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ABSTRACT 
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Major subject: Medical Physics 
Examiner: Professor Hannu Eskola 
Keywords: Texture analysis (TA), Magnetic Resonance Imaging (MRI), skeletal 
muscles, hip, exercise-loading, two-dimensional (2D), three-dimensional (3D) 

The need for detailed image information to enhance radiological decision making has 
necessitated computerized analysis of medical images. The superior sensitivity of MRI in 
detecting subtle changes in soft tissues has facilitated automatic analysis of MR images 
through texture analysis. Though there have been a number of recent studies in this area, 
most of them have focused on using 2D MRI texture analysis in detecting and classifying 
pathological tissues from healthy ones.  

The objective of this thesis it to examine whether textural differences exist in hip 
muscles due to exercise-loading differences, if so, the effectiveness of 2D and 3D MRI 
texture analyses in detecting and characterizing these differences will be examined. 

Ninety-one high-level female athletes representing five distinct loading sports (High-
impact, odd-impact, high-magnitude, low-impact and non-impact exercise-loading) and 
20 healthy non-athlete (referent) female subjects were used in this study. A 1.5T MRI 
scanner (Siemens, Erlangen, Germany) was used to acquire axial T1-weighted FLASH 
sequence images of the hip muscles. Two-dimensional(2D) and three-dimensional(3D) 
texture analyses were performed on four specific load-bearing muscles (gluteus 
maximus, gluteus medius, iliopsoas and obturator internus) using texture analysis 
application software – MaZda (TUL, Poland: COST Action B11). The computed texture 
parameters were statistically analyzed (using SPSS, Chicago, Ill.) to ascertain differences 
in texture between the four muscles, the non-athlete group and the athlete groups, and to 
characterize them accordingly. A comparative evaluation of 2D and 3D texture analyses 
was also made. 

Significant differences (p-value < 0.00833) in texture were recorded between the four 
muscles. All the four muscles were found to be linearly separable from each other. 
Moreover, muscle texture of athletes who were involved in high-impact (triple-jumpers 
and high-jumpers), odd-impact (soccer and squash players) and low-impact (endurance 
runners) exercise-loadings differed significantly (p-value < 0.01) from that of the non-
athletes. Subsequently, the high-impact, odd-impact and low-impact exercise-loading 
groups were completely separable from the non-athlete group. Contrarily, muscle texture 
of the high-magnitude (power lifters) and non-impact (swimmers) exercise-loading 
groups were not found to differ significantly from the non-athletes, some level of overlap 
was noticed in their classification from the non-athletes.  Finally, 3D texture analysis was 
more effective in detecting and characterizing textural differences in skeletal muscles 
than the 2D texture analysis. 

In conclusion, the 3D texture analysis of MR images provides a more accurate 
quantitative method for detecting and classifying textural differences in skeletal muscles 
that are associated with specific exercise-loading types. 
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1. INTRODUCTION 

Extraction of maximum information for clinical decision making is the prime aim of 
almost all medical imaging procedures [1; 2]. This goal has not been fully met, because, 
the images provided by medical devices are unable to give detailed diagnostic 
information in advance to help in clinical decision making. This is partly due to the fact 
that, details of tissues are very small compared to the resolution with which medical 
devices acquire images [2].   

Though a considerable amount of success has been achieved in improving the 
resolution and contrast of medical images through the development of superior imaging 
techniques such as magnetic resonance imaging (MRI), the ability to extract detailed 
information from medical images usually depends on manual visual assessment 
capabilities and experience of radiologists. This usually limits the amount of information 
that can be obtained from medical images, because, visual assessment is subjective and 
the human eye-brain interface can only appreciate limited level of complexity. [1; 2.] The 
situation even becomes more complicated in cases where certain microscopic changes 
that occur within tissues cannot appear on medical images for visual assessment. 

Quantitative or automated method of analyzing medical images known as texture 
analysis (TA) therefore serves as an important tool for extracting optimal information 
from medical images as it is highly sensitive in detecting subtle and microscopic changes 
in images. TA is known to be very specific, reproducible, objective and accurate in 
describing alterations in tissues; for instance, the use of MRI TA in characterizing normal 
and pathological muscles tissues [3; 4; 5] has proven to be more efficient than manual 
means. As a result, texture analysis for diagnostic applications has attracted much 
attention in the field of research. 

Skeletal muscles are known to adapt to different forces resulting from load-associated 
differences by changing in structure [6; 7]. However, it is not known how texture in 
different muscles differ from each other, especially with respect to different athlete 
groups as the type of training and loading differ from athlete to athlete. There have been 
some successful studies on the use of MRI TA in analyzing structural changes in muscles 
due to training [8]. However, these analyses were performed in two-dimensional (2D) 
environment which is a representation of a single two-dimensional slice of a three-
dimensional (3D) structure over an image volume. Hence there is the possibility that the 
2D methods could not point out certain minute details that might still be of clinical 
importance. The objective of this thesis is to: 

1. determine whether textural differences exist in hip muscles due to exercise-
loading differences  
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2. compare the effectiveness of 3D and 2D texture analyses in detecting and 
charactering these loading differences.  
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2. MEDICAL BACKGROUND 

2.1. Anatomy of muscle 

A muscle is a specialized group of fibrous tissues in the body that has four major 
functional or characteristic properties, namely: contractility, excitability, extensibility and 
elasticity [9]. Muscles are mainly responsible for body movements and maintaining 
posture of the body. There are three types of muscles in the body: smooth, cardiac and 
skeletal muscles.  

Smooth muscles make up the walls of hollow organs and tubes in the body such as 
blood vessels, the digestive and urogenital organs. They help advance and control flow. 
Smooth muscles are characterized by elongated cells with tapered ends, no striations and 
a centrally located single nucleus. They are unconsciously controlled by the body. 
Cardiac muscles comprise most of the heart. The muscle cells are striated and have one 
centrally located nucleus. Cardiac muscles are autorhythmic and are involuntarily 
controlled by the autonomic nervous system and the endocrine system. [9; 10.] 

Skeletal muscles are composed of bundles of muscle fibers called fascicles. Each 
skeletal muscle fiber consists of a long, striated, cylindrical and multinucleated cell 
surrounded by a connective tissue called endomysium.  Each bundle or fascicle is 
enclosed in a fibroadipose tissue called perimysium while the entire muscle is ensheathed 
by a fibrous connective tissue known as epimysium. [8; 9; 10; 11.] Figure 2.1 below 
shows the structural arrangement of a skeletal muscle. 

 

Figure 2. 1. Structure of a skeletal muscle [10]  
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Skeletal muscles constitute about 40% of the body weight. Unlike smooth and cardiac 
muscles, skeletal muscles are consciously controlled (voluntary muscles) and are mainly 
responsible for locomotion, facial expression, posture and respiratory movements. [8; 9; 
10; 11.]  

Muscles attached to the hip are mainly made up of skeletal muscles and hence 
responsible for the movement of the leg. These muscles are categorized according to their 
position of insertion to the hip. For instance muscles attached to the trochanter of the 
femur can be grouped into superior (example: obturator internus), posterior (gluteus 
maximus, gluteus medius), inferior and anterior (iliopsoas) muscles. These groups 
perform specific functions by acting as rotators, extensors, abductors and flexors of the 
femur. [10; 12.] 

2.2. Effects of exercise on muscles 

The amount of force produced by a muscle depends on the muscle fiber cross-sectional 
area, number of muscles fibers and the muscles fiber type [8]. During training or 
exercise, muscles adapt to the forces or loads that they are subjected to, depending on the 
type of exercise or training. The adaptation leads to changes in the size, strength, 
architecture and mass of the muscles involved. [6; 7; 9.]  

As one exercises, the physiological cross-sectional area (PCA) of the muscles 
actively involved in the exercise increases and so does the muscular strength. The 
increment is due to the fact that the cross-sectional area of the individual muscle fibers 
increases (hypertrophy) in response to exercise. Hypertrophy continues throughout the 
training or exercise until the muscles strength adjust to the forces or loads they are 
subjected to [8; 9]. Conversely, muscle mass and thickness decrease with less frequent 
usage of muscles. [13; 14; 15.] 

2.3. Muscle imaging 

A variety of modalities exist for imaging skeletal muscles. The commonly known 
modalities include radiography, computed tomography (CT), ultrasound and magnetic 
resonance imaging (MRI). A comparison of these modalities with respect to skeletal 
muscle imaging is given in Table 2.1. Other techniques such as diffusion tensor imaging 
(DTI) and magnetic resonance spectroscopy (MRS) are under research. 
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Table 2.1. Comparison among common muscle imaging modalities 

Imaging modality Advantages Disadvantages 

Radiography Fast imaging time 
Readily availability 
User friendly and familiarity with 
medical professionals 

Superimposition of structures 
Blurring 
Poor contrast resolution 
Radiation dose required 

CT Good contrast resolution Radiation dose required 
 

Ultrasound Less costly 
No radiation dose required 
Average spatial resolution 
Real-time display capabilities 
 

Operator dependent 

MRI Excellent contrast 
Availability of different imaging 
techniques 
No radiation dose required 

Very expensive 
Cumbersome 

 

2.3.1. Radiography 

Radiography is one the oldest imaging modalities in medical history. It is still widely 
used and serves as the first point of call for the diagnosis of many clinical conditions. 
This is because of its wide availability, fast imaging time, low cost, non-invasiveness, 
user friendliness and most importantly its familiarity with medical professionals [16]. In 
conventional radiographic imaging, X-rays are produced by bombarding a metal target 
with high energy electrons. The emitted uniform beam of radiation is transmitted through 
the body where it is absorbed and modified as it interacts with tissues. The resultant 
beam that penetrates the target is recorded on a film and further processed into images. 

The short comings of the conventional radiography or screen film radiography (SFR) 
such as long term storage difficulties, use of hazardous film materials, fixed non-linear 
scale response and dose problems led to the development of digital or computed 
radiography (DR). In computed radiography, a photostimulable phosphor plate is used 
for detection of X-rays instead of conventional film screen. This is later converted into 
digital format through the use of photomultiplier tube and other electronic processes. DR 
offers numerous advantages over SFR such as improved detector efficiency, linear 
detector response, dose reduction, digital processing capabilities for image storage, 
retrieval, display and transmission. [17; 18; 19.]  

With development of newer technologies such as MRI and ultrasound, the use of 
radiography in muscle imaging or studies is diminishing due to its poor contrast 
resolution.  In radiography, image contrast depends mainly on the relative differences in 
X-ray attenuation between different tissues. However, the density differences between 
various soft tissues in skeletal muscles (tendons, fat, ligaments, and fascial structures) are 
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small. Hence, radiographic images of skeletal muscles have poor contrast. This makes the 
direct visualization and subsequent characterization of muscles from their surrounding 
soft tissues difficult. Besides this, radiographic imaging also suffers from 
superimposition of structures and blurring. [20; 16.]  

2.3.2. Computed tomography 

Computed tomography is an imaging modality that produces cross-sectional images as 
well as 3D images from acquired projection images of a target area using X-ray or 
ionizing radiation. The projection images are acquired through X-ray scans, during which 
single exposures are made at certain degree or angle intervals. During the process, the X-
ray source and the detector rotate synchronously around the subject and take sequential 
scans at fixed angular intervals. X-ray photons are transmitted through the target area 
along a single projection line and the radiation attenuation properties for that part of the 
body are measured as Hounsfield units (HU). [21; 22.] The attenuation profiles or 
properties at different angles are then filtered and reconstructed to produce cross-
sectional images [20]. A cross-section or slice is produced when the assembly makes 360 
degrees rotation around the subject to acquire sequential planar projection images of the 
selected field.  

Unlike radiography, CT offers a better contrast resolution, does not suffer from 
superimposition and can clearly distinguish various tissues within and around muscles. 
Also, the recent development of spiral scanning techniques and multi-detector row CTs 
has tremendously increased data acquisition and reconstruction capabilities of CT 
imaging. This has enabled direct visualization of skeletal muscle from almost any 
direction without loss of resolution, and has also decreased scanning times. [20.]  

2.3.3. Ultrasound imaging 

The use of ultrasound for medical applications has increased progressively since it was 
first discovered. It is by far known to be most widely used, cheapest and convenient 
diagnostic modality in medicine. Its usage spans across all fields in medicine from 
diagnosis to treatment. This is because it is non-ionizing, non-invasive and has real-time 
display capabilities. [11; 23; 24.]  

Ultrasonography involves the use of sound waves at frequency range of 1-10MHz, 
beyond human hearing range. Sound waves within this range are generated and 
transmitted to the imaging target by a transducer probe. The intensity of reflected waves 
and delay time between the transmission of the sound waves and the arrival of the 
reflected acoustic pulses at the probe are measured. These are further processed to give 
the relative location and image of the object. These two parameters depend on the 
acoustic impedance of imaging tissues. When an ultrasound beam travels between tissues 
with different acoustic impedances such as from muscle to bone, a part of it is reflected at 
the interface of the two tissues. Since acoustic impedance differs among different tissues 
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such as fat, muscle, fascia, blood and bone, images of different tissues can be obtained 
and distinguished.  The use of Doppler imaging and different scan modes can help give 
more detailed information. [9; 11; 23.] 

Beside the reasons stipulated above, the use of ultrasound in muscle imaging still 
receives much attention in research because of its multi-planar evaluation, excellent 
spatial resolution, better clinical correlation and its ability to fairly distinguish normal 
muscles from surrounding structures and muscular abnormalities [23; 24]. The major 
disadvantage of ultrasonography is that, it is operator dependent [9; 11]. 

2.3.4. Magnetic Resonance Imaging 

The development of MRI technique is one of the most important, promising and radical 
technological changes in field of medical imaging in recent times. Besides its non-
invasiveness and radiation free advantages, it offers three-dimensional (3D) tomographic 
view of internal physiochemical and biochemical processes of soft tissues with more 
excellent contrast than other imaging modalities. The availability of different MRI 
techniques such as diffusion and perfusion measurements, in vivo spectroscopy, fiber 
tracking, relaxometry, functional MRI and BOLD MRI also help in giving detail 
diagnostic information [25]. The principles of MRI are described in detail below, as it is 
the imaging modality used in this thesis. 

MRI is principally based on the measurement of externally emitted radio frequency 
waveforms known as nuclear magnetic resonance (NMR) signals. A nucleus is said to be 
MR active if it has an odd mass number such that the spins of its protons and neutrons do 
not cancel each other out, resulting in a net spin. Under normal circumstances, each MR 
active nucleus rotates or spins on its axis and at same time their magnetic moments are 
randomly oriented. [25; 26; 27.] 

