

BIN ZHANG
DESIGN AND IMPLEMENTATION OF AN INFOSTORE FOR KEY
PERFORMANCE INDICATORS
Master of Science Thesis

The topic was approved by the Faculty Council of
the Faculty of Automation, Mechanical and Materials
Engineering on 5 September 2012.

Examiner: Professor Jose L. Martinez Lastra

I

PREFACE

The prerequisite for the improvement of efficiency and energy use in industrial facilities
is the realization of asset-awareness. The purpose of the thesis work is to design and
implement a middleware to realize asset-awareness of manufacturing systems by
gathering raw information from the a factory automation testbed based on Service
Oriented Architecture, processing the information into Key Performance Indicators,
recording both the raw information and indicators, displaying and exposing them on
web. The thesis work was carried out in the Factory Automation Systems and
Technologies Laboratory of the Department of Production Engineering in Tampere
University of Technology. The funding comes from the project eSONIA: Embedded
Service Oriented Monitoring, Diagnostics and Control: Towards the Asset-Aware and
Self-Recovery Factory.

The work begins with a review on different open source toolkits and frameworks
used for the implementation of web services and web applications. In order to
investigate the suitability of the toolkits and frameworks, the author tested several of
them by coding sample projects. The second phase of the work focused on the theory
and previous researches concerning Key Performance Indicators in the domain of
factory automation, to seek a suitable model and design a set of appropriate indicators
for the testbed. Then in order to extract the indicators, studies on the available
information from the testbed and Complex Event Processing technologies were
performed, after which the implementation of the web services, data processing and
visualization were carried out. Finally comes the fine-tuning of the application.

Next, I would like to express my gratitude to people who have provided me helps
and supports during my work.

First of all, I would like to thank my professor Jose L. Martinez Lastra who
provided me such a great opportunity to work on such a challenging topic in an
international environment.

Then, I am truly grateful to my supervisor Dr. Corina Postelnicu who provided with
guidance on my work, on the thesis writing and publication of academic papers.

I also would like to show my gratitude to Axel who gave me advices and guidance
on the technologies used in this work, to Andrei and Jani who also gave me advices.

Best wishes to all my colleagues and friends, thank you for your accompany and the
joys you brought to me.

Last but the most, I would like to appreciate my parents’ supports during the last
several years.

Tampere, August 19th, 2012
Bin Zhang

II

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master’s Degree Programme in Machine Automation
ZHANG, BIN: Design and Implementation of an InfoStore for Key Performance
Indicators
Master of Science Thesis, 85 pages, 13 Appendix pages
October 2012
Major subject: Factory Automation
Examiner: Prof. Jose L. Martinez Lastra
Supervisor: Dr. Corina Postelnicu
Keywords: Key Performance Indicator, Service Oriented Architecture, Complex
Event Processing, SOAP, REST, web application

The efficiency of manufacturing systems becomes more and more significant in today’s
factories due to the increasingly competitive market. As the rise of energy price, energy
saving also becomes vital. The first step to increase efficiency and decrease energy use
is to achieve real-time monitoring of the systems at the shop floor. Then the
optimization of efficiency and energy use becomes possible. The use of modern
information technologies is essential considering the large amount of information
generated by the low level facilities.

This thesis work presents the selection of a set of Key Performance Indicators (KPI)
to improve the awareness of different manufacturing assets including those related to
energy and efficiency. The implementation relies on Service Oriented Architecture
deployed by web services and the further processing of the generated events by the
application of an Event Processing Language based on rules. The processed data are
displayed on web as graphics and updated in real time.

On the other hand, in order to fully exploit the potential of optimization algorithms
for efficiency and energy savings in factory automation settings, it is needed to bring
together engineers that have knowledge of signal processing algorithms with shop floor
engineers that are experienced with real manufacturing processes and factory
automation settings. This thesis work exposes the captured raw data and KPIs as a web
service so that third party applications can acquire the data via URLs for their own use.
The InfoStore is currently populated with data regarding equipment IPC-2541 state
events, process/cell/production energy consumption, process/pallet production time, etc
regarding a multi robot production line located at the premises of the Factory
Automation Systems and Technology laboratory.

III

TABLE OF CONTENTS

1. Introduction .. 1

1.1. Background .. 1

1.2. Problem definition .. 2

1.3. Work description .. 3

1.3.1. Objectives .. 3

1.3.2. Methodology ... 4

1.4. Thesis outline ... 4

2. Literature and Technology Review.. 5

2.1. Key performance indicators ... 5

2.1.1. Properties and characteristics of KPIs .. 6

2.1.2. Related work ... 6

2.1.3. General KPIs in production (case 1) ... 7

2.1.4. Improved manufacturing performance measures (case 2) 8

2.1.5. Production feedback control using production KPIs (case 3) 9

2.1.6. A complete index model for notebook manufacturing (case 4) 9

2.1.7. Production efficiency as a KPI of energy efficiency (case 5) 10

2.1.8. Indicators for sustainable production (case 6) .. 10

2.1.9. Review on Key Performance Indicators ... 11

2.2. Service oriented architecture .. 12

2.2.1. Implementation toolkit- WS4D ... 12

2.2.2. Spring Web Services ... 13

2.3. RESTful web services .. 14

2.3.1. Implementation framework- Spring MVC .. 14

2.4. Complex event processing .. 15

2.4.1. Esper .. 15

2.5. Web application .. 16

2.5.1. Review on architectural patterns ... 17

2.5.2. Review on web application frameworks ... 20

2.5.3. Review on presentation technologies .. 23

2.5.4. Review of persistence frameworks ... 24

3. Research Methods and Materials ... 26

3.1. Introduction to overall architecture .. 26

IV

3.2. Introduction to test bed ... 27

3.3. Design of KPIs for test bed .. 29

3.3.1. Define production goals and objectives .. 29

3.3.2. Define potential indicators .. 29

3.3.3. Select indicators for implementation .. 30

3.4. Implement indicators .. 32

3.4.1. Configuration of Java Enterprise Edition project...................................... 33

3.4.2. Implementation of SOAP web service .. 35

3.4.3. Implementation of web application ... 42

3.4.4. Implementation of RESTful web service .. 52

3.4.5. EPL rules for KPIs retrieval .. 53

3.4.6. Database structure ... 57

3.4.7. Data persistence with Hibernate.. 59

4. Results .. 63

4.1. Results of the web application .. 63

4.1.1. Visualization of efficiency indicators ... 66

4.1.2. Visualization of energy indicators .. 69

4.1.3. Visualization of indicators in reliability .. 72

4.1.4. Visualization of indicators in quality .. 72

4.1.5. Visualization of indicators in overall .. 73

4.2. Accessing the InfoStore .. 76

4.2.1. The URLs supported by the InfoStore .. 76

4.3. Defining new indicators ... 76

5. Conclusions .. 78

5.1. Conclusions on results .. 78

5.1.1. Overall ... 78

5.1.2. Comparison with previous work ... 79

5.2. Further work ... 79

References ... 81

Appendix 1: Folder structure .. 86

Appendix 2: Schema for equipmentchangestate message .. 88

Appendix 3: wsdl for equipmentchangestate message ... 89

Appendix 4: equipmentchangestate class ... 91

V

Appendix 5: Configuration parameters for esper engine .. 94

Appendix 6: Available resources in the infostore as of may 5th, 2012 95

	

VI

LIST OF FIGURES

Figure 1: Hierarchical structure of an enterprise [2] ... 2
Figure 2: Steps for KPIs deriving for production processes [2].. 7
Figure 3: Closed-loop control system of production process [1] 9
Figure 4: Device Profile for Web Services as protocol stack [19] 12
Figure 5: Esper engine setups ... 16
Figure 6: Process of action invocation in Struts 2 [45] ... 20
Figure 7: Request flow in Spring MVC framework [46] .. 21
Figure 8: Request processing steps in Wicket [49] ... 22
Figure 9: Overall system architecture ... 27
Figure 10: Layout of Fastory production line ... 27
Figure 11: Subscription configuration on S1000 controllers .. 28
Figure 12: Implementation architecture .. 33
Figure 13: Configuration of a Java EE project with web.xml file 34
Figure 14: Flow Chart for the Implementation of SOAP web service 35
Figure 15: Necessary configuration for Spring WS .. 36
Figure 16: Implementation of an endpoint .. 37
Figure 17: Sample code of FastoryServiceImpl class ... 38
Figure 18: DataServiceImpl class ... 39
Figure 19: DataDaoImpl class ... 40
Figure 20: Esper engine implementation .. 41
Figure 21: A listener for computing IPC-2541 state duration... 42
Figure 22: Flow chart of the implementation for web application.................................. 43
Figure 23: Spring MVC basic configuration ... 44
Figure 24: Simplified implementation of RuleController ... 45
Figure 25: Sample code in edit.jsp .. 45
Figure 26: Controller for IPC-2541 pie chart .. 46
Figure 27: Methods in service layer for IPC-2541 pie chart ... 47
Figure 28: Sample code from CAMXStates listener ... 49
Figure 29: Sending HTTP requests using jQuery's get method 49
Figure 30: Processing server response into a pie chart using Google Chart Tools 50
Figure 31: Update the IPC-2541 pie chart .. 51
Figure 32: Implementation of RESTful web service .. 52
Figure 33: Database tables for data: structure and relation ... 57
Figure 34: Example of data in database .. 58
Figure 35: One-to-many relation correlation with data_metadata table 58
Figure 36: Database tables for rules: structure .. 59
Figure 37: Database tables for users: structure and relation ... 59
Figure 38: Data in user_authority_table .. 59
Figure 39: Hibernate configuration ... 60
Figure 40: hibernate.cfg.xml ... 61
Figure 41: The use of annotations for ORM ... 62
Figure 42: Device Information .. 63

VII

Figure 43: CEP rules ... 64
Figure 44: Sample messages ... 65
Figure 45: Graphics ... 65
Figure 46: Historical unit energy consumption line chart ... 66
Figure 47: Run time unit energy consumption line chart .. 67
Figure 48: Historical unit production time line chart .. 67
Figure 49: Real time unit production time line chart ... 68
Figure 50: Visualization for cell production rate .. 68
Figure 51: Historical power consumption line chart ... 69
Figure 52: Runtime power consumption line chart ... 70
Figure 53: Cell energy consumption bar chart .. 70
Figure 54: Historical energy consumption per product line chart................................... 71
Figure 55: Real time energy consumption per product line chart 71
Figure 56: Reliability column chart .. 72
Figure 57: Quality rate column chart .. 72
Figure 58: IPC-2541 state pie chart .. 73
Figure 59: Total energy consumption bar chart .. 74
Figure 60: Historical pallet production time line chart ... 74
Figure 61: Real time pallet production time line chart ... 75
Figure 62: Total products column chart .. 75
Figure 63: Defining an EPL rule ... 77
Figure 64: Accessing the most recent power factor .. 77

VIII

LIST OF TABLES

Table I: General KPIs for production management .. 8
Table II: Core indicators for sustainable production... 10
Table III: Summary of studies on production KPIs .. 11
Table IV: A summary of architectural patterns classified according to views 17
Table V: Summary of features of Layers, Model-View-Controller and Client-Service
architecture .. 19
Table VI: Features of Struts 2, Spirng and Wicket frameworks 23
Table VII: A summary of presentation technologies .. 24
Table VIII: A Summary of persistence frameworks ... 25
Table IX: Events from the test bed ... 28
Table X: Selected KPIs and KRIs for implementation ... 30
Table XI: EPL rule designed for implementation ... 55
Table XII: RESTful web service access requests ... 76

IX

LIST OF ABBREVIATIONS

AOP Aspect Oriented Programming
API Application Programming Interface
CEO Chief Executive Officer
CEP Complex Event Processing
CRUD Create, Retrieve, Update, Delete
DAO Data Access Object
DI Dependency Injection
DPWS Device Profile for Web Services
EI Energy Intensity
EL Expression Language
EPL Event Processing Language
ERP Enterprise Resource Planning
GWP Global Warming Potential
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IoC Inversion of Control
IPv4 Internet Protocol version 4
IPv6 Internet Protocol version 6
Java EE Java Enterprise Edition
JDBC Java Database Connectivity
JMEDS Java Multi Edition DPWS Stack
JPA Java Persistence API
JSON JavaScript Object Notation
JSP JavaServer Pages
JSTL JSP Standard Tag Library
KPI Key Performance Indicator
KRI Key Result Indicator
MEEP Measure of Energy Efficiency Performance
MIME Multipurpose Internet Mail Extensions
MTBF Mean Time Between Failures
MTTF Mean Time-To-Failure
MTTR Mean Time-To-Repair
MVC Model View Controller
OEE Overall Equipment Effectiveness
ORM Object to Relational data Mapping
OXM Object/XML Mapping
PBT Persistent, Bio-accumulative and Toxic
PI Performance Indicator
PLC Programmable Logic Controller
PMS Performance Measurement Systems
POJO Plain Old Java Object
RDF Resource Description Framework

X

REST REpresentational State Transfer
SEC Specific Energy Consumption
SOA Service Oriented Architecture
SOA4D Service Oriented Architecture for Devices
SOAP Simple Object Access Protocol
SQL Sequential Query Language
TCP Transmission Control Protocol
UDDI Universal Description, Discovery and Integration
UDP User Datagram Protocol
URI Uniform Resource Identifier
URL Uniform Resource Locator
VTL Velocity Template Language
WS Web service
WS4D Web Services for Devices
WSDAPI Web Service on Device API
WSDL Web Service Description Language
XML Extensible Markup Language
XSD XML Schema Definition

 1

1. INTRODUCTION

This chapter introduces the background and problem definition of the thesis work,
following the work description. Finally, the outline of the thesis is presented.

1.1. Background

The increasing competiveness in global market nowadays has led to a demand for
companies to manage their business more efficiently [1] [2]. Real time monitoring and
evaluation of the current states of the key aspects of an enterprise and effective and
rapid decision making processes are essential to fulfil today’s requirements of flexible
production, increased production efficiency, rapid response to customer demands, and
high and uniform quality of products and services [2].

On the other hand, traditional indicators (for example, return on investment, market
share and rate of defect products) only for financial and quality tracking [3] cannot meet
the requirement of a company in the 21st century. The United Nations Conference on
Environment and Development in 1992 concluded that sustainable production is the
solution for the continued deterioration of the global environment [4]. In addition, as a
number of studies, such as [5], indicating the proportional relationship between good
environmental and social performance and profits, more and more companies realize the
fact that the improvement of the performance in sustainability can establish competitive
advantage for a company [3].

Modern manufacturing systems are complex and distributed. A system may be
composed of thousands of components and devices or even more. The amount of
collectable data for decision making personnel to manage is enormous. Figure 1
illustrates the data flow in the hierarchical pyramid of an enterprise. The data flows
among three levels from the process level consisting of a large amount of raw process
data to the business level where managers analyse the data and make decisions. [1]
reveals that managers are overwhelmed when facing the vast amount of information for
rapid and correct decision making. The problem of extracting useful information from
the substantial amount of data emerged.

As to the optimization of the efficiency and energy savings, the goals set by the
European Council in March 2007 [6] (reduction of 20% of the total energy
consumption; 20% contribution of renewable energies to total energy production; 20%
reduction of greenhouse gases below 1990 emissions) impose a long term shift from a
cost-based competitive advantage to one based on high added value (producing more
products with less material, less energy and less waste). Needed energy savings are
envisioned to be achieved via process / product / machine tool design and cross-layer

Introduction 2

optimization algorithms working with energy and efficiency relevant data gathered from
all levels of the enterprise, from shop floor to ERP [7].

Figure 1: Hierarchical structure of an enterprise [2]

Generally, at design phase, signal processing and optimization algorithm developers

work with large datasets tailored for each application domain of interest. Unlike in other
fields (e.g. health [8]), in the manufacturing domain, there is a profound lack of such
available datasets. In order to develop algorithms for optimization with respect to
energy or energy-relevant predictive maintenance, there is a strong need for databases
storing real data from various types of factory automation test beds. The data collected
must reflect energy consumption of manufacturing processes, products, workstations,
transportation devices, routing options, together with production-relevant indicators
(machine utilization, timestamps associated to machine breakdowns and idle time) and
business relevant indicators (e.g. energy prices during certain time periods).

These data should be made available on the web for all interested parties to access
upon request. This would bridge the skills of those that have the know-how on what can
be done with the data, with the knowledge of those that have information on how this
data can be gathered.

1.2. Problem definition

As is stated by Peter Drucker, the industrial revolutionary, “You cannot manage
something you cannot control and you cannot control something you cannot measure”
[9], a management team in a company needs to compare the measured figures with the
goals and objectives they established and with the figures from other companies in the
same sector for decision making [3]. Performance measurement systems (PMS) have
emerged to facilitate production managers to improve the performance of manufacturing

Introduction 3

plants, such as reliability and productivity. However, it is suggested in [9] that the
reason of the collapse of many plants over the last 30 years is the incorrect utilities of
the performance measurements. The performance measurements by these companies are
all results of previous states. It is impossible to react if failures already occur. There
needs to be a set of leading indicators which reflects the current states of the plants.

The solution for successful production management lies in the design of key
performance indicators (KPIs) [2] which are used to measure and evaluate the critical
aspects of a manufacturing system, a company or any related processes. In other words,
they are figures which present the evaluation results of the current states in the
enterprise, which are the most concerned. These indicators should be measured
frequently and on process basis for rapid reaction on the current states.

On the perspective of sustainability, when designing KPIs, sustainability
performance should also be considered, to align with the goals set by the European
Council in March 2007 [6]. Asset awareness must refer to energy consumption in
addition to the traditionally considered aspects, to be able to manage this consumption
and even optimize it wherever possible. The KPI for sustainability performance should
highlight six main aspects in sustainable production: energy and material use, natural
environment, social justice and community development, economic performance,
workers and products as is stated in [4].

For the vast amount of data from the lower levels in an enterprise, the production
process can only be managed successfully with the assistant of appropriate information
technology, which enables machine-to-machine communication. Furthermore, raw data
need to be aggregated and correlated at run-time as well to present meaningful
information.

Lastly, the meaningful information needs to be presented to managers so that they
can visualize and manage the data for decision-making. The information needs also to
be exposed on web for any interested party for visualization or optimization algorithm
development. All these statements prompt the following questions.

What are the key performances that are the most concerned for manufacturing
systems? How these performances are measured in the domain of factory automation?
How the machine-to-machine communication is achieved? How the run time
management of vast amount of information is achieved? What techniques can be used to
represent the information properly? How the information can be accessed by remote
parties?

1.3. Work description

This part outlines the objectives of this work in order to solve questions above. It also
describes the methodology that is used to achieve these objectives.

1.3.1. Objectives

1. Communicate with a service-enabled manufacturing system.

Introduction 4

2. Design a set of KPIs for discrete manufacturing systems.
3. Run-time management of KPIs.
4. Design proper layout for the KPIs visualization.
5. Implementation of a KPI management framework.
6. Expose the information to other applications.

1.3.2. Methodology

The thesis work is composed of two main stages in order to achieve the objectives. The
first is the research stage, in which the author investigates the various studies on KPIs
methodologies, frameworks and tools in a variety of fields and extracts proper KPIs in
the domain of factory automation. The author also reviews the both back-end and front-
end tools and technologies for building web services and web application at this stage.
In the second stage, the author first develops the overall architecture for KPI
management system. Then he designs the layout for the visualization of the KPIs.
Finally the author carries out the implementation.

1.4. Thesis outline

Following this chapter, background knowledge of KPIs and reviews on the concepts and
frameworks that are used to enable machine-to-machine communication, complex event
processing and development of web applications are presented. In Chapter 3, the test
bed used in this thesis work and the design of KPIs are presented. The implementation
of machine-to-machine communication, visualization of KPIs and publication of KPIs
for interested parties are demonstrated and described in details. The results are shown
and discussed in Chapter 4 followed by conclusions in Chapter 5.

 5

2. LITERATURE AND TECHNOLOGY REVIEW

As is stated in problem definition, there is a demand for a set of indicators to reveal the
current state of manufacturing systems. The solution for successful production
management lies in the design of KPIs. This chapter starts with the explanation of KPIs
followed by a series of reviews on the methodologies and frameworks that are
developed for the design of KPIs for production processes.

Concerning the vast amount of information from the lower levels in an enterprise,
the production processes can only be managed successfully with the assistance of
appropriate information technology. In order to gather the necessary information from
the lower levels, select useful data and arrange these data into KPIs in real time,
information technologies, such as Service Oriented Architecture (SOA) and Complex
Event Processing (CEP), are needed. SOA provides the capability of retrieving
information pertaining status of manufacturing processes in real time, while CEP is a set
of technologies processing and integrating events. Thurs CEP is a viable tool for KPI
calculation. The second part of this chapter introduces the technologies that enable
machine-to-machine communication and complex event processing.

