

VEERAKISHORE GODUGULURI

KommGame: A Reputation Environment for Teaching Open

Source Software

Master of Science Thesis

Subject approved by Department Council on May 04, 2011

Supervisors: Adjunct Prof. Dr. Imed Hammouda (TUT)

 Teaching Associate. Terhi Kilamo (TUT)

 ii

I. FOREWORD

This thesis work was done in 2010-2011 in the Department of Software Systems as a

part of the OpenSE project - Open Educational Framework for Computer Science

Software Engineering

I would like to thank Adjunct Prof. Dr. Imed Hammouda and Teaching Associate. Terhi

Kilamo for considering me worth for this work and their continuous support and guiding

during the thesis work.

I would also like to express my gratitude to the Department of Software Systems and my

colleagues at the Department for providing the pleasant and joyful atmosphere which

enabled the work on this thesis. I would also like to thank my friends who encouraged

me to complete the thesis work.

Finally, I want to thank my family for their support during my seemingly endless

studies.

Tampere, April 2010

Veerakishore Goduguluri

Orivedenkatu 8B 44

33720 TAMPERE

Tel: +358465956054

veerakishore.goduguluri@tut.fi

 iii

II. ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Faculty of Computing and Electrical Engineering

Department of Software Systems

Veerakishore Goduguluri: KommGame: A Reputation Environment for Teaching Open

Source Software

Master of Science Thesis, 47 pages.

Examiner: Adjunct Prof. Dr. Imed Hammouda (TUT), Teaching Associate. Terhi

Kilamo (TUT)

May 2011

Keywords: open source education, reputation systems, open source teaching, community

model of education.

Over past several years the importance of teaching open source software in universities

is increasing with the advent of open source as a development and business model. A

novel, student centric approach of teaching open source was tried out at Tampere

University of Technology where a new environment called KommGame was introduced

to assist in teaching open source development. This environment includes a reputation

system to motivate learners to participate. In this thesis, presents an approach of

teaching open source and how the KommGame environment was employed to teach

open source software.

The thesis is divided into three parts: background study, implementation and evaluation.

In the background study part, issues related to open source software education,

reputation systems and reputation model for teaching are discussed. Customization of

reputation model for open source education is all considered. In the implementation

part, different components of KommGame environment are investigated, architecture

and implementation of each component is discussed. All possible use case scenarios are

also covered in implementation part. In the evaluation part, details of KommGame

environment, course setup are discussed and finally evaluation of KommGame

environment is based on the open source course experience.

 iv

III. TABLE OF CONTENTS

I. Foreword ... ii

II. Abstract .. iii

III. Table of Contents .. iv

IV. Lists of Figures and tables... vi

V. Terms and abbreviations ... vii

1 Introduction ... 1

2 Background ... 4

2.1 Open Source Software .. 4

2.2 Teaching Open Source Software .. 6

2.3 Reputation Systems .. 7

2.3.1 Models .. 8

2.4 Reputation Systems in Teaching .. 12

3 A Reputation Model for Teaching Open Source Software 13

3.1 Reputation Model ... 13

3.2 Karma Model ... 15

4 KommGame environment... 17

4.1 Towards KommGame Environment .. 17

4.2 Features Required for KommGame ... 18

4.3 Architecture .. 20

4.4 Implementation .. 22

4.5 Using KommGame Environment ... 24

4.5.1 Registration to access the KommGame environment 25

4.5.2 Login to access the KommGame .. 25

4.5.3 Resetting login password .. 26

4.5.4 Reporting and viewing issues in bug tracking system 27

4.5.5 Commenting and Uploading Patch File .. 31

4.5.6 Closing or Updating an Issue in Bug Tracking System 32

 v

4.5.7 Contribution Open Content to Wiki.. 32

4.5.8 Viewing the karma report ... 33

4.5.9 Viewing individual‟s profile ... 34

4.5.10 Writing content to personal blog .. 34

5 Case Study: Teaching OSS at TUT .. 36

5.1 Course setup ... 36

5.2 Course Activities .. 37

5.3 Feedback .. 38

5.4 Evaluation .. 40

6 Conclusions ... 43

References ... 45

 vi

IV. LISTS OF FIGURES AND TABLES

Figure 2-1 Hypothesized OSS development team structure. 6
Figure 2-2 An example of star rating model 9

Figure 2-3 Example of Favorites and Flags Model 9
Figure 2-4 Example of This-or-That voting model 10

Figure 2-5 Example of Points model 10
Figure 2-6 Example of Reviews model 11
Figure 2-7 Robust karma model [3] 11
Figure 4-1 An overview of KommGame structure 18
Figure 4-2 Learning environment Architecture. 21

Figure 4-3 Karma engine workflow 24

Figure 4-4 Registration page for KommGame 25
Figure 4-5 Login page for KommGame 26
Figure 4-6 Password reset 26

Figure 4-7 Interface to view issues. 28

Figure 4-8 Interface to report issues. 29
Figure 4-9: Interface to view issues. 29
Figure 4-10 Lifecycle of bug reported in bug tracking system 30

Figure 4-11 Commenting issue and Uploading patch file 31
Figure 4-12 Closing or updating an existing issue. 32

Figure 4-13 Add content to wiki and Favorites bookmark 33
Figure 4-14 Karma reporting interface. 33
Figure 4-15 Detailed user profile interface. 34

Figure 4-16 Writing personal blog 35

Table 2.1 List of reputation models 7

Table 3.1 List of activities that can contribute to participatory karma 14
Table 5.1 List of activities and corresponding weight functions 38
Table 5.2 Feedback questions and summary of response 39
Table 5.3 Statistics about the sample open source project 41

 vii

V. TERMS AND ABBREVIATIONS

OSS Open Source Software a general term for software with source code

publicly available and does not need any royalty for use.

SVN A popular version control system Subversion. A system where source

code is stored for different versions.

GUI Graphical User Interface

COP Community of Practice

SSO Single sign on

OSI Open Source Initiative

1

1 INTRODUCTION

“One of the questions I've always hated answering is how do people

make money in open source. And I think that Caldera and Red Hat --

and there are a number of other Linux companies going public --

basically show that yes, you can actually make money in the open-

source area.” -Linus Torvalds

With the advent of open source software (OSS) as a development and business model,

the number of job vacancies valuing open source knowledge and experience has been

rising on a regular basis. This in turn has motivated many universities and professional

schools to introduce new courses and programmes related to teaching OSS principles

and practices (e.g [1], [15]).

So far OSS teaching has mostly been organized in a traditional lecture course format, for

example taking the form of a seminar where students present specific OSS related topics.

Other attempts rely on sending students out into real open source projects and

communities (e.g. [2]).

The approaches of teaching open source software mentioned above face two major

challenges. First, classical teaching methods where most of the time the lecturer spends

teaching the course and the students listen to the lectures. Furthermore students are made

to work course assignments and they must work on the assignments in a deadline

oriented way that is the students start working when deadline of assignment approaches.

This method may not fully convey all the special aspects involved in OSS development,

such as community collaboration, peer review, and co-creation.

Second, students may find it hard to participate in real OSS project as a first experience.

This is because the development model of OSS is not as same as the commercial

software, OSS projects typically have their own principles, practices, processes, and

2

tools; often students are not familiar with open source software development model

principles, practices, processes, and tools.

