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In this study we have applied exome sequencing of the X-chromosome in order 

to identify a mutation in a Finnish family with X–Linked Intellectual Disability 

(XLID). We identified a novel mutation in the Cullin 4B gene (CUL4B) that has 

previously shown to cause Cabezas syndrome. The mutation was identified us-

ing Agilent array that covers 93% of the coding region of chromosome X. The 

mutation is located in exon 20 resulting in premature stop codon in exon 21 

where aspartic acid is changed to a premature stop codon D806X. Here we 

present a detailed clinical phenotype of the three affected brothers.  CUL4B is a 

ubiquitin E3 ligase subunit implicated in the regulation of several biological 

processes, and CUL4B is the first XLID gene that encodes an E3 ubiquitin li-

gase. Our findings elucidate the functional significance of CUL4B in human 

cognition and in other aspects of human development. 
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1. INTRODUCTION 
 

Intellectual disability (ID) can be defined as a significantly reduced ability 

to interpret new or complex information, and to learn new skills with a reduced ability 

to cope independently. It is characterized by significant limitations both in intellectual 

functioning as well as in adaptive behaviour with onset before the age of 18 years. 

[Luckasson et al. 2002]. The prevalence of intellectual disability in developed countries 

is between 1% and 3% and is responsible for 5 to 10 % of health care expenditure in 

some developed countries [Ropers. 2008]. 

X-linked Intellectual Disability (XLID) is a clinically complex and heterogeneous dis-

order, [Gecz et al. 2009] and mutations in more than 90 genes X chromosomal genes  

have been found to be associated with this disease [Tarpey et al. 2009; Ropers. 2010]. 

X-linked gene defects are thought to be the important causes of intellectual disability 

and they account for roughly 10 -15 % of the intellectual disability in males [Hamel et 

al. 2008]. Intellectual disability can be an outcome of genetic as well as environmental 

causes that act on the development and functioning of the CNS prenatally, perinatally or 

postnatally [Chiurazzi et al. 2008]. Genetic causes can be due to large deletions, large 

duplications or aneuploidies that affect multiple genes. It can also be due to mutations 

of individual genes leading to autosomal dominant, autosomal recessive or X linked 

genetic disease. [Inlow et al. 2004]. 

Among intellectually disabled patients, an excess of males has been observed and is 

explained by the fact that the presence of many genes responsible for ID are on the X 

chromosome than on the autosomes [Lehrke R. 1972]. 

X-linked intellectual disability is divided into syndromic and non syndromic forms. In 

syndromic forms ID is expressed with a specific pattern of physical, neurological, 

and/or metabolic abnormalities. In non-syndromic X- linked intellectual disability male 

patients have no consistent phenotypic manifestations other than intellectual disability. 

[Renieri et al. 2005]. 
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2. THEORETICAL BACKGROUND 

 

2.1 Definition of Intellectual Disability  

Intellectual disability is a disability until recently referred to as mental retardation is   

characterized  by the significant limitations both in intellectual functioning and adaptive 

behaviour as expressed in conceptual, social  and practical adaptive skills. This disabil-

ity originates before the age of 18. [Schalock et al. 2007]. 

According to the tenth revision of the WHO (World Health Organization), Intellectual 

Disability is a disorder defined by the presence of incomplete or arrested mental devel-

opment, principally characterized by the deterioration of concrete functions at each 

stage of development that contributes to the overall level of intelligence such as cogni-

tive, language, motor and socialization functions where adaptation to the environment is 

always affected. 

According to the American Association on Intellectual Disabilities (AAIDD), there are 

five assumptions that are essential for the application of the definition of intellectual 

disability: 

1. Limitations in present functioning must be considered within the context of commu-

nity environments typical of the individual‘s age peers and culture. 

2. Valid assessment considers cultural and linguistic diversity as well as differences in 

communication, sensory, motor, and behavioral factors. 

3. Within an individual, limitations often coexist. 

4. An important purpose of describing limitations to develop a profile of needed sup-

ports. 

5. With appropriate personalized supports over a sustained period, the life functioning 

of the person with intellectual disability generally will improve. 

[AAIDD, http://www.aaidd.org/] 

In contrast, the WPA Section on Psychiatry of Intellectual Disability considers IDD to 

be a health condition: a syndromic grouping or meta-syndrome analogous to the con-

struct of dementia, which is characterized by a deficit in cognitive functioning prior to 

the acquisition of skills through learning. The intensity of the deficit is such that it inter-
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feres in a significant way with individual normal functioning as expressed in limitations 

in activities and restriction in participation (disabilities).[Carulla et al.  2008.] 

 

Table 1: LIMITATIONS ASSOCIATED WITH INTELLECTUAL DISABILITY 

1. Communication  

2. Personal Care 

3. Home Life 

4. Social Skills 

5. Utilization of the Community 

6. Health and Safety 

7. Functional academic skills 

8. Leisure Time 

9. Work 

* Based on American Association on Intellectual and Developmental Disabilities (AAIDD). 

 

Clinically ID is described by three basic criteria:  

a) an intelligence quotient (IQ) below 70  

b) limitation in two or more adaptive behaviors such as communication, self care, social 

skills, community use, self direction, health and safety  

c) evidence that the mental manifestations began before the age of 18. 

Four degrees of severity of intellectual impairment can be categorised: mild, moderate, 

severe, and profound. (Refer Table 2) 

Mild: About 50 % of persons fall into this category. People with this level of ID need 

support on as needed basis, episodic or short term. IQ ranges from 50-55 till 70. 

Moderate: This group constitutes about 10 % of the entire population of people with 

ID. The IQ level usually varies from 35-49 till 50-55. They need support consistent with 

time but the amount of time is limited. 
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Severe: This group constitutes of 3% - 4% of individuals with ID. People in this group 

need regular, consistent and lifetime support. Regular support is needed in at least one 

such aspect such as school, work or home. The IQ level ranges from 20-25 till 35- 40. 

Profound: This group approximately constitutes 1%- 2% of people with intellectual 

disability. They possess little or no ability to care for their own basic needs and require 

constant help and supervision. IQ level is under 20-25.  

 

Table 2: Classification of Intellectual Disability  

Security Level 

(Percentage of Individu-

als with ID) 

Intelligent Quotient 

Range 

Support needed in daily 

living activities 

Mild (50%) From 50-55 till 70 Intermittent 

Moderate (10%) From 35-49 till 50-55 Limited 

Severe (4%) From 20-25 till 35-40 Extensive  

Profound (1%) Less than 20-25 Pervasive 

Based on American Psychiatric Association, DSM-IV TR, 2000; American Association of Intel-

lectual and Developmental Disabilities, 2002. 

2.2 Prevalence of Intellectual Disability  

The prevalence of ID is estimated to affect approximately 2 % to 3 % of the population. 

X linked gene defects are considered to be responsible for approximately 10 % of the ID 

found in males (Ropers et al. 2005). Their prevalence is around 1% in high income 

countries and 2 % in low and middle income countries [Maulik et al. 2011; Durkin. 

2002]. 

 

2.3  X-Linked  Intellectual Disability 

X-linked mental retardation is the proportion of mental retardation showing the distinc-

tive pattern of inheritance associated with the X chromosome. The XLID phenotype in a 

family can be detected when the transmission follows the general characteristics of X-

linked recessive phenotypes: 

 only males are affected 

 all daughters of affected males will be carriers 
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 carrier females may have mild expression of the disease 

 sons of carrier females have a 50% risk of being affected 

 daughters of carrier females have an 50% risk of being carriers 

 male to male transmission does not occur 

 unaffected males cannot transmit the phenotype 

 

 

 

Figure 1. X chromosomal pedigree adapated from Human Molecular Genetics by Stratchan and Andrew P 

Read, Wiley Liss (1999). 

 

2.4 X Chromosome 

X chromosome has many attributes that are exclusive in the human genome. The size of 

the X chromosome is roughly 155MB and contains a total of 1860 genes (Figure 2). The 

X chromosome holds a special place in the field of Medical Genetics. Although the X 

chromosome contains only 4 % of the genes, it is accountable for almost 10 % of the 

diseases with the Mendelian Inheritance.  X chromosome inactivation in mammals at-

tains dosage compensation between males and females for X linked gene products. Fe-

males inherit an X chromosome from each parent but males inherit only a single mater-
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nal X chromosome. [Ross et al. 2005]. Intellectual disability is one among the common  

problems in  clinical genetics and it affects more males than females. Many genes on the 

human X chromosome get away from X-inactivation, or at least partly. For most of 

these, there is no functionally comparable homologue on the Y chromosome, which 

itself explains the gender –specific distinction  accountable  for  the susceptibility to 

certain diseases. [Ropers. 2006]. 

