

ALI GHIASI
PATH PLANNING OF A ROBOT WITH UNCERTAIN
OBSERVATIONS
Master’s thesis

Examiner: Professor Risto Ritala
Examiner and topic approved by the
Faculty Council of the Faculty of
Automation, Mechanical and
Materials Engineering on
December 7th, 2011.

 II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Degree Program in Machine Automation
GHIASI, ALI: PATH PLANNING OF A ROBOT WITH UNCERTAIN
OBSERVATIONS
Master of Science Thesis, 87 Pages, 22 Appendix pages
November 2012
Major subject: Mechatronics
Examiner: Professor Risto Ritala
Keywords: Robot navigation, Path finding, POMDP, Dynamic programming,
Value iteration

The purpose of the work is to assess the performance and further improve a solution to
the problem of autonomous robot optimal path planning under uncertainty. The path
finding happens on a 2D plane modeled by an overlaid lattice. The idea in the solution
is to combine deterministic and stochastic approaches. First assuming complete
knowledge of the environment, the deterministic path planning problem is solved
resulting in an optimal path; after that knowing that there may also be some unmapped
static or slowly and randomly moving obstacles present in the environment; the online
stochastic solution uses dynamic programming method to solve the path finding with
obstacle avoidance problem.

The proposed solution was rigorously put to test with different parameters and under
various configurations to evaluate its performance and identify its weaknesses. The
results of conducted experiments revealed notable achievements along with excellent
opportunities for improvements. Hence, attempts were made to seize those opportunities
and enhance the performance of the solution. The outcomes of those efforts were 35 %
increase in the success rate and reduction in the time required for the solution to reach
its goal by over 97 %.

 III

ACKNOWLEDGEMENTS

This work would not have been possible without the guidance and the help of several
individuals who in one way or another contributed and extended their valuable
assistance in the preparation and completion of this study.

First and foremost, my utmost gratitude to Dr. Risto Ritala, my advising professor
whose patience and encouragement I will never forget. Dr. Ritala has been on my side
as I hurdle all the obstacles in the completion of this research work.

I would like to express my thanks to Miika Rajala, for his assistance in early phases
of this work, and my colleagues and staff in the Automation Science and Engineering
Department for their moral support and use of facilities.

Also I am inclined to thank the Administrators of the Faculty of Automation,
Mechanical and Materials Engineering, for their untiring effort in preparation of a
relaxed atmosphere nurturing students’ growth.

Last but not the least, I would like to dedicate this work to my parents, my sister and
my brother and one above all, my beloved wife, for if it wasn’t for her unconditional
love, support and reassurance I would have thrown in the towel a long time ago, thank
you so much dear Leyla.

Ali Ghiasi
November 22nd, 2012

 IV

CONTENTS
ABSTRACT .. II

ACKNOWLEDGEMENTS ... III

LIST OF SYMBOLS ... VI

LIST OF ABBREVIATIONS ... VII

1. INTRODUCTION .. 1

1.1. Autonomous robot navigation ... 1

1.2. A motivational example ... 2

1.3. Organization of this work ... 2

1.4. Author’s Contribution ... 3

2. THEORETICAL BACKGROUND ... 4

2.1. Planning elements .. 4

2.2. Discrete planning methods ... 4

2.3. Fully observable versus partially observable states ... 6

2.3.1. Estimation of environment’s state .. 7

2.4. Planning under uncertainty ... 7

2.4.1. Partially observable Markov decision process ... 8

3. THE PROBLEM FORMULATION .. 10

3.1. The generic problem .. 10

3.2. The simplified problem .. 13

3.2.1. Applied approximations ... 13

3.2.2. Offline deterministic problem .. 14

4. THE ORIGINAL PROGRAM .. 15

4.1. Offline path planner (OPP): .. 15

4.2. Vertices observation guide (VOG): .. 16

4.3. Online path finder (OPF): .. 17

4.4. Optimum action determinant (OAD): ... 19

5. ANOMALIES AND RECTIFICATION ... 21

5.1. Unwanted behavior and characterization ... 21

5.1.1. Observation loops (OLs) ... 21

5.1.2. Motion loops (MLs) ... 25

5.1.3. Incautious motions (IMs) ... 27

5.2. Sources of the errors ... 27

 V

5.3. Command controller (CC): .. 28

5.4. Corrective measures .. 29

5.5. Rectification of loops .. 30

5.6. Rectification of IMs ... 31

5.7. Secondary loop controller (SLC) .. 31

5.8. Normal condition revision .. 34

5.8.1. Aiding the operations in NEC ... 35

6. DYNAMIC ENVIRONMENT IMPLEMENTATION 36

6.1. Moving obstacles .. 36

6.2. Problem formulation ... 37

6.3. Modifying the program ... 38

6.3.1. The OPF modification .. 38

6.3.2. Modifications to the OAD .. 39

6.4. Random walker (RW): ... 39

6.5. Occupancy updater (OU) .. 40

7. RESULTS .. 42

7.1 Robot’s performance in static environment .. 42

7.1.1 The original program .. 42

7.1.2 The new program with active CC unit ... 46

7.1.3 The new program with inactive CC unit .. 50

7.2 Robot’s performance in dynamic environment .. 50

8. CONCLUSIONS AND FUTURE WORK .. 54

REFERENCES ... 56

APPENDIX 1 .. 58

APPENDIX 2 .. 60

APPENDIX 3 .. 64

APPENDIX 4 .. 66

APPENDIX 5 .. 69

APPENDIX 6 .. 72

APPENDIX 7 .. 74

APPENDIX 8 .. 79

APPENDIX 9 .. 80

 VI

LIST OF SYMBOLS

𝐴𝑚: Motion actions
𝐴𝑜: Observation actions
𝐿𝑖: Location of the machine
𝐿𝑖𝑑𝑙𝑒: Idle location
𝐿𝑡𝑎𝑟𝑔𝑒𝑡: Target location
𝑃0𝑏1,𝑃𝑜𝑏2: Observations erring probabilities
𝑆𝑖: State space model
𝑇0: Short time horizon
𝑝0: Initial occupancy belief
�̃�(𝑙𝑖): Reward of occupying a node
𝑟𝑐𝑜𝑙𝑙: Collision reward
q : Propagation probability of random walkers
CI: Collision Incidents
m, n: Dimensions of the environment
O: Obstacle occupancy
r: Reward function
SC: Steps Counts
T: state transition function
α: Discount rate
𝐴: Allowed actions
𝑂𝐵: Observations
𝑖: Time or time-step index
𝑝(𝑂(𝐿𝑖)): Occupation probability of locations
𝑡: Time or time-step

 VII

LIST OF ABBREVIATIONS

CAR: Collision Avoidance Rate
CC: Command Controller
COC: Collision or Crash Cost
DE: Dynamic Environment
DP: Design Parameter
IMs: Incautious Motions
MDP: Markov decision process
MLs: Motion Loops
MOLs: Multiple directional Observations Loops
NEC: Normal Environment Conditions
OLs: Observation Loops
OPF: Online Path Finding
OPP: Offline Path Planning
OTSR: Observation steps to Total number of Steps Ratio
OU: Occupancy Updater
POMDP: Partially observable Markov decision process
SE: Static Environment
SLC: Secondary Loop Controller
SOLs: Single directional Observations Loops
STH: Short Time Horizon

INTRODUCTION 1

1. INTRODUCTION

1.1. Autonomous robot navigation

Over the past few decades and with swiftly evolving technologies, developing
autonomous intelligent robots has sparked an immense fascination amongst many
researchers, especially those in the Artificial Intelligence (AI) community. In particular,
autonomous robot navigation has attracted lot of attention and large amount of
resources due to its importance and broad applications in defense and military,
aeronautics and space and many other technological and industrial organizations.

Strictly speaking from path finding perspective, navigation design of autonomous
robot comes down to three key features:

• The ability to plan optimal paths.
• The ability to move towards a target location in a real-time environment.
• The ability to circumvent obstacles and correct the course to avoid collision.

Initially, these aspects were dealt with separately. However, with extensive research
and development of novel methods, capable of handling complex problems in real-
world applications, the areas are now pursued in combination [1].

The first phase, planning an optimal path, is the process of finding executable
geometric paths for a robot from a start position to its destination and determining
optimal one if more than one path exists. A geometric path consists of a set of
parameters expressing how a robot is located in the physical world. For example, the
simplest configuration of a robot in a Cartesian space is its coordinate pair.

The second feature, motion planning in real-time world, takes time into account. It
refers to a sequence of executable kinematic and dynamic motion actions that enables a
robot to maneuver itself in the environment [2]. In this work with the robot only
simulated, the motion planning is reduced to choosing the optimum action from a list of
available activities at each time step.

The final feature approaches the world with a more realistic notion, assuming that
the environmental information is generally only partially available or completely
unavailable in advance [1]. Therefore, it is necessary to perceive uncertain position and
behavior of the obstacles in order to navigate safely toward the goal and to modify
robot’s conduct accordingly. The quality of robot’s perception depends on the sensors
providing a probabilistic estimation of the occupied and free space and the portion of
the environment used to update the world model according to the current sensor
observation [3]. In addition to unknown environment, other factors are also affecting

INTRODUCTION 2

autonomous robot’s ability to navigate towards its destination, such as localization
uncertainty due to motion imperfection. Therefore an autonomous robot should be able
to take those factors into consideration while planning motions and evading objects [4].

1.2. A motivational example

Good examples that vastly inspired and motivated the author of the thesis are the two
autonomous rovers of the ongoing Mars Exploration Rover Mission (MER), Spirit and
Opportunity, exploring the planet Mars (see Figure 1.1).

Figure 1.1: A concept portrays a NASA Mars Exploration Rover on the surface of

Mars [5].

Since 2003, the twin rovers have been exploring and navigating through the Martian
surface. Considering the difficulties of guiding the robots from the Earth, the robots
have largely been acting autonomously. Thus, from navigational point of view, their
missions have been exemplary cases of path planning and execution under uncertainty
and environmental constraints [5].

1.3. Organization of this work

The thesis is divided into eight Chapters. The first Chapter consists of introductory
material. Chapter two is dedicated to theoretical background giving a brief
understanding of planning methods and algorithms to the reader, with emphasis on the
methodologies employed in this work. It is then followed by the problem of optimal
path finding with static obstacle avoidance and its formulation in Chapter three. The
fourth Chapter aims to explain the pre-existing solution to the problem while its
shortcomings and their rectifications are covered in Chapter five. The navigation
problem with dynamic obstacle avoidance and its implementation are discussed in the
sixth Chapter. The results of numerous experiments with different version of the

INTRODUCTION 3

program and the statistics gathered from the performance of the robot are illustrated in
Chapter seven. Finally the thesis is concluded and some future directions are outlined in
the eighth Chapter.

1.4. Author’s Contribution

The original program was handed to the author for assessment by Prof. Ritala. In its
original form the program was able to some extent to navigate in a static environment.
Since then, the author has been responsible for evaluating the program, identifying its
limitations and finding solutions to improve the performance.

The results of these activities are manifested in form of statistics and charts of robot
behavior, mainly addressed in first half of Chapter 5 and Section 7.1.1. Moreover, the
author implemented new methods and auxiliary components enhancing the robot’s
performance, most notably the controller module which is covered in the latter half of
the said Chapter. The modified program was then put to the test extensively with their
results featured in sections 7.1.2 and 7.1.3.

The author was to add to the robot the capability of navigating in a dynamic
environment. To achieve this, some modules were added and adjustments were applied
to the program. These activities are addressed in Chapter 6. The program was tested in
this state to assess its performance and the results are illustrated in Section 7.2.

THEORETICAL BACKGROUND 4

2. THEORETICAL BACKGROUND

2.1. Planning elements

Although there are broad classes and models of planning, they all virtually share the
same basic elements. These elements are state, initial and goal states, actions, a plan and
a criterion.

In general, planning methods incorporate state space models capturing all possible
situations that could occur. The states can be either discrete (finite, or countable infinite)
or continuous (uncountable infinite) or combinations of them. The planning problem is
to reach the robot’s specified goal state, from an initial state. The actions seek to
achieve this by manipulating the state. Resulting changes in the state may be expressed
as a state-valued function.

The plan is a specific policy, mapping from state space to action space. It may be as
simple as an explicit sequence of actions or more complex. The desired outcome of a
plan is set by a criterion and one that maximizes the given criterion is an optimal plan.

In many applications, it is difficult to formulate the right criterion to optimize and
when it can be formulated, it may be impossible to obtain a practical algorithm that
computes optimal plans. In such cases, sub-optimal solutions may be devised instead to
formulate an approximate criterion. For problems that involve probabilistic uncertainty
optimization arises more frequently. The probabilities are often utilized to obtain the
best performance in terms of expected costs [6].

2.2. Discrete planning methods

In this work the planning problem considered has a finite state space. Therefore in this
thesis there will not be any aspects regarding planning in neither continuous state space
nor will there be any need for geometric models or differential equations to characterize
the planning problem. At its core a discrete path planning method is a systematic graph
search. Being systematic is the key requirement for these or any search algorithm. In a
finite graph, being systematic translates to the algorithm visiting every available state
and keeping track of them, which in finite time enables it to correctly declare whether or
not a solution exists [7].

The rest of this section is mainly based on the reference [6]. Before starting with
particular algorithms, it is beneficial to outline general forward search method. It works
by starting at one vertex and exploring adjacent nodes until the destination node is

THEORETICAL BACKGROUND 5

reached. At any point during the search, three types of states may come forth. A node
may,

• Have remained unvisited
• Have been visited and every potential next state also has been visited, “dead”
• Have been visited but there are still potential next state left, “alive”

The set of alive states is accumulated in a priority line up, for which a priority
function must be specified. This algorithm serves as an entry point for other search
algorithms since the only significant difference between them is the particular function
used to sort the queue. Some search algorithms require a cost to be computed and
associated with every state which may be used to sorting, or otherwise enable the
generation of the plan on completion of the algorithm. Here the optimal cost to return to
the initial state could be stored with each state instead of storing pointers. The action
sequence, which leads to any visited state, is sufficiently determined by this cost alone.
In the following several search algorithms, each of which is a special case of this
algorithm, will be introduced.

Breadth first is a method that specifies the priority function as a First-In First-Out
(FIFO) queue, which selects states using the first-come, first-serve principle. This
causes the search frontier to grow uniformly and is therefore referred to as breadth-first
search. Breadth first guarantees that the first solution found will use the smallest
number of steps.

Depth first is a variant of previous in which the priority function is made a stack
(Last-In, First-Out; or LIFO), thus aggressive exploration of the state transition graph
occurs, as opposed to the uniform expansion of breadth-first search. The algorithm is
called depth-first search because the search dives quickly into the graph inclining
toward investigating longer plans very early. This aggressive behavior might seem
desirable though the particular choice of longer plans is arbitrary. Actions are applied in
loop in whatever order they happen to be defined. The search could easily focus on one
“direction” and completely miss large portions of the search space as the number of
iterations tends to infinity.

Dijkstra’s algorithm is an algorithm for finding single-source shortest paths in a
graph, which is a special form of dynamic programming. Assuming that in the graph
representation of a discrete planning problem, every edge is associated with a
nonnegative cost to apply the action. Then the total cost of a plan is the sum of the edge
costs over the path from the initial state to a goal state. The priority queue is sorted
according to a function called the cost-to-come. For each state, the value called the
optimal cost-to-come from the initial state is defined. This optimal cost is obtained by
summing edge costs, over all possible paths from start to each state and using the path
that produces the least cumulative cost [8].

THEORETICAL BACKGROUND 6

The 𝐴∗ search algorithm is an extension of Dijkstra’s algorithm that tries to reduce
the total number of states explored by incorporating a heuristic estimate of the cost to
get to the goal from a given state known as cost-to-go. In some problems however, it is
hard or impossible to find a heuristic that is both efficient to evaluate and provides good
search guidance [9].

Best first sorts the priority queue according to an estimate of the optimal cost-to-go.
The solutions obtained in this way are not necessarily optimal. However, in many cases
(not guaranteed), the algorithm runs much faster since fewer vertexes are explored. The
worst-case performance of best-first search is worse than that of 𝐴∗ search and dynamic
programming [9, 10].

Iterative deepening tries to find all states that are located in a certain distance 𝑖, or
less from the initial state. The work is discarded if the goal is not found, then, it seeks
all states of distance 𝑖 + 1 or less instead. This algorithm generally iterates indefinitely
until the goal is reached. It is usually preferable approach if the search tree has a large
branching factor which could occur if there are many more vertices in the next level
than in the current level or if there are many actions per state and only a few states are
revisited. The iterative deepening method has better worst-case performance than
breadth-first search for many problems. Furthermore, the space requirements are
reduced because the queue in breadth-first search is usually much larger than for depth-
first search. The A* idea can be combined with iterative deepening to yield IDA* in
which case the allowed total cost gradually increases in each iteration [9].

The value iteration algorithm iteratively computes optimal cost-to-go (or cost-to-
come) functions over the entire state space. It differs from other graph search methods
in two key aspects: providing the optimal path from any state to the goal (rather than
given start state) and being computationally more expensive. Under some special
conditions, the value iteration algorithm can be reduced to Dijkstra’s algorithm. It can
solve a vast collection of optimal planning problems, including those that involve
variable-length plans, stochastic uncertainties, imperfect state measurements, and many
other complications [11].

The algorithms mentioned so far start from the initial state and proceed toward the
goal; hence the forward search. It is also possible on the other hand, to do a backward
version of the tree search algorithm, i.e. from goal back to the start, or pursue a
bidirectional approach that grows two search trees, one from the initial state and one
from a goal state. Nevertheless, the algorithms’ ideas in these approaches remain the
same.

2.3. Fully observable versus partially observable states

Classical robotics often assumes that sensors can measure the full state of the
environment which arguably is an unrealistic assumption. The lack of perfect sensors

THEORETICAL BACKGROUND 7

has two ramifications. Firstly, robot control must be robust with respect to state
uncertainty. Secondly, it must cope with future, anticipated uncertainty, and choose
actions accordingly [12]. In order to behave effectively in a partially observable
environment, it is necessary to use previous state information to aid in the
disambiguation of the states. For instance all the previous information could be
compiled into current state belief and expressed as probability distributions on state
values. Then using system models, the future state belief can be predicted. Once
measurement data is obtained, the state information at the time instant of measurement
and further on is updated.

