

SANTERI SILTALA

NON-REPUDIATION SERVICE IMPLEMENTATION USING HOST

IDENTITY PROTOCOL

Master of Science Thesis

Examiners: Prof. Jarmo Harju
D.Sc Seppo Heikkinen

Examiners and topic approved in the
Faculty of Computing and Electrical
Engineering Council meeting on
7.3.2012

ii

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY

Master’s Degree Programme in Signal Processing and Communications

SILTALA, SANTERI: Non-Repudiation Service Implementation Using Host Identity

Protocol

Master of Science Thesis, 62 pages + 1 appendix page

May 2012

Major: Communications Networks and Protocols

Examiners: Professor Jarmo Harju, D.Sc Seppo Heikkinen

Keywords: Non-repudiation, Host Identity Protocol, service usage, accounting,

RADIUS

New types of service usages emerge every day in the Internet. Service usage could be

Wireless Local Area Network (WLAN) usage or watching a streamed movie. Many of

these services are commercial, so payment is often involved in the service usage, which

increases the risk of fraud or other misbehaviour in the interaction. To enhance the secu-

rity of both service providers and service users, improvements are needed to the existing

procedures.

The non-repudiable service usage procedure was developed as part of the TIVIT Future

Internet SHOK -project. In this model, the service user and the service provider are

bound to the actual service usage with certificates. The charging of the service usage is

done using hash chains which are bound to the certificates. Now the service user pays

only for the service he or she gets. Time or traffic based charging scheme can be used in

the service usage. Evidence is gathered from the service usage to help solve possible

conflicts afterwards.

An actual implementation based on this model was made using Host Identity Protocol

for Linux and RADIUS protocol. RADIUS protocol was used to gather the created evi-

dence of the service usage. The implementation was developed for Linux using C-

language. The goal of the implementation was to evaluate the concept in actual use.

Performance of the implementation was measured with various real use scenarios to

evaluate the feasibility of the implementation. Results indicated that the performance of

the model is sufficient to serve several simultaneous users. However, the architecture of

Host Identity Protocol for Linux caused some performance issues in the implementa-

tion.

iii

TIIVISTELMÄ

TAMPEREEN TEKNILLINEN YLIOPISTO

Signaalinkäsittelyn ja tietoliikennetekniikan koulutusohjelma

SILTALA, SANTERI: Kiistämättömän palvelutarjonnan toteuttaminen HIP-

protokollan avulla

Diplomityö, 62 sivua + 1 liitesivu

Toukokuu 2012

Pääaine: Tietoliikenneverkot ja protokollat

Tarkastajat: professori Jarmo Harju, tekniikan tohtori Seppo Heikkinen

Avainsanat: Kiistämättömyys, HIP-protokolla, RADIUS-protokolla, palvelun käyttö,

tiliöintitiedot

Erilaisten palveluiden käyttö Internetissä kasvaa koko ajan. Tämä voi pitää sisällään

esimerkiksi langattoman lähiverkon käyttöä tai virtautetun elokuvan katsomista. Usein

palveluiden käyttö on kaupallista, joten käyttämiseen liittyy myös maksutapahtumia,

mikä lisää huijatuksi joutumisen riskiä. Palveluiden käyttöä tulee kehittää, jotta voidaan

parantaa palveluiden käyttäjien ja tarjoajien turvallisuutta.

Tämän diplomityön taustalla olleessa TIVIT Future Internet SHOK -projektissa on kehi-

tetty toimintatapaa, jolla palvelun käytöstä tehdään kiistämätöntä. Tässä toimintatavassa

palvelun tarjoaja ja käyttäjä sidotaan kiistämättömästi palvelun käyttöön varmenteiden

avulla. Käyttäjä maksaa vain siitä palvelusta, jota oikeasti saa. Maksaminen tehdään

käytön edetessä varmenteisiin sidottujen hajautusketjujen avulla. Käytön laskutus voi-

daan tehdä esimerkiksi aika- tai käyttömääräperusteisesti. Palvelun käytöstä kerätään

todisteet, joita voidaan käyttää mahdollisten väärinkäyttötilanteiden selvittämisessä.