Another requirement for the monitoring and evaluation of the performance is the
visualization. With the advancement of internet, web applications have obtained much
interest. In comparison with the traditional desktop applications which are installed
separately on single computers, a web application does not need to be installed and can
be accessed through any location as long as it is connected to the internet. This
advantage makes web applications become popular. Furthermore, with the emerge of
open source web application development tools, such as Apache Struts 2 and Spring,
developing web applications is not an expensive choice. These tools also enable rapid
implementation of web applications. The last part of this chapter concentrates on the
introduction of web frameworks, presentation technologies and data persistence
technologies for the development of web application.

2.1. Key performance indicators

The definition of KPIs appears on many articles. [1] and [10] define KPIs as “a variable
that quantitatively expresses the effectiveness or efficiency, or both, of a part of or a
whole process, or system, against a given norm or target”. The definition of KPIs in
[11] is referred as a more sophisticated one by [1] which is: “A performance indicator
defines the measurement of a piece of important and useful information about the
performance of a program expressed as a percentage, index, rate or other comparison
which is monitored at regular intervals and is compared to one or more criterion”. [12]

Literature and Technology Review 6

states that “KPIs represent a set of measures focusing on those aspects of organizational
performance that are the most critical for the current and future success of the
organization”. [12] also explored how to distinguish KPIs from similar terms in
performance measures- key result indicators (KRIs) and performance indicators (PIs), in
which, KRIs are the results of many actions, cover a longer period of time than KPIs,
and do not indicate how to improve the results, while, on the other side, PIs lie between
KRIs and KPIs which indicate what to do to improve the performance. As is indicated,
the difference between KPIs and PIs is the level of importance for the organization, the
manufacturing system, etc.

2.1.1. Properties and characteristics of KPIs

Four key properties, listed as follow, need to be considered when KPIs are determined
as is mentioned in [2] and [4]:

1. Unit of measurement – the metric in calculating an indicator, for example, watts,
numbers, litres, etc.

2. Type of measurement – absolute or adjusted, for example, total amount (of
energy consumption per week) or adjust amount (energy used per unit of
product per week).

3. Period of measurement – period for calculating an indicator (24/7, daily,
weekly).

4. Boundaries – determines how far a company wishes to go for the measurement
of an indicator, for example, a production line, entire life cycle or a product.

In addition, KPIs should follow the seven characteristics [12]:
1. Nonfinancial measures (not expressed in monetary unit)
2. Frequently measured (24/7, daily or weekly)
3. Acted on by the CEO and senior management team
4. Clearly indicate what action is required by staff (Staff can understand the

measures and know what action can be taken)
5. Measures that tie responsibility down to a team
6. Have a significant impact
7. They encourage appropriate action

2.1.2. Related work

During the last two decades, many researches have been conducted on KPIs in order to
improve the competitiveness and sustainability of companies and facilitate
manufacturing processes in a wide range of fields. Five general KPIs (safety, efficiency,
quality, production plan tracking and employees’ issues) are proposed in [2] to enable
the comparison with short term and medium term production strategy and goals in the
area of production process management. An improved measure methodology based on
the general KPIs are developed in [13]. A model, which uses KPIs as production
feedback for polymerisation production processes, is developed and described in [1]. In

Literature and Technology Review 7

[14], production efficiency is used as a key performance indicator for energy efficiency
evaluation in paper and pulp industry. [15] established an index model using several
general and sector-specific KPIs for notebook manufacturing system. A framework for
indicators of sustainable production focusing on the aspects of environment, health and
safety has been developed in [16]. The framework is developed into five levels. The
methodology based on the same framework with expanded indicators for developing
and implementing indicators of sustainable production using core and supplementing
indicators is presented in [4]. A case study showing the results of testing the
methodology is presented in [3]. [17] analyzes the needs for production companies to
integrate energy-aware KPIs such as energy intensity (EI) and specific energy
consumption (SEC) into their manufacturing systems. The following sections briefly
present these work.

2.1.3. General KPIs in production (case 1)

[2] has developed an 8-step iterative model for deriving KPIs from production
processes, shown in Figure 2. When defining production goals and objectives in the first
step, all key aspects of the organization should be considered. In the second step, it is
recommended to use many indicators to reflect production goals and efficiency.
Additional and production-specific indicators should be considered when selecting
indicators for implementation in step 3. The purpose of setting targets is to ensure the
continuous improvement of production processes. When achieving a target, new targets
should be set. Step 5 is the most time consuming step including the implementation of
all necessary functions for indicator representation. In step 6, periodical communication
and evaluation of results are considered a necessity. In addition, it is necessary to
establish a system to evaluate, interpret and present results regularly. Actions should be
taken in the seventh step to improve the performance continuously. Lastly, new
indicators should be introduced and unnecessary indicators should be eliminated.

Figure 2: Steps for KPIs deriving for production processes [2]

Literature and Technology Review 8

A set of general KPIs has been developed in [2], including Safety and environment,
Efficiency, Quality, Production plan tracking and Employees’ issues. Several possible
theoretical indicators compose each KPI after normalization and weighting are collected
in Table I.

Table I: General KPIs for production management
KPIs indicators

Safety and environment

Number of accidents at work
Number of hazardous alarms
Fresh water consumption
Waste generated before recycling
Number of penalties due to releasing waste in environment

Production Efficiency

Efficiency of employees in production
Infrastructure efficiency
Material used (total and per product)
Energy used (total and per product)
Unit product time
Quality of internal and external services
Production shutdowns

Quality

Percent of final products, which do not meet quality criteria
Percent of raw material, which do not meet quality criteria
Size of production losses
Quality of internal and external services

Production plan tracking
Percent of production orders finished late
Number of penalties
Percent of production orders finished ahead

Employees’ issues

Complete job satisfaction of employees
Lost work due to injury and illness
Average length of service of employees
Employees’ proposal for improvements and innovations

All KPIs are allocated into 3 levels according to their importance, in which Safety

and environment belongs to level 1 (most important), Employees’ issues are allocated in
level 3 (least important) and other KPIs in level 2.

The study also reveals the plan to implement a commercially available production
information system for run-time data acquisition and the plan to adopt a decision
support module to extract relevant data from the low level information and present the
KPIs. However, it does not present the result of the implementation of such real-time
data acquisition system.

2.1.4. Improved manufacturing performance measures (case 2)

[13] proposed a new methodology for KPIs in which the performance of manufacturing
systems is accessed in a qualitative way. The performance indicators selected for
manufacturing systems are divided into 6 sections:

1. Safety & Environment
2. Flexibility
3. Innovation
4. Performance
5. Quality
6. Dependability
The research focuses on the KPI of the dependability in which indicators including

customer complaints, on-time-in-full delivery to customers, on-time-in-full delivery

Literature and Technology Review 9

from suppliers and overall equipment effectiveness (OEE) are defined. The study
collects data in tables and compared the data to the world-class performance. A gap
between the actual performance and the world-class is identified as areas for
enhancement.

An improved measurement methodology is proposed which is to measure the
performance of the production vessels separately, since some of the vessels are in idle
state while others are in operation model. Therefore, measuring the performance of the
whole discrete production line does not provide the real results. The OEE and the three
components of OEE for the five vessels are calculated and provided in line charts.

2.1.5. Production feedback control using production KPIs (case 3)

In order to improve the production performance, [1] has proposed a model of a
production feedback control system for a polymerisation plant using production KPIs as
reference variables. In order to verify the effectiveness of using production KPIs in the
closed loop system, a set of simulation runs are performed on simulation tools such as
Matlab, Simulink and Stateflow. As is illustrated in Figure 3, the KPIs that have been
chosen specific to the production process are Productivity, Quality and Costs. Although
these variables are not directly measurable, they are estimated from low level indicators
that can be directly measured. The simulation shows the influence of process variables,
such as quality of raw materials, production speed and production schedule, on the
values of these KPIs.

Figure 3: Closed-loop control system of production process [1]

2.1.6. A complete index model for notebook manufacturing (case 4)

[15] has established a complete index model for notebook manufacturing management,
in which the most significant key performance indicators in the plant level are defined.
Some of the indicators are derived from previous studies in the aspects of productivity,
quality, cost and profitability, and cycle time. In addition, the authors also designed new
indicators that are specific to the notebook manufacturing lines based on their analysis
and their visit to the notebook factories. The data are collected from notebook
manufacturers by questionnaire and interviews. The study also indicates that not all the
data they collected are acquired automatically by the manufacturers.

Literature and Technology Review 10

2.1.7. Production efficiency as a KPI of energy efficiency (case 5)

The overall production efficiency in paper and pulp production is defined as the time
efficiency multiplied by the area efficiency. Sivill and Ahtila discussed the use of area
efficiency and time efficiency as KPIs to evaluate energy efficiency in [14] since the
decrease of area losses increases the energy efficiency and the increase of time
efficiency has a positive effect on energy efficiency. Another fact is that energy
efficiency affects the production cost. By increasing the energy efficiency especially
during a period of over-capacity, production cost can be decreased. Thus maximising
the difference between product price and production cost. Consequently, maximum
profitability is achieved.

2.1.8. Indicators for sustainable production (case 6)

Sustainable production is defined by Lowell Centre for Sustainable Production as:”the
creation of goods and services using processes and systems that are non-polluting;
conserving of energy and natural resources; economically viable; safe and healthful for
employees, communities and consumers; and socially and creatively rewarding for all
working people”. It stresses six aspects of sustainable production: Energy and material
use, Natural environment, Social justice and community development, Economic
performance, Workers and Products. [4]

Veleva and Ellenbecker demonstrated the trend for standardization of indicators and
proposed a standard set of core indicators in these six aspects in [4] as is illustrated in
Table II. These indicators aim to measure the issues that are considered common for all
production plants.

Table II: Core indicators for sustainable production
 indicators

Energy and material use

Fresh water consumption
Material used (total and per unit product)
Energy use (total and per unit product)
Percent of energy from renewable

Natural environment

Kilograms of waste generated before recycling
Global warming potential (GWP)
Acidification potential
Kilograms of persistent, bio-accumulative and toxic (PBT) chemicals used

Economic viability
EHS compliance costs
Customer complaints and / or returns
Organizational openness

Community development and social
justice

Community spending and charitable contributions
Number of employees per unit of product
Number of community-company partnerships

Workers

Lost workday injury and illness rate
Rate of employee suggested improvements
Turnover rate or average length of service
Average number of hours of employee training
Percent of workers who report complete job satisfaction

Products
Percent of products designed for disassembly, reuse or recycling
Percent of biodegradable packaging
Percent of products with take-back policies

Literature and Technology Review 11

In addition, supplemental indicators should be defined which provide flexibility and
production specific performances. Examples of supplemental indicators are provided in
[4].

Results of implementing the sustainable production indicators at Acushnet Rubber
are illustrated in [3]. The difficulties of using certain indicators are also discussed.

2.1.9. Review on Key Performance Indicators

Table III shows a summary of the previous work, in which some features of the studies
are concluded.

Table III: Summary of studies on production KPIs
 Run-time Flexible Energy-aware

Case 1: General KPIs for production no yes yes
Case 2: Improved manufacturing performance measures no no no
Case 3: Feedback control using production KPIs yes yes no
Case 4: Index model for notebook manufacturing management no no no
Case 5: Production efficiency as a KPI of energy efficiency no no yes
Case 6: Indicators for sustainable production no yes yes

Although a number of studies on KPI design, methodology and implementation

have been carried out in many fields, they have their limits. As is illustrated in Table III,
only case 3 collects data for KPIs calculation in real time, but it is in the phase of
simulation with software tools. In order words, the study has not been carried out for
real manufacturing systems. Case 1 proposed to adopt the general KPIs in a brickworks
manufacturing plant by utilizing a commercially available production information
system for real-time data acquisition and using a decision support module to extract
relevant information from the real- time data. However, the implementation is still at the
beginning stage. Case 4 indicates that not all the data collected by the notebook
manufacturers are automatically acquired. It can be concluded that the current
development of KPIs monitoring system in production lacks run-time data acquisition
and extraction of useful data from manufacturing systems.

Secondly, case 1 presents a practical model for KPIs development and general KPIs
for production are defined as well. It can only give possible theoretical indicators under
each defined KPI. Case 4 utilizes the KPIs from previous work which is common for all
sectors, but it still needs to define specific KPIs for the notebook manufacturing. The
need of supplementary indicators in case 6 for sustainable production also indicates the
fact that although standardization of indicators for production processes is a trend,
defining specific indicators according to different manufacturing systems is also
necessary because the key performance that needs to be monitored varies from one
sector to another.

Last but not least, many researchers include energy-aware KPIs in their studies.
Some of them, for example in case 5, aware that energy conservation benefits
profitability, while others, for example in case 6, urge the deterioration of environment
problems is caused by unsustainable production. By monitoring and evaluating

Literature and Technology Review 12

sustainable indicators, such as energy and resource consumption, it is possible to
alleviate environment problems.

All in all, the current KPIs development lacks the run-time data acquisition and
extraction. Specific KPIs need to be defined for different manufacturing systems
although common indicators can be used in all fields. Because of the urgency of
environmental problems, including sustainable indicators is also a must.

2.2. Service oriented architecture

Service Oriented Architecture is a paradigm utilizing autonomous and platform-
independent services over the web for distributed applications development. The
services can be described, published, discovered and dynamically assembled. The most
popular SOA-based technology is web service, which makes use of W3C XML based
standards: Simple Object Access Protocol (SOAP), Web Service Description Language
(WSDL) and Universal Description, Discovery and Integration (UDDI). [18]

A web service involves a service provider, which is capable of publishing events,
providing operations and WSDL, and a client which subscribes to the service for event
receiving, operation manipulation and WSDL parsing. The service needs to be
discovered first, and then subscribed by the client.

Web services are located on resource-constraint devices using Device Profile for
Web Services (DPWS) in order that machine-to-machine communication becomes
possible [19]. Figure 4 illustrates the underlying protocols of DPWS as a protocol stack.

Figure 4: Device Profile for Web Services as protocol stack [19]

2.2.1. Implementation toolkit- WS4D

DPWS can be implemented via a series of different toolkits (e.g. Web Services for
Devices (WS4D), Service Oriented Architecture for Devices (SOA4D) and WSDAPI).
Each was developed with certain specific use cases in mind.

WS4D stacks were developed by the members of the SIRENA project [20]. Open
source stacks developed by the WS4D community are WS4D-JMEDS (Java Multi
Edition DPWS Stack), WS4D-gSOAP and WS4D-uDPWS [20].

Literature and Technology Review 13

WS4D- JMEDS with JMEDS representing Java Multi Edition DPWS Stack is a
framework for the implementation of web services, including components- DPWS
devices, services and clients, based on DPWS specification using Java aiming for
embedded devices with low capacity in memory. [20] The stack implements WS
specifications including WS-Addressing, WS-Discovery, WS-Eventing, WS-
MetadataExchange/Transfer and WS-Security. Both client and service sides consist of
three layers: Communication, Dispatching and Application. A communication manager
in the Communication layer ensures the message exchange with the manager on the
other side. The manager can transport SOAP message via UDP or HTTP over TCP.
Attachment exchange over HTTP is achieved using MIME. It supports both IPv4 and
IPv6 connections. The Dispatching layer on client side fulfils the WS-Discovery
specification using a SearchHandler to discover devices and services. A Dispatcher is
in charge of sending messages, such as probe and probeMatch messages. The
subscription of services is handled by a SearchManager on the service side to manage
the event subscribers. Device/Service Registry is used to store discovered devices and
services. Instead of invoking a new search, the client can reference the known devices
or services via the registry. No changes are needed for Communication and Dispatching
layers when using the stack. However, developers need to conduct actual
implementation for the Application layer for clients and devices. On the client side,
references of devices, services and events from a discovered device are allocated. An
EventSink is used to receive events. On the side of device, a device can contain many
services, while many operations and events can be defined in a service. The Binding is
used to correlate services to devices. [21]

2.2.2. Spring Web Services

Spring Web Services (Spring WS) is an open source framework aiming to facilitate
contract-first SOAP service development. In a contract-first approach, the
implementation of the web services is based on a WSDL contract that is created first.
[22]

The mapping of incoming XML to handlers in Spring WS is achieved via the
endpoint mapping. The MessageDispatcherSevlet, which acts as the entry of the
framework, receives XML requests, forwards them to the endpoint mapping and
invokes corresponding endpoints and interceptors according to the mapping.
The @Endpoint annotation before the declaration of a class allows the handling of
multiple requests in one endpoint class. This can be achieved via the method endpoint
mapping using payload root mapping or SOAP action mapping. This mapping routes
incoming XML requests to corresponding methods according to the annotated name
space and root element if payload root mapping is used or SOAP action if SOAP action
mapping is used. Then the XML requests can be parsed using any supported
technologies such as standard JAXP APIs (DOM, SAX, and StAX), JDOM, dom4j,
XOM as well as marshalling techniques (JAXB 1 and 2, Castor, XMLBeans, JiBX, and

Literature and Technology Review 14

XStream) [22]. A response is generated after the manipulation of requests according to
the return value of the handler and serialized into XML format.

A web service implemented with Spring WS focuses on document-driven web
services. It generates responses based on the incoming requests. On the other hand,
WS4D toolkit requires the discovery and subscription to web services, and then
receiving messages until the subscription ends.

2.3. RESTful web services

REST representing Representational State Transfer [23] is an architectural style aiming
to release the server from the burden of maintaining complex sessions with clients [24].
In REST, a server holds a variety of resources, each identified by a URI. A client
accesses these resources by sending the corresponding HTTP request in the form of
such URI and receiving responses. [24] Unlike conventional web techniques (human-
friendly HTML format server responses), a RESTful response is represented in XML,
JSON or RDF which is consumable by third party applications [25]. HTTP GET
requests result in resource status responses, while POST requests is used to alter the
status of resources. Besides, other types of HTTP requests such as HEAD (to query the
existence of resources), PUT (to update and re-compute) and DELET (to destroy) are
also supported [25].

2.3.1. Implementation framework- Spring MVC

Spring is an open source framework to facilitate the development of Java applications
by supporting a comprehensive infrastructure. It provides a powerful Model View
Controller (MVC) framework for application development. Besides, modules including
Inversion of Control (IoC) container, Data access and integration, Web, Aspect Oriented
Programming (AOP), Instrumentation and Test are also provided. The framework is
organized in modules, thus enabling developers to use the functionalities they need [26].
RESTful web services can be built on top of the Spring MVC framework to deal with
HTTP requests and responses. In a RESTful web service, a request is received by using
Spring MVC’s request mapping mechanism. A response is then generated accordingly
represented with a Java Object. Subsequently, it is serialized to XML format using any
of the supported XML marshallers (Jaxb2Marshaller, CastorMarshaller, JibxMarshaller,
XmlBeansMarshaller and XStreamMarshaller [27]) by Spring’s Object/XML Mapping
(OXM) module. Besides, responses can also be transformed to other formats including
JSON, by configuring Spring’s message converter properly.

As opposed to the WS4D-JMEDS toolkit, which uses the SOAP mechanism to
discover and subscribe to web services, thus receiving messages until the subscription
ends, a RESTful web service implemented with Spring MVC framework enables a third
party applications (client) to send HTTP request for resources and the service responds
with XML, JSON or RDF format streams reactively.

Literature and Technology Review 15

2.4. Complex event processing

Complex Event Processing (CEP) is defined as a set of tools and techniques for
analyzing and handling series of related events in real time in distributed information
systems [28]. CEP provides functionalities such as filter, project, join and aggregation
of event streams and focuses more on sequential data correlation and complex pattern
detection of events [29]. The functionality is realized when events are recognizable to
the CEP engine and by defining certain rules. When a series of incoming events
matches the pattern defined in the rules, the result is outputted immediately by the CEP
engine to the user for further manipulation [29]. The use of CEP enables the
downstream applications to be driven by the upstream distributed information systems
in real time [30].

2.4.1. Esper

Esper is a java based component developed for rapid development of applications which
require to process large volumes of events in real time. Unlike a database which stores
data in it and manipulate the data according to the incoming queries, an Esper engine
works in an opposite way. It stores the queries in the engine and responds according to
the incoming events. Then applications could further manipulate the data which are
contained in the response. [31]

In order for the Esper to recognize the events passing through the engine, the events
can be represented as JavaBean classes, legacy Java classes, XML document or
java.util.Map classes, and these events need to be registered in the engine. The XML
represented events used in this thesis work can be registered with event type name and
the root element names or a XSD schema document if it is provided. [31]

The queries used in Esper follow Event Processing Language (EPL) syntax, which
also need to be stored in the Esper engine. EPL resembles Sequential Query Language
(SQL) in the use of select clause. However, instead of using tables, EPL utilizes event
streams for data selection.