2.3.1. Estimation of environment’s state

The interaction of a robot and its environment can be modeled as a coupled dynamical
system, in which the robot can manipulate its environment by taking actions, and in
which it can perceive its environment through sensor measurements. The dynamics of
the robot and its environment are characterized in the form of two probabilistic laws: the
state transition distribution, and the measurement distribution. The state transition
distribution characterizes how state changes over time, possible as the effect of a robot
action. The measurement distribution characterizes how measurement data depends on
states. Both laws are probabilistic, accounting for the inherent uncertainty in state
evolution and sensing. The Bayes filter assumes that the state is a complete summary of
the past.

The belief of a system state is the probability distribution over the state, given all
past sensor measurement data and all past controls. The Bayes filter is the principal
algorithm for calculating the belief in robotics. The Bayes filter is recursive; the belief
at time 𝑡 is calculated from the belief and action at time 𝑡 − 1 and measurement data at
𝑡 [12].

2.4. Planning under uncertainty

Classical robotics often assumes that the environment state is fully observable and the
effects of actions are deterministic. In practice, however, the robot and its environments
are stochastic in nature and thus uncertain.

Robots, like all systems, naturally have some limits to their capabilities. They can
accomplish their delegated tasks within the reach but beyond that there is no guarantee.
Additionally, there always will be some imprecision in robots’ performance even within
their limits. These inaccuracies could occur in form of measurement errors, motion
errors and etc. The probability of these errors might be known or not [20]. The
environments are in constant state of change. Thus no matter how accurate the surveys
have been, there will be always inconsistencies in their maps [18]. Setting forth few
examples, objects are where they should not or vice versa, topography of the

THEORETICAL BACKGROUND 8

environment has changed or because of a heavy rain some lands surfaces are
compromised significantly. Any of those might happen even as soon as the survey itself
and remain unnoticed. On top of them, the problem gets worse as the time passes by
[19].

Considering these facts, it is insufficient to plan a single sequence of actions and
blindly execute it at run-time; but rather it is mandated that the robot receives
measurement data, updates its state belief and reacts accordingly [12]. Note that in
theory, the plan can be generated offline as a mapping from belief state to action space.
Then the only run-time action is to receive measurement data, update the belief and then
use the offline-computed control law to react. However, computing the plan offline may
be impossible in practice due to computational complexity. Instead the problem may be
solved online as a mapping of current belief to action space.

The planning problem may be formulated as sequence of decision problems such
that the outcomes of actions are not known with certainty. In this work the state
uncertainty is associated with the obstacle occupancies whereas the current and future
locations of the robot are known without uncertainty. POMDP is one instrumental
mathematical framework for modeling decision making in such circumstances and it is
briefly introduced in the following.

2.4.1. Partially observable Markov decision process

Markov decision processes (MDP) serve as a basis for solving the more complex
partially observable problems that ultimately is of interest. An MDP is a model, in
which the decision maker takes as input the state of the world and generates as output
actions, which themselves affect the state of the world. In the MDP framework, it is
assumed that, although there may be a great deal of uncertainty about the effects of a
robot's actions, there is never any uncertainty about the robot's current state –it has
complete and perfect perceptual abilities [6].

A Markov decision process can be described as a tuple (𝑆,𝐴,𝑇, 𝑟) where, 𝑆 is the
state representation, 𝐴 is the allowed actions set, 𝑇 is the transition function and 𝑟 is the
reward function. In this model, the next state and the expected reward depend only on
the previous state and the action taken; even if we were to condition on additional
previous states, the transition probabilities and the expected rewards would remain the
same (Markov property). The core problem of MDPs is to find a policy for the decision
maker; a function that specifies the action that the decision maker will choose when in
any of the states. The problem can be solved in many ways such as by value iteration
dynamic programming [13].

A Partially Observable Markov Decision Process, POMDP, is a generalization of
Markov Decision Processes. A POMDP models a decision process in which it is
assumed that the system dynamics are determined by an MDP, but the robot cannot

THEORETICAL BACKGROUND 9

directly observe the underlying state. Instead, it must estimate a probability distribution
over the set of possible states, known as the belief state, based on a set of observations
and observation probabilities, and the underlying MDP [16]. The belief state is
estimated as described in subsection 2.3.1.

A POMDP can be described as a tuple (𝑆,𝐴,𝑇, 𝑟,𝑂𝐵,𝑃𝑜𝑏) where, 𝑂𝐵 is the set of
possible observations and 𝑃𝑜𝑏 is a set of observation probabilities as functions of the
state. In this form the decision maker’s goal is to maximize expected discounted future
reward. Solutions to this problem can be found in same way as for MDPs [13]. The
difficult is in that the solution of MDP maps the state space to action space whereas that
of POMDP maps the space of state beliefs on actions space. Therefore in practice
POMDPs are often computationally virtually intractable to solve exactly, so methods
have been developed that approximate solutions [14].

THE PROBLEM FORMULATION 10

3. THE PROBLEM FORMULATION

3.1. The generic problem

In this section the generic problem of path planning is formulated using the POMDP
framework introduced in section 2.4.1. Although the problem is quite general, it is still
simplified to a degree. The assumption adopted for the simplification is described
further into the section. In preparation of this Chapter reference [15] is extensively used.

In this work the area is modeled by a 𝑁 × 𝑀 square lattice with nodes coordinates
(𝑚,𝑛), where 𝑚 ∈ [1:𝑀], 𝑛 ∈ [1:𝑁]. At any time step 𝑖, the state consists of the
robot’s location and obstacle occupancies, i.e. 𝑆𝑖 = {𝐿𝑖;𝑂(𝑚,𝑛)}. As the main
objective, the robot must get from its present location to a target location 𝐿𝑡𝑎𝑟𝑔𝑒𝑡. From
there the robot then moves to idle position 𝐿𝑖𝑑𝑙𝑒, where it stays. In a static environment
it is assumed that the obstacles do not move. The 𝑂(𝑚,𝑛) takes a binary value
depending whether there is an obstacle at (𝑚, 𝑛) or not. Note that both 𝑂�𝐿𝑡𝑎𝑟𝑔𝑒𝑡�
and 𝑂(𝐿𝑖𝑑𝑙𝑒) are equal to zero.

At each time step the robot may either move or observe. Hence the action space
is 𝐴 = 𝐴𝑚 ∪ 𝐴𝑜, in which 𝐴𝑚 and 𝐴𝑜 denote the motion actions and observation actions
respectively.

Figure 3.1 demonstrates the allowed moves which are one step in the four
directions, i.e. 𝐴𝑚 = {𝐸,𝑊,𝑁, 𝑆}. At the edges of the area certain moves may take the
robot over the edge. Therefore those moves are excluded in path planning.

Figure 3.1: A part of the lattice; east, west, north and south moves are allowed [6].

THE PROBLEM FORMULATION 11

It is assumed that within each time step, the robot is able to accurately localize itself.
Therefore the transition model is deterministic. For example should the robot take an
eastbound motion, its future location would have probability distributions as described
in Equation 3.1.

Equation 3.1

The robot has eight observation possibilities. The action space is defined as

 𝐴𝑜 = {(𝐸,𝑁𝐸), (𝐸, 𝑆𝐸), (𝑆, 𝑆𝐸), (𝑆, 𝑆𝑊), (𝑊, 𝑆𝑊), (𝑊,𝑁𝑊), (𝑁,𝑁𝑊), (𝑁,𝑁𝐸)}.
Each observation is about the occupation of two locations by obstacles (see Figure 3.2)
and thus providing two bits of information.

Figure 3.2: Observations’ possibilities and observable points. The black circle

represents the robot’s current location.

The information obtained from observations is described for instance as in Equation
 3.2.

Equation 3.2

Variables 𝑃𝑂𝐵1 and 𝑃𝑂𝐵2, respectively denote the erring probabilities of the nearer and
further points colored blue and yellow in Figure 3.2. The erring probabilities are
independent on whether the site is occupied or not (symmetric erring).

THE PROBLEM FORMULATION 12

Each node on the lattice is associated with a small negative value which defines its
cost of occupation. In real maps these values are determined by taking into account the
specifications of the area such as topography, surface material, or any minor obstacle
[17]. In this work however, those values, denoted by �̃�(𝐿𝑖), are synthetically generated
random numbers, between zero and minus one. To simulate a more lifelike situation,
sets of known static obstacles are scattered in the area map. If the robot moves to a
location of an obstacle a collision occurs. The cost allocated to occupied locations,
represented by 𝑟𝑐𝑜𝑙𝑙, is significantly higher, by their absolute value, than at the other
locations. Finally 𝑟𝑒𝑛𝑑 represents the destination’s reward while the idle state has zero
reward. The values are stored in an array known as the reward function as described in
Equation 3.3.

Equation 3.3

In some cases the obstacle occupancies are uncertain. If the occupancy probabilities
from some time instant onward are fixed (no obstacle movement, no observations), the
resulting path planning problem is deterministic with rewards given in Equation 3.4.

Equation 3.4

()

≥−+⋅
<

=

idle

ettend

iiicolli

ii

ii

L
Lr

LOpLrLOprLOp
LOpLr

LOpLr

0

55.0))(()(~))((1))((
55.0))(()(~

)))((,(
arg

Note that in this work, the collision reward is only applied to occupation
probabilities equal or larger than 55 %. Furthermore if the time evolution of the
occupation probabilities is known, these results in a deterministic problem with time
varying rewards read as in Equation 3.5, which can be solved as value iteration on a
time expanded graph.

Equation 3.5

()

≥−+⋅
<

=

idle

ettend

iiicolli

ii

ii

L
Lr

LOpLrtLOprtLOp
LOpLr

tLOpLr

0

55.0))(()(~));((1));((
55.0))(()(~

)));((,(
arg

A final note on the reward function is that motions or observations have the same
costs but as they are mutually exclusive, the robot remains at its present location while
making an observation and adds a cost of �̃�(𝐿𝑖) compared to moving along the shortest
path.

=
=

=

idle

ettend

icoll

ii

ii

L
Lr

LOr
LOLr

LOLr

0

1)(
0)()(~

))(,(
arg

THE PROBLEM FORMULATION 13

The path planning problem is then formulated as in Equation 3.6.

Equation 3.6

{ }[]
{ } { }

()

()inmOpP

LOLrEPLV

nmO
i

ii
ii

AAa

NM
nm

nmO
ii

iioMiii

,1),(

)(,max,

)),((

1'
''

,
1,

),(

'''

==

= ∑
∞

+=∈
= ∞

=
∞
=

Where 𝑃𝑖

𝑂(𝑚,𝑛) describes the probabilistic current area map. The set consists of ones for
known occupied locations, zeros for locations known to be not occupied and values
belonging to (0,1) when the occupancies of locations are uncertain.

The problem may be solved by receding horizon principle so that at time 𝑖, an entire
optimal plan is generated and the first action is implemented accordingly. Then at
time 𝑖 + 1, if new information is obtained through information channels the planning is
repeated. Otherwise no re-planning is needed and the solution may proceed with the
initial optimal plan.

Obviously the search space is huge. Depending on the area dimensions, both an
offline solution and an online solution with a large horizon have to deal with immense
search trees. Therefore, some approximations must be applied in order to solve the
problem.

3.2. The simplified problem

3.2.1. Applied approximations

As described earlier in this chapter, the search space for the generic problem is vast due
to the long time horizon till the idle state and the large number of occupation
probabilities.

The first approximation is proposed to reduce the search space. Here, it is assumed
that in the planning at time i, the search space is radically narrowed so that only for a
short time horizon T0 both observation and motion actions are considered after which
only motion actions are deemed available. The problem is then scaled down to the one
presented in Equation 3.7.

Equation 3.7

{ }[]

{ } { }
()

{ } { }
()

{ } { }
() { }[]

+=

+≈

∑

∑ ∑
+

+=
=++

∈

+

+=

∞

++=∈∈

=

−
=

−
=

∞
+=

∞
+=

−
=

−
=

0

0010
'

10
''

0

00'0''
10

'
10

''

1'

,

1,
),()0(

''

1' 1'
''''

,
1,

),(

,)(,max

)(,max)(,max

,

Ti

ii

NM

nm
nmO

TiTiii
AAa

Ti

ii Tii
ii

Aa
ii

AAa

NM
nm

nmO
ii

pLVLOLrE

LOLrLOLrE

pLV

T
iiOM

T
iii

TiiMTiii
T

iiOM
T

iii

THE PROBLEM FORMULATION 14

In the equation the variable V(0) is the optimal value of being at location 𝐿𝑖+𝑇0.

The problem can now be solved with on-line dynamic programming. In an
exhaustive search until the short time horizon T0, all possible action sequences are
considered and robot’s location and occupation probabilities are calculated resulting in

some 𝐿𝑖+𝑇0 , �𝑃𝑖+𝑇0
𝑂(𝑚,𝑛)�

𝑚,𝑛=1

𝑀,𝑁
, noting that occupation probabilities are weighted with their

prior information. Then the corresponding V(0) part is solved and the value is back
propagated to 𝑖. Although solving for V(0) is a straight forward problem, the
computational burden in Equation 3.7 comes from its many repetitions. As there are
four move actions with no associated data values and eight observation actions, each
with four possible data outcomes, the branching factor of the on-line optimization is 36.
Hence the number of V(0) problems to be solved for a given T0 is 36T0. An extreme
approximation is to replace occupancy information in the V(0) problem with the original
map. The transformed problem is then read as in Equation 3.8.

Equation 3.8

{ }[]
{ } { }

() { }[]

+≈ ∑
+

+=
=+

∈

=

−
=

−
=

0

010
'

10
'' 1'

,

1,
)),,(()0(

''

,
1,

),(

,)(,max

,
Ti

ii

NM

nm
mapnmO

Tiii
AAa

NM
nm

nmO
ii

pLVLOLrE

pLV

T
iioM

T
iii

In its current form, solution of the problem till T0 demands the same exhaustive tree
search as before. However, the V(0) part could be solved off-line once and the end
rewards for on-line optimization could be read from a lookup table.

3.2.2. Offline deterministic problem

This path planning problem with known fixed obstacle occupancies and action space
limited to only motion actions is a straight forward deterministic problem. The optimal
value problem in Equation 3.8 is then reformulated and read as in Equation 3.9.

Equation 3.9

[]
{ } { }

() () [][])()(maxmax 1
)0(

1
1'

'
)0(

'''
iiiiaii

i
Aa

i aLVaLrLrELV
iiiMiii

++

∞

+=∈
+=

= ∑∞
=

∞
=

To solve the problem, value iteration algorithm may be employed. First the equation is
solved with an arbitrary 𝑉(0,k) on the right hand side resulting in some 𝑉(0,k+1) on the
left hand side. Then the calculation is repeated with the obtained value and the iterations
will continue till the convergence. The value iteration algorithm guarantees the
convergence in finite number of steps.

THE ORIGINAL PROGRAM 15

4. THE ORIGINAL PROGRAM

The proposed solution to the path finding problem consists of two methodologies: an
offline deterministic problem and an online stochastic one. Hence in this program, the
offline path planner (OPP) solves the deterministic part of the problem using value
iteration algorithm; whereas the online path finder (OPF), utilizes dynamic
programming method to solve the POMDP body of the problem. In this arrangement,
the OPP is a sub-process of the OPF. Schematic of the entire program is depicted in
Figure 4.1.

Figure 4.1: The original program’s schematic.

In this chapter, the implementations of program components are described in order
that they appear in the structure.

4.1. Offline path planner (OPP):

The offline path planner finds a deterministic optimal path to the destination. Based on
the ideas developed in section 3.2, it also provides a table of optimal end rewards for the
online stochastic part of the problem. The aim of this section is to provide an insight
into the implementation of the solution. The codes for this module can be found in
Appendix 1.

Design
Parameters

(DPs)

THE ORIGINAL PROGRAM 16

The synthetic environment, through which the robot tries to find its way, was
described in section 3.1. To create the model, the OPP acquires the dimensions of the
area and accordingly generates site rewards as random numbers between zero and minus
one. Then the nodes known to be occupied with static obstacles are assigned with a very
large negative reward. Finally the destination point is marked by a very high reward and
the idle state node is marked zero. These values, stored in an array, serve as the reward
function.

In certain circumstances, the OPP module may be re-executed. Therefore the
function has the capability to update the reward function to solve the path finding
problem. Any obstacle occupation change in the area map is applied to the reward
function according to Equation 3.4.

The plan is a set of allowed move actions at each location by the robot. In this work
along with the square lattice, there are at most four moves from any given node (north,
east, south and west). Note that the freedom of motion is reduced at the edges and
corners to three and two move actions, respectively. Also form the target location the
robot moves to the idle site, where it stops all operations. To incorporate such action
space in the program a matrix, named Steps, is generated. This matrix specifies where
the robot will reach by taking any of the quartet moves from any given point.

The optimal path problem formulated in Equation 3.9 can now be solved with value
iteration algorithm. In the OPP, the optimal value is the sum of the reward obtained
making moves and optimal value in the previous iteration, noting that in the first
iteration the optimal value is equal to zero. In the later iterations however, the optimal
value consists of the highest values from the previous iteration. The iterations will
continue for 10000 times although technically according to the algorithm 𝑁 × 𝑀 times
should suffice. Then the highest value in each step is cross-referenced with its
respective travel, thus extracting optimal actions. Finally starting from the current
position of the robot, the optimal deterministic path to the goal is determined from the
optimal actions and the step matrix together. The total reward collected from is the sum
of the values associated with each node on the optimal path.

4.2. Vertices observation guide (VOG):

The robot gathers information about its surroundings by making observations. The
observation mechanism has been described earlier in section 3.1.

In the program implementation in order to identify the observed nodes, the robot
utilizes a simple chart, generated by the VOG component. From this table, knowing the
current position, from which an observation is being made, and also the direction of the
surveillance, which is marked with a number from one to eight, the robot is able to
recognize the two observed locations. The codes for this module can be found in
Appendix 3.

THE ORIGINAL PROGRAM 17

4.3. Online path finder (OPF):

This section presents the main building block of the program. The OPF mainly prepares
the elements of the path finding problem framework for another module which makes
the decisions. It is in fact a virtual path finder robot which perceives its environment,
makes decisions, carries out actions and updates its state. The codes for this module can
be found in Appendix 2.

As explained in section 3.2.1, the robot relies on the POMDP framework with some
approximations to devise the Equation 3.8. The problem is then solved with dynamic
programming method. There are some parameters required to be defined for problem
formulation and its solution method, called the design parameters (DPs) which are
introduced in the following.

The first step is to draw a primary and deterministic plan based on known conditions
of the area (topography, obstacles and etc.), hence an offline planning. This
deterministic plan is the lookup table for the approximated optimization problem
presented in section 3.2.1. The offline planner may be called several times if required
(more on the issue in sections 5.4 and 5.5).