MR signal generation 
When a nucleus (subject) is placed into stronger external magnetic field (𝛽0), the 
influence of β0 causes spinning hydrogen protons in the subject to precess or wobble 
around the β0 axis. The frequency or rate of precession is governed by the Larmor 
equation 

  𝜔0  = 𝛽0 ∗ 𝛾                                        (1)R  

 Where, 𝜔0 is the precessional frequency of the protons and 𝛾R is the gyromagnetic 
ratio. Hydrogen nucleus (1H) is mostly used in medical MR imaging due to it abundance 
in the human body and its ability to produce large magnetic moments [26; 27]. 

The application of 𝛽0 also causes the magnet moments of the protons to align 
themselves either in parallel or opposite (anti-parallel) to the direction of 𝛽0. This results 
in a net magnetization vector 𝑀, in the direction of 𝛽0, which is the cumulative effect of 
all the magnetic moments of the nuclei. When an external radio frequency (RF) pulse 
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with the same frequency as that of the precession protons (𝜔0) and at 90 degrees to 𝛽0 is 
applied to the precessing protons, the protons absorb energy from the RF pulse and 
precess in phase. This causes the net magnetization vector 𝑀 to tilt by a certain angle 𝜃 
into the x-y plane thereby producing two magnetization components: longitudinal (𝑀𝑧) 
and transverse magnetization (𝑀𝑥𝑦). If a RF pulse with proper amplitude and duration is 
applied, a situation is created whereby the number of protons that are aligned parallel and 
anti-parallel to the direction of 𝛽0 become equal. At this point, the longitudinal 
magnetization (𝑀𝑧) component tilts through 90° to create a net magnetization vector 
precessing in the transverse plane without any 𝑀𝑧. This is known as RF tilting. As this 
transverse magnetization vector precesses, it passes across and induces a current in a 
receiver coil located in the transverse plane. This recorded current is referred to as MR 
signal. [26; 27.] 

Relaxation times 
When the RF pulse is switched off, the induced signal or current in the receiver coil 
gradually dies off because the net magnetization vector in transverse plane decreases as 
precessing protons begin to dephase. This is known as free induction decay (FID). 
Turning off the RF signal leads to two most important processes: 𝑇1 recovery, 𝑇2 decay. 
First, the protons emit their absorbed energy causing the net magnetization vector to 
recover and realign in the direction of 𝛽0. 𝑇1 recovery indicates or depends on how 
quickly the protons can emit or exchange their absorbed energy with neighboring tissues 
or protons, hence the term spin-lattice for 𝑇1.  

Secondly, the precessing protons become dephased and the net magnetization vector 
in transverse plane decays because, each proton experiences an external self-generated 
magnetic field of its neighbouring protons.  This is termed 𝑇2 decay or spin-spin 
relaxation. In addition, an exponential rate of decay in the transverse magnetization 
known as 𝑇2* occurs due the inhomogeneities in the external magnetic field. [26; 27.] 

Contrast mechanisms 
Besides proton density (𝑃𝐷),  𝑇1 and 𝑇2 also provide contrast in MR images. This is 
because, different tissues in the body have different 𝑇1 and 𝑇2 times due to differences in 
their chemical composition and physical states [26; 27; 28]. For instance fat is known to 
have a shorter 𝑇1 and 𝑇2 times than water. Also, pathological tissues are generally known 
to have longer 𝑇1 and 𝑇2 values than normal tissues. Tissues with long 𝑇1 time appear 
dark on a 𝑇1 weighted image whereas tissues with long 𝑇2  values appear bright on a 𝑇2  
weighted image. [28.]  

Repetition time (TR) and echo (TE) time are extrinsic contrast parameters (system 
operator controlled) that can also be adjusted to control 𝑇1 and 𝑇2 times to obtain contrast 
between tissues.  TR is the time difference between applications of successive RF pulses. 
It affects 𝑇1 contrast. On the other hand, TE is the time between the application of the RF 
pulse and the detection of MR signal and it affects 𝑇2 contrast. By adjusting TE and TR, 
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a particular type of contrast can be emphasized while the other parameters are 
suppressed. This is achieved through T1, T2 weighting and proton density (PD) weighting 
imaging. [26; 27; 29.] 

During T1 weighting imaging, TR is selected to be very short such that only tissues 
that are able to recover most of their longitudinal magnetization during that TR give high 
MR signal. These tissues therefore appear as white whereas tissues with long TR appear 
as black. With T2 weighting however, long TE is selected such that tissues with long T2 
decay time give high MR signal and therefore appear as bright or white. Tissues with 
long T2 time are capable of retaining most of their transverse coherence during TE 
period. 

Proton density weighed imaging on the other hand achieves contrast by emphasizing 
on number of hydrogen protons. This is done by nullifying both T1 and T2 effects through 
the use of long TR and short TE respectively. Tissues with high proton density give high 
MR signal and therefore appear as white, whereas those with less PD appear as black. 
[26; 27; 29.] 

MR signal localization 
In order to know the tissue from which the MR signal is coming, three special types of 
orthogonal magnetic coils known as X, Y and Z gradients are used. The application of 
these gradient magnetic fields changes the magnetic field strength along the X, Y and Z 
axes respectively, and also alters the precessional frequency and the precessional phase 
of hydrogen protons in the imaged region. This is used in spatial encoding – 
identification of the three-dimensional spatial position of the MR signal. [26; 27; 29.]  

Spatial encoding involves three processes or functions: slice selection, frequency 
encoding and phase encoding, each of which is specifically performed by one of the three 
gradients depending on the selected scanning plane. The raw data contained in the signal 
from the scanned field of view constitutes the frequency and phase of the signal. This is 
mapped and stored in a matrix known as k-space which is further processed into an 
image by means of Fourier transform. [26; 27; 29.] 

MR pulse sequences 
MRI pulse sequence is a series of combined RF pulses and gradient wave forms that are 
applied at intervening time periods during MR image acquisition process to obtain 
different images of different anatomical structures and pathologies in the body. They are 
used to rephase spins and to remove inhomogeneity effects in order to obtain sufficient 
signal to produce an image. They are also used to manipulate TE and TR to produce 
different types of image contrasts. [26; 27.] There are a variety of pulse sequences that 
are used in medical MR imaging, however, the most important and commonly used ones 
are the spin echo (SE) sequence, the inversion recovery (IR) sequence and the gradient 
echo (GRE) sequence. [29]  
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In spin echo (SE) sequence, the application of a slice-selective 90° RF pulse for 
excitation is followed by a 180° RF pulse, which is delivered after half of the echo time 
(TE) has elapsed, to rephase the spins and to regenerate signal in the receiver coil. SE 
sequences have a major advantage of providing good quality images and serve as the 
standard sequence for producing 𝑇1, 𝑇2 and 𝑃𝐷 weighted images of any part of the body. 
Conversional SE sequences have long acquisition time which makes it very sensitive to 
motion artifacts. This problem is however solved by employing the use of fast or turbo 
spin echo sequences (FSE/TSE) which make use of a train of 180° RF pulses to rephase 
the spins. [29.]  

During inversion recovery sequence, an initial 180° inverting pulse is first applied to 
flip the net magnetization vector 𝑀 through 180° into a negative direction anti-parallel to 
𝛽0. This is followed by applying a 90° RF excitation pulse within a time interval 𝑇𝐼 
(inversion time) after the 180° inverting pulse has been turned off and 𝑀 has gone 
through some relaxation towards 𝛽0 direction.  A final 180° RF pulse is then applied to 
rephase the spins thereby producing echo signals for image construction. Contrast in this 
imaging sequence therefore depends on 𝑇𝐼.  Short TI inversion recovery (STIR) sequence 
and the fluid-attenuated inversion recovery (FLAIR) sequence are the most clinically 
important IR sequence techniques widely used in imaging. STIR uses short 𝑇𝐼 and it is 
widely used in fat suppression whereas FLAIR uses long 𝑇𝐼. IR sequences are mostly 
used in 𝑇1 weighted or fat-suppressed imaging. [26; 29.] 

Gradient echo sequence involves the use of gradients to produce echo signal instead 
of RF pulses. During this sequence, a radio frequency pulse with a tilting angle usually 
less than 90°  is first applied to partly flip the precessing net magnetization vector into 
the transverse plane. A negative frequency encoding gradient is then applied to dephase 
the precessing spins. The polarity of this gradient is subsequently reversed (positive) to 
rephase the spins. This leads to production of a signal called gradient echo in the receiver 
coils. GRE sequences have shorter repetition and imaging time than SE and IR 
sequences. Hence, GRE sequences are less prone to motion artifacts and are preferred in 
image acquisitions where short scan time is of key importance. [29; 30.] On the other 
hand, GRE sequence images are more sensitive to external magnetic susceptibility 
because of the rephasing gradient’s inability to completely rephase or eliminate the T2* 
dephasing effects produced by  inhomogeneities [26]. 

MR imaging of skeletal muscles 
 MRI is considered as the most suitable imaging modality for evaluating muscle 
anatomy, morphology and physiology because of its superior soft tissue contrast and 
spatial resolution. It is extremely sensitive in detecting subtle muscle lesions that result 
from pathological conditions such as atrophy, fat infiltration and edema, as well as 
detecting degree of active involvement of a muscle. It is also capable of ascertaining the 
necessity for the muscle biopsy and subsequently guiding the biopsy so as to give 
accurate diagnoses. [2; 3; 11; 20; 31; 32.]  
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In ideal situations, the signal intensity of a skeletal muscle is usually higher than that 
of water on a 𝑇1 weighted image but much lower than that of fat and water on a 𝑇2 
weighted image. On inversion-recovery and fat-suppressed 𝑇2 weighted images however, 
normal muscle has a much lower signal intensity than that of water but higher than that 
of fat. Also the permysium appears as hyperintense on T1 weighted images due its fatty 
nature while the epimysium is hypointense on both T1 and T2 weighted images due to its 
fibrous composition [11]. The remaining parts appear striated and “feathery”. 
Pathological conditions in muscles may therefore shorten T1 time due to fatty infiltration 
or prolong T2 time due to muscle edema. For this reason, most skeletal muscle MR 
imaging protocols for diagnostic purposes usually include a T1 weighted sequence and 
one fluid-sensitive sequence such as STIR or fat-suppressed T2 weighted sequences. [11; 
20; 31; 32.]  Figures 3 and 4 below illustrate ultrasound images of a healthy and diseased 
skeletal respectively. 

 

 

Figure 3: Axial T1-weighted image of the 
thigh demonstrating the normal 
appearance of skeletal muscle [31] 

 

Figure 4: Axial proton density-weighted 
image of the shank showing mild loss of 
muscle bulk and fatty infiltration (arrow) 
[31]

 
T1 weighted images are for detection of fat related abnormities whereas fat-

suppressed T2 weighted and STIR images are very effective in detecting fluid related 
abnormalities such as edema. Spin-echo sequences are most commonly used, though 
GRE sequences are sometimes used in some unique situations. Contrast agents are not 
usually used in most muscle MR imaging [2; 3; 11; 20; 31; 33]. 
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3. TEXTURE ANALYSIS 

Even though texture is a common inherent feature of all object surfaces which is easily 
perceived by humans, there is no precise definition for it. It describes visual patterns and 
surface characteristics of objects such as color, size, shape, brightness, uniformity, 
smoothness, granulation, as depicted below (Figure 3.1). Image texture can be defined as 
similarity groupings, appearance, structure or arrangement of objects within an image as 
a result of spatial variations in pixel intensity (grey value) distributions in the image. [21; 
25; 34; 35.]  

 

 

Figure 3.1. Example of different image textures 

 

Image texture is known to be a valuable source of visual information for medical 
purposes, but humans unlike computers possess limited sensitivity to textural features [1; 
2; 36]. Also, each of the muscle imaging modalities described above has limitations such 
that they do not offer the best quality images for visual assessment, therefore, some slight 
but clinically important changes that occur in tissues may not be visible on images. This 
implies that visual assessment alone cannot reveal all the necessary detail information 
contained in an image.  

Automatic or quantitative texture analysis (TA) offers a better way of extracting more 
detail information from images because of its computational advantage, high sensitivity, 
specificity, and the availability of numerous TA methods. Hence, TA for medical 
applications has recently gained much attention in research. Texture analysis is a series of 
mathematical techniques used in quantification and evaluation of spatial variations in 
pixel intensities within a digital image. It enables the use of mathematical parameters 
(textural features) computed from pixel distributions, in characterizing texture types in an 
image. [1; 2; 25; 34.] Texture analysis was originally developed for processing of 
satellite images and aerial photographs, geological survey, and remote sensing [1; 2; 5]. 
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However, its numerous advantages have seen its application across several areas, 
spanning from quality control to security. 

The application of TA methods for analyzing medical images took off in the late 
1970s when image digitization began. This has advanced tremendously lately to involve 
diagnosing diseases, following healing progress, distinguishing between pathological and 
normal tissues. [2; 28.]  Several studies have found TA to be useful in obtaining detailed, 
accurate and reliable diagnostic information from medical images to assist in clinical 
decision making. This technique has been investigated to have the ability to measure 
changes in trabecular structure thereby making it useful in early detection of 
periprosthetic osteolysis [37]. TA has also been shown to be capable of distinguishing 
between normal and abnormal lung tissues in chest radiography scans [38; 39; 40]. 
Texture analysis of CT images has also been proven to be useful in early detection of 
ischemic stroke and quantification of the extent of affected areas, and classifying 
obstructive lung diseases and normal lung tissues [36; 41].  

Texture analysis of muscle ultrasound images was successfully applied in early 
diagnosis of different muscle abnormalities [24; 42; 43], classification of pathological 
tissues [44] and verification of quality of beef [45]. Additionally, Herlidou et al [4] 
compared automated and visual texture analysis of MRI images in characterization of 
normal and diseased skeletal muscles, and concluded that texture analysis gives more 
accurate discrimination between control and pathological tissues than visual analysis. TA 
of MR images has been successfully used in early diagnosis of diseases [46; 47] and 
monitoring effect of therapy during follow ups [48]. 

3.1. Steps in quantitative texture analysis 

Quantitative texture analysis involves three major steps: feature extraction, feature 
reduction and selection, and texture classification. 