Figure 5 illustrates the basic setup of an Esper engine to aggregate events. The
events can be represented as XML streams or POJOs, etc. They need to be registered in
the engine, for example, by their names, so that the engine knows what events are
flowing to it. Afterwards, an EPL rule should be defined which guide the engine to
aggregate the incoming events. The EPL rule is also associated with a Listener class
when configured in the engine. As the incoming events flowing into the engine, it
detects the events against the EPL rule. Once a match on the rule is detected, the engine
populates real-time values, which are selected in the EPL rule, to an object (for
example, a Map object) and invokes the update method in the listener. Thurs the
parameters can be retrieved upon the invocation of the update method.

Literature and Technology Review 16

Figure 5: Esper engine setups

2.5. Web application

A web application, as is indicated by its name, is an application that operates on web.
Technologies, such as Internet speed, connectivity and client/server, are improving
rapidly over the past few years. As a result, the web has become an increasingly popular
platform for the building of standard business-oriented enterprise solutions, personal
software and a variety of other applications. [32] One benefit of deploying applications
on web is that the applications are stored on servers, so the users do not need to install
any specific software on their own computers as long as they have a web browser, such
as IE, Safari and Firefox, which comes with the operating system or can be installed
without effort. Once applications on the server are upgraded, all users of the
applications can access the new version by doing nothing. A web application is mainly
built on two technologies- Hypertext Transfer Protocol (HTTP) and Java Servlet API
[32].

HTTP protocol is a stateless series message exchanges between client and server.
The web browser on the client side initiates the message exchange by requesting a static
HTML document or dynamically generated document from a web application deployed
on a server. However, for the development of web applications, one of the drawbacks is
that HTTP is unaware of the relationship among requests. It handles requests separately
even from the same client. The only usage of the address in the request is for the return
of HTML documents. The other major disadvantage is that HTTP is text based. The text
needs to be converted into Java data types, which must occur in both requesting and
HTML returning processes. [32]

Java Servlet API is a technology used to expose HTTP to Java platform, which, to
some extent, resolves the problems mentioned above. A servlet is a Java object for
receiving request objects, processing the data in the request objects and returning
response objects including response headers and output streams. The output stream

Literature and Technology Review 17

generates the information in text format. It also provides high-level functions such as a
session mechanism, which correlates series of requests from a single client. [32]

2.5.1. Review on architectural patterns

In order to facilitate the building of applications, the concept of architectural patterns
has been established. As is defined in [33] and [34], “An architectural pattern is
expressing a fundamental structural organization schema for software systems. It
provides a set of predefined subsystems, specifies their responsibilities, and includes
rules and guidelines for organizing the relationships between them”. There exist a
substantial numbers of architectural patterns in the field of software engineering. [35]
classifies these patterns into eight categories according to architectural views. The
classification of architectural patterns is summarized in Table IV. The architectural
patterns of Layers in Layered view, Model-View-Controller in User interface view and
Client-Server in Component interaction view and their utilities in the field of factory
automation are introduced in the following parts.

Table IV: A summary of architectural patterns classified according to views
View Architectural pattern example

Layered view Layers, Indirection layer
Data flow view Batch sequential, Pipes and filters
Data-centred view Shared repository, Active repository, Blackboard
Adaption view Microkernel, Reflection, Interceptor
Language extension view Interpreter, Virtual machine, Rule-based system
User interface view Model-View-Controller, Presentation-Abstraction-Control
Component interaction view Client-Server, Peer-To-Peer, Publish-Subscribe
Distribution view Broker, Remote procedure calls

Layers architecture
According to [35], in the Layers architecture, a system is decoupled into layers in a
vertical manner in which each layer provides services that can be used by the higher
level layer and uses services that are offered by the lower level layer. The interaction
between the adjacent layers is achieved by clearly defined interfaces. Within each layer,
horizontal components are also required and they interact through connectors. In a pure
Layers architecture, higher level layers can only access lower level layers via the layer
beneath.

[36] utilizes a Brower/Server model, which is essentially a Layers architecture, to
implement a web-based manufacturing service system for rapid product development in
small and medium sized enterprises. The web application is structured into three layers,
Client, Server/Application Server and Database Server. The Client layer acquires data
from the Server layer, while the Server layer executes the operations of database access
from the Database Server. Inversely, the Database Server returns data to Server layer
and the data are further forwarded to Client layer.

Another web application using Layers architecture in the domain of manufacturing
systems is introduced in [37]. The web application provides virtual environments for
dynamic manufacturing tasks planning. The research utilizes a three-tier architecture to
implement the system. Similarly to the previous application, the system consists of three

Literature and Technology Review 18

layers, a Web Server, a Database Server and Clients. The Web Server is implemented
with Apache HTTP Server, from which users request static and dynamic information.
On the other hand, Java database connectivity and socket handler are implemented on
the Web Server for data acquisition from Database Server built with MySQL server.
Cortona VRML client, embedded in a HTML file, serves as a fast and highly interactive
Web3D viewer as plug-ins.

Model-View-Controller architecture
Model-View-Controller (MVC) is an architectural pattern to decompose the design of
an application into three distinct parts; the Model, the View, and the Controller. The
Model manages the data for the application that are to be represented to users. The View
displays the data to users. And the Controller is associated to each View and interacts
between the Model and the View informing the Model when a new input has been
performed on the View. [38] [39] [40] [35] The MVC design pattern has become more
popular in the last few years [41]. In the MVC design pattern, the functional programs
in the three parts are developed separately, so the reuse of code becomes possible, thus
improving the efficiency of software development [39].

[42] has implemented a web application to share and reuse manufacturing resources
using MVC architecture. The web application provides manufacturing resource
services, which is a supplement of the existing resource service applications, to
discover, manage and integrate manufacturing resources. All the services are
implemented as Models using enterprise Java bean, while the View and the Controller
of the web application are encapsulated using JSP and servlet separately. [42] states that
the use of MVC architecture enables better flexibility and compatibility.

Client-Server architecture
[35] classifies the Client-Server architecture into the category of component interaction
view, which concerns issues such as how the independent components interact with
each other and how these components are decoupled. In the Client-Server architecture,
the system is divided into two independent components, the Client and the Server. The
communication between them follows the pattern of request and response, in which a
Client requests information from the Server with an ID or an address of the Server.
Afterwards, the Server responds to the corresponding Client with the information.
Complex architecture can be established using multiple Client-Server architecture, in
which a server can either act as a server to clients or act as a client to servers forming an
n-Tier-architecture or Layers.

A web-based framework to facilitate the communication between product designers
and manufacturers concerning the design and manufacturing of work pieces is proposed
in [43]. With the framework, product designers can submit their designed work pieces
to the system software. Registered manufacturers in the system can then obtain the
design and decide if they want to produce the work piece by submitting an offer to the
designer. The applications on both the designers’ and the manufacturers’ side are

Literature and Technology Review 19

implemented using Client-Server architecture with the system software being the server.
On each side, implementation for the establishment of network connection is needed.
Furthermore, the Client on the designers side needs to have implementations for
authentication and data transfer purposes, while on the manufacturers side,
functionalities including understanding and using the services provided by the system as
well as accessing and parsing the designed files need to be implemented on the Client.

In [44], a web-based supervision and control system to access the real time data and
to remotely control electric load via PLCs is developed. As is proposed in [44], the
system is deployed based on a Client-Server architecture, in which the Server
communicates with the PLC directly through RS-232 port, while the Client accesses and
controls the remote electric load by sending requests to the Server. Therefore, a program
to handle the requests from the Client and to communicate with PLC on the Server is
needed. In order to show electric load curves for monitoring, a database management
system is also implemented on the Server. The using of this structure increases the
flexibility of extending the system with new features and the security to control PLCs.

Comparison on architectural patterns
As is summarized in Table V, the architectures reviewed above can be distinctively
categorized according to views. Although the Layers architecture can decompose the
system into three different parts as the Model-View-Controller architecture, there are
major differences. The layers in the Layers architecture are arranged in a vertical
manner, so each layer can only interact with its adjacent layers. It is not the case in the
Model-View-Controller architecture, in which the Controller and the View are
associated. The Controller notifies a change on the View to the Model. However, the
data rendered on the View are directly obtained from the Model. Beside, interfaces on
each layer need to be clearly defined to achieve the interaction between layers in the
Layers architecture, while there is no such requirement in the Model-View-Controller
architecture.

On the other hand, there are also similarities in these architectures. As far as the
Client-Server architecture is concerned, when a Server acts as a Server to a Client and
as a Client to another Server, it becomes a Layers architecture.

Table V: Summary of features of Layers, Model-View-Controller and Client-Service
architecture

Architecture Features

Layers (Layered view)
The system is composed of multiple layers. Each layer uses the services from the
lower layer and provides services to the upper. Interfaces for interaction need to be
defined in each layer.

Model-View-Controller (User
interface view)

Model, View and Controller composes the system in which the Model is strictly
independent from the View and Controller. The View directly receives data from the
Model, while the Controller notifies the Model when an update on the View occurs.

Client-Service (Component
interaction view)

Client and Service are the components in the system. The Client initiates the
interaction between the two entities by sending requests, while the Service responds.

Literature and Technology Review 20

2.5.2. Review on web application frameworks

Many frameworks have been developed to facilitate developers for rapid web
application development deploying architectural patterns. The following sections briefly
introduce these frameworks.

Apache Struts 2
Struts 2 is an open source framework for creating Java web applications deploying
MVC design pattern. The MVC pattern is implemented by the action (Model), result
(View) and FilterDispatcher (Controller). FilterDispatcher maps the user request to
appropriate action, data for rendering and business logic are defined in model with
action component, and view for data rendering can be implemented by presentation-
layer technologies, such as JSP, Velocity Tamplate and Freemaker. [45]

Figure 6 demonstrates the process from receiving a user request to view rendering
with Struts 2. Each time the framework receives a user request, an ActionInvocation
class is initiated. The execution of an action starts by calling the invoke() method in the
actionInvocation instance. The method determines if there is a next interceptor. If there
is, it passes over the execution of the thread to the intercept() method in the interceptor.
After all the interceptors are executed, the actionInvocation instance invokes the action
instance to generate results. Which action to invoke is determined by a user-define
configuration file which maps the requests to the actions. Currently, data in results are
in Java types. The framework utilizes Object-Graph Navigation Language (OGNL) to
convert these results in Java types to string-based HTML data for view rendering. [45]

Figure 6: Process of action invocation in Struts 2 [45]

Literature and Technology Review 21

Spring Framework
Spring is an open source framework to facilitate the development of Java applications
by supporting a comprehensive infrastructure. It provides layers including IoC
container, Data access and integration, Web, Aspect Oriented Programming,
Instrumentation and Test. However, the framework is organized in modular enabling
developers to use the functionalities they need. [46]

One of the features in Spring is the provision of containers for IoC, which is
implemented using Dependency Injection (DI) design pattern [47]. The DI design
pattern enables external services to be injected into application components without
changing the source code of the application [48]. With Spring, the DI can be realized
with setter methods and constructors. The container instantiates objects and delivers the
resources to components.

As is mentioned, Spring framework also provides a web layer for web applications
development. It is complaint with the Model-View-Controller architecture. The design
of the framework is around a DispatcherServlet that dispatches requests to handlers and
provides other functions to assist the development of web applications. Figure 7
illustrates the request flow in a Spring MVC framework. The DispatcherServlet known
as a Front controller delegates the incoming request to a Controller, which in turn
creates a model and returns the model to the Front controller. Afterwards, the Front
controller forwards the model to the View template and receives the control back from it
with view response. Finally, the Front controller returns the view response to the
request.

Figure 7: Request flow in Spring MVC framework [46]

Furthermore, Spring framework also supports for the integration of other MVC

frameworks such as Struts and WebWork. This feature enables developers with the

Literature and Technology Review 22

knowledge and experiences of other frameworks to use other functionalities provided by
Spring framework.

Wicket
Wicket is a component-based framework for developing web applications using regular
object oriented Java programming. The developers can program with only Java, HTML
and meaningful abstractions in Wicket. Java code is used to implement the behaviour of
web applications. For example, developers can create components and their behaviours
by inheriting existing components. On the other hand, HTML is used to maintain pure
presentation of the applications by constructing only the structure of web pages. In this
way, the presentation and logic parts are separated rigidly. Lastly, Wicket provides
abstractions for all widgets, for example, links, drop down lists and text fields.
Meaningful abstractions can be provided by writing custom components.

To illustrate the architecture of Wicket, how requests are processed is explained.
Figure 8 demonstrates the steps for processing a request. In the first step, a request URL
is decoded into, for instance, component path, version number and interface name and
the decoding results are stored in a RequestParamters object. Afterwards, it is the step
for determining request target. In this step, many types of requests including
bookmarkable pages, shared resources and Ajax requests can be handled. In Figure 8,
for example, the request target encapsulates the call from the ILinkListener interface on
a previously rendered page. The third step handles procedures such as calling links,
listeners or Ajax behaviours. Finally, the request target responds to the client by
rendering the page, locating a resource or rendering individual components dependant
on the whether it is a page request, resource request or Ajax request, respectively. [49]

Figure 8: Request processing steps in Wicket [49]

Comparison on web application frameworks
Table VI collects the main features of the reviewed frameworks for web applications
development. As is illustrated, all the frameworks are designed complaint with MVC
architectural pattern. Struts 2 and Spring frameworks are both request oriented, which

Literature and Technology Review 23

means that developers handles the mapping of requests and views with an xml
configuration file for both frameworks. In addition, Struts 2 and Spring frameworks
require logic coding in the View implementation, for instance, using JSP or Velocity
template, although they also separate the View layer from Model and Controller.
Conversely, although Wicket also has request flow in the framework, it hides the flow
underneath so that developers does not need handle requests and responds. Instead,
during the implementation of web applications using Wicket, one can define functions
of components in Java and build the View layer with pure HTML. The components
used in HTML and defined in Java are associated with an id attribute. From the view of
integration, Struts 2 allows the integration with Spring framework to use extra
functionalities and it is possible to integrate Spring framework into other MVC
frameworks including Struts and Webwork. However, Wicket does not provide the
integration into other frameworks.

Table VI: Features of Struts 2, Spirng and Wicket frameworks
Framework Architecture Type Logic in View Integration

Struts 2 MVC Request oriented yes Spring
Spring MVC Request oriented yes Struts, Webwork
Wicket MVC Component oriented no -

2.5.3. Review on presentation technologies

Many technologies for view representation have been developed and widely used in a
variety of web application frameworks. The following parts review these technologies
including JSP, Facelets and Velocity.

JSP
JSP representing Java Server Page is a Java-based technology aiming for rapid
development of dynamic web applications by applying Expression Language (EL) and
JSP Standard Tag Library (JSTL). EL enables simple access to Java bean components
by using simple syntax. A simple variable or a nested structure can be accessed. JSTL
standardizes structural tasks such as iteration and conditional statement in order that
developers define the standard tags and use it in multiple JSP containers. JSP is built
based on HTTP and Java Servlet specification. HTTP enables the client-server
communication over the Internet. It also requires a simple directory layout to organize
configuration information, provided by deployment descriptor, and resources. [50]

Facelets
Facelets is a powerful and lightweight view declaration language for JavaServer Faces
technology substituting JSP due to its incomplete support for all the new features in
JavaServer Faces 2.0. Besides the support of JavaServer Faces tags and JSTL tags for
custom actions and structural tasks respectively, it also supports for Facelets tag
libraries for templating purposes. JavaServer Faces HTML tags are used to represent
components on web pages. It supports EL as JSP does to reference properties and
methods of Java bean components. [51]

Literature and Technology Review 24

Velocity template
Velocity is a Java-based template to tightly separate the view layer from model and
controller. As is mentioned in 2.5.2, the view layer in Struts 2 can be implemented with
Velocity. Velocity Template utilizes Velocity Template Language (VTL), which can be
embedded in HTML documents, to reference methods or variables defined in Java code,
or to acquire values from web pages to the background Java programs. The following is
an example of VTL.

#set($a = "Velocity")
A VTL statement starts with a ‘#’ symbol following a directive. A variable is

referenced with a ‘$’ mark followed by the variable name defined in Java code. In the
statement, ‘set’ directive assigns the variable with the value ‘Velocity’. [52]

Comparison on presentation technologies
As is indicated in Table VII, all the three presentation technologies reviewed above
utilize certain syntax to reference Java bean properties or methods for data dynamic
rendering. All of them allow the execution of logic with structural tasks. JSP and
Facelets take the advantage of JSTL for logic representation, while Velocity template
uses VTL. One major difference between Facelets and other technologies is that special
HTML tags, JavaServer Faces HTML tag library need to be defined to represent web
page components while the other two technologies simply use HTML tags.

Table VII: A summary of presentation technologies
 Extension Component tags example Directive example JavaBean reference

JSP .jsp HTML tags: <td>1</td>
<c:forEach …>
</c:forEach>

${name}

Facelets .xhtml
JavaServer Faces HTML tag
library: <h:outputText value
= “1”/>

<c:forEach …>
</c:forEach>

${name}

Velocity .vm HTML tags: <td>1</td>
#foreach (…)
…
#end

${name}, $name,
!$name, etc

2.5.4. Review of persistence frameworks

To persistent data, persistence frameworks are used to store data in databases. However,
since Java model uses classes to represent data, while database uses table, a solution is
needed to convert Java objects to Java Database connectivity result sets and vice versa.
This section introduces the frameworks and implementations of object to relational data
mapping known as ORM.

JDBC
JDBC is the abbreviation of Java Database Connectivity. It is an API offering JDBC
classes for database connectivity and operations. It passes SQL statements from Java to
a database for operations. The data acquired from the database are Java Database
connectivity result sets, the Java program needs to handle the sets by calling specific
JDBC classes to convert the database result type to objects. [53]

Literature and Technology Review 25

JPA
Java Persistence API (JPA) is a standard solution introduced to facilitate the mapping of
object-oriented models and relational database systems. Nowadays, many persistence
products are based on it. The features of JPA are concluded in [54]. First, the objects are
Plain Old Java Objects (POJOs) which means no special requirements are needed when
designing the models. The object-relational mapping with JPA is driven by metadata,
which can be achieved by adding annotations internally or defining XML externally.
Then the persistence is non-intrusive since the persistence API does not directly operate
the object classes. Instead, the business logic of the application calls API and passes it
to persistence objects, thus instructing API to operate on the objects. Thirdly, querying
with JPA, one needs not to have the knowledge of the database columns nor database
mapping. Java entities and their attributes are utilized in queries which are further
translated into SQL by the JPA implementation. Furthermore, features of JPA also
include simple configuration, integration and testability.

Hibernate
Hibernate is an Object/Relational Mapping implementation based on JPA designed to
assist developers working with both Object-Oriented software and Relational
Databases. Since the hard coding to map data represented in objects to relational
databases is time consuming and cumbersome, Object/Relational Mapping technique
deployed by Hibernate provides an easy means of mapping data from an object model
to a relational data model. [55]

Comparison on persistence frameworks
As can be seen from Table VIII, although it is possible to operate database directly
using SQL with JDBC API, it exposes some weaknesses. First, the object and relational
data mapping has to be done manually with JDBC which requires a lot of hard coding in
the Java program. For JPA and its implementation, one only needs to map the object-
oriented model to the relational data with annotation when creating the model or by
adding external XML mapping file. Furthermore, using SQL as the querying language,
one needs to have detailed knowledge on the database tables, columns and the mapping
between the relational data and Java objects. Once the modification on database occurs,
SQLs concerned have to be modified universally. It is not the case with JPA and its
implementation Hibernate. Once the ORM is configured with annotation or XML, one
can use entities and their attributes to construct the queries directly. In case of
modification of database, only changing the ORM configuration is enough.

Table VIII: A Summary of persistence frameworks
 Querying language Automatic ORM
JDBC SQL No
JPA Object queries Yes
Hibernate Object queries Yes

 26

3. RESEARCH METHODS AND MATERIALS

As is presented in theoretical background, a variety of researches have been conducted
for the design of KPIs for manufacturing systems. There also exist multiple toolkits and
frameworks for the communication of service-enabled systems, development of web
applications and run time management of events. This chapter describes how these
techniques are utilized to implement a run time monitoring system for KPIs.

It starts with the introduction to the overall architecture of the system and a brief
introduction to the test bed. Then the design of KPIs for the test bed using the
methodology from theoretical background is described. Finally, how the KPI
management system is developed into a web application and how it is exposed as a web
service are presented.