 

Figure 2. The Composition of X chromosome. Adapted from 

http://vega.sanger.ac.uk/Homo_sapiens/Location/Chromosome?r=X 

 

2.5 Classification of XLID 

XLID is usually categorized into the ―syndromic‖ and ―non syndromic‖ forms. In the 

syndromic forms, Intellectual disability is present in association with specific pattern of 

physical, neurological and/or metabolic abnormalities. Until now out of 215 total condi-

http://vega.sanger.ac.uk/Homo_sapiens/Location/Chromosome?r=X
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tions 98 genes related to syndromic ID have been identified 

(http://xlmr.interfree.it/home.htm). The term non specific XLID was coined by Kerr et 

al. in 1991 to illustrate the condition segregating in an X linked manner in which the 

male patients do not demonstrate any  specific phenotypic manifestations  other than the 

Intellectual Disability  [Kerr et al. 1991; Mulley et al. 1992]. Till date 66 genes related 

to non-specific XLID out of the total 215 genes have been identified. 

(http://xlmr.interfree.it/home.htm). ID can be an outcome of genetic as well as environ-

mental factors that are responsible for affecting the development and normal function-

ing of the nervous system prenatally, perinatally and postnatally. It can also be due to 

various environmental factors mainly malnutrition in pregnancy, pre- and postnatal in-

fections, exposure to neurotoxic compounds, premature birth and peri- and postnatal 

asphyxia or other trauma. The genetic causes of ID are mainly recognized in severe in-

tellectual disability and they involve chromosome aneusomies, chromosomal structural 

abnormalities, genomic disorders and monogenic disorders. Genetic factors account for 

roughly 65 % of moderate to severe ID [Chelly et al. 2006; Chiurazzi  et al. 2008; Patel  

et al. 2010]. 

2.6 Etiology of Intellectual Disability  

2.6.1 Environmental and sociocultural factors 

Epidemiological studies have repeatedly revealed that an evident link exists between the 

poverty and intellectual disability. It is clear that this notable link reflects two distinct 

processes. The first one indicating that a connection between poverty and exposure to a 

wide range of environmental and psychosocial factors exist and the second one reveals 

that families with members who suffer from intellectual disability have an increased risk 

of catastrophic expenses that considerably affect poverty levels. These factors are con-

sidered to be straight forward reasons of intellectual disability in developing countries. 

[Leonard  et al. 2005]. 

 

2.6.2 Chromosomal aberrations and ID 

Chromosomal abnormalities occur in 6% of all recognized congenital malformations, 

The most common ones listed in Table 3. 

Table 3: Chromosomal Abnormalities Associated with Intellectual Disability 

http://xlmr.interfree.it/home.htm
http://xlmr.interfree.it/home.htm
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SYNDROME PREVALENCE CHROMOSOMAL  

ABNORMALITY 

Down syndrome 1 in 1000 live births Approximately 94 % of the 

cases are caused by trisomy 

21, 3,5% by translocation, 

& 2,5 % by mosaicism. 

Turner’s syndrome 1 in 2000 to 1 in 5000  

females 

Complete or partial absence 

of one X chromosome (45, 

XO). 

Klinefelter’s syndrome  1 in 1000 males Maternal nondisjunction 

(47, XXY) 

Prader-Willi syndrome  1.2 to 1.3 per 10 000 Microdeletion on chromo-

some 15, paternal origin at 

the locus 15q11-13 

Angelman’s syndrome 1 in 20 000 to 1 in 30 000 Microdeletion on chromo-

some 15, maternal origin at 

the locus 15q11-13 

Cri-Du chat syndrome 1 in 50 000 deletion 5p 

Di-George syndrome 1 in 5000 microdeletion of  

chromosome  7q11 

Smith Magenis syndrome 1 in 25 000 microdeletion 17p11 

Rubinstein– Taybi  

syndrome 

1 in 12 500 live births  autosomal dominant,  

microdeletion  16p 13.3 

William’s syndrome  1 in 5 500 live births microdeletion of  

chromosome 7q11 

*Adapted from Ahuja et al. 2005. 

 

These account for 30% to 40% of severe intellectual disability and 10 % of mild intel-

lectual disability. [Raynham et al. 1996; Ahuja et al. 2005]. Chromosomal abnormalities 

include deletions, microdeletions, translocations, inversions and duplications. Sex 

chromosome anomalies occur in roughly 1 in 400 live births. These anomalies are 

commonly due to chromosomal nondisjunction, the risk of which increases with mater-

nal age. The most common include Turner‘s syndrome (45, XO), Klinefelter‘s syn-



 9 

drome (47, XXY) and the 47, XXX and 47, XYY karyotypes [Ahuja et al. 2005]. It is 

certainly true that individuals with chromosomal aneuploidy demonstrate some nonspe-

cific features in common such as poor growth, microcephaly, epicanthic folds and un-

usual palmar creases, in addition to features more specific to the chromosomes in-

volved. Down syndrome (trisomy 21) still remains the most important cause of intellec-

tual disability. Cytogenetically visible chromosomal aberrations are found almost in one 

out every seven individuals with severe cognitive impairment. [Leonard et al. 2002]. 

 

2.6.3 Copy number variants in Intellectual Disability  

The term "copy number variation" can referred to as  an  intermediate-scale genetic 

change, operationally defined as segments greater than 1,000 base pairs in length but 

typically less than 5 megabases, which is the cytogenetic level of resolution. CNVs in-

clude additional copies of sequences (duplications) and losses of genetic material (dele-

tions). [Eichler et al. 2008]. Unlike the SNPs the CNVs span larger regions which might 

affect one or more genes by decreasing or increasing the gene dosage, revealing a reces-

sive allele, causing aberrant expression or even might lead to alternative spliced or fu-

sion genes. Rare CNVs have been found to cause neurological disorders such as mental 

retardation, schizophrenia and autism [Redon et al. 2006; Marshall et al. 2008]. Studies 

to identify copy number variants (CNVs) on the X-chromosome have revealed novel 

genes important in the causation of X-linked Intellectual disability (XLID). Froyen and 

colleagues screened a cohort of 108 subjects with ID by X chromosome array CGH and 

identified CNVs in 14 subjects (13%). The most common XLID associated chromo-

somal  aberrations  reported are the duplications of Xq28 comprising the MECP2 gene, 

which have been found in more than 100 cognitively impaired individuals with charac-

teristic facial features, hypotonia, seizures, speech delay and recurrent infections [Van 

Esch  et al. 2005; Friez  et al. 2006; Madrigal  et al. 2007]. Approximately 10-15% of 

cases in intellectual disability in males have been reported due to copy number varia-

tions on the X chromosome [Fab et al. 2007; Koolen  et al. 2009]. Until now, very little 

has been known about the parental origin and the effect of increased parental age on the 

genesis of genomic copy number variation (CNV), including those which underlie a 

significant percentage of patients with cognitive disorder. Studies on a specific class of 

de novo CNVs—namely, those associated with recurrent microdeletion and microdupli-

cation syndromes—have implied  out that there is no significant bias in the parent of 
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origin. The majority of rare de novo CNVs associated with intellectual disability (ID), 

however, has non-recurrent breakpoints and does not generally involve known syn-

dromes [Koolen et al. 2009]. Numerous of CNVs have been found to be associated with 

specific phenotypes, and in patients with ID, recurrent interstitial microdeletions and 

duplications involving at least 19 genomic intervals have been identified [Vissers et al. 

2009]. For most of the CNVs associated in intellectual disability, reliable frequency 

estimates have not been determined to the extreme heterogeneity of ID and relatively 

limited size of the cohort analyzed so far. In one of the largest study reported so far, 

Mefford et al. (2008) reported on the frequency of recurrent CNVs at 69 out 130  puta-

tive genomic hot spots for NAHR in 1010 children with unexplained ID and also in 

2493 previously screened healthy adults. Pathogenic and possibly pathogenic CNVs 

were identified in 5.4% of the ID cohort [Itsara et al. 2009]. These studies reveal that 

CNVs are the basic cause of many specific forms of ID and various other disorders. In 

addition, numerous CNVs (at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 

22q11.2) have been found to the major predisposing factors for wide spectrum of neu-

ropsychiatric disorders, including intellectual disability, autism and epilepsy [Mefford et 

al. 2008; Stefansson et al. 2008; Weiss et al.  2008]. 

 

2.6.4 Single base pair mutation  

A single base substitution can be defined where a single nucleotide is replaced by 

another nucleotide. These single base changes are also referred to as point mutations. 