3.1.1. Feature extraction  

In image texture analysis, feature extraction is the process of computing texture features 
of a defined region in an image to quantitatively describe its texture. It involves 
computation of characteristic numerical parameters that describe textural properties of an 
image. It is the basis of image texture analysis upon which further steps and processes 
depend. The computation of numerical parameters is done on a predefined homogeneous 
tissue region by moving a small rectangular window across the image and then 
computing the corresponding texture parameter at each position. In most medical 
applications, the small homogeneous tissue region is selected manually and it is often 
referred to as region of interest (ROI). [25.]   

Texture parameters can then be used to produce feature maps. A feature map is an 
illustration of a selected texture parameter’s intensity across the image. Therefore, by 
assigning a parameter to a particular texture property, the corresponding feature map can 
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indicate places in the image where this property is dominant (white) and regions where it 
is less or absent (dark). Examples of texture parameters that can be computed are 
variance, skewness and mean. [25.] There are several methods that can be used in texture 
feature extraction. These methods are explained in detail under section 3.2 below 
(approaches to texture analysis).  

3.1.2. Feature selection and reduction  

In order to reduce complexity and irrelevancy, as well as improve accuracy and speed of 
image texture classification process, the huge amount of data obtained from the feature 
extraction process is subjected to feature selection and feature reduction techniques. 
These provide best data for classification and reduce the dimensions of feature vectors 
respectively [25; 28].  

Methods involving the use of Fisher coefficient (F) and lowest probability of error & 
average correlation coefficient (POE+ACC) are usually used in feature selection whereas 
principal component analysis (PCA) and linear discriminant analysis (LDA) are the most 
commonly used methods in feature reduction [25; 28]. 

3.1.3. Texture classification 

Classification is a process of assigning a physical object or event to one of a set of 
predefined categories [49]. The main objective of texture classification is to assign an 
unknown sample image to one of a set of known texture classes. During the process, a 
classifier is trained to determine which of a finite number of physically defined classes 
(such as normal and abnormal tissue) a textured region belongs to, by comparing textural 
features of test image to that of a training set with known category and then assigning the 
textural feature of test image to the category that it matches most. [49.] 

Texture classification can be supervised or unsupervised. In a supervised 
classification, prior knowledge about the textures to be classified is made available by 
some other independent means.  For instance, a biopsy can first be used to determine 
whether a tissue is normal or diseased before the texture classification process. 
Supervised classification can be parametric in which certain assumptions about the 
distribution of features are made or non-parametric where no assumptions are made about 
the forms of feature distribution. Unsupervised classification is however automatic 
without prior knowledge. [50.] 

3.2. Texture analysis approaches  

As stated earlier, a wide range of different approaches or methods exist that can be 
employed in texture description or computing texture parameters. It is practically 
impossible to tell beforehand which method will be most suitable for describing texture 
properties for a given application, however, optimal results can be obtained by combing 
some of the methods. These approaches are generally grouped into four categories: 
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structural-based, statistical-based, model-based and transform-based approaches. [25; 28; 
34; 36.] 

3.2.1. Structural approaches 

Structural approaches to texture analysis or description involve the use of well-defined 
primitives in representing texture. With this method, an object is basically represented by 
primitives that form its borders, hence mathematical morphology operators serve as 
powerful tools for structural texture analysis. Key to texture description in this approach 
is the description of primitives and the rules of placement. Structural approaches give a 
good symbolic description of an image, however, they are most suitable for image 
synthesis rather than analysis. [25; 34; 51.]  

3.2.2. Statistical approaches  

Statistical approaches use the spatial distribution of grey level values and relationships 
between pixels within an image in describing texture. These approaches are widely used 
in medical image analysis. They are best suited for this purpose because tissues usually 
have random, non-homogeneous structures. They are also suitable for analysis of images 
with irregular distributions of pixel intensities. [3; 4; 36.] The statistical parameters or 
features used in texture description are statistical measures derived from 5 different 
statistical image descriptors, namely: histogram, gradient, autocorrelation function, run-
length matrix and co-occurrence matrix. Statistical parameters can be grouped into fist-
order, second-order and high-order statistics depending on the number of pixels that 
define a local feature. [28.]  

Fist-order and second-order statistical parameters are most commonly used in TA. 
First-order statistical parameters describe image properties or local features that depend 
only on the individual pixel values. They are mostly derived from image histogram. On 
the other hand, second-order statistical parameters describe properties of grey level pairs. 
These parameters are derived from co-occurrence matrix and gradient matrix. They are 
known to be capable of achieving higher discrimination indexes than transform and 
structural methods. Statistical features derived from the co-occurrence matrix are the 
most widely used in texture analysis. Parameters from run-length matrix are usually 
considered as high-order statistics. [36; 51; 52; 53; 54.] 

3.2.3. Model-based methods 

Model-based methods of texture analysis involve construction of a parametric generative 
image model of the observed intensity distribution and using the corresponding estimated 
model parameters as textural feature descriptors [49].  Models commonly used in 
deriving textural features are Markov random fields (MRF), autoregressive model (AR) 
and fractals. Markov random fields are capable of capturing the local (spatial) contextual 
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information contained in an image based on the assumption that the intensity at each 
pixel in the image depends solely on the intensities of the neighboring pixels. [55.] 

Fractals are set of self-similar functions that are characterized by fractal dimension.  
Fractal dimension is the measure of perceived roughness of a surface. It therefore serves 
as the texture parameter (feature) for image texture analysis. A larger fractal dimension 
implies a rougher texture and vice versa. [55; 56.] Autoregressive model uses the 
description of shapes within an image in analyzing or describing texture by finding 
relations between groups of neighboring pixels. The main disadvantage of model-based 
methods is the computational complexity involved in estimating these model parameters. 
[34.] 

3.2.4. Transform methods  

In transform methods, texture parameters are derived from the analysis of frequency and 
scale contents contained in an image. Fourier, Gabor and wavelet transforms are usually 
used. Fourier transform describes the global frequency content of an image without any 
reference to localization in the spatial domain which results in poor performance. [49.] 

Gabor transforms are frequency and orientation specific. As a result of this, their 
practical applicability is limited because it is usually impossible to obtain single filter 
resolution at which a spatial structure in natural textures can be localized. However, they 
offer a means of achieving better spatial resolution. With wavelets, the frequency content 
of an image can be analyzed within different scales of that image. The possibility of 
varying the spatial resolution and the availability of wide range of wavelet function 
choices make wavelet transforms most suitable for texture analysis in specific 
applications. [25; 34; 49; 55.] 

3.3. Texture parameters 

There are a wide variety of parameters that can be used in texture description or analysis. 
However, the parameters discussed in this section are the most commonly used in many 
texture analysis studies for medical applications. Also, these are the main texture 
parameters calculated by the texture analysis application software – MaZda (4.6) used in 
this thesis. MaZda is a computer program for calculation of texture parameters (features) 
in digitized images. It was developed at the Institute of Electronics, Technical University 
of Lodz (TUL), Poland, under a project instituted by the European Cooperation in 
Science and Technology (COST): “Quantitation of Magnetic Resonance Image Texture” 
(COST Action B11). [25.] Table 3.1 below gives the summary of these texture 
parameters. The mathematical notations for these parameters can found in [25]. 
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Table 3.1. Texture parameters computed by MaZda 4.6 [57]. 

Image descriptor method Texture parameters derived from 
descriptor 

Texture analysis 
approach 

Histogram Mean 
Variance 
skewness 
kurtosis 
1-% percentile  
10-% percentile 
50-% percentile 
90-% percentile 
99-% percentile 

 
 
 
 

Statistical 

Absolute gradient Mean absolute gradient 
Variance of absolute gradient 
Skewness of absolute gradient 
Kurtosis of absolute gradient 
Percentage of pixels with nonzero 
gradient 

 

 
Statistical 

Co-occurrence matrix Angular second moment contrast 
Correlation 
Sum of squares 
Inverse difference moment  
Sum average 
Sum variance 
Sum entropy 
Entropy 
Difference variance 
Difference entropy 

 

 

 

Statistical 

Run-length matrix Short run emphasis moments 
Long run emphasis moments 
Grey level nonuniformity  
Run length nonuniformity 
Fraction of image in runs 

 
 

Statistical 

Wavelet Energy of wavelet coefficients in sub-
bands at successive scales; Maximum 
4 scales each with 4 parameters 

 
Transform 

Autoregressive model  Vectors  of  model  parameters 
(𝑇ℎ𝑒𝑡𝑎: 𝜃1,𝜃2,𝜃3,𝜃4) 
Standard deviation of the driving 
noise, 𝜎 
 

 
 

Model-based 

 

These texture parameters are derived from the commonly used image texture 
descriptor methods. The methods and the corresponding texture parameters that can be 
derived from them are explained in detail below. 
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3.3.1. Histogram 

Digital images are composed of minute rectangular blocks or elements called pixels, or 
minute cubic blocks called voxels, each of which is represented by a set of coordinates in 
space. Each pixel or voxel possesses a certain value that indicates the grey level intensity 
of that pixel.  The count of how many pixels possess a specific grey level value is plotted 
as a histogram representing each grey level value against the number pixels that possess 
that value. Statistical measures or texture parameters that are derived from image 
histogram for texture analysis include mean, variance, kurtosis, skewness and percentiles. 
[34; 58.] 

Mean depicts the average grey level intensity of an image. Variance is a measure of 
the extent to which the grey level values are distributed away from their mean; which is 
an indication of image roughness. Skewness describes the histogram symmetry about the 
mean; positive skewness is indication that an image has high grey level values such that 
majority of them lie above the mean, and vice versa. Kurtosis is a measure of peakness or 
flatness of a histogram. It indicates uniformity of the grey level distribution relative to a 
normal distribution. A histogram with high or positive kurtosis has sharp or distinct peak 
near the mean while that of a negative or low kurtosis is flat or round near the mean. 
Percentiles are used in estimating the highest grey level value under which a given 
percentage of the pixels in the image fall. [34; 58.] 

3.3.2. Absolute gradient 

The measure of spatial variation in grey level intensities across an image is referred to as 
the gradient of that image. An image is said to have high gradient value if the grey level 
changes abruptly between white and black. Conversely, the gradient is said to be low if 
the variation is gradual. [5; 34; 58.] 

Texture parameters that can be derived from absolute gradient are mean of absolute 
gradient, variance of absolute gradient, kurtosis of absolute gradient and skewness of 
absolute gradient. Mean of absolute gradient measures the mean grey level variation 
across the image and variance of absolute gradient measures how the variations are from 
the mean. The rest describe the absolute gradient as in the case of histogram explained 
above. [5; 34; 58.] 

3.3.3. Co-occurrence matrix 

Co-occurrence matrix (COM) is an estimation of the joint probability (𝑃𝜕𝜃(𝑖, 𝑗)) of two 
pixels, separated by distance 𝑑 pixels apart (𝑑 =  1, 2, … ,5 ) along a defined direction 𝜃 
(0°, 45°, 90° 𝑎𝑛𝑑 135°) having co-occurring grey level values 𝑖 and 𝑗 [25]. The joint 
probability is computed for each ROI using different combinations of 𝑑 and 𝜃 to give a 
square matrix called COM. Thus COM is the count of pairs of pixels that possess equal 
or specific grey level values in a certain direction and at a specific distance apart. Texture 
parameters computed from COM are angular second moment (ASM), contrast, 
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correlation, sum of squares (SS), inverse difference moment (IDM), sum average, sum 
variance, sum entropy, entropy, difference variance and difference entropy.[ 35; 36; 57; 
58; 59.] 

Angular second moment (ASM) is a measure of uniformity or homogeneity of an 
image. A high ASM value is recorded when there are high differences in the COM 
entries, whereas it is low when all the entries of the COM are equal. A high ASM value 
is an indication of greater homogeneity and more regularity in image texture. Contrast is 
the relative variation between grey level values of different objects in the image.  
Correlation is a measure of grey level linear-dependencies in the image. Sum of squares 
computes variance in the COM. [35; 36; 58; 59.]   

Inverse difference moments also measures homogeneity just as ASM. Sum average is 
the average of normalized grey level image in the spatial domain while sum variance 
indicates how much the distribution of sum probability differs from its mean. Sum 
entropy and difference entropy measure the randomness of grey level distribution; thus 
they measure disorder in an image, while entropy is an indication of the complexity 
within an image. The highest entropy is obtained when all the probabilities are equal. 
High entropy value(s) indicates the grey level distribution is highly indiscriminate, 
leading to more complexity or disorder in the image. [28; 34; 35; 36; 58; 59.]  

3.3.4. Run-length matrix 

A grey level run is the maximal sequence of consecutive pixels with the same grey level 
value or intensity [34]. It is characterized by length and direction of the run. The run-
length matrix therefore computes the number of runs for a defined grey level value and 
length in a certain direction 𝜃°. It gives information about the number of collinearly 
connected pixels having the same intensity level in a defined direction. [51.] Four 
directions; 0°, 45°, 90° and 135° are used in the matrices calculations. Texture 
parameters extracted from the run-length matrix are short run emphasis inverse moments, 
long run emphasis moments, grey level nonuniformity, run length nonuniformity and 
fraction of image in runs. [5; 34; 57; 58.] 

Short run emphasis inverse moments and long run emphasis moments are measures 
of proportions of runs in the image that have short length and long lengths respectively. 
Images with short runs have fine texture while coarse textures are known to have 
relatively long grey level runs. Grey level nonuniformity is a measure of uniformity in 
run distribution among the grey levels. Uniformly distributed runs have small grey level 
nonuniformity values and vice versa. Run length nonuniformity on the other hand is an 
indication of how uniformly grey levels are distributed among the runs. Fraction of runs 
in image compute the percentage of image pixels that are part of any of the runs defined 
for computing the matrix. [5; 34; 57; 58.] 
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3.3.5. Wavelets 

The use of wavelets in describing texture involves analyzing the frequency content of an 
image within different scales of that image [34].  Wavelets provide a means of separating 
image signal into different frequency components, and then studying each component 
with resolution matched to its scale [57]. This is achieved by performing wavelet 
decomposition of the image signal using high and low pass filters or Haar function. The 
output gives a set of wavelet coefficients corresponding to different scales and to 
different frequency directions. [28; 57.] 

Energy of wavelet coefficient – the measure of frequency content of an image on a 
given scale and in a given direction is an example of a wavelet derived texture parameter. 
The wavelets techniques have gain attention in recent times because they are capable of 
localizing signal spectral features in time (space). [34; 57.] 