3.1. Introduction to overall architecture

The overall system architecture is designed and shown in Figure 9. Local devices (1 and
2) publish their information in web services through Ethernet or wirelessly. The local
server at 3 can subscribe to these web services thus receiving information from the
devices. The local server also exposes its data as web services so that other applications
can make use of them.

The estimation of KPIs can be achieved at all locations. On one hand, KPIs can be
acquired directly from local devices at 1 and 2 if the processing of data is performed at
device level. The advantage of it is that data processing at device level alleviates the
complexity of aggregation and correlation of data at higher level since low level devices
know the context of information. On the other hand, KPIs can also be computed and
correlated at locations 3, 4, and 5. The advantage of this method is that it provides great
flexibility for generating new and complex KPIs. No change is needed at device level
when new KPIs are designed and calculated at higher level. This thesis work computes
KPIs at location 3.

Research Methods and Materials 27

Figure 9: Overall system architecture

3.2. Introduction to test bed

The test bed used in this work is a production line physically located at the premises of
the Factory Automation Systems and Technology laboratory, Tampere University of
Technology. Figure 10 depicts the layout of the test bed. It consists of ten robots
simulating the production of mobile phones by performing assembling operations
including frame drawing, screen drawing and keyboard drawing. There are three
different types of components in shape and three in colours for each shape making a
total variant of products to be 729.

Figure 10: Layout of Fastory production line

1

2 3456

7

8 9 10 11 12

Research Methods and Materials 28

Robot 1 is in charge of completing the production. Once a product arrives at cell 1,
it checks if all the three assemblies are completed. If completed, it is dispatched to the
tray. Otherwise, it is forwarded to cell 2 for further assembly. In addition, a machine
vision system located in cell 1 is used for quality inspection. The machine vision system
inspects whether the completed products meet the quality criteria. If not, it also specifies
which component does not meet the criteria, the frame, the keyboard or the screen. Cell
7 is a buffer which stores multiple products.

On condition that one robot is occupied by a product, while another one arrives, it is
transferred to the next robot by using the bypass conveyor.

Information of the test bed is published in web services by S1000 controllers [56].
These web services can be discovered and subscribed by any DPWS client. In addition,
the S1000 controllers also support manual configuration of message subscribers. This
work utilizes the latter option to register the subscriber URL in the subscription list
(Figure 11).

Figure 11: Subscription configuration on S1000 controllers

Each cell exposes web services notifying the status of the robot and the conveyor

system. The machine vision system exposes another web service about quality
inspection. In addition, each cell is embedded with an E10 energy analyzer [57]
publishing the energy consumption related information as a web service. All available
information is shown in Table IX. As can be seen, the information from the
manufacturing system is atomic, which requires aggregation and correlation at higher
level to gain KPIs. As is mentioned in Section 2.4, complex event processing
technology is needed to aggregate these raw data. However, before that, it is necessary
to design a set of KPIs for the test bed.

Table IX: Events from the test bed
No Message Description

1 EquipmentChangeState
The message contains information of cell ID, event ID, tool ID, recipe number,
device type, pallet ID, the current state, the previous state of the robot number 2-6
and 8 to 12, as well as a time stamp.

2 EquipmentChangeState
The message contains information of cell ID, event ID, pallet ID, the current state,
the previous state of the robot number 1, as well as a time stamp.

3 QualityInspection
The message indicates the quality information including pallet ID, the quality of
frame, screen and keyboard, the quality of the inspection result as well as a time
stamp.

4 EnergyMeter
The message contains energy consumption (3-phase active energy, active power,
reactive energy, reactive power, apparent energy, apparent power, Root Mean

Research Methods and Materials 29

Square (RMS) current, RMS voltage as well as line frequency) located in each
working cell. The information is published at the time interval of five seconds.

5 NotificationMessage
The message contains pallet transfer status on conveyors including cell ID,
‘fromZoneId’, ‘toZoneId’, pallet ID, event ID and time stamp.

6 Values
The message from the THL sensors contains values for temperature (in degree
Celsius), relative humidity (in percentage) and ambient light (in lux).

3.3. Design of KPIs for test bed

In the level of production management, five principal KPIs were defined in [2], which
are Safety and Environment, Production Efficiency, Production Quality, Production
Plan Tracking and Employees Issues.

[2] has developed an 8-step iterative closed-loop model of KPI introduction, which
is described in 2.1.3. The thesis work adopts the model for KPI design for the test bed.

3.3.1. Define production goals and objectives

The goals and objectives of the test bed can be summarised as follow:
1. To increase the productivity
2. To achieve high and uniform product quality
3. To use energy and material efficiently
4. To reduce greenhouse gas emission to environment
5. To establish production tracking

3.3.2. Define potential indicators

According to the goals and objectives of the test bed and the general set of KPIs for
production, a set of potential indicators is defined. Productivity of a manufacturing
system relies on the efficiency of the production line. Therefore, Efficiency is one of the
potential indicators. Meanwhile, in order to ensure high product quality, quality is an
indicator to be monitored and evaluated. The goals also include the requirement for
production plan tracking. Concerning the energy and material use and the greenhouse
gas emission, although there is an indicator of safety and environment in the general set
of KPIs in production, the sustainable production indicators is considered more in
details. Therefore, sustainable production indicators of energy and material use and
natural environment are chosen. They form the KPIs on sustainability. Furthermore, it is
stated in [58] that maintenance functions and reliability of a system are key factors
influencing the efficiency of an organization producing high quality products and
providing services, reliability is thus one of the KPIs. All in all, the potential indicators
defined are summarised below. Each KPI consists of indicators in the standard set.

1. Efficiency
2. Quality
3. Production plan tracking
4. Energy and material use
5. Natural environment
6. Reliability

Research Methods and Materials 30

3.3.3. Select indicators for implementation

According to the available information described in Section 3.2, indicators for
implementation are selected. Since there is no message concerning information on
orders, and measurement of gas emission, the KPI of production plan tracking and
natural environment are not selected. However, the KPI of production plan tracking can
be implemented as long as an order entry system is established and the messages
containing the order information are provided by the system. The KPIs that will be
implemented are Efficiency, Energy, Quality and Reliability. Besides, three other KPIs
reflecting the overall status of the entire production line are also to be implemented. All
the KPIs for implementation are shown in Table X.

Table X: Selected KPIs and KRIs for implementation
KPI Indicators Unit Description

Efficiency

Unit Energy Consumption Wh
Energy consumption for producing one product in
each cell

Process Energy Consumption Wh Energy consumption per process

Unit Production Time second Time needed to produce one part on each cell

Unit Processing Time second Time needed for a single process

Production Shutdowns second Production shutdown time for a cell

Cell Production Rate - Number of products produced per hour by a cell

Energy

Cell Energy Consumption Wh The total energy consumption of a single cell

Unit Energy Consumption Wh
Energy consumption for producing one product in
each cell

Process Energy Consumption Wh Energy consumption per process

Energy Consumption per Product Wh
Energy consumption for producing one product by
the production line

Reliability

MTTR second Mean time-to-repair of each cell

MTTF second Mean time-to-failure of each cell

MTBF second Mean time between failures of each cell

Quality

Frame Quality Rate % Percentage of frame that meets the quality criteria

Screen Quality Rate % Percentage of screen that meets the quality criteria

Keyboard Quality Rate %
Percentage of keyboard that meets the quality
criteria

Quality Rate %
Percentage of final product that meets the quality
criteria

Overall

Total energy consumption Wh Total energy consumption of the production line

Pallet Production Time second
Time needed to produce one part by the production
line

Research Methods and Materials 31

KPI Indicators Unit Description

Line production rate -
The production rate of the production line on
hourly basis

Total products -
The total number of products produced by the
production line

Efficiency
The indicators selected to show efficiency performance are energy consumption per
product, energy consumption per process, unit production time, unit processing time,
production shutdowns and production rate.

[59] explains four types of energy-aware KPIs, which are called measure of energy
efficiency performance (MEEP).

1. Thermal energy efficiency of equipment
2. Energy consumption intensity
3. Absolute amount of energy consumption-heat value
4. Diffusion rates of energy-efficient facilities/types of equipment
Energy consumption intensity is defined as energy input divided by output, which is

useful for measuring and evaluating the detailed unit energy consumption or specific
energy consumption. The output can be physical output, for example, number of
products or numbers of process, etc, as well as economic values. Concerning the seven
properties in section 2.1.1, nonfinancial measures, such as dollars, Euros, should be
included in KPIs. Therefore, the selected KPIs for energy consumption intensity are
energy consumption per product and energy consumption per process.

In addition, timings regarding to the unit production time and processing time are
designed as indicators. The decrease of this KPI indicates the increase of efficiency.
Number of parts produced per hour is also defined to indicate the efficiency
performance on an hourly basis.

Production shutdowns indicator is the total shutdown time for a single cell when a
failure occurs. It illustrates the efficiency of the cells in the aspect of working hours.

Energy
According to [4], total energy use and energy use per unit product should be considered
when designing indicators for energy aspect. Furthermore, unit energy consumption,
energy consumption per product (by the entire line) and cell energy consumption can be
attained from the raw data of the test bed. Therefore, they are selected to be the
indicators in this category.

Reliability
In the aspect of reliability, mean time-to-repair (MTTR), mean time between failures
(MTBF) [60] [15] and mean time-to-failures (MTTF) [61] are implemented.

MTTR should be measured as the average time interval between the occurrence of a
failure and the time when the plant starts production process again. The average time

Research Methods and Materials 32

period from the end of a failure to the occurrence of another failure is measured as
MTBF. MTTF is the average time interval between the occurrence of a failure and the
happening of another failure.

The boundaries of the above mentioned indicators are all specific to a single station
which better identifies the location of an action that has to be carried out when an
unsatisfied KPI is received.

Quality
As is mentioned in Section 3.2, a machine vision system is in charge of inspections of
the quality of the products and sends notifications of the inspection results. It inspects
whether the frame, the screen and the keyboard meet the quality criteria thus concluding
the quality criteria of the final products. For quality category, frame quality rate, screen
quality rate, keyboard quality rate and product quality rate are the indicators. The first
three indicates percentage of each component that meets the quality criteria, while the
last present the quality rate of the final product.

Overall
In the selected KPIs above, performance of single cells is most concerned regarding to
efficiency and energy use. However, the overall performance of the entire production
line needs to be monitored as well. It includes the total energy consumption of the
production line, pallet production time, line production rate and total products.

3.4. Implement indicators

This section explains the implementation of indicators (fourth step in the 8-step iterative
closed loop model) into a web application. The data source of the application is derived
from the notification messages published by the test bed. The data and indicators are
also published in a RESTful web service so that third party applications can utilize the
resources for analysis and visualization, etc.

Spring WS is used to provide an endpoint thus receiving SOAP messages from the
test bed, the endpoint’s URL is configured in the subscription list in each S1000
controller, as is described in section 3.2. To process the raw events into meaningful
information KPIs on the fly, Esper is used. For persistence purposes, raw data and the
KPIs are stored in MySQL database utilizing Hibernate integrated into Spring
framework. (Figure 12, left side)

The web application is designed according to the MVC design pattern and the
framework for implementation is Spring MVC. Upon user requests with an URL from a
browser, a controller requests data from Esper and put them in the view layer via model
for real time date representation. For historical data visualization, the controller requests
from the database utilizing Hiberate’s CRUD functions. The response is rendered as
human readable format (graphics) for visualization. (Figure 12, middle)

Research Methods and Materials 33

Figure 12: Implementation architecture

Furthermore, the data in MySQL database is also exposed as resources in a RESTful

web service using Spring MVC. Third party applications requests resources from the
controller. Then the controller selects data from the database and responses the result
sets in the format of XML. (Figure 12, right side) The entire project runs on top of an
Apache Tomcat server.

3.4.1. Configuration of Java Enterprise Edition project

The configuration of a standard Java Enterprise Edition (Java EE) project relies on a
web.xml file located in wepapp/WEB-INF (see Appendix 1 for the project hierarchy).
The web.xml file defines servlet and servlet mapping for the incoming requests (Figure
13).

 Spring WS utilizes a MessageDispatcherSevlet to dispatch SOAP messages to
endpoints. The servlet mapping for MessageDispatcherServlet is configured to be
“/endpoint/SOAP/*” so that any messages coming to the URL
http://{host_name}:port/{project_name}/endpoint/SOAP is handled by the
MessageDispatcherServlet. In this project, the URL of the endpoint is http://esonia-
controller.rd.tut.fi:8080/FastoryService/endpoint/SOAP.

 A DispatcherServlet is responsible for the delegation of URL requests to Spring
MVC controllers. The servlet mapping for DispatcherServlet is configured to be
“/mvc/*” (for the web application) and “/endpoint/REST/*” (for the RESTful web
service) so that any URL in the format of http://{host_name}:port/
{project_name}/mvc/* and http://{host_name}:port/{project_name}/endpoint
/REST/* is handled by DispatcherServlet. Therefore, a URL beginning with

Research Methods and Materials 34

http://esonia-controller.rd.tut.fi:8080/FastoryService/mvc/ or http://esonia-
controller.rd.tut.fi:8080/FastoryService/endpoint/REST is handled by the
DispatcherServlet and then forwarded to a Spring MVC controller.

 The asynchronous mode of the DispatcherServlet is turned on by specifying a true
value in async-support. In asynchronous mode, when a response of a user request is
not available, the DispatcherServlet does not respond an empty value immediately.
Instead, it waits to respond until a response becomes available or a timeout occurs.

 Additionally, a ContextLoaderListener is used to load configuration files other than
the default ones. By default, when the name of the MessageDispatcherServlet is
defined as ‘spring-ws’, it looks for spring-ws-servlet for loading during
initialization. Similarly, if the name of DispatcherServlet is spring-mvc, it
automatically loads spring-mvc-servlet. When an xml configuration file is used
other than the default ones, the context-param is used to specify the name of the file
from which the ContextLoaderListener needs to load.

 A welcome page in the webapp folder can be defined in the web.xml file. It is the
first page to render when the application starts.

Figure 13: Configuration of a Java EE project with web.xml file

Research Methods and Materials 35

3.4.2. Implementation of SOAP web service

A server side of the SOAP web service is achieved via the implementation of an
endpoint provided by Spring WS to handle SOAP messages from the test bed. Figure 14
illustrates the message flow among all the layers.

 A S1000 controller is used to generate SOAP notifications and send them to the
server side application implemented with Spring WS.

 A MessageDispatcherServlet despatches the messages to the endpoints accordingly.

 The endpoint de-serializes the events to Java objects (marshal) and maps the events
to methods accordingly in which the Java objects representing the events are
forwarded to a service layer.

 On one hand, these Java objects representing the incoming events are forwarded by
the service layer to Esper engine for pre-processing. On the other hand, in the
service layer, the Java objects are assigned to other objects that are mapped with
relational database tables. These ORM objects are forwarded to a Hibernate layer.

 The ORM objects are stored in MySQL database tables using functions in the
Hibernate layer.

Figure 14: Flow Chart for the Implementation of SOAP web service

Research Methods and Materials 36

 If the Esper engine detects a match with the incoming events, an Esper listener is
invoked in which the processing results are assigned to ORM objects and saved in
database tables.
Besides, Spring WS supports contract-first web service which means that the WSDL

and schema files that are used to describe the messages should be defined beforehand.
The following sections utilize robot.xsd and robot.wsdl, which describe the
EquipmentChangeState message, available in Appendix 2 and 3, to demonstrate the
implementation of each layer in Figure 14.

Configuration for Spring WS
First, certain configuration is necessary for creating endpoints for Spring WS in
/webapp/WEB-INF folder (Figure 15).

 The class FastoryEndpoint is defined as a Java bean with fastoryService being
referenced from another Java bean in “constructor-arg” enabling an object of
FastoryEndpoint to be created using constructor and the fastoryService object being
the input parameter during the initialization of the application. This is achieved
because of the Spring framework’s DI facilities. Besides, some Java codes are also
necessary that will be explained later.

Figure 15: Necessary configuration for Spring WS

 The PayloadRootAnnotationMethodEndpointMapping enables the mapping between
endpoints and SOAP messages using annotations, in which two interceptors are
added for the logging of envelopes of the request and response messages

Research Methods and Materials 37

(SoapEnvelopeLoggingInterceptor) as well as the validation of request and response
messages (PayloadValidatingInterceptor) against the schema file (here robot.xsd as
an example).

 The project uses Jaxb2Mashaller for serialization and de-serialization between
XML and Java objects. By configuring Jaxb2Mashaller and setting it to be a
property in the MarshallingMethodEndpointAdapter, the incoming messages are
already de-serialized into Java objects (e.g. of class EequipmentChangeState, see
Appendix 4) upon the arrival at handlers so that they can be directly handled.

 SaajSoapMessageFactory defines the soap version of the incoming messages to be
handled by Spring WS. Since S1000 controllers generate SOAP 1.2 messages,
SOAP_12 is defined.

 To publish the WSDL file on web, an ID and the location of the WSDL file
(robot.wsdl) are defined for static-wsdl element.

Implementation of endpoint
To initiate the message routing, the endpoint URL (http://esonia-
controller.rd.tut.fi:8080/FastoryService/endpoint/SOAP) needs to be registered as a
service subscriber in each S1000 controller. The MessageDispatcherSevlet, which is the
entry of the web service, receives SOAP events, dispatches the events to Spring WS
endpoints and invokes the corresponding handlers. A Spring WS endpoint is a Java
class annotated with @Endpoint. A simplified endpoint for handling
EquipmentChangeState message is shown in Figure 16.

Figure 16: Implementation of an endpoint

Research Methods and Materials 38

 The @Autowired marks the constructor of the endpoint indicating the constructor
and the Java bean of fastoryService (defined in Figure 15) are auto-wired.

 To map an incoming SOAP event to a handler (a Java method), @PayloadRoot
annotation is used in which local part of the root element (localpart) and target
name space (namespace) are defined in the method thus incoming SOAP events
with the same root element and target name space is dispatched to this controller (by
MessageDispatcherServlet) and handled by the method.

 The handler is also annotated with @ResponsePayload so that the return object is
used as the response message. This handler uses void keyword, so no response
message is generated upon the EquipmentChangeState message.

 A @RequestPayload annotation specifies the input parameter of the handler. The
input parameter is already an EquipmentChageState object instead of an XML
stream because of the use of Jaxb2Mashaller and
MarshallingMethodEndpointAdapter.

 The handler simply forwards the EquipmentChangeState object to the service layer
by calling the saveECSData method defined in the service layer.

Implementation of service layer
The service layer is composed of a FastoryService interface and its implementation
class FastoryServiceImpl. To illustrate the handling of EuipmentChangeState object in
the service layer, a simplified version of FastoryServiceImpl is shown in Figure 17.

Figure 17: Sample code of FastoryServiceImpl class

Research Methods and Materials 39

 A service layer class is marked with @Service to enable component scanning
without XML configuration.

 In saveECSData method, except for the address which is available from the
soapHeader object, each value in equipmentChangeState is assigned to a data
object (see section 3.4.6 and 3.4.7) and forwarded to a save method in the Hibernate
layer.

 The equipmentChangeState object is also sent to the Esper engine for processing.

Implementation of Hibernate
The implementation of Hibernate layer consists of the integration of Hibernate into
Spring framework using Java beans (see section 3.4.7), the design of ORM (see section
3.4.7), a service layer (e.g. DataService interface and the implementing class
DataServiceImpl) and a Data Access Object (DAO) layer (e.g. DataDao interface and
the implementing class DataDaoImpl).

The Hibernate’s service layer represents a business object that provides business
functions for high level layers. The simplified DataServiceImpl class is shown in Figure
18.

 As a service layer, a Hibernate’s service class is also marked with @Service.

 The method is annotated with @Transactional indicating that the method functions
as a database transaction.

 Because it is a business object, specific functions should not be implemented here. It
simply calls a method in the DAO layer and uses the data object as an input
parameter.

Figure 18: DataServiceImpl class

The Hibernate’s DAO layer provides the detailed implementation of the functions

defined in Hibernate’s service layer. A DAO layer implementation class DataDaoImpl
is shown in Figure 19.

 The DAO class is marked with @Repository to indicate that this class resprensts a
repository, ensure exception translation and allow component scanning for this class
without XML configuration.

Research Methods and Materials 40

 The implementation of save function utilizes the sessionFactory instance to acquire
a session, begin a transaction and save the input data (here data Object) in the
database table. If an exception occurs during the saving procedure, the session rolls
back the transaction. And finally, the transaction has to be committed by the session.

Figure 19: DataDaoImpl class

Implementation of Esper engine and listener
The implementation of the Esper engine involves creating classes that represent
incoming events, configuration of the engine, creating EPL rules and adding listeners to
the engine. A simplified Esper engine implementation is illustrated in Figure 20.