The main research topics that this thesis would investigate are: teaching open source

software in a controlled environment setting and using the reputation system for

motivating open source education. This thesis defines a more attractive approach and

building an environment which is similar to real OSS project infrastructure for teaching

OSS. A more attractive approach is to provide a learning environment for OSS where

students could collaborate collectively to achieve a common goal. This kind of approach

is called constructive approach [21]. Constructivism is defined as philosophical position

that views knowledge as the outcome of experience mediated by one's own prior

knowledge and the experience of others. Constructivism seemingly fits in with, and

supports, a range of multicultural, feminist and broadly reformist programmes in

education. Although constructivism began as a theory of learning, it has progressively

expanded its dominion, becoming a theory of teaching, a theory of education, a theory of

the origin of ideas, and a theory of both personal knowledge and scientific knowledge.

Indeed constructivism has become education‟s version of the „grand unified theory‟ [25].

Such constructivist approach to learning allows students to generate new knowledge

through the interaction of the group‟s past experience and new ideas. The community

spirit and way of working could be maintained by organizing the learning tasks in a

controlled collaborative setting that simulates real OSS projects.

A constructivist learning method however needs individual‟s active participation, which

from the OSS perspective means student contribution to the community. An important

question is, therefore, how to keep students‟ motivation high for the purpose of learning

OSS concepts through active contribution. It has been argued that reputation systems

could play an important role in maintaining student motivation [9]. Reputation systems

are used to compute and publish members‟ contribution in a community.

This M.Sc thesis argues that reputation systems can be applied to build a learning

environment for open source software. The approach is also inspired by the experiences

of using reputation systems to reward and recognize developers in OSS communities

such as Qt [10]. Towards this aim, we present an example reputation model and a

concrete reputation environment known as KommGame that mimics real open source

projects. The environment has successfully been tested at Tampere University of

3

Technology (TUT) to introduce OSS concepts and practices to software engineering

students.

This M.Sc thesis is structured as follows. Chapter 2 discusses the theoretical bases of the

thesis, including teaching open source and reputation systems. Chapter 3 studies the

methods and concepts used for teaching open source software and provide brief

overview of how reputation model can be used for teaching open source software.

Chapter 4 presents the implemented solution KommGame environment. In Chapter 5

discussion is placed regarding how the implemented environment met the aims of the

work. In Chapter 6 draws conclusions of the thesis.

4

2 BACKGROUND

The aim of this chapter is to discuss and familiarize the readers with the terms, concepts

and techniques used in this thesis. This chapter provides a basis to proceed further in

understanding the work.

2.1 Open Source Software

OSS [22] can be defined as computer software for which the source code is made freely

available to anyone to view, modify and distribute under open source definition

compliant license, as articulated under the Open Source Initiative [OSI]. Any software to

be OSS its license should comply with certain criteria [23] along with access to source

code.

First is the license of the software must not restrict of charging fee for giving away the

software as a component of an aggregate software distribution containing programs from

several different sources. The source code must be distributed with initial work and all

other derived works.

Second is the license it must not restrict the derived work and must allow them to be

distributed under the same terms as the license of the original software. The license

should protect the integrity of author‟s source code; the license may restrict the

distribution of modified work only if the license allows the distribution of "patch files"

with the source code for the purpose of modifying the program at build time.

Third is the license that should not restrict any person or a group for using the software.

License must not contaminate other software and must not be specific to product. The

license must not restrict anyone from making use of the program in a specific field of

endeavor.

5

Fourth is the rights that are attached to the program must apply to all to whom the

program is redistributed without the need for execution of an additional license by those

parties.

Social Structure of Open Source Development Team

Structure of the open source development model is one of the important factor which

makes the development model different from proprietary software development.

Understanding the basic structure of the open source development model helps

understanding team practices. Several authors have described OSS development teams

as having a hierarchical or onion-like structure [26] as shown in Figure 2-1. The team at

the center of the model is developers, they are the publishing entities of OSS project they

take care of software infrastructure and the development process of OSS project. They

contribute most of the code and oversee the design and evolution of the project. A study

[27] on some OSS projects found that only about 15 developers contributed more than

80% of the code for new functionality. Since they contribute most of the code, they

deiced about the licenses that apply to OSS project. From the study, we can see that core

team of OSS project is small and they exhibit a high level of interaction, which would be

difficult to maintain if the core group were large. The publishing entity defines the

process to use infrastructure for granting access to the open source project including

access to source code, contributing to the project (patches, wish lists, bug reports, bug

fixes, documentation, and developer support) and reaching other community members.

In the next level of hierarchy are the developers, Observers, and industrial partners. The

team at this level mostly deals with the bug fixing in the project, however the fixed bugs

should be reviewed by the rest core developer team before the bug accepted as fixed. For

example, during much of the development of Linux, Linus Torvalds personally reviewed

and decided on all code submissions. Usually this level of team is much larger compared

to code developer team. Their level of interaction is also much lower.

Some open source projects are associated with industrial partners; those partners might

get involved in the community process. Industrial partners are typically two types:

enthusiastic and conservative. Enthusiastic partners participate with developers to

contribute to the software and stay close to its evolution. On the other hand conservative

partners are reluctant for the software being open source as this may change their mode

6

of operations and business. This kind of partners has their own members in the

community to observe the evolution of the software and the outcome of the community.

The other important element in open source development team is the existing open

source communities and other individuals. This group consists of mostly non-

programmers. A subset of this group are active in the open source project, they use the

latest release of software and contribute bugs or feature requests. However, the majority

of this group are passive users; they just use the software, without making any

contribution to the project.

Figure 2-1 Hypothesized OSS development team structure [26].

2.2 Teaching Open Source Software

In modern pedagogical approaches, the learner plays a center role. The learner should

continuously be motivated to build a new knowledge based on previous experience. The

role of the instructor is to assist the learner through the learning process by applying the

right teaching methods and by providing an appropriate learning environment. In the

OSS setting, such learning environment is built around community dynamics. As a

matter of fact, we can observe that motivation is the common driving force of modern

pedagogical theories and OSS development.

The need for teaching OSS has been emphasized in the recent past [18], taking different

forms. Some universities have tried out teaching software engineering using OSS [4]

[15], which helped students learn basic and advanced software engineering topics. In

7

[13] open source evolution is taught in software engineering courses to give students a

more realistic experience. Some universities have organized international masters

programmes in open source software [1], devoted for providing students with an integral

education on the different aspects of OSS. On a similar note Google and The Finnish

Center for Open Source Solutions (COSS) have conducted summer code camps to

encourage student‟s participation in real life open source projects. There are some

communities like Teaching Open Source [7] and OpenSE [8] dedicated for promoting

and researching open source teaching.

All of the above mentioned methods of learning OSS require participation in a real open

source projects, which requires certain kinds of skills and practice to practices. Real OSS

development involves different open source terminology like committer, contributor,

bug report, feature request, version control, etc. A novice learner does not have prior

knowledge of practical issues in OSS development. Open source education should

convey these practical issues to individuals before encouraging them to participate in a

real open source project. The learning environment should motivate students to make

more contributions; this can for example be achieved by using a reputation system.

2.3 Reputation Systems

Reputation systems are used to measure the contribution of individuals in an online

community. They are also applied in different fields such as e-commerce, search

engines, and social news.