They are the most frequent type of alterations in DNA. For example if a purine (a, t) is 

replaced by a purine and pyrimidine by a pyrimidine (c, g) then this kind of substitution 

is referred to as transversion. Single base substitutions are broadly categorized into four 

types mainly – missense mutations, nonsense mutations, silent mutations and splice site 

mutations. 

Missense mutation: In a missense mutation, the base alters the codon which results in a 

different amino acid being incorporated into the protein chain (Figure 3).  
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       Figure 3. Diagrammatic representation to illustrate a missense mutation. 

 

Lets take an example to illustrate missense mutations. In the above figure, the substitu-

tion of ―a‖ (highlighted in red) in the second codon to ―g‖ (highlighted in red) leads to 

an amino acid substitution of glutamine (Q) to arginine R. 

 

Nonsense mutation: In a nonsense mutation, the new base change in a codon cause one 

of the stop codons (taa, tag, tga). This will cause translation of mRNA to stop prema-

turely and a truncated protein is produced (Figure 4). 

 

 

 

 

 

 

 

    Figure 4. To illustrate nonsense mutations 

 

In the above figure the second codon ―c‖ is changing to ―t‖. In the normal nucleotide 

sequence the second codon ―cag‖ codes for glutamine (Q) while in the mutated second 

codon ―tag‖ codes for STOP leading to a premature termination of the protein. 

 

Silent mutation: Silent mutations are those that do not have any alteration in the final 

protein product and can only be identified by sequencing the gene. These do not have 

any deleterious effect as mutated codons will still be coding the same amino acid. 

                      L       Q    T 

NORMAL :  ctg   cag  act             nucleotide sequence 

                                

MUTATED: ctg  cgg  act    

                      L     R   T                protein sequence 

                     L     Q   T                                               protein sequence 

NORMAL :  ctg  cag  act                                        nucelotide sequence 

 

MUTATED: ctg   tag  act                  

                     L       
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In a recent study, exon screening of 86 known XLID genes yielded probably pathogenic 

mutations in no more than seven out of 21 families tested [Hao  et al. 2010]. Recent 

studies in a multigenerational German family revealed and confirmed the presence of 

novel GDI1 mutations with nonsyndromic intellectual disability.  Their study revealed a 

frameshift   mutation in GDI1 that co-segregated with the disease [Strobl-Wildemann et 

al. 2011]. Large scale next generation resequencing of the X chromosome genes have 

helped in identification of a missense mutation in the CLIC2 gene on Xq28 in a male 

with X linked Intellectual Disability [Takano  et al. 2011]. Mutations in the Jumonji AT 

–rich interactive domain 1C (JARID1C/SMCX/KDM5C) gene, located at Xp11.22 are 

emerging as frequent causes of X- linked intellectual disability [Fintelman et al. 2011]. 

 

Splice site mutation:  Changes in splicing can lead to the disease directly, modify the 

severity of the disease phenotype or be linked with disease susceptibility.  One large 

scale analysis of human genetic variation revealed  that 51 (1.3%) of the SNPs identi-

fied within and around the exons of 313 genes studied were found to be within the con-

sensus splice sites [Stephens et al. 2001]. Accurate pre –mRNA splicing  needs exon-

intron boundaries to be correctly recognized by the nuclear ribonucleoprotein complex 

known as the splicesome, for the introns to be correctly excised and also for the exons 

to be joined perfectly  to produce mature mRNA [Hastings  et al. 2001]. This process 

required the recognition of a variety of different motifs, including the fairly degenerate 

consensus sequences flanking the GT and AG dinucleotides at the 5‘ donor and 3‘ ac-

ceptor  splice sites  and also the branch site which almost some 15-35 bases upstream of 

the 3‘ splice site. In the Human Gene Mutation Database [Stenson et al. 2003], single 

base pair substitutions within the splice site constitute around 9.5% of all the mutations 

causing human inherited diseases. Splice site mutations may result in exon skipping, 

activation of the cryptic splice sites, creation of the pseudo-exon within an intron, or 

intron retention [Nakai et al. 1994]. Exon skipping is generally considered as the most 

common effect, and usually thought to be caused by the failure of the normal and mu-

tant splice sites to define an exon.  Most of the cryptic mutations initiate splice sites of 

the same type and are located within the few hundred nucleotides of the natural site 

[Hawkins 1988]. Also splice site mutations in very short or terminal introns have been 

found to result in intron retention [Dominski et al. 1991]. Usually mutations that are far 

away from the natural splice sites create cryptic sites that are activated in the presence 

of a nearby cryptic splice site of opposite polarity leading to production of a novel non-
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coding exon with the intron. Cryptic acceptor splice sites are more frequent in exons 

than in introns mainly due to depletion of AG dinucleotides upstream of the original 

acceptor sites [Christensen et al. 2005]. Intron retention is the least studied type of alter-

native and aberrant splicing. Compared to the other types of alternative splicing which 

involves the choice between different splice sites, intron retention represents complete 

absence of splicing. Retained introns have been found to be shorter than the constitu-

tively spliced out ones and also exhibited the tendency to occur in 5‘ and 3‘ untranslated  

regions [Sakabe  et al. 2007]. 

 

Figure 5. Classical splicing signal and modes of alternative splicing.  A) Conserved motifs at or near the 

intron ends. The nearly invariant GU and AG dinucleotides at the intron ends, the polypyrimidine tract  

preceding the 3‘ AG,  and  the A residue that serves as a branch point. B) Five common modes of alterna-

tive splicing. Adapted from Luca Cartegni et al.  2002.  

 

Sequence  alterations occurring in exons or introns may affect the correct processivity 

of the mRNA by disrupting the splice site, exonic splicing enhancers (ESE), intronic 
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splicing enhancers (ISE) or altering the secondary structure of the mRNA. In case of 

nonsense mutations suspected of affecting splicing, along with disruption of possible 

ESE and ESS, two other possible mechanisms are also involved. The first mechanism is 

referred to as nonsense mediated decay (NMD). In this case when a pretermination co-

don (PTC) is present the entire mRNA is degraded. Nonsense altered splicing is ac-

knowledged to be more controversial. In this case a translational like machinery scans 

the reading frame and surveys its integrity before splicing. It is still not clear how fre-

quently sequence variations involving splicing are involved in the onset of disease. In a 

survey conducted, where the mutations considered consisted only of those directly af-

fecting the standard consensus splice sites, 15% of mutations have been found to result 

in a human genetic disease through RNA splicing defects.[Krawczak  et al. 1992]. 

2.7 Identification of XLID genes 

Searching for genetic effects that are accountable for syndromic forms of XLID is not 

different from the various gene hunting procedures which we use for any monogenic 

condition. However finding molecular causes for NS-XLID has been really very chal-

lenging  due to its high level of genetic heterogeneity, which includes pooling of linkage 

information from unrelated families and all this greatlymakes it difficult to  search for 

the various mutations.  
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Figure 6. Ideogram of the X chromosome with the position of the syndromal XLID genes. Adapted from 

http://www.ggc.org/research/molecular-studies/xlid.html . 

 

Since 2000, the rate of identification of novel genes that cause intellectual disability has 

adavanced rapidly due to various technological advancements. Prior to this, most of the 

gene identification relied on linkage and positional cloning methods. In each large fami-

ly, the candidate interval for disease causing gene was found by identifying which parts 

of the X chromosome was shared by all the affected males and also not shared by unaf-

fected males in the family. Progress was later achieved by improved DNA sequencing 

methods and the coordination of two large international studies to identify the causative 

genes, EURO-MRX and IGOLD. Hence to overcome these hurdles and to study the 

molecular basis of NS-XLID, the European XLMR Consortium was founded in 1995 

and since then various members and the associated groups have made important contri-

butions to the identification of about 90 XLID genes identified so far 

(http://xlmr.interfree.it) (Figure 6 and 7). The search for XLID genes is still an ongoing 

process. There are various strategies for the identification of the various XLID genes.  

 

 

http://www.ggc.org/research/molecular-studies/xlid.html
http://xlmr.interfree.it/
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Figure 7. Ideogram of the X chromosome with the position of the nonsyndromal XLID genes. Adapted 

from  http://www.ggc.org/research/molecular-studies/xlid.html . 

 

 

2.7.1 Positional Cloning & Linkage analysis  

Positional candidate gene studies are usually used to identify the disease genes for many 

human genetic diseases, and these studies involve genome wide linkage analysis to 

identify the approximate chromosomal location of a disease gene, fine structure genetic 

mapping to delineate and narrow the chromosomal interval in which the disease gene 

might be located, and also physical mapping and gene identification in the genetically 

defined interval to clone the disease gene.[Boehnke M.1994]. 