Työssä kehitettiin Host Identity ja RADIUS-protokolliin pohjautuva toteutus kiistämät-

tömästä palvelunkäytöstä. RADIUS-protokollaa käytettiin apuna kerättyjen todisteiden

säilöntään. Tavoitteena oli tehdä prototyyppiohjelmisto, jolla voisi tutkia kehitetyn kon-

septin soveltuvuutta käytäntöön. Toteutus tehtiin Linux-käyttöjärjestelmälle käyttäen C-

kieltä. Toteutuksen suorituskykyä erilaisissa tilanteissa mitattiin, jotta voitiin arvioida

sen soveltuvuutta jokapäiväiseen käyttöön, erityisesti palveluiden tarjoajan näkökulmas-

ta. Saatujen tulosten perusteella voidaan todeta, että toimintatapa soveltuu muutamille

yhtäaikaisille käyttäjille. Mittauksissa kuitenkin havaittiin, että pohjana käytetty Linux-

pohjainen HIP-protokollan toteutus sisältää suorituskykyongelmia, jotka saattavat ai-

heuttaa koko toteutuksen hidastumista usean yhtäaikaisen käyttäjän tapauksessa.

iv

FOREWORD

This Master of Science thesis was done in the Department of Communication Engineer-

ing (DCE) at the Tampere University of Technology (TUT). This work was part of the

Future Internet program of TIVIT (Finnish Strategic Centre for Science, Technology

and Innovation in the field of ICT). This program is funded by TEKES.

I want to thank my supervisors, Professor Jarmo Harju and D.Sc Seppo Heikkinen.

They made it possible for me to participate in this interesting research project and sup-

ported me during the whole thesis process. I also want to thank my co-workers D.Sc

Jani Peltotalo and M.Sc. Aleksi Suhonen who gave help and great thoughts throughout

the thesis process.

Last but not least I would also like thank by beloved girlfriend for the patience during

the writing process. I want also to thank my parents who provided support during the

whole study time.

On 11.4.2012, in Tampere, Finland.

