (i = 0 ; i < flNew->nFeatures ; i++)

{

printf("Feature #%d: (%f,%f) with value of %d\n",

i, flNew->feature[i]->x, flNew->feature[i]->y,

flNew->feature[i]->val);

}

//KLTWriteFeatureListToPPM(flNew, img1, ncols, nrows, "feat1.ppm");

//KLTWriteFeatureList(flOld, "feat1.txt", "%3d");

Y_tot =0;

 61

// Show the image captured from the camera in the window and repeat

while (1) {

// Get one frame

frame = cvQueryFrame(capture);

 if (!frame) {

 fprintf(stderr, "ERROR: frame is null...\n"

);

 getchar();

 break;

 }

IplImage* frame2=cvCreateImage(cvSize(640,480),IPL_DEPTH_8U,1);

cvCvtColor(frame,frame2,CV_BGR2GRAY);

// Get the actual image data(pixel values)

img2 = (unsigned char*)frame2->imageData;

// Track feature between two adjacent

KLTTrackFeatures(tc, img1, img2, ncols, nrows, flNew);

KLTStoreFeatureList(flNew, ft, 1);

y_tot=0;

//conversion of pixels values to real life, 25pixels/cm

x=0.01/52;

// loop around the features

printf("\nIn second image:\n");

for (i = 0 ; i < ft->nFeatures ; i++)

{

if((ft->feature[1][i]->x < 0.0) || (ft->feature[1][i]->y

< 0.0)){

//std::cout << "skip" << std::endl;

 continue;

 }

printf("1-Feature #%d: (%f,%f) with value of %d\n",

 i, ft->feature[0][i]->x, ft->feature[0][i]->y,ft->feature[0][i]-

>val);

printf("2-Feature #%d: (%f,%f) with value of %d\n",

i, ft->feature[1][i]->x, ft->feature[1][i]->y,ft->feature[1][i]-

>val);

//printf("Feature #%d: (%f,%f) with value of %d\n",

//i, flOld->feature[i]->x, flOld->feature[i]->y,

//flOld->feature[i]->val);

// TODO: calculate the difference in pixels between two features

// ,calculate the movement in meters

// , calculate the speed based on the movement in meters and the

framerate.

//movement difference of features between two images

d = ft->feature[0][i]->x - ft->feature[1][i]->x;

//distance moved in real life

y=x*d;

//velocity calcultaion, 0.1 is FramePerSecond

v=y/0.1;

y_tot += y;

 62

 }

y_average = y_tot/flNew->nFeatures;

v_average = y_average/0.5;

y_pixel = y_average/x;

cout<< " -- Dis:" << setiosflags(ios::fixed) << setprecision(2) <<

y_average<< " " << "Velocity: "<< setprecision(2) << v_average << "-

-Movement of pixel: "<< setprecision(2) << y_pixel<< endl;

cout<< "------"<<endl;

Y_tot += y_average;

cout<< " -- Total Dis:" << setprecision(2) << Y_tot << endl;

KLTStoreFeatureList(flNew, ft, 0);

#ifdef REPLACE

KLTReplaceLostFeatures(tc, img2, ncols, nrows, flNew);

#endif

KLTWriteFeatureListToPPM(flNew, img1, ncols, nrows, "feat1.ppm");

KLTWriteFeatureListToPPM(flNew, img2, ncols, nrows, "feat2.ppm");

KLTWriteFeatureList(flNew, "feat2.fl", NULL); /* binary file */

KLTWriteFeatureList(flNew, "feat2.txt", "%5.1f"); /* text file */

cvShowImage("mywindow", frame2);

// Do not release the frame!

//If ESC key pressed, Key=0x10001B under OpenCV 0.9.7(linux

version),

//remove higher bits using AND operator

int keyPress = cvWaitKey(10);

if ((keyPress & 255) == 27) break;

//if (keyPress == '\r') continue;

//KLTSelectGoodFeatures(tc, img2, ncols, nrows, flOld);

//KLTSelectGoodFeatures(tc, img2, ncols, nrows, flNew);

//img1=img2;

delete[] img1;

cout << "size of Image 2, pixels: "<<nrows*ncols<<" bytes:

"<<sizeof(img2) << endl;

img1 = new unsigned char[nrows*ncols];

for(int j=0; j<nrows*ncols; j++){

 img1[j]=img2[j];

 }

 }

// Release the capture device housekeeping

cvReleaseCapture(&capture);

cvDestroyWindow("mywindow");

return 0;

 }

 63

APPENDIX 2: CORNER DETECTION ALGORITHM

Corner matching detail code:

Following is the under the mask code for corner matching.

Figure: Corner matching under the mask code

Velocities calculation:

Following is the code of velocities calculation (Velocity in X and Y direction and Angular
velocity).

function [LinearVelx,LinearVely,AngularVel] = fcn(H)
%#codegen

R=(H(1:2,1:2));
EE=eig(R);
AA=180/pi*(angle(EE(1)));

 64

T=(H(3,:));

%LinVel=26*double(-norm(T)*sign(H(3,2)));
LinearVelx=double(H(3,2)*20);
LinearVely=double(H(3,1)*20);
AngularVel=AA;

Robot trajectory:

Robot trajectory display code is as follows.

function fcn(u)
%#codegen
coder.extrinsic('plot','hold');
plot(u(1),u(2),'.')
hold on

