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The purpose of the work is to assess the performance and further improve a solution to 
the problem of autonomous robot optimal path planning under uncertainty. The path 
finding happens on a 2D plane modeled by an overlaid lattice. The idea in the solution 
is to combine deterministic and stochastic approaches. First assuming complete 
knowledge of the environment, the deterministic path planning problem is solved 
resulting in an optimal path; after that knowing that there may also be some unmapped 
static or slowly and randomly moving obstacles present in the environment; the online 
stochastic solution uses dynamic programming method to solve the path finding with 
obstacle avoidance problem.  

The proposed solution was rigorously put to test with different parameters and under 
various configurations to evaluate its performance and identify its weaknesses. The 
results of conducted experiments revealed notable achievements along with excellent 
opportunities for improvements. Hence, attempts were made to seize those opportunities 
and enhance the performance of the solution. The outcomes of those efforts were 35 % 
increase in the success rate and reduction in the time required for the solution to reach 
its goal by over 97 %. 
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1.     INTRODUCTION 

1.1. Autonomous robot navigation 

Over the past few decades and with swiftly evolving technologies, developing 
autonomous intelligent robots has sparked an immense fascination amongst many 
researchers, especially those in the Artificial Intelligence (AI) community. In particular, 
autonomous robot navigation has attracted lot of attention and large amount of 
resources due to its importance and broad applications in defense and military, 
aeronautics and space and many other technological and industrial organizations. 

Strictly speaking from path finding perspective, navigation design of autonomous 
robot comes down to three key features: 

• The ability to plan optimal paths. 
• The ability to move towards a target location in a real-time environment. 
• The ability to circumvent obstacles and correct the course to avoid collision. 

Initially, these aspects were dealt with separately. However, with extensive research 
and development of novel methods, capable of handling complex problems in real-
world applications, the areas are now pursued in combination [ 1]. 

The first phase, planning an optimal path, is the process of finding executable 
geometric paths for a robot from a start position to its destination and determining 
optimal one if more than one path exists. A geometric path consists of a set of 
parameters expressing how a robot is located in the physical world. For example, the 
simplest configuration of a robot in a Cartesian space is its coordinate pair. 

The second feature, motion planning in real-time world, takes time into account. It 
refers to a sequence of executable kinematic and dynamic motion actions that enables a 
robot to maneuver itself in the environment [ 2]. In this work with the robot only 
simulated, the motion planning is reduced to choosing the optimum action from a list of 
available activities at each time step. 

The final feature approaches the world with a more realistic notion, assuming that 
the environmental information is generally only partially available or completely 
unavailable in advance [ 1]. Therefore, it is necessary to perceive uncertain position and 
behavior of the obstacles in order to navigate safely toward the goal and to modify 
robot’s conduct accordingly. The quality of robot’s perception depends on the sensors 
providing a probabilistic estimation of the occupied and free space and the portion of 
the environment used to update the world model according to the current sensor 
observation [ 3]. In addition to unknown environment, other factors are also affecting 
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autonomous robot’s ability to navigate towards its destination, such as localization 
uncertainty due to motion imperfection. Therefore an autonomous robot should be able 
to take those factors into consideration while planning motions and evading objects [ 4]. 

1.2. A motivational example 

Good examples that vastly inspired and motivated the author of the thesis are the two 
autonomous rovers of the ongoing Mars Exploration Rover Mission (MER), Spirit and 
Opportunity, exploring the planet Mars (see Figure  1.1). 

 
Figure  1.1: A concept portrays a NASA Mars Exploration Rover on the surface of 

Mars [ 5]. 

Since 2003, the twin rovers have been exploring and navigating through the Martian 
surface. Considering the difficulties of guiding the robots from the Earth, the robots 
have largely been acting autonomously. Thus, from navigational point of view, their 
missions have been exemplary cases of path planning and execution under uncertainty 
and environmental constraints [ 5].  

1.3. Organization of this work 

The thesis is divided into eight Chapters. The first Chapter consists of introductory 
material. Chapter two is dedicated to theoretical background giving a brief 
understanding of planning methods and algorithms to the reader, with emphasis on the 
methodologies employed in this work. It is then followed by the problem of optimal 
path finding with static obstacle avoidance and its formulation in Chapter three. The 
fourth Chapter aims to explain the pre-existing solution to the problem while its 
shortcomings and their rectifications are covered in Chapter five. The navigation 
problem with dynamic obstacle avoidance and its implementation are discussed in the 
sixth Chapter. The results of numerous experiments with different version of the 
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program and the statistics gathered from the performance of the robot are illustrated in 
Chapter seven. Finally the thesis is concluded and some future directions are outlined in 
the eighth Chapter. 

1.4. Author’s Contribution 

The original program was handed to the author for assessment by Prof. Ritala. In its 
original form the program was able to some extent to navigate in a static environment. 
Since then, the author has been responsible for evaluating the program, identifying its 
limitations and finding solutions to improve the performance.  

The results of these activities are manifested in form of statistics and charts of robot 
behavior, mainly addressed in first half of Chapter  5 and Section  7.1.1. Moreover, the 
author implemented new methods and auxiliary components enhancing the robot’s 
performance, most notably the controller module which is covered in the latter half of 
the said Chapter. The modified program was then put to the test extensively with their 
results featured in sections  7.1.2 and  7.1.3. 

The author was to add to the robot the capability of navigating in a dynamic 
environment. To achieve this, some modules were added and adjustments were applied 
to the program. These activities are addressed in Chapter  6. The program was tested in 
this state to assess its performance and the results are illustrated in Section  7.2.  
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2.     THEORETICAL BACKGROUND 

2.1. Planning elements 

Although there are broad classes and models of planning, they all virtually share the 
same basic elements. These elements are state, initial and goal states, actions, a plan and 
a criterion. 

In general, planning methods incorporate state space models capturing all possible 
situations that could occur. The states can be either discrete (finite, or countable infinite) 
or continuous (uncountable infinite) or combinations of them. The planning problem is 
to reach the robot’s specified goal state, from an initial state. The actions seek to 
achieve this by manipulating the state. Resulting changes in the state may be expressed 
as a state-valued function. 

The plan is a specific policy, mapping from state space to action space. It may be as 
simple as an explicit sequence of actions or more complex. The desired outcome of a 
plan is set by a criterion and one that maximizes the given criterion is an optimal plan. 

In many applications, it is difficult to formulate the right criterion to optimize and 
when it can be formulated, it may be impossible to obtain a practical algorithm that 
computes optimal plans. In such cases, sub-optimal solutions may be devised instead to 
formulate an approximate criterion. For problems that involve probabilistic uncertainty 
optimization arises more frequently. The probabilities are often utilized to obtain the 
best performance in terms of expected costs [ 6]. 

2.2. Discrete planning methods 

In this work the planning problem considered has a finite state space. Therefore in this 
thesis there will not be any aspects regarding planning in neither continuous state space 
nor will there be any need for geometric models or differential equations to characterize 
the planning problem. At its core a discrete path planning method is a systematic graph 
search. Being systematic is the key requirement for these or any search algorithm. In a 
finite graph, being systematic translates to the algorithm visiting every available state 
and keeping track of them, which in finite time enables it to correctly declare whether or 
not a solution exists [ 7]. 

The rest of this section is mainly based on the reference [ 6]. Before starting with 
particular algorithms, it is beneficial to outline general forward search method. It works 
by starting at one vertex and exploring adjacent nodes until the destination node is 
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reached. At any point during the search, three types of states may come forth. A node 
may, 

• Have remained unvisited 
• Have been visited and every potential next state also has been visited, “dead” 
• Have been visited but there are still potential next state left, “alive” 

The set of alive states is accumulated in a priority line up, for which a priority 
function must be specified. This algorithm serves as an entry point for other search 
algorithms since the only significant difference between them is the particular function 
used to sort the queue. Some search algorithms require a cost to be computed and 
associated with every state which may be used to sorting, or otherwise enable the 
generation of the plan on completion of the algorithm. Here the optimal cost to return to 
the initial state could be stored with each state instead of storing pointers. The action 
sequence, which leads to any visited state, is sufficiently determined by this cost alone. 
In the following several search algorithms, each of which is a special case of this 
algorithm, will be introduced. 

Breadth first is a method that specifies the priority function as a First-In First-Out 
(FIFO) queue, which selects states using the first-come, first-serve principle. This 
causes the search frontier to grow uniformly and is therefore referred to as breadth-first 
search. Breadth first guarantees that the first solution found will use the smallest 
number of steps. 

Depth first is a variant of previous in which the priority function is made a stack 
(Last-In, First-Out; or LIFO), thus aggressive exploration of the state transition graph 
occurs, as opposed to the uniform expansion of breadth-first search. The algorithm is 
called depth-first search because the search dives quickly into the graph inclining 
toward investigating longer plans very early. This aggressive behavior might seem 
desirable though the particular choice of longer plans is arbitrary. Actions are applied in 
loop in whatever order they happen to be defined. The search could easily focus on one 
“direction” and completely miss large portions of the search space as the number of 
iterations tends to infinity. 

Dijkstra’s algorithm is an algorithm for finding single-source shortest paths in a 
graph, which is a special form of dynamic programming. Assuming that in the graph 
representation of a discrete planning problem, every edge is associated with a 
nonnegative cost to apply the action. Then the total cost of a plan is the sum of the edge 
costs over the path from the initial state to a goal state. The priority queue is sorted 
according to a function called the cost-to-come. For each state, the value called the 
optimal cost-to-come from the initial state is defined. This optimal cost is obtained by 
summing edge costs, over all possible paths from start to each state and using the path 
that produces the least cumulative cost [ 8]. 
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The 𝐴∗ search algorithm is an extension of Dijkstra’s algorithm that tries to reduce 
the total number of states explored by incorporating a heuristic estimate of the cost to 
get to the goal from a given state known as cost-to-go. In some problems however, it is 
hard or impossible to find a heuristic that is both efficient to evaluate and provides good 
search guidance [ 9]. 

Best first sorts the priority queue according to an estimate of the optimal cost-to-go. 
The solutions obtained in this way are not necessarily optimal. However, in many cases 
(not guaranteed), the algorithm runs much faster since fewer vertexes are explored. The 
worst-case performance of best-first search is worse than that of 𝐴∗ search and dynamic 
programming [ 9,  10]. 

Iterative deepening tries to find all states that are located in a certain distance 𝑖, or 
less from the initial state. The work is discarded if the goal is not found, then, it seeks 
all states of distance 𝑖 + 1 or less instead. This algorithm generally iterates indefinitely 
until the goal is reached. It is usually preferable approach if the search tree has a large 
branching factor which could occur if there are many more vertices in the next level 
than in the current level or if there are many actions per state and only a few states are 
revisited. The iterative deepening method has better worst-case performance than 
breadth-first search for many problems. Furthermore, the space requirements are 
reduced because the queue in breadth-first search is usually much larger than for depth-
first search. The A* idea can be combined with iterative deepening to yield IDA* in 
which case the allowed total cost gradually increases in each iteration [ 9]. 

The value iteration algorithm iteratively computes optimal cost-to-go (or cost-to-
come) functions over the entire state space. It differs from other graph search methods 
in two key aspects: providing the optimal path from any state to the goal (rather than 
given start state) and being computationally more expensive. Under some special 
conditions, the value iteration algorithm can be reduced to Dijkstra’s algorithm. It can 
solve a vast collection of optimal planning problems, including those that involve 
variable-length plans, stochastic uncertainties, imperfect state measurements, and many 
other complications [ 11]. 

The algorithms mentioned so far start from the initial state and proceed toward the 
goal; hence the forward search. It is also possible on the other hand, to do a backward 
version of the tree search algorithm, i.e. from goal back to the start, or pursue a 
bidirectional approach that grows two search trees, one from the initial state and one 
from a goal state. Nevertheless, the algorithms’ ideas in these approaches remain the 
same. 

2.3. Fully observable versus partially observable states 

Classical robotics often assumes that sensors can measure the full state of the 
environment which arguably is an unrealistic assumption. The lack of perfect sensors 
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has two ramifications. Firstly, robot control must be robust with respect to state 
uncertainty. Secondly, it must cope with future, anticipated uncertainty, and choose 
actions accordingly [ 12]. In order to behave effectively in a partially observable 
environment, it is necessary to use previous state information to aid in the 
disambiguation of the states. For instance all the previous information could be 
compiled into current state belief and expressed as probability distributions on state 
values. Then using system models, the future state belief can be predicted. Once 
measurement data is obtained, the state information at the time instant of measurement 
and further on is updated. 

2.3.1. Estimation of environment’s state 

The interaction of a robot and its environment can be modeled as a coupled dynamical 
system, in which the robot can manipulate its environment by taking actions, and in 
which it can perceive its environment through sensor measurements. The dynamics of 
the robot and its environment are characterized in the form of two probabilistic laws: the 
state transition distribution, and the measurement distribution. The state transition 
distribution characterizes how state changes over time, possible as the effect of a robot 
action. The measurement distribution characterizes how measurement data depends on 
states. Both laws are probabilistic, accounting for the inherent uncertainty in state 
evolution and sensing. The Bayes filter assumes that the state is a complete summary of 
the past. 

The belief of a system state is the probability distribution over the state, given all 
past sensor measurement data and all past controls. The Bayes filter is the principal 
algorithm for calculating the belief in robotics. The Bayes filter is recursive; the belief 
at time 𝑡 is calculated from the belief and action at time 𝑡 − 1 and measurement data at 
𝑡 [ 12]. 

2.4. Planning under uncertainty 

Classical robotics often assumes that the environment state is fully observable and the 
effects of actions are deterministic. In practice, however, the robot and its environments 
are stochastic in nature and thus uncertain. 

Robots, like all systems, naturally have some limits to their capabilities. They can 
accomplish their delegated tasks within the reach but beyond that there is no guarantee. 
Additionally, there always will be some imprecision in robots’ performance even within 
their limits. These inaccuracies could occur in form of measurement errors, motion 
errors and etc. The probability of these errors might be known or not [ 20]. The 
environments are in constant state of change. Thus no matter how accurate the surveys 
have been, there will be always inconsistencies in their maps [ 18]. Setting forth few 
examples, objects are where they should not or vice versa, topography of the 
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environment has changed or because of a heavy rain some lands surfaces are 
compromised significantly. Any of those might happen even as soon as the survey itself 
and remain unnoticed. On top of them, the problem gets worse as the time passes by 
[ 19].  

Considering these facts, it is insufficient to plan a single sequence of actions and 
blindly execute it at run-time; but rather it is mandated that the robot receives 
measurement data, updates its state belief and reacts accordingly [ 12]. Note that in 
theory, the plan can be generated offline as a mapping from belief state to action space. 
Then the only run-time action is to receive measurement data, update the belief and then 
use the offline-computed control law to react. However, computing the plan offline may 
be impossible in practice due to computational complexity. Instead the problem may be 
solved online as a mapping of current belief to action space. 

The planning problem may be formulated as sequence of decision problems such 
that the outcomes of actions are not known with certainty. In this work the state 
uncertainty is associated with the obstacle occupancies whereas the current and future 
locations of the robot are known without uncertainty. POMDP is one instrumental 
mathematical framework for modeling decision making in such circumstances and it is 
briefly introduced in the following. 

2.4.1. Partially observable Markov decision process 

Markov decision processes (MDP) serve as a basis for solving the more complex 
partially observable problems that ultimately is of interest. An MDP is a model, in 
which the decision maker takes as input the state of the world and generates as output 
actions, which themselves affect the state of the world. In the MDP framework, it is 
assumed that, although there may be a great deal of uncertainty about the effects of a 
robot's actions, there is never any uncertainty about the robot's current state –it has 
complete and perfect perceptual abilities [ 6].  

A Markov decision process can be described as a tuple (𝑆,𝐴,𝑇, 𝑟) where, 𝑆 is the 
state representation, 𝐴 is the allowed actions set, 𝑇 is the transition function and 𝑟 is the 
reward function. In this model, the next state and the expected reward depend only on 
the previous state and the action taken; even if we were to condition on additional 
previous states, the transition probabilities and the expected rewards would remain the 
same (Markov property). The core problem of MDPs is to find a policy for the decision 
maker; a function that specifies the action that the decision maker will choose when in 
any of the states. The problem can be solved in many ways such as by value iteration 
dynamic programming [ 13]. 

A Partially Observable Markov Decision Process, POMDP, is a generalization of 
Markov Decision Processes. A POMDP models a decision process in which it is 
assumed that the system dynamics are determined by an MDP, but the robot cannot 
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directly observe the underlying state. Instead, it must estimate a probability distribution 
over the set of possible states, known as the belief state, based on a set of observations 
and observation probabilities, and the underlying MDP [ 16]. The belief state is 
estimated as described in subsection  2.3.1.  