Santeri Siltala

v

TABLE OF CONTENTS

Abstract ... ii

List of Acronyms .. vii

1 Introduction ... 1

2 Background Concepts ... 3

2.1 Purpose of Non-Repudiation ... 3

2.2 Fairness ... 4

2.3 Trusted Third Party ... 5

2.4 Digital Signature ... 6

2.5 E-Commerce ... 7

2.6 Contracts ... 7

3 Related Technologies .. 8

3.1 Host Identity Protocol ... 8

3.1.1 Cryptographic Namespace ... 8

3.1.2 Host Identity Layer .. 9

3.1.3 IPv4 .. 9

3.1.4 Mobility and Multihoming... 9

3.1.5 Base Exchange ... 10

3.1.6 IPsec ... 11

3.1.7 Host Identity Protocol for Linux .. 11

3.2 Authentication, Authorization and Accounting Protocols 13

3.2.1 RADIUS... 13

3.2.2 RADIUS Roaming ... 15

3.2.3 Diameter... 15

3.2.4 TACACS+ ... 16

3.3 Hash Chains .. 16

3.3.1 Infinite Length Hash Chains .. 16

3.3.2 Hash Chain Tree .. 17

3.4 Public Key Certificates ... 18

3.4.1 X.509v3 Public-Key Infrastructure.. 19

3.4.2 SPKI ... 20

3.4.3 KeyNote ... 20

4 System Requirements .. 22

4.1 Functional Requirements .. 22

4.2 Non-Functional Requirements .. 22

4.2.1 Non-Repudation and Fairness .. 22

4.2.2 Expandability ... 23

4.2.3 Compatibility ... 23

4.2.4 Usability ... 23

4.2.5 Efficiency ... 24

4.2.6 Security .. 24

vi

5 Design ... 25

5.1 Architecture ... 25

5.2 Basic Modules ... 26

5.3 RADIUS Processing ... 27

5.4 Operation Modes ... 28

5.4.1 Initiator Functionality in NoRSU Mode .. 28

5.4.2 Responder Functionality in NoRSU Mode .. 29

5.4.3 Responder Functionality in NoRSU Mode with AAA Messaging 30

5.4.4 Normal Mode ... 32

6 Implementation ... 33

6.1 Host Association Database .. 33

6.2 Packet Size Restrictions .. 35

6.3 Certificate Modifications .. 36

6.4 Hash Chain Support .. 38

6.5 Charging .. 39

6.5.1 Time Based .. 39

6.5.2 Volume Based .. 39

6.6 HIPconf ... 40

6.7 RADIUS Implementation.. 41

6.7.1 RClient ... 43

6.7.2 RDaemon ... 44

7 Analysis ... 46

7.1 Test Environment .. 46

7.1.1 Test Platform.. 47

7.1.2 Test Software and Execution ... 47

7.2 Performance Measurements .. 47

7.2.1 Non-Repudiation Modifications .. 48

7.2.2 RADIUS Support and Roaming .. 50

7.3 Implementation Analysis .. 52

7.3.1 Expandability ... 52

7.3.2 Compatibility ... 53

7.3.3 Usability ... 53

7.3.4 Security and Non-Repudiation... 54

7.3.5 Feasibility... 54

8 Future Work .. 56

9 Conclusions ... 58

References ... 60

Appendix A: Example Norsu Configuration... 63

vii

LIST OF ACRONYMS

AAA Authentication, Authorization and Ac-

counting

API Application Programming Interface

BEET Bound End-to-End Tunnel

CA Certificate Authority

D-H Diffie-Hellman

DOS Denial of Service

DNS Domain Name System

DSA Digital Signature Algorithm

ESP Encapsulating Security Payload

HADB Host Association Database

HI Host Identifier

HIP Host Identity Protocol

HIPL Host Identity Protocol for Linux

HIT Host Identity Tag

HMAC Hashed Message Authentication Code

IKE Internet Key Exchange Protocol

IP Internet Protocol

LSI Local Scope Identifier

MAC Medium Access Control

MitM Man in the Middle

NAS Network Access Server

NAT Network Address Translation

NoRSU Non-repudiable Service Usage

NRD Non-repudiation of Delivery

NRO Non-repudiation of Origin

NRR Non-repudiation of Receipt

NRS Non-repudiation of Submission

ORCHID Overlay Routable Cryptographic Hash

Identifier

PAP Password Authentication Protocol

RADIUS Remote Dial In User Service

RSA Rivest, Shamir, Adleman

SPKI Simple Public Key Infrastructure

TCP Transmission Control Protocol

TTP Trusted Third Party

UDP User Datagram Protocol

VSA Vendor Specific Attribute

WLAN Wireless Local Area Network

1

1 INTRODUCTION

More and more transactions are made in the computer networks every day. The variety

of services of a different kind also increases. The most of the time users have to interact

with unknown actors, and the interaction is based solely on trust. Even the business be-

tween two operators is often based on trust. This increases the demand for methods of

interacting reliably between players.

In today’s global networks it is nearly impossible to get a bulletproof protection against

frauds and misbehaving individuals and service providers. Many popular video on de-

mand or music on demand services do not provide any kind of protection for the paying

customers. In case of fraud or malfunction, the risk for the customer to lose his or her

payment is considerable. However, this risk of being mistreated can be greatly reduced

with some simple improvements to the interaction between the customer and the service

provider. Now more and more customers have awakened to demand more reliability to

the service usage which takes place in the Internet. Offering secure service usage can be

a competitive advantage to the operators in the future. Still, there have not been any

widespread implementations to offer this kind of service usage.

Non-repudiation aims to give theoretical tools to satisfy the aforementioned needs. Even

though non-repudiation is a well-researched topic, it still lacks actual implementations.

The secure service usage requires undeniability of actions to both, the operator and the

customer. When these actors form a contract, for example in some kind of service usage

which includes payments, either of the sides must not be able to cheat easily in any way.

It is possible to minimize the risk in the payment transaction by splitting the payment

into multiple smaller parts in a pay-as-you-get-service manner. Still, there needs to be a

secure way to transmit these smaller payment units to the service provider.

The purpose of this implementation is to provide a technical prototype solution to these

problems. The main focus of the implementation is to research and test how well these

theoretical procedures can be fitted into an actual application and whether the perfor-

mance is satisfactory to a larger scale operation. One target is to evaluate how feasible

this solution would be in an actual operator use.