Positional cloning is based on the chromosomal localization of the gene. There is no 

previous knowledge of the biological function of the gene product. The overall strategy 

of positional cloning is to map the location of a human disease gene by linkage analysis 

and then to use the mapped location on the chromosome to clone the gene [Ballabio 

1993; Pierce 2003]. Positional cloning of genes responsible for XLID has been based on 

the investigation of X; autosome balanced translocations, deletion mapping or molecu-

lar screening of candidate genes [Castellvi-Bel and Milà 2001]. The disease genes iso-

lated by positional cloning usually fall into two main categories: (i) genes for relatively 

http://www.ggc.org/research/molecular-studies/xlid.html
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common diseases with a large availability of pedigrees and samples for genetic mapping 

and that are the subject of intense research; (ii) genes representing ―easy‖ targets be-

cause of the presence of patients with readily visible cytogenetic abnormalities [Balla-

bio. 1993]. The identification of XLID genes is greatly facilitated by the presence of 

cytogenetic aberrations, like translocations, inversions and deletions. Translocations in 

mentally retarded patients provide an excellent opportunity to clone the X-chromosomal 

gene disrupted by the translocation. Males with microdeletions on the X chromosome 

are also informative and are often detected by the presence of a contiguous gene syn-

drome, in which X-linked disease phenotype is combined with intellectual disability 

[Chelly and Mandel 2001].  

For example Oligophrenin-1 (OPHN1) was identified after characterizing an X;12 ba-

lanced translocation in a female patient with mild intellectual disability [Billuart et al. 

1998]. Also TM4SF2 was identified by positional cloning after characterizing an X;2 

balanced translocation in a female patient with intellectual disability [Zemni et al. 

2000]. In addition ARHGEF6 was identified by a balanced X;21 translocation [Kutsche 

et al. 2000]. IL1RAPL gene was discovered with overlapping microdeletions in two XL-

ID families [Carrié et al. 1999]. 

 

2.7.2 High Throughput genomic DNA sequencing 

The most extensive approach would be to perform a high throughput genomic DNA 

resequencing of all the genes on the X chromosome (Figure 8).   

 

Figure 8. Diagram to illustrate systematic resequencing of X chromosome coding exons as an approach to 

identify novel X linked intellectual disability genes. (Figure adapted from Sanders, 2010) 
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A direct systematic sequencing has been a new approach whereby all coding exons of 

the X chromosome are fully sequenced in the male XLID or in a female obligate carrier. 

And from this screen a catalogue of X chromosome sequence variants are generated, 

some of which will be causative.  

Various variants are further analyzed to determine whether they are disease causing. 

Large-scale systematic resequencing has been anticipated as the future strategy for the 

discovery of rare, disease-causing sequence variants across the range of various human 

complex diseases. Tarpey et al (2009) have sequenced the coding exons of 718 X chro-

mosome genes in 208 families with X-linked Intellectual Disability, which has been the 

largest direct screen which is reported so far. The average coverage of the genes re-

ported here was 75%. 1,858 different coding sequence variants were detected, around 

1,769 from the X specific and 89 from the pseudoautosomal X chromosome regions. 

Also 1,814 single nucleotide changes were reported out of which 980 were causing mis-

sense amino acid substitutions, 22 were responsible for causing nonsense termination 

codons, 13 were abnormalities at highly conserved bases at splice acceptor and donor 

sites and 799 were causing silent changes. Three variants were missense double nucleo-

tides substitutions, and 41 variants detected small insertions and deletions of which 26 

were in frame and 15 were causing translational frameshifts. This dataset has helped in 

discovering nine genes implicated in XLID, namely AP1S2, BRWD3, UPF3B, CUL4B, 

ZDHHC9, SLC9A6, SYP, ZNF711 and CASK reported. Also this study emphasized the 

challenges which are faced in whole genome sequencing screens, specially the loss of 

function of 1 % or more of X chromosome genes. 

 

2.7.3 Array Technology 

Comparative genomic hybridization, CGH is a molecular cytogenetic method for the 

detection of chromosomal imbalances, which does not depend on the availability of 

chromosome spreads and is not limited to the analysis of growing cells [Solinas et al. 

1997; Pinkel et al. 1998]. In conventional CGH, two differentially labeled genomes, a 

test and control, are competitively hybridized to metaphase chromosomes. Regions of 

gain or loss of DNA sequences, such as deletions, duplications, or amplifications, are 

seen as changes in the ratio of the intensities of the two fluorochromes along the target 

chromosomes [Kallioniemi et al. 1992]. However, since the DNA in metaphase chro-

mosomes is condensed, the resolution is limited to 5-10 Mb. Thus, there is little reason 
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to apply CGH to chromosomes of metaphase cells in routine diagnostic settings [Lichter 

et al. 2000]. 

Recently, the drawbacks of conventional chromosomal CGH have been overcome by 

the introduction of array CGH. Here differentially labeled test and reference DNA are 

co-hybridized onto microarrays. Metaphase chromosomes are replaced with slides ar-

rayed with complementary DNA (cDNA) oligonucleotides or genomic BAC clones as 

the targets for analysis. Chromosomal microarrays allow the genome wide identification 

of submicroscopic chromosomal abnormalities at a very high resolution. The first array-

CGH experiments in patients with ID relied on the use of homemade bacterial artificial 

chromosome (PAC) arrays and had a diagnostic yield of about 10% [Vissers  et al. 

2003]. It does not require an expert clinician to suspect a specific diagnosis and it may 

cover the entire genome or targets known pathologic loci in a unique test. This new 

technique has been successful in revealing submicroscopic chromosome aberrations in 

patients with intellectual disability with normal results from prior cytogenetic analysis 

with detection rate up to 5- 20% [Liang  et al. 2008]. The recently developed array-

CGH technique combines the property of a complete genome scan of CGH along with 

the hybridization on sorted genomic DNA fragments from the microarray technology. In 

addition to that array CGH has been able to detect and quantify segmental aneuplody 

with a resolution comparable to that of FISH. Array-CGH, using DNA from uncultured 

cells, has been efficient in detection of low-level mosaicism, which could be missed by 

conventional cytogenetic analysis [Ballif   et al. 2006]. Large scale array CGH based 

studies using the Affymetrix 500K oligonuleotide array and the tiling path bacterial ar-

tificial chromosomes (BAC) array have identified copy number variations in 12% of the 

human genome [Zhang et al. 2007]. Froyen and collegues have developed a full cover-

age X chromosome tiling array CGH for the detection of copy number alterations in 

patients with suspected XLID [Froyen et al. 2007]. Complementary DNA microarray 

technology has been developed in recent years to perform large scale quantitative analy-

sis of gene expression at the transcript level. Zhang and collegues have recently ma-

naged to use a custom human X chromosome cDNA microarray to identify the candi-

date genes responsible for XLID [Zhang et al. 2007]. However this approach is limited 

by requiring expression of potential candidate genes in accessible tissues and also by its 

inability to identify candidate genes with mutations that do not alter transcript levels. 

Microarray technology was first used first time in a microarray – based copy number 

analysis of all human telomeres in patients with Intellectual Disability [Veltman et al. 
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2002]. The power of microarray technology is being fully utilized for unbiased whole- 

genome copy number analysis [Koolen et al. 2008]. 

 

2.7.4 Cytogenetic methods  

Karyotype analysis, biopsy of amniocytes or chorionic villi, is the most descriptive pre-

natal diagnostic tool to detect chromosome abnormalities. However, this method is time 

consuming. To reduce the level of distress among parents, efforts have been made to 

develop a very quick diagnostic test for specific chromosome abnormalities. Trisomies 

of chromosomes 13, 18 or 21 (Patau, Edwards or Down syndrome respectively) and sex 

chromosome aneuploidies (e.g. Turner syndrome) are the most characteristic chromo-

some abnormalities detected at amniocentesis [Ryan et al. 2005]. 

 

2.7.5 Next generation sequencing  

Recent advances in the next generation sequencing technologies have helped the re-

searchers to explore both rare and common disorders. While the whole genome se-

quencing still remains quite costly for most of the applications, exome sequencing is a 

technique which is the limelight and focuses on the protein coding portion of the ge-

nome only. There are currently three major exome enrichment platforms: Agilent Sure 

Select Human All Exon 50Mb, Roche/Nimblegen‘s SeqCap EZ Exome Library v2.0 

and Illumina‘s TreSeq Exome Enrichment. [Michael et al. 2011].  The exome consists 

of all the exons of a genome that are transcribed into a mature RNA. Protein coding 

genes constitute about 1% of the human genome but harbour 85% of the mutations with 

affect on disease related traits .[Bamshad et al. 2011]. Exome sequencing is used syn-

chronously with two sampling strategies: family –based phenotypes (to exploit parent 

child transmission patterns) and extreme phenotypes. In families where multiple indi-

viduals are affected with a common trait, one methodology will be to sequence the most 

distally related individuals.  
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Figure 9. To Illustrate the Workflow of Exome sequencing from genomic DNA extraction to biological 

interpretation and the identification of a casual mutation. The workflow is categorized into 3 main steps a) 

Sample Preparation and Sequencing, b) Primary Data Processing, c) Secondary Data Processing. Figure 

directly adapted from Chee- Seng Ku et al. 2012. 