Depth or the short time horizon (STH) is the length of tree search ahead in time.
Within this length full action space is applicable whereas after it the action space is
limited to motion actions only.

Local area dimensions define a sample rectangular area surrounding the current
position of the robot that the program confines its calculations to it, per instructions of
dynamic programming solution. Local area is chosen such that within the given depth
the robot will not leave it.

Collision cost is a factor that the robot applies in its calculations to prioritize its
choices of actions within the STH length. High cost of collision would lower the
expectation of getting higher reward by taking motion steps and consequently the
observations become more prominent. On the other hand, a low COC would decrease
the cost of motion steps to a point where they are slightly less costly than staying in the
same location, which is the robot’s state while observing, and hence more motion steps.
In the real world the COC depends on various factors ranging from the nature of the
obstacle to the quality of the impact. In this work however, the parameter is determined
by looking into robot’s behavior and statistically evaluating its responses (see section
 7.1.1). Suitable COC are assigned based on the STHs.

Observation probabilities set defines the erring probability distribution of the
observations made by the robot. It introduces the partially observable part to the
POMDP problem formulation.

THE ORIGINAL PROGRAM 18

Global occupancy represents the belief state in the POMDP framework explained in
sections 2.4.1 and 3.1. In this work the occupancy belief is naively adopted at first, i.e. it
is believed that each node has the same probability of occupancy as the other. Therefore
an array of same probabilities is produced, where each member is associated with a
particular location on the map.

In the absence of a real environment and to test the robot, the surroundings should
be synthesized. The base area, where complete knowledge of the environment is
assumed, is generated in the OPP and at the beginning of the process. However, the
random obstacles to be avoided are launched to the environment in the OPF, noting that
the robot is not informed about whereabouts or number of them. In general the obstacles
in the environments are of different sorts; some are stationary and others are dynamic.
However, the robot with the present observation mechanism and program cannot differ
between the two. Thus all objects are treated as either all static or all dynamic obstacles.

Preparations before commencing the process of path finding continues with
generating the vertices observations guide (see section 4.2), setting some practical
counters, defining the number of allowed steps and the starting position of the robot.

The optimal path in this work is variable-length plan meaning that the number of
steps (iterations) that takes to solve the problem is not fixed [6]. Statistical analysis has
shown that if the online stochastic problem is to be solved, it may take up to five times
the number of steps required for the offline deterministic problem. Of course having
broader action space with observations and not proceeding when observing in the online
stochastic process, account for much bigger portion of the difference; however
frequency of encounters with random obstacles has an impact on the number of steps as
well.

The path finding process is repetitive set of actions and therefore they are performed
in a while loop. The loop carries on as long as the robot has not reached immediate
vicinity of destination. The procedures within the loop are described in the following.

In a dynamic environment the OPF starts its loop actions with calling the RW
module to get receive the updated location of the walkers. It is to be noted that positions
of the obstacles are not reported to the robot and it only perceives them through its
observation actions.

In offline planning mode the whole area is being considered for the optimal path. In
the online part on the other hand, this notion would lead to a huge computational
burden. The dynamic programming suggests a search tree limited to smaller vicinity,
the dimension of which was determined earlier, around the current position of the robot.
Within this limited neighborhood the robot solves the decision making problem for the
best course of actions. To map the local area around the robot, neighboring nodes within
the specified dimensions are identified. The local state of the robot which consists of the

THE ORIGINAL PROGRAM 19

location of the robot its local belief state, local rewards and local allowed actions are
then generated.

At this point all the elements required to construct the Equation 3.8 are ready. The
next action in the loop for the program is to summon the optimum action determinant
(OAD) which actually solves the problem. The implementation of the module is
discussed in section 4.4. After execution, the function returns the best immediate action
that the robot should take.

Depending on the action that the function instructs, the robot’s state or the belief
state will be altered. If the optimal action is to move, the belief state about obstacles
remains unchanged and the state is updated by the new position of the robot; which is
set by utilizing the previous coordinates, the suggested direction of the motion, noting
that in that the robot’s future location is fully predictable. Conversely, if the optimal
action is an observation, the robot should look in the direction specified by the OAD
and then update the belief state accordingly. In this work the observations are virtual
simulations, in which the observation error probabilities are embedded. The results of
these simulations along with previous belief state, update the belief utilizing Bayes
formula. In a static environment, the update process consists of marking the observed
nodes as occupied or vacant by increased or decreased probability respectively.

With the necessary adjustments made to the state belief, the loop reaches to its
turning point so it continues from the top if the robot is still in its midst way. Otherwise,
when the robot is immediate neighborhood of the goal, the program exits the loop and
continues to its destination approach protocol. The protocol assumes that there is no
obstacle present in immediate vicinity of target location and thus the program reduces to
choosing a way out of two according to the reward map. Finally when the destination is
reached the robot assumes an idle position and stops.

4.4. Optimum action determinant (OAD):

The Optimum action determinant is the module that solves the Equation 3.8. The
module recursively calculates the optimal action for the current time instant by
considering all the possible action sequences beginning from the time instant considered
till the end of the fixed depth. At the end of the short time horizon last move of the
robot, the online solution uses the optimal values (cost-to-go) of the offline solution
calculated for that grid cell which then finally gives the values for each possible action
at current time instant. Only the next action is ever executed from the planned action
sequence after which the online optimization is again considered from the beginning at
the next time step by utilizing the possible new measurement information obtained if
observation action is taken.

THE ORIGINAL PROGRAM 20

The OAD is designed to address motion actions with numbers one to four,
corresponding to four directions while returning numbers five to 12 for corresponding
observation actions. The codes for this module can be found in Appendix 4.

ANOMALIES AND RECTIFICATION 21

5. ANOMALIES AND RECTIFICATION

The robot’s behavior with the current program demonstrates some anomalies. In this
Chapter, first forms of the unwanted behavior and their characterization method are
covered. Next the sources of errors are discussed. The Chapter then ends by proposing
methods and implementing them to rectify such errors.

5.1. Unwanted behavior and characterization

Numerous tests have shown that the robot’s unwanted behavior is mostly manifested in
the form of different infinitely repetitive patterns of observation or motion and no
advancement along the path. These patterns are discussed in their respective sections
 5.1.1 and 5.1.2. Other notable problem is the issue of incautious motion, a hazardous
trend which is unraveled in subsection 5.1.3.

5.1.1. Observation loops (OLs)

It has been witnessed in several occasions that the robot stands still and endlessly
observes the same direction or different directions. The robot encounters such problem
in narrow corridors or neck-like areas and more often when its path is blocked in the
front by an obstacle and on the side by walls. This anomaly is of two specific types:
single directional observation loop and multiple directions OL.

Single directional observations loop (SOL)

Figure 5.1: An instance of a single directional observation loop.

 0 5 10 15 20 25 30
0

5

10

15

20

25

30

Start
Point

Destination
Point

Observations
loop

ANOMALIES AND RECTIFICATION 22

Figure 5.1 depicts an instance of a single directional observation loop. Note that the
robot is incapable of finding a way around with STH equal to three, because of the
obstacle in front and the wall to the right.

To further clarify the situation portrayed in the Figure, it is accompanied by Table
 5.1, in which the initial position (Pos. i), the action performed by the robot (Action) and
the destination location after taking an action (Pos. j), are listed.

Table 5.1: States and actions.
No. Step Pos.i Action Pos.j
1 80 116 𝑂: (𝑁,𝑁𝐸) 116
2 81 116 𝑂: (𝑁,𝑁𝐸) 116
3 82 116 𝑂: (𝑁,𝑁𝐸) 116
4 83 116 𝑂: (𝑁,𝑁𝐸) 116
5 84 116 𝑂: (𝑁,𝑁𝐸) 116
6 85 116 𝑂: (𝑁,𝑁𝐸) 116
7 86 116 𝑂: (𝑁,𝑁𝐸) 116

Theoretically, if the situation in a certain location remains unchanged, Bayes rule
assures us that by looking into its direction repeatedly, the accuracy of the information
about that position will be increased. Figures 5.2 and 5.3 demonstrate examples of
changes in occupancy probability of a single point which is being observed several
times. The data for these figures is obtained by inducing observation loops to the
program; and then executing it for at least 20 rounds while recording occupancy
probability of specific points after every observation. Note that the points subject to
these experiments are the further nodes from the robot that have higher uncertainty.

Figure 5.2: Drop in occupancy probability of a single point by repeated uncertain

observations. Note that the fluctuation due to a false positive on the fourth observation
is settled well before the tenth observation.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

9

10

Number of Observations

%
 O

cc
up

an
cy

 p
ro

ba
bi

lit
y

Drop in occupancy probability

data 1
 shape-preserving

ANOMALIES AND RECTIFICATION 23

Figure 5.3: Rise in occupancy probability of a single point by repeated uncertain

observations.

The Figures clearly illustrate that after around five observations, the occupancy
belief practically reaches its final value and hereafter further observations made in that
particular way are redundant.

Of course in reality the notion of static environment is naive and perilous; yet,
considering our setting, since the likelihood of variation is low enough and by accepting
some risk it can be adopted. Still, it is wise to increase the number of redundant
observations as a precautionary measure. In this work, seven redundant observations in
one direction are allowed before characterizing the robots behavior as a loop.

Multiple directional observation loop (MOL)
Another type of OL occurs when the program commands the robot to observe its
surroundings over and over again without taking any further action. The difference here,
comparing to the situation above, is the direction of observations which is not necessary
the same. An instance of such event is portrayed in Figure 5.4 and supplemented by
Table 5.2.

0 2 4 6 8 10 12 14 16
10

20

30

40

50

60

70

80

90

100

Number of Observations

%
 O

cc
up

an
cy

 p
ro

ba
bi

lit
y

Rise in occupancy probability

data 1
 shape-preserving

ANOMALIES AND RECTIFICATION 24

Figure 5.4: An instance of a multiple directional observation loop.

Table 5.2: States and actions.
No. Step Pos.i Action Pos.j No. Step Pos.i Action Pos.j
1 286 525 𝑂: (𝑊,𝑁𝑊) 525 19 304 525 𝑂: (𝐸,𝑁𝐸) 525
2 287 525 𝑂: (𝑊, 𝑆𝑊) 525 20 305 525 𝑂: (𝐸,𝑁𝐸) 525
3 288 525 𝑂: (𝑊,𝑁𝑊) 525 21 306 525 𝑂: (𝑆, 𝑆𝑊) 525
4 289 525 𝑂: (𝑊, 𝑆𝑊) 525 22 307 525 𝑂: (𝑊, 𝑆𝑊) 525
5 290 525 𝑂: (𝑊, 𝑆𝑊) 525 23 308 525 𝑂: (𝑊, 𝑆𝑊) 525
6 291 525 𝑂: (𝑊, 𝑆𝑊) 525 24 309 525 𝑂: (𝑊,𝑁𝑊) 525
7 292 525 𝑂: (𝐸, 𝑆𝐸) 525 25 310 525 𝑂: (𝑊,𝑁𝑊) 525
8 293 525 𝑂: (𝑊, 𝑆𝑊) 525 26 311 525 𝑂: (𝑊,𝑁𝑊) 525
9 294 525 𝑂: (𝑆, 𝑆𝑊) 525 27 312 525 𝑂: (𝑊,𝑁𝑊) 525
10 295 525 𝑂: (𝑆, 𝑆𝑊) 525 28 313 525 𝑂: (𝑊,𝑁𝑊) 525
11 296 525 𝑂: (𝑆, 𝑆𝑊) 525 29 314 525 𝑂: (𝑊,𝑁𝑊) 525
12 297 525 𝑂: (𝑆, 𝑆𝑊) 525 30 315 525 𝑂: (𝐸,𝑁𝐸) 525
13 298 525 𝑂: (𝑆, 𝑆𝐸) 525 31 316 525 𝑂: (𝐸,𝑁𝐸) 525
14 299 525 𝑂: (𝐸, 𝑆𝐸) 525 32 317 525 𝑂: (𝐸,𝑁𝐸) 525
15 300 525 𝑂: (𝐸,𝑁𝐸) 525 33 318 525 𝑂: (𝐸,𝑁𝐸) 525
16 301 525 𝑂: (𝐸,𝑁𝐸) 525 34 319 525 𝑂: (𝐸,𝑁𝐸) 525
17 302 525 𝑂: (𝐸, 𝑆𝐸) 525 35 320 525 𝑂: (𝐸,𝑁𝐸) 525
18 303 525 𝑂: (𝐸,𝑁𝐸) 525

 Following the same logic as stated in the SOL case, the threshold for
characterization of the behavior as a loop, including redundancy, is set on 35.

ANOMALIES AND RECTIFICATION 25

5.1.2. Motion loops (MLs)

Motion loops are identified as the occasions in which the robot performs the same
motion sequence again and again and not progressing in its path. Compared to
observations loops, they are not very likely to occur; nevertheless they have been
observed. Several tests have revealed that in motion loop cases, the incorrect perception
of the robot from the environment, i.e. seeing obstacles where they are not, coupled
with short time horizon, are the root causes of the problem. As anticipated, these errors
are also often happening in narrow corridors or neck-like areas. Reciprocating motions
and circular motions are the two categories of the motion loops which will be discussed.

Reciprocating motions
Figure 5.5 is an example of reciprocating motions accompanied by Table 5.3.

Figure 5.5: An instance of reciprocating motions.

Table 5.3: States and actions.
No. Step Pos.i Action Pos.j
1 321 528 𝑀:𝑁 529
2 322 529 𝑀: 𝑆 528
3 323 528 𝑀:𝑁 529
4 324 529 𝑀: 𝑆 528
5 324 528 𝑀:𝑁 529
6 326 529 𝑀: 𝑆 528
7 327 528 𝑀:𝑁 529
8 328 529 𝑀: 𝑆 528

As it is clear in the Table 5.3, the robot has fallen in a back and forth motion loop.
The pattern is easily identified by analyzing the unique values of either action vector or

Start
Point

Destination
Point

Reciprocating
Motion

ANOMALIES AND RECTIFICATION 26

position vector; in such an event, i.e. reciprocating motion, the unique vector each
would have a length equal to two.

The question remains is the number of redundant motions allowed before
characterization. In reviewed cases there have been legitimate circumstances that the
robot had to be in two consecutive locations for maximum of three times in six serial
steps. However, following the same footsteps for the fourth time has been
acknowledged as an indicator of a loop.

Circular motion loops
Another form of motion loops which may happen, but not yet observed, are those of
circular nature. It must be noted that these motions are termed circular in the sense that
they form closed loops. These circular motions are harder to detect due to their variety
of shapes and sizes. Nevertheless, the possibility of them happening ever increases as
the passage ways in the environment get more crowded with dynamic obstacles.

In this work, the sole circular motion loop covered is a four step loop, i.e. moving on
corners of a square as displayed in Figure 5.6. It must be noted that this Figure is
hypothetical and it is only demonstrated to make the concept clear.

Figure 5.6: An instance of circular motions. Note that this image is hypothetical.

Same as reciprocating motions, this loop is also being identified by analyzing the
current and past positions of the robot. If the robot has been occupying the same four
locations in its past 16 steps, the pattern is characterized as a circular motion loop. More
sophisticated pattern recognition techniques are required in order to distinguish other
types of circular motions, which are out of scope of this work.

Start
Point

Destination
Point

Circular
motion

ANOMALIES AND RECTIFICATION 27

5.1.3. Incautious motions (IMs)

The robot’s wrongful presumption of open space is concerning. It has been witnessed
that in some cases, where the robot has enough room to move and has not discovered
any obstacle in its immediate past observations, even if there have been some, it
proceeds incautiously and without evermore observing its surroundings like depicted in
Figure 5.7.

Figure 5.7: Instances of incautious motions.

The nature of this tendency is not yet fully understood which makes it harder to
characterize the anomaly. Nevertheless, the robot must observe its surroundings in
reasonably spaced steps. According to observation mechanism’s design, even in
favorable circumstances, the robot would have no reliable observation based
information about the passage ahead after taking three consecutive and not retracting
motion steps. Therefore, minimum of one observation is required in every three steps.
Any occasion in which the robot deviates from this minimum requirement, may be
characterized as a case of IM.

5.2. Sources of the errors

The unwanted behavior described in the previous sections is due to two sources. The
first one is the approximations applied to the generic problem and the second is
inappropriate design parameters. The latter one, however, depends to a great extent on
the approximations, so if no approximations were made the design parameters would
not have caused any issue. For instance the effect of the collision cost on the robot’s

Start
Point

Destination
Point

Incautious
motions
begins

ANOMALIES AND RECTIFICATION 28

behavior is far less with higher short time horizon (see Table 7.2). Therefore, the
approximations are considered as the only source of error in this section.

In order to solve the generic problem of Equation 3.6, two approximations were
made to it. The first one was to assume that the search space radically shrinks at
planning time so that full action space is only considered for a short time horizon and
after that only motion actions are available. The second was to replace occupancy
information in the latter part of the problem with the original map rather than using the
full information obtained till that point in time.

The first approximation limits the robots options and causes failure in accurately
anticipating steps beyond STH and thus inability to find a maneuvering solution. While
a higher STH should eliminate this problem to some extent, it would also increase the
computational costs more than exponentially, which obviously counters the objective of
the approximation in the first place.

The shortcoming of the second approximation is that since it rates the paths after the
short time horizon based on the original map, the results may favor paths that are known
by on-line observations to be blocked with high probability. In particular, if the optimal
path based on the original map goes through a narrow passage and then this passage is
observed to be blocked, the solution does not find an alternative path, unless it is T0
move steps away or closer.

5.3. Command controller (CC):

In this work, based on fundamentals of feedback control, a Command controller is
designed to look for suspicious patterns in the robot’s behavior and call for respective
corrective action upon recognizing those patterns. A rough schematic of the CC’s
function is depicted in Figure 5.8.

Figure 5.8: Outline of the command controller’s function.

The controller unit is introduced into the OPF just before the turning point of the
loop (see Figure 5.9), where the state is updated with the latest action.

ANOMALIES AND RECTIFICATION 29

Figure 5.9: The new program’s schematic with command controller.

The controller issues warnings which are then translated into suitable responses
within the online pathfinder itself. The assignments of reactions are explained in
sections 5.5 through 5.7.

In contrast, measures taken to eliminate the unwanted behavior may burden the
robot’s operations in normal settings. Therefore it is logical to revise the rectifications
once they were not required, hence another role assigned to the command controller.
The concept and its methodology are described in 5.8

Command controller is perhaps the most significant module in this work without
which the robots performance suffers gravely; a proof of that is the overall success rate
which is discussed in subsections 7.1.2 and 7.1.3. The codes for the CC unit can be
found in Appendix 5 and the corresponding actions added to the online path finder are
covered in Appendix 6.