The structure of the thesis is as follows. The second chapter presents the main concepts

of the non-repudiation theory. It describes the main types and subtypes of non-

2

repudiation and elements and players which are needed in a typical non-repudiable

transaction. The third chapter contains an introduction to the technologies used in the

prototype implementation. The chosen technologies are analyzed and compared to other

existing similar technologies. There is also a brief introduction to the authentication,

authorization and accounting protocols. The fourth chapter contains the functional and

the non-functional requirements which were set for the design. The fifth chapter con-

tains an introduction to the design principles, module descriptions and the architecture

of the implementation. The implementation includes several operation modes which are

explained in detail. The sixth chapter contains actual implementation specific issues

such as the data structures, parameter types and sequence diagrams. The interaction be-

tween different components is presented in several use cases. The seventh chapter con-

sists of testing and analysis. The test setup and environment is introduced, as well as the

execution of the tests. The test results are analyzed and fulfillment of the functional and

the non-functional requirements is examined. The eight chapter is about future work and

how this implementation could be developed further. The ninth chapter concludes the

work.

 3 3

2 BACKGROUND CONCEPTS

Non-repudation theory is based on some key elements, which are required to achieve

the reliable non-repudiation service. There is some crucial evidence which must be col-

lected and in most of the cases help of some external party is needed. Non-repudiation

can be used in various applications such as electronic commerce or non-repudiable con-

tracts.

2.1 Purpose of Non-Repudiation

Non-repudiation is a mechanism to bind all the participating entities to the committed

transaction. This means that none of the parties can deny afterwards their involvement

in the transaction. In a typical situation a dishonest entity could deny its participation or

claim that some evidence related to the transaction, such as the signature, is forged.

Non-repudiation services are mainly needed to support business transactions which take

place in an insecure environment, such as the Internet. In the electronic transactions it is

much harder to ensure involving parties’ identities than in the traditional transactions.

Also the probability of fraud is much greater. Especially, when there is payment in-

volved in the transactions, it is crucial to bind the entities to the transaction.

In the traditional cases signature is typically used to ensure non-repudiation. One’s sig-

nature in a contract proves that he or she has accepted the terms presented and is willing

to follow them. Typically all of the involved parties get a copy of the signed agreement

as evidence. Confirmation of entities’ identities is also easy to verify by using, e.g., the

passport, which includes one’s signature and photograph and is considered legally as a

strong evidence of one’s identity. Still, there is a possibility of fraud, so the most im-

portant agreements require the presence of some trusted third party such as a notary.

Typically, the following entities are involved in the non-repudiable transaction which

provides evidence [1]:

 Non-repudiation of origin (NRO). The origin must provide evidence that it really

has sent the message. The proof of origin is required to prevent cases where a

dishonest entity may afterwards try to deny being involved in the communica-

tion. The focus of the evidence is to achieve non-repudiation instead of just

providing evidence that the message has been sent.

 4

 Non-repudiation of receipt (NRR). The receiver must provide evidence that it

really has received the message. Proof of receipt is required to prevent cases

similar to the previous case.

 Non-repudiation of delivery (NRD). The transmission entity must provide evi-

dence that it has received the message from the origin to be delivered to the re-

cipient.

 Non-repudiation of submission (NRS). The Transmission entity must provide

evidence to the origin that it has delivered the message to recipient.

Non-repudiation aims to solve these introduced problems in an electronic environment.

This requires gathering certain evidence of the transaction between the entities. A non-

repudiable message delivery process is described in Figure 2.1 [2]. The sender creates

the message and is responsible for providing the proof of origin. The user agent handles

the message to the actual delivery instance. Together the sender and the user agent form

the origin.

Figure 2.1. Typical evidence in non-repudiation.[2]

The delivery network consists of several domains through which the messages are de-

livered. The first transmission entity, which receives the message from the user agent, is

called the origin domain and must provide the proof of submission. The last transmis-

sion entity in the delivery network provides the proof of delivery to the origin. The re-

ceiver and the user agent form the recipient side must provide the proof of receipt.

2.2 Fairness

An important requirement for non-repudiation is fairness. In the business cases it is im-

portant to try to balance the risk of being defrauded or mistreated. Typically, one of the

Origin

Sender

User
Agent

Recipient

Receiver

User
Agent

Origin
Domain

Transit
Domain

Recipient
Domain

Delivery Network

Proof of Origin

Proof of Receipt

Proof of DeliveryProof of Submission

 5

parties is slightly in a weaker position in the risk sharing, but non-repudiation aims to

provide a fair interaction. In [3] the following classification for the fairness levels and

requirements is presented.