The reputation for any entity can be decided in several ways like writing feedback about

the entity, rating the entity with some points, marking the entity as favorite and

promoting the entity by voting. All the above mentioned models are simple. However,

simple does not mean that they are not useful or easy to break. We can build a more

robust reputation model by taking an aggregation or a different combination of such

simple models of reputation. In [3] Farmer has explained about different reputation

models, Table 2.1; shows the list of reputation models and description of their reputation

values.

Table 2.1 List of reputation models

8

Model Reputation value

Rating The average of all rating that the entity has got.

Favorites and Flags The number of bookmarks received.

This-or-That Voting

The number of votes to an item. Voting a particular item

within a bounded set of possibilities.

Points The sum of point for different actions user are engaged in.

Reviews The number of normal ratings or freeform text comments.

Karma The aggregate of all user activities. All the user activities

have corresponding reputation.

2.3.1 Models

In this section all the reputation models are explained in detail along with examples.

Rating model

A Rating model is used when a participant has to rate the entity between a range of

values. There are different types of rating models that are in use, examples are points

scale rating, star rating, or “HotOrNot”. This model is very easy for the users to provide

the reputation feedback, for example Figure 2-2 shows an example of how uses this kind

of a reputation model for rating movies.

9

Figure 2-2 An example of star rating model

Favorites and Flags Model

Favorites and Flags model gives a control to the community for identifying a particular

entity of exceptionally high or low quality. Favorites and Flags model has three variants

Vote to promote, Favorite, and Report Abuse. Vote to promote model is used when user

has to vote to a particular item to promote it from a pool of items on the poll. Figure 2-3

shows an example of this model. A Favorite model is used to keep track of the number

of times a particular entity is bookmarked as favorite, thus increasing the reputation of

the entity. Report Abuse is a negative reputation model. This model is used to avoid bad

content in the community. In this model total reputation is the number of times particular

item is flagged as abuse.

Clicking on thumbs up icon if you like the item

Figure 2-3 Example of Favorites and Flags Model

This-or-That Voting Model

This-or-That Voting model is used when the community members have to choose best

option within a bounded set of options available. An example of this type of model is in

communities when someone answers a question, any member of the community can vote

the answer as “was the answer helpful?”. Figure 2-3 shows an example of this model.

10

Was this review helpful to you ?
Yes

NO

Figure 2-4 Example of This-or-That voting model

Points Model

Point‟s model is used when we want a very specific value of user activity on

something. When a user is engaged in various actions, these actions are recorded,

weighted and summed to calculate total reputation. Figure 2-5 shows an example of this

model.

Figure 2-5 Example of Points model [3]

Reviews Model

In the reviews model the reputation is a combination of series of rating models or

freeform text comment on a particular entity. For example in www.amazon.com users

can write review comments about the product they bought. The reputation increases or

decreases based on the review comments. Figure 2-6 shows an example of this model.

11

Figure 2-6 Example of Reviews model

Karma Model

The word Karma refers to the results humans get because of their past actions. A Karma

model of reputation is particularly used when the entity to which is the reputation

subjected is a human. Karma model is generated using combination of the above

mentioned reputation models.

Figure 2-7 Robust karma model [3]

There are two primitive forms of karma models: participatory and quality. Participatory

karma is used to represents the amount of user‟s contribution. Quality karma is used

represents the quality of user contribution. An example of both participatory and quality

karma is when karma is given to reviews written by a user then participatory karma is

about the number of reviews that user has written and quality karma is about the content

12

of the reviews not the count of reviews. When a model contains both the participatory

karma and quality karma then it is called robust karma model. The Figure 2-7 gives

visual illustration of robust karma generated by combining participatory karma and

quality karma models. Using a robust karma model gives highest score to the most

active and best quality contributor.

2.4 Reputation Systems in Teaching

As reputation systems are applied for measuring online activities one can see that

reputation systems can be applied for e-learning in the educational context where most

of the activities happen online. In the web-2.0 era internet users are familiar with

reputation and are used to do different kinds of online activities for instance writing

reviews about something or bookmarking something as favorite which give them

reputation. E-bay is the best e-commerce website where people do activities like writing

reviews about the products that they bought and bookmarking some products as favorite.

Reputation systems have been a popular method of motivating the participants of online

communities. As only a few open source communities have adopted the reputation

systems for motivating developers, more research needs to be done regarding to using

reputation systems in open source communities. But it is discussed in [9] that reputation

systems suites a small group of young participants; they have high competitive sprit

(spirit maybe) which makes learning more active and motivated.

A Reputation system can be applied to Community of Practice (CoP) [12]. CoP is

similar to collaborative learning where a group of people with common interest who

want to share and gain knowledge from other group members. In [16] it is showed that

reputation system can be used in the context of e-learning. A web based reputation

system called SocialX [17] was designed to support collaboration and social aspects of

e-learning. SocialX lets the students to share and exchange of solutions, to discuss

solutions of exercises through a forum, and to participate in project activities. The

previous research results supports that the use of reputation systems in education.

13

3 A REPUTATION MODEL FOR TEACHING OPEN

SOURCE SOFTWARE

In this chapter the reputation model that suites for open source education and Quantities

of reputation model are discussed.

3.1 Reputation Model

In OSS development, most of the activities are done online. OSS development requires

an infrastructure where the community can perform different project related activities.

Example infrastructure components include a bug tracking system, a wiki system, a

discussion forum, a version controlling system, an irc channel and a mailing list. The

most common OSS community activities are based on bugs, features, improvements,

wiki pages, a code repository, a forum, an irc channel and a mailing list.

A reputation model for open source education should be designed so that most common

activities of open source communities such as writing new source code, testing of

existing source code, reporting bugs in source code, documenting the source code, and

adding content to wiki are taken into consideration to give the participants a feel of real

open source communities. In OSS development, all kinds of contribution are treated as

equally important and there is no good metric with which to compare or quantify

different types of contribution with each other. This is the reason why most of the open

source communities have not adopted a reputation system. In an educational context,

however, the course moderator may decide which types of contribution should be

emphasized. A reputation model can be designed accordingly.

This thesis argues that the karma reputation model fits well the activities and the nature

of OSS communities, where the object subjected to reputation is human. Both forms of

karma model (i.e. participatory and quality) can be used to measure both the amount and

quality of contributions.

14

All kinds of online activities can contribute to the reputation of an entity. Activities of

any OSS project that can contribute to participatory karma values are listed in Table 3.1.

Table 3.1 List of activities that can contribute to participatory karma

Category Activity

Bug

Reporting new bug

Commenting on bugs

Closing bug

Feature

Request new feature

Commenting on feature request

Closing new feature

Improvement

Request Improvement

Commenting on Improvement

Closing Improvement

Wiki pages Creating/Editing wiki pages

Code repository

Apply a patch

Add a new code file

Removing a code file

Forum

Starting new discussion

Commenting discussion

IRC Communicating through IRC

Mailing List Send email to mailing list

In the process of contributing to OSS any community member may find a bug in the

software. Then the bug has to be reported in the bug tracking system. Community

members can comment on the bug and close the bug. The feature request and the

improvement request are also handled in the same manner as bugs. Any community

member can add or edit open content on the wiki pages, add code or apply patches to the

15

source code in the code repository, participate in forum discussion and communicate to

other community members through IRC channel and mailing list. All these activities

contribute to the participatory part of karma value. The contents of the wiki pages can be

bookmarked as “like” by any community member, if they like the page contents. The

number of bookmarks that any wiki page receives will contribute to the quality part of

the karma value of the author of the wiki page. At regular intervals of time, best quality

contributor will be selected by the community. The best quality contributor is given a

hat, a hat is considered as token for best quality contribution. The number of hats any

community member receives contributes to their quality karma.