 The class implements a singleton pattern to make sure that only one instance of the
EsperConfig class can be created throughout the project using the getInstance()
method.

 The constructor involves the creation of a configuration instance that represents all
configuration parameters and provides an EPServiceProvider which can be used to
create EPL rules and add listeners. The configuration parameters are defined via an
XML file (see Appendix 5) to register the classes representing the incoming events,
etc.

 The class provides a method editRule(Rule rule) to register the pre-defined EPL
rules (see section 3.4.5 for the pre-defined EPL rules) in the engine and assign
listeners of the rules according to the rule ID. The listener classes are configured as
Java beans in an XML file. This method can be called when a new rule is created
from the web page or when the first event arrives at the endpoint.

 It also provides a function that can be called in the service layer to send the
incoming events to the engine.

Research Methods and Materials 41

Figure 20: Esper engine implementation

The implementation of a listener for computing the duration of IPC-2541 states

based on EquipmentChangeState events is shown in Figure 21. It is the engine’s task to
detect a match of patterns defined in EPL rules. The update method in the listener
corresponding to the rule is automatically invoked when a match is detected.

 The listener carries the values of the selected parameters specified in the rule (see
Table XI, IPC-2541 States Overview) in a Map object (here states) as an input
parameter. The selected parameters in the rule are used as keys in the Map while the
values as values in the Map. Then one can visit a specific value in the Map by
specifying its key.

 The update method retrieves the values of all the interested parameters, calculates
the time difference between two timestamps, assigns all the values to a data object
and utilizes the sessionFactory to store it in database tables.

Research Methods and Materials 42

Figure 21: A listener for computing IPC-2541 state duration

3.4.3. Implementation of web application

On the other hand, a web application is designed according to the Model View
Controller design pattern, which runs on top of Apache Tomcat server. The Model is
implemented in POJO, the Controller on top of Spring MVC and the View with JSP,
HTML, jQuery and Google Chart Tools. The implementation of the web service is
demonstrated in Figure 22.

 KPIs can be visualized on web browsers when users request with valid URLs.

 The DispatcherServlet delegates the URLs to the corresponding controllers and
invokes the methods that are mapped for handling the URL requests.

 Each method calls a method in the service layer to retrieve data.

 To request historical data, the method in the service layer calls the Hibernate’s
sessionFactory CRUD functions.

 To request real-time data, the method in the service layer returns a DeferredResult
object that is set by the Esper listener when Esper engine detects a match between
the incoming events and the EPL rules.

Research Methods and Materials 43

 The responses are forwarded back to the service layer and further to the controller.
The controller responds the DispatcherServlet with the model which assigns the
model to its representative in the view.

 Finally, the DispatcherServlet returns responses in the format of HTML to the
browser for visualization.

Figure 22: Flow chart of the implementation for web application

Configuration for Spring MVC
Before explaining the implementation of Spring MVC’s controller, it is necessary to
explain the configuration for the Spring MVC framework in details using the basic
XML file illustrated in Figure 23.

 First is to create Java beans for the service classes so that they can be referenced in
the controller.

 To enable annotation scanning for controllers, component-scan is used here in
which the package of the controller classes are specified.

 A RequestMappingHandlerAdapter is used here to process the annotations in the
class level and method level. Message conveters are registered as the property of
the RequestMappingHandlerAdapter, so the return of the method can be converted
to, for example, JSON (using jacksonMessageConverter bean). The property

Research Methods and Materials 44

asyncRequestTimeout determines the duration of the await time for the value to be
updated on the view. If the timeout occurs, a new request has to be sent to the
controller to keep waiting for a new value.

 Lastly, the logical view name expressed as a String is mapped with the location of
the view implementation using InternalResourceViewResolver.

Figure 23: Spring MVC basic configuration

Implementation of controller
So as to the implementation of controllers, a description of a simplified RuleController
(Figure 24) is introduced to explain how EPL rules stored in database tables are
rendered on the view with the assistance of the InternalResourceViewResolver.

 The RuleController class is located in the package
fi.tut.kpimeter.spring.mvc.controllers as is defined in component-scan in Figure 23.

 The class is annotated with @Controller for auto scanning.

 The method setupPage is annotated with @RequestMapping with its value being
“/edit”. As is introduced in section 3.4.1, any URL beginning with http://esonia-
controller.rd.tut.fi:8080/FastoryService/mvc/ is handled by the DispatcherServlet.
The specified request mapping in the method level ensures the URL http://esonia-
controller.rd.tut.fi:8080/FastoryService/mvc/edit to be handled by the method.

 The method calls a populatesRules(0) method which requests all the pre-defined
rules from the database and responds the result as a list. The rule list is added as an
attribute, whose name is “rules”, in the model. The Rule class is a POJO with fields
(id, ruleId, eplRule, adder, timestamp) that can be accessed with getter and setter
methods.

 The method returns a String (“edit”) which is the logical view name. Then the
DispatcherServlet interprets it, according to the InternalResourceViewResolver, as

Research Methods and Materials 45

“/WEB-INF/page/edit.jsp”, locates it, assigns the model to the view representation
and renders the view.

Figure 24: Simplified implementation of RuleController

Implementation of view
The sample code for the view template to render EPL rules is shown in Figure 25 to
illustrate how the model is represented in the view.

 A link is created using an HTML “a” tag to specify the relative URL as “edit”,
mapping to the value of the @RequestMapping annotation used in controller. Users
can click on the link to view the EPL rules.

Figure 25: Sample code in edit.jsp

 The view template is located in “/WEB-INF/page/” as “edit.jsp” so that the
DispatcherServlet can locate it.

 The EPL rules are rendered in a table using HTML tags.

Research Methods and Materials 46

 The model attribute “rules” (from Figure 24) is referenced using the notation
“${rules}” in a foreach function from JSTL library so that the fields in each item
(defined as rule with the “var” parameter) can be accessed in the view template.

Update graphics in real time
Google Chart Tools is used to represent data as graphics. For persistence purposes,
historical data should be loaded in the graphics as the initial view. When new values are
available from the production line, they should be represented in graphics without
latency. Real-time update of graphics can be achieved using DeferredResult class in
Spring 3.2.0.M1.

The IPC-2541 pie chart illustrates the accumulated duration of every IPC-2541 state
in history. A state change adds a time difference to the sum duration of the state and
updates the pie chart in real time. An example on the implementation of IPC-2541 pie
chart is introduced in the following part. It begins with the description on how the
controller handles the incoming HTTP requests, following the service layer and Esper
listener implementation. Afterwards, how the HTTP requests are composed and sent
from the view template and how to use Google Chart Tools to implement the pie chart
for data rendering are introduced. The last part describes the sample codes for pie chart
update when the server replies a JSON object.

In the KPIViewController (Figure 26), two methods are created for historical data
and real-time data rendering in the pie chart, respectively.

Figure 26: Controller for IPC-2541 pie chart

 The renderCAMXStateChart method requests historical data when the URL relative
to the DispatcherServlet is ”/getCamxData”. The method assigns the cell number
according to the request and forwards the cell number to the service layer. It returns

Research Methods and Materials 47

a CAMXStateJsonResponse POJO object to contain the IPC-2541 status information
including the duration of each state, the cell number and a timestamp. The
@ResponseBody annoation is used before the return type to ensure that the object is
traslated to JSON type by the RequestMappingHandlerAdapter(configured in
Figure 23).

 The updateCAMXState is used for real-time update of the IPC-2541 pie chart. It
handles requests when the relative URL to the DispatcherServlet is
“/updateCamxState”. The method returns an object of DeferredResult class that is
specifically used to support asynchronous servlet. The method merely passes the
cell number to the service layer.
Two methods in the service layer (Figure 27) are created to handle requests from the

methods above respectively.

Figure 27: Methods in service layer for IPC-2541 pie chart

 The getCamxStatesTime method requests historical data from the Hibernate layer,
assigns the values to the response list and returns it to the controller for rendering. In
addition, the method also stores the historical data in memory (in a map object
camxStateTimeAccumulator). In this way, a new value can be accumulated to the
historical data simply by acquiring it from the memory without querying the
database.

Research Methods and Materials 48

 The updateCAMXStateChart creates a deferredResult object and stores it in
memory. It is worth noticing that an empty camxStateJsonResponse object is used as
the input parameter of the constructor when creating the deferredResult object. This
empty object plays a key role for real-time update. The empty
camxStateJsonResponse object in the deferredResult enables the DispatcherServelet
to wait without responding HTTP requests. When it is replaced with a new
camxStateJsonResponse object populated with real-time data, the
DispatcherServelet replies immediately. To distinguish different cells, the
deferredResult is stored in a deferredResultContainer object which features a cellId
field. In consideration with the fact that multiple users might be viewing the same
chart simultaneously, the deferredResultContainer object is stored in the
camxStateDeferredResultMap, to make sure that all the requests are responded with
the real-time data.
As is motioned, the service layer requests historical data from database tables via a

Hibernate layer which is implemented similarly to the one for Spring WS. Thurs the
following paragraph only focuses on the implementation of the Esper listener which
detects the IPC-2541 state change. Figure 28 illustrates the sample code. It merely aims
to explain how the Epser listener results are updated in the deferredResult in real time,
so other functions, such as storing the data in database tables, are removed.

 Once a match is detected by the Esper engine concerning the rule for detecting the
state change (see Table XI, IPC-2541 states overview), the update method is
invoked. Values regarding to the state change can be accessed from the input
parameter.

 The method calculates the difference between two timestamps, and then
accumulates the value to the historical value in camxStateTimeAccumulator map.
Afterwards, it assigns the values after accumulation to the CAMXStateJsonResponse
object.

 Thirdly, the method traverses all the deferredResult objects in the
camxStateRequestMap and obtains the ones with the same cell number. They are
temporarily recorded in a list. The CAMXStateJsonResponse object populated with
the new values is set in all the deferredResult objects in the list, which ensures the
DispatcherServlet to reply with the CAMXStateJsonResponse objects to all requests.

 Finally, the deferredResult objects in the temporary list are removed.
On the other hand, the URLs together with their parameters (known as HTTP

requests), handled by renderCAMXStateChart and updateCAMXState methods in the
controller layer, are created in the view template. They are different from the one
introduced for EPL rule rendering example, in which the URL is created with a HTML
“<a>” tag so that users can navigate to the page by clicking on the link. Considering the
fact that the pie chart should be loaded and updated without user interference, these
HTTP requests should be sent automatically from the view template. In addition, the
process of sending the requests and retrieval of responses should not interfere with the

Research Methods and Materials 49

display and other processes on the current page. To achieve this, the requests have to be
sent to the server asynchronously using jQuery’s get and ajax methods.

Figure 28: Sample code from CAMXStates listener

To load the pie chart with the historical data, the request should be sent once the

page renders. A function (shown in Figure 29) using jQuery’s get method is
implemented to request historical data from the controller.

Figure 29: Sending HTTP requests using jQuery's get method

Research Methods and Materials 50

 The get method accepts a URL (getCamxData) as the destination of the request, a
map or string (cellNum) that is sent to the server with the URL and a callback
function that handles the response from the server.

 In the callback function, a method drawCamxStatePieChart is called to draw the pie
chart using the server response (response). The server response is the JSON object
translated from camxStateJsonResponse.

 Then, it calls the updateCamxState method for chart updates.
Next is to illustrate the drawCamxStatePieChart function to present the server

response as a pie chart using Google Chart Tools. Figure 30 shows the sample code.

 To use Google Chart Tools, an API (jsapi) needs to be imported from Google
website.

 Next is to load the visualization API and the pie chart package from corechart.

 A container for the chart created with the HTML div tag uses the id attribute as the
identifier.

 In the function, the JSON object is first assigned to a data table with the states as the
first column and values the second.

 Then the chart object can be created using ChartWrapper which specifies the chart
type as pie chart, the chart container’s ID, the data table and options.

 Finally, the draw function is used to draw the chart.

Figure 30: Processing server response into a pie chart using Google Chart Tools

Research Methods and Materials 51

To update the pie chart with real-time data, HTTP requests should be sent to the
server successively. The updateCamxState function (Figure 31) implements an
asynchronous HTTP request to retrieve data from the server and updates the data table
of the pie chart.

 It creates an HTTP request using jQuery’s ajax function in which the URL along
with the data sent to the server are specified.

 In the callback function, the server response can be accessed via the input
parameter, with which, the data table is updated. Then one can reuse the chart object
to update the chart with the new data table.

 Then the request is repeated by calling the function itself.

Figure 31: Update the IPC-2541 pie chart

As is mentioned, the deferredResult object set with an empty

camxStateJsonResponse object in the controller enables the DispatcherServelet to wait
without responding HTTP requests until a new camxStateJsonResponse object
populated with real-time data is set to the deferredResult or a timeout occurs. In case a
populated camxStateJsonResponse is set in the deferredResult, the callback function in
updateCamxState function receives the server response as a JSON object immediately.
Thurs updating the pie chart in real time. On the other hand, when a timeout occurs, the
callback function sends the request to the server again after 50 ms.

Research Methods and Materials 52

3.4.4. Implementation of RESTful web service

Figure 32 illustrates the implementation of the RESTful web service using Spring
MVC.

 A client sends a URL request to the web service.

 The DispatcherServlet delegates the request to the corresponding handler to process
the request. The request mapping is done via a @RequestMapping annotation
declared before the handler method. For instance, by using @RequstMapping(value
= "/data/{query}") in front of a handler, requests in the format of http://[host
name]/[application name]/[servlet mappings]/data/{query}/ are forwarded to the
method, in which {query} is a variable used to access the specific resource in the
web service. In order to acquire the value of the query from the URL,
@PathVariable annotation is used with the input parameter in the handler.

public KPIDataResponse handleKPIDataRequest(
 @PathVariable(value="query") String query){…}

Figure 32: Implementation of RESTful web service

Research Methods and Materials 53

 The parameters are forwarded by the controller to the service layer by calling a
method defined in the service class to access database.

 Database access is triggered at the service layer. A Hibernate Query Language
(HQL) is constructed and forwarded as the input parameter by calling Hibernate’s
DAO method to query database tables. In DAO layer, a set of interfaces and
implementations is declared with CRUD functionalities utilizing Hibernate’s
sessionFactory instance.

 The Hibernate’s DAO method returns the query results as a list.

 The list is further assigned to another Java object which is mapped with the XML in
the service layer and subsequently forwarded to the controller for serialization of
object to XML stream (marshalling).

 Finally, XML responses are returned to the client as HTTP response.
As can be seen, the implementation of RESTful web service using Spring MVC also

relies on the design of controllers. Compared to the controllers for web applications, the
controllers for RESTful web service returns XML stream. So there is no need to explain
the implementation in details.

3.4.5. EPL rules for KPIs retrieval

EPL rules are designed for each lower-level granularity indicator associated to each area
of concern (Table XI), and further mapped to testbed-related information needed as an
input. Indicator values are calculated at run time as events are received. Computation of
some indicators uses previously calculated results, while in certain cases it is desirable
to define customized functions for each indicator of interest, from scratch. Patterns are
used in the EPL rules to assist rule evaluation for most indicators.

Calculation of Unit Energy Consumption/ Process Energy Consumption requires
two EPL rules, related to robot energy usage upon starting/finishing pallet assembly.
The first rule keeps calculating the energy use by multiplying the average power
consumption and the time interval between adjacent energy meter events and generates
the result as a new event stream ‘energyInstance’ using a user-defined function. The
second rule is also designed using patterns. The first event in the pattern should be an
EquipmentChangeState event whose current state is READY-PROCESSING-
EXECUTING. Subsequently, the engine starts to gather every energyInstance event.
The last event in the pattern has to be an EquipmentChangeState event whose previous
state is READY-PROCESSING-EXECUTING. At this moment, the engine triggers the
listener dedicated to this rule to indicate all the energy instances that have been
collected so far, the time stamps of the beginning and ending of the execution process,
the cell ID, the pallet ID and the recipe number. The sum of the energy instances is the
energy consumption for processing a pallet (identified by the pallet ID) and executing a
process (identified by the recipe number) in the cell.

Two event types are relevant for the Esper engine to evaluate Unit Production Time/
Unit Processing Time: the first EquipmentChangeState event whose IPC-2541 current

Research Methods and Materials 54

state is “READY-PROCESSING-EXECUTING” (i.e. processing has just started), and
the immediately succeeding EquipmentChangeState event whose IPC-2541 previous
state is “READY-PROCESSING-EXECUTING” (i.e. processing has just ended). The
difference between the time stamps associated to the events is the product processing
duration (indicated by the pallet ID)/ unit processing duration (indicated by the recipe
number) in the considered cell.

Computation of Cell Production Rate is based on the number of “READY-
PROCESSING-EXECUTING” states for robots within an hour. The result is grouped
by cell ID to acquire the number of pallets being produced on each cell. The aggregation
result regarding to cell number one indicates the Line Production Rate. The sum of the
results of Cell Production Rate on each cell reveals the Total Products indicator.

Cell Energy Consumption is acquired directly from an EnergyMeter message
originating in the meters installed in the line. EPL rules are not needed to compute Total
Energy Consumption (it is computed as a simple sum over Cell Energy Consumption
values for all cells).

To compute Energy Consumption per Product, two EPL rules are designed. The first
one calculates the energy consumption of the pallet on each cell using the same pattern
for calculating Unit Energy Consumption but generates each result as a new event
stream. The second rule enables Esper engine to start gathering energy instances from
the event streams related to a pallet when the pallet is being executed on cell one. When
all the executing processes for this pallet are completed and the pallet flows back to cell
number one, the Esper engine exposes all the gathered energy instances related to this
pallet. The sum of all these energy instances is the energy consumption for this pallet.
Meanwhile, the next round of energy instance gathering process starts.

Mean time to repair (MTTR) is the average time difference between the occurrence
of a failure (IPC-2541 DOWN state) and the start of processing (IPC-2541 READY-
PROCESSING-EXECUTING state) of the same working cell. To compute Mean Time
Between Failures (MTBF), the average time difference between succeeding
EquipmentChangeState events with a current state mark of “DOWN” is captured.
Calculation of Mean Time to Failure (MTTF) relies on the average time difference
between “READY-PROCESSING-EXECUTING” and “DOWN” states within the same
working cell.

The EPL rule for frame quality, keyboard quality, screen quality and overall quality
rate acquisition separately counts the number of QualityInspectionShort events when
the frameOk, keyOK, screenOk or inspection passed attribute is one and divides the total
number of QualityInspectionShort events within an hour.

The Pallet Production Time is computed as the time difference between the time
stamps when a pallet being processed on cell one (current state in cell one is “READY-
PROCESSING-EXECUTING”) and the same pallet is being processed on cell one.

IPC-2541 States Time calculates the duration of each IPC-2541 state in each cell
using pattern. One EquipmentChangeState event of a robot cell indicates the start of
one state as current state. The following EquipmentChangeState event from the same

Research Methods and Materials 55

cell whose previous state is the same with the current state indicates the end of the state.
The Esper engine selects the time stamps in these two events and the current state value
from the first event. The time difference between the two time stamps is the duration of
the state. Production Shutdowns is revealed by the time difference between two
“DOWN” states from the same cell.