3.3.6. Auto-regressive model 

Texture description based on the auto-regressive model is based on the fact that each 
pixel in an image is linearly dependent on it neighbors [60]. Hence, a pixel’s grey level 
value is a weighted sum of the grey level values of its neighboring pixels. The grey level 
value of particular a pixel can therefore be estimated from the grey level values in its 
defined neighborhood. It uses linear estimates of a pixel’s grey level in characterizing 
texture. [34; 51; 60; 61.] 

The characteristics of an image texture may be determined by manipulating the 
estimated value against its real value.  Five parameters are usually computed for each 
selected ROI, consisting of coefficients of four neighboring pixels (𝑇ℎ𝑒𝑡𝑎:𝜃1,𝜃2,𝜃3,𝜃4) 
and standard error of noise (𝑠𝑖𝑔𝑚𝑎,𝜎). The computed coefficients are similar in images 
with coarse texture whereas there are wide variations in the coefficients of fine textures. 
[51; 60; 61.] 
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4. MATERIALS AND METHODS 

4.1. Study subjects 

A total of 111 adult female volunteers consisting of 91 highly active athletes and 20 non-
athletes were used in this study. They were obtained from a previous study carried out by 
the UKK Institute for Health Promotion Research, Tampere, Finland. The athletes 
comprised 9 triple-jumpers, 10 high-jumpers, 10 soccer players, 9 squash players, 17 
power-lifters, 18 endurance runners and 18 swimmers. The non-athlete subjects (n = 20) 
were clinically healthy students recruited from Pirkanmaa University of Applied 
Sciences, now known as Tampere University of Applied Sciences.  The study was done 
with the approval of the ethical committee of Tampere University Hospital, Tampere, and 
each participant gave a written informed consent. 

In accordance with previous classification scheme [62; 63], the athletes were grouped 
into five different exercise-loading types: (I) high-impact (H-I) exercise-loading group, 
(II) odd-impact (O-I) exercise-loading group, (III) high-magnitude (H-M) exercise-
loading group, (IV) repetitive, low-impact (L-I) exercise-loading group and  (V) non-
impact (N-I) exercise-loading group. The high-impact exercise-loading group comprised 
the triple-jumpers and high-jumpers (22.3 ±  4.1 yrs.); the odd-impact exercise-loading 
group comprised soccer and squash players (25.3 ± 6.7 yrs.); the high-magnitude 
exercise-loading group consisted of the power-lifters (27.5 ± 6.3 yrs.); the repetitive, low-
impact exercise-loading group constituted the endurance runners (28.9 ± 5.6 yrs.); and 
the repetitive, non-impact exercise-loading group the swimmers (19.7 ± 2.4 yrs.). The 
non-athlete group (23.7 ± 3.8 yrs) was used as a referent (REF). All the data are presented 
as Mean±SD. 

4.2. MR image acquisition 

The acquisition of MRI images for this study was performed using a 1.5T MRI scanner 
(Siemens, Avanto, Version Syngo MR B15, Erlangen, Germany). During the process, 
sagittal, axial and coronal scout images of the pelvic region of the left hip were first 
obtained using two localization series. Using these scout images as guidance, the imaging 
plane orientation of the proximal femur was set perpendicular to the femoral neck axis as 
shown in Figure 4.1. For each subject, muscles attached to the proximal femur region 
starting from the femoral caput to the subtrochanteric level of the femoral diaphysis were 
imaged to obtain a total of 120 image slices. 
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Figure 4.1. Imaging plan Orientation setup during the MR image acquisition process
  

An axial 3D T1-weighted FLASH (First Low Angle Shot) sequence with 
interpolation in slice direction was used for this study protocol. The settings of the image 
acquisition parameters were as follows: repetition time (TR) 15.3 ms, echo time (TE) 
3.32 ms, slice thickness 1.00 mm without gaps, pixel size 0.91 mm x 0.91 mm, flip angle 
of 10° and scan time of 5 minutes. Body matrix coil was used in combination with three 
elements of spine matrix coil. Normalization filter was also used in order to correct the 
coil sensitivity profile and to minimize inhomogeneities in the image intensity. 

Muscles attached to the proximal femur (hip) that are involved in specific load-
bearing during different exercises constituted the anatomical region of interest for texture 
analysis on this study. The quality of the acquired images was assessed by two 
radiologists with over ten years of experience and was verified to be of uniform and good 
quality. 

4.3. Slice Selection 

The acquired images were exported to Siemens multimodality workplace (Syngo 
MMWP VE36A, Siemens, Germany) and with the help of the scout images, a reference 
slice was manually chosen for each subject. As depicted in Figure 4.2 below, the center 
of the proximal femur caput at the level of articulation capsule insertion was chosen as 
the reference and the corresponding slice was chosen as the central or reference slice.  
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Figure 4.2. Reference slice selection setup using Siemens Multimodality Workplace 

 

From the reference slice, five slices were copied from above and below making a 
total of eleven slices. The images were then converted into DICOM format using Osiris 
software (Windows version 4.19, The Digital Unit of the Service for Medical Computing 
of the University Hospital of Geneva, Switzerland) for the texture analysis. 

4.4. Texture analysis 

Four muscles of the hip region namely; Gluteus maximus, Gluteus medius, Iliopsoas and 
Obturator internus were chosen for analysis. These muscles were chosen for the quality 
of research purposes and from biomechanical points of view. From the perspective of 
research quality, these muscles can be easily distinguished by anatomical landmarks and 
they also have enough volume for region of interest (ROI) selection to avoid partial 
volume effect or signals from adjacent tissues so as to get reliable results. The 
biomechanical and most important reason is based on the specific functionality of each of 
these muscles in association with load-bearing during different exercises.  
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To compute texture parameters of these muscles, the selected image slices were first 
uploaded into texture analysis application software – MaZda (4.6) [64]. In the reference 
slice of each subject, one homogenous ROI of about 120 pixels (11 x 11) was carefully 
chosen in each of the four muscles mentioned above for 2D TA analysis. Figure 4.2 
below shows the placement of ROIs in the selected muscles.  The ROIs were named as 
Gmax, Gmed, Iliop and ObtInt respectively. In the 3D texture analysis, the same 
homogeneous region was maintained over ten additional neighboring slices from the 
reference slice (five up and five below) to form a cubic volume of interest (VOI) of about 
1330 voxels in each muscle and in each subject. 

 

 

Figure 4.2. Selected regions of interest (ROIs) in muscles Gluteus maximus (Gmax: 
blue), Gluteus medius (Gmed: green), Iliopsoas (Iliop: pink) and Obturator internus 
(ObtInt: yellow) 
 

The MaZda software was then used to automatically compute texture parameters in 
each ROI and VOI based on three texture analysis methods:  first and second order 
statistical methods (histogram, co-occurrence matrix, gradient matrix, run-length matrix), 
transform methods (wavelets) and model-based methods (autoregressive model). In both 
2D and 3D, the parameters of co-occurrence matrix were computed for five distances 
between pixels (𝑑 =  1, 2, 3, 4 𝑎𝑛𝑑 5) and in four directions (𝜃 (0°, 45°, 90° 𝑎𝑛𝑑 135°) , 
and those of the run-length matrix in four directions: horizontal (Horzl_), vertical 
(Vertl_), slanted at 45 degrees (45dgr_) and slanted at 135 degrees (135dgr_). 

  In order to shorten computational time and to avoid sparse matrices, the number of 
grey levels of each ROI and VOI were normalized by restricting their grey level 
intensities within the range [𝜇 − 3𝜎, 𝜇 + 3𝜎], where 𝜇 is the mean grey level value and σ 
denotes the standard deviation of each ROI and VOI. Both 𝜇 and 𝜎 are calculated 
separately for every ROI and every VOI. A total of about 282 texture features or 
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parameters were computed for each ROI in 2D and 862 for each VOI in 3D for every 
subject 

4.5. Statistical analysis 

The computed texture parameters were converted into excel format for statistical analysis 
using MATLAB (windows version 7.70, The MathWorks Inc. Natick, Massachusetts, 
USA) (Refer to appendix 1 for algorithm). For the sake of statistical computational 
purposes, the ROIs or VOIs – Gmax, Gmed, Iliop and ObtInt were labeled as 1, 2, 3 and 
4 respectively whereas the athlete groups – high-impact (H-I), odd-impact (O-I),  high-
magnitude (H-M), low-impact (L-I) and non-impact (N-I) exercise-loading groups were 
assigned variable values of 100, 200, 300, 400 and 500 respectively. The non-athlete 
(REF) group was labeled as 600. 

4.5.1. Feature selection and reduction 

Since the data set was very huge, there was the need to exclude invariant parameters that 
do not carry important image information. Hence, among the large number of computed 
parameters based on the three texture analysis methods mentioned above, only 
parameters that showed high discriminatory potential for classification and separation 
between any of the two muscles or between the non-athlete group and any of the athlete 
groups were selected for further statistical analysis. These parameters were selected by 
calculating Fisher coefficient (F) – the ratio between-class variance and within-class 
variance, keeping only the first ten parameters with the highest Fs. These parameters 
were termed as “discriminant parameters”. SPSS (Windows version 20.0.0; SPSS, 
Chicago, Ill.) was used in this computation. 

According to the rule mentioned above, texture features that served as good 
discriminators between any of the two muscles were selected as “discriminant 
parameters” for comparing those muscles. There were six possible comparisons (muscle 
pairs) between the four muscles. Hence, six sets of discriminant parameters (10 in each 
set) were selected.  

In the group analysis however, the main objective was to compare the athletes groups 
against the non-athlete (REF) group. Therefore, the discriminant parameters for 
comparing the groups were selected by choosing texture features that highly discriminate 
between the non-athlete group (REF) and any other athlete group. In this comparison, 
there were five possible group pairs, therefore, five sets of discriminant parameters (10 in 
each set) were selected.  

The parameter selection process was done separately for 2D and 3D texture 
parameters. In order to reduce the effect of noise, the selection of co-occurrence matrix 
parameters for analysis was limited to a maximum distance (𝑑) of 3 pixels.  
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4.5.2. Comparison of studied Muscles  

The selected discriminant parameters of the muscles were further analyzed statistically 
using SPSS to examine how the four muscles Gluteus maximus, Gluteus medius, 
Iliopsoas and Obturator internus differ from each other in terms of texture as result of 
their functionality differences in load-bearing during different exercises. Nonparametric 
statistical approach was chosen for this comparison due to the skewed distributions of 
texture parameters.  

Kruskal-Willis test was first used to assess whether statistically significant 
differences exist among these muscles in general. If affirmed, Mann-Whitney post hoc U 
test was then performed to ascertain which specific pairs of muscles differed from each 
other. Because there were six possible comparisons between the muscles, the standard 
alpha or significance level ( =  0.05) was divided by 6 to give 0.00833. Therefore, any 
p-value less than 0.00833 (𝑝 < 0.00833) were taken as adequately significant to indicate 
overall and specific differences between the muscles for both Kruskal-Willis and Mann-
Whitney post hoc tests respectively.  

In the Kruskal-Willis test, the discriminant parameters from all the muscle pairs were 
used. If a parameter appeared more than once, only one is taken. However, in the Mann-
Whitney test for significant difference between a specific pair of muscles, only the 
selected set of discriminant parameters for that particular muscle pair were used.  

Finally, to further support the findings above, the selected discriminant parameters 
were used to classify or characterize the muscles by means of linear discriminant analysis 
(LDA) to find out if the muscles can be separated from each other. The classifications 
were done using both 2D and 3D texture parameters using SPSS. 

4.5.3. Comparison of studied groups 

The six study groups were compared and classified just as described above to establish 
possible differences between non-athlete group and the athlete groups in terms of muscle 
texture. Since the prime objective of the group analysis was to find out whether the 
exercise loading or athlete groups differed from the non-athlete group, only Mann-
Whitney post hoc U test was performed. Hence, a less stringent p-value (𝑝 < 0.01) was 
considered as statistically significant to ascertain that significant differences exist 
between the referent group and any other athlete group. 

4.5.4. Comparative evaluation of 2D and 3D texture analyses 

The effectiveness of 2D and 3D TA in detecting and characterizing textural differences 
were also compared in this work. For every muscle or group pair comparison, the number 
of 2D discriminant parameters that showed significant differences was compared to those 
the 3D. Percentages of 2D classification accuracy in showing inter-muscle and inter-
group separation were also compared with their corresponding 3D results. 
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5. RESULTS 

Following the methods described above, the results of this work were categorized into 
three: texture comparison between the studied muscles, comparison between studied 
groups and comparing the effectiveness of 2D and 3D texture analyses in giving detailed 
information.  

The first results comprise comparison and classification between the four muscles in 
terms of textural differences. The second part includes comparison and classification 
between the athlete groups and the non-athlete groups. In each of the instance above, the 
comparisons and classifications were made separately using 2D and 3D texture 
parameters. The final part of the results constitutes assessing the abilities of the two 
texture analyses methods (2D and 3D) to detect and characterize textural differences. 

5.1. Comparison of studied muscles 

As mentioned above, the results presented in this section include results when the four 
muscles were compared (test for significant differences in texture) and classified using 
both 2D and 3D texture parameters. Table 5.1 below shows the sets of discriminant 
parameters for comparing the muscles.  