A POMDP can be described as a tuple (𝑆,𝐴,𝑇, 𝑟,𝑂𝐵,𝑃𝑜𝑏) where, 𝑂𝐵 is the set of 
possible observations and 𝑃𝑜𝑏 is a set of observation probabilities as functions of the 
state. In this form the decision maker’s goal is to maximize expected discounted future 
reward. Solutions to this problem can be found in same way as for MDPs [ 13]. The 
difficult is in that the solution of MDP maps the state space to action space whereas that 
of POMDP maps the space of state beliefs on actions space. Therefore in practice 
POMDPs are often computationally virtually intractable to solve exactly, so methods 
have been developed that approximate solutions [ 14]. 
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3.     THE PROBLEM FORMULATION 

3.1. The generic problem 

In this section the generic problem of path planning is formulated using the POMDP 
framework introduced in section  2.4.1. Although the problem is quite general, it is still 
simplified to a degree. The assumption adopted for the simplification is described 
further into the section. In preparation of this Chapter reference [ 15] is extensively used. 

In this work the area is modeled by a 𝑁 × 𝑀 square lattice with nodes coordinates 
(𝑚,𝑛), where 𝑚 ∈ [1:𝑀], 𝑛 ∈ [1:𝑁]. At any time step 𝑖, the state consists of the 
robot’s location and obstacle occupancies, i.e.  𝑆𝑖 = {𝐿𝑖;𝑂(𝑚,𝑛)}. As the main 
objective, the robot must get from its present location to a target location 𝐿𝑡𝑎𝑟𝑔𝑒𝑡. From 
there the robot then moves to idle position 𝐿𝑖𝑑𝑙𝑒, where it stays. In a static environment 
it is assumed that the obstacles do not move. The 𝑂(𝑚,𝑛) takes a binary value 
depending whether there is an obstacle at (𝑚, 𝑛) or not. Note that both 𝑂�𝐿𝑡𝑎𝑟𝑔𝑒𝑡� 
and 𝑂(𝐿𝑖𝑑𝑙𝑒) are equal to zero. 

At each time step the robot may either move or observe. Hence the action space 
is 𝐴 = 𝐴𝑚 ∪ 𝐴𝑜, in which 𝐴𝑚 and 𝐴𝑜 denote the motion actions and observation actions 
respectively. 

Figure  3.1 demonstrates the allowed moves which are one step in the four 
directions, i.e. 𝐴𝑚 = {𝐸,𝑊,𝑁, 𝑆}. At the edges of the area certain moves may take the 
robot over the edge. Therefore those moves are excluded in path planning. 

 
Figure  3.1: A part of the lattice; east, west, north and south moves are allowed [ 6]. 
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It is assumed that within each time step, the robot is able to accurately localize itself. 
Therefore the transition model is deterministic. For example should the robot take an 
eastbound motion, its future location would have probability distributions as described 
in Equation  3.1. 

Equation  3.1 

 
The robot has eight observation possibilities. The action space is defined as 

 𝐴𝑜 = {(𝐸,𝑁𝐸), (𝐸, 𝑆𝐸), (𝑆, 𝑆𝐸), (𝑆, 𝑆𝑊), (𝑊, 𝑆𝑊), (𝑊,𝑁𝑊), (𝑁,𝑁𝑊), (𝑁,𝑁𝐸)}. 
Each observation is about the occupation of two locations by obstacles (see Figure  3.2) 
and thus providing two bits of information. 

 
Figure  3.2: Observations’ possibilities and observable points. The black circle 

represents the robot’s current location. 

The information obtained from observations is described for instance as in Equation 
 3.2. 

Equation  3.2 

 

Variables 𝑃𝑂𝐵1 and 𝑃𝑂𝐵2, respectively denote the erring probabilities of the nearer and 
further points colored blue and yellow in Figure  3.2. The erring probabilities are 
independent on whether the site is occupied or not (symmetric erring). 
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Each node on the lattice is associated with a small negative value which defines its 
cost of occupation. In real maps these values are determined by taking into account the 
specifications of the area such as topography, surface material, or any minor obstacle 
[ 17]. In this work however, those values, denoted by �̃�(𝐿𝑖), are synthetically generated 
random numbers, between zero and minus one. To simulate a more lifelike situation, 
sets of known static obstacles are scattered in the area map. If the robot moves to a 
location of an obstacle a collision occurs. The cost allocated to occupied locations, 
represented by 𝑟𝑐𝑜𝑙𝑙, is significantly higher, by their absolute value, than at the other 
locations. Finally 𝑟𝑒𝑛𝑑 represents the destination’s reward while the idle state has zero 
reward. The values are stored in an array known as the reward function as described in 
Equation  3.3. 

Equation  3.3 
 

 

 

In some cases the obstacle occupancies are uncertain. If the occupancy probabilities 
from some time instant onward are fixed (no obstacle movement, no observations), the 
resulting path planning problem is deterministic with rewards given in Equation  3.4. 

Equation  3.4 
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Note that in this work, the collision reward is only applied to occupation 
probabilities equal or larger than 55 %. Furthermore if the time evolution of the 
occupation probabilities is known, these results in a deterministic problem with time 
varying rewards read as in Equation  3.5, which can be solved as value iteration on a 
time expanded graph.

 
Equation  3.5 
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A final note on the reward function is that motions or observations have the same 
costs but as they are mutually exclusive, the robot remains at its present location while 
making an observation and adds a cost of  �̃�(𝐿𝑖) compared to moving along the shortest 
path. 
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The path planning problem is then formulated as in Equation  3.6. 

Equation  3.6 
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Where 𝑃𝑖

𝑂(𝑚,𝑛) describes the probabilistic current area map. The set consists of ones for 
known occupied locations, zeros for locations known to be not occupied and values 
belonging to (0,1) when the occupancies of locations are uncertain. 

The problem may be solved by receding horizon principle so that at time 𝑖, an entire 
optimal plan is generated and the first action is implemented accordingly. Then at 
time 𝑖 + 1, if new information is obtained through information channels the planning is 
repeated. Otherwise no re-planning is needed and the solution may proceed with the 
initial optimal plan. 

Obviously the search space is huge. Depending on the area dimensions, both an 
offline solution and an online solution with a large horizon have to deal with immense 
search trees. Therefore, some approximations must be applied in order to solve the 
problem. 

3.2. The simplified problem 

3.2.1. Applied approximations 

As described earlier in this chapter, the search space for the generic problem is vast due 
to the long time horizon till the idle state and the large number of occupation 
probabilities.  

The first approximation is proposed to reduce the search space. Here, it is assumed 
that in the planning at time i, the search space is radically narrowed so that only for a 
short time horizon T0 both observation and motion actions are considered after which 
only motion actions are deemed available. The problem is then scaled down to the one 
presented in Equation  3.7. 

Equation  3.7 
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In the equation the variable V(0) is the optimal value of being at location 𝐿𝑖+𝑇0. 

The problem can now be solved with on-line dynamic programming. In an 
exhaustive search until the short time horizon T0, all possible action sequences are 
considered and robot’s location and occupation probabilities are calculated resulting in 

some 𝐿𝑖+𝑇0 , �𝑃𝑖+𝑇0
𝑂(𝑚,𝑛)�

𝑚,𝑛=1

𝑀,𝑁
, noting that occupation probabilities are weighted with their 

prior information. Then the corresponding V(0) part is solved and the value is back 
propagated to 𝑖. Although solving for  V(0) is a straight forward problem, the 
computational burden in Equation  3.7 comes from its many repetitions. As there are 
four move actions with no associated data values and eight observation actions, each 
with four possible data outcomes, the branching factor of the on-line optimization is 36. 
Hence the number of V(0) problems to be solved for a given T0 is 36T0. An extreme 
approximation is to replace occupancy information in the V(0) problem with the original 
map. The transformed problem is then read as in Equation  3.8. 

Equation  3.8 
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In its current form, solution of the problem till T0 demands the same exhaustive tree 
search as before. However, the V(0) part could be solved off-line once and the end 
rewards for on-line optimization could be read from a lookup table. 

3.2.2. Offline deterministic problem 

This path planning problem with known fixed obstacle occupancies and action space 
limited to only motion actions is a straight forward deterministic problem. The optimal 
value problem in Equation  3.8 is then reformulated and read as in Equation  3.9. 

Equation  3.9 
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To solve the problem, value iteration algorithm may be employed. First the equation is 
solved with an arbitrary 𝑉(0,k) on the right hand side resulting in some 𝑉(0,k+1) on the 
left hand side. Then the calculation is repeated with the obtained value and the iterations 
will continue till the convergence. The value iteration algorithm guarantees the 
convergence in finite number of steps. 
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4.     THE ORIGINAL PROGRAM 

The proposed solution to the path finding problem consists of two methodologies: an 
offline deterministic problem and an online stochastic one. Hence in this program, the 
offline path planner (OPP) solves the deterministic part of the problem using value 
iteration algorithm; whereas the online path finder (OPF), utilizes dynamic 
programming method to solve the POMDP body of the problem. In this arrangement, 
the OPP is a sub-process of the OPF. Schematic of the entire program is depicted in 
Figure  4.1. 

 
Figure  4.1: The original program’s schematic. 

In this chapter, the implementations of program components are described in order 
that they appear in the structure. 

4.1. Offline path planner (OPP): 

The offline path planner finds a deterministic optimal path to the destination. Based on 
the ideas developed in section  3.2, it also provides a table of optimal end rewards for the 
online stochastic part of the problem. The aim of this section is to provide an insight 
into the implementation of the solution. The codes for this module can be found in 
Appendix 1. 

Design 
Parameters 

(DPs) 
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The synthetic environment, through which the robot tries to find its way, was 
described in section  3.1. To create the model, the OPP acquires the dimensions of the 
area and accordingly generates site rewards as random numbers between zero and minus 
one. Then the nodes known to be occupied with static obstacles are assigned with a very 
large negative reward. Finally the destination point is marked by a very high reward and 
the idle state node is marked zero. These values, stored in an array, serve as the reward 
function. 

In certain circumstances, the OPP module may be re-executed. Therefore the 
function has the capability to update the reward function to solve the path finding 
problem. Any obstacle occupation change in the area map is applied to the reward 
function according to Equation  3.4. 

The plan is a set of allowed move actions at each location by the robot. In this work 
along with the square lattice, there are at most four moves from any given node (north, 
east, south and west). Note that the freedom of motion is reduced at the edges and 
corners to three and two move actions, respectively. Also form the target location the 
robot moves to the idle site, where it stops all operations. To incorporate such action 
space in the program a matrix, named Steps, is generated. This matrix specifies where 
the robot will reach by taking any of the quartet moves from any given point. 

The optimal path problem formulated in Equation  3.9 can now be solved with value 
iteration algorithm. In the OPP, the optimal value is the sum of the reward obtained 
making moves and optimal value in the previous iteration, noting that in the first 
iteration the optimal value is equal to zero. In the later iterations however, the optimal 
value consists of the highest values from the previous iteration. The iterations will 
continue for 10000 times although technically according to the algorithm 𝑁 × 𝑀 times 
should suffice. Then the highest value in each step is cross-referenced with its 
respective travel, thus extracting optimal actions. Finally starting from the current 
position of the robot, the optimal deterministic path to the goal is determined from the 
optimal actions and the step matrix together. The total reward collected from is the sum 
of the values associated with each node on the optimal path. 

4.2. Vertices observation guide (VOG): 

The robot gathers information about its surroundings by making observations. The 
observation mechanism has been described earlier in section  3.1. 

In the program implementation in order to identify the observed nodes, the robot 
utilizes a simple chart, generated by the VOG component. From this table, knowing the 
current position, from which an observation is being made, and also the direction of the 
surveillance, which is marked with a number from one to eight, the robot is able to 
recognize the two observed locations. The codes for this module can be found in 
Appendix 3. 
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4.3. Online path finder (OPF): 

This section presents the main building block of the program. The OPF mainly prepares 
the elements of the path finding problem framework for another module which makes 
the decisions. It is in fact a virtual path finder robot which perceives its environment, 
makes decisions, carries out actions and updates its state. The codes for this module can 
be found in Appendix 2. 

As explained in section  3.2.1, the robot relies on the POMDP framework with some 
approximations to devise the Equation  3.8. The problem is then solved with dynamic 
programming method. There are some parameters required to be defined for problem 
formulation and its solution method, called the design parameters (DPs) which are 
introduced in the following.  

The first step is to draw a primary and deterministic plan based on known conditions 
of the area (topography, obstacles and etc.), hence an offline planning. This 
deterministic plan is the lookup table for the approximated optimization problem 
presented in section  3.2.1. The offline planner may be called several times if required 
(more on the issue in sections  5.4 and  5.5). 

Depth or the short time horizon (STH) is the length of tree search ahead in time. 
Within this length full action space is applicable whereas after it the action space is 
limited to motion actions only. 

Local area dimensions define a sample rectangular area surrounding the current 
position of the robot that the program confines its calculations to it, per instructions of 
dynamic programming solution. Local area is chosen such that within the given depth 
the robot will not leave it. 

Collision cost is a factor that the robot applies in its calculations to prioritize its 
choices of actions within the STH length. High cost of collision would lower the 
expectation of getting higher reward by taking motion steps and consequently the 
observations become more prominent. On the other hand, a low COC would decrease 
the cost of motion steps to a point where they are slightly less costly than staying in the 
same location, which is the robot’s state while observing, and hence more motion steps. 
In the real world the COC depends on various factors ranging from the nature of the 
obstacle to the quality of the impact. In this work however, the parameter is determined 
by looking into robot’s behavior and statistically evaluating its responses (see section 
 7.1.1). Suitable COC are assigned based on the STHs.  

Observation probabilities set defines the erring probability distribution of the 
observations made by the robot. It introduces the partially observable part to the 
POMDP problem formulation. 
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Global occupancy represents the belief state in the POMDP framework explained in 
sections  2.4.1 and  3.1. In this work the occupancy belief is naively adopted at first, i.e. it 
is believed that each node has the same probability of occupancy as the other. Therefore 
an array of same probabilities is produced, where each member is associated with a 
particular location on the map. 

In the absence of a real environment and to test the robot, the surroundings should 
be synthesized. The base area, where complete knowledge of the environment is 
assumed, is generated in the OPP and at the beginning of the process. However, the 
random obstacles to be avoided are launched to the environment in the OPF, noting that 
the robot is not informed about whereabouts or number of them. In general the obstacles 
in the environments are of different sorts; some are stationary and others are dynamic. 
However, the robot with the present observation mechanism and program cannot differ 
between the two. Thus all objects are treated as either all static or all dynamic obstacles. 

Preparations before commencing the process of path finding continues with 
generating the vertices observations guide (see section  4.2), setting some practical 
counters, defining the number of allowed steps and the starting position of the robot.  

The optimal path in this work is variable-length plan meaning that the number of 
steps (iterations) that takes to solve the problem is not fixed [ 6]. Statistical analysis has 
shown that if the online stochastic problem is to be solved, it may take up to five times 
the number of steps required for the offline deterministic problem. Of course having 
broader action space with observations and not proceeding when observing in the online 
stochastic process, account for much bigger portion of the difference; however 
frequency of encounters with random obstacles has an impact on the number of steps as 
well. 

The path finding process is repetitive set of actions and therefore they are performed 
in a while loop. The loop carries on as long as the robot has not reached immediate 
vicinity of destination. The procedures within the loop are described in the following.  

In a dynamic environment the OPF starts its loop actions with calling the RW 
module to get receive the updated location of the walkers. It is to be noted that positions 
of the obstacles are not reported to the robot and it only perceives them through its 
observation actions. 

In offline planning mode the whole area is being considered for the optimal path. In 
the online part on the other hand, this notion would lead to a huge computational 
burden. The dynamic programming suggests a search tree limited to smaller vicinity, 
the dimension of which was determined earlier, around the current position of the robot. 
Within this limited neighborhood the robot solves the decision making problem for the 
best course of actions. To map the local area around the robot, neighboring nodes within 
the specified dimensions are identified. The local state of the robot which consists of the 
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location of the robot its local belief state, local rewards and local allowed actions are 
then generated. 

At this point all the elements required to construct the Equation  3.8 are ready. The 
next action in the loop for the program is to summon the optimum action determinant 
(OAD) which actually solves the problem. The implementation of the module is 
discussed in section  4.4. After execution, the function returns the best immediate action 
that the robot should take. 

Depending on the action that the function instructs, the robot’s state or the belief 
state will be altered. If the optimal action is to move, the belief state about obstacles 
remains unchanged and the state is updated by the new position of the robot; which is 
set by utilizing the previous coordinates, the suggested direction of the motion, noting 
that in that the robot’s future location is fully predictable. Conversely, if the optimal 
action is an observation, the robot should look in the direction specified by the OAD 
and then update the belief state accordingly. In this work the observations are virtual 
simulations, in which the observation error probabilities are embedded. The results of 
these simulations along with previous belief state, update the belief utilizing Bayes 
formula. In a static environment, the update process consists of marking the observed 
nodes as occupied or vacant by increased or decreased probability respectively. 

With the necessary adjustments made to the state belief, the loop reaches to its 
turning point so it continues from the top if the robot is still in its midst way. Otherwise, 
when the robot is immediate neighborhood of the goal, the program exits the loop and 
continues to its destination approach protocol. The protocol assumes that there is no 
obstacle present in immediate vicinity of target location and thus the program reduces to 
choosing a way out of two according to the reward map. Finally when the destination is 
reached the robot assumes an idle position and stops. 