 Table XI: EPL rule designed for implementation
KPI Indicator Input EPL rule Output

Efficiency

Unit Energy
Consumption/

Process
Energy

Consumption

Energy use, states
of working cells,
cell ID and pallet
ID, recipe number

insert into energyInstanceStream
select energyInstance(a.AWATT, b.AWATT,
a.dateTime, b.dateTime) as energyInstance,
a.cellId as cellId, b.dateTime as dateTime
from pattern[every a=EnergyMeter -> every
b=EnergyMeter(cellId=a.cellId) and not
EnergyMeter(cellId=a.cellId)] group by a.cellId

Cell ID, energy
use and time
stamp

select a.energyInstance as energyInstance,
b.cellId as cellId, b.palletId as palletId,
b.recipeNum as recipeNumber, b.dateTime as
startTime, c.dateTime as endTime
from pattern [every
b=EquipmentChangeState(currentState =
"READY-PROCESSING-EXECUTING") ->
every a=energyInstanceStream(cellId = b.cellId)
and not
EquipmentChangeState((currentState="READY-
PROCESSING-EXECUTING" or
previousState="READY-PROCESSING-
EXECUTING"), cellId=b.cellId) ->
c=EquipmentChangeState(previousState="REA
DY-PROCESSING-EXECUTING",
cellId=b.cellId)] group by b.cellId

Cell ID, energy
use, pallet ID,
recipe number and
time stamps

Unit
Production
Time/ Unit
Processing

Time

Time stamps and
states of working
cells

select a.currentState as state, a.dateTime as
dateTimeA, b.dateTime as dateTimeB, a.cellId as
cellId, a.palletId as palletId, a.recipeNum as
recipeNumber
from pattern[every
a=EquipmentChangeState(currentState="READ
Y-PROCESSING-EXECUTING") ->
b=EquipmentChangeState(previousState="REA
DY-PROCESSING-EXECUTING" AND
cellId=a.cellId)]

Starting and
ending time
stamps of working
cells being
executing, cell ID,
pallet ID and
recipe number

Production
Shutdowns

States of cells and
time stamps

The DOWN states duration in IPC-2541 states
overview

Starting and
ending time
stamps of working
cells being off,
cell ID and the
state

Cell
production
Rate/ Line
Production

Rate

States of working
cells

select count(*) as count, cellId,
from
EquipmentChangeState.win:time_batch(3600
sec) where currentState="READY-
PROCESSING-EXECUTING" group by cellId

Number of
executing states of
robots within an
hour and cell ID

Energy

Cell Energy
Consumption

Energy use and
cell ID

select AWATTHR as robotEnergy, BWATTHR
as controllerEnergy, CWATTHR as
conveyorEnergy, cellId
from EnergyMeter

Real time energy
use for robots,
conveyors and
controllers as well
as cell ID

Energy
Consumption
per Product

Energy use, states
of working cells,
cell ID and pallet
ID

insert into unitProductEnergyStream
select a.energyInstance as energyInstance,
b.cellId as cellId, b.palletId as palletId,
b.dateTime as startTime, c.dateTime as endTime
from pattern [every
b=EquipmentChangeState(currentState =
"READY-PROCESSING-EXECUTING") ->
every a=energyInstanceStream(cellId = b.cellId)
and not
EquipmentChangeState((currentState="READY-
PROCESSING-EXECUTING" or
previousState="READY-PROCESSING-
EXECUTING"), cellId=b.cellId) ->

Cell ID, energy
use and time
stamp

Research Methods and Materials 56

KPI Indicator Input EPL rule Output
c=EquipmentChangeState(previousState="REA
DY-PROCESSING-EXECUTING",
cellId=b.cellId)] group by b.cellId
select a.energyInstance as energyInstance,
b.cellId as cellId, b.palletId as palletId,
b.dateTime as startTime, c.dateTime as endTime
from pattern[every
b=EquipmentChangeState(currentState="READ
Y-PROCESSING-EXECUTING", cellId = "1") -
> every
a=unitProductEnergyStream(palletId=b.palletId)
and not
EquipmentChangeState(currentState="READY-
PROCESSING-EXECUTING",
palletId=b.palletId, cellId = b.cellId) ->
c=EquipmentChangeState(currentState="READ
Y-PROCESSING-EXECUTING",
cellId=b.cellId, palletId=b.palletId)] group by
b.palletId

Cell ID, energy
use, pallet ID and
time stamp

Reliability

MTTR
States of cells and
time stamps

select a.currentState as from_state, b.currentState
as to_state, a.dateTime as dateTimeA,
b.dateTime as dateTimeB, a.cellId as cellId
from pattern[every
a=EquipmentChangeState(currentState="DOWN
") ->
b=EquipmentChangeState(currentState="READ
Y-PROCESSING-EXECUTING" AND
cellId=a.cellId)]

Starting and
ending time stamp
of working cells
being down and
the time stamp of
working cells
back to work, cell
ID and state
change

MTTF
States of cells and
time stamps

select a.currentState as from_state, b.currentState
as to_state, a.dateTime as dateTimeA,
b.dateTime as dateTimeB, a.cellId as cellId
from pattern[every
a=EquipmentChangeState(currentState="READ
Y-PROCESSING-EXECUTING") ->
b=EquipmentChangeState(currentState="DOWN
" AND cellId=a.cellId)]

The time stamp of
working cells
beginning to work
and the time
stamp when the
cells being down,
cell ID and state
change

MTBF
States of cells and
time stamps

select a.currentState as from_state, b.currentState
as to_state, a.dateTime as dateTimeA,
b.dateTime as dateTimeB, a.cellId as cellId
from pattern[every
a=EquipmentChangeState(currentState="DOWN
") ->
b=EquipmentChangeState(currentState="DOWN
" AND cellId=a.cellId)]

Starting and
ending time
stamps of working
cells being down,
cell ID and state
change

Quality

Frame Quality
Rate

Quality of frame
processing, quality
of keyboard
processing, quality
of screen
processing and
production based
quality inspection
results

select count(frameOk, frameOk='1')/count(*) as
frameRate, count(keyOk, keyOk='1')/count(*)
as keyboardRate, count(screenOk,
screenOk='1')/count(*) as screenRate,
count(inspectionPassed,
inspectionPassed='1')/count(*) as overallRate
from
QualityInspectionShort.win:time_batch(3600sec
)

Number of
products that pass
the frame quality
inspection

Keyboard
Quality Rate

Number of
products that
passes the
keyboard quality
inspection

Screen Quality
Rate

Number of
products that
passes the screen
quality inspection

Overall
Quality Rate

Number of
products that
passes the overall
quality inspection

Overall

Total Energy
Consumption

Energy use of all
cells

Sum up the Cell Energy Consumption values
for all cells

Total energy
consumption in

Wh

Pallet
Production

Time

States of working
cell number 1

select a.dateTime as dateTimeA, b.dateTime as
dateTimeB, a.palletId as palletId
from pattern[every
a=EquipmentChangeState(currentState="READ
Y-PROCESSING-EXECUTING", cellId = "1") -
>
b=EquipmentChangeState(currentState="READ
Y-PROCESSING-EXECUTING",

Pallet ID, starting
and ending
processing time
stamps of each
pallet

Research Methods and Materials 57

KPI Indicator Input EPL rule Output
cellId=a.cellId, palletId=a.palletId)]

Total Products
States of working
cells

Sum up the Cell Production Rate result of each
cell

Total number of
products produced

on each cell

IPC-2541
States

Overview

States of cells and
time stamps

select a.currentState as state, a.dateTime as
dateTimeA, b.dateTime as dateTimeB, a.cellId as
cellId
from pattern[every a=EquipmentChangeState -
> b=EquipmentChangeState(previousState
=a.currentState AND cellId = a.cellId)]

Cell ID, starting
and ending time
stamps of each
state

3.4.6. Database structure

Captured events and KPIs are stored in database tables as resources of the RESTful web
service. In addition, for persistence and user validation purposes, EPL rules and user
information are also stored in database tables. Raw data and KPIs are stored in data,
metadata and data_metadata tables, EPL rules in rule_table and user information in
user_table and user_authority_table. Besides, because of the increase of the size of
data and metadata tables, aggregation functions in MySQL such as ‘sum’, ‘max’ and
‘min’ become slow, which leads to slow rendering of certain graphics, statistics tables
are created to speed up the data retrieval process.

Database tables for data and KPIs
The database stores raw data and KPI values in three tables (Figure 33): a data table, a
metadata table and a data_metadata table.

Figure 33: Database tables for data: structure and relation

The data table stores:

 the root element name of the incoming xml messages / KPI name (the name
column)

 a manufacturing cell identifier (the name column)

 timestamps associated to incoming messages from the line / KPI values (the
timestamp column)

 the addresses of the messages / KPI results (the value column)
The metadata table stores:

 the values of attributes / elements within incoming messages (the value column).

 the names of the attributes / elements are stored (the property column). In the case of
a KPI, the property and value columns are used to further describe the KPI (e.g. via
cell IDs / device types / etc.)

Research Methods and Materials 58

 Similar content to the data table in its name and timestamp columns. These columns
are left for future usage in case the line needs to be retrofitted.
Figure 34 illustrates a shortcut of how an EnergyMeter message is stored in data

and metadata tables. One incoming event increases one row in data table, while several
rows in metadata table, which represents a one-to-many relationship. In order to map
the data in data table and in metadata table, a third table is needed.

Figure 34: Example of data in database

The data_metadata table stores the relations of the data in the above mentioned two

tables via id numbers. The table is generated by Hibernate automatically by setting a
one-to-many relationship in Hibernate’s configuration file or annotating the relationship
in POJO with @OneToMany annotation. The relationship represented by the
data_metadata table for the above presented example is shown in Figure 35.

Figure 35: One-to-many relation correlation with data_metadata table

Database table for EPL rules
The rule_table (Figure 36) stores EPL rules, including the name of the rule in ruleid
column, the actual rule in rule, the user who added the rule in adder and the timestamp
indicating the creation time of the rule in timestamp.

Research Methods and Materials 59

Figure 36: Database tables for rules: structure

Database tables for users
The user information is stored in two tables (Figure 37). The user_table stores the
information upon users’ registry, including company, email address, first name, last
name, password, role of the user and user name. The role of the user in user_table can
be either 1 or 2 with 1 representing an administrator and 2 a user. This mapping is
stored in the user_authority_table, which only has two rows (Figure 38).

Figure 37: Database tables for users: structure and relation

Figure 38: Data in user_authority_table

Statistics tables
Four statistics tables are created to speed up aggregation functions, namely,
camx_statistics_table, device_statistics_table, energy_statisitcs_table and
production_rate_statistics_table. The camx_statistics_table, the energy_statistics_table
and the production_rate_statistics_table aim to hold the total duration of each IPC-2541
state in each cell, the maximum energy consumption value in each cell, the total number
of products manufactured in each cell, respectively, while the device_statistics_table
maintains the address, the name, the first message timestamp and the last message
timestamp from each device. The tables are updated with Hibernate queries when an
update in the information concerned occurs, to maintain the latest information in the
tables.

3.4.7. Data persistence with Hibernate

On one hand, the application uses Java as the programming language which manipulates
data as Java objects. On the other hand, the database regards its data as relational data.

Research Methods and Materials 60

Therefore, Hibernate integrated into Spring framework is adopted to manage the
mapping known as ORM.

Integrating Hibernate into Spring framework
Hibernate can be configured via Spring’s IoC module by creating Spring beans in a
configuration file (Figure 39).

 A LocalSessionFactoryBean provides a sessionFactory instance which manages the
configuration settings of Hibernate and provides CRUD operations for application
services. The Hibernate configuration settings can be loaded from an XML file
(Figure 40) located in the root of the resource folder. The configLocation property
defines the location of the XML file.

 Transaction management provided by Spring’s AOP module ensures the integrity
and consistency of data in database. To enable the transaction management in
Hibernate and Spring integration, a TransactionInterceptor bean and a
HibernateTransactionManager bean are used. The HibernateTransactionManager
bean defines the Hibernate transaction manager and references the sessionFactory
instance as its property to enable Hibernate’s transaction management, while the
TrasactionInterceptor references the HibernateTransactionManager bean as a
property to manage Hibernate’s transaction management in Spring framework. In
addition, the transactionAttributes property has to be configured to indicate how the
transaction behaves when a nested transaction occurs (transaction propagation). The
key property defines the method that utilizes the transaction propagation. For
example, ‘find*’ means that all the methods that starts with ‘find’ utilize such
propagation behaviour. The transaction propagation behaviour defined in this work
is ‘PROPAGATION_REQUIRED’ which supports the current transaction and if no
transaction exists, it creates a new one.

 The XML file lists the Hibernate connection parameters, such as driver class, URL,
user name and password, the Hibernate connection provider related settings
(connection provider class, maximum/minimum poll size for the database, etc),
transaction provider class as properties. A list of ORM classes is also registered in
the sessionFacotry instance as mappings.

Figure 39: Hibernate configuration

Research Methods and Materials 61

Figure 40: hibernate.cfg.xml

ORM in Hibernate
A Java object can be mapped to relational data using JPA annotations supported by
Hibernate. An example of using the annotations can be found in Figure 41.
 A @Entity annotation at the class level enables a POJO class to be a persistent

entity.

 A @Table annotation at the class level allows mapping the name of the persistent
class to a database table name.

 A @Column annotation before an attribute indicates that the attribute is mapping to
the specified column.

 A @Id annotation before an attribute informs Hibernate that the values in the
corresponding column in this table are unique in each row. This column is also
defined as the primary key in this table.

 A @GeneratedValue annotation is declared before an attribute to declare that the
value in this column is generated automatically.

 A @Index annotation before an attribute indicates that the mapped column in the
table uses indexing technology to increase the lookup speed.

 A @OneToMany annotation before an attribute is used to correlate another table as
a one-to-many relationship.

 Besides, every attribute in the POJO class needs a setter and a getter method.

Research Methods and Materials 62

Figure 41: The use of annotations for ORM

 63

4. RESULTS

This chapter shows the results of the implementation for the web application for KPI
management. Then it shows the results of exposing the KPIs in a RESTful web service.

4.1. Results of the web application

The web application is available at the URL: http://esonia-controller.rd.tut.fi:8080/
FastoryService. After login to the application, users can visit the ‘Discovery’ page. As
can be seen from the menu on top of Figure 42, the application provides the following
functions:

1. Monitoring of device information.
2. Management of CEP rules.
3. Illustration of sample messages.
4. Visualization of historical KPIs and real-time monitoring of KPIs.
5. Management of user account information.

Figure 42: Device Information

The ‘Discovery’ page (Figure 42) lists device information in a table. The first

column of the table is the address of the devices, followed by the names of messages

1 2 3 4 5

Results 64

that are published by the devices’ services. The last two columns show the time stamps
of the first message that the server has received and the time stamps of the most recent
messages respectively. By clicking on each row, more detailed information concerning
the corresponding device is shown such as the hosting action.

Figure 43 shows a snapshot of the ‘CEP Rules’ page in which there are two links on
the left side, ‘Embedded Rules’ and ‘User Defined Rules’. By default, the ‘Embedded
Rules’ link is enabled in which the EPL rules for KPI retrieval defined by the author are
collected in a table. The first column of the table holds the rule names, followed by the
user name of the administrator who created the rule and the time when the rules are
defined. By clicking on each row, users can see the corresponding EPL rule. An
example of how to define a new rule is described in section 4.3.

Figure 43: CEP rules

Samples of all the messages and descriptions are shown in the page ‘Sample

Messages’ (Figure 44) to help administrators define EPL rules. One can view the
sample message and its description by clicking on the name which is also the root
element of each XML message. The sample message illustrates the root element, all the
attributes and their sample values in the message.

Administrators can view, create and delete user accounts on the ‘User’ page. This
page shows the user name, full name and role in a table. The ‘Create’ and ‘Delete’
buttons enable administrators to create user accounts by filling a registry form and
delete user accounts, respectively.

Results 65

Figure 44: Sample messages

The ‘Graphics’ button brings the users to the monitoring of KPIs. The default page

(Figure 45) illustrates the users with the indicators belonging to ‘Overall’. The buttons
(‘Efficiency’, ‘Energy’, ‘Reliability’, ‘Quality’ and ‘Overall’) enable users to navigate
among all indicators in these categories. A drop down list on the right hand side enables
users to select a specific cell. The label on top of each chart enables the graphics to slide
up or down, thus moving up or down the succeeding chart.

Figure 45: Graphics

Results 66

4.1.1. Visualization of efficiency indicators

The Efficiency session is dedicated to the visualization of indicators for unit energy
consumption, process energy consumption, unit production time, unit processing time,
production shutdowns and cell production rate.

Unit energy consumption/Process energy consumption
Both historical and runtime unit energy consumption/process energy consumption of a
single cell can be visualized with smooth line charts annotated with both pallet ID and
recipe number.

Figure 46 illustrates the historical unit energy consumption/process energy
consumption in watt hour (Wh) in which a drop down list (Pallet ID) enables user to
inspect the energy consumption of a specific pallet, while another drop down list
(Recipe) is dedicated to the inspection of energy consumption of a specific process. By
specifying a time period, the unit energy consumption/process energy consumption in
the time period can be visualized. The range filter enables users to scale the chart with
time.

Figure 46: Historical unit energy consumption line chart

The real-time unit energy consumption/process energy consumption smooth line

chart (Figure 47) illustrates the unit energy consumption/process energy consumption of
a single cell in real time. As a cell completes assembling a pallet, the energy
consumption and its annotations are appended to the line.

Results 67

Figure 47: Run time unit energy consumption line chart

Unit production time/Unit processing time
The unit production time/unit processing time in second is displayed with a line chart
annotated with pallet ID and recipe number.

By default, the historical unit production time/unit processing time line chart (Figure
48) shows the unit production time/unit processing time within the last 30 minutes since
the user opens this chart. However, users can specify a time period by filling out the
starting and ending time in the text field. A drop down list can be used to inspect the
production time of a specific pallet ID, while another one enables users to visualize the
production time of a specific process. A range filter enables users to scale the chart with
time.

Figure 48: Historical unit production time line chart

Results 68

Another line chart (Figure 49) provides real-time monitoring of the unit production
time/unit processing time. As each cell completes producing one pallet, the unit
production time/unit processing time is added to the end of the line.

Figure 49: Real time unit production time line chart

Cell production rate
The cell production rate can visualized in plain texts, which indicates the current
production rate with numbers and its time stamp, a progress bar, which illustrates the
current cell production rate as a bar, and a column chart that shows the historical cell
production rate on an hourly basis (Figure 50). The historical cell production rate
column chart shows the cell production rate in the past 24 hours by default. However,
users can specify a time period by filling out the starting and ending time in the text
field.

Figure 50: Visualization for cell production rate

Results 69

4.1.2. Visualization of energy indicators

The Energy session is organized to demonstrate indicators of cell energy consumption
and unit energy consumption. In addition, power energy consumption (both historical
and run time) is also visualized in this session.

 Power consumption
The power consumption for cabinet, conveyor and robot is shown as a line chart (for
both historical data and run time data) in watt (W).

In the historical power consumption chart (Figure 51), the Robot, Conveyor and
Cabinet buttons enable users to inspect the power trend from the three components
separately while an ‘All’ button resets the chart to reveal all the three components. By
specifying a time period in the text fields, users can search for the power consumption
trend in the specified time period. A range filter below the line chart provides scaling
capability to the chart.

Figure 51: Historical power consumption line chart

With the runtime power consumption chart (Figure 52), users can inspect the power

consumption in real time.

Results 70

Figure 52: Runtime power consumption line chart

Cell energy consumption
The cell energy consumption of a single cell is visualized as a bar chart (Figure 53) with
each bar dedicating to the energy consumption of robot, cabinet and conveyor
respectively in watt hour (Wh).

Figure 53: Cell energy consumption bar chart

Energy consumption per product
The energy consumption per product line chart annotated with pallet ID illustrates the
energy consumption for the production line to produce one pallet. For example, pallet
number 20 is loaded with a piece of paper on cell 1 and enters the line. Then it is being

Results 71

operated on cell 2, 3 and 4. The line chart plots the total energy consumption of the
operations performed for the pallet on all these cells.

By default, a historical energy consumption per product line chart (Figure 54) plots
the values within half an hour since the user opens the chart. Users can choose a specific
pallet ID and specify a time period for inspection. The range filter below the line chart
provides scalability to the chart.

Figure 54: Historical energy consumption per product line chart

Another line chart (Figure 55) shows the energy consumption per product in real

time.

Figure 55: Real time energy consumption per product line chart

Results 72

4.1.3. Visualization of indicators in reliability

MTTR, MTTF and MTBF compose the reliability session. The three indicators of each
working cell are illustrated in the one column chart (Figure 56). The first column
displays MTTR, MTTF in the second and MTBF the last. The unit for all the indicators
is second. With the change of, for example, MTTR, the height of the corresponding
column increases or decreases.

Figure 56: Reliability column chart

4.1.4. Visualization of indicators in quality

The quality rate column chart (Figure 57) shows the percentage of products that pass the
quality inspection (blue columns) and that do not pass the quality inspection (red
columns) in four categories, the overall, which is the inspection result of the entire
product, the keyboard, the frame and the screen drawings. A product that meets the
keyboard and frame quality criteria, but does not meet the screen quality criteria
increases height of the blue columns in keyboard and frame and the red columns in
screen and overall, while decreases the height of the blue columns in screen and overall
and the red columns in keyboard and frame.

Figure 57: Quality rate column chart

Results 73

4.1.5. Visualization of indicators in overall

The Overall session is designed to demonstrate indicators including IPC-2541 states
overview, total energy consumption and the total products.

IPC-2541 states overview
The IPC-2541 states overview is rendered as a 3D pie chart (Figure 58) with each
portion of the pie representing the duration of a state (OFF, SETUP, READY-IDLE-
STARVED, READY-IDLE-BLOCKED, READY-PROCESSING-ACTIVE, READY-
PROCESSING-EXECUTING and DOWN) in percentage. As soon as one state
completes, the corresponding portion increases accordingly. The portion of DOWN
state is used to visualize the production shutdowns indicator.