3.2 Karma Model

The karma model we suggest is composed of different kinds of contributions. Care is

taken that most common contributions are covered by the karma model. Each

contribution is given a particular weight and the course moderator decides the weights

for different contributions in the community. The final karma value of the participants is

the sum of weight times of each contribution. The universal karma model can be written

as in equation 3.1

(3.1)) ()())((

1

TokensQualityWeeklygFavoritesfoncontributifKarma

n

k

kk

Here n corresponds to the total number of contributions. fk is the weight function

corresponding to contribution type. “Favorites” is the number of like bookmarks a

content author gets. “Weekly Quality Tokens” corresponds to the number of time the

particular participant was selected as the best quality contributor of the week by the rest

of the members of community. The karma model in Eq. no. 3.1 is composed of two

types of karma, participatory karma and quality karma. The sum of all contributions

gives the participatory karma. The quality karma is composed of two parts, favorites,

and weekly quality tokens.

For example, a sample robust karma model which covers activities related to bugs,

features, improvements, wiki and quality contribution is given below. A similar model

was used in Meamo community [11]. In the formula each activities is multiplied with its

associated weight. Total karma is sum of all karmas from each individual activity.

16

Karma= 6*√(number of bugs reported) + 3*√(number of bug comments) + 2*(number

of bugs closed) + 4*√(number of feature requests) + 3*√(number of bug comments) +

2* (number of closed new features) + 4*√(number of request) + 3*√(number of

improvement comments) + 2*√(number of closed improvements) + 4*√(number of

edits) + 4*√(number of likes) + 4*√(number of weekly quality tokens) (3.2)

There is mapping between equation no. 3.1 and equation no.3.2. The sum of all the

contributions that belongs to bugs, features, improvements and wiki edits is the

participatory part of total karma, this part of 3.2 corresponds to sum of contributions

(sigma part) in equation 3.1. In equation 3.1 quality karma has two parts one is

f(Favorites) and the other part is g(weekly quality tokens). In equation no. 3.2

4*√(number of likes) corresponds to f(Favorites) in equation no. 3.1 and the number of

weekly quality tokens this to g(weekly quality tokens).

 The weight function of each contribution is chosen based on the priority of contribution,

in this example bug reports is given the highest priority with weight function 4*√. And

the lowest priority is given to closing the bugs, new feature, and improvement requests

with weight function 2*√.

17

4 KOMMGAME ENVIRONMENT

In this chapter there is discussion about approach towards KommGame environment, an

overview of components in KommGame environment, how they are implemented and

some example scenarios how they are used.

4.1 Towards KommGame Environment

With the environment the aim is to construct an infrastructure with which students can

practice OSS projects. It is very common that people who participate in OSS projects are

self-motivate to contribute to the project. But when it comes to OSS education all the

students who participate in the course may not be self-motivated, so the environment

should be able to create motivation among the students without any damage to the

principles of OSS. To create motivation among the students who participate in the

course we choose a reputation system integrated with infrastructure.

A brief overview how the KommGame environment looks like is shown in Figure 4-1.

There two databases in the system one is store the details of the users who participate in

KommGame and the other is to store user contribution data. The karma engine is the

heart of the KommGame environment; it reads the contributions of students from

contribution-collector and creates display-ready statistics of student karma from the

fresh data came from contribution-collector. The arrows indicate the flowing of the user

contribution data, except for in the case of the student, for student it shows that student

contribution in OSS project infrastructure, student requests reputation statistics through

GUI and gets the visual data back from the display chart. The contribution collector

requests and receives the data from user database and contribution database and creates

association between user data and contribution data so that every user gets his

corresponding contribution details.

18

User database

Contribution

collector

Contribution data

Karma

engine

GUI

Display

chartStudent
OSS Project

infrastructure

Figure 4-1 An overview of KommGame structure

4.2 Features Required for KommGame

We have developed an OSS learning environment based on the reputation model

presented earlier. The learning environment, called KommGame [20], maintains karma

values as a motivational factor for a community of learners. The KommGame

environment forms an infrastructure required for collaborative and student centric

learning.

The KommGame infrastructure has been developed to mimic the infrastructure of a real

open source community. Real open source communities have following feature: Content

management system, Bug tracker, User manager, IRC, Mailing list, Code repository, and

Blogging system.

Content Management System

This is a place where the community members can contribute open content about the

project. Wiki assists the users to edit text easier and encourage community members to

contribute and annotate text content for a project.

19

Bug Tracker

Bug tracker is usually a web interface accessible to all the community members, where

the users can report the bug they found, request new feature they wish to have in the

project or any request improvement of any feature. Bug tracker is a important channel of

communication between the community members. When a user submits any request lot

discussion occurs between the users who are interested in the reported request.

User Manager

The name of the component is self explanatory. This component is responsible for

performing create, read, update and delete operations on user profiles of the community.

Communication Channels

Communication channels like Internet Relay Chat and mailing list are required by

KommGame environment. IRC is one of the popular methods of communication in open

source projects. Open source projects often have designated people to moderate IRC.

IRC is a great avenue for asynchronous communication. Usually conversation on IRC is

not saved but some project log the conversation for future reference.Mailing lists are

used in addition or replacement to IRC. Open source code hosting sites like

GoogleCode, SourceForge and Lanchpad offer mailing list for the projects they host.

Mailing list is a great tool for asynchronous communication.

Code repository

This component is the code base where the project is hosted. They act as revision control

system for the project. GoogleCode, SourceForge and Lanchpad are some famous open

source hosting.

Blogging system

Blogs are usually used by the community member to update their activity in the project

to the rest of the community. Blogs act as a gateway for social interaction with

community members.

20

Along with above mentioned components KommGame environment also needs a

reputation system for to calculate the karma of each community member and an user

interface to publish karma values.

4.3 Architecture

From the architectural point of view the learning environment can be divided into the

following modules:

 Content management module

 Blogging module

 Bug reputation system

 Karma Engine

 User management module

 Version controller

Figure 4-2 shows the architectural design of the learning environment.

Content management module is responsible for assisting the community members to

contribute open content with other community members. Content management system

has a web interface; users can add content through the web interface. Content

management keeps track of all the activities done on any page.

Blogging module is responsible for maintaining the blogs created by the community

users. Blogs are more like personal web pages. Blogging module provides each

corresponding user with their blog page where the user has permission to update the

blog. And all the content that is updated in the blog page is publicly made available to all

the community members.

Bug reporting system is responsible for managing the bug, new feature and improvement

requests reported by community users. All the requests reported by any community

member are publicly visible to every other community member. Once a request is

reported in the bug reporting system this request is handled by any other member who is

interested in it and a lot of discussion happen before any request is closed.

21

Karma engine is responsible to calculate the user contribution in the community. As

explained in chapter 4 the contribution that should be considered for final karma based

on the focus of activity is decided by the course moderator. All the karma values

calculated are post on public web page accessible all the community members.

User management module is responsible for performing: create, read, update and delete

operations on user profiles of the community. User management module provides all the

details of the contribution done by any community member.

Version controlling system is responsible for revision management of the source code.