 

Another alternative would be the family based approach which is useful in identifying 

de novo variants, it involves sequencing parent-offspring trios in which only the 

offspring is affected. Exome sequencing of a parent –child trios have been found to be 

an effective concept for identifying de novo coding mutations. This approach is appli-

cable to gene discovery in disorders where most of the cases are sporadic and also when 

a dominant mode of inheritance is speculated [Hoischen et al. 2010]. Most of the Men-

delian disorders are caused by the exonic mutations or splice site mutations that change  

the amino acids sequence of the affected gene. Exome sequencing is a very powerful 

tool for the discovery of Mendelian diseases in situations where the conventional ap-

proaches have failed [Biesecker et al. 2010]. Exome sequencing for the first time has 

been successful for the discovery of a novel mutation underlying an autosomal recessive 

non-syndromic mental retardation in the TECR gene on chromosome 19p13 [Caliskann 

et al. 2010]. A notable  accomplishment of the whole exome sequencing has been in 
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discovering that de novo single nucleotide variants contributes to the intellectual disabil-

ity [Vissers et al. 2010] and to children with sporadic autism [O‘Roak et al. 2011]. It has 

been affirmed that the power of whole exome sequencing plays a very substantial role  

in identifying the genetic basis of  various human diseases. In a recent study the largest 

published so far deep sequencing has revealed  disease causing variants in 50 novel 

genes for recessive cognitive disorders, it has also assisted  in revealing additional muta-

tions in 23 genes earlier implicated in intellectual disability or connected  neurological 

disorders. [Najmabadi  et al.  2011]. 

 

 

Figure10. Commonly adopted approaches to identify  causal mutations. The 3 main criterias which are 

used to filter the less likely causal variants are 1) removing common variants, 2) focusing on deleterious 

variants, and 3) predicting and retaining variants with functional  effects. Adapted from Chee- Seng Ku et 

al. 2012. 

 

By targeting the specific regions of interest selective DNA enrichment improves the 

overall cost and efficiency of the NGS [Rehman et al. 2010; Volpi et al. 2010]. Targeted 

sequencing focuses on all protein coding subsequences (the functional exome), which 

requires roughly 5% as much sequencing compared to that what is needed for the entire 

human genomes [Pussegoda 2010; Senapathy et al.  2010]. This present scheme helps in 

reducing the overall cost for the sequencing a single individual. Commercially available 

products for targeted sequence –enrichment includes Agilent‘s SureSelect and Nimble-
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gen‘s ASeqCap, Illumina‘s TruSeq. However the parallel short –read strategy of NGS 

opens to many hurdles for the bioinformatics to comprehend the short reads and the 

genetic alterations in human genomes [Myers et al. 2008]. The assets of the NGS can 

only be utilized when bioinformaticians are able to decipher and make use of the short 

read sequences, including alignment, assembly [ Salzberg et al. 2008]. NGS technolo-

gies will certainly allow us to identify all the causative variants including the ―rare va-

riants‖ within the individual. It is also strongly anticipated that the whole genome se-

quencing or the exome sequencing will make influential impact to our understanding of 

the genetic etiologies that contribute to the complicated human disease as well as the 

genetic basis of genomics. 

 

 

Figure 11. Integrated diagnostic/research information workflow. A patient presents with an idiopathic 

intellectual disability and her exome is sequenced in diagnostic laboratory. Variants are automatically 

annotated with respect to population frequency, evolutionary conservation, predicted effect on transcript 

expression or splicing, effect on protein function, and are checked against the databases of proven disease 

causing mutations. To make this process faster, all the variant data are also deposited into a local database 

of genetic variation. The laboratory then undertakes a targeted analysis of the set of genes known to be 

potentially causative of her condition, and information about the mutation in those genes are reported 

back again to the clinicians.  In cases where no causative mutation is found, her sequence data are stored 
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and periodically reanalyzed. Full analysis of a patient‘s exome along with the sequencing of parents or 

siblings‘ exomes may result in the identification of new potential candidate genes.  (Figure modified from 

Topper et al. 2011) 

2.8 Molecular Basis of Intellectual Disability 

The intricacy of the genes accountable for intellectual disability can be understood in 

terms of modules of several genes acting together in a single pathway or complex, re-

sulting in an equivalent phenotypes when mutated. Functional correlations have helped 

in identification of approximately 450 genes that have been found to be associated in ID 

[Inlow et al. 2004]. Several general molecular and cellular mechanisms underlying the 

pathophysiology of intellectual disability can be identified, including neurogenesis, neu-

ronal migration, synaptic functions, and transcription and translation [Chelly et al. 

2006]. Disturbed neurogenesis is commonly noticed in intellectual disability disorders 

comprising microcephaly, and these conditions seem to have a common origin in defec-

tive centrosome function and DNA repair response pathways [Kiaindl et al. 2010]. 

Larger groups of intellectual disorders refequently involve sharing biological functions 

in synapse formation and plasticity, cellular signaling, and transcriptional regulation. 

During the development and until adolescence, the brain is vulnerable to broad structur-

ing of neuronal connectivity by the formation and elimination of synapses. The dynamic 

regulation of synaptic connectivity is very critical for the various aspects of learning, 

memory, and cognitive functions in the adult brain. Synapses and spines are highly ac-

tive in their outlook and can undergo rapid structural changes in response to stimuli. 

This property is attributed to as the synaptic plasticity, and is believed to be involved in 

learning and memory [Lamprecht et al. 2004]. Functional analysis of the normal and the 

disrupted synaptic functions of intellectual disability associated proteins have aided us 

in learning about these processes. Several different mechanisms involving ID genes care 

responsible for the impaired synaptic plasticity and therefore they are known to affect 

cognitive function. Local regulation of protein levels in the PSD is a substantial me-

chanism in the control of synaptic plasticity. Another level of regulation of the PSD 

proteins is through the ubiquitin –mediated protein turnover. A large number of ID pro-

teins have been found to be precisely involved in UPS- mediated protein degradation, 

including UBE3A, UBE2A, HUWE1, CUL4B, and UBR1. Thus it reveals that tight 

regulation of postsynaptic protein levels is crucial for normal learning and memory 

processes. Dendritic spine morphology is highly plastic in nature and changes of shape 
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or size of spines can change within seconds. The dynamic morphology of spines is a 

result of continous polymerization and breakdown of actin filaments and dynamic mi-

crotubules in the spine [Jaworski et al. 2009]. 

 

 

Figure 12: Mechanism how intellectual disability proteins act on the synaptic membranes. The neuro-

transmitter content is relased after fusion into the synaptic cleft activating neurotransmitter receptors 

at the postsynaptic cell membrane and leading to the opening of ion channels followed by generation 

of a postsynaptic potential (Figure adapted from van Bokhoven at al. 2011.) 

 

There is increasing evidence that breakdown of signaling pathways both in excitatory 

glutamatergic neurons and in inhibitory GABAergic neurons contribute to the cognitive 

impairment and behavioral anaomalies in ID and ASD [Malinow  et al. 2002]   
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Figure13. Postsynaptic protein networks and pathways involving intellectual disability (ID) proteins. 

Figure modified from van Bokhoven et al. 2011.  
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3. AIMS OF THE PRESENT STUDY  
 

1. To identify a mutation in the Finnish family with intellectual disability of unknown 

cause. 

2. To investigate the functional effect of the mutation. 
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4. MATERIALS AND METHODS 

4.1 The family material 

The family pedigree is shown in Figure 14. The family belongs to the material consist-

ing of seven families with at least three affected males whose diagnosis has remained 

unknown since 1980s (data not shown). In 2004 a total of 88 multiallelic microsatellite 

markers on the X-chromosome were analyzed in these families. In one family a novel 

mutation in PAK3 was identified [Peippo M et al., 2007]. Using X-chromosomal CGH-

array a duplication in hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin 

ligase HUWE1 genes on Xp11.2 was identified in another family [Froyen G et al. 

2008]. Due to long common haplotypes that contained numerous genes in the remaining 

five families the identification of the causative gene was too expensive and time-

consuming and was not done. The Ethics Committee of the Helsinki university hospital 

approved the study. Informed written consent was obtained from all the participating 

individuals or their parents. 