Table 5.1. Selected discriminant parameters for respective muscle pair comparison. 
Refer to Figure 5.1 below for explanation of texture parameters 

Muscle pair 
2D discriminant 
parameters 

Fisher's 
coefficients 

 3D discriminant 
parameters 

Fisher's 
coefficients 

 
Perc.01% 99.582  GrSkewness 188.090 

 
Skewness 93.810  Perc.01%3D 128.876 

 
S(0,2)SumEntrp 87.810  S(1,-1,1)DifEntrp 108.686 

 
S(1,-1)DifEntrp 84.704  S(0,1,0)SumOfSqs 98.657 

Gmax vs. Gmed GrSkewness 80.629  S(0,2,0)SumOfSqs 97.087 

 
Vertl_GLevNonU 79.050  S(0,0,3)SumEntrp 96.286 

 
S(0,3)DifEntrp 78.133  S(3,0,-3)SumEntrp 94.923 

 
S(0,3)SumEntrp 74.499  S(1,-1,0)DifEntrp 92.904 

 
45dgr_GLevNonU 72.799  S(0,0,2)SumEntrp 92.065 

 
MinNorm 72.062  S(0,3,0)SumOfSqs 90.678 

 
     

 
Vertl_GLevNonU 235.274  S(2,2,0)DifEntrp 285.844 

 
45dgr_GLevNonU 222.146  S(0,2,-2)DifEntrp 282.653 

 
135dr_GLevNonU 215.529  S(2,-2,0)DifEntrp 262.398 

 
Horzl_GLevNonU 215.401  S(0,3,0)DifEntrp 262.064 

Gmax vs. Iliop S(0,3)DifEntrp 205.533  S(0,3,-3)DifEntrp 261.993 

 
S(2,-2)DifEntrp 190.126  S(2,-2,-2)DifEntrp 260.221 

 
S(1,0)DifEntrp 185.844  S(2,-2,2)DifEntrp 258.874 

 
S(2,2)DifEntrp 182.875  S(1,-1,1)DifEntrp 256.902 
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S(2,0)DifEntrp 181.601  S(3,0,0)DifEntrp 254.230 

 
S(0,3)SumEntrp 176.012  S(2,2,-2)DifEntrp 253.023 

 
     

 
Skewness 100.523  S(0,0,1)Correlat 202.056 

 
GrSkewness 44.309  S(0,0,1)Contrast 177.790 

 
Perc.01% 33.898  S(0,0,2)Correlat 165.550 

 
GrVariance 31.120  S(0,0,1)DifEntrp 155.272 

Gmax vs. ObtInt Kurtosis 27.102  S(0,0,1)DifVarnc 152.830 

 
S(1,1)DifVarnc 26.124  S(0,0,2)SumVarnc 150.074 

 
S(1,0)SumOfSqs 22.984  S(0,0,2)Contrast 123.225 

 
S(2,0)SumOfSqs 19.038  S(0,0,1)InvDfMom 119.930 

 
S(1,1)SumVarnc 18.340  S(1,-1,1)DifVarnc 108.258 

 
S(1,0)SumVarnc 17.402  S(0,0,2)DifEntrp 106.885 

 
     

 
Perc.50% 115.197  MaxNorm3D 102.488 

 
Perc.90% 113.411  MinNorm3D 85.252 

 
Mean 112.384  Perc.01%3D 58.215 

 
MaxNorm 108.841  S(2,0,2)Correlat 45.675 

Gmed vs. Iliop Perc.99% 107.443  S(0,2,-2)DifVarnc 41.587 

 
Perc.10% 98.952  S(2,0,0)DifEntrp 39.964 

 
MinNorm 74.842  S(2,2,0)Contrast 39.735 

 
Perc.01% 66.386  S(0,2,-2)Contrast 38.630 

 
S(2,0)Correlat 57.020  S(2,2,0)DifEntrp 37.542 

 
S(2,0)SumVarnc 47.020  S(2,0,2)SumVarnc 37.424 

 
     

 
S(1,1)SumEntrp 100.755  S(0,0,1)SumVarnc 179.248 

 
S(0,1)SumEntrp 94.722  S(0,0,1)DifEntrp 159.042 

 
S(1,-1)DifEntrp 90.847  S(0,3,-3)SumOfSqs 133.793 

 
S(0,2)SumEntrp 89.115  S(0,0,2)DifEntrp 131.679 

 
S(1,-1)SumEntrp 88.327  S(0,2,2)DifEntrp 125.932 

Gmed vs. ObtInt S(2,-2)DifEntrp 87.216  S(2,0,0)SumEntrp 125.821 

 
S(3,0)DifEntrp 82.285  S(0,1,1)DifEntrp 125.420 

 
S(2,0)SumEntrp 80.661  S(0,2,-2)SumOfSqs 125.154 

 
S(0,3)DifEntrp 77.518  S(3,-3,0)DifEntrp 121.226 

 
S(2,-2)SumEntrp 77.089  S(2,-2,-2)DifEntrp 120.896 

   
 

  
 

S(2,-2)DifEntrp 274.001  S(0,0,1)DifEntrp 367.562 

 
S(1,0)DifEntrp 230.726  S(0,2,2)DifEntrp 366.070 

 
S(3,0)DifEntrp 227.281  S(2,-2,-2)DifEntrp 350.205 

 
S(1,-1)SumEntrp 219.103  S(0,3,3)DifEntrp 339.355 

Iliop vs. ObtInt S(2,0)DifEntrp 216.553  S(0,0,2)DifEntrp 337.463 

 
S(3,3)DifEntrp 213.818  S(1,0,-1)DifEntrp 333.442 

 
S(0,2)DifEntrp 209.993  S(2,0,-2)DifEntrp 332.888 

 
S(0,3)DifEntrp 198.501  S(3,-3,-3)DifEntrp 332.796 

 
Vertl_GLevNonU 194.714  S(3,0,0)DifEntrp 322.512 

 
S(0,1)SumEntrp 193.966  S(2,2,2)DifEntrp 316.869 
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Figure 5.1 below gives the description of texture parameters. Detailed explanation of 
these parameters can found in section 3.3 
  
Texture parameter 
coding/abbreviation 

Description 

S(x,y,z) DifEntrp  “Difference Entropy” calculated along (x, y, z) direction. E.g. 
S(1,-1,-1)DifEntrp =>  Difference Entropy at 1 pixel distance in 
135° direction 

S(0,2)SumEntrp “Sum Entropy” calculated along (x, y) direction. E.g. 
S(0,2)SumEntrp =>  Sum Entropy at 2 pixel distance in 0° 
(horizontal) direction 

Perc. Percentile E.g. Perc.99% = 99% percentile 

45dgr_GLevNonU 45degrees_Grey Level Nonuniformity 

F135dr_LngREmph 135° direction Long Run Emphasis 

Vertl_GLevNonU Vertical Grey Level Nonuniformity 

GrNonZeros Nonzero gradient 

F135dr_ShrtREmp 135° direction Long Run Emphasis 

Figure 5.1. Explanation or description of texture parameter coding or abbreviation  

 

Comparison of studied muscles using 2D texture parameters 

Upon performing Kruskal-Willis test using the selected 2D texture parameters, all the 
tested parameters indicated that significant textural differences (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.00833) 
exist among the four muscles in general. The subsequent Mann-Whitney post hoc test 
also ascertained that each of the four muscles differs significantly from the other. Each 
texture parameter in the sets of disciriminant parameters used in comparing between all 
the four muscles (Gluteus maximus and Gluteus medius; Gluteus maximus and Iliopsoas; 
Gluteus maximus and Obturator internus; Gluteus medius and Iliopsoas; Gluteus medius 
and Obturator internus, and Iliopsoas and Obturator internus) gave a significant p-value 
less than 0.00833 as presented in Tables 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 respectively.   
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Table 5.2. Mann-Whitney U Test between gluteus maximus and gluteus medius using 2D texture parameters 

 MinNorm Skewness Perc.01% S(1,-1) 
DifEntrp 

S(0,2) 
SumEntrp 

S(0,3) 
DifEntrp 

S(0,3) 
SumEntrp 

Vertl_ 
GLevNonU 

45dgr_ 
GLevNonU 

GrSkewness 

Mann-Whitney U 2707 2033 2162 2278 2244.5 2520 2480 2391 2444 2369 

Wilcoxon W 8923 8249 8377.5 8493.5 8461 8734 8696 8607 8660 8585 

Z -7 -9 -8 -8 -8 -8 -8 -8 -8 -8 

Asymp. Sig.  
(2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 
 

Table 5.3. Mann-Whitney U Test between gluteus maximus and iliopsoas using 2D texture parameters 

 S(1,0) 
DifEntrp 

S(2,0) 
DifEntrp 

S(2,2) 
DifEntrp 

S(2,-2) 
DifEntrp 

S(0,3) 
SumEntrp 

S(0,3) 
DifEntrp 

Horzl_GLev
NonU 

Vertl_ 
GLevNonU 

45dgr_ 
GLevNonU 

135dr_ 
GLevNonU 

Mann-Whitney U 1104 1214 1093 1074 1033 992 845 806 782 846 

Wilcoxon W 7320 7430 7309 7290 7249 7208 7061 7022 6998 7062 

Z -11 -10 -11 -11 -11 -11 -11 -11 -11 -11 

Asymp. Sig.  
(2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 



31 
 

Table 5.4. Mann-Whitney U Test between Gluteus maximus and obturator internus using 2D texture parameters 

 Skewness Kurtosis Perc.01% S(1,0) 
SumOfSqs 

S(1,0) 
SumVarnc 

S(1,1) 
SumVarnc 

S(1,1) 
DifVarnc 

S(2,0) 
SumOfSqs 

Gr 
Variance 

GrSkewness 

Mann-Whitney U 1706 2092 3501 3538 4317 4251 3796 3882 3599 2834 

Wilcoxon W 7922 8308 9716 9754 10533 10467 10012 10098 9815 9050 

Z -9 -8 -6 -6 -4 -4 -5 -5 -5 -7 

Asymp. Sig.  
(2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 
 

Table 5.5. Mann-Whitney U Test texture between Gluteus medius and iliopsoas using 2D texture parameters 

 MinNorm MaxNorm Mean Perc.01% Perc.10% Perc.50% Perc.90% Perc.99% S(2,0)Correlat S(2,0) 
SumVarnc 

Mann-Whitney U 2080 1419 1359 2270 1544 1334 1349 1414 3007 3267 

Wilcoxon W 8296 7635 7575 8486 7760 7550 7565 7630 9223 9483 

Z -9 -10 -10 -8 -10 -10 -10 -10 -7 -6 

Asymp. Sig.  
(2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
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Table 5.6. A Mann-Whitney U Test between Gluteus medius and obturator internus using 2D texture parameters 

 S(0,1) 
SumEntrp 

S(1,1) 
SumEntrp 

S(1,-1) 
SumEntrp 

S(1,-1) 
DifEntrp 

S(2,0) 
SumEntrp 

S(0,2) 
SumEntrp 

S(2,-2) 
SumEntrp 

S(2,-2) 
DifEntrp 

S(3,0) 
DifEntrp 

S(0,3) 
DifEntrp 

Mann-Whitney U 2339 1975 2359.5 2118 2285 2071 2330 2212 2360 2404 

Wilcoxon W 8555 8191 8575 8334 8501 8286 8546 8428 8576 8620 

Z -9 -9 -8 -8 -8 -9 -8 -8 -8 -8 

Asymp. Sig. 
 (2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 
 

Table 5.7. Mann-Whitney U Test between iliopsoas and obturator internus using 2D texture parameters 

 S(1,0) 
DifEntrp 

S(0,1) 
SumEntrp 

S(1,-1) 
SumEntrp 

S(2,0) 
DifEntrp 

S(0,2) 
DifEntrp 

S(2,-2) 
DifEntrp 

S(3,0) 
DifEntrp 

S(0,3) 
DifEntrp 

S(3,3) 
DifEntrp 

Vertl_G 
LevNonU 

Mann-Whitney U 801 965 953 930 927 584 859 859 786 781 

Wilcoxon W 7017 7182 7169 7147 7143 6800 7074 7075 7002 6997 

Z -11 -11 -11 -11 -11 -12 -11 -11 -11 -11 

Asymp. Sig.  
(2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
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Classification of studied muscles using 2D texture parameters 

The classification results in Table 5.8 shows linear discriminant analysis using 2D texture 
parameters, distinguishing between the four muscles. In general, a high level of 
separability was recorded between all four muscles. Gluteus maximus and iliopsoas were 
the most separable, while gluteus medius and obturator internus were the least 
distinguishable muscles. The discriminant analysis scatter plot of the centroids of the 
parameters in Figure 5.2 goes on to further indicate that the muscles are linearly 
separable from each other. 
 

Table 5.8. Linear discriminant analysis using 2D texture parameters, classifying muscles 
gluteus maximus (Gmax) gluteus medius (Gmed), Iliopsoas (Iliop) and Obturator 
internus (ObtInt) 
Discrimination 
 (number of ROIs) 

Predicted Muscle membership Percentage of original cases 
correctly classified 

 Gmax Gmed  
Gmax (111) 92 19  
vs.    84.2 
Gmed (111) 16 95  
    
 Gmax Iliop  
Gmax (111) 104 7  
vs.   89.6 
Iliop (111) 16 95  
    
 Gmax ObtInt  
Gmax (111) 90 21  
vs.   85.6 
ObtInt (111) 11 100  
    
 Gmed Iliop  
Gmed (111) 99 12  
vs.   86.9 
Iliop (111) 17 94  
    
 Gmed ObtInt  
Gmed (111) 82 29  
vs.   82.9 
ObtInt (111) 9 102  
    
 Iliop ObtInt  
Iliop (111) 90 21  
vs.   88.3 
ObtInt (111) 5 106  
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Figure 5.2. Scatter plot from linear discriminant analysis using 2D texture parameters, 
separating between muscles: Gluteus maximus (1), Gluteus medius (2), Iliopsoas (3) and 
Obturator internus (4). Axes function 1 and function 2 represent the discrminant function 
scores or weights of the individual parameters 
 

Comparison of studied muscles using 3D texture parameters 

Similar to the 2D analysis, all the 3D texture parameters used in the Kruskal-Willis test 
showed significant differences among the four muscles in a broad-spectrum. This was 
further affirmed by the subsequent Mann-Whitney post hoc test. As shown in Tables 5.9, 
5.10, 5.11, 5.12, 5.13, and 5.14 below, every parameter in the sets of discriminant 
parameters used in comparing each pair of muscles indicated a significant difference 
(𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.00833) between each pair. 
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Table 5.9. Mann-Whitney U Test between gluteus maximus and gluteus medius using 3D texture parameters 

 Perc 
.01%3D 

Gr- 
Skewness 

S(0,1,0) 
SumOfSqs 

S(1,-1,0) 
DifEntrp 

S(1,-1,1) 
DifEntrp 

S(0,2,0) 
SumOfSqs 

S(0,0,2) 
SumEntrp 

S(0,3,0) 
SumOfSqs 

S(0,0,3) 
SumEntrp 

S(3,0,-3) 
SumEntrp 

Mann-Whitney U 2497 1229 1754 2076 1781 1728 1932 1978 1944 1967 

Wilcoxon W 8713 7445 7970 8292 7997 7944 8148 8194 8160 8183 

Z -9 -10 -9 -9 -9 -9 -9 -9 -9 -8 

Asymp. Sig. 
 (2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 
 
Table 5.10. Mann-Whitney U Test between gluteus maximus and iliopsoas using 3D texture parameters 