In weak fairness, the fairness of the exchange is not guaranteed, but the wronged party

will get evidence that the exchange was not fair, while it may have lost the item or the

message used in the exchange. In an example case a dishonest shopkeeper might not

send the item after having received the payment from the customer. However, the cus-

tomer has proof from the bank that he or she has paid the product. Gathered evidence

can be processed in the court or by other authority afterwards. Protocols based on prob-

abilistic fairness provide the second weakest level of fairness. Execution of the protocol

provides high level probability for fair exchange while it still leaves the possibility that

unfair exchange can occur. The motivation for using this kind of fairness is that it does

not require the aid of Trusted Third Party (TTP) in the exchange. In strong fairness, if

an exchange is finished successfully, both sides must get the appropriate evidence and

items. If an error occurs in the execution, either side must not get anything. True fair

exchange must provide the properties of the strong fairness described earlier and the

evidence created during the communication must not depend on how the protocol was

executed. So the use of the TTP must not affect the execution of protocol or creation of

the evidence to achieve true fairness.

When true fairness is not feasible, the other solution is to try to minimize one’s loss in

the situations of misbehavior. Non-repudiation is not a requirement for fairness but evi-

dence generated by the non-repudiation actions may be used afterwards to prove one’s

misbehaving actions [4][5]. NRO and NRR mentioned in section 2.1 are the minimal

evidence needed to ensure the fair transaction.

2.3 Trusted Third Party

Trusted Third Party is an entity which is used to carry out transactions between entities

which do not trust each other. Generally, TTP is considered as the reliable entity for

both entities. If either finds lack of trust towards the TTP, it typically compromises all

non-repudiation and fairness procedures which rely on the use of the TTP. Because of

this issue, there is always possibility of fraud, since it is possible that even an extremely

trustworthy TTP begins to misbehave at some point.

Use of the TTP can be divided into three main categories, online, inline and offline

TTP. An online TTP is available all the time during the transaction. It may supervise the

procedure, collect evidence or it may act as a verifier for the certificates at the beginning

of the transaction. The most important thing is that both of the transaction entities may

rely on the TTP at any point of the transaction. If the possibility to reach the TTP is lost

during the transaction, the procedure may be compromised.

 6

Inline TTP acts as a broker between the communicating entities. This requires that the

both entities must trust the same TTP and TTP must have all communicating entities’

public keys pairwise or use symmetric keys. Mechanism causes privacy issues as the

messages and transactions go through the TTP and TTP is able to examine the content

of the messages. One solution is that TTP can decrypt only part of the message but this

adds demand to bind the originator to the message. Inline TTP may also become a bot-

tleneck in the traffic.

Another possible situation is that TTP is partly or most of the time of the transaction

offline. In many cases the help of TTP is only needed when some problems occur dur-

ing the interaction. The problem could be a network error or misbehavior of an entity. In

some cases, both entities deliver collected evidences to the TTP which makes decisions

based on those and helps the transaction to finish.

2.4 Digital Signature

A digital signature is an electronic equivalent of the traditional signature. Typically, in

the electronic transactions, the entities bind themselves to the transaction using the digi-

tal signature. The digital signature must fulfill certain requirements to be considered

valid [6].

1. Authenticity. After the signing process signature must convince the verifier that

the signature is authentic and the signer commits to the signature.

2. Unforgeability. Only the signer should be able to do an authentic signature.

3. Non-reusability. The signature must be unique in a sense that the same signature

could not be used in any other transaction.

4. Unalterability. The signature must provide protection against alteration so that

the signature cannot be invalidated after the signing process.

5. Non-repudation. The signer cannot afterwards deny that he or she has signed the

subject.

Finnish law sets similar requirements for signatures to be valid in legal manner [7]. A

material used to create a signature must be unique and stay confidential, e.g., private

key used in the signing process must not be compromised. One should not be able to

derive the signing material from any other information. The signature must be protected

from forging and the signer must protect signature material from the use of any other

entity. The digital signature can be used in a judicial act where a traditional signature is

used. The signature should be based on the certificate recommendations of the law and

fulfill previous conditions though it is considered legally valid even when all the condi-

tions are not met. At the moment Finnish authorities do not offer an adjudicator service

 7

for non-repudation conflict cases. This makes the legal value of collected evidence un-

certain.

2.5 E-Commerce

Electronic commerce is performed more and more with digital products. In a traditional

scenario, one goes to a shop where he or she can physically examine the item before

buying. If one buys the item, the payment is typically made with money or credit card.