 

 

Figure 14. The family pedigree under study. 
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4.2 DNA isolation 

10 ml whole blood was collected in the EDTA vials from the individuals participating in 

the study. Lymphocytes in the samples are lysed using Igepal CA-630 Sigma to release 

the nucleus from the cell and a DNA stabilizing agent was added to the sample. The 

samples were then centrifuged to pellet the nuclei after which the pellet was washed 

using TKM1 buffer. SDS-detergent was added to dissolve lipids and release the DNA 

from the nuclei into the solution. The remaining proteins are precipitated and removed 

using a high concentration salt solution after which the DNA is precipitated using abso-

lute ethanol. The DNA was finally dissolved and stored in TRIS-EDTA and the concen-

tration and the purity of the sample was measured using the NanoDrop. 

4.3 Exome Sequencing  

4.3.1 Exon enrichment and high throughput sequencing 

Exons from the homozygous intervals were enriched with custom-made Agilent Sure 

Select DNA capture arrays including an average of 60 bp of flanking sequence on either 

side of the exon and sequenced on an Illumina Genome Analyzer II yielding 76 bp sin-

gle reads. 

4.3.2 Sequence coverage of targeted exons 

More than 98% of the targeted exons were covered by at least four non redundant se-

quence reads, each with a PHRED like quality score of 20 or above. 

 

4.3.3 Calling of Single Nucleotides Polymorphisms  

To detect the single nucleotide polymorphisms high quality reads were aligned to the 

human reference genome by SOAP2.20 with default settings. 

4.3.4 Filtering out polymorphisms and selection of disease causing 

variants 

Also to eliminate previously reported, non pathogenic changes, all sequence variants 

were filtered against dbSNP. In addition to it the OMIM catalogue 

/http://www.ncbi.nlm.nih.gov/omim) and the Human Gene Mutation Database (HGMD, 
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http://www.hgmd.org/) were used as filter to identify all previously described pathogen-

ic changes.  

 

Figure 15. Variant calling, filtering and prioritization scheme adapted from Najambadi et al. 

2011. 

 

Several different measures were used to rank and screen the plausible disease causing 

missense changes or small in-frame deletions.  Other criterias included: 1) the presence 

of a single non-polymorphic variant in the family; 2) the evolutionary conservation of 

the relevant nucleotide, as defined by the PhyloP score; 3) the pathogenicity of these 

variants, as predicted by PolyPhen2, SIFT etc and  4)  the available biological and med-

ical evidence supporting a role of this gene in the brain function, including disease links 

in humans and animal models and a range of other functional clues. Variants were vali-

dated by Sanger Sequencing. [Najmabadi et al.  2011]. 
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4.4 PCR –Sequencing  

PCR for sequencing reactions was performed in a 15 µl reaction volume. The reaction 

volume contained 220pmol of both primers and 10nmol of each nucleotide. The poly-

merase enzyme used in this reaction was Dynazyme II (Finnzymes). 

The DNA of the study subjects were amplified by the polymerase chain reaction (PCR) 

using 2720 Thermal Cycler (Applied Biosystems). The polymerase chain reaction con-

dition were as follows: 1 min at 95 °C  followed by 35 cycles of the denaturation step of 

30 sec at 95 °C, annealing step of 20 sec at 55 °C, the elongation step of 1 min at 72 °C   

and the final extension for 10 min at 72 °C.  

PCR products were separated by electrophoresis on 1.5 % agarose gel with ethidum 

bromide to verify the success of the PCR reaction. A 100 bp size standard (O‘Range 

ruler 100bp DNA ladder, Fermentas) was included to detect the size of the PCR prod-

ucts. Purification of the PCR products was done using ExoSAP IT (Affymetrix). It con-

sisted of 15 min incubation at 37°C followed by enzyme activation at 80°C for a further 

15 min. The sequencing was performed in a volume of 10µl with BigDye 3.1 terminator 

(Applied Biosystems) according to manufacturer‘s instructions. The sequencing reac-

tion was performed in 25 cycles  for 1 min with  initial  denaturation at 96 °C, 10 s de-

naturation at 96 °C, 5s primer annealing at primer specific temperature (55 °C), 4 min 

extension at 60 °C. PCR and sequencing primers are presented. Sequenced products 

were electrophoresed on an ABI 3730 DNA Analyzer (Applied Biosystems) and base 

calling was performed using Seqencing Analysis 5.2 software (Applied Biosystems). 

Reference sequence was obtained from the UCSC Human Genome Browser and se-

quence analysis was performed using Sequencer 4.8 (Gene Codes, USA). 

 

4.5 Transcript Analysis 

Patients with mutations leading to abnormal mRNA splicing were further studied 

through transcript analysis. 

 

4.5.1 RNA Isolation 

Blood samples were collected in PAX-gene RNA-tubes (Qiagen).  RNA was isolated 

using the PAXgene Blood miRNA kit (Qiagen). The total RNA was purified from the 
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stabilized blood samples using the PAXgene silica membrane technology. PAXgene 

Blood RNA tubes were first centrifuged to pellet the samples, then washed with water 

and resuspended in Buffer BM1. Followed by the digestion in Buffer BM2 with protei-

nase K, the samples were homogenized by centrifugation through PAXgene shredder 

spin columns. Isopropanol was then added to the samples to optimize the binding condi-

tions and the samples were then centrifuged through PAXgene RNA spin column whe-

reby the total RNA binds to the PAXgene silica membrane. The bound RNA was sub-

jected to DNase digestion to remove genomic DNA contamination and washed with 

buffer BM3 followed by Buffer BM4. Pure RNA was then eluted in buffer BR5. 

 

4.5.2 RNA Integrity Check  

RNA integrity was checked with the help of the Agilent 2100 Bioanalyzer. The chip 

used to measure the samples was first primed using a gel-dye mix and the chip priming 

station. 5 µl of the RNA 6000 Nano marker was then loaded to the ladder well and each 

sample well in the chip, followed by the loading of 1 µl of the ladder and each sample 

into the chip. The chip was then briefly mixed for 1 minute and then loaded into the 

Bioanalyzer.  The run was started using the software connected to the computer. The 

software automatically allocates each sample a RIN, which usually ranges from 1 to 20. 

 

4.5.3 cDNA synthesis  

5 µg of the total RNA was reverse transcribed using the SuperScript III First Strand 

synthesis (Invitrogen) to generate the complementary cDNA synthesis. cDNA synthesis  

was performed in the first step using 5 µg  total RNA with 50 µM  oligo(dT) primers 

along with 10mM dNTP mix and DEPC treated water  in a 10 µl  reaction volume. The 

reaction mix was incubated at 65 °C for 5 minutes and then placed on ice for 1 minute. 

cDNA synthesis mix comprising of the following components 10X RT buffer, 25mM 

MgCl, 0.1M DTT, RNaseOUT and Superscript III RT was prepared and 10 µl of cDNA 

synthesis mix was added to each of the RNA/primer mixture and incubated for 50 mi-

nutes at 50 °C, reaction was terminated at  85 °C for 5 minutes. Finally 1 µl of RNase H 

was added and incubated for 20 minutes at 37°C. In the second step PCR was per-

formed in separate tubes using 10X High Fidelity buffer, 10 Mm dNTP, 50 Mm 
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MgSO4, forward and the reverse primers (20 µM gene specific primers), Platinum Taq 

DNA polymerase and autoclaved water to a  50 µl  reaction volume. PCR reaction was 

carried out using 2 µl of cDNA. All PCR reactions were performed with a 2720 Ther-

mal Cycler (Applied Biosystems). Initial denaturation at 94 °C for 1 minute followed by 

denaturation at 94 °C for 30 seconds, DNA amplification was carried out in a 35 cycles 

of 30 seconds annealing at temperature 55 °C, extension at 72 °C and the final extension 

at 72 °C for 7 minutes. 

 

4.5.4 Gel Purification  

Gel purification was done with the help of Pure Link Quick Gel Extraction kit. The de-

sired band was excised using a clean sharp razor blade. The gel slice containing the 

DNA fragment was weighed and then placed into 1.5 ml polypropylene microcentrifuge 

tube. Then 3 volumes of Gel solubilization Buffer were added to 1 volume of gel. The 

tube containing the gel slice and the gel solubilization buffer was placed into a 50
0
C 

water bath and incubated for 10 minutes. When the gel slice seemed to be dissolved, the 

tube was incubated for additional 5 minutes. The dissolved gel piece was then placed 

onto a Quick Gel Extraction Column containing silica membrane. The DNA was bound 

to the membrane either by centrifugation or vacuum extraction. The membrane was then 

washed with the 500 µl Wash buffer containing ethanol to remove the impurities and 

the purified DNA was then eluted into a recovery tube using 50 µl Elution Buffer 

(10Mm Tris-Hcl, pH 8.5). 