4.4. Optimum action determinant (OAD): 

The Optimum action determinant is the module that solves the Equation  3.8. The 
module recursively calculates the optimal action for the current time instant by 
considering all the possible action sequences beginning from the time instant considered 
till the end of the fixed depth. At the end of the short time horizon last move of the 
robot, the online solution uses the optimal values (cost-to-go) of the offline solution 
calculated for that grid cell which then finally gives the values for each possible action 
at current time instant. Only the next action is ever executed from the planned action 
sequence after which the online optimization is again considered from the beginning at 
the next time step by utilizing the possible new measurement information obtained if 
observation action is taken. 
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The OAD is designed to address motion actions with numbers one to four, 
corresponding to four directions while returning numbers five to 12 for corresponding 
observation actions. The codes for this module can be found in Appendix 4. 
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5.     ANOMALIES AND RECTIFICATION 

The robot’s behavior with the current program demonstrates some anomalies. In this 
Chapter, first forms of the unwanted behavior and their characterization method are 
covered. Next the sources of errors are discussed. The Chapter then ends by proposing 
methods and implementing them to rectify such errors. 

5.1. Unwanted behavior and characterization 

Numerous tests have shown that the robot’s unwanted behavior is mostly manifested in 
the form of different infinitely repetitive patterns of observation or motion and no 
advancement along the path. These patterns are discussed in their respective sections 
 5.1.1 and   5.1.2. Other notable problem is the issue of incautious motion, a hazardous 
trend which is unraveled in subsection  5.1.3. 

5.1.1. Observation loops (OLs) 

It has been witnessed in several occasions that the robot stands still and endlessly 
observes the same direction or different directions. The robot encounters such problem 
in narrow corridors or neck-like areas and more often when its path is blocked in the 
front by an obstacle and on the side by walls. This anomaly is of two specific types: 
single directional observation loop and multiple directions OL. 

Single directional observations loop (SOL) 

 
Figure  5.1: An instance of a single directional observation loop. 
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Figure  5.1 depicts an instance of a single directional observation loop. Note that the 
robot is incapable of finding a way around with STH equal to three, because of the 
obstacle in front and the wall to the right. 

To further clarify the situation portrayed in the Figure, it is accompanied by Table 
 5.1, in which the initial position (Pos. i), the action performed by the robot (Action) and 
the destination location after taking an action (Pos. j), are listed. 

Table  5.1: States and actions. 
No. Step Pos.i Action Pos.j 
1 80 116 𝑂: (𝑁,𝑁𝐸) 116 
2 81 116 𝑂: (𝑁,𝑁𝐸) 116 
3 82 116 𝑂: (𝑁,𝑁𝐸) 116 
4 83 116 𝑂: (𝑁,𝑁𝐸) 116 
5 84 116 𝑂: (𝑁,𝑁𝐸) 116 
6 85 116 𝑂: (𝑁,𝑁𝐸) 116 
7 86 116 𝑂: (𝑁,𝑁𝐸) 116 

Theoretically, if the situation in a certain location remains unchanged, Bayes rule 
assures us that by looking into its direction repeatedly, the accuracy of the information 
about that position will be increased. Figures  5.2 and  5.3 demonstrate examples of 
changes in occupancy probability of a single point which is being observed several 
times. The data for these figures is obtained by inducing observation loops to the 
program; and then executing it for at least 20 rounds while recording occupancy 
probability of specific points after every observation. Note that the points subject to 
these experiments are the further nodes from the robot that have higher uncertainty. 

 
Figure  5.2: Drop in occupancy probability of a single point by repeated uncertain 

observations. Note that the fluctuation due to a false positive on the fourth observation 
is settled well before the tenth observation. 
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Figure  5.3: Rise in occupancy probability of a single point by repeated uncertain 

observations. 

The Figures clearly illustrate that after around five observations, the occupancy 
belief practically reaches its final value and hereafter further observations made in that 
particular way are redundant. 

Of course in reality the notion of static environment is naive and perilous; yet, 
considering our setting, since the likelihood of variation is low enough and by accepting 
some risk it can be adopted. Still, it is wise to increase the number of redundant 
observations as a precautionary measure. In this work, seven redundant observations in 
one direction are allowed before characterizing the robots behavior as a loop. 

Multiple directional observation loop (MOL) 
Another type of OL occurs when the program commands the robot to observe its 
surroundings over and over again without taking any further action. The difference here, 
comparing to the situation above, is the direction of observations which is not necessary 
the same. An instance of such event is portrayed in Figure  5.4 and supplemented by 
Table  5.2. 
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Figure  5.4: An instance of a multiple directional observation loop. 

Table  5.2: States and actions. 
No. Step Pos.i Action Pos.j No. Step Pos.i Action Pos.j 
1 286 525 𝑂: (𝑊,𝑁𝑊) 525 19 304 525 𝑂: (𝐸,𝑁𝐸) 525 
2 287 525 𝑂: (𝑊, 𝑆𝑊) 525 20 305 525 𝑂: (𝐸,𝑁𝐸) 525 
3 288 525 𝑂: (𝑊,𝑁𝑊) 525 21 306 525 𝑂: (𝑆, 𝑆𝑊) 525 
4 289 525 𝑂: (𝑊, 𝑆𝑊) 525 22 307 525 𝑂: (𝑊, 𝑆𝑊) 525 
5 290 525 𝑂: (𝑊, 𝑆𝑊) 525 23 308 525 𝑂: (𝑊, 𝑆𝑊) 525 
6 291 525 𝑂: (𝑊, 𝑆𝑊) 525 24 309 525 𝑂: (𝑊,𝑁𝑊) 525 
7 292 525 𝑂: (𝐸, 𝑆𝐸) 525 25 310 525 𝑂: (𝑊,𝑁𝑊) 525 
8 293 525 𝑂: (𝑊, 𝑆𝑊) 525 26 311 525 𝑂: (𝑊,𝑁𝑊) 525 
9 294 525 𝑂: (𝑆, 𝑆𝑊) 525 27 312 525 𝑂: (𝑊,𝑁𝑊) 525 
10 295 525 𝑂: (𝑆, 𝑆𝑊) 525 28 313 525 𝑂: (𝑊,𝑁𝑊) 525 
11 296 525 𝑂: (𝑆, 𝑆𝑊) 525 29 314 525 𝑂: (𝑊,𝑁𝑊) 525 
12 297 525 𝑂: (𝑆, 𝑆𝑊) 525 30 315 525 𝑂: (𝐸,𝑁𝐸) 525 
13 298 525 𝑂: (𝑆, 𝑆𝐸) 525 31 316 525 𝑂: (𝐸,𝑁𝐸) 525 
14 299 525 𝑂: (𝐸, 𝑆𝐸) 525 32 317 525 𝑂: (𝐸,𝑁𝐸) 525 
15 300 525 𝑂: (𝐸,𝑁𝐸) 525 33 318 525 𝑂: (𝐸,𝑁𝐸) 525 
16 301 525 𝑂: (𝐸,𝑁𝐸) 525 34 319 525 𝑂: (𝐸,𝑁𝐸) 525 
17 302 525 𝑂: (𝐸, 𝑆𝐸) 525 35 320 525 𝑂: (𝐸,𝑁𝐸) 525 
18 303 525 𝑂: (𝐸,𝑁𝐸) 525      

 Following the same logic as stated in the SOL case, the threshold for 
characterization of the behavior as a loop, including redundancy, is set on 35. 
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5.1.2. Motion loops (MLs) 

Motion loops are identified as the occasions in which the robot performs the same 
motion sequence again and again and not progressing in its path. Compared to 
observations loops, they are not very likely to occur; nevertheless they have been 
observed. Several tests have revealed that in motion loop cases, the incorrect perception 
of the robot from the environment, i.e. seeing obstacles where they are not, coupled 
with short time horizon, are the root causes of the problem. As anticipated, these errors 
are also often happening in narrow corridors or neck-like areas. Reciprocating motions 
and circular motions are the two categories of the motion loops which will be discussed. 

Reciprocating motions 
Figure  5.5 is an example of reciprocating motions accompanied by Table  5.3. 

 
Figure  5.5: An instance of reciprocating motions. 

Table  5.3: States and actions. 
No. Step Pos.i Action Pos.j 
1 321 528 𝑀:𝑁 529 
2 322 529 𝑀: 𝑆 528 
3 323 528 𝑀:𝑁 529 
4 324 529 𝑀: 𝑆 528 
5 324 528 𝑀:𝑁 529 
6 326 529 𝑀: 𝑆 528 
7 327 528 𝑀:𝑁 529 
8 328 529 𝑀: 𝑆 528 

As it is clear in the Table  5.3, the robot has fallen in a back and forth motion loop. 
The pattern is easily identified by analyzing the unique values of either action vector or 
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position vector; in such an event, i.e. reciprocating motion, the unique vector each 
would have a length equal to two. 

The question remains is the number of redundant motions allowed before 
characterization. In reviewed cases there have been legitimate circumstances that the 
robot had to be in two consecutive locations for maximum of three times in six serial 
steps. However, following the same footsteps for the fourth time has been 
acknowledged as an indicator of a loop. 

Circular motion loops 
Another form of motion loops which may happen, but not yet observed, are those of 
circular nature. It must be noted that these motions are termed circular in the sense that 
they form closed loops. These circular motions are harder to detect due to their variety 
of shapes and sizes. Nevertheless, the possibility of them happening ever increases as 
the passage ways in the environment get more crowded with dynamic obstacles. 

In this work, the sole circular motion loop covered is a four step loop, i.e. moving on 
corners of a square as displayed in Figure  5.6. It must be noted that this Figure is 
hypothetical and it is only demonstrated to make the concept clear. 

 
Figure  5.6: An instance of circular motions. Note that this image is hypothetical. 

Same as reciprocating motions, this loop is also being identified by analyzing the 
current and past positions of the robot. If the robot has been occupying the same four 
locations in its past 16 steps, the pattern is characterized as a circular motion loop. More 
sophisticated pattern recognition techniques are required in order to distinguish other 
types of circular motions, which are out of scope of this work. 
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5.1.3.  Incautious motions (IMs) 

The robot’s wrongful presumption of open space is concerning. It has been witnessed 
that in some cases, where the robot has enough room to move and has not discovered 
any obstacle in its immediate past observations, even if there have been some, it 
proceeds incautiously and without evermore observing its surroundings like depicted in 
Figure  5.7.  

 
Figure  5.7: Instances of incautious motions. 

The nature of this tendency is not yet fully understood which makes it harder to 
characterize the anomaly. Nevertheless, the robot must observe its surroundings in 
reasonably spaced steps. According to observation mechanism’s design, even in 
favorable circumstances, the robot would have no reliable observation based 
information about the passage ahead after taking three consecutive and not retracting 
motion steps. Therefore, minimum of one observation is required in every three steps. 
Any occasion in which the robot deviates from this minimum requirement, may be 
characterized as a case of IM. 

5.2. Sources of the errors 

The unwanted behavior described in the previous sections is due to two sources. The 
first one is the approximations applied to the generic problem and the second is 
inappropriate design parameters. The latter one, however, depends to a great extent on 
the approximations, so if no approximations were made the design parameters would 
not have caused any issue. For instance the effect of the collision cost on the robot’s 
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behavior is far less with higher short time horizon (see Table  7.2). Therefore, the 
approximations are considered as the only source of error in this section. 

In order to solve the generic problem of Equation  3.6, two approximations were 
made to it. The first one was to assume that the search space radically shrinks at 
planning time so that full action space is only considered for a short time horizon and 
after that only motion actions are available. The second was to replace occupancy 
information in the latter part of the problem with the original map rather than using the 
full information obtained till that point in time. 

The first approximation limits the robots options and causes failure in accurately 
anticipating steps beyond STH and thus inability to find a maneuvering solution. While 
a higher STH should eliminate this problem to some extent, it would also increase the 
computational costs more than exponentially, which obviously counters the objective of 
the approximation in the first place. 

The shortcoming of the second approximation is that since it rates the paths after the 
short time horizon based on the original map, the results may favor paths that are known 
by on-line observations to be blocked with high probability. In particular, if the optimal 
path based on the original map goes through a narrow passage and then this passage is 
observed to be blocked, the solution does not find an alternative path, unless it is T0 
move steps away or closer. 

5.3. Command controller (CC): 

In this work, based on fundamentals of feedback control, a Command controller is 
designed to look for suspicious patterns in the robot’s behavior and call for respective 
corrective action upon recognizing those patterns. A rough schematic of the CC’s 
function is depicted in Figure  5.8. 

 
Figure  5.8: Outline of the command controller’s function. 

The controller unit is introduced into the OPF just before the turning point of the 
loop (see Figure  5.9), where the state is updated with the latest action. 
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Figure  5.9: The new program’s schematic with command controller. 

The controller issues warnings which are then translated into suitable responses 
within the online pathfinder itself. The assignments of reactions are explained in 
sections  5.5 through  5.7. 

In contrast, measures taken to eliminate the unwanted behavior may burden the 
robot’s operations in normal settings. Therefore it is logical to revise the rectifications 
once they were not required, hence another role assigned to the command controller. 
The concept and its methodology are described in  5.8 

Command controller is perhaps the most significant module in this work without 
which the robots performance suffers gravely; a proof of that is the overall success rate 
which is discussed in subsections  7.1.2 and  7.1.3. The codes for the CC unit can be 
found in Appendix 5 and the corresponding actions added to the online path finder are 
covered in Appendix 6. 

5.4. Corrective measures 

The robot’s behavior may be manipulated through certain adjustments of its parameters. 
These parameters are used to solve the path finding problem. Altering them may lead to 
more accurate solution and consequently more desirable behavior of the robot. 
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The parameters which are open for adjustments range from the reward function to 
the COC and the STH. Change in each of the values of these parameters has its 
consequence in the robot’s output. 

The approximated Equation  3.8 always uses the initial reward function which was 
constituted to be problematic. In such cases, solving the offline planning problem again, 
i.e. executing the OPP, with updated obstacle information can be applied to determine 
the actual reward function. The benefit is that if narrow passages are observed to be 
blocked, alternative paths, differing widely from the optimal path according to the 
original map, can be found.  

The effect of collision cost on the robots behavior was introduced in section  4.3 and 
more statistics can be found in section  7.1.1. In brief a carefully adjusted COC can 
cause the robot to favor observations over motions. That is an effect that can be utilized 
to shape the robots behavior to its advantage.  

The importance of the STH and its role in the robot performance cannot be 
overstated. While a low STH will result in expedited operations of the robot, it also 
reduces the accuracy and effectiveness of the decisions made, thus leaving the program 
vulnerable under problematic conditions. An increased STH can then be a solution in 
the settings where the robot needs a border perspective for instance in order to 
overcome an obstacle. 

5.5. Rectification of loops 

Characterizing the errors makes it relatively easy to detect them. The CC recognizes the 
single directional observation loops if in its past seven steps, the robot has been staying 
in the same location while performing observations in the same direction. Similarly it 
detects the multiple directional observation loops when the robot serially performs more 
than 35 observations in any direction. As for the motion loops, the command controller 
is triggered if the robot has been travelling between no more than two immediate 
neighboring locations within eight consecutive time steps or if it has been occupying the 
same four locations in its past 16 steps. These patterns produce reciprocating motions or 
circular motions warnings respectively. 

Loops, of any kind, are indicatives of blocked paths. The robot obviously has not 
been able to bypass these blocks with lesser number of steps than the STH. In such 
conditions updating the end point rewards via new OPP execution, has become known 
to be effective in more than 90 % of times. Furthermore increasing the STH is another 
approach that will most probably solve the problem. Its success rate has been estimated 
at over 99 %. However, the achievement comes with a cost. Raising the STH escalates 
the computation time dramatically. Thus the methodology utilized consists of two parts. 
The program initially tries to resolve the loop errors by rerouting. However, should the 
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OPF fails to obtain a convenient response in few trials, the secondary loop controller 
intervenes and the STH is adjusted to a higher value. 

5.6. Rectification of IMs 

The controller module issues IM warning if the observations are accounted for less than 
30 % of the total actions performed in past seven steps or the robot has serially moved 
three steps. 

In course of an IM, the first response would be to persuade the robot to make more 
observations. As it has been stated before, increasing the COC is one way to achieve 
such a reaction. The amounts of incremental changes are determined based on statistical 
analysis as will be discussed in section  7.1.1 and Table  7.2. A desirable side effect of 
this process is that by pushing the robot to observe more between its motions, motion 
loops are also prevented from happening more often. 

Although this approach is estimated to be successful in a little more than 98 %, it is 
still not guaranteed. It is also absolutely essential not to force the robot into observations 
only mode. Similar to the loop cases the secondary loop controller (SLC) intervention is 
foreseen to increase in the STH as means to overcome resistant IMs. 

5.7. Secondary loop controller (SLC) 

During the test runs, error detecting algorithms demonstrated acceptable performance 
and left no problem undetected; hence dramatic improvement of the robot’s overall 
operation was achieved. However, it was made evident by some trials that reacting to a 
warning alone and neglecting the past corrections might be a source of problem by 
itself.  

An example is an occasion in which different abnormalities occur so close to each 
other that reacting to them all, especially with the same corrective response, would be 
incorrect. In other instances, resistant errors, i.e. repeating instances of the same error in 
a short period of time, are yet other indicators of detecting algorithms’ limitations. 
Figure  5.10 and Table  5.4 depict such situation. As it is apparent in the graph, after 
taking one motion step and few observations, the robot has fallen into a loop and the 
SOL warning is issued. However, the warning and its consequential corrective measure 
fails to achieve any result. In further steps, the problems keep reoccurring despite of 
being detected and dealt with every time. 
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Figure  5.10: Instances of persistent observation loops. 