All the modules share the common learner database. The Karma module interacts with

all other modules to collect the learner contribution information and calculates the user

karma based on learner contribution and makes the karma value publicly visible to every

other learner.

Figure 4-2 Learning environment Architecture.

The architectural diagram in Figure 4-2 shows how the each individual component in the

infrastructure depends on other components. These dependencies are shown using

dashed line with arrow head. The component on the arrow head side is the component on

22

which the component on the other side of the line depends on. The Karma engine is at

the heart of the whole learning environment. It interacts with all other components to

calculate the total karma of each participant

The dashed lines with arrow heads represent uses relationships between components. For

example, the Karma engine depends on Bug tracking, wiki, version controller, and user

profile to read the user contribution and calculate total karma. The blogging system uses

the services of Wiki system.

4.4 Implementation

The environment is accessed through web browser; therefore it web application and is

should be platform independent so we have chosen PHP for development of the whole

environment and MySql as backend database since they are open source and I am more

familiar with PHP and MySql.

Content management system is implanted using Dokuwiki [6]. Dokuwiki is a open

source software aimed at small companies documentation needs. It is developed using

PHP scripting language and licenced under GPL 2. It works on plain text files and does

not require any database. Dokuwiki has its own user management system, but this user

management is replaced with the user management of the KommGame environment to

support single-sign-on(SSO) feature.

Blogging system is implemented using PHP. It reuses the editing module from

Dokuwiki. Blogging system uses plain text files to store the user edited content on the

blog. The aim of this module is to provide users a simple interface to maintain and track

their activities on KommGame.

Bug tracking system is implemented using Mantis [5]. It is a free and open source web-

based bug tracking system. It is developed using PHP scripting language and licensed

under GPL 2. It can use MySql, MS SQL, and PostgreSQL databases to store bug

details. We have used MySql for database since its open source and I am more familiar

with it. Mantis has its own user management system, but this user management is

replaced with the user management of the KommGame environment to support SSO

feature.

23

Mantis and Dokuwiki because they can be integrated together and support SSO. The

wiki system and the bug tracking system are deployed over the Apache web server. They

share a common user management system.

The User profile component is the user management system of KommGame

environment. It is responsible for User registration to access KommGame environment,

Single sign-on to KommGame environment, maintaining the participant‟s data. User

profile system is developed using PHP, it uses MySQL for database. The aim of this

module is make have central user management and let users to use same credentials for

sub modules of KommGame environment.

Version control system used is Subversion. Subversion is often abbreviated as SVN,

after the command name svn. It is widely used by open source communities for example

Apache Software Foundation, PHP, SourceForge and Python. Reasons for choosing

subversion are, it is open source and it is easy to use.

Mantis and Dokuwiki have their own graphical user interfaces (GUI). A GUI module is

designed for displaying statistics of karma. GUI module is implemented using HTML,

CSS, and PHP. The statistics of karma are displayed as graph, the graph is drawn using

pChart [24] open source library. The statistics are display as histogram with karma

values on y-axis and user-ids on x-axis. The aim was to let users easily understand the

graph and view karma values.

Karma engine is implemented using PHP. Implementation based on the workflow shown

in Figure 4-3, whenever user request for karma value first karma engine is initialized;

after karma engine is initialized it retrieves user contributions by interacting with wiki

system, bug tracking system and version control system. After reading the contributions

karma model is applied on the contributions to calculate the latest karma values of all

users. GUI module receives all the karma values and it prepares a histogram graph to

display karma statistics. |The aim was to make latest karma values whenever a user

accesses the karma values.

24

Initialize Karma engine and read user

data from database

GUI

Retrive karma values

prepare graph and Display

graph and statistics in the

browser

Karma engine

Retrive user contributions

form wiki, bug tracking and

version controller system

Wiki

Bug

tracking

Version

controller

Apply karma model on the

retrived contributions to

calculate karma values

Figure 4-3 Karma engine workflow

4.5 Using KommGame Environment

In order to use the KommGame environment the learners and course moderators has to

be familiar about how to use the environment. This section provides details about all the

interfaces through which the users can interact with the system. Different use cases that

learner can do in the KommGame environment are registration to access the

KommGame environment, login to access the KommGame, resetting login password,

reporting and viewing issues in bug tracking system, commenting on issues in bug

tracking system, uploading a patch file for an issue, closing an open or unresolved issue

on bug tracking system, contributing open content to wiki, writing content to personal

blog, contributing code in version control system, viewing Karma report, viewing

student‟s profile and giving quality token for their contribution.

25

4.5.1 Registration to access the KommGame environment

 To make any contribution in KommGame environment the users have to log-in. To get

the log-in credentials user have to be registered. For registration user have to access the

internet address at [20] and click signup for a new account. User will be redirected to a

new page shown in Figure 4-4. After completion of sign up, user will be sent a

confirmation email to the email address user has specified. Using the confirmation

email, users will be able to activate their account. If users fail to activate their account

within seven days, it will be purged. User must specify a valid email address in order to

receive the account confirmation email.

Figure 4-4 Registration page for KommGame

4.5.2 Login to access the KommGame

Once the user account is activated they can log in to KommaGame environment at [20].

The login page shown in Figure 4-5, user has to give username and password in

corresponding fields and click login button to login.

26

Figure 4-5 Login page for KommGame

4.5.3 Resetting login password

It is very common scenario in any kind login system, that the user forgets the password

and wants to reset the password. On the login screen there is link to with title “Lost your

password?” user has to click that link which will redirect the user to the page shown in

Figure 4-6. On this page there are two fields: username and email. To reinstate your lost

password, user has to supply the name and email address for the account and click

submit button. If the data corresponds to a valid account, you will be sent a special URL

via email that contains a validation code for your account. Please follow this link to

change your password.

Figure 4-6 Password reset

27

4.5.4 Reporting and viewing issues in bug tracking system

Once the user is logged in the user interface looks like in Figure 4-7. Different parts of

KommGame are accessible through links that are visible in Figure 4-7. “View issues”

link is used to view all the issues that are reported. “Report Issue” link is used to report a

new issue. “FLOSSpedia” link is used to access the open content generated by students.

“Karma Ranks” link is used to view the karma value of all the students. “Project wiki”

link is used to access the wiki of the project done during the learning process. The view

provided by Figure 4-7 has color coding of issues in it. The issues that highlighted with

ping color are the newly reported bug and needs attention. The issues which are

highlighted with blue color are the once that are assigned to one of the developers, they

are in assigned status. Once these assigned issues are fixed they are put to review status.

The issues which are in grey color are the once which are review and marked as closed.

This color coding makes it easy for the user to get a quick grasp of relative quantity of

the number of issues under different status.

28

Figure 4-7 Interface to view issues.

When the user clicks “Report Issue” link the user is redirected to a page shown in Figure

4-8. User has to fill the fields with * symbol in order to save the bug. Under category

field user has three options Bug, Improvement, New Feature. Corresponding option has

to be selected based on the requirement. In reproducibility filed user says if this issue is

a reproducible or not. Severity and priority fields tell the importance of the issue. User

should write clear description of the issue in description field. Any other additional

information is provided in additional information field. After filling all the fields user

has to click “Submit Report” button to submit the issue.

29

Figure 4-8 Interface to report issues.