 S(1,-1,1) 
DifEntrp 

S(2,2,0) 
DifEntrp 

S(2,-2,0) 
DifEntrp 

S(2,-2,2) 
DifEntrp 

S(0,2,-2) 
DifEntrp 

S(2,2,-2) 
DifEntrp 

S(2,-2,2) 
DifEntrp 

S(3,0,0) 
DifEntrp 

S(0,3,0) 
DifEntrp 

S(0,3,-3) 
DifEntrp 

Mann-Whitney U 662 570 624 658 556 675 662 672 615 596 

Wilcoxon W 6878 6786 6840 6874 6772 6891 6878 6888 6831 6812 

Z -11 -12 -12 -11 -12 -11 -11 -11 -12 -12 

Asymp. Sig. 
 (2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
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Table 5.11. Mann-Whitney U Test between gluteus maximus and obturator internus using 3D texture parameters 

 S(0,0,1) 
Contrast 

S(0,0,1) 
Correlat 

S(0,0,1) 
InvDfMom 

S(0,0,1) 
DifVarnc 

S(0,0,1) 
DifEntrp 

S(1,-1,1) 
DifVarnc 

S(0,0,2) 
Contrast 

S(0,0,2) 
Correlat 

S(0,0,2) 
SumVarnc 

S(0,0,2) 
DifEntrp 

Mann-Whitney U 937 873 1584 1203 1155 2026 1507 1136 1421 1704 

Wilcoxon W 7153 7089 7800 7419 7371 8242 7723 7352 7637 7920 

Z -10 -11 -9 -10 -10 -9 -10 -11 -10 -9 

Asymp. Sig.  
(2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 
 

Table 5.12. Mann-Whitney U Test between gluteus medius and iliopsoas using 3D texture parameters 

 Min- 
Norm3D 

Max- 
Norm3D 

Perc 
.01%3D 

S(2,0,0) 
DifEntrp 

S(2,2,0) 
Contrast 

S(2,0,2) 
Correlat 

S(2,0,2) 
SumVarnc 

S(2,2,0) 
DifEntrp 

S(0,2,-2) 
DifVarnc 

S(0,2,-2) 
Contrast 

Mann-Whitney U 1922 1453 3552 3091 2928 3264 3443 3165 3039 3192 

Wilcoxon W 8138 7669 9768 9307 9144 9480 9659 9381 9255 9408 

Z -9 -10 -7 -6 -7 -6 -7 -6 -6 -6 

Asymp. Sig.  
(2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
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Table 5.13. Mann-Whitney U Test between gluteus medius and obturator internus using 3D texture parameters 

 S(0,0,1) 
SumVarnc 

S(0,0,1) 
DifEntrp 

S(0,1,1) 
DifEntrp 

S(2,0,0) 
SumEntrp 

S(0,0,2) 
DifEntrp 

S(0,2,2) 
DifEntrp 

S(0,2,-2) 
SumOfSqs 

S(2,-2,-2) 
DifEntrp 

S(3,-3,0) 
DifEntrp 

S(0,3,-3) 
SumOfSqs 

Mann-Whitney U 1188 1479 1580 1497 1624 1740 1646 1707 1797 1489 

Wilcoxon W 7404 7695 7796 7713 7840 7956 7862 7923 8013 7705 

Z -10 -10 -10 -10 -9 -9 -9 -9 -9 -10 

Asymp. Sig. 
 (2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 
 

Table 5.14. Mann-Whitney U Test between iliopsoas and obturator internus using 3D texture parameters 

 S(0,0,1) 
DifEntrp 

S(1,0,-1) 
DifEntrp 

S(0,0,2) 
DifEntrp 

S(2,0,-2) 
DifEntrp 

S(0,2,2) 
DifEntrp 

S(2,2,2) 
DifEntrp 

S(2,-2,2) 
DifEntrp 

S(3,0,0) 
DifEntrp 

S(0,3,3) 
DifEntrp 

S(3,-3,3) 
DifEntrp 

Mann-Whitney U 531 537 533 434 370 446 364 368 341 427 

Wilcoxon W 6747 6753 6749 6650 6586 6662 6580 6584 6557 6643 

Z -12 -12 -12 -12 -12 -12 -12 -12 -12 -13 

Asymp. Sig. (2-
tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 



38 
 

Classification of studied muscles using 3D texture parameters 

Table 5.15 shows linear discriminant analysis classification of the muscles using 3D 
texture parameters. Here too, high level of separability was recorded between all the 
muscles. However, gluteus maximus and obturator internus were the most separable 
muscles, whereas gluteus medius and iliopsoas were the least. The corresponding 
discriminant function scatter plot of the parameters in Figure 5.3 also shows that the 
muscles can be linearly separated from each other. 

Table 5.15. A linear discriminant analysis using 3D texture parameters, classifying 
between muscles gluteus maximus (Gmax) gluteus medius (Gmed), Iliopsoas (Iliop) and 
Obturator internus (ObtInt) 
Discrimination 
 (number of VOIs) 

Predicted Muscle membership Percentage of original cases 
correctly classified 

 Gmax Gmed  
Gmax 97 14  
vs.    89.6 
Gmed 9 102  
    
 Gmax Iliop  
Gmax 103 8  
vs.   89.6 
Iliop 15 96  
    
 Gmax ObtInt  
Gmax 106 5  
vs.   97.3 
ObtInt 1 110  
    
 Gmed Iliop  
Gmed 97 14  
vs.   82.4 
Iliop 25 86  
    
 Gmed ObtInt  
Gmed 103 8  
vs.   93.7 
ObtInt 6 105  
    
 Iliop ObtInt  
Iliop 96 15  
vs.   92.8 
ObtInt 1 110  
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Figure 5.3. Scatter plot from linear discriminant analysis using 3D texture parameters, 
separating between muscles: Gluteus maximus (1), Gluteus medius (2), Iliopsoas (3) and 
Obturator internus (4). Axes function 1 and function 2 represent the discrminant function 
scores or weights of the individual parameters 
 

5.2. Comparison of studied groups  

Table 5.16 below gives the results of the texture feature reduction and selection processes 
of selecting discriminant parameters for comparing the athlete groups. These parameters 
were then used in testing for significant differences and for classifying the athlete groups 
from the non-athlete group 
 

Table 5.16. Selected discriminant parameters for respective group pair comparison. 
Refer to Figure 5.1 for explanation of texture parameter coding or abbreviations 

Group pair 
2D Discriminant 
parameters 

Fisher’s 
coefficients 

 3D Discrimnant 
parameters  

Fisher's 
coefficients 

 
S(2,-2)Contrast 12.263  S(0,2,0)SumVarnc 26.004 

 
S(2,-2)SumAverg 10.914  S(2,2,0)Correlat 23.432 

 
S(0,1)Contrast 9.612  S(2,2,0)SumVarnc 22.127 

 
S(2,-2)SumOfSqs 8.838  S(1,1,0)SumVarnc 20.290 

H-I vs REF S(0,2)SumAverg 7.639  S(0,2,0)Correlat 19.607 

 
S(2,-2)DifVarnc 7.529  S(2,2,2)Correlat 19.559 

 
S(0,1)DifVarnc 7.490  S(1,1,1)Correlat 19.482 

 
S(0,1)Correlat 6.952  S(3,3,0)Correlat 18.976 

 
S(1,-1)SumAverg 6.497  S(1,1,1)DifVarnc 18.569 

 
S(3,0)Contrast 5.886  S(2,0,0)SumVarnc 18.270 
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S(3,0)SumEntrp 5.041  S(1,0,0)Contrast 14.598 

 
S(1,0)Correlat 4.725  S(1,0,0)Correlat 14.498 

 
S(0,1)SumEntrp 4.514  S(1,0,-1)Correlat 12.298 

 
S(1,0)Contrast 4.245  S(1,0,-1)Contrast 12.091 

O-I vs REF S(0,1)SumVarnc 4.093  S(1,0,0)DifVarnc 11.215 

 
GrNonZeros 3.894  S(1,-1,1)InvDfMom 10.763 

 
S(1,0)InvDfMom 3.879  S(1,0,-1)DifVarnc 10.706 

 
GrSkewness 3.631  S(1,0,-1)InvDfMom 9.227 

 
S(0,1)DifVarnc 3.430  S(1,0,0)SumVarnc 9.145 

 
S(2,0)AngScMom 3.408  S(1,0,-1)SumVarnc 8.910 

 
     

 
S(3,3)SumAverg 7.231  S(1,-1,1)InvDfMom 3.596 

 
S(0,1)Correlat 6.831  S(0,2,2)SumVarnc 3.241 

 
S(0,1)SumVarnc 6.510  S(1,1,-1)InvDfMom 3.197 

 
GrNonZeros 6.263  S(3,-3,3)InvDfMom 3.182 

H-M vs REF S(0,3)SumAverg 6.028  S(2,-2,-2)SumAverg 3.135 

 
S(0,2)SumAverg 5.599  S(1,0,-1)DifVarnc 3.092 

 
S(0,1)Contrast 4.973  S(2,0,-2)Correlat 2.999 

 
S(2,2)SumAverg 4.850  Perc.50%3D 2.985 

 
S(2,-2)SumAverg 4.527  S(3,3,0)SumVarnc 2.947 

 
S(2,2)InvDfMom 3.942  S(0,2,2)Correlat 2.918 

 
     

 
S(0,1)SumVarnc 8.255  S(2,0,-2)Contrast 22.142 

 
S(1,0)DifVarnc 6.561  S(2,0,-2)Correlat 21.515 

 
Kurtosis 6.507  S(2,0,0)Contrast 20.711 

 
Skewness 5.093  S(1,0,-1)DifVarnc 20.572 

L-I vs REF S(1,0)Contrast 4.985  S(2,0,0)Correlat 20.421 

 
S(0,1)SumOfSqs 4.641  S(2,0,-2)DifVarnc 20.368 

 
S(3,3)SumAverg 4.433  S(1,0,0)Contrast 19.108 

 
S(1,0)Correlat 4.324  S(1,0,-1)Contrast 18.959 

 
S(0,3)SumAverg 4.121  S(1,0,0)Correlat 18.432 

 
S(2,2)InvDfMom 4.032  S(1,0,0)DifVarnc 17.546 

   
 

  
 

S(2,-2)Correlat 7.775  S(1,-1,1)InvDfMom 10.300 

 
GrNonZeros 5.892  F135dr_LngREmph 8.371 

 
S(2,-2)Contrast 5.855  F135dr_Fraction 7.762 

 
S(0,3)Correlat 5.806  S(0,0,1)Contrast 7.466 

N-I vs REF S(2,-2)DifVarnc 5.700  F135dr_RLNonUni 7.151 

 
S(3,0)InvDfMom 5.424  F135dr_ShrtREmp 6.992 

 
S(2,-2)SumVarnc 4.231  BHorzl_LngREmph 5.793 

 
S(2,2)InvDfMom 3.698  BHorzl_Fraction 5.746 

 
S(1,0)Correlat 3.492  S(0,0,2)Contrast 5.708 

 
S(0,3)SumVarnc 3.230  S(3,0,3)InvDfMom 5.584 
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Comparison of studied groups using 2D texture parameters 

Tables 5.17, 5.18, 5.19, 5.20 and 5.21 show the results of the Mann-Whitney U test 
between the non-athlete group and the athlete groups. The high-impact (Table 5.17) and 
high-magnitude (Table 5.18) exercise-loading groups had 7 and 1 parameters indicating 
significant difference (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.01 between these two groups and the non-athlete 
group respectively. Surprisingly, none of the tested discriminant parameters indicated 
significant difference between the non-athlete group and the odd-impact, low-impact and 
the non-impact exercise-loading group as shown in Tables 5.19, 5.20 and 5.21 
respectively.   
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Table 5.17. Mann-Whitney U Test for significant difference between non-athlete group and high-impact exercise-loading group, using 2D 
texture parameters  

 S(0,1) 
Contrast 

S(0,1) 
Correlat 

S(0,1) 
DifVarnc 

S(1,-1) 
SumAverg 

S(0,2) 
SumAverg 

S(2,-2) 
Contrast 

S(2,-2) 
SumOfSqs 

S(2,-2) 
SumAverg 

S(2,-2) 
DifVarnc 

S(3,0) 
Contrast 

Mann-Whitney U 2199 2357 2236 2396 2276 2021 2270 2127 2261 2351 

Wilcoxon W 5125 5597 5162 5636 5516 4947 5196 5367 5187 5277 

Z -3 -2 -3 -2 -3 -4 -3 -3 -3 -2 

Asymp. Sig.  
(2-tailed) 

.003 .015 .004 .022 .007 .000 .006 .001 .006 .015 

 
 

Table 5.18. Mann-Whitney U Test for significant difference between non-athlete group and high-magnitude exercise-loading group, using 
2D texture parameters 

 S(0,1) 
Contrast 

S(0,1) 
Correlat 

S(0,1) 
SumVarnc 

S(0,2) 
SumAverg 

S(2,2) 
InvDfMom 

S(2,2) 
SumAverg 

S(2,-2) 
SumAverg 

S(0,3) 
SumAverg 

S(3,3) 
SumAverg 

Gr- 
Variance 

Mann-Whitney U 2135 2075 2128 2068 2203 2162 2181 2104 1966 2198 

Wilcoxon W 4481 5315 5368 5308 5443 5402 5421 5345 5205 4544 

Z -2 -2 -2 -3 -2 -2 -2 -2 -3 -2 

Asymp. Sig.  
(2-tailed) 

.024 .013 .023 .012 .047 .032 .038 .018 .004 .045 
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Table 5.19. Mann-Whitney U Test for significant difference between non-athlete group and odd-impact exercise-loading group, using 2D 
texture parameters 

 S(1,0) 
Contrast 

S(1,0) 
Correlat 

S(1,0) 
InvDfMom 

S(0,1) 
SumVarnc 

S(0,1) 
SumEntrp 

S(0,1) 
DifVarnc 

S(2,0) 
AngScMom 

S(2,0) 
DifEntrp 

S(3,0) 
SumEntrp 

Gr- 
Skewness 

Mann-Whitney U 2495 2450 2374 2482 2476 2447 2634 2592 2482 2502 

Wilcoxon W 5735 5376 5300 5722 5716 5373 5560 5832 5722 5428 

Z -2 -2 -2 -2 -2 -2 -1 -1 -2 -2 

Asymp. Sig.  
(2-tailed) 

.053 .036 .018 .048 .046 .036 .149 .113 .048 .056 

 
 

Table 5.20. Mann-Whitney U Test for significant difference between non-athlete group and low-impact exercise-loading group, using 2D 
texture parameters 