When using the first one, shop physically gets the payment. It is possible to verify the

payers’ identity before accepting the payment. However, when using cash, this is quite

rare procedure and more common with credit cards. In the credit card case, the credit

card company typically provides assurance that the shop will get the payment and it is

possible that the credit card company takes the responsibility in possible fraud cases.

In the electronic commerce situation, involved parties do not typically interact physical-

ly. In an example situation customer wants to buy a product, but does not want to pay

before receiving it. On the other hand, the shop does not want to deliver the product

before it gets the payment. In both cases, one entity must trust to the other to finish the

transaction. If the customer misbehaves, he or she gets the product and the shop does

not get the payment, or in the case the shop misbehaves, it gets the payment, but the

customer does not receive the product.

The need for micropayment may occur when, e.g., a customer wants to use a WLAN

hotspot. The customer pays to the provider beforehand. If an error occurs during the

usage, the customer will lose some of the payment since he or she cannot use the ser-

vice. So a mechanism similar to a phone tick system is needed to provide fair usage for

this kind of scenario.

2.6 Contracts

When two parties communicate or make a contract, it is possible that afterwards one or

both entities may deny being involved in the contract or the agreement. Similarly, one

entity may deny its participation in the communication. In traditional cases entities are

bound to the agreement with a signature. Typically, the signer’s identity is also verified

in the signing situation. Help of a notary may be used to satisfy the legal issues. Typi-

cally there can be also requirements for the authenticity, integrity and confidentiality in

the communication. To satisfy the authenticity needs, non-repudiation procedures are

required. For integrity and confidentiality needs some other procedures are needed. It

should be noticed that non-repudiation mechanism solves only the problems related to

the agreement phase. Negotiation and preparation of the terms of the contract may re-

quire further procedures and protocols.

 8

3 RELATED TECHNOLOGIES

In this chapter, some protocols which can be used to achieve non-repudiation are intro-

duced. The most important ones are Host Identity Protocol (HIP) [8] and authentication,

authorization and accounting (AAA) protocols. Remote Authentication Dial In User

Service (RADIUS) [9] protocol is examined more closely. Some other technologies

were studied also. The other tools for non-repudiation are hash chains and Simple Pub-

lic Key Infrastructure (SPKI) certificates.

3.1 Host Identity Protocol

Basically, HIP is a key exchange protocol [8]. HIP introduces some additional features

to traditional key exchange protocols, e.g., Internet Key Exchange Protocol (IKE) [10].

However, the key exchange functionality is simplified from the IKE to provide a light-

weight solution. The key elements are functionality to separate locator and identity in-

formation, end-to-end encryption and authentication, mobility, multihoming and in-

teroperability between both IP families. The protocol contains mechanisms to provide

protection against Denial of Service (DoS) and Man in the Middle (MitM) attacks. HIP

establishes an IPsec protected connection between the end points [8].

3.1.1 Cryptographic Namespace

HIP performs the so called location and identity separation. For this separation HIP in-

troduces a new namespace, called Host Identity. Host Identifier (HI) is an endpoint

identifier for HIP connection. HI is basically a public-private key pair. Currently, the

HIP implementations must support Rivers Shamir Adleman algorithm (RSA) [11] and

should support Digital Signature Algorithm (DSA) [11]. Other algorithms may also be

supported. Using host identities as the endpoint identifiers improves the security of the

communication between entities. Host Identifiers are computationally expensive to

forge which provides protection for the host’s identity.

For actual use Host Identity is represented in hash format. Host Identity Tag (HIT) is a

128-bit long cryptographic hash which contains part of the original Host Identifier. HIT

is a special type of Overlay Routable Cryptographic Hash Identifiers (ORCHID) [12].

Part of the HIT comes from the ORCHID section and rest from the actual Host Identity.

ORCHID is intended to be used as purely endpoint identifier, without any locator func-

tionality. Now HIT’s can be used as regular IPv6 addresses with a low collision proba-

bility [8]. However, they are non-routable because of the ORCHID part. ORCHID part

 9

is a IPv6 prefix, which is allocated non-routable in the IPv6 address space by Internet

Assigned Numbers Authority (IANA).

3.1.2 Host Identity Layer

One of the Internet Protocol (IP) problems is that an IP address contains both the identi-

ty (endpoint, host) and the locator (routing label) information. HIP adds a new layer to

the original TCP/IP stack. Position in the stack and the new endpoint identifiers are de-

scribed in Figure 3.1. In the new layer model HI acts as an endpoint identifier. Host

identities are non-routable, so IP addresses are still used as location identifiers for rout-

ing packets.