5.4. Corrective measures

The robot’s behavior may be manipulated through certain adjustments of its parameters.
These parameters are used to solve the path finding problem. Altering them may lead to
more accurate solution and consequently more desirable behavior of the robot.

ANOMALIES AND RECTIFICATION 30

The parameters which are open for adjustments range from the reward function to
the COC and the STH. Change in each of the values of these parameters has its
consequence in the robot’s output.

The approximated Equation 3.8 always uses the initial reward function which was
constituted to be problematic. In such cases, solving the offline planning problem again,
i.e. executing the OPP, with updated obstacle information can be applied to determine
the actual reward function. The benefit is that if narrow passages are observed to be
blocked, alternative paths, differing widely from the optimal path according to the
original map, can be found.

The effect of collision cost on the robots behavior was introduced in section 4.3 and
more statistics can be found in section 7.1.1. In brief a carefully adjusted COC can
cause the robot to favor observations over motions. That is an effect that can be utilized
to shape the robots behavior to its advantage.

The importance of the STH and its role in the robot performance cannot be
overstated. While a low STH will result in expedited operations of the robot, it also
reduces the accuracy and effectiveness of the decisions made, thus leaving the program
vulnerable under problematic conditions. An increased STH can then be a solution in
the settings where the robot needs a border perspective for instance in order to
overcome an obstacle.

5.5. Rectification of loops

Characterizing the errors makes it relatively easy to detect them. The CC recognizes the
single directional observation loops if in its past seven steps, the robot has been staying
in the same location while performing observations in the same direction. Similarly it
detects the multiple directional observation loops when the robot serially performs more
than 35 observations in any direction. As for the motion loops, the command controller
is triggered if the robot has been travelling between no more than two immediate
neighboring locations within eight consecutive time steps or if it has been occupying the
same four locations in its past 16 steps. These patterns produce reciprocating motions or
circular motions warnings respectively.

Loops, of any kind, are indicatives of blocked paths. The robot obviously has not
been able to bypass these blocks with lesser number of steps than the STH. In such
conditions updating the end point rewards via new OPP execution, has become known
to be effective in more than 90 % of times. Furthermore increasing the STH is another
approach that will most probably solve the problem. Its success rate has been estimated
at over 99 %. However, the achievement comes with a cost. Raising the STH escalates
the computation time dramatically. Thus the methodology utilized consists of two parts.
The program initially tries to resolve the loop errors by rerouting. However, should the

ANOMALIES AND RECTIFICATION 31

OPF fails to obtain a convenient response in few trials, the secondary loop controller
intervenes and the STH is adjusted to a higher value.

5.6. Rectification of IMs

The controller module issues IM warning if the observations are accounted for less than
30 % of the total actions performed in past seven steps or the robot has serially moved
three steps.

In course of an IM, the first response would be to persuade the robot to make more
observations. As it has been stated before, increasing the COC is one way to achieve
such a reaction. The amounts of incremental changes are determined based on statistical
analysis as will be discussed in section 7.1.1 and Table 7.2. A desirable side effect of
this process is that by pushing the robot to observe more between its motions, motion
loops are also prevented from happening more often.

Although this approach is estimated to be successful in a little more than 98 %, it is
still not guaranteed. It is also absolutely essential not to force the robot into observations
only mode. Similar to the loop cases the secondary loop controller (SLC) intervention is
foreseen to increase in the STH as means to overcome resistant IMs.

5.7. Secondary loop controller (SLC)

During the test runs, error detecting algorithms demonstrated acceptable performance
and left no problem undetected; hence dramatic improvement of the robot’s overall
operation was achieved. However, it was made evident by some trials that reacting to a
warning alone and neglecting the past corrections might be a source of problem by
itself.

An example is an occasion in which different abnormalities occur so close to each
other that reacting to them all, especially with the same corrective response, would be
incorrect. In other instances, resistant errors, i.e. repeating instances of the same error in
a short period of time, are yet other indicators of detecting algorithms’ limitations.
Figure 5.10 and Table 5.4 depict such situation. As it is apparent in the graph, after
taking one motion step and few observations, the robot has fallen into a loop and the
SOL warning is issued. However, the warning and its consequential corrective measure
fails to achieve any result. In further steps, the problems keep reoccurring despite of
being detected and dealt with every time.

ANOMALIES AND RECTIFICATION 32

Figure 5.10: Instances of persistent observation loops.

Table 5.4: Execution results during the resistant observation loops.
No. Step Pos.i Action Pos.j War. No. Step Pos.i Action Pos.j War.

1 1 1 𝑂: (𝑆, 𝑆𝑊) 1 0 28 6 31 𝑂: (𝑆, 𝑆𝐸) 31 0
2 2 1 𝑂: (𝑊, 𝑆𝑊) 1 0 29 7 31 𝑂: (𝑆, 𝑆𝐸) 31 SOL
3 3 1 𝑂: (𝑆, 𝑆𝑊) 1 0 30 1 31 𝑂: (𝑆, 𝑆𝐸) 31 0
4 4 1 𝑀:𝐸 31 0 31 2 31 𝑂: (𝑆, 𝑆𝐸) 31 0
5 5 31 𝑂: (𝑆,𝑆𝐸) 31 0 32 3 31 𝑂: (𝑆, 𝑆𝐸) 31 0
6 6 31 𝑂: (𝑆,𝑆𝐸) 31 0 33 4 31 𝑂: (𝑆, 𝑆𝐸) 31 0
7 7 31 𝑂: (𝑆,𝑆𝐸) 31 0 34 5 31 𝑂: (𝑆, 𝑆𝐸) 31 0
8 8 31 𝑂: (𝑆,𝑆𝐸) 31 0 35 6 31 𝑂: (𝑆, 𝑆𝐸) 31 0
9 9 31 𝑂: (𝑆,𝑆𝐸) 31 0 36 7 31 𝑂: (𝑆, 𝑆𝐸) 31 SOL

10 10 31 𝑂: (𝑆,𝑆𝐸) 31 0 37 1 31 𝑂: (𝑆, 𝑆𝐸) 31 0
11 11 31 𝑂: (𝑆,𝑆𝐸) 31 SOL 38 2 31 𝑂: (𝑆, 𝑆𝐸) 31 0
12 1 31 𝑂: (𝐸,𝑁𝐸) 31 0 39 3 31 𝑂: (𝑆, 𝑆𝐸) 31 0
13 2 31 𝑂: (𝐸,𝑁𝐸) 31 0 40 4 31 𝑂: (𝑆, 𝑆𝐸) 31 0
14 3 31 𝑂: (𝐸,𝑁𝐸) 31 0 41 5 31 𝑂: (𝑆, 𝑆𝐸) 31 0
15 4 31 𝑂: (𝐸,𝑁𝐸) 31 0 42 6 31 𝑂: (𝑆, 𝑆𝐸) 31 0
16 5 31 𝑂: (𝑆,𝑆𝐸) 31 0 43 7 31 𝑂: (𝑆, 𝑆𝐸) 31 SOL
17 6 31 𝑂: (𝑆,𝑆𝐸) 31 0 44 1 31 𝑂: (𝑆, 𝑆𝐸) 31 0
18 7 31 𝑂: (𝑆,𝑆𝐸) 31 0 45 2 31 𝑂: (𝑆, 𝑆𝐸) 31 0
19 8 31 𝑂: (𝑆,𝑆𝐸) 31 0 46 3 31 𝑂: (𝑆, 𝑆𝐸) 31 0
20 9 31 𝑂: (𝑆,𝑆𝐸) 31 0 47 4 31 𝑂: (𝑆, 𝑆𝐸) 31 0
21 10 31 𝑂: (𝑆,𝑆𝐸) 31 0 48 5 31 𝑂: (𝑆, 𝑆𝐸) 31 0
22 11 31 𝑂: (𝑆,𝑆𝐸) 31 SOL 49 6 31 𝑂: (𝑆, 𝑆𝐸) 31 0
23 1 31 𝑂: (𝑆,𝑆𝐸) 31 0 50 7 31 𝑂: (𝑆, 𝑆𝐸) 31 SOL
24 2 31 𝑂: (𝑆,𝑆𝐸) 31 0 51 1 31 𝑂: (𝑆, 𝑆𝐸) 31 0
25 3 31 𝑂: (𝑆,𝑆𝐸) 31 0 52 2 31 𝑂: (𝑆, 𝑆𝐸) 31 0
26 4 31 𝑂: (𝑆,𝑆𝐸) 31 0 53 3 31 𝑂: (𝑆, 𝑆𝐸) 31 0
27 5 31 𝑂: (𝑆,𝑆𝐸) 31 0 54 4 31 𝑂: (𝑆, 𝑆𝐸) 31 0

Considering the preceding discussions and example, the lone logical deduction is to
include previous warnings in decision making process before allotting a corrective
response. However two questions must be answered: how many past warnings should
be revisited and how to identify the correlation between them?

ANOMALIES AND RECTIFICATION 33

In this work, proposed method is to consider an area around the current position of
the robot and search it thoroughly for any issued warning. This approach is believed to
be capable of addressing both questions at the same time. It is established on two
assumptions; one being that at any given time properly shaped and sized neighborhood
is independent of other areas and the other is that in such locality, error inciting factors
are similar.

The first assumption leads to the point that in any arbitrary area, errors and their
consequent corrective reactions have no impact on neighboring zones at least for some
time. Meanwhile, the second supposition implies that errors taken place in vicinity are
rooted in the same ground and thus correlated. The method, however risky in fast paced
environments, has performed exceptionally well in this work both with static and
dynamic obstacles.

The algorithm works by first generating a list of nearby nodes to the current
location. These points together usually form a five by five square having the present
location of the robot in the middle and smaller at sides and corners (see Figure 5.11).
The size of this vicinity is currently determined empirically. The square shape of the
area is especially suitable when the robot is not moving in a straight line for example
when circumventing an obstacle. In addition the area form conveniently makes the
motion direction irrelevant.

Figure 5.11: Neighborhoods’ sizes in different locations on the map.

Then by inspecting the history of the warnings and matching their locations with
members of the defined vicinity, warnings and their number of occurrences, if there is
any, are specified. If any loop warning has been given out more than two times, in spite

Arbitrary
location Neighborhood

Arbitrary
location

Neighborhood

Arbitrary
location

Neighborhood

ANOMALIES AND RECTIFICATION 34

of their types, the SLC will be triggered. Similarly it is activated when the number of
IMs has exceeded two.

5.8. Normal condition revision

The robot navigating in an ordinary environment sometimes faces challenging
situations. In such conditions adjustments should be applied to achieve the objectives.
However, most of the times when the challenging situations are passed, some of the
extraordinary measures taken are becoming redundant. Thus if these normal states could
be exploited, the overall performance of the robot could be facilitated, which in this
work means returning the adjusted parameters to their earlier states. The key to this
realization is to identify the circumstances correctly.

Thus far, all the efforts have been directed to recognize alarming patterns. Although the
identified unwanted behavior cannot possibly cover all unwanted cases, but they cover
an important portion of them which actually have been witnessed during test runs.
Therefore a Normal environment condition (NEC), in which the robot can reset its
adjusted parameters, can be characterized as a setting in which there has not been a
warning issued for some time. Of course the NEC should be utilized with caution as it
can lose validity at any time.

As it was stated in the NEC definition, there has to be some time passed without the
controller raising any alarm. This is a safety mechanism which makes sure that the robot
has had enough time to discover or pass through earlier troubling situations. Currently
utilized algorithm in two separate sections, allows 12 and 18 steps to elapse before
making its inspections. These numbers are chosen mainly to be higher than the number
of steps required to identify an error except for MOLs. However, they are fine-tuned
statistically and with some practical considerations.

In the 12th step inspections, the algorithm examines the results of past operations for
any IMs warnings and observes whether the robot has been staying in the same spot;
while it looks for OTSR over 80 % and the COC more than its initial value. The module
is finally activated when it receives false, false, true and true as results of
aforementioned assessments.

In the 18th step examinations, the algorithm still investigates whether the robot has
been staying in the same spot but it is now concerned by more than only IMs. So the
application is prompted when the STH is higher than its initial value, the robot has been
moving and there has not been any warning of any kind in the last 18 steps of the
operations.

ANOMALIES AND RECTIFICATION 35

5.8.1. Aiding the operations in NEC

Decreasing the COC and STH values speeds up the computation. Therefore, when
detecting the NEC, the robot’s operation is facilitated by returning these parameters to
their earlier state.

In the case where the observations account for over 80 % of total actions, the
number of observations are presumably unnecessary and they can be lowered to
improve the robot’s performance; hence the reduction of the COC. On the other hand,
when the robot has been functioning normally, the process is eased by detraction of the
STH.

It is important to note that in neither of these modifications the parameters are set
lower than their initial values. The reductions go only as far as the increments
beginning.

DYNAMIC ENVIRONMENT IMPLEMENTATION 36

6. DYNAMIC ENVIRONMENT
IMPLEMENTATION

In this Chapter a simple dynamic obstacle model is introduced to the optimal path
finding problem and the problem is then reformulated accordingly. Finally the program
is modified with the necessary changes implemented.

6.1. Moving obstacles

In general the nature of the dynamic obstacles is not fully known and they vary broadly
in their behavior. Therefore it is difficult to draw mathematical models of them.
However, there are some simpler models of active obstacles that can be utilized to test
the robot’s performance.

One of those models is the Random Walk model. A random walk is a mathematical
formulation of a path that comprises of a series of random steps. A popular random
walk model is that of a random walk on a regular grid, where at each step the object
moves to neighboring sites of the lattice or stays in its present site according to some
probability distribution. In simple symmetric random walk on an infinite lattice, the
probabilities of the location jumping to each one of its immediate neighbors are the
same as seen in Figure 6.1 [21].

Figure 6.1: Random walker's movement probabilities.

While there are different conditions introduced for the boundaries of finite lattices
[21], in this work it is assumed that the grid system is surrounded, for example by
fences; thus no object can escape from nor can any enter to the area. Since on the edges
and corners of the lattice, there are less leaping choices, logically the probability of

DYNAMIC ENVIRONMENT IMPLEMENTATION 37

staying and/or moving in available directions should increase. Therefore at the
boundaries the random walkers are considered to bounce back to their previous position.

The walkers initially appear in the environment in random locations. As they move,
each location may be occupied by more than one walker.

With random walkers as the only moving obstacles it is possible to predict future
occupancy probabilities with a mathematical model, as presented in Equation 6.1.

Equation 6.1

)))1,(()),1(())1,(()),1(((
4

)),(()
4

1()),((1

++++−+−+

⋅−=+

nmOpnmOpnmOpnmOpq

nmOpqnmOp

iiii

ii

As it can be seen the model is recursive in which, 𝑝(𝑂𝑖+1(𝑚, 𝑛)) symbolizes the

expected occupancy probability of an arbitrary node, 𝑞 signifies the propagation
probability of random walkers, 𝑝(𝑂𝑖(𝑚,𝑛)) stands for the current occupancy
probability of said vertex and 𝑝(𝑂𝑖(𝑥, 𝑥)) are the current occupancy probabilities of its
neighboring locations. At edges, respectively corners, there are only 3, respectively 2

jump terms and thus the probability of staying at present location is (1 − 3𝑞
4

),

respectively (1 − 𝑞
2
).

According to the model, in every interval, occupancy probability of each node
spreads to its immediate neighboring vertices with a rate equal to q while decreasing
itself.

6.2. Problem formulation

In this work the path finding problem in a dynamic environment with known obstacle
movement probabilities does not differ much from the one in static environments. Here,
the action space, rewards and observations probabilities are the same in both
environments. The only dissimilarity is the belief state which changes with respect to
time in the dynamic environment. The occupancy belief evolution is modeled by
Equation 6.1. The optimal path problem is described in the Equation 3.8 is then reads as
in Equation 6.2. Note the occupancy belief index.

Equation 6.2

{ }[]
{ } { }

() { }[]

+≈ ∑
+

+=
=+′

∈

=

−
=

−
=

0

010
'

10
'' 1'

,

1,
)),,(()0(

''

,

1,
),(

,)(,max

,
Ti

ii

NM

nm
mapnmO

Tiiii
AAa

NM

nm
nmO

ii

pLVLOLrE

pLV

T
iioM

T
iii

i

DYNAMIC ENVIRONMENT IMPLEMENTATION 38

6.3. Modifying the program

The program in dynamic environment is closely related to the one in static environment
in its core functionality. They have similar modular structure with most algorithms
shared. Schematic of the dynamic environment version of the program is depicted in
Figure 6.2.

Figure 6.2: Program’s variation in dynamic environments.

As it can be seen in the Figure the main difference of the program’s two versions is
presence of random walker and occupancy updater modules. The occupancy updater is
also called within the optimum action determinant. The modifications made to the OPF
and OAD are summarized in the following

6.3.1. The OPF modification

The changes in the OPF are limited to introduction of random obstacles and their
characteristics which are described in the following. The codes for the program can be
found in Appendix 7.

Random walkers’ motion probability marks the probability of random walkers to
move from their locations to any of their neighboring places. Presence or absence of this
parameter denotes one of the differences between the two versions of the OPF. In a
static environment, the probability of random walkers moving is zero, hence, absence of
the parameter.

Design
Parameters

(DPs)

DYNAMIC ENVIRONMENT IMPLEMENTATION 39

In a static environment, the update process consists of marking the observed nodes
as occupied or vacant by increased or decreased probability respectively. In a dynamic
environment however, there are two stages of updating. First, same as the above and
then a function called Occupancy updater is called to update the belief state of the entire
map; which is due to the fact that with obstacles moving, occupation of a node increases
the occupancy chances of the neighboring locations in the future. The occupancy
updater maps the probabilities of moving obstacles for the robot and keeps them
updated for each decision making cycle.

6.3.2. Modifications to the OAD

When determining the optimum action in dynamic environment, the OAD needs to
update its belief in every recursive cycle before reaching the short time horizon. To do
so the OAD calls the occupancy updater function with each branch of its search tree.
With each call the OU function further updates the belief state upon its previous
updates. Note that the function changes the belief if there it has received any new
information obtained through observations. Also note that the OPF creates a reference
of the occupancy belief before calling the OAD to restore it to the current time state.