 

4.6  Bioinformatics Analysis 

Primers were designed by Primer3 and sequence comparison was done with the help of 

NCBI-BLAST. Clustal-W and LALIGN programs were used to compare the protein and 

the DNA sequences. The pathogenicity of the sequence variants was analyzed with the 

help of NNsplice (http://www.fruitfly.org/seq_tools/splice.html), PolyPhen2 (http:// 

genetics.bwh.harvard.edu/pph/).  

 

http://www.fruitfly.org/seq_tools/splice.html
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5. RESULTS 
 

5.1 Clinical Results  

The index patient is a 30-year-old man with a severe learning disability. He was born 

from a pregnancy complicated by pre-eclampsia. A cesarean section was performed at 

term due to a prolonged delivery. His birth weight was 2920 grams and length 49 cen-

timeters. Apgar scores were 7, 8, and 9 after 1, 5, and 10 minutes. After birth dysmor-

phic features were noted consisting of abnormal auricles, an asymmetric thorax, and a 

small penis. At 10 months spasticity was observed in the hands. At 18 months hypoto-

nia and ataxia were detected, and also, epilepsy was diagnosed. He was able to walk 

independently at 2 years. Brain CT, ERG, and VEP were normal at 22 months. Karyo-

type and cytogenetic fragile-X analysis gave normal results. At a clinical geneticist´s 

consultation at 2 years a prominent forehead, up-slanting palpebral fissures, and hyper-

extensible fingers were seen. At 30 years he had no speech. He walks in a slightly for-

ward-flexed walking posture with small steps, and does not move hands. He is constant-

ly wandering around and has aggressive bursts. 

The older one of index patient´s maternal male cousins is a 45-year-old man with a 

moderate learning disability. This man was born after an uneventful pregnancy and de-

livery at term with a birth weight of 2650 grams, and a length of 46 centimeters. Apgar 

score was 10 at 1 minute. After birth he had feeding difficulties. The psychomotor de-

velopment was delayed from birth. He learned to walk at 26 months. At 6 years he used 

only two words. At that time tremor intentionalis was diagnosed. Strabismus was seen 

in the eye investigation at 9 years. Also, a generalized slowing and disorganization of 

the EEG was seen. No seizures have occurred. Bone age was delayed. Karyotype was 

normal. He was referred to the Department of Medical Genetics, The Family Welfare 

Federation, Helsinki, at 17 years. Dysmorphic features were noted consisting of a high 

forehead, deep set eyes, hyperplastic supra-orbital ridges, up-slanting of palpebral fis-

sures, abnormal and low-set ears, and a broad base to nose. He also had hypotonia and 

pes planus. At 45 years he uses two-word sentences, and walks. He has a pleasant per-

sonality 
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Table 4. The phenotypes observed in patients of the CUL4B family with XLID.  

Measure III-8       III-4          III-3  

Age 30                        45            39  

Birth Weight(gm) 2920                   2650           3080  

Height(cm) 49                        46           49  

ID(level) Severe                Moderate       Moderate  

Motor Delay Yes  Yes            Yes  

Speech Delay Yes                     Yes            Yes  

Tremor Yes                       Yes             Yes  

Seizures Yes                     No             No   

Gait Abnormality Yes                     No            No  

Malformed low set ears Yes                     Yes                             Yes  

Gynaecomastia Yes                     Yes            Yes  

Short feet No                      Yes            Yes  

Prominent lower lip No                       No            Yes  

Small Testes Yes                      Yes            Yes  

Kyphosis Yes                      No             No  

Behavioural problems Yes                      No             No   

Sandal Gap Yes                      Yes             Yes  

Narrow palpebral fissures No                       Yes             Yes  

Syndactyly  Yes                      Yes                         Yes  

 

The younger brother of index patient´s maternal cousins is a 39-year-old man with a 

moderate learning disability He was born after an uneventful pregnancy and delivery at 

37 weeks of gestation with a birth weight of 3080 grams and a length of 49 centimeters. 

Apgar score was 9 at 1 minute. He learned to walk at 13 months. At 2 years speech de-

lay was diagnosed. The audiological study was normal. Strabismus was seen in the eye 

examination. The EEG analysis revealed a generalized slowing and disorganization, but 

no signs of paroxysmal discharges were seen. Karyotype and cytogenetic fragile-X 

analysis gave normal results. He was referred to the Department of Medical Genetics, 

The Family Welfare Federation, Helsinki, at 12 years. Dysmorphic features were de-

tected consisting of a high forehead, down-slanting palpebral fissures, a broad base to 
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nose, and abnormal and low-set ears. Also brachydactyly, II-III syndactyly, pes planus 

and hypotonia were detected. At 39 years he uses single words, and walks. He has an 

easy-going personality. 

 

5.2 Sequencing results and mutation analysis  

Exome sequencing performed in Max Planck institute, Berlin, revealed single base 

substitution T > C in intron 20 at position Chr X:-119,666,274 (GRCh 37/hg19) in in-

dex patient (III-8). Sequencing of genomic DNA of four affected male patients in Fin-

land showed that the mutation was found in three of the four affected patients. The 

mothers (II-4 and II-6) were carriers of the mutation. To analyze the frequency of the 

mutation in the Finnish population we screened 200 anonymous blood donors and did 

not find any mutation 

 

 

 

A) PATIENT II-6 

 

 

B) PATIENT III-7 
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                                                      C)  INDEX PATIENT III-8 

 

 

 

D) PATIENT II-4 

 

 

 

E) PATIENT III-4 

 

 

 

F) PATIENT III-3 
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G) PATIENT  III-7 

 

Further we performed Direct Sequencing of the RT-PCR products, which revealed the 

deletion of 78bp from exon 20 and 2bp deletion from exon 21, therefore leading to a 

total deletion of 80 bp nucleotides resulting into a premature stop codon at D806X. 
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We also did a pairwise alignment to strengthen our results. With the help of EMBOSS 

Needle alignment program, we aligned our patient‘s cDNA sequence with the RefSeQ 

sequence of the CUL4B gene. Patient III-7 ‗ s cDNA sequence aligned completely with 

the reference sequence  confirming that he did not have the CUL4B mutation and exon 

20 and exon 21 remain intact. Instead, in patients III-4, III-3 & III-8, a deletion of 78 bp 

of exon 20 and 2 bp of exon 21 were found to be deleted that resulted in premature stop 

codon 806 where aspartic acid in changed to a stop codon D806X the protein sequence. 

(p.806D>X) and thereby affecting the translation and the protein function. 

 

 

 

 

Figure 16. Lanes 1 & 7 represent the 200bp ladder. Lane 2 is Patient III-3, lane 3 is Patient III-4, 

Lane 4 is Patient III-8. Lane 5 is Patient who doesn‘t have the mutation and Lane 6 is the con-

trol sample. 

 

cDNA analysis in patients depicts a band with lower molecular weight than the control, 

demonstrating the deletion of a total of 80 bp nucleotides. 
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Figure 17: To illustrate the CUL4B mutation  
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6. DISCUSSION  
 

In this study we report a novel mutation in CUL4B gene in three out of four male pa-

tients with X-linked intellectual disability. The mutation follows the rule of X linked 

inheritance in the family. The mothers of the affected children are the mutation carriers. 

The mutation is rare since it has not been found in 200 anonymous blood donors.   

Previously mutations in CUL4B have been shown to cause Cabezas syndrome [Cabezas 

et al. 2000; Tarpey et al. 2007; Zou  et al. 2007]. Cabezas syndrome (MIM 300354) is a 

syndromic form of the X linked intellectual disability caused by mutations in the 

CUL4B gene. The main clinical features of the syndrome were first described in a single 

family [Cabezas at al., 2000]. The clinical features of Cabezas syndrome are severe 

mental retardation, speech impairment,  hyperactivity, seizures, intention tremor, in-

guinal hernia, small feet, syndactyly of the second and third toes and skin manifesta-

tions (hyperhydrosis and keratosis  pilaris) and craniofacial dysmorphic features [Cabe-

zas et al. 2009]. The clinical features in our patients were consistent with the Cabezas 

syndrome. A total of twelve families with CUL4B mutations have been reported till date 

[Badura-Stronka et al. 2010; Isidor et al. 2010; Tarpey et al. 2007; Zou et al. 2007; Ravn 

et al. 2011]. Wei et al. (1993)  initially reported a large X- linked pedigree in which five 

males were affected, Zou et al. 2007 had limited the candidate interval on Xq25 and  

identified a nonsense mutation in the CUL4B gene. 
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Table 5. Identified CUL4B variants.  