Table  5.4: Execution results during the resistant observation loops. 
No. Step Pos.i Action Pos.j War. No. Step Pos.i Action Pos.j War. 

1 1 1 𝑂: (𝑆, 𝑆𝑊) 1 0 28 6 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
2 2 1 𝑂: (𝑊, 𝑆𝑊) 1 0 29 7 31 𝑂: (𝑆, 𝑆𝐸) 31 SOL 
3 3 1 𝑂: (𝑆, 𝑆𝑊) 1 0 30 1 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
4 4 1 𝑀:𝐸 31 0 31 2 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
5 5 31 𝑂: (𝑆,𝑆𝐸) 31 0 32 3 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
6 6 31 𝑂: (𝑆,𝑆𝐸) 31 0 33 4 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
7 7 31 𝑂: (𝑆,𝑆𝐸) 31 0 34 5 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
8 8 31 𝑂: (𝑆,𝑆𝐸) 31 0 35 6 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
9 9 31 𝑂: (𝑆,𝑆𝐸) 31 0 36 7 31 𝑂: (𝑆, 𝑆𝐸) 31 SOL 

10 10 31 𝑂: (𝑆,𝑆𝐸) 31 0 37 1 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
11 11 31 𝑂: (𝑆,𝑆𝐸) 31 SOL 38 2 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
12 1 31 𝑂: (𝐸,𝑁𝐸) 31 0 39 3 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
13 2 31 𝑂: (𝐸,𝑁𝐸) 31 0 40 4 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
14 3 31 𝑂: (𝐸,𝑁𝐸) 31 0 41 5 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
15 4 31 𝑂: (𝐸,𝑁𝐸) 31 0 42 6 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
16 5 31 𝑂: (𝑆,𝑆𝐸) 31 0 43 7 31 𝑂: (𝑆, 𝑆𝐸) 31 SOL 
17 6 31 𝑂: (𝑆,𝑆𝐸) 31 0 44 1 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
18 7 31 𝑂: (𝑆,𝑆𝐸) 31 0 45 2 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
19 8 31 𝑂: (𝑆,𝑆𝐸) 31 0 46 3 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
20 9 31 𝑂: (𝑆,𝑆𝐸) 31 0 47 4 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
21 10 31 𝑂: (𝑆,𝑆𝐸) 31 0 48 5 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
22 11 31 𝑂: (𝑆,𝑆𝐸) 31 SOL 49 6 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
23 1 31 𝑂: (𝑆,𝑆𝐸) 31 0 50 7 31 𝑂: (𝑆, 𝑆𝐸) 31 SOL 
24 2 31 𝑂: (𝑆,𝑆𝐸) 31 0 51 1 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
25 3 31 𝑂: (𝑆,𝑆𝐸) 31 0 52 2 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
26 4 31 𝑂: (𝑆,𝑆𝐸) 31 0 53 3 31 𝑂: (𝑆, 𝑆𝐸) 31 0 
27 5 31 𝑂: (𝑆,𝑆𝐸) 31 0 54 4 31 𝑂: (𝑆, 𝑆𝐸) 31 0 

Considering the preceding discussions and example, the lone logical deduction is to 
include previous warnings in decision making process before allotting a corrective 
response. However two questions must be answered: how many past warnings should 
be revisited and how to identify the correlation between them? 
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In this work, proposed method is to consider an area around the current position of 
the robot and search it thoroughly for any issued warning. This approach is believed to 
be capable of addressing both questions at the same time. It is established on two 
assumptions; one being that at any given time properly shaped and sized neighborhood 
is independent of other areas and the other is that in such locality, error inciting factors 
are similar. 

The first assumption leads to the point that in any arbitrary area, errors and their 
consequent corrective reactions have no impact on neighboring zones at least for some 
time. Meanwhile, the second supposition implies that errors taken place in vicinity are 
rooted in the same ground and thus correlated. The method, however risky in fast paced 
environments, has performed exceptionally well in this work both with static and 
dynamic obstacles. 

The algorithm works by first generating a list of nearby nodes to the current 
location. These points together usually form a five by five square having the present 
location of the robot in the middle and smaller at sides and corners (see Figure  5.11). 
The size of this vicinity is currently determined empirically. The square shape of the 
area is especially suitable when the robot is not moving in a straight line for example 
when circumventing an obstacle. In addition the area form conveniently makes the 
motion direction irrelevant. 

 
Figure  5.11: Neighborhoods’ sizes in different locations on the map. 

Then by inspecting the history of the warnings and matching their locations with 
members of the defined vicinity, warnings and their number of occurrences, if there is 
any, are specified. If any loop warning has been given out more than two times, in spite 
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of their types, the SLC will be triggered. Similarly it is activated when the number of 
IMs has exceeded two. 

5.8. Normal condition revision  

The robot navigating in an ordinary environment sometimes faces challenging 
situations. In such conditions adjustments should be applied to achieve the objectives. 
However, most of the times when the challenging situations are passed, some of the 
extraordinary measures taken are becoming redundant. Thus if these normal states could 
be exploited, the overall performance of the robot could be facilitated, which in this 
work means returning the adjusted parameters to their earlier states. The key to this 
realization is to identify the circumstances correctly. 

Thus far, all the efforts have been directed to recognize alarming patterns. Although the 
identified unwanted behavior cannot possibly cover all unwanted cases, but they cover 
an important portion of them which actually have been witnessed during test runs. 
Therefore a Normal environment condition (NEC), in which the robot can reset its 
adjusted parameters, can be characterized as a setting in which there has not been a 
warning issued for some time. Of course the NEC should be utilized with caution as it 
can lose validity at any time. 

As it was stated in the NEC definition, there has to be some time passed without the 
controller raising any alarm. This is a safety mechanism which makes sure that the robot 
has had enough time to discover or pass through earlier troubling situations. Currently 
utilized algorithm in two separate sections, allows 12 and 18 steps to elapse before 
making its inspections. These numbers are chosen mainly to be higher than the number 
of steps required to identify an error except for MOLs. However, they are fine-tuned 
statistically and with some practical considerations. 

In the 12th step inspections, the algorithm examines the results of past operations for 
any IMs warnings and observes whether the robot has been staying in the same spot; 
while it looks for OTSR over 80 % and the COC more than its initial value. The module 
is finally activated when it receives false, false, true and true as results of 
aforementioned assessments. 

In the 18th step examinations, the algorithm still investigates whether the robot has 
been staying in the same spot but it is now concerned by more than only IMs. So the 
application is prompted when the STH is higher than its initial value, the robot has been 
moving and there has not been any warning of any kind in the last 18 steps of the 
operations. 



ANOMALIES AND RECTIFICATION  35 
 

5.8.1. Aiding the operations in NEC 

Decreasing the COC and STH values speeds up the computation. Therefore, when 
detecting the NEC, the robot’s operation is facilitated by returning these parameters to 
their earlier state. 

In the case where the observations account for over 80 % of total actions, the 
number of observations are presumably unnecessary and they can be lowered to 
improve the robot’s performance; hence the reduction of the COC. On the other hand, 
when the robot has been functioning normally, the process is eased by detraction of the 
STH. 

It is important to note that in neither of these modifications the parameters are set 
lower than their initial values. The reductions go only as far as the increments 
beginning. 
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6.     DYNAMIC ENVIRONMENT 
IMPLEMENTATION 

In this Chapter a simple dynamic obstacle model is introduced to the optimal path 
finding problem and the problem is then reformulated accordingly. Finally the program 
is modified with the necessary changes implemented. 

6.1. Moving obstacles 

In general the nature of the dynamic obstacles is not fully known and they vary broadly 
in their behavior. Therefore it is difficult to draw mathematical models of them. 
However, there are some simpler models of active obstacles that can be utilized to test 
the robot’s performance. 

One of those models is the Random Walk model. A random walk is a mathematical 
formulation of a path that comprises of a series of random steps. A popular random 
walk model is that of a random walk on a regular grid, where at each step the object 
moves to neighboring sites of the lattice or stays in its present site according to some 
probability distribution. In simple symmetric random walk on an infinite lattice, the 
probabilities of the location jumping to each one of its immediate neighbors are the 
same as seen in Figure  6.1 [ 21]. 

 
Figure  6.1: Random walker's movement probabilities. 

While there are different conditions introduced for the boundaries of finite lattices 
[ 21], in this work it is assumed that the grid system is surrounded, for example by 
fences; thus no object can escape from nor can any enter to the area. Since on the edges 
and corners of the lattice, there are less leaping choices, logically the probability of 
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staying and/or moving in available directions should increase. Therefore at the 
boundaries the random walkers are considered to bounce back to their previous position. 

The walkers initially appear in the environment in random locations. As they move, 
each location may be occupied by more than one walker. 

With random walkers as the only moving obstacles it is possible to predict future 
occupancy probabilities with a mathematical model, as presented in Equation  6.1. 

Equation  6.1 
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As it can be seen the model is recursive in which, 𝑝(𝑂𝑖+1(𝑚, 𝑛)) symbolizes the 

expected occupancy probability of an arbitrary node, 𝑞 signifies the propagation 
probability of random walkers, 𝑝(𝑂𝑖(𝑚,𝑛)) stands for the current occupancy 
probability of said vertex and 𝑝(𝑂𝑖(𝑥, 𝑥)) are the current occupancy probabilities of its 
neighboring locations. At edges, respectively corners, there are only 3, respectively 2 

jump terms and thus the probability of staying at present location is (1 − 3𝑞
4

), 

respectively (1 − 𝑞
2
). 

According to the model, in every interval, occupancy probability of each node 
spreads to its immediate neighboring vertices with a rate equal to q while decreasing 
itself. 

6.2. Problem formulation 

In this work the path finding problem in a dynamic environment with known obstacle 
movement probabilities does not differ much from the one in static environments. Here, 
the action space, rewards and observations probabilities are the same in both 
environments. The only dissimilarity is the belief state which changes with respect to 
time in the dynamic environment. The occupancy belief evolution is modeled by 
Equation  6.1. The optimal path problem is described in the Equation  3.8 is then reads as 
in Equation  6.2. Note the occupancy belief index. 

Equation  6.2 
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6.3. Modifying the program 

The program in dynamic environment is closely related to the one in static environment 
in its core functionality. They have similar modular structure with most algorithms 
shared. Schematic of the dynamic environment version of the program is depicted in 
Figure  6.2. 

 
Figure  6.2: Program’s variation in dynamic environments. 

As it can be seen in the Figure the main difference of the program’s two versions is 
presence of random walker and occupancy updater modules. The occupancy updater is 
also called within the optimum action determinant. The modifications made to the OPF 
and OAD are summarized in the following 

6.3.1. The OPF modification 

The changes in the OPF are limited to introduction of random obstacles and their 
characteristics which are described in the following. The codes for the program can be 
found in Appendix 7. 

Random walkers’ motion probability marks the probability of random walkers to 
move from their locations to any of their neighboring places. Presence or absence of this 
parameter denotes one of the differences between the two versions of the OPF. In a 
static environment, the probability of random walkers moving is zero, hence, absence of 
the parameter. 
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In a static environment, the update process consists of marking the observed nodes 
as occupied or vacant by increased or decreased probability respectively. In a dynamic 
environment however, there are two stages of updating. First, same as the above and 
then a function called Occupancy updater is called to update the belief state of the entire 
map; which is due to the fact that with obstacles moving, occupation of a node increases 
the occupancy chances of the neighboring locations in the future. The occupancy 
updater maps the probabilities of moving obstacles for the robot and keeps them 
updated for each decision making cycle. 

6.3.2. Modifications to the OAD 

When determining the optimum action in dynamic environment, the OAD needs to 
update its belief in every recursive cycle before reaching the short time horizon. To do 
so the OAD calls the occupancy updater function with each branch of its search tree. 
With each call the OU function further updates the belief state upon its previous 
updates. Note that the function changes the belief if there it has received any new 
information obtained through observations. Also note that the OPF creates a reference 
of the occupancy belief before calling the OAD to restore it to the current time state. 

6.4. Random walker (RW): 

In this work, the first time that the online path finder summons the RW function, 
provides it with the area dimensions, the number of random walkers wandering in it and 
their moving probability. Of course the probability is independent of the OPF and can 
be defined in the function itself; nevertheless it is introduced in the main structure for 
better management. The RW unit generates some random initial positions for the 
walkers and returns them to the OPF. These primary sites cannot coincide with the 
robots start position nor its destination position. Therefore the locations are omitted 
from the function’s pool of random choices.  

In the later calls, the RW module governs the already introduced random walkers’ 
behavior. The unit receives the area grid map, latest position of the random walkers 
accompanied with the probability of them moving. Then, a random number is generated 
for each walker. By aggregating the figure into any of five different categories, which 
are tied with the walkers moving probabilities the next action of the walker is 
determined. Finally utilization of the grid map, walkers’ current positions and the 
succeeding directions, result into a subsequent position of each walker. 

A final note on this module’s operations is about its dependence on the program 
cycles. In this work, the RW function is called with every time step of the program. In 
this regard, the walkers’ timing are totally dominated by each time cycle of the 
programs calculations. In reality however, such relation is not completely accurate; 
hence, the room for improving the component in the future. The codes for this module 
can be found in Appendix 8. 
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6.5. Occupancy updater (OU) 

In the beginning of the path the robot has a rather naive view of the environment ahead, 
assuming that all the unknown locations have the same occupancy probability. 
Nonetheless, as it observes and moves toward the destination, the robot may detect 
some objects. 

In a dynamic setting, observing an object in a location equals to change in 
occupancy probability of its immediate vicinity within the next time step and their 
neighboring locations in a step after that and so on. It is to be noted that the algorithm 
ahead requires exact pose estimates for the obstacles; hence it does not solve the general 
mapping problem [ 12]. 

The OU function utilizes an algorithm, shared with few other modules, mapping 
each node’s vicinity and after that constructing the Equation  6.1 is straight forward. The 
codes for this module can be found in Appendix 9. 

The module can also be employed to update only a fraction of the entire lattice. This 
capability is particularly designed for the optimized action determinant, which isolates 
specific sections of the whole map for its operations and needs to know the future 
possibilities beforehand. 

Figure  6.3 simply illustrates propagation of occupancy probabilities from two 
arbitrary nodes in five interims with following values: 

5.0,2.0)),((,1))25,24((,1))25,11(( ==== qxxOpOpOp iii  
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Figure  6.3: Updating occupancy belief in 5 time steps. (A): Initial belief (B), (C), 
(D), (E), (F): One cycle later. 
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7.     RESULTS 

This Chapter aims to illustrate the robot’s operations with statistical analysis. The 
robot’s performance in static environment –both with the original program and the new 
one, is covered in the first Section. Then its behavior when confronting dynamic 
obstacles is depicted in the second Section. 

7.1 Robot’s performance in static environment 

The main assumption in this Section is that the originally unknown obstacles in the 
robot’s way are static. This piece of information is heavily used in the program. Both 
the original and new programs were tried out for thousands of times to accurately assess 
their performance. In the following subsections first the outcomes of the original 
program’s tests are demonstrated and then the new program’s results are presented. 

7.1.1 The original program 

The first set of trials was conducted to determine the basic capabilities of the robot, i.e. 
statistics of its operations. An instance of such is demonstrated in Figure  7.1 which was 
carried out with the following parameters: 

𝑆𝑇𝐻𝑖 = 4 , 𝐶𝑂𝐶𝑖 = −10000 , 𝛼 =  99 % , 𝑃𝑜 =  10 %  
𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝐶𝑜𝑢𝑛𝑡 = 25 , 𝑃𝑜𝑏 = {(0.01 , 0.99), (0.05 , 0.95)} 

 
Figure  7.1: Robot’s operations on its way to target location. 
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During these tests some shortcomings of the robot were identified. Amongst them 
was the robot’s inability to complete its travel through narrow corridors or S shape 
passages in more than 26 % of times with STH as high as four. Of course the robot’s 
confusion behind barriers depends on the obstacle’s configuration and shape. 
Nevertheless, in these tests all obstacles were scattered in the environment randomly. 
On the other hand when the program does execute successfully like depicted in Figure 
 7.1, another notable problem was recognized to be the computation time required to 
complete the task. Although getting an estimate of average completion time proved to 
be very hard, nevertheless among countless trials there has not been a case witnessed 
where the robot has reached the destination under about 22 minutes. Note that the 
computation times throughout this work are measured on computers with fast and 
powerful processors (7 cores clocked at 3.4 GHz). Table  7.1 is a summary of the results 
obtained with the original program. 

Table  7.1: Original program’s results. 

Success 
Rate  
(%) 

Step Count STH 
Collision 

Avoidance  
Rate (%) 

Computation 
Time (s) 

Mean STD Constant Mean STD Mean STD 
73.32 227 19 4 99.86 0.09 1492 180 

In the table the success rate is defined as the percentage of completed travels. The 
collision avoidance rate is a measure of the robot’s ability to make right decisions 
circumventing obstacles. The figure is calculated using Equation  7.1. 