6.4. Random walker (RW):

In this work, the first time that the online path finder summons the RW function,
provides it with the area dimensions, the number of random walkers wandering in it and
their moving probability. Of course the probability is independent of the OPF and can
be defined in the function itself; nevertheless it is introduced in the main structure for
better management. The RW unit generates some random initial positions for the
walkers and returns them to the OPF. These primary sites cannot coincide with the
robots start position nor its destination position. Therefore the locations are omitted
from the function’s pool of random choices.

In the later calls, the RW module governs the already introduced random walkers’
behavior. The unit receives the area grid map, latest position of the random walkers
accompanied with the probability of them moving. Then, a random number is generated
for each walker. By aggregating the figure into any of five different categories, which
are tied with the walkers moving probabilities the next action of the walker is
determined. Finally utilization of the grid map, walkers’ current positions and the
succeeding directions, result into a subsequent position of each walker.

A final note on this module’s operations is about its dependence on the program
cycles. In this work, the RW function is called with every time step of the program. In
this regard, the walkers’ timing are totally dominated by each time cycle of the
programs calculations. In reality however, such relation is not completely accurate;
hence, the room for improving the component in the future. The codes for this module
can be found in Appendix 8.

DYNAMIC ENVIRONMENT IMPLEMENTATION 40

6.5. Occupancy updater (OU)

In the beginning of the path the robot has a rather naive view of the environment ahead,
assuming that all the unknown locations have the same occupancy probability.
Nonetheless, as it observes and moves toward the destination, the robot may detect
some objects.

In a dynamic setting, observing an object in a location equals to change in
occupancy probability of its immediate vicinity within the next time step and their
neighboring locations in a step after that and so on. It is to be noted that the algorithm
ahead requires exact pose estimates for the obstacles; hence it does not solve the general
mapping problem [12].

The OU function utilizes an algorithm, shared with few other modules, mapping
each node’s vicinity and after that constructing the Equation 6.1 is straight forward. The
codes for this module can be found in Appendix 9.

The module can also be employed to update only a fraction of the entire lattice. This
capability is particularly designed for the optimized action determinant, which isolates
specific sections of the whole map for its operations and needs to know the future
possibilities beforehand.

Figure 6.3 simply illustrates propagation of occupancy probabilities from two
arbitrary nodes in five interims with following values:

5.0,2.0)),((,1))25,24((,1))25,11((==== qxxOpOpOp iii

DYNAMIC ENVIRONMENT IMPLEMENTATION 41

Figure 6.3: Updating occupancy belief in 5 time steps. (A): Initial belief (B), (C),
(D), (E), (F): One cycle later.

A B

C D

E F

RESULTS 42

7. RESULTS

This Chapter aims to illustrate the robot’s operations with statistical analysis. The
robot’s performance in static environment –both with the original program and the new
one, is covered in the first Section. Then its behavior when confronting dynamic
obstacles is depicted in the second Section.

7.1 Robot’s performance in static environment

The main assumption in this Section is that the originally unknown obstacles in the
robot’s way are static. This piece of information is heavily used in the program. Both
the original and new programs were tried out for thousands of times to accurately assess
their performance. In the following subsections first the outcomes of the original
program’s tests are demonstrated and then the new program’s results are presented.

7.1.1 The original program

The first set of trials was conducted to determine the basic capabilities of the robot, i.e.
statistics of its operations. An instance of such is demonstrated in Figure 7.1 which was
carried out with the following parameters:

𝑆𝑇𝐻𝑖 = 4 , 𝐶𝑂𝐶𝑖 = −10000 , 𝛼 = 99 % , 𝑃𝑜 = 10 %
𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝐶𝑜𝑢𝑛𝑡 = 25 , 𝑃𝑜𝑏 = {(0.01 , 0.99), (0.05 , 0.95)}

Figure 7.1: Robot’s operations on its way to target location.

RESULTS 43

During these tests some shortcomings of the robot were identified. Amongst them
was the robot’s inability to complete its travel through narrow corridors or S shape
passages in more than 26 % of times with STH as high as four. Of course the robot’s
confusion behind barriers depends on the obstacle’s configuration and shape.
Nevertheless, in these tests all obstacles were scattered in the environment randomly.
On the other hand when the program does execute successfully like depicted in Figure
 7.1, another notable problem was recognized to be the computation time required to
complete the task. Although getting an estimate of average completion time proved to
be very hard, nevertheless among countless trials there has not been a case witnessed
where the robot has reached the destination under about 22 minutes. Note that the
computation times throughout this work are measured on computers with fast and
powerful processors (7 cores clocked at 3.4 GHz). Table 7.1 is a summary of the results
obtained with the original program.

Table 7.1: Original program’s results.

Success
Rate
(%)

Step Count STH
Collision

Avoidance
Rate (%)

Computation
Time (s)

Mean STD Constant Mean STD Mean STD
73.32 227 19 4 99.86 0.09 1492 180

In the table the success rate is defined as the percentage of completed travels. The
collision avoidance rate is a measure of the robot’s ability to make right decisions
circumventing obstacles. The figure is calculated using Equation 7.1.

Equation 7.1

×−=

∑
∑

100100

100
25

100
25

SC

CI
MeanCAR

,where the variable 𝐶𝐼, denotes the number of collision incidents and the variable 𝑆𝐶,
symbolizes the steps counts. The tests have been repeated 100 times with 25 random
obstacles.

Next set of trials was made to determine the effect of observations error
probabilities on the overall performance of the robot. For this purpose, all other
parameters were kept constant while the observations probabilities were changing. The
reference values for observation probabilities were
𝑃𝑜𝑏 = {(0.025 , 0.975), (0.075 , 0.925)} and the error probabilities were incremented
by steps of 5 %. The program was executed for minimum of 14 times with each
observation probability set. The results are illustrated in Figure 7.2.

RESULTS 44

Figure 7.2: Change in SC and number of observations (top) and computation time

(bottom) as a result of observation probabilities reduction. The number of motion steps
was roughly the same all the time.

Apart from the results depicted in the figure, the success rate of the robot was also
extremely compromised with decreasing observation precision. It is estimated that a 5
% increase in the observation error probability reduces the success rate by 25 %. In fact
the decline was so steep that when the erring probabilities were increased over 30 %, the
robot was not able to complete its travel at all.

The last set of trials was designed to outline the relation between the COC and the
robot’s performance. In order to measure the impact of COC on the robots behavior, its

RESULTS 45

expected responses must be defined. The first ever essential robot’s behavior is arguably
to commence its operations with an observation action. Thus an adequate COC is a
value that delivers such response. A measure against which the COC can be assessed is,
according to Equation 7.2, the ratio of observations to total number of steps.

Equation 7.2

100×
+

=
stepsmotionofNumberstepsnsobservatioofNumber

stepsnsobservatioofNumberOTSR

Figure 7.3: The first action, displayed in form of OTSR, as function of COC.

Figure 7.3 is obtained from the data collected from approximately ten thousand
trials. In each of mentioned experiments the first action performed by the robot is
recorded. Then the number of observations, in form of OTSR, is plotted as a function of
the cost of collision. It is apparent in the figure that with the STH more than two, the
first robot’s output is an observation as soon as the COC reaches to 900. However, with
a lower STH, the target OTSR cannot be achieved while the cost of crash is less than
1300.

Moreover, in a normal environment and with no external intervention to the robot’s
outputs, it is expected from the robot to exhibit OTSR over a certain percentage. In this
work, since the robot has only two choices to either move or observe, a normal OTSR
should be approximately 50 %. Over the course of 10000 test runs, the COC and the
robot’s first 100 actions were recorded. To get a better estimate, the robot’s entry point
to the environment was randomly selected in each trial. Results of these trials are
illustrated in Figure 7.4.

-10000 -8000 -6000 -4000 -2000 0

0

10

20

30

40

50

60

70

80

90

100

X: -900
Y: 100

COC

%
O

TS
R

X: -1300
Y: 100

LDC=2
LDC=3
LDC=4

STH

STH

STH

RESULTS 46

Figure 7.4: OTSR as function of COC, for 100 actions.

Figure 7.4 suggests that the robot is not capable of passing the 50 % mark for OTSR
with COC less than 2000 while it might almost hit the observations only mode when the
collision cost reaches to 10000. A closer look to the results reveals that beyond certain
thresholds, increasing the COC would inflict relatively less rise in the OTSR.
Furthermore, these turning points are appearing to be STH-specific; and the illustration
implies that the threshold is about 4000 for STH equal to four while it is approximately
2500 for smaller value STHs.

Finally, the last piece of information that can be extracted from the graph is the
effect of COCs increments, beyond their initial values on, the OTSR. The Table 7.2
reveals this relationship. These values are especially helpful when it comes to
rectification of robots’ behaviors (see section 5.5).

Table 7.2: Data extracted from the Figure.

STH Initial
COC

Increase in
the COC (points)

Increase in
the OTSR (%)

2 2500 1500 6.16
3 2500 1500 4.5
4 4000 1000 1.16

 The performance of the robot has been rather below what is required.

7.1.2 The new program with active CC unit

The new program is designed to reach the destination as fast as possible by overcoming
the problems that the original program had difficulties coping with. However, the new
program is not cope with all situations; yet, it is performs much better than the old one.

-10000 -8000 -6000 -4000 -2000 0

0

10

20

30

40

50

60

70

80

90

100

COC

%
O

TS
R

LDC=2
LDC=3
LDC=4

STH

STH

STH

RESULTS 47

Figure 7.5 through Figure 7.7 demonstrate the robot’s operations within an entire
path finding sequence. The initial parameters were in as in subsection 7.1.1 and as
follows:

𝑆𝑇𝐻𝑖 = 2

𝐶𝑂𝐶𝑖 = �−2500 𝑆𝑇𝐻𝑖 ≪ 3
−4000 𝑆𝑇𝐻𝑖 > 3

𝛼 = 99 %

𝑃𝑜 = 10 %
𝑂𝑏𝑠𝑡𝑎𝑐𝑙𝑒𝑠 𝐶𝑜𝑢𝑛𝑡 = 25
𝑃𝑜𝑏 = {(0.01 , 0.99), (0.05 , 0.95)}

Figure 7.5: Robot’s operations on its way to target location.

The first Figure shows the result of online path finding while the next two illustrate
full travel path and the evolved belief matrix.

RESULTS 48

Figure 7.6: Robot’s actual travel path.

Figure 7.7: Robots final belief of the environments occupancy.

This example is only one of 266 successful trials. As displayed, the robot has been
able to reach its goal with a few re-routings and without colliding with any of the
random obstacles present. However, the main achievement of this procedure is the
computation time required for the robot to arrive at its destination; which has been
dramatically decreased compare to the original program. Results extracted from over
200 tests are illustrated in Table 7.3.

RESULTS 49

Table 7.3: The new program’s execution results in static environments.

Success
Rate
(%)

Step
Count

Re-
Routings STH

Collision
Avoidance
Rate (%)

Computation
Time (s)

Mean STD Mean STD Mean STD Mean STD Mean STD
98.87 373 68 4.39 1.97 2.01 0.17 99.89 0.12 10.5 26.28

According to the statistics the robot can reach its goal nearly 100 % of times. In the
conducted experiments, only three of trials were not successful wherein the errors in
observations were the reason behind the failures. In those particular circumstances the
robot had deemed that all the passages toward the destination are blocked due to wrong
observation results and thus terminating the operations.

The number of steps has increased compare to the original program which is due to
increased number of observations.

The short time horizon, according to the table of statistics, has not been altering in
the programs much. This means that the preliminary control algorithm have had
successful operations.

The CAR figure in Table 7.3 is calculated using Equation 7.3.

Equation 7.3

() 15,751,100100, ≈≤≤×−==
∑
∑

ni
SC

CI
CARCARMeanCAR

n
i

n
i

ii

In this equation, for each obstacle count, denoted by subscript 𝑖, the test has been
repeated 𝑛 times.

The individual CAR values, estimated from numerous tests with varying number of
obstacles, are depicted in Figure 7.8. It reveals that the robot is capable of avoiding
accidents at a very high rate. Conversely, it also illustrates a downward trend; which is
not strange due to the impact that increases in the number of obstacles have on the
probability of collision incidents leading to decrease in the CAR.

RESULTS 50

Figure 7.8: Collision avoidance rate as a function of obstacles' number. The red

line signifies the average value while the dashed magenta line is the STD.

Finally, the computation time well under a minute is the definitive indicator of the
robot’s accomplishment. This achievement is directly linked to use of smaller STH
which is possible here with the precaution mechanisms but not in the original program.

7.1.3 The new program with inactive CC unit

Receiving encouraging results from the robot raised a question that to what extent the
CC module has been responsible for its success. Thus experiments were performed with
disabled controller module.

The results pointed out that the robot is almost incapable of completing its task
without the module. In over a hundred trails, the robot exhausted all of its allowed steps
without even going as far as half of the way toward the destination; that is but only for
two rare successful cases. Of course the design parameters, STH and COC, were at their
initial points, optimized for the new program; otherwise the program has the exact same
level of performance as in its original form.

As a conclusion, it is obvious that the controller component plays a crucial role in
the accomplishment of the procedure.

7.2 Robot’s performance in dynamic environment

The main objective of the robot with the new program was to reach the destination in a
static environment. However, with modifications into the OPF and OAD and

10 20 30 40 50 60 70
99.5

99.55

99.6

99.65

99.7

99.75

99.8

99.85

99.9

99.95

100

Number of obstacles

C
A

R
 (%

)

RESULTS 51

introducing the complementary components it has been able to pursue the target in a
setting wherein random walkers are present. Figure 7.9 and Figure 7.10 illustrate results
of a successful execution of the program. Again the initial DPs are stated below.

𝑆𝑇𝐻𝑖 = 2

𝐶𝑂𝐶𝑖 = �−2500 𝑆𝑇𝐻𝑖 ≪ 3
−4000 𝑆𝑇𝐻𝑖 > 3

𝛼 = 99 %

𝑃𝑜 = 10 %
𝑞 = 10 %
𝑊𝑎𝑙𝑘𝑒𝑟𝑠 𝐶𝑜𝑢𝑛𝑡 = 8
𝑃𝑜𝑏 = {(0.01 , 0.99), (0.05 , 0.95)}

Figure 7.9: Robot’s operations on its way to target location.

Figure 7.10: Robots final belief of the environments occupancy.

RESULTS 52

Note that in Figure 7.9, one of the random walkers is on the path of the robot. In
fact the robot has taken a step back circumventing the obstacle; hence there has not been
an actual crash.

In this example, the robot has been able to arrive at its destination without colliding
with any of the walkers. Results of one hundred more executions are summarized in the
Table 7.4.

Table 7.4: Execution results in dynamic environments

Success
Rate
(%)

Step
Count

Re-
Routings STH

Collision
Avoidance
Rate (%)

Computation
Time (s)

Mean STD Mean STD Mean STD Mean STD Mean STD
98.21 634 32 1.38 0.62 2.00 0.001 98.62 0.71 36.36 4.69

The drop in the success rate and rise in the SC are both in direct response to the
dynamic surroundings. The robot may terminate its operations more often because of
higher possibility of random walkers blocking all passages ahead. Also bypassing
moving obstacles requires more steps.

Given that the obstacle avoidance is much more difficult in active environments, the
robot’s CAR seems reasonable enough too. Figure 7.11 is an illustration of the robot’s
efforts circumventing random walkers. Compared to those under static environment
conditions (see Table 7.3) the results here are obviously less accurate.

Figure 7.11: Collision avoidance rate as a function of obstacles' number. The red

line signifies the average value while the dashed magenta line is the STD.

10 20 30 40 50 60
97

97.5

98

98.5

99

99.5

100

Number of obstacles

C
A

R
 (%

)

RESULTS 53

The decline in the collision avoidance rate however, is not solely due to robots
decision making process. On the contrary, it is mainly because of limited observation
capacity. For instance, if in a particular time more than one walker approach the robot,
even if the robot decides to observe a certain direction it cannot see the other coming
walkers and thus a crash is very likely. Thus the robot’s performance is quite
satisfactory.

CONCLUSIONS AND FUTURE WORK 54

8. CONCLUSIONS AND FUTURE WORK

Path finding utilizing POMDP framework is a well-studied method. Many experiments
have been conducted and articles have been published about the solutions to this
problem. Thus the benefits and limitations of this process are quite known. The main
idea in this work was to assess and to improve currently existing method with
optimizing the design parameters and introduction of new components controlling its
operations.

Judging from the results the original path finding approach is powerful enough in
most circumstances. However, on its own, and with presence of unmapped and difficult
obstacles, it does not seem to be capable to complete the task with desired efficiency.
The magnitude of the problems sensed in the experiments with static obstacles is
gravely amplified when dealing with dynamic obstacles.

In case of the robot facing static obstacles, introduction of a controller, specification
of efficient DPs and finally some modifications in the original program were efforts to
bring up the robot’s performance to its maximum potential. The outcome is a definite
improvement, see Table 8.1. However, there is still a lot of room for development in
various directions.

Table 8.1: Results comparison

 Success Rate
(%)

Computation
Time (s)

Step
count STH

Original program 73.32 1492 227 4
New program

in static
environment

98.87 10.5 373 2.01

New program
in dynamic

environment
98.21 36.36 634 2.00

Assuming that the POMDP, Online programming and Value iteration
methodologies are to be kept, the future work that can improve the performance of the
approach are at least the following.

• Incorporating machine learning and pattern recognition methods both to improve
the observation mechanism enabling it to differentiate between different
obstacles.

• Implementing more sophisticated pattern recognition techniques into the
controller and equip it with better mathematical models

CONCLUSIONS AND FUTURE WORK 55

• Employing more accurate models of dynamic obstacles to improve the OU
function of the program

The suggestions can be combined in one component, such as controllers, in order to
obtain powerful modules.

As for the program itself, the future work can be towards simplification of the
generic problem with more efficient approximations. However, it was suggested by
reference [22] and made evident with some practical examples, that the program in its
current state does not seem to be fit for larger scale problems. Thus, for future works,
alternative approaches such as Monte-Carlo methods [23] are advisable to be exploited.

 56

REFERENCES

1 Bin Wu, Tze Leung Lai, Yuguo Chen. Sequential Planning for Robotic
Navigation and Exploration under Uncertainty. Introduction to Modern
Robotics. iConcept Press, Queensland, Australia 2012.

2 Harry Chia-Hung Hsu, Robot Path Planning. Wiley Encyclopedia of Computer
Science and Engineering. Published Online: 16 MAR 2009.

3 Chiara Fulgenzi, Anne Spalanzani, and Christian Laugier. Dynamic Obstacle
Avoidance in uncertain environment combining PVOs and Occupancy Grid.
IEEE International Conference on Robotics and Automation. Roma, Italy, 10-14
April 2007.