Figure 3.1. Position of Host Identity layer in layer model

3.1.3 IPv4

HIP supports both IPv4 and IPv6 protocols. For the IPv4 128-bit representation of HI

cannot be used. A method called Local Scope Identifier (LSI) is used to provide an API

support for legacy IPv4-only applications. LSI is a 32-bit presentation of the HI, which

makes it shorter than HIT, but as a disadvantage it works only in a local scope because

of a greater collision probability.

3.1.4 Mobility and Multihoming

The Locator/identity split gives a possibility to change the underlying IP address while

the end-to-end connection stays online. When host’s IP address changes, HIP has a

built-in mechanism to update existing security associations with the new address. The

 10

same mechanism is used in the multihoming situation, where a host has multiple inter-

faces for the Internet connectivity. It is possible to choose specific interface, which is

used to establish and use the HIP connection.

3.1.5 Base Exchange

A base exchange between HIP capable hosts contains four phases which are presented

in Figure 3.2. An entity, which begins the interaction, is called Initiator and other entity

is Responder. First, Initiator signals willingness to use HIP by sending a trigger packet

I1 to Responder. I1 packet contains Initiator’s HIT and may contain Responder’s HIT

and additional parameters. There is a possibility to use a so called opportunistic mode,

where Responder’s HIT is not known.

Figure 3.2. HIP Base exchange.

After receiving I1, Responder sends pre-created R1 packet to Initiator if it wants to con-

tinue base exchange. R1 contains HITs of both entities and a puzzle to Initiator. The

puzzle is a cryptographic challenge and it is used for the denial of service protection.

Initiator must solve the puzzle to continue base exchange. R1 contains also initialization

parameters for Diffie-Hellman (D-H) key exchange [14] and information about crypto-

graphic algorithms, which Responder supports. Responder’s public key is included as

Initiator Responder

I1: HITi, HITr(opt)

R1: (HITi, HITr, Puzzle, D-Hr,

Pubkeyr)signaturer

I2: (HITi, HITr, Solution, D-Hi, Pubkeyi)signaturei

R2: (HITi, HITr)signaturer

ESP(Data)

 11

the final mandatory parameter. All of these parameters are protected with Responder’s

public key signature.

After solving the puzzle Initiator creates I2 packet. I2 contains earlier mentioned HITs,

solution to the puzzle which was in R1, Diffie-Hellman information, cryptographic al-

gorithms preferred by Initiator, and Initiator’s public key. All these parameters are cov-

ered with hashed message authentication code (HMAC) and Initiator’s signature. Key

used with HMAC is obtained from the D-H key exchange.

Responder finalizes the base exchange by sending R2 packet which contains HIT’s cov-

ered with HMAC and a signature. After that both entities consider the HIP connection

established and data protected with Encapsulating Security Payload (ESP) [15] can be

transferred between entities.

3.1.6 IPsec

IPsec architecture specifies protocols to establish a secure connection through an inse-

cure network. The architecture contains four major parts: protocols for securing data,

security policy and association handling, key management and exchange, and algo-

rithms used for authentication and encryption. The original IPsec supports two modes:

transport and tunnel. In the transport mode transferred data can be protected with an

authentication or encryption. Additional fields are added to a regular IP header in the

transport mode. In the tunnel mode a secure IP in IP tunnel is established between the

endpoints. The original IP packet is encapsulated as the payload of the outer IP packet.

[16]

HIP utilizes a new IPsec mode called Bound End-to-End Tunnel (BEET) [17]. BEET is

a combination of IPsec transport and tunnel modes. Advantage is that BEET mode can

pass Network Address Translations (NAT) while the transport mode cannot and there is

less overhead than in the tunnel mode. Inner addresses are fixed addresses, in this case

HITs, and outer IP addresses are used for the normal routing and therefore can be

changed on the fly.

3.1.7 Host Identity Protocol for Linux

Host Identity Protocol for Linux (HIPL) is an open source Linux implementation of HIP

which operates in Linux user space [18]. It is currently the most developed HIP imple-

mentation. The HIPL architecture consists of two main modules. HIP Daemon is the

actual Linux daemon module which communicates with the IPsec stack. HIP Daemon

handles all the base exchange related functionality and keeps track of open HIP connec-

tions.