Equation  7.1 
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,where the variable 𝐶𝐼, denotes the number of collision incidents and the variable 𝑆𝐶, 
symbolizes the steps counts. The tests have been repeated 100 times with 25 random 
obstacles. 

Next set of trials was made to determine the effect of observations error 
probabilities on the overall performance of the robot. For this purpose, all other 
parameters were kept constant while the observations probabilities were changing. The 
reference values for observation probabilities were 
𝑃𝑜𝑏 = {(0.025 , 0.975), (0.075 , 0.925)} and the error probabilities were incremented 
by steps of 5 %. The program was executed for minimum of 14 times with each 
observation probability set. The results are illustrated in Figure  7.2. 
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Figure  7.2: Change in SC and number of observations (top) and computation time 

(bottom) as a result of observation probabilities reduction. The number of motion steps 
was roughly the same all the time. 

Apart from the results depicted in the figure, the success rate of the robot was also 
extremely compromised with decreasing observation precision. It is estimated that a 5 
% increase in the observation error probability reduces the success rate by 25 %. In fact 
the decline was so steep that when the erring probabilities were increased over 30 %, the 
robot was not able to complete its travel at all. 

The last set of trials was designed to outline the relation between the COC and the 
robot’s performance. In order to measure the impact of COC on the robots behavior, its 
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expected responses must be defined. The first ever essential robot’s behavior is arguably 
to commence its operations with an observation action. Thus an adequate COC is a 
value that delivers such response. A measure against which the COC can be assessed is, 
according to Equation  7.2, the ratio of observations to total number of steps. 

Equation  7.2 

100×
+

=
stepsmotionofNumberstepsnsobservatioofNumber

stepsnsobservatioofNumberOTSR  

 
Figure  7.3: The first action, displayed in form of OTSR, as function of COC. 

Figure  7.3 is obtained from the data collected from approximately ten thousand 
trials. In each of mentioned experiments the first action performed by the robot is 
recorded. Then the number of observations, in form of OTSR, is plotted as a function of 
the cost of collision. It is apparent in the figure that with the STH more than two, the 
first robot’s output is an observation as soon as the COC reaches to 900. However, with 
a lower STH, the target OTSR cannot be achieved while the cost of crash is less than 
1300. 

Moreover, in a normal environment and with no external intervention to the robot’s 
outputs, it is expected from the robot to exhibit OTSR over a certain percentage. In this 
work, since the robot has only two choices to either move or observe, a normal OTSR 
should be approximately 50 %. Over the course of 10000 test runs, the COC and the 
robot’s first 100 actions were recorded. To get a better estimate, the robot’s entry point 
to the environment was randomly selected in each trial. Results of these trials are 
illustrated in Figure  7.4. 
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Figure  7.4: OTSR as function of COC, for 100 actions. 

Figure  7.4 suggests that the robot is not capable of passing the 50 % mark for OTSR 
with COC less than 2000 while it might almost hit the observations only mode when the 
collision cost reaches to 10000. A closer look to the results reveals that beyond certain 
thresholds, increasing the COC would inflict relatively less rise in the OTSR. 
Furthermore, these turning points are appearing to be STH-specific; and the illustration 
implies that the threshold is about 4000 for STH equal to four while it is approximately 
2500 for smaller value STHs.  

Finally, the last piece of information that can be extracted from the graph is the 
effect of COCs increments, beyond their initial values on, the OTSR. The Table  7.2 
reveals this relationship. These values are especially helpful when it comes to 
rectification of robots’ behaviors (see section  5.5). 

Table  7.2: Data extracted from the Figure. 

STH Initial  
COC 

Increase in  
the COC (points) 

Increase in  
the OTSR (%) 

2 2500 1500 6.16 
3 2500 1500 4.5 
4 4000 1000 1.16 

 The performance of the robot has been rather below what is required. 

7.1.2 The new program with active CC unit 

The new program is designed to reach the destination as fast as possible by overcoming 
the problems that the original program had difficulties coping with. However, the new 
program is not cope with all situations; yet, it is performs much better than the old one. 
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Figure  7.5 through Figure  7.7 demonstrate the robot’s operations within an entire 
path finding sequence. The initial parameters were in as in subsection  7.1.1 and as 
follows: 

𝑆𝑇𝐻𝑖 = 2 

𝐶𝑂𝐶𝑖 = �−2500    𝑆𝑇𝐻𝑖 ≪ 3
−4000    𝑆𝑇𝐻𝑖 >  3  

𝛼 =  99 % 

𝑃𝑜 =  10 % 
𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝐶𝑜𝑢𝑛𝑡 = 25 
𝑃𝑜𝑏 = {(0.01 , 0.99), (0.05 , 0.95)} 

 
Figure  7.5: Robot’s operations on its way to target location. 

The first Figure shows the result of online path finding while the next two illustrate 
full travel path and the evolved belief matrix. 
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Figure  7.6: Robot’s actual travel path. 

 
Figure  7.7: Robots final belief of the environments occupancy. 

This example is only one of 266 successful trials. As displayed, the robot has been 
able to reach its goal with a few re-routings and without colliding with any of the 
random obstacles present. However, the main achievement of this procedure is the 
computation time required for the robot to arrive at its destination; which has been 
dramatically decreased compare to the original program. Results extracted from over 
200 tests are illustrated in Table  7.3. 
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Table  7.3: The new program’s execution results in static environments. 

Success 
Rate  
(%) 

Step 
Count 

Re-
Routings STH 

Collision 
Avoidance  
Rate (%) 

Computation 
Time (s) 

Mean STD Mean STD Mean STD Mean STD Mean STD 
98.87 373 68 4.39 1.97 2.01 0.17 99.89 0.12 10.5 26.28 

According to the statistics the robot can reach its goal nearly 100 % of times. In the 
conducted experiments, only three of trials were not successful wherein the errors in 
observations were the reason behind the failures. In those particular circumstances the 
robot had deemed that all the passages toward the destination are blocked due to wrong 
observation results and thus terminating the operations.  

The number of steps has increased compare to the original program which is due to 
increased number of observations.  

The short time horizon, according to the table of statistics, has not been altering in 
the programs much. This means that the preliminary control algorithm have had 
successful operations. 

The CAR figure in Table  7.3 is calculated using Equation  7.3. 

Equation  7.3 

( ) 15,751,100100, ≈≤≤×−==
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ii  

In this equation, for each obstacle count, denoted by subscript 𝑖, the test has been 
repeated 𝑛 times. 

The individual CAR values, estimated from numerous tests with varying number of 
obstacles, are depicted in Figure  7.8. It reveals that the robot is capable of avoiding 
accidents at a very high rate. Conversely, it also illustrates a downward trend; which is 
not strange due to the impact that increases in the number of obstacles have on the 
probability of collision incidents leading to decrease in the CAR. 
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Figure  7.8: Collision avoidance rate as a function of obstacles' number. The red 

line signifies the average value while the dashed magenta line is the STD.  

Finally, the computation time well under a minute is the definitive indicator of the 
robot’s accomplishment. This achievement is directly linked to use of smaller STH 
which is possible here with the precaution mechanisms but not in the original program. 

7.1.3 The new program with inactive CC unit 

Receiving encouraging results from the robot raised a question that to what extent the 
CC module has been responsible for its success. Thus experiments were performed with 
disabled controller module.  

The results pointed out that the robot is almost incapable of completing its task 
without the module. In over a hundred trails, the robot exhausted all of its allowed steps 
without even going as far as half of the way toward the destination; that is but only for 
two rare successful cases. Of course the design parameters, STH and COC, were at their 
initial points, optimized for the new program; otherwise the program has the exact same 
level of performance as in its original form. 

As a conclusion, it is obvious that the controller component plays a crucial role in 
the accomplishment of the procedure. 

7.2 Robot’s performance in dynamic environment 

The main objective of the robot with the new program was to reach the destination in a 
static environment. However, with modifications into the OPF and OAD and 
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introducing the complementary components it has been able to pursue the target in a 
setting wherein random walkers are present. Figure  7.9 and Figure  7.10 illustrate results 
of a successful execution of the program. Again the initial DPs are stated below. 

𝑆𝑇𝐻𝑖 = 2 

𝐶𝑂𝐶𝑖 = �−2500    𝑆𝑇𝐻𝑖 ≪ 3
−4000    𝑆𝑇𝐻𝑖 >  3 

𝛼 =  99 % 

𝑃𝑜 =  10 % 
𝑞 =  10 % 
𝑊𝑎𝑙𝑘𝑒𝑟𝑠 𝐶𝑜𝑢𝑛𝑡 = 8 
𝑃𝑜𝑏 = {(0.01 , 0.99), (0.05 , 0.95)} 

 
Figure  7.9: Robot’s operations on its way to target location. 

 

Figure  7.10: Robots final belief of the environments occupancy. 
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Note that in Figure  7.9, one of the random walkers is on the path of the robot. In 
fact the robot has taken a step back circumventing the obstacle; hence there has not been 
an actual crash. 

In this example, the robot has been able to arrive at its destination without colliding 
with any of the walkers. Results of one hundred more executions are summarized in the 
Table  7.4. 

Table  7.4: Execution results in dynamic environments 

Success 
Rate  
(%) 

Step 
Count 

Re-
Routings STH 

Collision 
Avoidance  
Rate (%) 

Computation 
Time (s) 

Mean STD Mean STD Mean STD Mean STD Mean STD 
98.21 634 32 1.38 0.62 2.00 0.001 98.62 0.71 36.36 4.69 

The drop in the success rate and rise in the SC are both in direct response to the 
dynamic surroundings. The robot may terminate its operations more often because of 
higher possibility of random walkers blocking all passages ahead. Also bypassing 
moving obstacles requires more steps. 

Given that the obstacle avoidance is much more difficult in active environments, the 
robot’s CAR seems reasonable enough too. Figure  7.11 is an illustration of the robot’s 
efforts circumventing random walkers. Compared to those under static environment 
conditions (see Table  7.3) the results here are obviously less accurate. 

 
Figure  7.11: Collision avoidance rate as a function of obstacles' number. The red 

line signifies the average value while the dashed magenta line is the STD. 
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The decline in the collision avoidance rate however, is not solely due to robots 
decision making process. On the contrary, it is mainly because of limited observation 
capacity. For instance, if in a particular time more than one walker approach the robot, 
even if the robot decides to observe a certain direction it cannot see the other coming 
walkers and thus a crash is very likely. Thus the robot’s performance is quite 
satisfactory. 
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8.     CONCLUSIONS AND FUTURE WORK 

Path finding utilizing POMDP framework is a well-studied method. Many experiments 
have been conducted and articles have been published about the solutions to this 
problem. Thus the benefits and limitations of this process are quite known. The main 
idea in this work was to assess and to improve currently existing method with 
optimizing the design parameters and introduction of new components controlling its 
operations.  

Judging from the results the original path finding approach is powerful enough in 
most circumstances. However, on its own, and with presence of unmapped and difficult 
obstacles, it does not seem to be capable to complete the task with desired efficiency. 
The magnitude of the problems sensed in the experiments with static obstacles is 
gravely amplified when dealing with dynamic obstacles. 

In case of the robot facing static obstacles, introduction of a controller, specification 
of efficient DPs and finally some modifications in the original program were efforts to 
bring up the robot’s performance to its maximum potential. The outcome is a definite 
improvement, see Table  8.1. However, there is still a lot of room for development in 
various directions. 

Table  8.1: Results comparison 

 Success Rate 
(%) 

Computation  
Time (s) 

Step 
count STH 

Original program 73.32 1492 227 4 
New program 

in static 
environment 

98.87 10.5 373 2.01 

New program 
in dynamic 

environment 
98.21 36.36 634 2.00 

Assuming that the POMDP, Online programming and Value iteration 
methodologies are to be kept, the future work that can improve the performance of the 
approach are at least the following. 

• Incorporating machine learning and pattern recognition methods both to improve 
the observation mechanism enabling it to differentiate between different 
obstacles. 

• Implementing more sophisticated pattern recognition techniques into the 
controller and equip it with better mathematical models 



CONCLUSIONS AND FUTURE WORK  55 
 

• Employing more accurate models of dynamic obstacles to improve the OU 
function of the program 

The suggestions can be combined in one component, such as controllers, in order to 
obtain powerful modules. 

As for the program itself, the future work can be towards simplification of the 
generic problem with more efficient approximations. However, it was suggested by 
reference [ 22] and made evident with some practical examples, that the program in its 
current state does not seem to be fit for larger scale problems. Thus, for future works, 
alternative approaches such as Monte-Carlo methods [ 23] are advisable to be exploited. 
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APPENDIX 1 

The Offline Path Planner 
function [steps, opt_val, rew, alpha, optimal_path,opt_pathx, 
opt_pathy,on_the_way_cost, N, M, rew_matr, p_count, 
start_grid]=OPP(start_grid, rew, updated_obs, updated_obs_op) 
% ------------------------------------------------------------------- 
% Constants 
% ------------------------------------------------------------------- 
% N and M are the web dimensions. 1 is upper left corner, N on upper right and 
N*M on lower right 
N=30; 
M=30; 
vl=N*M+1; % Number of locations on the map 
alpha=0.99; %Discounting factor 
hrew=-100*N*M; % Large negative rewards for the grids known as the "walls" 
% ------------------------------------------------------------------- 
% known obstacles 
% ------------------------------------------------------------------- 
% The given "start grid" is the entry pint on the map. In case that the 
function is run from the start, the value will be equal to 1. 
if start_grid == 1; 
  rew=-rand(vl,1); % Reward associated to each grid cell 
  rew(N*M)=100*M*N; % Final (goal) reward (large) 
  rew(vl)=0; % Stop point reward 
  % Walls are defined 
  rew((4*N+1):(4*N+N-3))=hrew; 
  rew((8*N+10):(8*N+N))=hrew; 
  rew((floor(2*M/5)*N+10):(floor(2*M/5)*N+N-6))=hrew; 
  rew((floor(M/2)*N+1):(floor(M/2)*N+N-10))=hrew; 
  rew((floor(3*M/5)*N+8):(floor(3*M/5)*N+N-5))=hrew; 
  rew(((M-8)*N+10):((M-8)*N+N))=hrew; 
  rew(((M-8)*N+10):N:((M-3)*N+10))=hrew; 
  rew(((M-5)*N+25):N:((M-1)*N+25))=hrew; 
end 
% ------------------------------------------------------------------- 
% Updated obstacles 
% ------------------------------------------------------------------- 
for i=1: length(updated_obs); 
  rew(updated_obs(i))=updated_obs_op(i)*hrew+(1-
updated_obs_op(i))*rew(updated_obs(i)); 
end 
% ------------------------------------------------------------------- 
% Possible steps 
% ------------------------------------------------------------------- 
steps=[1:vl;1:vl;1:vl;1:vl]'; 
for i=1:M 
  steps(((i-1)*N+1):(i*N-1),1)=((i-1)*N+2):(i*N); %east steps 
  steps(((i-1)*N+2):(i*N),2)=((i-1)*N+1):(i*N-1); %west steps 
end 
for i=1:M-1 
  steps(((i-1)*N+1):(i*N),3)=(i*N+1):((i+1)*N); %south steps 
  steps((i*N+1):((i+1)*N),4)=((i-1)*N+1):(i*N); %north steps 
end 
steps(N*M,1:4)=vl; % Exit grid 
steps(vl,1:4)=vl; % Exit and stay grid 
% ------------------------------------------------------------------- 
% Value iteration 
% ------------------------------------------------------------------- 
values=zeros(vl,4); %Optimal value vector 
opt_val=zeros(vl,1); %Optimal decision vector 
opt_act=zeros(vl,1); 
% 10000 updates of the optimal value function for each grid cell 
for i=1:10000; 
  for j=1:4; % Possible steps/actions for each grid cell 
    values(:,j)=rew(steps(:,j))+alpha*opt_val(steps(:,j)); 
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  end 
  opt_val=max(values')'; % Optimal value function (action) selection 
end 
for k=1:vl% Optimal action for each grid cell according to the value functions 
  ind=find(values(k,1:4)==opt_val(k)); 
  opt_act(k)=ind(1); 
end 
% Rewards, optimal value function values, and optimal actions in grid  
% matrix form 
rew_matr=reshape(rew(1:vl-1),N,M); 
opt_matr=reshape(opt_val(1:vl-1),N,M); 
opt_act_matr=reshape(opt_act(1:vl-1),N,M); 
% -------------------------------------------------------------------  
% Optimal path 
% -------------------------------------------------------------------  
optimal_path=zeros(vl,1); % Optimal path vector 
opt_pathx=zeros(vl,1); % Auxiliary vectors for plotting the optimal path 
opt_pathy=zeros(vl,1); 
% Calculation from a given start grid 
optimal_path(start_grid)=start_grid; 
opt_pathx(start_grid)=start_grid; 
opt_pathy(start_grid)=start_grid; 
p_count=start_grid; % Step counter (starting from the start grid)  
% Defining the optimal path by matching the optimal actions and steps 
for ii=p_count:vl; 
  optimal_path(ii+1)=steps(optimal_path(ii),opt_act(optimal_path(ii))); 
  if optimal_path(ii)<(vl) 
    opt_pathy(ii)=ceil(optimal_path(ii)/N); 
    opt_pathx(ii)=optimal_path(ii)-N*(ceil(optimal_path(ii)/N)-1); 
    p_count=p_count+1; 
  end 
end 
if start_grid > 1 
  optimal_path(1:start_grid-1)=optimal_path(start_grid); 
  opt_pathy(1:start_grid-1)=opt_pathy(start_grid); 
  opt_pathx(1:start_grid-1)=opt_pathx(start_grid); 
end 
% ------------------------------------------------------------------- 
% On the way cost to be compared with mean of reward 
% ------------------------------------------------------------------- 
on_the_way_cost=mean(rew(optimal_path(1:p_count-1))); 
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APPENDIX 2 