When the user clicks “View Issue” link the user is redirected to a page shown in Figure

4-9. All the fields in the page are self explanatory. This view shows all the details about

any issue that were given by the reporter. All the history associated with the issues can

also be viewed in this page.

Figure 4-9 Interface to view issues.

30

Figure 4-10 Lifecycle of bug reported in bug tracking system

The bugs reported in the bug reporting system has six stages, new, acknowledged,

assigned, feedback, resolved and closed. These six stages form a lifecycle for the bug,

lifecycle is shown in Figure 4-10. The first state of the bug in its lifecycle is new; this is

when the bug is reported for the first time. Second state is acknowledged; this is when

once the manager of the project sends an acknowledgment to the report about the bug.

After the acknowledged state the bug goes to feedback state, if the manager needs more

clarification on the bug from the reporter else it enters to assigned state where it is

assigned to a developer. After assigned stat the developer can put the bug into feedback

state if he needs more clarification on the bug from the reporter else the developer will

31

resolve the bug and puts the bug to resolved state. Then the tester tests the resolution

submitted by the developer and puts the bug to close state else if the tester finds that the

issue still persists then the tester puts back the bug to assigned state.

4.5.5 Commenting and Uploading Patch File

Once the issue is reported on bug tracking system any other member of the project can

view the issue and take up the issue to resolve it. If the reported issue does not provide

enough details about the issue, then the member who wants to take up the issue can write

comments on the issue. Any member of the project can write comments on any issue.

Once the issue is resolved by any member of the project who takes it up, then they can

upload the corresponding patch files to the issue. Commenting on a bug or uploading

patch file to bug can be done from “View Issue” link. Figure 4-11 shows the fields

where users can upload patch file and comment on the issue.

Figure 4-11 Commenting issue and Uploading patch file

In order to upload the patch file user has to click the browse button which is against

select file field. Clicking on browse button opens a new window where user can browse

through the file system and select the particular patch file. After selecting the patch file

click on upload file will upload the file and attach the file to the issue. Any kind of files

can be uploaded in same way for example if user want to upload an image which clearly

depicts the issue, then the user can upload that image in the same way as patch file and

this will be attached to the issue. “Add Note” section in Figure 4-11 is the section for

writing comments on the issue. Text box that is against Note label is the field where

32

users can write the comments, after writing the comments user has to click Add Note

button to submit the comments. Once the comments are submitted they appear in the

history of the issue.

4.5.6 Closing or Updating an Issue in Bug Tracking System

Once any member of the project find a resolution to the issue any issue on bug tracking

system. Then the project member who has found the bug will submit the resolution to

the bug as an attachment and changes the state of the issue to “resolved”. After the issue

is in resolved state then the tester take up the resolution and verify if the issue is fixed. If

the tester finds that the issue is fixed then he/she puts the issue to closed state from

resolved state. Any modification to an existing issue can be done by clicking on “Update

Issue” button in Figure 4-9. After clicking the button user will be redirected to the view

shown in Figure 4-12. Status of the issue can be change using the dropdown list against

the status label in Figure 4-12. The dropdown list is highlighted using a circle around it.

Any field of the issue can be modifies in this view.

Figure 4-12 Closing or updating an existing issue.

4.5.7 Contribution Open Content to Wiki

The system used to share the open content with community is Wiki. Every participant

can add open content to the wiki system by providing the authentication credentials.

Figure 4-13 shows wiki edit feature where the user is adding content to the wiki. The

user clicks the edit button to add content to the wiki. Once the content edited is saved,

any other user can start editing the page by clicking the edit button again.

33

Figure 4-13 Add content to wiki and Favorites bookmark

If any community member likes the content of the wiki page then they can bookmark the

page as a favorite. When some community member bookmarks a wiki page as a favorite

then the author of the page gets karma.

4.5.8 Viewing the karma report

All participants can view the karma values of all the participants in a graph using the

Karma reporting system. Figure 4-14 shows sample view of a karma graph. The graph

shows different categories of users like committers and reported in different colors.

Figure 4-14 Karma reporting interface.

Each vertical bar in the graph represents the score of each user of the system. Each

vertical bar has two parts with different colors; the bottom part indicates the score of the

previous week. The upper part indicates the score of the current week. The hat like icon

34

in some bars indicates that those users were the best contributors for some week in the

past. The names in Figure 4-14 are blurred out to protect user privacy. On karma report

there are links to access user profile; the profile view provides details of user

contribution. The profile view is discussed in next section. The legend in the Figure 4-14

describes the color codes of the chart.

4.5.9 Viewing individual‟s profile

All participants can have a detailed view of the activities done by a community member

by using the user profile system. Figure 4-15, show the sample view of the user profile.

The left side table shows numerical figures of the participant‟s contribution, on the right

side we can see the blog that is maintained by the participant. This view is publicly

available to anyone. When the course coordinator logs in they can see two more buttons

“Add a hat” and “Remove a hat”, here “hat” is a token for quality contribution. If the

current user is the best quality contributor of the week then he will be given a hat. The

remove button is used to eliminate human errors. These buttons are not visible when a

learner is viewing the page.

Figure 4-15 Detailed user profile interface.

4.5.10 Writing content to personal blog

Once the user is logged in the user interface looks like in Figure 4-7, in this link called

“Edit notes”. When user clicks the link he/she is redirected to page which looks as in

Figure 4-16. This page has two buttons: edit this page and old revisions. User has to

35

click edit this page to write on their blog. The number on the top of the page is the

unique user id given to the student while registration. User can go to previous version of

the page using old revisions. This blog can be view by all other students by accessing the

profile page of the particular student as shown in Figure 4-15.

Figure 4-16 Writing personal blog

36

5 CASE STUDY: TEACHING OSS AT TUT

The purpose of this chapter is to validate the KommGame environment by applying in a

real course at TUT. A course on OSS was organized at Tampere University of

Technology. An open source infrastructure was setup for the course and a reputation

system was constructed. The main goal of the course was to give a practical experience

of OSS development in an actual open source infrastructure which in turn should give

students the ability to participate in real OSS projects.

5.1 Course setup

The duration of the course is 16 weeks and its extent is 3 to 6 credits depending on the

student performance. The course uses KommGame environment to help students how to

work in open source projects. The course intention was to deliver both practical and

theoretical knowledge about OSS. For practical knowledge the students were made to

participate in sample open source project and for theoretical knowledge every students

are made to give seminars on a given open source topic. Every week students participate

in a two hour classroom session.

The first part of the session is dedicated to discussing a specific open source topic. The

second part is to discuss student contributions to an example open source project. Both

parts use the KommGame environment to record student contributions. In the second

part of the project all the participant along with coordinator will decide the best quality

contributor in the open source project for the current week. Attendance to all the course

classes is not mandatory. However, participating in the sample open source project and

contributing to OSS topics is an absolute requirement to pass the course. There are two

coordinators for the course.

A total number of 24 students have registered to the course. Initially two students who

had the prior knowledge of open source development and infrastructure were assigned

the committer role and the rest of the students played the role of developers, testers, and

37

users. The KommGame environment was introduced to the students during the first class

session. As the environment is accessible from internet, like in real open source projects,

students were allowed to contribute to the project at any time they wanted to do so.

5.2 Course Activities

Course activities are divided in to three parts. In the first part every student has to select

one topic from a given set of topics related to OSS. Then each student contributes with

own part of content to the wiki so that information is accessed by everyone. Every week

a number of students present their topic to the rest of the class. During the presentation,

another group of students act as topic discussants providing peer review of the content.