 Skewness Kurtosis S(1,0) 
Contrast 

S(1,0) 
Correlat 

S(1,0) 
DifVarnc 

S(0,1) 
SumOfSqs 

S(0,1) 
SumVarnc 

S(2,2) 
InvDfMom 

S(0,3) 
SumAverg 

S(3,3) 
SumAverg 

Mann-Whitney U 2505 2546 2297 2355 2218 2462 2207 2342 2295 2255 

Wilcoxon W 5745 5174 5537 4983 5458 5702 5447 5582 5535 5495 

Z -1 -1 -2 -2 -2 -2 -2 -2 -2 -2 

Asymp. Sig.  
(2-tailed) 

.166 .218 .031 .053 .015 .123 .013 .047 .031 .021 
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Table 5.21. Mann-Whitney U Test for significant difference between non-athlete group and non-impact exercise-loading group, using 2D 
texture parameters 

 S(1,0) 
Contrast 

S(1,0) 
Correlat 

S(2,2) 
InvDfMom 

S(2,-2) 
Contrast 

S(2,-2) 
Correlat 

S(2,-2) 
SumVarnc 

S(2,2) 
DifVarnc 

S(3,0) 
InvDfMom 

S(0,3) 
Correlat 

S(0,3) 
SumVarnc 

Mann-Whitney U 2464 2435 2377 2283 2170 2270 2336 2347 2233 2419 

Wilcoxon W 5704 5063 5617 4911 5410 5510 4964 4975 5473 5659 

Z -2 -2 -2 -2 -3 -2 -2 -2 -2 -2 

Asymp. Sig. 
 (2-tailed) 

.125 .101 .063 .028 .009 .024 .045 .049 .017 .089 
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Classification of studied groups using 2D texture parameters 

Table 5.22 below shows the classification results of a linear discriminant analysis 
discriminating the non-athlete group from the athlete groups when using 2D texture 
parameters. In general, separability between the groups was not very high.  As depicted 
in Figure 5.4 below, the low-magnitude exercise-loading group was found to be the most 
separable group from the non-athletes whereas the non-impact exercise-loading group 
was almost inseparable from the non-athlete group   

Since the athlete groups were been separated from a referent group, the concept of 
sensitivity and specificity was borrowed. The non-athlete group was termed negative and 
the athlete groups the positives. 

 

Table 5.22. Linear discriminant analysis using 2D texture parameters, classifying 
between non-athlete group (REF) and high-impact (H-I), odd-impact group (O-I), high-
magnitude (H-M), low-impact (L-I) and non-impact (N-I) exercise-loading groups (TP: 
True Positive, FP: False Positive, TN: True Negative, FN: False Negative) 
Group classification 
(Number of ROIs) 

TN FP TP FN Sp 
(%) 

Sv (%) Original cases 
Correctly classified (%) 

REF (80) vs. H-I (76)  56 24 47 29 70.0 61.8 66.0 

REF (80) vs. O-I (76)  56 24 51 25 70.0 67.1 68.6 

REF (80) vs. H-M (68)  58 22 41 27 72.5 60.3 66.9 

REF (80) vs. L-I (72)  59 21 46 26 73.8 63.9 69.1 

REF(80) vs. N-I (72)  55 25 43 29 68.8 59.7 64.5 
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Figure 5.4. Linear discriminant analysis scatter plot of 2D texture parameters, 
discriminating between nonathlete group (600) and high-impact (100), odd-impact (200), 
high-magnitude (300), low-impact (400) and non-impact(500) exercise-loading groups. 
Axes function 1 and function 2 represent the discrminant function scores or weights of 
the individual parameters 
 

Comparison of studied groups using 3D texture parameters 

 Tables 5.23, 5.24, 5.25, 5.26 and 5.27 show the results of Mann-Whitney U Test for 
significant differences between the non-athlete group and the high-impact, odd-impact, 
low-impact, non-impact and the high-magnitude exercise-loading groups respectively. 
These comparisons were made using texture parameters computed from3D texture 
analysis. From results, significant differences (𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.01) were found between 
the non-athlete group and the high-impact, odd-impact and low-impact exercise-loading 
groups 

Also, as depicted in Table 5.26 below, significant differences were recorded in five 
out of the ten discriminant parameters used in comparing the non-athlete group and the 
non-impact exercise-loading group. On the contrary, no significant difference was 
recorded between the non-athletes and the high-magnitude exercise-loading group (Table 
5.27) 
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Table 5.23. Mann-Whitney U Test between non-athlete group and high-impact athlete group using 3D texture parameters  

 S(1,1,0) 
SumVarnc 

S(1,1,1) 
Correlat 

S(1,1,1) 
DifVarnc 

S(2,0,0) 
SumVarnc 

S(0,2,0) 
Correlat 

S(0,2,0) 
SumVarnc 

S(2,2,0) 
Correlat 

S(2,2,0) 
SumVarnc 

S(2,2,2) 
Correlat 

S(3,3,0) 
Correlat 

Mann-Whitney U 1879 1783 1858 1905 1922 1725 1888 1851 1825 1908 

Wilcoxon W 4805 4709 5098 4831 4848 4651 4814 4777 4751 4834 

Z -4 -4 -4 -4 -4 -5 -4 -4 -4 -4 

Asymp. Sig.  
(2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 

 

Table 5.24. Mann-Whitney U Test between non-athletes and odd-impact athletes using 3D texture parameters 

 S(1,0,0) 
Contrast 

S(1,0,0) 
Correlat 

S(1,0,0) 
SumVarnc 

S(1,0,0) 
DifVarnc 

S(1,-1,1) 
InvDfMom 

S(1,0,-1) 
Contrast 

S(1,0,-1) 
Correlat 

S(1,0,-1) 
InvDfMom 

S(1,0,-1) 
SumVarnc 

S(1,0,-1) 
DifVarnc 

Mann-Whitney U 1930 1955 2112 2132 1962 2118 2130 2095 2292 2185 

Wilcoxon W 5170 4881 5038 5372 4888 5358 5056 5021 5218 5425 

Z -4 -4 -3 -3 -4 -3 -3 -3 -3 -3 

Asymp. Sig.  
(2-tailed) 

.000 .000 .001 .001 .000 .001 .001 .001 .008 .002 
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Table 5.25. Mann-Whitney U Test between non athletes and low-impact athletes using 3D texture parameters 

 S(1,0,0) 
Contrast 

S(1,0,0) 
Correlat 

S(1,0,0) 
DifVarnc 

S(1,0,-1) 
Contrast 

S(1,0,-1) 
DifVarnc 

S(2,0,0) 
Contrast 

S(2,0,0) 
Correlat 

S(2,0,-2) 
Contrast 

S(2,0,-2) 
Correlat 

S(2,0,-2) 
DifVarnc 

Mann-Whitney U 1715 1723 1801 1818 1747 1767 1801 1705 1797 1708 

Wilcoxon W 4955 4351 5041 5058 4987 5007 4429 4945 4425 4948 

Z -4 -4 -4 -4 -4 -4 -4 -4 -4 -4 

Asymp. Sig.  
(2-tailed) 

.000 .000 .000 .000 .000 .000 .000 .000 .000 .000 

 
 
 

Table 5.26. Mann-Whitney U Test for significant difference between non-athletes and non-impact athletes using 3D texture parameters  

 S(0,0,1) 
Contrast 

S(1,-1,1) 
InvDfMom 

S(0,0,2) 
Contrast 

S(3,0,3) 
InvDfMom 

F135dr_ 
RLNonUni 

F135dr_ 
LngREmph 

F135dr_ 
ShrtREmp 

F135dr_ 
Fraction 

BHorzl_ 
LngREmph 

BHorzl_ 
Fraction 

Mann-Whitney U 2515 2023 2505 2287 2193 2145 2193 2171 2155 2174 

Wilcoxon W 5755 4651 5745 4915 5435 4773 5432 5411 4783 5414 

Z -1 -3 -1 -2 -3 -3 -3 -3 -3 -3 

Asymp. Sig.  
(2-tailed) 

.178 .002 .166 .029 .011 .007 .011 .009 .007 .009 
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Table 5.27. Mann-Whitney U Test for significant difference between non-athletes and high-magnitude athletes using 3D texture parameters 

 Perc 
.50%3D 

S(1,-1,1) 
InvDfMom 

S(1,0,-1) 
DifVarnc 

S(1,1,-1) 
InvDfMom 

S(0,2,2) 
Correlat 

S(0,2,2) 
SumVarnc 

S(2,0,-2) 
Correlat 

S(2,-2,2) 
SumAverg 

S(3,3,0) 
SumVarnc 

S(3,-3,3) 
InvDfMom 

Mann-Whitney U 2556 2061 2313 2251 2311 2288 2351 2387 2386 2402 

Wilcoxon W 5796 4407 5553 5491 4657 4634 4697 5627 4732 5642 

Z -2 -3 -2 -2 -2 -2 -1 -1 -1 -1 

Asymp. Sig.  
(2-tailed) 

.086 .011 .117 .071 .116 .096 .156 .200 .199 .221 
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Classification of studied groups using 3D texture parameters 

The classification results in Table 5.28 shows linear discriminant analysis using 3D 
texture parameters, distinguishing the non-athlete group from the athlete groups. Again, 
the concept of sensitivity and specificity was borrowed. The non-athlete group was 
termed negative and the athlete groups the positives. Whereas the high-impact exercise-
loading group was found to be the most separable from the non-athlete group, the high-
magnitude exercise-loading group was nearly inseparable from the non-athlete group. 
This can be seen from LDA scatter plot of the group centroids illustrated in Figure 5.5.  

Table 5.28. Linear discriminant analysis using 3D texture parameters, classifying non-
athlete group (REF) from high-impact (H-I), odd-impact (O-I), high-magnitude (H-M), 
low-impact (L-I) and non-impact (N-I) exercise-loading groups: (TN: True Negative, FN: 
False Negative, TP: True Positive, FP: False Positive) 
Group classification 
(Number of ROIs) 

TN FP TP FN Sp (%) Sv 

(%) 
 Correctly classified 
cases (%) 

REF (80) vs. H-I (76)  52 28 58 18 65.0 76.3 70.5 

REF (80) vs. O-I (76)  54 26 53 23 67.5 69.7 68.6 

REF (80) vs. H-M (68)  59 21 39 29 73.8 57.4 66.2 

REF (80) vs. L-I (72)  53 27 46 26 66.3 63.9 65.1 

REF(80) vs. N-I (72)  58 22 44 28 73.0 61.1 67.1 
 

 

Figure 5.5. Linear discriminant analysis scatter plot using 3D texture parameters, 
separating non-athlete group (600) from high-impact (100), odd-impact (200), high-
magnitude (300), low-impact (400) and non-impact (500) exercise-loading athlete 
groups. Axes function 1 and function 2 represent the discrminant function scores or 
weights of the individual parameters 
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5.3. Comparative evaluation of 2D and 3D texture analyses 

In terms of revealing significant difference between the muscles, the performances of 2D 
and 3D texture analyses were the same.  Both analyses methods indicated significant 
differences (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.00833) between the muscles. However, 3D texture 
analysis performed better in classifying or separating between the muscles as presented in 
Figure 5.6.  
 

 
Figure 5.6. A Comparative classification using 2D and 3D texture parameters between 
gluteus maximus, gluteus medius, iliopsoas and obturator internus 

 
 

With respect to comparing the athlete groups against the non-athlete group, Figure 
5.7 shows that 3D texture parameters are more effective in establishing significant 
difference than 2D parameters. Surprisingly, the performances of the two methods were 
more or less the same in classifying the groups as depicted in Figure 5.8. 

 

2D Analysis 3D Analysis
Gmax vs. Gmed 84,2 89,6
Gmax vs. Iliop 89,6 89,6
Gmax vs. ObtInt 85,6 97,3
Gmed vs. Iliop 86,9 82,4
Gmed vs. ObtInt 82,9 93,7
Iliop vs. ObtInt 88,3 92,8
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Figure Figure 5.7. Comparison of effectiveness of 2D and 3D texture analyses in 
revealing significance difference between non-athlete and athlete groups 
 

 

 

Figure 5.8. A Comparative classification using 2D and 3D texture parameters between 
non-athlete and athlete groups 
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6. DISCUSSION 

This study constitutes part of two major research projects: quantitative analysis of MRI 
images through texture analysis and monitoring effects of exercise load-associated 
differences or physical activity on the body. My part of these projects was to assess the 
ability of texture analysis (TA) to detect textural differences in MR images of skeletal 
muscles due to exercise load-associated differences.  

The superior sensitivity of MRI in detecting subtle changes in soft tissues has made it 
the imaging modality of choice in most clinical settings. This has led to a number of 
recent studies on automated analysis of MR images through texture analysis. However, 
most of these studies have focused on using two-dimensional (2D) texture analysis in 
detecting and classifying pathological tissues from healthy tissues. There is still the need 
for further studies in this area especially the dimension of analysis, since 2D is a 
representation of a single two-dimensional slice of a three-dimensional (3D) structure 
over an image volume. 

In this study, 2D and 3D MRI texture analyses were performed on four hip skeletal 
muscles (Gluteus maximus, Gluteus medius, Iliopsoas and Obturator internus) of five 
distinct loading sport groups (high-impact, odd-impact, high-magnitude, low-impact and 
non-impact exercise-loading) and a healthy non-athlete (referent) group. 

Textural differences in the four muscles were compared and the athlete groups were 
characterized from the non-athlete groups to examine whether exercise load-associated 
differences in hip muscle texture exist. Finally the study also compared the effectiveness 
of 2D and 3D texture analyses in detecting and characterizing these textural and loading 
group differences. 

6.1. Comparison of studied muscles 

Skeletal muscles are attached to the skeleton. They control skeletal motion and joint 
movements by providing forces. The amount of force produced by these muscles depends 
on the muscle fiber cross-sectional area, number of muscles fibers and muscle type [8]. 
During training or exercise, muscles adapt to the forces or loads they are subjected to, 
based on the type of exercise or training. This adaptation leads to changes in the size, 
strength, architecture, structure and mass of the muscles involved [6; 7; 8].  