Figure 58: IPC-2541 state pie chart

Total energy consumption
The total energy consumption indicator is illustrated with a bar chart (Figure 59). The
first bar represents the energy consumption from all robots. The total energy use by all
cabinets is represented with the middle bar, while the last bar indicates the total energy
consumption from all the conveyors. The unit for the energy values in this chart is watt
hour (Wh).

Results 74

Figure 59: Total energy consumption bar chart

Pallet production time
The pallet production time line chart shows how long a pallet flows on the production
line to complete its all production processes.

By default, the historical pallet production time line chart (Figure 60) illustrates the
production time of pallets that have been produced on the production line within 30
minutes since a user opens the chart. A drop down list is used to select a specific pallet
for inspection. Scalability is also provided with a range filter below the line chart and a
form defining a beginning time stamp and an ending time stamp.

Figure 60: Historical pallet production time line chart

Results 75

A real-time pallet production time line chart (Figure 61) shows the information in
real time.

Figure 61: Real time pallet production time line chart

Total products
A column chart (Figure 62) provides users with visualization of total products that have
been manufactured on each cell. A new product being produced on one cell increases
the height of the corresponding column in real time. The number of total products on
cell 1 reveals the number of products being produced by the production line.

Figure 62: Total products column chart

Results 76

4.2. Accessing the InfoStore

The web service exposing the data gathered from the factory automation test bed can be
found at http://esonia-controller.rd.tut.fi:8080/. The application name is FastoryService.
The servlet mapping for handling RESTful web service URL requests is
/endpoint/REST/*. Well formed data requests start with http://esonia-
controller.rd.tut.fi:8080/ FastoryService/endpoint/REST/. For implementation reasons,
Firefox and Google Chrome are preferred browsers at the moment for rendering the
XML responses.

4.2.1. The URLs supported by the InfoStore

Three types of requests are currently supported by the InfoStore (Table XII): request of
all data names within the database, request of data gathered in a certain time period
(longer time periods requested translate to slower response/ larger amount of response
data) and request of the last data which has the same name with the one declared in the
request URL, the database has stored. All the resources available in the InfoStore
including raw data and KPIs can be found in Appendix 6.

Table XII: RESTful web service access requests

 Request Example

Request of all

data names

http://esonia-

controller.rd.tut.fi:8080/FastoryS

ervice/endpoint/REST/data/ALL

Request of data

gathered in a

certain time

period

http://esonia-

controller.rd.tut.fi:8080/FastoryS

ervice/endpoint/REST/sdata/{na

me}/from/{timestamp}/to/{timest

amp}/

Request of all energy related data from cell 5 between 16:10:00 and

16:13:30 on March, 6th, 2012:

http://esonia-

controller.rd.tut.fi:8080/FastoryService/endpoint/REST/sdata/energyMe

ter5/from/2012-03-06 16:10:00/to/2012-03-06 16:13:30

Request of the

latest data

stored in the

database

http://esonia-

controller.rd.tut.fi:8080/FastoryS

ervice/endpoint/REST/last_data/

{names of data}/

Request of the latest energy data from cells 5 and 4:

http://esonia-

controller.rd.tut.fi:8080/FastoryService/endpoint/REST/last_data/’energ

yMeter5’,’energyMeter4’/

4.3. Defining new indicators

Except for the indicators described in section 3.4.5 and their EPL rules to retrieve them,
a user who is granted with an administrator account can create EPL rules to retrieve
indicators of interest. The values of these indicators are also accessible in the InfoStore.
This section provides a simple example on how users can create such EPL rules and
how the indicators can be accessed.

The Create and Delete buttons on the ‘CEP rule’ page are exposed to administrators.
By clicking on the Create button, a form (Figure 63) slides down on which a syntax-
correct EPL rule and its name can be edited. The name of a new rule should always be

Results 77

different from the existing ones. A duplicating name or an ELP rule with incorrect
syntax fails the form submission.

For example, a new EPL rule named ‘power_factor’ is defined to calculate the
power factor of all phases utilizing active power (AWATT, BWATT and CWATT) and
apparent power (AVA, BVA, CBA) provided by ‘EnergyMeter’ event. Submitting the
form registers the EPL rule in the Esper engine.

Figure 63: Defining an EPL rule

Afterwards, the ‘power_factor’ indicator is accessible in the InfoStore using the

URLs described in section 4.2.1. For example, using the URL: http://esonia-
controller.rd.tut.fi/FastoryService/endpoint/REST/last_data/’power_factor’, the most
recent ‘power_factor’ indicator is accessed in XML format (Figure 64).

Figure 64: Accessing the most recent power factor

 78

5. CONCLUSIONS

This chapter presents a discussion of results of previous chapters. The implemented KPI
InfoStore is compared with previous works. Then there is a discussion on the future
development of the application.

5.1. Conclusions on results

This section draws a conclusion on what have been conducted for the KPI InfoStore,
what tools or techniques are used for implementation. Then it compares the InfoStore
with other KPI frameworks.

5.1.1. Overall

To design and implement the KPI InfoStore for the test bed, the following objectives
have been accomplished by using the KPI design model and a variety of web
application and web service frameworks and technologies.

A set of KPIs has been designed to monitor the critical performance of the test bed
using the 8-step iterative model developed in [2]. During the design and implementation
phase, not all the steps are used. The author only designed the production goals,
identified the potential indicators, selected indicators for the test bed and implemented
these indicators. To select KPIs for the test bed, the author adopts the five principal
KPIs defined in [2], the sustainable indicators in [4] and reliability according to [58].

Spring Web Services is used to enable machine-to-machine communication. With
the framework, the author implemented a SOAP web service to capture events from the
test bed.

Esper engine is used for complex event processing. A set of EPL rules is designed to
aggregate and correlate current and historical events for runtime calculation of KPIs.
Administrators can also define EPL rules of interests.

The KPI InfoStore is further developed as a web application with MVC design
pattern. Spring MVC is used as the overall framework of the web application. Hibernate
is utilized as the persistence API for ORM and CRUD operations against MySQL
database. The values of KPIs are rendered as charts with the assistance of HTML, JSP,
jQeury and Google chart tools.

Lastly, in order for other applications to access the KPIs and raw data, they are
published in a RESTful web service using Spring MVC.

Conclusions 79

5.1.2. Comparison with previous work

As is reviewed in Section 2.1, several researches have already been done for the
development of production KPIs. This section compares this work with them.

Previous works usually focus on the methodologies and frameworks of KPI
development for production processes. [2] focuses on the methodologies on what kind
of indicators should be monitored for production processes, while [4] focuses on the
sustainable indicators. The KPIs designed in these researches are not implemented in
applications. Although in [1], the KPIs are monitored in real time and used in a
feedback control system, it is merely a simulation rather than a real case. [15] designed
a set of KPIs for the notebook manufacturing, but the KPIs are not monitored in real
time. The energy aspect is not considered in [15] as well.

In this thesis work, methodologies and frameworks for KPI development in
manufacturing systems such as the 8-step iterative model and the five principle KPIs
developed in [2] and sustainable indicators in [4] are adopted for the design of KPIs for
the test bed. The KPI InfoStore is developed into a web application. The advantage is
that users can visualize the KPI graphics on web anywhere on condition that a computer
is available and connected to internet. The application utilizes modern technologies to
enable runtime calculation and monitoring of KPIs so that users can monitor the current
states of the test bed. The adding of new KPIs is flexible because instead of receiving
KPIs directly from low level devices, the mechanism of KPI acquisition in this work is
that raw data are received from devices and the data aggregation and correlation
processes are conducted in the application (higher level) using CEP techniques.
Therefore, when new KPIs need to be gathered, the user only needs to design new EPL
rules. Furthermore, the acquired data are published in a RESTful web service so that
other applications can access the data by providing URL requests. The responses
containing the data are in XML format.

The drawback of this application is that users need to possess the knowledge of
designing EPL rules to manage the KPIs. Besides, when a new web service is
introduced in the test bed, the program also needs updates.

5.2. Further work

The thesis work attempts to design and implement a KPI InfoStore for real-time KPI
monitoring. The design and implementation of the KPI management system for the test
bed follows the first several steps in the 8-step iterative model. The other steps of the
model need to be followed. First, a target can be set for every indicator for continuous
improvement of the performance. Once the target is achieved, new target can be set. In
addition, there should be an alarm mechanism designed so that when the value of an
indicator is lower than the tolerable low boundary, the system alarms and alters the
colour of the indicator from, for example, green to red. In this way, the managers are
released from monitoring the values for long time. Secondly, the KPI management

Conclusions 80

system needs to be tested for a longer period. Next, in order to improve the performance
of the production processes and act on the alarms, action-to-indicator mappings need to
be established. For instance, the operations that should be performed when a low value
of an indicator is received can be integrated into the InfoStore. Lastly, industrial
management experts can review the current indicators and goals of the production line.
If it is necessary to set new goals and objectives for the production line, new indicators
should be designed by following the 8-step iterative model from the beginning.

The KPIs including Efficiency and Quality originates from the five principle KPIs
for production processes. Production plan tracking is not monitored in the system, since
the lack of an order entry system in the production line. When an order entry system is
established, the production plan tracking should be monitored because it is considered a
critical aspect for production processes. Better production plan tracking results improve
the level of customer satisfaction. The indicators for production plan tracking can be,
for example, the percent of production orders finished late and the percent of production
orders finished ahead.

In the aspect of sustainability, this work only monitors the energy relevant indicators
for single robot cell and the entire manufacturing system. Besides energy use, other
aspects such as material use, waste generated and green house gas generated also have a
significant impact on sustainable production. Therefore, future work should also
concentrate on the analysis of material use, waste and green house gas generation in the
test bed, the design and implementation of measurement systems and the design of
indicators for these aspects.

 81

REFERENCES
[1] V. Jovan and S Zorzut, "Use of Key Performance Indicators in Production

Management," Cybernetics and Intelligent Systems, IEEE Conference, pp. 1-6,
2006.

[2] A. Rakar, S. Zorzut, and V. Jovan, "Assesment of Production Performance by
Means of KPI," Control 2004, pp. 6-9, 2004.

[3] V Veleva, B Hart, T Greiner, and C Crumbley, "Indicators of sustainable
production," Journal of Cleaner Production, pp. 447-452, 2001.

[4] V Veleva and M Ellenbecker, "Indicators of Sustainable Production: Framework
and Methodology," Journal of Cleaner Production, pp. 519-549, 2001.

[5] J Low, "Disclosure and Clobal Capital Markets, Plenary presentation," 2nd
International Symposium of the Global Reporting Initiative, November 2000.

[6] (2012, November) European Commission. [Online].
http://ec.europa.eu/energy/publications/doc/2011_energy2020_en.pdf

[7] (2009, February) European Commission. [Online].
http://ec.europa.eu/information_society/events/ict4ee/2009/docs/files/ec/ec/infso
/g2/SmartManufacturing.pdf

[8] G., Kemp, B., Penzel, T., Schlög, A., Rappelsberger, P., Trenker, E., Gruber, G.,
Zeithofer, J., Saletu, B., Herrmann, W. M., Himanen, S. L., Kunz, D., Barbanoj,
M. J., Röschke, J. Värri, A. & Dorffner, G [2] Klösch, "The SIESTA Project
Polygraphic and Clinical Database," IEEE Engineering in Medicine and
Biology, vol. 203, pp. 51-57, 2001.

[9] Richy Smith and R Keith Mobley, "Rules of Thumb for Maintenance and
Reliability Engineers," Chapter 6: Key Performance Indicators, pp. 89-106,
2008.

[10] Clemens Lohman, Leonard Fortuin, and Marc Wouters, "Designing a
Performance Measurement System: A Case Study," European Journal of
Operational Research, pp. 267-286, 2004.

[11] Jan Smith, Planning and monitoring your program: first steps in program
evaluation. Sydney: Office of Publish Management, 1992.

[12] David Parmenter, Key Performance Indicators (KPI): Developing,
Implementing, and Using Wining KPIs, 2nd ed.: John Wiley & Sons, Inc, 2010.

[13] M Munir Ahmad and Nasreddin Dhafr, "Establishing and improving

References 82

manufacturing performance measures," Robotics and Computer Integrated
Manufacturing 18, pp. 171-176, 2002.

[14] L Sivill and P Ahtila, "Paper Machine Production Efficiency as a Key
Performance Indicator of Energy Efficiency," Chemical Engineering
Transactions, pp. 905-905, 2009.

[15] D Daniel Sheu and Shiao-Lan Peng, "Assessing manufacturing management
performance for notebook computer plants in Taiwan," Int. J. Production
Economics 84, pp. 215-228, 2003.

[16] Vesela Veleva, Jack Bailey, and Nicole Jurczyk, "Using Sustainable Production
Indicators to Measure Progress in ISO14001, EHS System and EPA
Achievement Track," Corporate Environmental Strategy, pp. 326-338,
December 2001.

[17] Katharina Bunsea, Matthias Vodickaa, Paul Schönslebena, Marc Brülhartb, and
Frank O. Ernstb, "Integrating energy efficiency performance in production
management- gap analysis between industrial needs and scientific literature,"
Journal of Cleaner Production, pp. 667-679, 2011.

[18] Marcos Palacios, José García-Fanjul, and Javier Tuya, "Testing in Service
Oriented Architectures with dynamic binding: A mapping study," Information
and Software Technology, pp. 171-189, 2011.

[19] E Zeeb, A Bobek, H Bohn, and F Golatowski, "Service-Oriented Architectures
for Embedded Systems Using Devices Profile for Web Services," AINA
Workshops(1), pp. 956-963, 2007.

[20] Elmar Zeeb, Guido Moritz, Dirk Timmermann, and Frank Golatowski, "WS4D:
Toolkits for networked embedded systems based on the Devices Profile for Web
Serivces," 39th International Conference on Parallel Processing Workshops,
pp. 1-8, 2010.

[21] (2011, May) JMEDS Framework Overview. [Online]. http://ws4d.e-technik.uni-
rostock.de/wp-content/uploads/2011/05/StackOverview.pdf

[22] (2012, May) Spring Web Services. [Online].
http://static.springsource.org/spring-ws/sites/2.0/

[23] R.T. Fielding, "Architectural styles and the design of networkbased software
architectures," Doctoral Dissertation, University of California, Irvine, CA, p.
Chapter 5, 2000.

[24] Jeffrey V. Nickerson, Keith D. Swenson Michael zur Muehlen, "Developing

References 83

web services choreography standards- the case of REST vs. SOAP," Decision
Support Systems, vol. 40, no. 1, pp. 9-29, 2005.

[25] Cesare Pautasso, "RESTful web service composition with BPEL for REST,"
Data & Knowledge Engineering, vol. 68, no. 9, pp. 851-866, September 2009.

[26] et al Rod Johnson. (2011) Spring Framework Reference document. [Online].
http://static.springsource.org/spring/docs/ 3.1.x/spring-framework-
reference/html/

[27] Josh Long and Daniel Rubio Gary Mak, Spring Recipes: A problem-solution
approach, 2nd ed.: Apress, 2010.

[28] M. Jorge A. Garcia Izaguirre, Andrei Lobov, and Jose L. Martinez Lastra,
"OPC-UA and DPWS interoperability for factory floor monitoring using
complex event processing," Industrial Informatics (INDIN), 9th IEEE
International Conference, pp. 205-211, 2011.

[29] Y. Gu, G. Yu, and C. Li, "Deadline-aware complex event processing models
over distributed monitoring streams," Mathematical and Computer Modelling,
2011.

[30] R. Bhargavi, V. Vaidehi, P.T.V. Bhuvaneswari, P. Balamurali, and G. Chandra,
"Complex Event Processing for Object Track in Wireless Sensor Networks,"
Web Intelligence and Intelligent Agent Technology (WI-IAT), 2010
IEEE/WIC/ACM International Conference, pp. 211-214, 2010.

[31] (2007) EsperTech. [Online]. http://esper.codehaus.org/

[32] Don Brown, Chad Michael Davis, and Scott Stanlick, Struts 2 in Action.
Greenwich, CT: MANNING Publications Co., 2008.

[33] F Buschmann, R Meunier, H Rohnert, P Sommerlad, and M Stal, Pattern-
Oriented Software Architecture: A System of Patterns. Chichester: John Wiley
& Sons Ltd., 1996.

[34] Lihua Xu, Hadar Ziv, Thomas A. Alspaugh, and Debra J. Richardson, "An
architectural pattern for non-functional dependability requirements," The
Journal of Systems and Software 79, pp. 1370-1378, 2006.

[35] Paris Avgeriou and Uwe Zdun, "Architectural Patterns Revisited - A Pattern
Language," 10th European Conference on Pattern Languages of Programs, pp.
1-39, 2005.

[36] Hongbo Lan, Yucheng Ding, Jun Hong, Hailiang Huang, and Bingheng Lu, "A
web-based manufacturing service system for rapid product development,"

References 84

Computers in Industry 54, pp. 51-67, 2004.

[37] Chulho Chung and Qingjin Peng, "Enabled dynamic tasks planning in Web-
based virtual manufacturing environments," Computers in Industry 59, pp. 82-
95, 2008.

[38] F.A Masound and D.H Halabi, "ASP.NET and JSP Frameworks in Model View
Controller Implementation," Information and Communication Technologies,
ICTTA'06, pp. 3593-3598, 2006.

[39] Jie He and Xianhong Xu, "Design of a management information system for
Shielding Experimental Reactor ageing management," Nuclear Engineering and
Design, pp. 103-111, 2010.

[40] László Szirmay-Kalos, Gábor Márton, Tibor Fóris, and Tamás Horváth,
"Development of process visualization system: An object-oriented approach,"
Journal of Systems Architecture, pp. 275-296, 2000.

[41] José-Luis Sierra, Baltasar Fernández-Manjón, and Alfredo Fernández-
Valmayor, "A language-driven approach for design of interactive applications,"
Interacting with Computers, pp. 112-127, 2008.

[42] Baoli Dong, Guoning Qi, Xinjian Gu, and Xiuting Wei, "Web service-oriented
manufacturing resource applications for networked product development,"
Advanced Engineering Informatics 22, pp. 282-295, 2008.

[43] K.-D. Bouzakis, D. Andreadis, A. Vakali, and M.Sarigiannidou, "Automating
the manufacturing process under a web based framework," Advances in
Engineering Software 40, pp. 956-964, 2009.

[44] Wei-Fu Chang, Yu-Chi Wu, and Chui-Wen Chiu, "Development of a web-based
remote load supervision and control system," Electrical Power and Energy
Systems 28, pp. 401-407, 2006.

[45] (2009) VaanNila. [Online]. http://www.vaannila.com/struts-2/struts-2-
tutorial/struts-2-framework-tutorial-1.html

[46] (2011) Spring Java Application Framework. [Online].
http://static.springsource.org/spring/docs/3.1.x/spring-framework-
reference/html/

[47] (2009) VaanNila. [Online]. http://www.vaannila.com/spring/spring-ioc-1.html

[48] Marco Crasso, Cristian Mateos, Alejandro Zunino, and Marcelo Campo,
"EasySOC: Making web service outsourcing easier," Information Sciences, p. In

References 85

Press, 2010.

[49] Martijn Dashorst and Eelco Hillenius, WICKET in Action. Greenwich, CT:
Manning Publications Co., 2009.

[50] Robert J. Brunner, JSP- Practical Guide for Java Programmers.: Elsevier Inc,
2003.

[51] (2011) The JavaEE 6 Tutorial. [Online].
http://docs.oracle.com/javaee/6/tutorial/doc/gijtu.html

[52] (2007, March) The Apache Velocity Project. [Online].
http://velocity.apache.org/engine/releases/velocity-1.5/user-guide.html

[53] Yakov Fain, Java Programming 24-Hour Trainer. Indianapolis, Indiana: Wiley
Publishing, Inc., 2011.

[54] Mike Keith and Merrick Schincariol, Pro JPA2 Mastering the Java Persistence
API.: Apress, 2009.

[55] (2004) HIBERNATE Community Documentation. [Online].
http://docs.jboss.org/hibernate/core/3.6/quickstart/en-US/html/hibernate-gsg-
preface.html#d0e94

[56] S1000 User Manual. [Online].
http://www.inicotech.com/doc/S1000%20User%20Manual.pdf

[57] E10 Energy Analyzer. [Online].
http://www.inicotech.com/doc/e10%20brochure.pdf

[58] Peter Muchiri, Liliane Pintelon, Ludo Gelders, and Harry Martin, "Development
fo maintenance function performance measurement framework and indicators,"
Int. J. Production Economics, pp. 295-302, 2011.

[59] K. Tanaka, "Assessment of energy efficiency performance measures in industry
and their application for policy," Energy Policy 36, pp. 2887-2902, 2008.