4 Sylvie C.W. Ong, Shao Wei Png, David Hsu, Wee Sun Lee. POMDPs for
Robotic Tasks with Mixed Observability. International Journal of Robotics
Research. Volume 29 Issue 8, July 2010.

5 http://marsrovers.jpl.nasa.gov/home/index.html

6 S. M. LaValle: Planning Algorithms, 2006 Cambridge University Press.

7 T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (2nd Ed.). MIT Press, Cambridge, MA, 2001.

8 E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

9 J. Pearl. Heuristics. Addison-Wesley, Reading, MA, 1984.

10 Russell, Stuart J.; Norvig, Peter (2003), Artificial Intelligence: A Modern
Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall.

11 R. Bellman, Dynamic Programming. Princeton University Press, 1957.

12 S. THRUN, W. BURGARD, D. FOX, Probabilistic Robotics; Intelligent
Robotics and Autonomous Agents series. The MIT Press, August 19, 2005.

13 Martin L. Puterman. Markov Decision Processes|Discrete Stochastic Dynamic
Programming. John Wiley & Sons, Inc., New York, NY, 1994.

14 Lovejoy, W. (1991). Computationally feasible bounds for partially observed
Markov decision processes. Operations Research 39: 162–175.

http://marsrovers.jpl.nasa.gov/home/index.html

 57

15 R. Ritala. Notes on path planning with obstacle avoidance. Tampere University
of Technology, Tampere, 2011

16 L. P. Kaelbling, M. L. Littman, A. R. Cassandra, Planning and Acting in
Partially Observable Stochastic Domains. Journal of Artificial Intelligence,
Volume 101 Issue 1-2, May 1998. Pages 99-134.

17 R. Dial. Algorithm 360: Shortest path forest with topological ordering.
Communications of the ACM, Volume 12, 1969. Pages 632–633.

18 Zhang, J. and Goodchild, M.F. (2002). Uncertainty in Geographical Information.
first published 2002 by Taylor & Francis.

19 Klir, G.J. and Folger, T.A. (1988). Fuzzy sets, uncertainty and information.
Prentice-Hall Int. Editions.

20 G. D'Agostini. Bayesian reasoning in data analysis - A critical introduction.
World Scientific Publishing 2003.

21 George H. Weiss, Aspects and Applications of the Random Walk. Elsevier
Science & Technology Books, Jan 1994.

22 J. Pineau, G. Gordon, and S. Thrun. Anytime point-based approximations for
large POMDPs. Journal of Artificial Intelligence Research, Volume 27, 2006.
Pages 335–380.

23 D. Silver, J. Veness, Monte-Carlo Planning in Large POMDPs. NIPS 2010:
2164-2172

 58

APPENDIX 1

The Offline Path Planner
function [steps, opt_val, rew, alpha, optimal_path,opt_pathx,
opt_pathy,on_the_way_cost, N, M, rew_matr, p_count,
start_grid]=OPP(start_grid, rew, updated_obs, updated_obs_op)
% ---
% Constants
% ---
% N and M are the web dimensions. 1 is upper left corner, N on upper right and
N*M on lower right
N=30;
M=30;
vl=N*M+1; % Number of locations on the map
alpha=0.99; %Discounting factor
hrew=-100*N*M; % Large negative rewards for the grids known as the "walls"
% ---
% known obstacles
% ---
% The given "start grid" is the entry pint on the map. In case that the
function is run from the start, the value will be equal to 1.
if start_grid == 1;
 rew=-rand(vl,1); % Reward associated to each grid cell
 rew(N*M)=100*M*N; % Final (goal) reward (large)
 rew(vl)=0; % Stop point reward
 % Walls are defined
 rew((4*N+1):(4*N+N-3))=hrew;
 rew((8*N+10):(8*N+N))=hrew;
 rew((floor(2*M/5)*N+10):(floor(2*M/5)*N+N-6))=hrew;
 rew((floor(M/2)*N+1):(floor(M/2)*N+N-10))=hrew;
 rew((floor(3*M/5)*N+8):(floor(3*M/5)*N+N-5))=hrew;
 rew(((M-8)*N+10):((M-8)*N+N))=hrew;
 rew(((M-8)*N+10):N:((M-3)*N+10))=hrew;
 rew(((M-5)*N+25):N:((M-1)*N+25))=hrew;
end
% ---
% Updated obstacles
% ---
for i=1: length(updated_obs);
 rew(updated_obs(i))=updated_obs_op(i)*hrew+(1-
updated_obs_op(i))*rew(updated_obs(i));
end
% ---
% Possible steps
% ---
steps=[1:vl;1:vl;1:vl;1:vl]';
for i=1:M
 steps(((i-1)*N+1):(i*N-1),1)=((i-1)*N+2):(i*N); %east steps
 steps(((i-1)*N+2):(i*N),2)=((i-1)*N+1):(i*N-1); %west steps
end
for i=1:M-1
 steps(((i-1)*N+1):(i*N),3)=(i*N+1):((i+1)*N); %south steps
 steps((i*N+1):((i+1)*N),4)=((i-1)*N+1):(i*N); %north steps
end
steps(N*M,1:4)=vl; % Exit grid
steps(vl,1:4)=vl; % Exit and stay grid
% ---
% Value iteration
% ---
values=zeros(vl,4); %Optimal value vector
opt_val=zeros(vl,1); %Optimal decision vector
opt_act=zeros(vl,1);
% 10000 updates of the optimal value function for each grid cell
for i=1:10000;
 for j=1:4; % Possible steps/actions for each grid cell
 values(:,j)=rew(steps(:,j))+alpha*opt_val(steps(:,j));

 59

 end
 opt_val=max(values')'; % Optimal value function (action) selection
end
for k=1:vl% Optimal action for each grid cell according to the value functions
 ind=find(values(k,1:4)==opt_val(k));
 opt_act(k)=ind(1);
end
% Rewards, optimal value function values, and optimal actions in grid
% matrix form
rew_matr=reshape(rew(1:vl-1),N,M);
opt_matr=reshape(opt_val(1:vl-1),N,M);
opt_act_matr=reshape(opt_act(1:vl-1),N,M);
% ---
% Optimal path
% ---
optimal_path=zeros(vl,1); % Optimal path vector
opt_pathx=zeros(vl,1); % Auxiliary vectors for plotting the optimal path
opt_pathy=zeros(vl,1);
% Calculation from a given start grid
optimal_path(start_grid)=start_grid;
opt_pathx(start_grid)=start_grid;
opt_pathy(start_grid)=start_grid;
p_count=start_grid; % Step counter (starting from the start grid)
% Defining the optimal path by matching the optimal actions and steps
for ii=p_count:vl;
 optimal_path(ii+1)=steps(optimal_path(ii),opt_act(optimal_path(ii)));
 if optimal_path(ii)<(vl)
 opt_pathy(ii)=ceil(optimal_path(ii)/N);
 opt_pathx(ii)=optimal_path(ii)-N*(ceil(optimal_path(ii)/N)-1);
 p_count=p_count+1;
 end
end
if start_grid > 1
 optimal_path(1:start_grid-1)=optimal_path(start_grid);
 opt_pathy(1:start_grid-1)=opt_pathy(start_grid);
 opt_pathx(1:start_grid-1)=opt_pathx(start_grid);
end
% ---
% On the way cost to be compared with mean of reward
% ---
on_the_way_cost=mean(rew(optimal_path(1:p_count-1)));

 60

APPENDIX 2

The Online Path Finder
clear all
close all
clc
tic; % timer start
% ---
% Primary offline-planning
% ---
[steps, opt_val, rew, alpha, optimal_path,opt_pathx,
opt_pathy,on_the_way_cost, N, M, rew_matr, p_count, start_grid]=OPP(1, [], [],
[]);
% ---
% System state
% ---
% System state is location of WM and belief vector of location of MO
depth=2; % the depth starts at 2 but the program could go deeper in horizon
l_dim=5;
if depth<=3 % Initial Cost of clash
 c_clash=-2500;
elseif depth>3
 c_clash=-4000;
end
c_O=-0; %% Cost of observation
action_history=zeros(1,6); % initial action history
A_dim=2*l_dim+1; % Size of area considered in one on-line decision
p_obs=[0.025 0.975; 0.05 0.95]; %erring probabilities of observations
global_occupancy=0.1*ones(N*M,1); % initial occupancy belief
% Position of MOs, changes are in random positions
no_positions = 35; % number of random obstacles
positions=(randperm(N*M-2, no_positions)+1)'; % random position of obstacles
positions_xy = [positions-N*(ceil(positions/N)-1),ceil(positions/N)];
iroad=p_count*5; % maximum length of the plan
pos_on_the_road=zeros(iroad+1,1);
act_on_the_road=zeros(iroad,1);
pos_on_the_road(1)=optimal_path(start_grid); % Same starting point as in the
% optimal path studied in script OPP
% ---
% Observation sets
% ---
generate_observation_sets_small;
% ---
% Mapping of area of entire problem to local optimization problem
% ---
f_c=1; % figure counter
figure(f_c);
set (figure(f_c), 'Position' , [100 100 500 500])
mesh(rew_matr);
hold on;
z_opt=zeros(1,p_count-1);
reff=plot3(opt_pathy(1:p_count-1),opt_pathx(1:p_count-1),z_opt); % refreshing
figure
plot3(positions_xy(:,2),positions_xy(:,1),zeros(no_positions,1),'r*');
set(reff,'XDataSource','opt_pathy(1:p_count-1)');
set(reff,'YDataSource','opt_pathx(1:p_count-1)');
set(reff,'ZDataSource','z_opt');

iloop=1; % counter
call_count=1;
% ---
while iloop < iroad+1 & pos_on_the_road(iloop)~=N*M-N &
pos_on_the_road(iloop)~=N*M-1 & pos_on_the_road(iloop)~=N*M-N-1
% ---
% Local area
% ---

 61

 pos_WM=pos_on_the_road(iloop);
 N0=floor(pos_WM/N)+1;
 NY_start=max(1,N0-l_dim);
 NY_stop=min(M,N0+l_dim);
 NX_start=max(1,pos_WM-N*floor((pos_WM-1)/N)-l_dim);
 NX_stop=min(N,pos_WM-N*floor((pos_WM-1)/N)+l_dim);
 indsa=[]; % Global coordinates of local area
 for i=NY_start:NY_stop
 indsa=[indsa ((i-1)*N+NX_start:((i-1)*N+NX_stop))]; % mapping vector
 end
% ---
% WM steps on the local area
% ---
 loc_steps=steps(indsa,:);
 loc_rew=rew(indsa); %Local immediate rewards
 loc_rew_end=rew(indsa)+alpha*opt_val(indsa); % Rewards at the end step of
% on-line optimization
 loc_obs_sets=obs_sets(indsa,:,:);
 state=zeros(length(indsa)+1,1);
 state(1)=pos_WM;
 state(2:end)=global_occupancy(indsa);
% ---
% On-line optimization of actions
% ---
 pos_vis=pos_on_the_road(1:iloop);
[opt_value,opt_act,value]=OAD_S(depth,state,indsa,loc_rew,loc_rew_end,loc_step
s,loc_obs_sets,c_O,c_clash,alpha,p_obs,pos_vis);
% ---
% After optimization update position or belief depending on action
% ---
 fprintf('At time step %3i \n',call_count)
 fprintf('optimal action is %2i \n',opt_act)
 if opt_act<5 % Step taken, no measurement made
pos_on_the_road(iloop+1)=steps(pos_on_the_road(iloop),opt_act);
 fprintf('and new position of the WM is %3i \n\n',pos_on_the_road(iloop+1))
 hold on;
plot3(ceil(pos_on_the_road(iloop+1)/N),pos_on_the_road(iloop+1)-
N*(ceil(pos_on_the_road(iloop+1)/N)-1), zeros(length(iloop+1),1),'k*');
 drawnow;
 hold off;
 else % Measurement made, no step taken
 pos_on_the_road(iloop+1)=pos_on_the_road(iloop);
 fprintf('and the WM holds its position at %3i
\n\n',pos_on_the_road(iloop))
 hold on;
plot3(ceil(pos_on_the_road(iloop+1)/N),pos_on_the_road(iloop+1)-
N*(ceil(pos_on_the_road(iloop+1)/N)-1),zeros(length(iloop+1),1),'ko');
 drawnow;
 hold off;
 imeas=opt_act-4; %The optimal measurement
% ---
% Making the measurements;
% ---
% each point measured for being occupied or not
 obsind=obs_sets(pos_WM,imeas,:);
 apuind=find(obsind~=0);
 if ~isempty(apuind)
 obsind2=zeros(length(apuind),1);
 for il=1:length(apuind)
 obsind2(il)=obs_sets(pos_WM,imeas,apuind(il));
 end
%Simulate the measurement result (value=1, no observation; =2 is observed)
 result=zeros(length(apuind),1);
 for imi=1:length(apuind)
 if ismember(obsind2(imi),positions)
 ptest=p_obs(imi,2);
 else
 ptest=p_obs(imi,1);

 62

 end
 if rand<ptest
 result(imi)=1;
 end
 end
 result;
% ---
% Update occupancy belief
% ---
 bel_ap=global_occupancy(obsind2);
 bel_post=zeros(length(obsind2),1);
 for iup=1:length(apuind)
 if result(iup)==1
bel_post(iup)=p_obs(iup,2)*bel_ap(iup)/(p_obs(iup,2)*bel_ap(iup)+p_obs(iup,1)*
(1-bel_ap(iup)));
 else
 bel_post(iup)=(1-p_obs(iup,2))*bel_ap(iup)/((1-
p_obs(iup,2))*bel_ap(iup)+(1-p_obs(iup,1))*(1-bel_ap(iup)));
 end
 end
 bel_ap;
 bel_post;
 global_occupancy(obsind2)=bel_post;
 end
 end
 call_count=call_count+1;
 iloop=iloop+1;
end
% ---
% Destination approach
% ---
[action_history, corrective_action] = CC(M, N, depth, iloop, call_count,
opt_value, opt_act, pos_on_the_road, action_history, c_clash);
if pos_on_the_road(iloop)==N*M-N-1
 call_count = call_count+1; iloop = iloop+1; opt_value = 0;
 better_move = sort([rew(N*M-1), N*M-1, 3;rew(N*M-N), N*M-N, 1],'descend');
 pos_on_the_road(iloop) = better_move(1,2);
 opt_act = better_move(1,3);
 [action_history, corrective_action] = CC(M, N, depth, iloop, call_count,
opt_value, opt_act, pos_on_the_road, action_history, c_clash);
 fprintf('At time step %3i \n',call_count)
 fprintf('The Destination has been reached \n')
 hold on;
 plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*');
 drawnow;
end
if pos_on_the_road(iloop)==N*M-1;
 call_count = call_count+1; iloop = iloop+1; opt_act = 1; opt_value = 0;
 pos_on_the_road(iloop)=N*M;
 [action_history, corrective_action] = CC(M, N, depth, iloop, call_count,
opt_value, opt_act, pos_on_the_road, action_history, c_clash);
 fprintf('At time step %3i \n',call_count)
 fprintf('The Destination has been reached \n')
 hold on;
 plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*');
 drawnow;
elseif pos_on_the_road(iloop)==N*M-N;
 call_count = call_count+1; iloop = iloop+1; opt_act = 3; opt_value = 0;
 pos_on_the_road(iloop)=N*M;
 [action_history, corrective_action] = CC(M, N, depth, iloop, call_count,
opt_value, opt_act, pos_on_the_road, action_history, c_clash);
 fprintf('At time step %3i \n',call_count)
 fprintf('The Destination has been reached \n')
 hold on;
 plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*');

 63

 drawnow;
end
T=toc; % timer stop
% ---
% Obstacle mapping based on belief
% ---
GO_mtrx=reshape(global_occupancy,N,M);
figure (f_c+1)
set (figure(f_c+1), 'Position' , [100 100 500 500])
mesh(GO_mtrx)
% ---
% Actual path
% ---
opt_of_pathx=zeros(call_count,1);
opt_of_pathy=zeros(call_count,1);
for i=1:call_count
 opt_of_pathy(i)=ceil(action_history(i,4)/N);
 opt_of_pathx(i)=action_history(i,4)-N*(ceil(action_history(i,4)/N)-1);
end
figure (f_c+2)
hold on
set (figure(f_c+2), 'Position' , [100 100 500 500])
mesh(rew_matr);
plot3(positions_xy(:,2),positions_xy(:,1),zeros(no_positions,1),'r*');
plot3(opt_of_pathy,opt_of_pathx,zeros(length(opt_of_pathx)),'m')

 64

APPENDIX 3

The Vertices Observations Guide
% Observation sets for all positions on the grids; in the order of distance
% ---
obs_sets=zeros(N*M,8,2); %First index WM position, 2nd the type of observation
% 3rd points observed
for ii=1:M
 for jj=1:N
 pres_pos=(ii-1)*N+jj;
% ---
% NE observation
% ---
 icount=0;
 if pres_pos-N>0
 icount=icount+1;
 obs_sets(pres_pos,1,icount)=pres_pos-N;
 if ceil(pres_pos/N)*N~=pres_pos
 icount=icount+1;
 obs_sets(pres_pos,1,icount)=pres_pos-N+1;
 end
 end
% ---
% EN observation
% ---
 icount=0;
 if ceil(pres_pos/N)*N~=pres_pos;
 icount=icount+1;
 obs_sets(pres_pos,2,icount)=pres_pos+1;
 if pres_pos-N>0
 icount=icount+1;
 obs_sets(pres_pos,2,icount)=pres_pos-N+1;
 end
 end
% ---
% ES observation
% ---
 icount=0;
 if ceil(pres_pos/N)*N~=pres_pos;
 icount=icount+1;
 obs_sets(pres_pos,3,icount)=pres_pos+1;
 if pres_pos+N<N*M
 icount=icount+1;
 obs_sets(pres_pos,3,icount)=pres_pos+N+1;
 end
 end
% ---
% SE observation
% ---
 icount=0;
 if pres_pos+N<N*M
 icount=icount+1;
 obs_sets(pres_pos,4,icount)=pres_pos+N;
 if ceil(pres_pos/N)*N~=pres_pos
 icount=icount+1;
 obs_sets(pres_pos,4,icount)=pres_pos+N+1;
 end
 end
% ---
% SW observation
% ---
 icount=0;
 if pres_pos+N<N*M
 icount=icount+1;
 obs_sets(pres_pos,5,icount)=pres_pos+N;
 if ceil((pres_pos-1)/N)*N+1~=pres_pos