The Online Path Finder 
clear all 
close all 
clc 
tic; % timer start 
% ------------------------------------------------------------------- 
% Primary offline-planning 
% -------------------------------------------------------------------  
[steps, opt_val, rew, alpha, optimal_path,opt_pathx, 
opt_pathy,on_the_way_cost, N, M, rew_matr, p_count, start_grid]=OPP(1, [], [], 
[]);   
% -------------------------------------------------------------------  
% System state 
% -------------------------------------------------------------------  
% System state is location of WM and belief vector of location of MO 
depth=2; % the depth starts at 2 but the program could go deeper in horizon 
l_dim=5; 
if depth<=3 % Initial Cost of clash 
  c_clash=-2500;  
elseif depth>3 
  c_clash=-4000; 
end 
c_O=-0; %% Cost of observation 
action_history=zeros(1,6); % initial action history 
A_dim=2*l_dim+1; % Size of area considered in one on-line decision 
p_obs=[0.025 0.975; 0.05 0.95]; %erring probabilities of observations 
global_occupancy=0.1*ones(N*M,1); % initial occupancy belief 
% Position of MOs, changes are in random positions 
no_positions = 35; % number of random obstacles 
positions=(randperm(N*M-2, no_positions)+1)'; % random position of obstacles 
positions_xy = [positions-N*(ceil(positions/N)-1),ceil(positions/N)]; 
iroad=p_count*5; % maximum length of the plan 
pos_on_the_road=zeros(iroad+1,1); 
act_on_the_road=zeros(iroad,1); 
pos_on_the_road(1)=optimal_path(start_grid); % Same starting point as in the 
% optimal path studied in script OPP 
% -------------------------------------------------------------------  
% Observation sets 
% -------------------------------------------------------------------  
generate_observation_sets_small; 
% -------------------------------------------------------------------  
% Mapping of area of entire problem to local optimization problem 
% -------------------------------------------------------------------  
f_c=1; % figure counter 
figure(f_c); 
set (figure(f_c), 'Position' , [100 100 500 500]) 
mesh(rew_matr); 
hold on; 
z_opt=zeros(1,p_count-1); 
reff=plot3(opt_pathy(1:p_count-1),opt_pathx(1:p_count-1),z_opt); % refreshing 
figure 
plot3(positions_xy(:,2),positions_xy(:,1),zeros(no_positions,1),'r*'); 
set(reff,'XDataSource','opt_pathy(1:p_count-1)'); 
set(reff,'YDataSource','opt_pathx(1:p_count-1)'); 
set(reff,'ZDataSource','z_opt'); 
  
iloop=1; % counter 
call_count=1; 
% ------------------------------------------------------------------- 
while iloop < iroad+1 & pos_on_the_road(iloop)~=N*M-N & 
pos_on_the_road(iloop)~=N*M-1 & pos_on_the_road(iloop)~=N*M-N-1 
% ------------------------------------------------------------------- 
% Local area 
% -------------------------------------------------------------------    
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  pos_WM=pos_on_the_road(iloop); 
  N0=floor(pos_WM/N)+1; 
  NY_start=max(1,N0-l_dim); 
  NY_stop=min(M,N0+l_dim); 
  NX_start=max(1,pos_WM-N*floor((pos_WM-1)/N)-l_dim); 
  NX_stop=min(N,pos_WM-N*floor((pos_WM-1)/N)+l_dim); 
  indsa=[]; % Global coordinates of local area 
  for i=NY_start:NY_stop 
    indsa=[indsa ((i-1)*N+NX_start:((i-1)*N+NX_stop))]; % mapping vector 
  end 
% ------------------------------------------------------------------- 
% WM steps on the local area 
% -------------------------------------------------------------------   
  loc_steps=steps(indsa,:); 
  loc_rew=rew(indsa); %Local immediate rewards 
  loc_rew_end=rew(indsa)+alpha*opt_val(indsa); % Rewards at the end step of 
% on-line optimization 
  loc_obs_sets=obs_sets(indsa,:,:); 
  state=zeros(length(indsa)+1,1); 
  state(1)=pos_WM; 
  state(2:end)=global_occupancy(indsa); 
% -------------------------------------------------------------------   
% On-line optimization of actions 
% -------------------------------------------------------------------    
  pos_vis=pos_on_the_road(1:iloop); 
[opt_value,opt_act,value]=OAD_S(depth,state,indsa,loc_rew,loc_rew_end,loc_step
s,loc_obs_sets,c_O,c_clash,alpha,p_obs,pos_vis); 
% -------------------------------------------------------------------   
% After optimization update position or belief depending on action 
% -------------------------------------------------------------------    
  fprintf('At time step %3i \n',call_count) 
  fprintf('optimal action is %2i \n',opt_act)   
  if opt_act<5 % Step taken, no measurement made    
pos_on_the_road(iloop+1)=steps(pos_on_the_road(iloop),opt_act); 
    fprintf('and new position of the WM is %3i \n\n',pos_on_the_road(iloop+1)) 
    hold on;    
plot3(ceil(pos_on_the_road(iloop+1)/N),pos_on_the_road(iloop+1)-
N*(ceil(pos_on_the_road(iloop+1)/N)-1), zeros(length(iloop+1),1),'k*'); 
    drawnow; 
    hold off; 
  else % Measurement made, no step taken 
    pos_on_the_road(iloop+1)=pos_on_the_road(iloop); 
    fprintf('and the WM holds its position at %3i 
\n\n',pos_on_the_road(iloop)) 
    hold on;    
plot3(ceil(pos_on_the_road(iloop+1)/N),pos_on_the_road(iloop+1)-
N*(ceil(pos_on_the_road(iloop+1)/N)-1),zeros(length(iloop+1),1),'ko'); 
    drawnow; 
    hold off; 
    imeas=opt_act-4; %The optimal measurement 
% -------------------------------------------------------------------     
% Making the measurements; 
% -------------------------------------------------------------------  
% each point measured for being occupied or not 
    obsind=obs_sets(pos_WM,imeas,:); 
    apuind=find(obsind~=0);     
    if ~isempty(apuind) 
      obsind2=zeros(length(apuind),1); 
      for il=1:length(apuind) 
        obsind2(il)=obs_sets(pos_WM,imeas,apuind(il)); 
      end 
%Simulate the measurement result (value=1, no observation; =2 is observed) 
      result=zeros(length(apuind),1); 
      for imi=1:length(apuind) 
        if ismember(obsind2(imi),positions) 
          ptest=p_obs(imi,2); 
        else 
          ptest=p_obs(imi,1); 
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        end 
        if rand<ptest 
          result(imi)=1; 
        end 
      end 
      result; 
% -------------------------------------------------------------------       
% Update occupancy belief 
% -------------------------------------------------------------------  
      bel_ap=global_occupancy(obsind2); 
      bel_post=zeros(length(obsind2),1); 
      for iup=1:length(apuind) 
        if result(iup)==1 
bel_post(iup)=p_obs(iup,2)*bel_ap(iup)/(p_obs(iup,2)*bel_ap(iup)+p_obs(iup,1)*
(1-bel_ap(iup))); 
        else 
          bel_post(iup)=(1-p_obs(iup,2))*bel_ap(iup)/((1-
p_obs(iup,2))*bel_ap(iup)+(1-p_obs(iup,1))*(1-bel_ap(iup))); 
        end 
      end 
      bel_ap; 
      bel_post; 
      global_occupancy(obsind2)=bel_post; 
    end 
  end 
  call_count=call_count+1;      
  iloop=iloop+1; 
end 
% -------------------------------------------------------------------  
% Destination approach 
% -------------------------------------------------------------------  
[action_history, corrective_action] = CC(M, N, depth, iloop, call_count, 
opt_value, opt_act, pos_on_the_road, action_history, c_clash); 
if pos_on_the_road(iloop)==N*M-N-1 
  call_count = call_count+1; iloop = iloop+1; opt_value = 0; 
  better_move = sort([rew(N*M-1), N*M-1, 3;rew(N*M-N), N*M-N, 1],'descend'); 
  pos_on_the_road(iloop) = better_move(1,2); 
  opt_act = better_move(1,3); 
  [action_history, corrective_action] = CC(M, N, depth, iloop, call_count, 
opt_value, opt_act, pos_on_the_road, action_history, c_clash); 
  fprintf('At time step %3i \n',call_count) 
  fprintf('The Destination has been reached \n') 
  hold on; 
  plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*'); 
  drawnow; 
end 
if pos_on_the_road(iloop)==N*M-1; 
  call_count = call_count+1; iloop = iloop+1; opt_act = 1; opt_value = 0; 
  pos_on_the_road(iloop)=N*M; 
  [action_history, corrective_action] = CC(M, N, depth, iloop, call_count, 
opt_value, opt_act, pos_on_the_road, action_history, c_clash); 
  fprintf('At time step %3i \n',call_count) 
  fprintf('The Destination has been reached \n') 
  hold on; 
  plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*'); 
  drawnow; 
elseif pos_on_the_road(iloop)==N*M-N; 
  call_count = call_count+1; iloop = iloop+1; opt_act = 3; opt_value = 0;   
  pos_on_the_road(iloop)=N*M; 
  [action_history, corrective_action] = CC(M, N, depth, iloop, call_count, 
opt_value, opt_act, pos_on_the_road, action_history, c_clash); 
  fprintf('At time step %3i \n',call_count) 
  fprintf('The Destination has been reached \n') 
  hold on; 
  plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*'); 
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  drawnow; 
end 
T=toc; % timer stop 
% -------------------------------------------------------------------  
% Obstacle mapping based on belief 
% -------------------------------------------------------------------  
GO_mtrx=reshape(global_occupancy,N,M); 
figure (f_c+1) 
set (figure(f_c+1), 'Position' , [100 100 500 500]) 
mesh(GO_mtrx) 
% -------------------------------------------------------------------  
% Actual path 
% -------------------------------------------------------------------  
opt_of_pathx=zeros(call_count,1); 
opt_of_pathy=zeros(call_count,1); 
for i=1:call_count 
  opt_of_pathy(i)=ceil(action_history(i,4)/N); 
  opt_of_pathx(i)=action_history(i,4)-N*(ceil(action_history(i,4)/N)-1); 
end 
figure (f_c+2) 
hold on 
set (figure(f_c+2), 'Position' , [100 100 500 500]) 
mesh(rew_matr); 
plot3(positions_xy(:,2),positions_xy(:,1),zeros(no_positions,1),'r*'); 
plot3(opt_of_pathy,opt_of_pathx,zeros(length(opt_of_pathx)),'m') 
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APPENDIX 3 

The Vertices Observations Guide 
% Observation sets for all positions on the grids; in the order of distance 
% ------------------------------------------------------------------- 
obs_sets=zeros(N*M,8,2); %First index WM position, 2nd the type of observation 
% 3rd points observed 
for ii=1:M 
  for jj=1:N 
    pres_pos=(ii-1)*N+jj; 
% ------------------------------------------------------------------- 
% NE observation 
% ------------------------------------------------------------------- 
    icount=0; 
    if pres_pos-N>0 
      icount=icount+1; 
      obs_sets(pres_pos,1,icount)=pres_pos-N; 
      if ceil(pres_pos/N)*N~=pres_pos 
        icount=icount+1; 
        obs_sets(pres_pos,1,icount)=pres_pos-N+1; 
      end 
    end 
% -------------------------------------------------------------------     
% EN observation 
% ------------------------------------------------------------------- 
    icount=0; 
    if ceil(pres_pos/N)*N~=pres_pos; 
      icount=icount+1; 
      obs_sets(pres_pos,2,icount)=pres_pos+1; 
      if pres_pos-N>0 
        icount=icount+1; 
        obs_sets(pres_pos,2,icount)=pres_pos-N+1; 
      end 
    end 
% ------------------------------------------------------------------- 
% ES observation 
% ------------------------------------------------------------------- 
    icount=0; 
    if ceil(pres_pos/N)*N~=pres_pos; 
      icount=icount+1; 
      obs_sets(pres_pos,3,icount)=pres_pos+1; 
      if pres_pos+N<N*M 
        icount=icount+1; 
        obs_sets(pres_pos,3,icount)=pres_pos+N+1; 
      end 
    end 
% ------------------------------------------------------------------- 
% SE observation 
% ------------------------------------------------------------------- 
    icount=0; 
    if pres_pos+N<N*M 
      icount=icount+1; 
      obs_sets(pres_pos,4,icount)=pres_pos+N; 
      if ceil(pres_pos/N)*N~=pres_pos 
        icount=icount+1; 
        obs_sets(pres_pos,4,icount)=pres_pos+N+1; 
      end 
    end 
% ------------------------------------------------------------------- 
% SW observation 
% ------------------------------------------------------------------- 
    icount=0; 
    if pres_pos+N<N*M 
      icount=icount+1; 
      obs_sets(pres_pos,5,icount)=pres_pos+N; 
      if ceil((pres_pos-1)/N)*N+1~=pres_pos 
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        icount=icount+1; 
        obs_sets(pres_pos,5,icount)=pres_pos+N-1; 
      end 
    end 
% ------------------------------------------------------------------- 
% WS observation 
% ------------------------------------------------------------------- 
    icount=0; 
    if ceil((pres_pos-1)/N)*N+1~=pres_pos; 
      icount=icount+1; 
      obs_sets(pres_pos,6,icount)=pres_pos-1; 
      if pres_pos+N<N*M 
        icount=icount+1; 
        obs_sets(pres_pos,6,icount)=pres_pos+N-1; 
      end 
    end 
% ------------------------------------------------------------------- 
% WN observation 
% ------------------------------------------------------------------- 
    icount=0; 
    if ceil((pres_pos-1)/N)*N+1~=pres_pos; 
      icount=icount+1; 
      obs_sets(pres_pos,7,icount)=pres_pos-1; 
      if pres_pos-N>0 
        icount=icount+1; 
        obs_sets(pres_pos,7,icount)=pres_pos-N-1; 
      end 
    end 
% ------------------------------------------------------------------- 
% NW observation 
% ------------------------------------------------------------------- 
    icount=0; 
    if pres_pos-N>0 
      icount=icount+1; 
      obs_sets(pres_pos,8,icount)=pres_pos-N; 
      if ceil((pres_pos-1)/N)*N+1~=pres_pos 
        icount=icount+1; 
        obs_sets(pres_pos,8,icount)=pres_pos-N-1; 
      end 
    end 
  end 
end 
clear icount ii jj pres_pos 
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APPENDIX 4 

The Optimum Action Determinant 
function 
[opt_value,opt_act,value]=OAD_S(depth,state,indsa,loc_rew,loc_rew_end,loc_step
s,loc_obs_sets,c_O,c_clash,alpha,p_obs,pos_vis) 
% ------------------------------------------------------------------- 
% On-line optimization of actions 
% ------------------------------------------------------------------- 
% From the current WM location, looks n-steps (varying depth) ahead to choose 
the optimal immediate (single) action, which can be any of the four move 
actions or eight measurement actions. Function calls itself recursive n-1 
times. At the last step of the horizon only a move action can be made. 
% IN: 
% depth: how many stages in time included in the optimization 
% state: system state representation = position of the wm and belief about MO 
location 
% indsa: mapping between local (i) and global (j) WM coordinates j=indsa(i) 
% loc_rew: local reward for the position of the WM 
% loc_rew_end: local reward including the result of off-line optimization, to 
be used if depth=1 
% loc_steps: WM move options 
% c_O: cost of observation 
% c_clash: cost of WM and MO clashing 
% p_MO: probability of MO moving to a random direction (NESW) 
% alpha: discounting factor 
% OUT: 
% opt_value=optimal value of the reward function 
% opt_state=state resulting from the optimal action 
% opt_act=optimal action 
 