The second part was to participate in the development of an example open source project

called aKro. Initially aKro was developed with very basic features and made available in

the version control system. In this exercise students were asked to add new features, fix

existing bugs and maintain the project wiki. Whenever students observed a bug,

improvement, or a new feature request they reported those issues on the bug tracking

system. Any student interested in the reported issue could take up the report and submit

a corresponding patch file. Once the patch file is submitted committers test the patched

version and apply the patch. During the learning process students used IRC as a

communication channel. Every student maintained their own blog page where they

reported their activities in the project. Every week in the classroom the course

coordinators inspected the contributions of the past week and rewarded the student with

the best quality contribution.

The karma model used in the course covers the following activities:

1. Creating or editing Wiki pages.

2. Reporting bugs, new feature and improvement requests.

3. Comment on bugs, new feature and improvement requests.

4. Closing bugs, new feature and improvement requests.

5. Thumbs up to wiki content page.

6. Adding hats for best quality contributor of the week.

38

Table 5.1 List of activities and corresponding weight functions

Activity Weight function

Editing Wiki pages 0.5*√(number of wiki edits)

Reporting bugs 4*√(number of bugs)

Reporting new feature

requests

3*√(number of new feature requests)

Reporting improvement

requests

3*√(number of improvement requests)

Comment on bugs 2*√(number of comments on bugs)

Comment on new

feature requests

2*√(number of Comments on new feature requests)

Comment on

improvement requests

2*√(number of Comments on improvement requests)

Closing bugs 5*√(number of bug requests closed)

Closing new feature 5*√(number of new feature requests closed)

Closing improvement

requests

5*√(number of improvement requests closed)

Thumbs up to wiki 2*√(number of Thumbs up)

Getting a hat 3*(number of hats)

The third part of the course is to contribute to a real open source project after getting

familiar with OSS principles and practices covered in the first two course parts. As

example open source projects, students were introduced to the Apache Software

Foundation programme [19] and the Demola open innovation platform [14].

5.3 Feedback

At the end of the course students were asked for feedback about the course. The

feedback form contains four questions. The feedback questions and their corresponding

reponses are in displayed table 5.2.

39

Table 5.2 Feedback questions and summary of response

Feedback Question Result

Give an overall grade to the course (0-5) Average value is 3.55

What was the best part? 1. Working in a open source

environment.

2. Community game.

3. Presentation and discussions during

presentation.

What would you improve? 1. Dedicated committer resource.

2. Better governance framework.

3. Distributed revision controller.

4. A more complex project.

5. Modify karma model for wiki edits.

Grade the community game project (0-5) Average value is 3.65

The average of overall grade to the course is 3.55. The best of the course is answered as

follows: The best part was to know the concepts of open source software development

process and working as a member of the open source community. The course realized

the difference of working in a open source environment and proprietary environment.

Discussion in class were one of the best parts of the course, students liked when a

presentation change to a debate with multiple participants. Some students felt that the

course could have been more interesting if all the signed up students were active.

Another important thing that contributes to the best part of course is Community game

which gave the students Real time OSS development experience making the students to

Work as a group on the project. Discussion about the quality of contribution after

presentations and giving hats to the best quality contributors made course more

interesting and motivated for students.

Students have suggested following improvements: Dedicated resources to act as a

committer and take care of all the unanswered communications. In the current

implementation committers were also participants of the course. Some students, the

karma system resulted as competition factor rather than motivation factor. It would be

40

better if it significance of karma system was explained better in the beginning of course.

Students wanted to modify the karma give to wiki edits. The current implementation of

course used centralised revision control system, but students preferred to have a

distributed revision control system. The decision making process was very slow during

the community game. Students suggested to have a voting system that make decision

make process easy. Students felt that that the project done during the course was too

small. Not really much to do or problem solving. Simple project was chosen because the

aim of the course is to practice open source development. The average grade of

Community game was is 3.65

5.4 Evaluation

Out of 24 registered students 15 students have participated actively in the course. In the

first part of the course where students have to create wiki pages about their topics,

students were actively contributing and present the topics. Students were familiar with

all the tools like wiki to contribute open content on OSS; this was in the first part. In the

second part of the course, the students have to actually develop a project called aKro.

Participating in project took some time for the students to understand the concepts like

bug, features, new request and other concepts related to bug fixing. Students have

learned how to handle the bugs posted in the bug tracking system, what a patch is and

how to create a patch. These concepts were not taught to students but students learnt

these concepts though participating in the project.

There was a slow start in the project initially as students were not used to OSS

development, but later as the project progressed there were more contributions from all

students. This trend can be observed from the statistics. There were totally 63 issues

reported in the bug tracking system, on average each student posted 4 issues. In the first

week there were only 3 issues reported and the second week 12 issues were reported.

This count kept on increasing every week. When we observed all the contributions then

we found that there were 6 students who were more active than rest of the community.

This kind of scenario is also very common in real open source project where 90% of the

code is created by very few member of the project. On an average each student

contributed 40 wiki edits. Every week there was a session where the contributions to the

open source project are discussed to find the best contributor and to motivate the best

contributor using the reputation system. The discussing about the user contribution using

41

the reputation system show a good impact on most of the students, this evident from the

fact that every week during the course all the students try to make their contributions just

before one or two days of discussion about student contributions. But some students

failed to understand the importance of reputation system setting in KommGame

environment. Due to this, some students felt the reputation system as a competition

system rather than a motivation system. It would be better to make sure all participate

understand the importance of the reputation system so that would not lead to any

confusion among the students.

Table 5.3 Statistics about the sample open source project

Statistics name Value

Number of bugs reported 7

Number of new feature requests 10

Number of improvement requests 25

Number of bug comments 21

Number of comments on new feature

requests

49

Number of comments on improvement

requests

48

Number of lines of code 1000

Number of revisions on version control

system

34

Number of code files 10

Number of wiki edits 300

Initially, it was planned that all the communication during the development process

happens online, but in some situations there was verbal communication between groups

of students. This verbal communication aroused when students have to take critical

decision about the project. This kind of physical interaction is also common in real

world projects for important decisions. As the project development was progressing, the

amount of student‟s contribution also kept increasing. All the students played the role of

user, developer, bug fixed and bug reporter. Most often the reported bugs are fixed by

42

the one who has reported, only in few cases bugs were fixed by others, when students

were asked for “why is it so?”; they answered that coding is fun

Every week, after the seminar session the coordinator along with the student verified the

contributions in the project to decide the best quality contributor and add a hat in the best

quality contributor‟s profile. The top contributor of the week is given a small gift to

motivate others. This practice of verifying all users‟ contribution and select the best

quality and top contributors motivated other students to be the top or best quality

contributor. Every week there was a new student who got a hat. This shows that

everyone who participated in the project tried to get a hat or be a top contributor. During

the initial phase of the project it was easy to get the top contributor or quality

contributor. As the project progressed students became more and more motivated for the

project, the student has to contribute a lot to become a top contributor.

Table 5.3 shows some statistics about the sample open source project done by students.