 65

 icount=icount+1;
 obs_sets(pres_pos,5,icount)=pres_pos+N-1;
 end
 end
% ---
% WS observation
% ---
 icount=0;
 if ceil((pres_pos-1)/N)*N+1~=pres_pos;
 icount=icount+1;
 obs_sets(pres_pos,6,icount)=pres_pos-1;
 if pres_pos+N<N*M
 icount=icount+1;
 obs_sets(pres_pos,6,icount)=pres_pos+N-1;
 end
 end
% ---
% WN observation
% ---
 icount=0;
 if ceil((pres_pos-1)/N)*N+1~=pres_pos;
 icount=icount+1;
 obs_sets(pres_pos,7,icount)=pres_pos-1;
 if pres_pos-N>0
 icount=icount+1;
 obs_sets(pres_pos,7,icount)=pres_pos-N-1;
 end
 end
% ---
% NW observation
% ---
 icount=0;
 if pres_pos-N>0
 icount=icount+1;
 obs_sets(pres_pos,8,icount)=pres_pos-N;
 if ceil((pres_pos-1)/N)*N+1~=pres_pos
 icount=icount+1;
 obs_sets(pres_pos,8,icount)=pres_pos-N-1;
 end
 end
 end
end
clear icount ii jj pres_pos

 66

APPENDIX 4

The Optimum Action Determinant
function
[opt_value,opt_act,value]=OAD_S(depth,state,indsa,loc_rew,loc_rew_end,loc_step
s,loc_obs_sets,c_O,c_clash,alpha,p_obs,pos_vis)
% ---
% On-line optimization of actions
% ---
% From the current WM location, looks n-steps (varying depth) ahead to choose
the optimal immediate (single) action, which can be any of the four move
actions or eight measurement actions. Function calls itself recursive n-1
times. At the last step of the horizon only a move action can be made.
% IN:
% depth: how many stages in time included in the optimization
% state: system state representation = position of the wm and belief about MO
location
% indsa: mapping between local (i) and global (j) WM coordinates j=indsa(i)
% loc_rew: local reward for the position of the WM
% loc_rew_end: local reward including the result of off-line optimization, to
be used if depth=1
% loc_steps: WM move options
% c_O: cost of observation
% c_clash: cost of WM and MO clashing
% p_MO: probability of MO moving to a random direction (NESW)
% alpha: discounting factor
% OUT:
% opt_value=optimal value of the reward function
% opt_state=state resulting from the optimal action
% opt_act=optimal action

% 12 actions possible, specified by 4 move actions in loc_steps and eight
measurement actions. Value related to each action initialized to zero, value
related to each observation initialized to large negative.
value=zeros(12,1);
value(5:12)=-1e6;
% ---
% Control actions
% ---
% The depth of the problem is still larger than one (not the final step)
if depth>1
 for i=1:4 % All move actions considered
 % Local coordinate update for the actions considered
 state_new=state;
 incoro=find(indsa==state(1)); % Local coordinate of WM old position
 state_new(1)=loc_steps(incoro,i); % Global coordinate of new position
 incorn=find(indsa==state_new(1)); %Local coordinate of WM new position
% Value of state is immediate state value + immediate value of clash + future
value (recursive call to the function itself)
value(i)=loc_rew(incorn)+c_clash*state_new(incorn+1)+alpha*OAD_S(depth-
1,state_new,indsa,loc_rew,
loc_rew_end,loc_steps,loc_obs_sets,c_O,c_clash,alpha,p_obs,pos_vis);
 end
else % The last/final step of the problem, no call to the function itself
 for i=1:4
 state_new=state;
 incoro=find(indsa==state(1)); % Local coordinate of WM old position
 state_new(1)=loc_steps(incoro,i); % Global coordinate of new position
 incorn=find(indsa==state_new(1)); %Local coordinate of WM new position
Value of state is immediate state value + immediate value of clash; immediate
state value at the last step of the horizon(depth) is the value function value
of the deterministic offline problem.
 value(i)=loc_rew_end(incorn)+c_clash*state_new(incorn+1);
 end
end
% ---

 67

% Measurement actions
% ---
% The depth of the problem is still larger than one (not the final step)
if depth>1
 for imeas=1:8 % All possible measurements considered
 % Local coordinate of the present position
 incoro=find(indsa==state(1));
 % Find the set of sites (in global coordinates) that can be
 % observed from current state with measurement imeas
 obsind=loc_obs_sets(incoro,imeas,:);
 apuind=find(obsind~=0);
 % All the sites that can be observed
 if length(apuind)>0
 % Measurement locations in local coordinates
 obsind2=zeros(length(apuind),1);
 for il=1:length(apuind)
 obsind2(il)=find(indsa==obsind(apuind(il)));
 end
% ---
% Measurement result combinations
% ---
% Generate all possible measurement results; 5 sites are observed each giving
% a binary result -> 32 possibilities in the most general case (current
% position not at the edges)
 ggg = (dec2bin(0:31))';
 gcc = textscan(ggg(:),'%1d%1d%1d%1d%1d','CollectOutput',true);
 FM = gcc{1};
 FM=FM(:,5:-1:1);
 % The real observation combinations (results) in this
 % particular observation-position case
 Nmeas=2^length(apuind);
 result=FM(1:2^length(apuind),1:length(apuind));
 result=str2num(int2str(result));
% ---
% Read prior probabilities of belief state
% ---
 bel_ap=zeros(length(obsind2),1);
 bel_ap(1:length(obsind2))=state(obsind2+1);
% ---
% Calculate prior probabilities for each measurement result
% ---
 pr_ap_meas=zeros(2^length(apuind),1);
 for iapm=1:2^length(apuind)
pr_ap_meas(iapm)=prod(bel_ap.^(result(iapm,:)'))*prod((1-bel_ap).^(1-
result(iapm,:)'));
 end
 bel_post=zeros(length(apuind),2^length(apuind));
% ---
% Calculate posterior probabilities of states for each measurement result;
% only those sites that are affected by the observation are updated
% ---
 for iapm2=1:(2^length(apuind))
 for ist=1:length(apuind)
 if result(iapm2,ist)==1
bel_post(ist,iapm2)=p_obs(ist,2)*bel_ap(ist)/(p_obs(ist,2)*bel_ap(ist)+p_obs(i
st,1)*(1-bel_ap(ist)));
 elseif result(iapm2,ist)==0
 bel_post(ist,iapm2)=(1-p_obs(ist,2))*bel_ap(ist)/((1-
p_obs(ist,2))*bel_ap(ist)+(1-p_obs(ist,1))*(1-bel_ap(ist)));
 else
 'Undefined measurement result'
 result(iapm2)
 end
 end
 end
% ---
% State update for each possible measurement result (no move)
% ---

 68

 new_states=zeros(length(state),2^length(apuind));
 for ir2=1:(2^length(apuind))
 new_states(:,ir2)=state;
 new_states(obsind2+1,ir2)=bel_post(1:length(apuind),ir2);
 end
% ---
% Calculate the expected value of the action (observation) when making this
% particular observation
% ---
 value(4+imeas)=0;
 for ir3=1:(2^length(apuind))
 incorn=find(indsa==new_states(1,ir3)); % Local coordinate of WM
% Value is state value (no move) cost of observations and expected value of
% futures steps
value(4+imeas)=value(4+imeas)+pr_ap_meas(ir3)*(c_O+loc_rew(incorn)+alpha*OAD_S
(depth-1,new_states(:,ir3),
indsa,loc_rew,loc_rew_end,loc_steps,loc_obs_sets,c_O,c_clash,
alpha,p_obs,pos_vis));
 end

 end
 end
end
% ---
% Optimal value and the corresponding optimal action
% ---
opt_value=max(value);
inda=find(value==opt_value);
opt_act=inda(1);
end

 69

APPENDIX 5

The Command Controller
function [action_history, corrective_action] = CC (M, N, depth, iloop,
call_count, opt_value, opt_act, pos_on_the_road, action_history, c_clash)
% this function keeps a tight track of whatever value being generated in the
% online tester or deterministic path finder. Thus the correct actions could
% be carried out at the right times. Corrective action will indicate the right
% path to go in case of encountering an abnormality. corrective action=0: no
% immediate action required, corrective action=100: OL-re-routing is advised,
% corrective action=200: ML-re-routing is advised, corrective action=250:
% reduce the cost of collision, corrective action=300: increase the cost of
% collision, corrective action=350: set the collision cost back to the initial
% and increase the depth, corrective action=400: increase the depth,
% corrective action=500: reduce the depth
% ---
corrective_action=0;
action_history(call_count, 1)=iloop;
action_history(call_count, 2)=opt_act;
action_history(call_count, 3)=opt_value;
action_history(call_count, 4)=pos_on_the_road(iloop);
action_history(call_count, 5)=c_clash;
action_history(call_count, 6)=depth;
action_history(call_count, 7:8)=0;
% ---
%% looking for observation loops
% ---
% repeating single observation
no_sdo=7; % Number of past steps considered for single direction observation
if call_count > no_sdo & action_history(call_count-no_sdo:call_count, 2)>=5 &
~ismember(100,action_history(call_count-no_sdo:call_count, 7)) &
length(unique(action_history(call_count-no_sdo:call_count, 2)))==1;
 corrective_action=100;
 action_history(call_count, 7)=corrective_action;
 action_history(call_count, 8)=1;
end
% repeating observations
no_mdo=35; % Number of past steps considered for Multi direction observation
if call_count > no_mdo & ...
 action_history(call_count-no_mdo:call_count, 2)>=5 &...
 ~ismember(100,action_history(call_count-no_mdo:call_count, 7));
 corrective_action=100;
 action_history(call_count, 7)=corrective_action;
 action_history(call_count, 8)=2;
end
% ---
% looking for motion loops
% ---
% reciprocating motion
no_rm=8; % Number of past steps considered for Reciprocating motion
if call_count > no_rm & action_history (call_count-no_rm:call_count, 2) < 5 &
~ismember(200,action_history(call_count-no_rm:call_count, 7)) &
length(unique(action_history(call_count-no_rm:call_count, 4)))==2;
 corrective_action=200;
 action_history(call_count, 7)=corrective_action;
 action_history(call_count, 8)=3;
end
% circular motion
no_cm=16; % Number of past steps to be considered for circular motion
if call_count > 16 & action_history (call_count-no_cm:call_count, 2) < 5 &
~ismember(200,action_history(call_count-no_cm:call_count, 7)) &
length(unique(action_history(call_count-no_cm:call_count, 4)))==4;
 corrective_action=200;
 action_history(call_count, 7)=corrective_action;
 action_history(call_count, 8)=4;
end

 70

% ---
% ---
% looking for incautious motions
% ---
% looking for the pattern based on observations/motions ratio
no_cr_ca=7; % Number of past steps considered for Cost adjustment, also this
% represents the space between two possible warnings
lim_omr_ca=0.3; % observation to motion ratio limit
if iloop > no_cr_ca && ~ismember(300,action_history(call_count-no_cr_ca:end,
7)) && ~ismember(350,action_history(call_count-no_cr_ca:end, 7))
 pa_op=action_history(call_count-iloop+1:call_count, 2);
 mobo=hist(pa_op, [4 5]); % number of motions and observations in past steps
 omr_ca=mobo(2)/(mobo(1)+mobo(2)); % observation to motion ratio
 if omr_ca <= lim_omr_ca
 if action_history(call_count, 5) > -10000
 corrective_action=300;
 action_history(call_count, 7)=corrective_action;
 action_history(call_count, 8)=5;
 else % this condition can in fact be a part of secondary loop regulator
 corrective_action=350;
 action_history(call_count, 7)=corrective_action;
 end
 end
end
% Incautious motion pattern based on number of motion steps without
% observations
no_im=2; % Number of past steps to be considered for incautious motion
if call_count > no_im & action_history (call_count-no_im:call_count, 2) < 5
 if action_history(call_count, 5) > -10000
 corrective_action=300;
 action_history(call_count, 7)=corrective_action;
 action_history(call_count, 8)=6;
 else % this condition can in fact be a part of secondary loop regulator
 corrective_action=350;
 action_history(call_count, 7)=corrective_action;
 end
end
% ---
% Secondary loop controller
% ---
if action_history(call_count, 7)~=0
 % defining the immidiate vicinity around the wm position
 v_dim=2; % dimension on the vicinity
 pos=action_history(call_count, 4);
 ny_t=max(1,floor(pos/N)+1-v_dim);
 ny_p=min(M,floor(pos/N)+1+v_dim);
 nx_t=max(1,pos-N*floor((pos-1)/N)-v_dim);
 nx_p=min(N,pos-N*floor((pos-1)/N)+v_dim);
 vicinity=[]; %% Global coordinates of local area
 for iv=ny_t:ny_p
 vicinity=[vicinity ((iv-1)*N+nx_t:((iv-1)*N+nx_p))];
 end
 % determining when in past the robot has been in a location belonging to the
% vicinity defined above
 vil=length(vicinity);
 vin1=zeros(36, vil);
 for il=1:vil;
 vin=find(action_history(1:end-1, 4)==vicinity(il));
 for jl=1:length(vin);
 vin1(jl,il)=vin(jl);
 end
 end
 [z,n,V]=find(vin1);
 % retrieving the type of the warnings that might have been issued
 viwar=action_history(V, 7);
 n=hist(viwar, [0 160 260 310 360 410 510]);
 % loop controller
 if n(2) > 2

 71

 corrective_action=400;
 action_history(call_count, 7)=corrective_action;
 end
 if n(4) > 2
 corrective_action=350;
 action_history(call_count, 7)=corrective_action;
 end
end
% ---
% normal conditions revision
% ---
% Collision cost reduction
no_cr=12; % Number of past steps considered for Cost reduction
lim_omr=0.8; % observation to motion ratio limit
if iloop > no_cr & unique(action_history (call_count-no_cr:call_count, 7))==0
& unique(action_history (call_count-no_cr:call_count, 4))~=1
 ls=action_history (call_count-iloop+1:call_count, 2); % iloop steps.
 numo=hist(ls, [4 5]); % number of motions and observations in past steps
 omr=numo(2)/(numo(1)+numo(2)); % observation to motion ratio
 if action_history(call_count, 6) <= 3 & action_history(call_count, 5) ~= -
2500
 if omr >= lim_omr
 corrective_action=250;
 action_history(call_count, 7)=corrective_action;
 end
 end
 if action_history(call_count, 6) > 3 & action_history(call_count, 5) ~= -
4000
 if omr >= lim_omr
 corrective_action=250;
 action_history(call_count, 7)=corrective_action;
 end
 end
end
% Depth reduction
no_dr=18; % Number of past steps to be considered for depth reduction
if call_count > no_dr & unique(action_history (call_count-no_cr:call_count,
4))~=1
 if action_history(end, 6) > action_history(1, 6)
 SC=length(unique(action_history(call_count-no_dr: call_count, 7)));
 if unique(action_history(call_count-no_dr: call_count, 7))==0
 corrective_action=500;
 action_history(call_count, 7)=corrective_action;
 elseif SC==2;
 if unique(action_history(call_count-no_dr: call_count, 7))==[0;250]
 corrective_action=500;
 action_history(call_count, 7)=corrective_action;
 end
 end
 end
end
end

 72

APPENDIX 6

Modifications to the OPF following the CC
% Command controller
% ---
% The anomaly controller function is being called to check the results of the
% optimization function and take a decisive action if needed
[action_history, corrective_action] = CC(M, N, depth, iloop, call_count,
opt_value, opt_act, pos_on_the_road, action_history, c_clash);
 if corrective_action==100 | corrective_action==200;
 if corrective_action==100
 fprintf('Abonrmality of type "observations loop" has been detected; Re-
routing \n\n')
 else
 fprintf('Abonrmality of type "Reciprocating or circular motions" has
been detected; Re-routing \n\n')
 end
 start_grid=pos_on_the_road(iloop);
 new_obs=find(global_occupancy >= 0.55);
 new_obs_op=global_occupancy(new_obs);
 [steps, opt_val, rew, alpha, optimal_path,opt_pathx, opt_pathy,
on_the_way_cost, N, M, rew_matr, p_count, start_grid]=OPP(start_grid, rew,
new_obs, new_obs_op);
 iroad=p_count*5;
 pos_on_the_road=zeros(iroad+1,1);
 act_on_the_road=zeros(iroad,1);
 pos_on_the_road(1)=optimal_path(start_grid);
 z_opt=zeros(1,p_count-1);
 refreshdata (reff)
 drawnow
 if optimal_path ~= M*N+1;
 fprintf('All passages are blocked; the programs execution is terminated
\n\n')
 T=toc; % timer stop
 break
 end
 if depth<=3
 c_clash=-4000;
 else
 c_clash=-5000;
 end
 fprintf('The collision cost is temporarily increased \n')
 fprintf('current cost is %2i \n\n',c_clash)
 iloop=0;
 end
 if corrective_action==250;
 if depth <= 3 & c_clash < -2500
 c_clash=c_clash+1500;
 fprintf('The collision cost has been lowered due to smooth operation
\n')
 fprintf('current depth is %2i \n\n',c_clash)
 elseif depth > 3 & c_clash < -4000
 c_clash=c_clash+1000;
 fprintf('The collision cost has been lowered due to smooth operation
\n')
 fprintf('current depth is %2i \n\n',c_clash)
 end
 end
 if corrective_action==300;
 if depth <= 3
 c_clash=c_clash-1500;
 fprintf('Abonrmality of type "incautious motions" has been detected;
collision cost is temporarily increased \n')
 fprintf('current cost is %2i \n\n',c_clash)
 else
 c_clash=c_clash-1000;

 73

 fprintf('Abonrmality of type "incautious motions" has been detected;
collision cost is temporarily increased \n')
 fprintf('current cost is %2i \n\n',c_clash)
 end
 end
 if corrective_action==350;
 depth=depth+1;
 if depth<=3
 c_clash=-2500;
 else
 c_clash=-4000;
 end
 fprintf('Abonrmality of type "consistent incautious motions" has been
detected; depth is temporarily increased \n')
 fprintf('current depth is %2i \n\n',depth)
 fprintf('The collision cost has been set to initial value \n')
 fprintf('current cost is %2i \n\n',c_clash)
 end
 if corrective_action==400;
 depth=depth+1;
 if depth<=3
 c_clash=-2500;
 else
 c_clash=-4000;
 end
 fprintf('The depth has increased due to unsuccessful re-routing \n')
 fprintf('current depth is %2i \n\n',depth)
 fprintf('The collision cost has been set to initial value \n')
 fprintf('current cost is %2i \n\n',c_clash)
 end
 if corrective_action==500;
 depth=depth-1;
 fprintf('The depth has been lowered due to smooth operation \n')
 fprintf('current depth is %2i \n\n',depth)
 end