% 12 actions possible, specified by 4 move actions in loc_steps and eight 
measurement actions. Value related to each action initialized to zero, value 
related to each observation initialized to large negative. 
value=zeros(12,1); 
value(5:12)=-1e6; 
% -------------------------------------------------------------------  
% Control actions 
% ------------------------------------------------------------------- 
% The depth of the problem is still larger than one (not the final step) 
if depth>1 
    for i=1:4 % All move actions considered 
    % Local coordinate update for the actions considered 
    state_new=state; 
    incoro=find(indsa==state(1)); % Local coordinate of WM old position 
    state_new(1)=loc_steps(incoro,i); % Global coordinate of new position 
    incorn=find(indsa==state_new(1)); %Local coordinate of WM new position 
% Value of state is immediate state value + immediate value of clash + future 
value (recursive call to the function itself) 
value(i)=loc_rew(incorn)+c_clash*state_new(incorn+1)+alpha*OAD_S(depth-
1,state_new,indsa,loc_rew, 
loc_rew_end,loc_steps,loc_obs_sets,c_O,c_clash,alpha,p_obs,pos_vis); 
  end 
else % The last/final step of the problem, no call to the function itself 
  for i=1:4 
    state_new=state; 
    incoro=find(indsa==state(1)); % Local coordinate of WM old position 
    state_new(1)=loc_steps(incoro,i); % Global coordinate of new position 
    incorn=find(indsa==state_new(1)); %Local coordinate of WM new position 
Value of state is immediate state value + immediate value of clash; immediate 
state value at the last step of the horizon(depth) is the value function value 
of the deterministic offline problem. 
    value(i)=loc_rew_end(incorn)+c_clash*state_new(incorn+1); 
  end 
end 
% -------------------------------------------------------------------  
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% Measurement actions 
% -------------------------------------------------------------------  
% The depth of the problem is still larger than one (not the final step) 
if depth>1 
    for imeas=1:8 % All possible measurements considered 
    % Local coordinate of the present position 
    incoro=find(indsa==state(1));  
     % Find the set of sites (in global coordinates) that can be  
     % observed from current state with measurement imeas 
    obsind=loc_obs_sets(incoro,imeas,:);  
    apuind=find(obsind~=0); 
    % All the sites that can be observed 
    if length(apuind)>0 
      % Measurement locations in local coordinates 
      obsind2=zeros(length(apuind),1);  
      for il=1:length(apuind) 
        obsind2(il)=find(indsa==obsind(apuind(il))); 
      end 
% -------------------------------------------------------------------       
% Measurement result combinations 
% ------------------------------------------------------------------- 
% Generate all possible measurement results; 5 sites are observed each giving  
% a binary result -> 32 possibilities in the most general case (current  
% position not at the edges) 
      ggg = (dec2bin(0:31))'; 
      gcc = textscan(ggg(:),'%1d%1d%1d%1d%1d','CollectOutput',true); 
      FM = gcc{1}; 
      FM=FM(:,5:-1:1); 
      % The real observation combinations (results) in this 
      % particular observation-position case 
      Nmeas=2^length(apuind); 
      result=FM(1:2^length(apuind),1:length(apuind)); 
      result=str2num(int2str(result)); 
% ------------------------------------------------------------------- 
% Read prior probabilities of belief state 
% ------------------------------------------------------------------- 
      bel_ap=zeros(length(obsind2),1); 
      bel_ap(1:length(obsind2))=state(obsind2+1); 
% -------------------------------------------------------------------       
% Calculate prior probabilities for each measurement result 
% ------------------------------------------------------------------- 
      pr_ap_meas=zeros(2^length(apuind),1); 
      for iapm=1:2^length(apuind) 
pr_ap_meas(iapm)=prod(bel_ap.^(result(iapm,:)'))*prod((1-bel_ap).^(1-
result(iapm,:)')); 
      end 
      bel_post=zeros(length(apuind),2^length(apuind)); 
% -------------------------------------------------------------------       
% Calculate posterior probabilities of states for each measurement result;  
% only those sites that are affected by the observation are updated 
% ------------------------------------------------------------------- 
      for iapm2=1:(2^length(apuind)) 
        for ist=1:length(apuind) 
          if result(iapm2,ist)==1 
bel_post(ist,iapm2)=p_obs(ist,2)*bel_ap(ist)/(p_obs(ist,2)*bel_ap(ist)+p_obs(i
st,1)*(1-bel_ap(ist))); 
          elseif result(iapm2,ist)==0 
            bel_post(ist,iapm2)=(1-p_obs(ist,2))*bel_ap(ist)/((1-
p_obs(ist,2))*bel_ap(ist)+(1-p_obs(ist,1))*(1-bel_ap(ist))); 
          else 
            'Undefined measurement result' 
            result(iapm2) 
          end 
        end 
      end 
% -------------------------------------------------------------------       
% State update for each possible measurement result (no move) 
% ------------------------------------------------------------------- 
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      new_states=zeros(length(state),2^length(apuind)); 
      for ir2=1:(2^length(apuind)) 
        new_states(:,ir2)=state; 
      new_states(obsind2+1,ir2)=bel_post(1:length(apuind),ir2); 
      end 
% -------------------------------------------------------------------       
% Calculate the expected value of the action (observation) when making this  
% particular observation 
% ------------------------------------------------------------------- 
      value(4+imeas)=0; 
      for ir3=1:(2^length(apuind)) 
        incorn=find(indsa==new_states(1,ir3)); % Local coordinate of WM 
% Value is state value (no move) cost of observations and expected value of  
% futures steps 
value(4+imeas)=value(4+imeas)+pr_ap_meas(ir3)*(c_O+loc_rew(incorn)+alpha*OAD_S
(depth-1,new_states(:,ir3), 
indsa,loc_rew,loc_rew_end,loc_steps,loc_obs_sets,c_O,c_clash, 
alpha,p_obs,pos_vis)); 
      end 
       
    end 
  end 
end 
% -------------------------------------------------------------------  
% Optimal value and the corresponding optimal action 
% ------------------------------------------------------------------- 
opt_value=max(value); 
inda=find(value==opt_value); 
opt_act=inda(1); 
end 
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APPENDIX 5 

The Command Controller 
function [ action_history, corrective_action ] = CC (M, N, depth, iloop, 
call_count, opt_value, opt_act, pos_on_the_road, action_history, c_clash) 
% this function keeps a tight track of whatever value being generated in the  
% online tester or deterministic path finder. Thus the correct actions could  
% be carried out at the right times. Corrective action will indicate the right  
% path to go in case of encountering an abnormality. corrective action=0: no  
% immediate action required, corrective action=100: OL-re-routing is advised,  
% corrective action=200: ML-re-routing is advised, corrective action=250:  
% reduce the cost of collision, corrective action=300: increase the cost of  
% collision, corrective action=350: set the collision cost back to the initial  
% and increase the depth, corrective action=400: increase the depth,  
% corrective action=500: reduce the depth 
% ------------------------------------------------------------------- 
corrective_action=0; 
action_history(call_count, 1)=iloop; 
action_history(call_count, 2)=opt_act; 
action_history(call_count, 3)=opt_value; 
action_history(call_count, 4)=pos_on_the_road(iloop); 
action_history(call_count, 5)=c_clash; 
action_history(call_count, 6)=depth; 
action_history(call_count, 7:8)=0; 
% ------------------------------------------------------------------- 
%% looking for observation loops 
% ------------------------------------------------------------------- 
% repeating single observation 
no_sdo=7; % Number of past steps considered for single direction observation 
if call_count > no_sdo & action_history(call_count-no_sdo:call_count, 2)>=5 & 
~ismember(100,action_history(call_count-no_sdo:call_count, 7)) & 
length(unique(action_history(call_count-no_sdo:call_count, 2)))==1; 
  corrective_action=100; 
  action_history(call_count, 7)=corrective_action; 
  action_history(call_count, 8)=1; 
end 
% repeating observations 
no_mdo=35; % Number of past steps considered for Multi direction observation 
if call_count > no_mdo & ... 
    action_history(call_count-no_mdo:call_count, 2)>=5 &... 
    ~ismember(100,action_history(call_count-no_mdo:call_count, 7)); 
  corrective_action=100; 
  action_history(call_count, 7)=corrective_action; 
  action_history(call_count, 8)=2; 
end 
% -------------------------------------------------------------------  
% looking for motion loops 
% ------------------------------------------------------------------- 
% reciprocating motion 
no_rm=8; % Number of past steps considered for Reciprocating motion 
if call_count > no_rm & action_history (call_count-no_rm:call_count, 2) < 5 & 
~ismember(200,action_history(call_count-no_rm:call_count, 7)) & 
length(unique(action_history(call_count-no_rm:call_count, 4)))==2; 
  corrective_action=200; 
  action_history(call_count, 7)=corrective_action; 
  action_history(call_count, 8)=3; 
end 
% circular motion 
no_cm=16; % Number of past steps to be considered for circular motion 
if call_count > 16 & action_history (call_count-no_cm:call_count, 2) < 5 & 
~ismember(200,action_history(call_count-no_cm:call_count, 7)) & 
length(unique(action_history(call_count-no_cm:call_count, 4)))==4; 
  corrective_action=200; 
  action_history(call_count, 7)=corrective_action; 
  action_history(call_count, 8)=4; 
end 
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% ------------------------------------------------------------------- 
% -------------------------------------------------------------------  
% looking for incautious motions 
% ------------------------------------------------------------------- 
% looking for the pattern based on observations/motions ratio 
no_cr_ca=7; % Number of past steps considered for Cost adjustment, also this  
% represents the space between two possible warnings 
lim_omr_ca=0.3; % observation to motion ratio limit 
if iloop > no_cr_ca && ~ismember(300,action_history(call_count-no_cr_ca:end, 
7)) && ~ismember(350,action_history(call_count-no_cr_ca:end, 7)) 
  pa_op=action_history(call_count-iloop+1:call_count, 2); 
  mobo=hist(pa_op, [4 5]); % number of motions and observations in past steps 
  omr_ca=mobo(2)/(mobo(1)+mobo(2)); % observation to motion ratio 
  if omr_ca <= lim_omr_ca 
    if action_history(call_count, 5) > -10000 
      corrective_action=300; 
      action_history(call_count, 7)=corrective_action; 
      action_history(call_count, 8)=5; 
    else % this condition can in fact be a part of secondary loop regulator  
      corrective_action=350; 
      action_history(call_count, 7)=corrective_action; 
    end 
  end 
end 
% Incautious motion pattern based on number of motion steps without 
% observations 
no_im=2; % Number of past steps to be considered for incautious motion 
if call_count > no_im & action_history (call_count-no_im:call_count, 2) < 5 
  if action_history(call_count, 5) > -10000 
    corrective_action=300; 
    action_history(call_count, 7)=corrective_action; 
    action_history(call_count, 8)=6; 
  else % this condition can in fact be a part of secondary loop regulator  
    corrective_action=350; 
    action_history(call_count, 7)=corrective_action; 
  end    
end 
% -------------------------------------------------------------------  
% Secondary loop controller 
% ------------------------------------------------------------------- 
if action_history(call_count, 7)~=0 
  % defining the immidiate vicinity around the wm position 
  v_dim=2; % dimension on the vicinity 
  pos=action_history(call_count, 4); 
  ny_t=max(1,floor(pos/N)+1-v_dim); 
  ny_p=min(M,floor(pos/N)+1+v_dim); 
  nx_t=max(1,pos-N*floor((pos-1)/N)-v_dim); 
  nx_p=min(N,pos-N*floor((pos-1)/N)+v_dim); 
  vicinity=[]; %% Global coordinates of local area 
  for iv=ny_t:ny_p 
    vicinity=[vicinity ((iv-1)*N+nx_t:((iv-1)*N+nx_p))]; 
  end 
  % determining when in past the robot has been in a location belonging to the  
% vicinity defined above 
  vil=length(vicinity); 
  vin1=zeros(36, vil); 
  for il=1:vil;  
    vin=find(action_history(1:end-1, 4)==vicinity(il)); 
    for jl=1:length(vin); 
      vin1(jl,il)=vin(jl); 
    end 
  end 
  [z,n,V]=find(vin1); 
  % retrieving the type of the warnings that might have been issued 
  viwar=action_history(V, 7);  
  n=hist(viwar, [0 160 260 310 360 410 510]); 
  % loop controller 
  if n(2) > 2 



  71 
 

    corrective_action=400; 
    action_history(call_count, 7)=corrective_action; 
  end 
  if n(4) > 2 
    corrective_action=350; 
    action_history(call_count, 7)=corrective_action;  
  end 
end 
% -------------------------------------------------------------------  
% normal conditions revision 
% ------------------------------------------------------------------- 
% Collision cost reduction 
no_cr=12; % Number of past steps considered for Cost reduction 
lim_omr=0.8; % observation to motion ratio limit 
if iloop > no_cr & unique(action_history (call_count-no_cr:call_count, 7))==0 
& unique(action_history (call_count-no_cr:call_count, 4))~=1 
  ls=action_history (call_count-iloop+1:call_count, 2); % iloop steps. 
  numo=hist(ls, [4 5]); % number of motions and observations in past steps 
  omr=numo(2)/(numo(1)+numo(2)); % observation to motion ratio 
  if action_history(call_count, 6) <= 3 & action_history(call_count, 5) ~= -
2500 
    if omr >= lim_omr 
      corrective_action=250; 
      action_history(call_count, 7)=corrective_action; 
    end 
  end 
  if action_history(call_count, 6) > 3 & action_history(call_count, 5) ~= -
4000 
    if omr >= lim_omr 
      corrective_action=250; 
      action_history(call_count, 7)=corrective_action; 
    end 
  end   
end 
% Depth reduction 
no_dr=18; % Number of past steps to be considered for depth reduction 
if call_count > no_dr & unique(action_history (call_count-no_cr:call_count, 
4))~=1 
  if action_history(end, 6) > action_history(1, 6) 
    SC=length(unique(action_history(call_count-no_dr: call_count, 7))); 
    if unique(action_history(call_count-no_dr: call_count, 7))==0 
      corrective_action=500; 
      action_history(call_count, 7)=corrective_action;       
    elseif SC==2; 
      if unique(action_history(call_count-no_dr: call_count, 7))==[0;250] 
        corrective_action=500; 
        action_history(call_count, 7)=corrective_action; 
      end 
    end 
  end 
end 
end  
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APPENDIX 6 

Modifications to the OPF following the CC 
% Command controller 
% ------------------------------------------------------------------- 
% The anomaly controller function is being called to check the results of the  
% optimization function and take a decisive action if needed 
[action_history, corrective_action] = CC(M, N, depth, iloop, call_count, 
opt_value, opt_act, pos_on_the_road, action_history, c_clash); 
  if corrective_action==100 | corrective_action==200; 
    if corrective_action==100 
      fprintf('Abonrmality of type "observations loop" has been detected; Re-
routing \n\n') 
    else 
      fprintf('Abonrmality of type "Reciprocating or circular motions" has 
been detected; Re-routing \n\n') 
    end 
    start_grid=pos_on_the_road(iloop); 
    new_obs=find(global_occupancy >= 0.55); 
    new_obs_op=global_occupancy(new_obs); 
    [steps, opt_val, rew, alpha, optimal_path,opt_pathx, opt_pathy, 
on_the_way_cost, N, M, rew_matr, p_count, start_grid]=OPP(start_grid, rew, 
new_obs, new_obs_op);     
    iroad=p_count*5; 
    pos_on_the_road=zeros(iroad+1,1); 
    act_on_the_road=zeros(iroad,1); 
    pos_on_the_road(1)=optimal_path(start_grid); 
    z_opt=zeros(1,p_count-1); 
    refreshdata (reff) 
    drawnow 
    if optimal_path ~= M*N+1; 
      fprintf('All passages are blocked; the programs execution is terminated 
\n\n') 
      T=toc; % timer stop 
      break 
    end     
    if depth<=3 
      c_clash=-4000; 
    else 
      c_clash=-5000; 
    end 
    fprintf('The collision cost is temporarily increased \n') 
    fprintf('current cost is %2i \n\n',c_clash) 
    iloop=0; 
  end 
  if corrective_action==250; 
    if depth <= 3 & c_clash < -2500 
      c_clash=c_clash+1500; 
      fprintf('The collision cost has been lowered due to smooth operation 
\n') 
      fprintf('current depth is %2i \n\n',c_clash)       
    elseif depth > 3 & c_clash < -4000 
      c_clash=c_clash+1000; 
      fprintf('The collision cost has been lowered due to smooth operation 
\n') 
      fprintf('current depth is %2i \n\n',c_clash)       
    end 
  end 
  if corrective_action==300; 
    if depth <= 3 
      c_clash=c_clash-1500; 
      fprintf('Abonrmality of type "incautious motions" has been detected; 
collision cost is temporarily increased \n') 
      fprintf('current cost is %2i \n\n',c_clash) 
    else 
      c_clash=c_clash-1000; 



  73 
 

      fprintf('Abonrmality of type "incautious motions" has been detected; 
collision cost is temporarily increased \n') 
      fprintf('current cost is %2i \n\n',c_clash) 
    end 
  end 
  if corrective_action==350; 
    depth=depth+1; 
    if depth<=3 
      c_clash=-2500; 
    else 
      c_clash=-4000; 
    end 
    fprintf('Abonrmality of type "consistent incautious motions" has been 
detected; depth is temporarily increased \n') 
    fprintf('current depth is %2i \n\n',depth) 
    fprintf('The collision cost has been set to initial value \n') 
    fprintf('current cost is %2i \n\n',c_clash) 
  end 
  if corrective_action==400; 
    depth=depth+1; 
    if depth<=3 
      c_clash=-2500; 
    else 
      c_clash=-4000; 
    end 
    fprintf('The depth has increased due to unsuccessful re-routing \n') 
    fprintf('current depth is %2i \n\n',depth) 
    fprintf('The collision cost has been set to initial value \n') 
    fprintf('current cost is %2i \n\n',c_clash) 
  end 
  if corrective_action==500; 
    depth=depth-1; 
    fprintf('The depth has been lowered due to smooth operation \n') 
    fprintf('current depth is %2i \n\n',depth) 
  end 
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APPENDIX 7 