The results (both 2D and 3D) from the comparison between the four study muscles 
presented in section 5.1 indicate that each of these muscles differs significantly from the 
other in terms of texture. These differences could be due to the fact that each of these 
muscles performs different functionalities in load bearing or provision of support to the 
body. For instance, some previous studies [65; 66; 67; 68; 69] have shown that during 
running, the gluteus maximus (Gmax) is one of the primary contributors to body support 
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in forward propulsion (from beginning to mid-stance). The iliopsoas which functions as 
hip flexor is reported to have minimal contributions to body support and forward 
propulsion during walking and running but does most of work when a person sits-up. The 
gluteus medius acts as both thigh extensor and abductor. It provides nearly all the support 
in mid-stance during walking. The obturator internus is mainly known for lateral rotation 
of the thigh [10; 65; 68; 70; 71]. 

These differences in load bearing functionalities can cause corresponding structural 
and architectural changes or differences in each muscle thereby leading to textural 
differences in the muscles and hence accounting for the significant differences recorded 
in the results. The subsequent classification results in Figures 5.2 and 5.3; and in Tables 
5.7 and 5.14 also indicate that the four muscles can be linearly separated or distinguished 
from each other due to differences in their texture. The textural differences in muscle 
found by this study are consistent with some previous studies [6; 7; 8] which indicated 
that structural changes occur in skeletal muscles as a result of training or loading. 

6.2. Comparison of studied groups 

As the results in section 5.2 indicate MRI texture analysis can be used to detect and 
differentiate apparent exercise-loading group differences in hip muscle texture. 

Significant differences in muscle texture were recorded in female athletes who were 
involved in high-impact (triple-jumpers and high-jumpers), odd-impact (soccer and 
squash players) and low-impact (endurance runners) exercise-loadings when compared to 
non-athletes. These findings support the fact that skeletal muscles change in structure and 
adapt to long term loading or forces acting them. These differences were observed mainly 
because the kind of loading exercises performed by these athletes differe in comparison 
to that of non-athletes. Consequently, as expected, muscle texture of these athlete groups 
differed from the non-athletes. These findings in a way relates to a previous study [72], 
which recorded significant differences in skeletal muscle architecture between a control 
group, sprinters and distance runners 

On the other hand, very little or no difference was recorded in muscle texture of 
athletes who participated in high-magnitude (power-lifters) and non-impact (swimmers) 
exercise-loadings when compared to the non-athlete group. This could partly be due to 
the fact that the types of exercise-loadings performed by these two athlete groups do not 
differ much from that of the loading that non-athletes undergo in their daily activities. In 
view of this, changes in muscle structure and as well as texture are expected not to be 
different. This result is consistent with previous studies [6; 73].  These studies [6; 73] did 
not find significant differences between their study athlete groups. They therefore 
concluded that the loading or movements patterns of the groups were not dissimilar 
enough to indicate significant differences in muscle structure between the groups. 

Finally, the classification results in Tables 5.16 and 5.26, and Figures 5.4 and 5.5 
shows there is a separation between the non-athlete group and the athlete groups. 
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Athletes who performed high-impact odd-impact and low-impact exercise-loadings were 
linearly (clear-cut) separable from non-athletes. On the other hand, the separation of 
groups who participated in high-magnitude and non-impact exercise-loadings from non-
athletes showed overlapping. Especially, the high-magnitude exercise-loading group was 
nearly inseparable from the non-athletes. One explanation for this observation could be 
that movement patterns or impact on hip muscles of power-lifters is very similar to that 
of non-athletes. 

6.3. Comparative evaluation of 2D and 3D texture analyses 

Among the texture approaches or numerous image texture descriptors that were used, 
texture parameters from the second order statistics notably from the co-occurrence matrix 
were dominant in showing higher discriminatory power between the muscles in both 2D 
and 3D analyses. In the 2D analysis, texture parameters from the co-occurrence matrix 
constituted about 60% of the selected “discriminant parameters”, whereas the remaining 
were made of histogram (first order statistics) and run-length (higher order statistics) 
parameters. About half of the co-occurrence matrix parameters were ‘difference entropy’ 
parameters. Similarly, texture parameters from the co-occurrence matrix constituted more 
than 90% of the discriminant parameters in the 3D analysis; especially ‘difference 
entropy’ (DifEntrp) texture parameter was outstandingly dominant and the most 
discriminative parameter.  

In both analyses methods, the discrimination between muscles gluteus maximus and 
iliopsoas, and iliopsoas and obturator internus were mainly dominated by “difference 
entropy” parameters. Difference entropy measures the randomness of grey level 
distribution in an image, hence this observation could mean that texture of those muscles 
is highly random compared to the others. Additionally, the selected discriminant texture 
parameters for comparing the non-athletes and athletes were all mostly from the co-
occurrence matrix parameters for 2D and 3D analyses. However, no particular parameter 
was exceptionally dominant or common among the group pairs and between the two 
analyses methods   

The ability of the co-occurrence matrix to measure the relative frequency 
distributions of grey levels and describe how often a particular grey level appears in a 
specified spatial relationship to another grey level on each image region makes it more 
sensitive in detecting textural changes in an image, thereby accounting for its higher 
discriminatory power [59].  

It can be deduced from the results presented above that 3D MRI texture analysis is 
more effective in detecting and characterizing textural differences in skeletal muscles 
than 2D texture analysis. Although both methods performed equally in the Mann-
Whitney U test on the muscles, the 3D method outperformed the 2D in classifying or 
separating between the muscles (Figure 5.6). Out of the six muscle classifications that 
were made, 3D texture analysis gave higher classification accuracy in four cases than 2D 
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except in one case (Gmed vs. Iliop) where the 2D analysis performed slightly better than 
3D analysis. Both methods gave equal accuracy result for the classification between 
gluteus maximus and iliopsoas.   

In the athlete groups comparison also (Figure 5.7), 3D texture analysis was able to 
reveal more significant differences between the groups than the 2D texture analysis. 
Three-dimensional texture analysis was capable of revealing significant differences 
between the non-athletes and high-impact, odd-impact and low-impact exercise-loading 
groups. The 2D analysis however could only indicate significant difference between the 
non-athletes and the high-impact group. 

The effectiveness of 3D texture analysis in detecting and characterizing exercise-
loading group differences in hip muscle texture is based on the fact that in 3D TA, 
textural features are computed from z number of neighboring slices combined into a 
volume (x, y, and z directions). Therefore a feature that is not captured or present in one 
slide might be captured or present in the other slices. In 2D however, the computation is 
made from only one slice in x and y directions. The superiority of 3D texture analysis 
over 2D in revealing useful clinical information was also reported in previous studies 
[74; 75] in which various tumors were successfully discriminated from each other and 
from normal tissues. 

6.4. Reliability of results 

The use of large sample of athletes representing distinct exercise loadings is the major 
strength of this study. This large sample size increased the power of the statistical 
analysis, thereby limiting the chances of committing a type II error.  

The precision of texture analysis was verified. Five subjects were randomly chosen 
from each group and analyzed independently without making reference to the position of 
ROIs in the original analysis. Upon comparing this result to the original, the same 
systematic textural differences were recorded between the muscles, even with slight 
changes in position of the ROIs. 

The selected muscles used in the study analysis have enough volume to properly 
accommodate the RIOs placed in them thereby avoiding partial volume effect or signals 
from adjacent tissues. In addition, these muscles could be easily and clearly distinguished 
from one another and other surrounding tissues by anatomical landmarks.  

Finally, the reliability of this study is further reinforced by the fact that the 
conclusions of study were based on two independent statistical analyses methods; non-
parametric test (Mann-Whitney U test) and linear discriminant analysis (classification), 
both of which complement one another. 
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6.5. Limitations and Recommendations 

Despite the numerous strengths of this research, it is not without limitations. The major 
limitation of this study was the imaging protocol – 1.5T scanner with spatial resolution of 
0.9 mm. This was unable to give a much lower resolution within 0.1 – 0.15mm thick of 
muscle tissue, hence, some microscopic but clinically important textural changes or 
information was not captured. Therefore, increased imaging resolution might reveal 
delicate textural details leading to even a better separation of athletes from referents. 
Another drawback of this study is the positioning of the subjects during the image 
acquisition process. With the subjects in supine position during the imaging process, the 
gluteus maximus which constitute most of the buttocks was compressed. This could have 
affected the structural arrangement muscle fibers or texture in that muscle thereby 
contributing to the textural differences observed.  

The decision on how many parameters to use in the final (statistical) analysis was a 
major challenge in this study, because, there are no established standards on number of 
parameters to use. TA analysis computes huge number of textural features such that it is 
practically impossible to include all of such data in the statistical analysis. The ideal 
number of parameters to keep during the feature reduction and selection processes needs 
to be clarified.  

There are other interesting and important aspects of this study that needs to be 
explored futher: In this study, the comparisons between the referent group (non-athletes) 
and the athlete groups were made in a much broader perspective. In future studies of this 
kind, it will be more informative to make specific comparsions between the groups with 
respect a particular muscle. For instance, it will be interesting to find out if texture in the 
gluteus maximus of odd-impact exerise-loading group differs significantly from that of 
nonathletes, and the possibility of characterizing them.  

Another aspect that will be worth exploring in future studies is the “common 
discriminant parameters”. During the feature reduction and selection processes, some 
common parameters were found to show higher discriminatory power between different 
group or muscle pairs. It could be that these paramaters are more sensitive or contain 
more textural information, hence the need to concentrate only on these parameters in later 
studies particularly those from the co-occurrence matrix. 
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7. CONCLUSION 

In this thesis, 2D and 3D MRI texture analyses were carried out on four specific load-
bearing hip muscles (Gluteus maximus, Gluteus medius, Iliopsoas and Obturator 
internus) of five distinct exercise-loading groups (high-impact, odd-impact, high-
magnitude, low-impact and non-impact exercise-loading) and a non-athlete (referent) 
group. Comparisons based on statistical analyses were made to establish differences in 
texture between the muscles, the athlete groups and the non-athletes, and to classify them 
accordingly. A comparative evaluation of 2D and 3D texture analyses was then made to 
determine which of these two dimensions of MRI texture analysis is more effective in 
detecting and characterizing textural differences. 

The four muscles were all found to differ significantly (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.00833) 
from each other in terms of texture. The classification of the muscles showed that these 
muscles are linearly separable. The study also indicated that muscle texture of athletes 
who participated in high-impact (triple-jumpers and high-jumpers), odd-impact (soccer 
and squash players) and low-impact (endurance runners) exercise-loadings differ 
significantly (𝑝 − 𝑣𝑎𝑙𝑢𝑒 <  0.01)  from that of the non-athletes. In addition, the high-
impact, odd-impact and low-impact exercise loading groups were completely 
discriminated (separable) from the non-athlete group. However, muscle texture of the 
high-magnitude (power lifters) and non-impact (swimmers) exercise-loading groups were 
not found to differ significantly from that of the non-athletes. The classification of these 
two athlete groups from the referent group overlapped to some extent. Finally, the 3D 
texture analysis was more effective in detecting and characterizing textural differences in 
skeletal muscles than the 2D texture analysis. 

In conclusion, 3D texture analysis of MR images provides a more accurate 
quantitative method for detecting and characterizing textural differences  in  skeletal 
muscles that are associated with specific exercise-loading types. However, there is the 
need  for further clinical studies using larger samples to validate these findings.  
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APPENDICES 

Appendix 1 

The MATLAB algorithm used for reading and converting the 2D and 3D output 
parameters of MaZda software from .par format into excel format.  

%% Converting 2D output into excel format   
clear all; 
close all; 
clc; 
% Import files % 
[filename,myFolder]=uigetfile({'*.par','PAR files(*.par)'},'Choose a .par file','MultiSelect','off'); 
if ~isdir(myFolder) 
errorMessage = sprintf('Error: The following folder does not exist:\n%s', myFolder); 
uiwait(warndlg(errorMessage)); 
return; 
end 
filePattern = fullfile(myFolder, '*.par'); 
parFiles = dir(filePattern); 
for k = 1:length(parFiles) 
baseFileName = parFiles(k).name; 
fullFileName = fullfile(myFolder, baseFileName); 
fprintf(1, 'Now reading %s\n', fullFileName); 
fid = importdata(fullFileName); 
% Write columns to vectors column1, column2.... % 
column1 = fid.textdata(25:end,1); 
column2 = fid.data(:,1); 
column3 = fid.data(:,2); 
column4 = fid.data(:,3); 
column5 = fid.data(:,4); 
column6 = fid.data(:,5); 
column7 = fid.data(:,6); 
% Save to excel file % 
[p, baseFileName, e] = fileparts(baseFileName); 
file = fullfile(myFolder, baseFileName); 
xlswrite(file, column1, 1, 'D1'); 
xlswrite(file, column2, 1, 'E1'); 
xlswrite(file, column3, 1, 'F1'); 
xlswrite(file, column4, 1, 'G1'); 
xlswrite(file, column5, 1, 'H1'); 
xlswrite(file, column6, 1, 'I1'); 
xlswrite(file, column7, 1, 'J1'); 
drawnow; % Force display to update immediately. 
end 
disp('Process Complete')    %%% END %%% 
 
 
%% converting 3D output of into excel format 
clear all;  
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close all; 
clc; 
% Import files % 
[filename,myFolder]=uigetfile({'*.par','PAR files(*.par)'},'Choose a .par file','MultiSelect','off'); 
if ~isdir(myFolder) 
errorMessage = sprintf('Error: The following folder does not exist:\n%s', myFolder); 
uiwait(warndlg(errorMessage)); 
return; 
end 
filePattern = fullfile(myFolder, '*.par'); 
parFiles = dir(filePattern); 
for k = 1:length(parFiles) 
baseFileName = parFiles(k).name; 
fullFileName = fullfile(myFolder, baseFileName); 
fprintf(1, 'Now reading %s\n', fullFileName); 
fid = importdata(fullFileName); 
% write columns to vectors column1, column2.... % 
column1 = fid.textdata(14:end,1); 
column2 = fid.data(:,1); 
column3 = fid.data(:,2); 
column4 = fid.data(:,3); 
column5 = fid.data(:,4); 
column6 = fid.data(:,5); 
column7 = fid.data(:,6); 
% Save to excel file % 
[p, baseFileName, e] = fileparts(baseFileName); 
file = fullfile(myFolder, baseFileName); 
xlswrite(file, column1, 1, 'D1'); 
xlswrite(file, column2, 1, 'E1'); 
xlswrite(file, column3, 1, 'F1'); 
xlswrite(file, column4, 1, 'G1'); 
xlswrite(file, column5, 1, 'H1'); 
xlswrite(file, column6, 1, 'I1'); 
xlswrite(file, column7, 1, 'J1'); 
drawnow; % Force display to update immediately. 
end 
disp('Process Complete') 
  
%%% END %%% 
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