CUL4B VARIANT MUTATION 

CLASS 

NUMBER OF  

AFFECTED 

INDIVIDUALS 

PROTEIN 

CHANGE 

REFERENCE 

c.638C>T 

exon 4 

Missense 5 T213I Tarpey et al., 

2007 

c.901-2A>G 

exon 7 

Splice 3 not known Tarpey et al., 

2007 

c.1007_1011delTTAT 

exon 8 

Deletion  7 not known Tarpey et al ., 

2007  

c.1162C>T 

exon 9 

Nonsense 3 R388X Tarpey et al., 

2007 

c.1714C>T 

exon 14 

Missense 6 R572C Tarpey et al., 

2007 

c.2107A>T 

Exon 18 

Nonsense 3 K703X Badura  et al., 

2009 

c.2243T>C 

Exon 19 

Missense 4 V745A Tarpey et al., 

2007 

c.2493G>A 

Exon 20 

Splice 3 T831T Tarpey et al ., 

2007 

c. 2413T>C 

Exon 20 

Nonsense 3 D806X Our study* 

c.2566C>T 

Exon  21 

Nonsense 8 R856X Tarpey et al., 

2007   

 

 

Later on Cabezas reported an unrelated X linked family with six males with intellectual 

disability, small testes, muscle wasting in legs, abnormal gait, tremor and prominent 

lower lip [Cabezas et al. 2000]. In 2007 Tarpey identified mutations in the CUL4B gene 

in eight independent families. In parallel, a nonsense mutation in CUL4B was identified 

in the family [Zou et al. 2007] initially reported by Wei and coworkers. 
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Figure 18. Schematic representation of the genomic structure of mutations found in eight families along 

with the present mutation. Also schematic representation of the protein sequence. 

 

The CUL4B gene is composed of 22 exons and it encodes a protein of 913 amino acids 

(GenBank accession number NM_003588). CUL4B is a member of the family of cullin 

proteins that function primarily as scaffold proteins for a series of ubiquitin- protein 

ligase complexes that are responsible for regulating the degradation of cellular proteins 

[Hershko et al. 1992]. CUL4B has been found to be highly expressed in brain, testis, 

prostrate, colon and leukocytes. Cullins are a family of proteins that are characterized 

by the presence of distinct globular  C terminal domain (cullin-homology domain) and a  

series of N terminal repeats of a five- helix bundle .[Tarpey et al. 2007]. Cullin –RING 

complexes comprise the largest known class of ubiquitin ligases. Cullins are involved in 

several biological processes which include cell cycle regulation, signal transduction, 

oxygen regulation and DNA repair. The cullin family consists of at least seven members 
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in mammals. [Petroski et al. 2005]. Although CUL4A and CUL4B are 80 % identical in 

their protein sequences, CUL4B has a unique N terminus that is 149 amino acids longer 

than CUL4A. The N terminus of CUL4B assembles a specific ubiquitin ligase complex 

that targets the estrogen receptor alpha for degradation and this function has been found 

to play in role in this XLID. [Zou Y et al. 2009]. CUL4B is a component of the ubiquitin 

system. Ubiquitin-dependent proteolysis is an integral cellular mechanism for regulating 

protein activity. It is found to be implicated in diverse set of biochemical processes, 

including signal transduction, transcription receptor down-regulation, and endocytosis. 

It has also found to be involved in regulation of the cell cycle, immune response, devel-

opment, and programmed cell death. The proteolytic effects of ubiquitination have been 

widely studied, but it has been evident from the studies that it can influence activities of 

proteins through processes other than the degradation. [Petroski et al. 2005]. CUL4 is 

one of three founding cullins evolutionarily conserved from yeast to humans. Genetic 

analyses in various organisms have revealed a wide range of cellular and organismal 

functions mainly chromosome condensation, heterochromatin formation and DNA rep-

lication and repair [Harper et al.  2007]. CUL4 is present as a single gene in yeast, plants 

and invertebrates, but the vertebrates express two closely related paralogs CUL4A and 

CUL4B [Higa et al. 2006]. Deletion of CUL4B in mice has resulted in embryonic lethal-

ity  and defects in nervous system and heart development [Cox et al. 2010] whereas in 

humans loss of function mutations in CUL4B have been identified  in patients with X 

linked Intellectual Disability [Badura-Stronka et al. 2010; Isidor et al. 2010; Tarpey et 

al. 2007; Zou et al. 2007]. CUL4B mutations including missense, frame-shifts and pri-

mary truncations appear to be distributed throughout the gene and in most cases result in 

significant reduced levels of CUL4B protein expression [Kerzendorfer et al. 2010]. Tar-

pey et al.(2007) findings of eight families with XLID, approximately 3% of the 250 

families screened that have CUL4B mutations clearly indicates that this might be one of 

the most frequently mutated genes underlying XLID. 
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7. CONCLUSIONS 
 

 Although the traditional  gene mapping approaches  like karyotyping, homozygosity 

mapping , linkage analysis  have helped  in  understanding  Mendelian diseases  over 

the past few decades, they are still unable to detect all  forms of structural variation  

[Vissers et al. 2004; Lander et al. 1987; Kerem et al. 1989](Refer Table 6). Exome se-

quencing of a DNA sample from a single individual will generally reveal about 25,000 

variants; the challenge then lies not in finding variants, but in identifying the particular 

mutation accountable for disease.  In a single experiment it is possible that nearly all the 

coding content of the genome can be analyzed. 

It has been found that whole exome sequencing has the potential to identify the causa-

tive mutations in diseases with genetic and phenotypic heterogeneity [Ng et al. 2010; 

Gilissen et al. 2010]. Exome sequencing definitely has the potential to identify rare va-

riants. Apart for the success in finding mutations that causes rare, familial forms of dis-

ease it has been also successful in diseases caused by de novo mutations [Vissers et al. 

2010]. 
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Table 6: Mendelian Disease Gene Identification approaches 

Approach Applicable to Pros Cons 

 

Candidate gene Any disease Easy to perform for 

one or two genes; 

requires no mapping, 

can directly identify 

the causative va-

riant/mutation 

Relies heavily on current 

biological knowledge; suc-

cess rate very low 

Genetic mapping 

by karyotyping 

Any disease Easy to perform; no 

familial cases re-

quired; can detect 

(large) balanced events 

Low resolution, only detects 

large chromosomal aberra-

tions; mutation detection 

requires second step 

Genetic mapping 

by linkage analysis 

Inherited disease Easy to perform Requires large families, 

often identifies large loci; 

mutation detection requires 

second step 

Genetic mapping 

by homozygosity 

mapping 

Recessive monogenic 

diseases 

Small families can be 

used 

Most useful for consangui-

neous families; often identi-

fies large loci; mutation 

detection requires second 

step 

Genetic mapping 

by CNV analysis 

Monogenic/monolocus 

disease 

High resolution CNV 

screening; no familial 

cases required; can 

potentially identify 

small loci 

Only investigates CNVs; 

cannot detect balanced 

events, no base-pair resolu-

tion; mutation detection 

requires second step 

Whole exome 

sequencing (WES) 

Any disease Base-pair resolution 

exome-wide; detects 

most types of genomic 

variation; can directly 

identify the causative 

variant/mutation 

Unable to detect non-coding 

variants; limited resolution 

for CNVs and other structur-

al variation; coverage varia-

bility due to enrichment 

process; relatively expensive 

Whole genome 

sequencing (WGS) 

Any disease Base-pair resolution 

genome-wide; detects 

all types of genomic 

variation; can directly 

identify the causative 

variant/mutation 

Data analysis complex; even 

more expensive than exome 

sequencing 

Adapted from Christian Gilissen et al. 2011 
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Exome sequencing has already affirmed its worth in rapid genetic diagnosis and screen-

ing for many neurological diseases. (Singleton et al. 2011). However there are still vari-

ous restraints   to this technique, the exome data created by the current technologies are 

partial. It skips completely the structural variation. It has been also found that it also 

skips a certain set of exons and in case if the casual variants do not lie inside these ex-

ons, then they are not at all targeted. It is due to the partiality in the capture, sequencing 

and the various alignment processes. Whole genome sequencing is also being increa-

singly used. It has additional edge of capturing all of the exome and also it can afford to 

provide information on the structural variation present around the genome. Neverthe-

less, whole exome sequencing provides most of the advantages of the whole genome 

sequencing but with the lower costs in terms of sequencing as well as the storage and 

analysis of the data. [Majewski et al. 2011]. We anticipate that the whole exome se-

quencing in the coming years will drastically improve to elucidate the molecular basis 

of most remaining Mendelian disorders. 
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