The OPF in dynamic environment 
clear all 
close all 
clc 
tic; 
%% Primary offline-planning 
 [steps, opt_val, rew, alpha, optimal_path,opt_pathx, opt_pathy,... 
    on_the_way_cost, N, M, rew_matr, p_count, start_grid]=OPP(1, [], [], []);  
%% On-line part 
%% System state 
% System state is location of WM and belief vector of location of MO 
depth=3; % the depth starts at 2 but the program could go deeper in horizen, 
should the need ever arises 
l_dim=5; 
if depth<=3 
    c_clash=-2500; %% Initial Cost of clash 
elseif depth>3 
    c_clash=-4000; 
end 
cii=0; % Initial collision increment index 
record_call_count=0; 
c_O=-0; %% Cost of observation 
action_history=zeros(1,6); % initial action history 
A_dim=2*l_dim+1; % Size of area considered in one on-line decision 
p_obs=[0.01 0.99; 0.05 0.95]; %Probabilites of observing MO as a function of 
position 1:no MO, 2: is MO 
qw=0.1; 
% complete ignorance about occupancy in the beginning 
global_occupancy=0.1*ones(N*M,1); 
% Position of initial MOs, changes are in random positions 
no_positions = 8; 
positions=RW(N,M, 1, no_positions, [], [], qw ); % random positions 
positions_xy = [positions-N*(ceil(positions/N)-1),ceil(positions/N)]; 
z_positions=zeros(no_positions,1); 
% length of the road studied 
iroad=p_count*5; % length of the path studied = one step till the off-line 
path hits the goal 
pos_on_the_road=zeros(iroad+1,1); 
act_on_the_road=zeros(iroad,1); 
pos_on_the_road(1)=optimal_path(start_grid); % Same starting point as in the 
optimal path studied in script OPP 
%% Observation sets 
generate_observation_sets_small; 
%% Mapping of area of entire problem to local optimization problem 
f_c=1; % figure counter 
figure(f_c); 
set (figure(f_c), 'Position' , [100 100 500 500]) 
mesh(rew_matr); 
hold on; 
plot3(opt_pathy(1:p_count-1),opt_pathx(1:p_count-1),zeros(1,p_count-1)); 
reff=plot3(positions_xy(:,2),positions_xy(:,1),z_positions,'r*'); % refreshing 
figure 
set(reff,'XDataSource','positions_xy(:,2)'); 
set(reff,'YDataSource','positions_xy(:,1)'); 
set(reff,'ZDataSource','z_positions'); 
iloop=1; 
call_count=1; 
while iloop < iroad+1 & pos_on_the_road(iloop)~=N*M-N & 
pos_on_the_road(iloop)~=N*M-1 & pos_on_the_road(iloop)~=N*M-N-1 
    %% Random walker  
    [positions]=RW([],[],0,no_positions, steps, positions, qw); 
    positions_xy = [positions-N*(ceil(positions/N)-1),ceil(positions/N)]; 
    refreshdata (reff) 
    drawnow 
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    %% indsa is the mapping vector 
    pos_WM=pos_on_the_road(iloop); 
    N0=floor(pos_WM/N)+1; 
    NY_start=max(1,N0-l_dim); 
    NY_stop=min(M,N0+l_dim); 
    NX_start=max(1,pos_WM-N*floor((pos_WM-1)/N)-l_dim); 
    NX_stop=min(N,pos_WM-N*floor((pos_WM-1)/N)+l_dim); 
    indsa=[]; %% Global coordinates of local area 
    for i=NY_start:NY_stop 
        indsa=[indsa ((i-1)*N+NX_start:((i-1)*N+NX_stop))]; 
    end 
    %% WM steps on the local area 
    loc_steps=steps(indsa,:); 
    loc_rew=rew(indsa); %Local immediate rewards 
    loc_rew_end=rew(indsa)+alpha*opt_val(indsa); % Rewards at the end step of 
on-line optimization 
    loc_obs_sets=obs_sets(indsa,:,:); 
    state=zeros(length(indsa)+1,1); 
    state(1)=pos_WM; 
    state(2:end)=global_occupancy(indsa); %% To take care of the irregular 
global belief 
    %% On-line optimization of actions 
    global_occupancy_ref=global_occupancy; % referncing global_occupancy 
before changes being made to it 
    pos_vis=pos_on_the_road(1:iloop); 
    
[opt_value,opt_act,value]=OAD_D(depth,state,indsa,loc_rew,loc_rew_end,loc_step
s... 
        ,loc_obs_sets,c_O,c_clash,alpha,p_obs,pos_vis, global_occupancy, 
obs_sets, steps, qw);%% observation as chosen/optimized and updating belief 
    global_occupancy=global_occupancy_ref; % restoring the global_occupancy to 
the original 
    %% After optimization update position or belief depending on action 
    fprintf('At time step %3i \n',call_count) 
    fprintf('optimal action is %2i \n',opt_act) 
    if opt_act<5 %% Step taken, no measurement made 
pos_on_the_road(iloop+1)=steps(pos_on_the_road(iloop),opt_act); 
        fprintf('and new position of the WM is %3i 
\n\n',pos_on_the_road(iloop+1)) 
        hold on; 
plot3(ceil(pos_on_the_road(iloop+1)/N),pos_on_the_road(iloop+1)-
N*(ceil(pos_on_the_road(iloop+1)/N)-1), zeros(length(iloop+1),1),'k*'); 
        drawnow; 
        hold off; 
    else %% Measurement made, no step taken 
        pos_on_the_road(iloop+1)=pos_on_the_road(iloop); 
        fprintf('and the WM holds its position at %3i 
\n\n',pos_on_the_road(iloop)) 
        hold on; 
plot3(ceil(pos_on_the_road(iloop+1)/N),pos_on_the_road(iloop+1)-
N*(ceil(pos_on_the_road(iloop+1)/N)-1),zeros(length(iloop+1),1),'ko'); 
        drawnow; 
        hold off; 
        imeas=opt_act-4; %This is the optimal measurement 
         
        % Making the measurement imeas; each point measured for occupancy 
        % or not 
        obsind=obs_sets(pos_WM,imeas,:); 
        apuind=find(obsind~=0); 
         
        if ~isempty(apuind) 
            obsind2=zeros(length(apuind),1); 
            for il=1:length(apuind) 
                obsind2(il)=obs_sets(pos_WM,imeas,apuind(il)); 
            end 
            %Simulate the measurement result (value=1, no observation; =2 
            %is observed) 
            result=zeros(length(apuind),1); 
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            for imi=1:length(apuind) 
                if ismember(obsind2(imi),positions) 
                    ptest=p_obs(imi,2); 
                else 
                    ptest=p_obs(imi,1); 
                end 
                if rand<ptest 
                    result(imi)=1; 
                end 
            end 
            result; 
            % Update ocuupancy belief 
            bel_ap=global_occupancy(obsind2); 
            bel_post=zeros(length(obsind2),1); 
            for iup=1:length(apuind) 
                if result(iup)==1      
bel_post(iup)=p_obs(iup,2)*bel_ap(iup)/(p_obs(iup,2)*bel_ap(iup)+p_obs(iup,1)*
(1-bel_ap(iup))); 
                else 
                    bel_post(iup)=(1-p_obs(iup,2))*bel_ap(iup)/((1-
p_obs(iup,2))*bel_ap(iup)+(1-p_obs(iup,1))*(1-bel_ap(iup))); 
                end 
            end 
            bel_ap; 
            bel_post; 
            global_occupancy(obsind2)=bel_post; 
        end 
        [ global_occupancy ] = occupancy_updater( qw, global_occupancy, 
obs_sets, steps, 0, [], [] ); 
    end 
    %% Command controller 
%The anomaly controller function is being called to check the 
results of the optimizaion function and take a decisive action if needed 
    [action_history, corrective_action] = command_controller(M, N, depth, 
iloop, call_count, opt_value, opt_act, pos_on_the_road, action_history, 
c_clash); 
  
    if corrective_action==100 | corrective_action==200; 
        if corrective_action==100 
            fprintf('Abonrmality of type "observations loop" has been 
detected; Re-routing \n\n') 
        else 
            fprintf('Abonrmality of type "Reciprocating or circular motions" 
has been detected; Re-routing \n\n') 
        end 
        start_grid=pos_on_the_road(iloop); 
        new_obs=find(global_occupancy >= 0.55); 
        new_obs_op=global_occupancy(new_obs); 
        [steps, opt_val, rew, alpha, optimal_path,opt_pathx, opt_pathy, 
on_the_way_cost, N, M, rew_matr, p_count, start_grid]=OPP(start_grid, rew, 
new_obs, new_obs_op);     
        iroad=p_count*5; 
        pos_on_the_road=zeros(iroad+1,1); 
        act_on_the_road=zeros(iroad,1); 
        pos_on_the_road(1)=optimal_path(start_grid); 
  
        f_c=f_c+1; 
        figure(f_c); 
        set (figure(f_c), 'Position' , [100 100 500 500]) 
        mesh(rew_matr); 
        hold on; 
        plot3(opt_pathy(1:p_count-1),opt_pathx(1:p_count-1),zeros(1,p_count-
1)); 
reff=plot3(positions_xy(:,2),positions_xy(:,1),z_positions,'r*'); 
        set(reff,'XDataSource','positions_xy(:,2)'); 
        set(reff,'YDataSource','positions_xy(:,1)'); 
        set(reff,'ZDataSource','z_positions'); 
        if optimal_path ~= M*N+1; 
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            fprintf('All passages are blocked; the programs execution is 
terminated \n\n') 
            break 
        end         
        if depth<=3 
            c_clash=-4000; 
        else 
            c_clash=-5000; 
        end 
        fprintf('The collision cost is temporarily increased \n') 
        fprintf('current cost is %2i \n\n',c_clash) 
        iloop=0; 
    end 
    if corrective_action==250; 
        if depth <= 3 & c_clash < -2500 
            c_clash=c_clash+1500; 
            fprintf('The collision cost has been lowered due to smooth 
operation \n') 
            fprintf('current depth is %2i \n\n',c_clash)             
        elseif depth > 3 & c_clash < -4000 
            c_clash=c_clash+1000; 
            fprintf('The collision cost has been lowered due to smooth 
operation \n') 
            fprintf('current depth is %2i \n\n',c_clash)             
        end 
    end 
    if corrective_action==300; 
        if depth <= 3 
            c_clash=c_clash-1500; 
            fprintf('Abonrmality of type "incautious motions" has been 
detected; collision cost is temporarily increased \n') 
            fprintf('current cost is %2i \n\n',c_clash) 
        else 
            c_clash=c_clash-1000; 
            fprintf('Abonrmality of type "incautious motions" has been 
detected; collision cost is temporarily increased \n') 
            fprintf('current cost is %2i \n\n',c_clash) 
        end 
    end 
    if corrective_action==350; 
        depth=depth+1; 
        if depth<=3 
            c_clash=-2500; 
        else 
            c_clash=-4000; 
        end 
        fprintf('Abonrmality of type "consistent incautious motions" has been 
detected; depth is temporarily increased \n') 
        fprintf('current depth is %2i \n\n',depth) 
        fprintf('The collision cost has been set to initial value \n') 
        fprintf('current cost is %2i \n\n',c_clash) 
    end 
    if corrective_action==400; 
        depth=depth+1; 
        if depth<=3 
            c_clash=-2500; 
        else 
            c_clash=-4000; 
        end 
        fprintf('The depth has increased due to unsuccessful re-routing \n') 
        fprintf('current depth is %2i \n\n',depth) 
        fprintf('The collision cost has been set to initial value \n') 
        fprintf('current cost is %2i \n\n',c_clash) 
    end 
    if corrective_action==500; 
        depth=depth-1; 
        fprintf('The depth has been lowered due to smooth operation \n') 
        fprintf('current depth is %2i \n\n',depth) 
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    end 
    call_count=call_count+1;           
    iloop=iloop+1;   
end 
%% Destination approach 
 [action_history, corrective_action] = command_controller(M, N, depth, iloop, 
call_count, opt_value, opt_act, pos_on_the_road, action_history, c_clash); 
  
if pos_on_the_road(iloop)==N*M-N-1 
    call_count = call_count+1; iloop = iloop+1; opt_value = 0; 
    better_move = sort([rew(N*M-1), N*M-1, 3;rew(N*M-N), N*M-N, 1],'descend'); 
    pos_on_the_road(iloop) = better_move(1,2); 
    opt_act = better_move(1,3); 
    [action_history, corrective_action] = command_controller(M, N, depth, 
iloop, call_count, opt_value, opt_act, pos_on_the_road, action_history, 
c_clash); 
    fprintf('At time step %3i \n',call_count) 
    fprintf('The Destination has been reached \n') 
    hold on; 
    plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*'); 
    drawnow; 
end 
if pos_on_the_road(iloop)==N*M-1; 
    call_count = call_count+1; iloop = iloop+1; opt_act = 1; opt_value = 0; 
    pos_on_the_road(iloop)=N*M; 
    [action_history, corrective_action] = command_controller(M, N, depth, 
iloop, call_count, opt_value, opt_act, pos_on_the_road, action_history, 
c_clash); 
    fprintf('At time step %3i \n',call_count) 
    fprintf('The Destination has been reached \n') 
    hold on; 
    plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*'); 
    drawnow; 
elseif pos_on_the_road(iloop)==N*M-N; 
    call_count = call_count+1; iloop = iloop+1; opt_act = 3; opt_value = 0;     
    pos_on_the_road(iloop)=N*M; 
    [action_history, corrective_action] = command_controller(M, N, depth, 
iloop, call_count, opt_value, opt_act, pos_on_the_road, action_history, 
c_clash); 
    fprintf('At time step %3i \n',call_count) 
    fprintf('The Destination has been reached \n') 
    hold on; 
    plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*'); 
    drawnow; 
end 
T=toc; 
%% Obstruction mapping based on system belief 
GO_mtrx=reshape(global_occupancy,N,M); 
figure (f_c+1) 
set (figure(f_c+1), 'Position' , [100 100 500 500]) 
mesh(GO_mtrx) 
  
%% Actual path 
opt_of_pathx=zeros(call_count,1); 
opt_of_pathy=zeros(call_count,1); 
for i=1:call_count 
    opt_of_pathy(i)=ceil(action_history(i,4)/N); 
    opt_of_pathx(i)=action_history(i,4)-N*(ceil(action_history(i,4)/N)-1); 
end 
figure (f_c+2) 
set (figure(f_c+2), 'Position' , [100 100 500 500]) 
mesh(rew_matr); 
hold on; 
plot3(opt_of_pathy,opt_of_pathx,zeros(1,length(opt_of_pathx)),'m'); 
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APPENDIX 8 

The random walker 
function [ walker_pos] = RW(N,M, first_call, no_walkers, steps, walker_pos, qw 
) 
% this module governs the movement of the random walker(s). the number of  
% walker(s) and probability 
% of them moving is introduced to the function by the OPF. it randomly 
% chooses an action, based on the probabilities received, for each 
% walker and returns the updated position to the online path finder. 
if first_call == 1; 
    %% Iitial random positions 
    walker_pos=(randperm(N*M-2, no_walkers)+1)'; % random positions 
else 
    %% Random action generator (rag) 
    stp=1-qw; % probability of a random walker staying in its place 
    mp=qw/4; % probability of a random walker moving from its place 
    for jj=1:no_walkers 
        rag=rand(1); 
        if rag <= stp 
            wact(jj)=5; % walker action 
        elseif rag > stp & rag <= stp+mp 
            wact(jj)=1; 
        elseif rag > stp+mp & rag <= stp+2*mp 
            wact(jj)=2; 
        elseif rag > stp+2*mp & rag <= stp+3*mp 
            wact(jj)=3; 
        elseif rag > stp+3*mp & rag <= 1 
            wact(jj)=4; 
        end 
        %% Walker position selector 
        if wact(jj)<5 %% Step taken 
            walker_pos(jj)=steps(walker_pos (jj), wact(jj)); 
        else 
            walker_pos(jj)=walker_pos (jj); 
        end 
    end 
end 
end 
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APPENDIX 9 

The Occupancy Updater 
function [ global_occupancy, state ] = occupancy_updater( qw, 
global_occupancy, obs_sets, steps, partial, state, indsa )%% Cell Checker 
for i=1:900 
    CC(i,1)= obs_sets (i, 1, 1)~=0; 
    CC(i,2)= obs_sets (i, 2, 1)~=0; 
    CC(i,3)= obs_sets (i, 4, 1)~=0; 
    CC(i,4)= obs_sets (i, 6, 1)~=0; 
end 
%% Whole grid update 
qw_ied=qw/4; % probability of random walkers moving in each direction 
for i=1:899 
    global_occupancy(i)=(1-
qw_ied*(CC(i,1)+CC(i,2)+CC(i,3)+CC(i,4)))*global_occupancy(i)+qw_ied*(global_o
ccupancy(steps(i,4))*CC(i,1)+global_occupancy(steps(i,1))*CC(i,2)+global_occup
ancy(steps(i,3))*CC(i,3)+global_occupancy(steps(i,2))*CC(i,4)); 
end 
if partial==1 
    state(2:end)=global_occupancy(indsa); 
end 
end 
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