 74

APPENDIX 7

The OPF in dynamic environment
clear all
close all
clc
tic;
%% Primary offline-planning
 [steps, opt_val, rew, alpha, optimal_path,opt_pathx, opt_pathy,...
 on_the_way_cost, N, M, rew_matr, p_count, start_grid]=OPP(1, [], [], []);
%% On-line part
%% System state
% System state is location of WM and belief vector of location of MO
depth=3; % the depth starts at 2 but the program could go deeper in horizen,
should the need ever arises
l_dim=5;
if depth<=3
 c_clash=-2500; %% Initial Cost of clash
elseif depth>3
 c_clash=-4000;
end
cii=0; % Initial collision increment index
record_call_count=0;
c_O=-0; %% Cost of observation
action_history=zeros(1,6); % initial action history
A_dim=2*l_dim+1; % Size of area considered in one on-line decision
p_obs=[0.01 0.99; 0.05 0.95]; %Probabilites of observing MO as a function of
position 1:no MO, 2: is MO
qw=0.1;
% complete ignorance about occupancy in the beginning
global_occupancy=0.1*ones(N*M,1);
% Position of initial MOs, changes are in random positions
no_positions = 8;
positions=RW(N,M, 1, no_positions, [], [], qw); % random positions
positions_xy = [positions-N*(ceil(positions/N)-1),ceil(positions/N)];
z_positions=zeros(no_positions,1);
% length of the road studied
iroad=p_count*5; % length of the path studied = one step till the off-line
path hits the goal
pos_on_the_road=zeros(iroad+1,1);
act_on_the_road=zeros(iroad,1);
pos_on_the_road(1)=optimal_path(start_grid); % Same starting point as in the
optimal path studied in script OPP
%% Observation sets
generate_observation_sets_small;
%% Mapping of area of entire problem to local optimization problem
f_c=1; % figure counter
figure(f_c);
set (figure(f_c), 'Position' , [100 100 500 500])
mesh(rew_matr);
hold on;
plot3(opt_pathy(1:p_count-1),opt_pathx(1:p_count-1),zeros(1,p_count-1));
reff=plot3(positions_xy(:,2),positions_xy(:,1),z_positions,'r*'); % refreshing
figure
set(reff,'XDataSource','positions_xy(:,2)');
set(reff,'YDataSource','positions_xy(:,1)');
set(reff,'ZDataSource','z_positions');
iloop=1;
call_count=1;
while iloop < iroad+1 & pos_on_the_road(iloop)~=N*M-N &
pos_on_the_road(iloop)~=N*M-1 & pos_on_the_road(iloop)~=N*M-N-1
 %% Random walker
 [positions]=RW([],[],0,no_positions, steps, positions, qw);
 positions_xy = [positions-N*(ceil(positions/N)-1),ceil(positions/N)];
 refreshdata (reff)
 drawnow

 75

 %% indsa is the mapping vector
 pos_WM=pos_on_the_road(iloop);
 N0=floor(pos_WM/N)+1;
 NY_start=max(1,N0-l_dim);
 NY_stop=min(M,N0+l_dim);
 NX_start=max(1,pos_WM-N*floor((pos_WM-1)/N)-l_dim);
 NX_stop=min(N,pos_WM-N*floor((pos_WM-1)/N)+l_dim);
 indsa=[]; %% Global coordinates of local area
 for i=NY_start:NY_stop
 indsa=[indsa ((i-1)*N+NX_start:((i-1)*N+NX_stop))];
 end
 %% WM steps on the local area
 loc_steps=steps(indsa,:);
 loc_rew=rew(indsa); %Local immediate rewards
 loc_rew_end=rew(indsa)+alpha*opt_val(indsa); % Rewards at the end step of
on-line optimization
 loc_obs_sets=obs_sets(indsa,:,:);
 state=zeros(length(indsa)+1,1);
 state(1)=pos_WM;
 state(2:end)=global_occupancy(indsa); %% To take care of the irregular
global belief
 %% On-line optimization of actions
 global_occupancy_ref=global_occupancy; % referncing global_occupancy
before changes being made to it
 pos_vis=pos_on_the_road(1:iloop);

[opt_value,opt_act,value]=OAD_D(depth,state,indsa,loc_rew,loc_rew_end,loc_step
s...
 ,loc_obs_sets,c_O,c_clash,alpha,p_obs,pos_vis, global_occupancy,
obs_sets, steps, qw);%% observation as chosen/optimized and updating belief
 global_occupancy=global_occupancy_ref; % restoring the global_occupancy to
the original
 %% After optimization update position or belief depending on action
 fprintf('At time step %3i \n',call_count)
 fprintf('optimal action is %2i \n',opt_act)
 if opt_act<5 %% Step taken, no measurement made
pos_on_the_road(iloop+1)=steps(pos_on_the_road(iloop),opt_act);
 fprintf('and new position of the WM is %3i
\n\n',pos_on_the_road(iloop+1))
 hold on;
plot3(ceil(pos_on_the_road(iloop+1)/N),pos_on_the_road(iloop+1)-
N*(ceil(pos_on_the_road(iloop+1)/N)-1), zeros(length(iloop+1),1),'k*');
 drawnow;
 hold off;
 else %% Measurement made, no step taken
 pos_on_the_road(iloop+1)=pos_on_the_road(iloop);
 fprintf('and the WM holds its position at %3i
\n\n',pos_on_the_road(iloop))
 hold on;
plot3(ceil(pos_on_the_road(iloop+1)/N),pos_on_the_road(iloop+1)-
N*(ceil(pos_on_the_road(iloop+1)/N)-1),zeros(length(iloop+1),1),'ko');
 drawnow;
 hold off;
 imeas=opt_act-4; %This is the optimal measurement

 % Making the measurement imeas; each point measured for occupancy
 % or not
 obsind=obs_sets(pos_WM,imeas,:);
 apuind=find(obsind~=0);

 if ~isempty(apuind)
 obsind2=zeros(length(apuind),1);
 for il=1:length(apuind)
 obsind2(il)=obs_sets(pos_WM,imeas,apuind(il));
 end
 %Simulate the measurement result (value=1, no observation; =2
 %is observed)
 result=zeros(length(apuind),1);

 76

 for imi=1:length(apuind)
 if ismember(obsind2(imi),positions)
 ptest=p_obs(imi,2);
 else
 ptest=p_obs(imi,1);
 end
 if rand<ptest
 result(imi)=1;
 end
 end
 result;
 % Update ocuupancy belief
 bel_ap=global_occupancy(obsind2);
 bel_post=zeros(length(obsind2),1);
 for iup=1:length(apuind)
 if result(iup)==1
bel_post(iup)=p_obs(iup,2)*bel_ap(iup)/(p_obs(iup,2)*bel_ap(iup)+p_obs(iup,1)*
(1-bel_ap(iup)));
 else
 bel_post(iup)=(1-p_obs(iup,2))*bel_ap(iup)/((1-
p_obs(iup,2))*bel_ap(iup)+(1-p_obs(iup,1))*(1-bel_ap(iup)));
 end
 end
 bel_ap;
 bel_post;
 global_occupancy(obsind2)=bel_post;
 end
 [global_occupancy] = occupancy_updater(qw, global_occupancy,
obs_sets, steps, 0, [], []);
 end
 %% Command controller
%The anomaly controller function is being called to check the
results of the optimizaion function and take a decisive action if needed
 [action_history, corrective_action] = command_controller(M, N, depth,
iloop, call_count, opt_value, opt_act, pos_on_the_road, action_history,
c_clash);

 if corrective_action==100 | corrective_action==200;
 if corrective_action==100
 fprintf('Abonrmality of type "observations loop" has been
detected; Re-routing \n\n')
 else
 fprintf('Abonrmality of type "Reciprocating or circular motions"
has been detected; Re-routing \n\n')
 end
 start_grid=pos_on_the_road(iloop);
 new_obs=find(global_occupancy >= 0.55);
 new_obs_op=global_occupancy(new_obs);
 [steps, opt_val, rew, alpha, optimal_path,opt_pathx, opt_pathy,
on_the_way_cost, N, M, rew_matr, p_count, start_grid]=OPP(start_grid, rew,
new_obs, new_obs_op);
 iroad=p_count*5;
 pos_on_the_road=zeros(iroad+1,1);
 act_on_the_road=zeros(iroad,1);
 pos_on_the_road(1)=optimal_path(start_grid);

 f_c=f_c+1;
 figure(f_c);
 set (figure(f_c), 'Position' , [100 100 500 500])
 mesh(rew_matr);
 hold on;
 plot3(opt_pathy(1:p_count-1),opt_pathx(1:p_count-1),zeros(1,p_count-
1));
reff=plot3(positions_xy(:,2),positions_xy(:,1),z_positions,'r*');
 set(reff,'XDataSource','positions_xy(:,2)');
 set(reff,'YDataSource','positions_xy(:,1)');
 set(reff,'ZDataSource','z_positions');
 if optimal_path ~= M*N+1;

 77

 fprintf('All passages are blocked; the programs execution is
terminated \n\n')
 break
 end
 if depth<=3
 c_clash=-4000;
 else
 c_clash=-5000;
 end
 fprintf('The collision cost is temporarily increased \n')
 fprintf('current cost is %2i \n\n',c_clash)
 iloop=0;
 end
 if corrective_action==250;
 if depth <= 3 & c_clash < -2500
 c_clash=c_clash+1500;
 fprintf('The collision cost has been lowered due to smooth
operation \n')
 fprintf('current depth is %2i \n\n',c_clash)
 elseif depth > 3 & c_clash < -4000
 c_clash=c_clash+1000;
 fprintf('The collision cost has been lowered due to smooth
operation \n')
 fprintf('current depth is %2i \n\n',c_clash)
 end
 end
 if corrective_action==300;
 if depth <= 3
 c_clash=c_clash-1500;
 fprintf('Abonrmality of type "incautious motions" has been
detected; collision cost is temporarily increased \n')
 fprintf('current cost is %2i \n\n',c_clash)
 else
 c_clash=c_clash-1000;
 fprintf('Abonrmality of type "incautious motions" has been
detected; collision cost is temporarily increased \n')
 fprintf('current cost is %2i \n\n',c_clash)
 end
 end
 if corrective_action==350;
 depth=depth+1;
 if depth<=3
 c_clash=-2500;
 else
 c_clash=-4000;
 end
 fprintf('Abonrmality of type "consistent incautious motions" has been
detected; depth is temporarily increased \n')
 fprintf('current depth is %2i \n\n',depth)
 fprintf('The collision cost has been set to initial value \n')
 fprintf('current cost is %2i \n\n',c_clash)
 end
 if corrective_action==400;
 depth=depth+1;
 if depth<=3
 c_clash=-2500;
 else
 c_clash=-4000;
 end
 fprintf('The depth has increased due to unsuccessful re-routing \n')
 fprintf('current depth is %2i \n\n',depth)
 fprintf('The collision cost has been set to initial value \n')
 fprintf('current cost is %2i \n\n',c_clash)
 end
 if corrective_action==500;
 depth=depth-1;
 fprintf('The depth has been lowered due to smooth operation \n')
 fprintf('current depth is %2i \n\n',depth)

 78

 end
 call_count=call_count+1;
 iloop=iloop+1;
end
%% Destination approach
 [action_history, corrective_action] = command_controller(M, N, depth, iloop,
call_count, opt_value, opt_act, pos_on_the_road, action_history, c_clash);

if pos_on_the_road(iloop)==N*M-N-1
 call_count = call_count+1; iloop = iloop+1; opt_value = 0;
 better_move = sort([rew(N*M-1), N*M-1, 3;rew(N*M-N), N*M-N, 1],'descend');
 pos_on_the_road(iloop) = better_move(1,2);
 opt_act = better_move(1,3);
 [action_history, corrective_action] = command_controller(M, N, depth,
iloop, call_count, opt_value, opt_act, pos_on_the_road, action_history,
c_clash);
 fprintf('At time step %3i \n',call_count)
 fprintf('The Destination has been reached \n')
 hold on;
 plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*');
 drawnow;
end
if pos_on_the_road(iloop)==N*M-1;
 call_count = call_count+1; iloop = iloop+1; opt_act = 1; opt_value = 0;
 pos_on_the_road(iloop)=N*M;
 [action_history, corrective_action] = command_controller(M, N, depth,
iloop, call_count, opt_value, opt_act, pos_on_the_road, action_history,
c_clash);
 fprintf('At time step %3i \n',call_count)
 fprintf('The Destination has been reached \n')
 hold on;
 plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*');
 drawnow;
elseif pos_on_the_road(iloop)==N*M-N;
 call_count = call_count+1; iloop = iloop+1; opt_act = 3; opt_value = 0;
 pos_on_the_road(iloop)=N*M;
 [action_history, corrective_action] = command_controller(M, N, depth,
iloop, call_count, opt_value, opt_act, pos_on_the_road, action_history,
c_clash);
 fprintf('At time step %3i \n',call_count)
 fprintf('The Destination has been reached \n')
 hold on;
 plot3(ceil(pos_on_the_road(iloop)/N),pos_on_the_road(iloop)-
N*(ceil(pos_on_the_road(iloop)/N)-1), zeros(length(iloop),1),'k*');
 drawnow;
end
T=toc;
%% Obstruction mapping based on system belief
GO_mtrx=reshape(global_occupancy,N,M);
figure (f_c+1)
set (figure(f_c+1), 'Position' , [100 100 500 500])
mesh(GO_mtrx)

%% Actual path
opt_of_pathx=zeros(call_count,1);
opt_of_pathy=zeros(call_count,1);
for i=1:call_count
 opt_of_pathy(i)=ceil(action_history(i,4)/N);
 opt_of_pathx(i)=action_history(i,4)-N*(ceil(action_history(i,4)/N)-1);
end
figure (f_c+2)
set (figure(f_c+2), 'Position' , [100 100 500 500])
mesh(rew_matr);
hold on;
plot3(opt_of_pathy,opt_of_pathx,zeros(1,length(opt_of_pathx)),'m');

 79

APPENDIX 8

The random walker
function [walker_pos] = RW(N,M, first_call, no_walkers, steps, walker_pos, qw
)
% this module governs the movement of the random walker(s). the number of
% walker(s) and probability
% of them moving is introduced to the function by the OPF. it randomly
% chooses an action, based on the probabilities received, for each
% walker and returns the updated position to the online path finder.
if first_call == 1;
 %% Iitial random positions
 walker_pos=(randperm(N*M-2, no_walkers)+1)'; % random positions
else
 %% Random action generator (rag)
 stp=1-qw; % probability of a random walker staying in its place
 mp=qw/4; % probability of a random walker moving from its place
 for jj=1:no_walkers
 rag=rand(1);
 if rag <= stp
 wact(jj)=5; % walker action
 elseif rag > stp & rag <= stp+mp
 wact(jj)=1;
 elseif rag > stp+mp & rag <= stp+2*mp
 wact(jj)=2;
 elseif rag > stp+2*mp & rag <= stp+3*mp
 wact(jj)=3;
 elseif rag > stp+3*mp & rag <= 1
 wact(jj)=4;
 end
 %% Walker position selector
 if wact(jj)<5 %% Step taken
 walker_pos(jj)=steps(walker_pos (jj), wact(jj));
 else
 walker_pos(jj)=walker_pos (jj);
 end
 end
end
end

 80

APPENDIX 9

The Occupancy Updater
function [global_occupancy, state] = occupancy_updater(qw,
global_occupancy, obs_sets, steps, partial, state, indsa)%% Cell Checker
for i=1:900
 CC(i,1)= obs_sets (i, 1, 1)~=0;
 CC(i,2)= obs_sets (i, 2, 1)~=0;
 CC(i,3)= obs_sets (i, 4, 1)~=0;
 CC(i,4)= obs_sets (i, 6, 1)~=0;
end
%% Whole grid update
qw_ied=qw/4; % probability of random walkers moving in each direction
for i=1:899
 global_occupancy(i)=(1-
qw_ied*(CC(i,1)+CC(i,2)+CC(i,3)+CC(i,4)))*global_occupancy(i)+qw_ied*(global_o
ccupancy(steps(i,4))*CC(i,1)+global_occupancy(steps(i,1))*CC(i,2)+global_occup
ancy(steps(i,3))*CC(i,3)+global_occupancy(steps(i,2))*CC(i,4));
end
if partial==1
 state(2:end)=global_occupancy(indsa);
end
end

	Abstract
	Acknowledgements
	List of symbols
	List of abbreviations
	1. Introduction
	1.1. Autonomous robot navigation
	1.2. A motivational example
	1.3. Organization of this work
	1.4. Author’s Contribution

	2. Theoretical background
	2.1. Planning elements
	2.2. Discrete planning methods
	2.3. Fully observable versus partially observable states
	2.3.1. Estimation of environment’s state
	2.4. Planning under uncertainty
	2.4.1. Partially observable Markov decision process

	3. The problem formulation
	3.1. The generic problem
	3.2. The simplified problem
	3.2.1. Applied approximations
	3.2.2. Offline deterministic problem

	4. the Original program
	4.
	4.1. Offline path planner (OPP):
	4.2. Vertices observation guide (VOG):
	4.3. Online path finder (OPF):
	4.4. Optimum action determinant (OAD):

	5. Anomalies and rectification
	5.
	5.1. Unwanted behavior and characterization
	5.1.1. Observation loops (OLs)
	5.1.2. Motion loops (MLs)
	5.1.3. Incautious motions (IMs)

	5.2. Sources of the errors
	5.3. Command controller (CC):
	5.4. Corrective measures
	5.5. Rectification of loops
	5.6. Rectification of IMs
	5.7. Secondary loop controller (SLC)
	5.8. Normal condition revision
	5.8.1. Aiding the operations in NEC

	6. Dynamic environment implementation
	3.
	4.
	5.
	6.
	6.1. Moving obstacles
	6.2. Problem formulation
	6.3. Modifying the program
	6.3.1. The OPF modification
	6.3.2. Modifications to the OAD

	6.4. Random walker (RW):
	6.5. Occupancy updater (OU)

	7. Results
	7.1 Robot’s performance in static environment
	7.1.1 The original program
	7.1.2 The new program with active CC unit
	7.1.3 The new program with inactive CC unit

	7.2 Robot’s performance in dynamic environment

	8. Conclusions and future work
	References
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7
	Appendix 8
	Appendix 9