[60] M.C. Eti, S.O.T. Ogajji, and S.D. Probert, "Implementing total productive
maintenance in Nigerian manufacturing industries," Applied Energy, pp. 385-
401, 2004.

[61] Lirong Cui and Haijun Li, "Analytical method for reliability and MTTF
assessment of coherent systems with dependent components," Reliability
Engineering & System Safety, pp. 300-307, 2007.

 86

APPENDIX 1: FOLDER STRUCTURE

 87

 88

APPENDIX 2: SCHEMA FOR EQUIPMENTCHANGESTATE
MESSAGE

<?xml version="1.0" encoding="UTF-8"?>
 <xs:schema targetNamespace="http://www.tut.fi/fast/robot"
 xmlns:tns="http://www.tut.fi/fast/robot"
 elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" >
 <xs:element name = "EquipmentChangeState">
 <xs:complexType>
 <xs:attribute name = "dateTime" use = "required" type = "xs:dateTime"/>
 <xs:attribute name = "currentState" use = "required">
 <xs:simpleType>
 <xs:restriction base = "xs:string">
 <xs:enumeration value = "OFF"/>
 <xs:enumeration value = "SETUP"/>
 <xs:enumeration value = "READY-IDLE-STARVED"/>
 <xs:enumeration value = "READY-IDLE-BLOCKED"/>
 <xs:enumeration value = "READY-PROCESSING-ACTIVE"/>
 <xs:enumeration value = "READY-PROCESSING-EXECUTING"/>
 <xs:enumeration value = "DOWN"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name = "previousState" use = "required">
 <xs:simpleType>
 <xs:restriction base = "xs:string">
 <xs:enumeration value = "OFF"/>
 <xs:enumeration value = "SETUP"/>
 <xs:enumeration value = "READY-IDLE-STARVED"/>
 <xs:enumeration value = "READY-IDLE-BLOCKED"/>
 <xs:enumeration value = "READY-PROCESSING-ACTIVE"/>
 <xs:enumeration value = "READY-PROCESSING-EXECUTING"/>
 <xs:enumeration value = "DOWN"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name = "eventId" use = "required" type = "xs:string"/>
 <xs:attribute name = "palletId" use = "required" type = "xs:string"/>
 <xs:attribute name = "recipeNum" use = "required" type = "xs:string"/>
 <xs:attribute name = "toolId" use = "required" type = "xs:string"/>
 <xs:attribute name = "cellId" use = "required" type = "xs:string"/>
 <xs:attribute name = "devType" use = "required" type = "xs:string"/>
 <xs:attribute name = "prodId" use = "required" type = "xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>

 89

APPENDIX 3: WSDL FOR EQUIPMENTCHANGESTATE
MESSAGE

<wsdl:definitions targetNamespace="http://www.tut.fi/fast/robot"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:sch="http://www.tut.fi/fast/robot"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:tns="http://www.tut.fi/fast/robot">
 <wsdl:types>
 <xs:schema attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="http://www.tut.fi/fast/robot"
 xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="String" type="xs:string" />
 <xs:element name="calibrateRobot" type="xs:string"/>
 <xs:element name = "EquipmentChangeState">
 <xs:complexType>
 <xs:attribute name = "dateTime" use = "required" type = "xs:dateTime"/>
 <xs:attribute name = "currentState" use = "required">
 <xs:simpleType>
 <xs:restriction base = "xs:string">
 <xs:enumeration value = "OFF"/>
 <xs:enumeration value = "SETUP"/>
 <xs:enumeration value = "READY-IDLE-STARVED"/>
 <xs:enumeration value = "READY-IDLE-BLOCKED"/>
 <xs:enumeration value = "READY-PROCESSING-ACTIVE"/>
 <xs:enumeration value = "READY-PROCESSING-EXECUTING"/>
 <xs:enumeration value = "DOWN"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name = "previousState" use = "required">
 <xs:simpleType>
 <xs:restriction base = "xs:string">
 <xs:enumeration value = "OFF"/>
 <xs:enumeration value = "SETUP"/>
 <xs:enumeration value = "READY-IDLE-STARVED"/>
 <xs:enumeration value = "READY-IDLE-BLOCKED"/>
 <xs:enumeration value = "READY-PROCESSING-ACTIVE"/>
 <xs:enumeration value = "READY-PROCESSING-EXECUTING"/>
 <xs:enumeration value = "DOWN"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name = "eventId" use = "required" type = "xs:string"/>
 <xs:attribute name = "palletId" use = "required" type = "xs:string"/>
 <xs:attribute name = "recipeNum" use = "required" type = "xs:string"/>
 <xs:attribute name = "toolId" use = "required" type = "xs:string"/>
 <xs:attribute name = "cellId" use = "required" type = "xs:string"/>
 <xs:attribute name = "devType" use = "required" type = "xs:string"/>
 <xs:attribute name = "prodId" use = "required" type = "xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>
 </wsdl:types>

 <wsdl:message name="EquipmentChangeState">
 <wsdl:part element="tns:EquipmentChangeState" name="EquipmentChangeState"/>

 90

 </wsdl:message>

 <wsdl:portType name="Robot">
 <wsdl:operation name="EquipmentChangeStateOperation">
 <wsdl:input message="tns:EquipmentChangeState" name="EquipmentChangeState"/>
 </wsdl:operation>
 </wsdl:portType>

 <wsdl:binding name="RobotSoap12" type="tns:Robot">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="EquipmentChangeStateOperation">
 <soap:operation
soapAction="http://www.tut.fi/fast/FastoryService/EquipmentChangeStateOperation"/>
 <wsdl:input name="EquipmentChangeState">
 <soap:body use="literal"/>
 </wsdl:input>
 </wsdl:operation>
 </wsdl:binding>

 <wsdl:service name="RobotService">
 <wsdl:port binding="tns:RobotSoap12" name="RobotSoap12">
 <soap:address location="http://localhost:8080/FastoryService/endpoint/SOAP"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

 91

APPENDIX 4: EQUIPMENTCHANGESTATE CLASS

//
// This file was generated by the JavaTM Architecture for XML Binding(JAXB) Reference
Implementation, vJAXB 2.1.10 in JDK 6
// See http://java.sun.com/xml/jaxb
// Any modifications to this file will be lost upon recompilation of the source schema.
// Generated on: 2012.06.11 at 12:23:22 PM EEST
//
package fi.tut.kpimeter.spring.ws.schema.robot;

import javax.xml.bind.annotation.XmlAccessType;
import javax.xml.bind.annotation.XmlAccessorType;
import javax.xml.bind.annotation.XmlAttribute;
import javax.xml.bind.annotation.XmlRootElement;
import javax.xml.bind.annotation.XmlSchemaType;
import javax.xml.bind.annotation.XmlType;
import javax.xml.datatype.XMLGregorianCalendar;

@XmlAccessorType(XmlAccessType.FIELD)
@XmlType(name = "")
@XmlRootElement(name = "EquipmentChangeState")
public class EquipmentChangeState {

 @XmlAttribute(required = true)
 @XmlSchemaType(name = "dateTime")
 protected XMLGregorianCalendar dateTime;
 @XmlAttribute(required = true)
 protected String currentState;
 @XmlAttribute(required = true)
 protected String previousState;
 @XmlAttribute(required = true)
 protected String eventId;
 @XmlAttribute(required = true)
 protected String palletId;
 @XmlAttribute(required = true)
 protected String recipeNum;
 @XmlAttribute(required = true)
 protected String toolId;
 @XmlAttribute(required = true)
 protected String cellId;
 @XmlAttribute(required = true)
 protected String devType;
 @XmlAttribute(required = true)
 protected String prodId;

 public XMLGregorianCalendar getDateTime() {
 return dateTime;
 }

 public void setDateTime(XMLGregorianCalendar value) {
 this.dateTime = value;
 }

 public String getCurrentState() {
 return currentState;
 }

 92

 public void setCurrentState(String value) {
 this.currentState = value;
 }

 public String getPreviousState() {
 return previousState;
 }

 public void setPreviousState(String value) {
 this.previousState = value;
 }

 public String getEventId() {
 return eventId;
 }

 public void setEventId(String value) {
 this.eventId = value;
 }

 public String getPalletId() {
 return palletId;
 }

 public void setPalletId(String value) {
 this.palletId = value;
 }

 public String getRecipeNum() {
 return recipeNum;
 }

 public void setRecipeNum(String value) {
 this.recipeNum = value;
 }

 public String getToolId() {
 return toolId;
 }

 public void setToolId(String value) {
 this.toolId = value;
 }

 public String getCellId() {
 return cellId;
 }

 public void setCellId(String value) {
 this.cellId = value;
 }

 public String getDevType() {
 return devType;
 }

 public void setDevType(String value) {
 this.devType = value;
 }

 93

 public String getProdId() {
 return prodId;
 }

 public void setProdId(String value) {
 this.prodId = value;
 }

}

 94

APPENDIX 5: CONFIGURATION PARAMETERS FOR ESPER
ENGINE

<?xml version="1.0" encoding="UTF-8"?>
 <esper-configuration xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.espertech.com/schema/esper"
 xsi:schemaLocation="http://www.espertech.com/schema/esper
 http://www.espertech.com/schema/esper/esper-configuration-2.0.xsd">
 <event-type name="QualityInspectionShort"
 class="fi.tut.kpimeter.spring.ws.schema.inspect.QualityInspectionShort"/>
 <event-type name="EnergyMeter"
 class="fi.tut.kpimeter.spring.ws.schema.energyMeter.EnergyMeter"/>
 <event-type name="EquipmentChangeState"
 class="fi.tut.kpimeter.spring.ws.schema.robot.EquipmentChangeState"/>
 <event-type name="ConveyorNotification"
 class="fi.tut.kpimeter.spring.ws.schema.conveyor.NotificationMessage"/>
 <event-type name="THLValue" class="fi.tut.kpimeter.model.THLValue"/>
 <event-type name="FlowMsg" class="fi.tut.kpimeter.spring.ws.schema.flow.FlowMsg"/>
 <event-type name="DiffPressureMsg"
 class="fi.tut.kpimeter.spring.ws.schema.spusensors.DiffPressureMsg"/>
 <event-type name="LevelMsg" class="fi.tut.kpimeter.spring.ws.schema.spusensors.LevelMsg"/>
 <event-type name="MoistTempMsg"
 class="fi.tut.kpimeter.spring.ws.schema.spusensors.MoistTempMsg"/>
 <event-type name="QualityMsg"
 class="fi.tut.kpimeter.spring.ws.schema.spusensors.QualityMsg"/>
 <plugin-singlerow-function name="energyInstance"
 function-class="fi.tut.kpimeter.esper.listener.TimeParser"
 function- method="calcEnergyInstance" />
 <plugin-singlerow-function name="powerFactor"
 function-class="fi.tut.kpimeter.esper.listener.TimeParser"
 function-method="calcPowerFactor" />
 <plugin-singlerow-function name="timeDifference"
 function-class="fi.tut.kpimeter.esper.listener.TimeParser"
 function-method="timeDifference" />
 </esper-configuration>

 95

APPENDIX 6: AVAILABLE RESOURCES IN THE INFOSTORE AS
OF MAY 5TH, 2012

 Source event Name Description

Raw data

ConveyorNotification

Conveyor_2

Raw data from the ConveyorNotification event

indicating the pallet transfer status on conveyors

including cell ID, ‘fromZoneId’, ‘toZoneId’,

pallet ID, event ID and time stamp from cells 2,

3, 4, 5, 6, 8, 9 ,10, 11 and 12.

Conveyor_3

Conveyor_4

Conveyor_5

Conveyor_6

Conveyor_8

Conveyor_9

Conveyor_10

Conveyor_11

Conveyor_12

EnergyMeter

energyMeter2

Raw data from the EnergyMeter event indicating

the 3-phase active energy, active power, reactive

energy, reactive power, apparent energy,

apparent power, RMS current, RMS voltage as

well as line frequency, cell ID and time stamp

from cells 2, 3, 4, 5, 6, 8, 9 ,10, 11 and 12.

energyMeter3

energyMeter4

energyMeter5

energyMeter6

energyMeter8

energyMeter9

energyMeter10

energyMeter11

energyMeter12

EquipmentChange

State

EquipmentAlarm_2

Raw data from the EquipmentChangeSatate

event indicating cell ID, tool ID, recipe number,

device type, pallet ID, the current state, the

previous state of the robot when the current state

is DOWN from cells 2, 3, 4, 5, 6, 8, 9 ,10, 11

and 12.

EquipmentAlarm_3

EquipmentAlarm_4

EquipmentAlarm_5

EquipmentAlarm_6

EquipmentAlarm_8

EquipmentAlarm_9

EquipmentAlarm_10

EquipmentAlarm_11

EquipmentAlarm_12

EquipmentChange

State

EquipmentInitializationComplete_2

Raw data from the EquipmentChangeSatate

event indicating cell ID, tool ID, recipe number,

device type, pallet ID, the current state, the

previous state of the robot when the current state

is SETUP from cells 2, 3, 4, 5, 6, 8, 9 ,10, 11

and 12.

EquipmentInitializationComplete_3

EquipmentInitializationComplete_4

EquipmentInitializationComplete_5

EquipmentInitializationComplete_6

EquipmentInitializationComplete_8

EquipmentInitializationComplete_9

EquipmentInitializationComplete_10

EquipmentInitializationComplete_11

EquipmentInitializationComplete_12

EquipmentChange

State

EquipmentPowerOff_2

Raw data from the EquipmentChangeSatate

event indicating cell ID, tool ID, recipe number,

device type, pallet ID, the current state, the

previous state of the robot when the current state

is OFF from cells 2, 3, 4, 5, 6, 8, 9 ,10, 11 and

12.

EquipmentPowerOff_3

EquipmentPowerOff_4

EquipmentPowerOff_5

EquipmentPowerOff_6

EquipmentPowerOff_8

EquipmentPowerOff_9

EquipmentPowerOff_10

EquipmentPowerOff_11

EquipmentPowerOff_12

EquipmentChange EquipmentSetupComplete_2 Raw data from the EquipmentChangeSatate

 96

 Source event Name Description

State EquipmentSetupComplete_3 event indicating cell ID, tool ID, recipe number,

device type, pallet ID, the current state, the

previous state of the robot when the previous

state is SETUP from cells 2, 3, 4, 5, 6, 8, 9 ,10,

11 and 12.

EquipmentSetupComplete_4

EquipmentSetupComplete_5

EquipmentSetupComplete_6

EquipmentSetupComplete_8

EquipmentSetupComplete_9

EquipmentSetupComplete_10

EquipmentSetupComplete_11

EquipmentSetupComplete_12

EquipmentChange

State

ItemWorkComplete_2

Raw data from the EquipmentChangeSatate

event indicating cell ID, tool ID, recipe number,

device type, pallet ID, the current state, the

previous state of the robot when the previous

state is READY-PROCESSING-EXECUTING

from cells 2, 3, 4, 5, 6, 8, 9 ,10, 11 and 12.

ItemWorkComplete_3

ItemWorkComplete_4

ItemWorkComplete_5

ItemWorkComplete_6

ItemWorkComplete_8

ItemWorkComplete_9

ItemWorkComplete_10

ItemWorkComplete_11

ItemWorkComplete_12

EquipmentChange

State

ItemWorkStart_2

Raw data from the EquipmentChangeSatate

event indicating cell ID, tool ID, recipe number,

device type, pallet ID, the current state, the

previous state of the robot when the current state

is READY-PROCESSING-EXECUTING from

cells 2, 3, 4, 5, 6, 8, 9 ,10, 11 and 12.

ItemWorkStart_3

ItemWorkStart_4

ItemWorkStart_5

ItemWorkStart_6

ItemWorkStart_8

ItemWorkStart_9

ItemWorkStart_10

ItemWorkStart_11

ItemWorkStart_12

EquipmentChange

State

MaterialHandlingWorkComplete_2 Raw data from the EquipmentChangeSatate

event indicating cell ID, tool ID, recipe number,

device type, pallet ID, the current state, the

previous state of the robot when the previous

state is READY-PROCESSING-ACTIVE from

cells 2, 9 ,10, 11 and 12.

MaterialHandlingWorkComplete_9

MaterialHandlingWorkComplete_10

MaterialHandlingWorkComplete_11

MaterialHandlingWorkComplete_12

EquipmentChange

State

MaterialHandlingWorkStart_2 Raw data from the EquipmentChangeSatate

event indicating cell ID, tool ID, recipe number,

device type, pallet ID, the current state, the

previous state of the robot when the current state

is READY-PROCESSING-ACTIVE from cells

2, 9 ,10, 11 and 12.

MaterialHandlingWorkStart_9

MaterialHandlingWorkStart_10

MaterialHandlingWorkStart_11

MaterialHandlingWorkStart_12

FlowMsg
panel_flow Indicates the flow rates and timestamp from a

flow meter.

QualityMsg
spu_contamination Indicates the quality of the oil and timestamp

from the silent power unit.

MoistTempMsg
spu_moist_temp Indicates the moisture and temperature of the oil

and timestamp from the silent power unit.

DiffPressureMsg
spu_diffPressure Indicates the pressure difference of the oil in bar

and timestamp from the silent power unit.

LevelMsg
spu_level Indicates the level of the oil in percentage and

timestamp from the silent power unit.

THLValue

THL-1-31 Raw message indicating values of temperature

(in degree Celsius), relative humidity (in

percentage) and ambient light (in lux) from THL

sensors number 31, 35 and 38.

THL-1-35

THL-1-38

 97

 Source event Name Description

KPI

THLValue

avg_day_hum Indicates the average day humidity and sensor

ID.

avg_day_temp Indicates the average day temperature and sensor

ID.

avg_room_temp Indicates the average temperature of all sensors.

max_ill_lvl Indicates the maximum illumination level.

max_temp Indicates the maximum temperature.

min_ill_lvl Indicates the minimum illumination level.

min_temp Indicates the minimum temperature.

EquipmentChange

State

camx_state_time_2

Indicate the duration, cell ID, device type,

starting and ending timestamp of an IPC-2541

state from cells 2, 3, 4, 5, 6, 8, 9, 10, 11 and 12.

camx_state_time_3

camx_state_time_4

camx_state_time_5

camx_state_time_6

camx_state_time_8

camx_state_time_9

camx_state_time_10

camx_state_time_11

camx_state_time_12

EquipmentChange

State

cell production rate batch_2

Indicate the production rate of cells 2, 3, 4, 5, 6,

8, 9, 10, 11 and 12, cell ID and timestamp on an

hourly basis.

cell production rate batch_3

cell production rate batch_4

cell production rate batch_5

cell production rate batch_6

cell production rate batch_8

cell production rate batch_9

cell production rate batch_10

cell production rate batch_11

cell production rate batch_12

EnergyMeter

cell_energy_consumption_2

Indicate the energy consumption from the robot,

the cabinet and the conveyor, cell ID and

timestamp on cells 2, 3, 4, 5, 6, 8, 9, 10, 11 and

12.

cell_energy_consumption_3

cell_energy_consumption_4

cell_energy_consumption_5

cell_energy_consumption_6

cell_energy_consumption_8

cell_energy_consumption_9

cell_energy_consumption_10

cell_energy_consumption_11

cell_energy_consumption_12

EnergyMeter

cell_power_consumption_2

Indicate the power consumption from the robot,

the cabinet and the conveyor, cell ID and

timestamp on cells 2, 3, 4, 5, 6, 8, 9, 10, 11 and

12.

cell_ power_consumption_3

cell_ power_consumption_4

cell_ power_consumption_5

cell_ power_consumption_6

cell_ power_consumption_8

cell_ power_consumption_9

cell_ power_consumption_10

cell_ power_consumption_11

cell_ power_consumption_12

EnergyMeter

energy_efficiency_variables_2

Besides the raw data in EnergyMeter event, the

variables also include 3-phase power factor.

energy_efficiency_variables_3

energy_efficiency_variables_4

energy_efficiency_variables_5

energy_efficiency_variables_6

energy_efficiency_variables_8

 98

 Source event Name Description

energy_efficiency_variables_9

energy_efficiency_variables_10

energy_efficiency_variables_11

energy_efficiency_variables_12

EquipmentChange

State

EnergyMeter

unit_energy_consumption_2

Indicates the energy consumption for processing

one product in Wh, cell ID, pallet ID, start and

ending time and timestamp from cells 2, 3, 4, 5,

6, 8, 9, 10, 11, 12.

unit_energy_consumption_3

unit_energy_consumption_4

unit_energy_consumption_5

unit_energy_consumption_6

unit_energy_consumption_8

unit_energy_consumption_9

unit_energy_consumption_10

unit_energy_consumption_11

unit_energy_consumption_12