The statistics shows that open source development can be taught in closed environment

setting like KommGame. Most of the students have made similar level of contribution;

the average karma value of all the students is 38.5. There are group of 5 students who

were very active during the project they have made crucial decision regarding the road

map of the project. It is very common scenario in open source projects to have a small

group of people who are very active than the rest of the group. In nearly all open source

projects over time 80% of the work is done by 20% of the people. As discussed earlier

there were 15 active participants out of 24 registered and out of 15 active students, 5

students were more active than the rest of the students. From the statistical numbers

discussed above and course experience we consider that controlled setting like

KommGame environment along with reputation system give the students a valuable

open source project experience.

43

6 CONCLUSIONS

With this thesis and the implemented KommGame environment the aim to make open

source software education more natural and effective. The KommGame environment

resembles the infrastructure of real open source community and has a mechanism to

motivate students for making contributions.

OSS education is introduced in many universities where students have to present specific

OSS topic and participate in real open source project, the goal was to create environment

which helps students to learn the special aspects involved in OSS development process

through participating in OSS project under the KommGame environment. After this kind

of learning experience students find it easy and confident to start participating in real

OSS projects.

The approach of KommGame for OSS education allows students to practice OSS project

in safe and realistic OSS environment. The KommGame motivates the students to make

more contribution to the OSS project and thus give them a valuable OSS project

experience. The students are free to learn from their own and communities past and

present experience. Based on the course experience teaching OSS development we

consider that using KommGame setting for OSS education is a good practice. This kind

of realistic setting gives the students a good starting point to work in real OSS

development.

The current implementation scope of the KommGame environment the reputation model

is hard coded in the program. The implementation done after designing the reputation

model for OSS education and the environment is specifically implemented for OSS

education. The environment does not allow the course moderator to change the

reputation model. If the moderator wishes to use a different reputation model than the

one in the KommGame has, this can only be done by modifying the code. One of the

future development ideas is to create an interface where the course moderator can make

their own reputation model; this feature will make the KommGame environment more

44

generic. After the course has completed we collected comments from students about

improvements to KommGame environment. Most of the students suggested that to

change the way of giving reputation for wiki edits. In current reputation model students

are given reputation if they make any modification on wiki system. Students have

proposed to limit the reputation given for wiki edits, maximum number of a student can

get reputation from wiki edit per day is three. Also the current system does not take in to

account about the files uploaded to bugs on bug tracking system, students also suggested

to consider giving reputation for the files uploaded to bugs on bug tracking system.

The use of KommGame environment is not limited to open source software education.

The concept of KommGame can also be applied in traditional programming courses

where, students have to collaborate and participate in programming exercises. This kind

of collaborative learning will improve the learning experience of programming from

student‟s perspective.

So far there is no certification system to certify someone as a beginner OSS

programmer. The future plans for KommGame are to research how to use KommGame

as a standard system to issue the certificate of OSS beginner to any participant around

the world who participate and contribute.

The course experience and feedback give by the students, concludes that KommGame is

a good environment for students to learn and practice open source software

development. The students also gave feedback about how make KommGame better, by

considering all those improvements mentioned by students KommGame will be a better

place to learn and practice open source software development

45

REFERENCES

1. D. Megías, J. Serra, and R. Macau: An International Master Programme in Free

Software in the European Higher Education Space. In Proceedings of the First

International Conference on Open Source Systems, pages 349–352, July 2005.

2. B. Lundell, A. Persson, and B. Lings: Learning Through Practical Involvement in the

OSS Ecosystem: Experiences from a Masters Assignment. In Open Source

Development, Adoption and Innovation, volume 234 of IFIP International Federation

for Information Processing, pages 289–294. Springer, 2007.

3. R. Farmer and B. Glass: Building web based reputation systems, page 72. O'Reilly

Media / Yahoo Press, 2010.

4. I. Stamelos: Teaching Software Engineering with Free/Libre Open Source Projects.

IJOSSP, 1(1):72–90, 2009.

5. Mantis bug tracking system, http://www.mantisbt.org, last visited 20 March 2011.

6. Wiki system http://www.dokuwiki.org/dokuwiki, last visited 20 March 2011.

7. Open source teaching community http://www.teachingopensource.org, last visited

March 2011.

8. Open software engineering, http://opense.net, last visited 20 March 2011.

9. M. Temperini and A. Sterbini: Learning from Peers: Motivating Students through

Reputation Systems, International Symposium on Applications and the Internet, pages

305-308, 2008.

10. Qt developers network reputation system http://developer.qt.nokia.com/ranks, last

visited on March, 2011.

11. Karma model of open source mobile operating system Meamo

http://wiki.maemo.org/Karma , last visited on March, 2011.

http://www.mantisbt.org/
http://www.dokuwiki.org/dokuwiki
http://www.teachingopensource.org/
http://opense.net/
http://developer.qt.nokia.com/ranks
http://wiki.maemo.org/Karma

46

12. C.C.P. Cruz, M.T.A. Gouvêa, C.L.R Motta, F.M. Santoro: Towards Reputation

Systems Applied to Communities of Practice. In Proceedings of 11th International

Conference on Computer Supported Cooperative Work in Design. Pages. 74-79, 2007.

13. J. Buchta, M. Petrenko, D. Poshyvanyk, V. Rajlich: Teaching Evolution of Open-

Source Projects in Software Engineering Courses, In Proceedings of 22nd IEEE

International Conference on Software Maintenance (ICSM'06), pages.136-144, 2006.

14. Demola: Open innovation platform for students and companies

http://www.demola.fi/what-demola-new-factory last visited on March, 2011.

15. M. D. German: Experience teaching a graduate course in Open Source Software

Engineering. In Proceedings of the First International Conference on Open Source

Systems (OSS 2005), Genova, Italy, pages. 326-328, July 11-15, 2005.

16. S. Wang: Study on E-Learning System Reputation Service, Wireless Communications,

Networking and Mobile Computing, 2008. WiCOM '08. 4th International Conference

on, vol., no., pages.1-4, October 12-14. 2008.

17. A. Sterbini, and M. Temperini: Social exchange and collaboration in a reputation-

based educational system, Information Technology Based Higher Education and

Training (ITHET), 2010 9th International Conference pages. 201-207, April 29 2010-

May 1, 2010.

18. G. Attwell: What is the significance of open source software for the education and

training community? In Proceedings of the First International Conference on Open

Source Systems (OSS 2005), Genova, Italy, pages. 353- 358, July 11-15, 2005.

19. The Apache Software Foundation http://www.apache.org/foundation/ last visited on

March, 2011.

20. OSS Learning environment at TUT. http://osscourse.cs.tut.fi/mantis/login_page.php

last visited on March, 2011

21. J. Piaget: The Child‟s Conception of the World. Rowman and Allenheld, New York.

1960.

22. E. S. Raymond: The Cathedral and the Bazzar, O‟Reilly & Associated, Inc, 2001

23. P. Bruce: Open Sources: Voices from the Open Source Revolution, O‟Reilly &

Associated, Inc, 1999.

24. pChart - a PHP class library to build charts http://pchart.sourceforge.net/ last visited

on March, 2011.

http://www.apache.org/foundation/
http://pchart.sourceforge.net/

47

25. M. Ryder: The Cyborg and the Noble Savage, IGI Global, 2008.

26. K. Crowston, J. Howison: The social structure of free and open source software

development. First Monday , pages. 1–100.

27. A. Mockus, R. T. Fielding, J. D. Herbsleb: Two Case Studies Of Open Source

Software Development: Apache And Mozilla. ACM Transactions on Software

Engineering and Methodology, pages 309–346.