 12

The other important module is HIP Firewall, which is an iptables based firewall solu-

tion. It can be used to filter HIP connections. Modules communicate with each other

using an internal communication mechanism, which is based on HIP sockets. HIP sock-

et is a new socket type registered to Linux kernel. Use of the HIP Firewall is optional,

if it is not in use, HIP Daemon communicates with kernel. HIPL contains a command

line based control application called HIPconf. It uses the HIP internal communication

mechanism to configure and set parameters for HIP Daemon.

Figure 3.3. HIPL Architecture.

When an application wants to establish a HIP connection, it finds out opposite side HIT

from the modified Domain Name System (DNS) server. After receiving HIT, the appli-

cation requests a connection establishment from HIP Daemon, which initializes base

exchange and negotiates a security association in the BEET mode. HIP Daemon uses

the DNS server to resolve HIP-IP pair for the network level connection. The application

uses HIT’s as a source and a destination address for packets. The IPsec layer transforms

HIT’s to negotiated tunnel’s Security Parameter Index (SPI). IP header is also replaced

with the BEET addressing. Figure 3.4 describes HIPL interaction with Linux.

Figure 3.4. HIPL interaction with Linux. [18]

HIP

Daemon

HIP

Firewall

HIP Internal

communication

mechanism

HIP Configuration

tool

Linux kernel

HIP Internal

communication

mechanism

Netfilter

Netlink

DNS Server

Client
Application

HIP Daemon HIP Daemon

Server
Application

IPSec SPD IPSec SAD

Socket API

IPSec SAD IPSec SPD

Socket API

HIT

FQDN

 13

3.2 Authentication, Authorization and Accounting Proto-
cols

Though HIP provides some security properties, a few enhancements are required to sat-

isfy the needs of non-repudiable service. In a typical roaming scenario user is roaming

in a foreign network and the foreign operator must charge the user’s home operator after

usage. This requires user authentication, authorization for the services, and accounting

information about resource consumption.

Authentication is a procedure where entity’s identity is verified. The entity must provide

some information as proof of one’s identity, e.g., a password or response to a challenge

which is verifiable by the authentication server. This information is compared with an

access database and authentication is confirmed if there is a match.

Authorization defines permissions for an earlier authenticated entity. It contains rules

and restrictions what actions an entity can perform. Typically, authorization is done

simultaneously with the authentication, but it can also be a separated process. It is pos-

sible that non-authenticated entity is authorized to perform some actions.

Accounting contains acts which are made to gather information about the resources con-

sumed by the user. This information can be later used as evidence related to communi-

cation. Typically, accounting data can be billing information or used for auditing securi-

ty issues. The accounting data can also be used to estimate future load and resource

consumption of the system. [19]

The purpose of AAA protocols is to provide these above-mentioned services. Typically

one protocol can handle all of these functionalities. Common AAA protocols are RA-

DIUS [9], Terminal Access Controller Access-Control System (TACACS) [20], and

Diameter [21]. In a basic scenario AAA client functionality is deployed to a Network

Access Server (NAS), which acts as an access controller for the end-users. When end-

users connect to the NAS device, it sends end-user information to the AAA server

which informs the NAS about further actions. After or during network access the NAS

device provides accounting information about the connection to the AAA server. The

AAA server typically contains a user database which is used to perform AAA actions to

end-users attached to the NAS.

3.2.1 RADIUS

RADIUS protocol was originally developed to provide AAA functionality for dialup

connection providers. It has been further developed to fit the needs of, e.g., a WLAN

usage. RADIUS is a client server based protocol where the client side is deployed to a

NAS. One of the advantages is that RADIUS is a very flexible protocol which supports

multiple authentication mechanisms.

 14

Base of RADIUS is a connectionless and stateless protocol, which works on top of User

Datagram Protocol (UDP). It has very wide support in NAS devices. RADIUS supports

proxy functionality between servers, which makes it ideal to use between different or-

ganizations. This causes also a shortcoming, because all the data must be transferred

through the proxy hierarchy to the very endpoint server. In this proxy scenario it is also

possible that the first RADIUS server grants the authorization request while some other

server might have more updated information about the subject being authorized. With

basic RADIUS it is impossible to cancel already made decision. Because RADIUS is

stateless all the necessary information must be in every packet sent. [9]

Because RADIUS operates over UDP, RADIUS protocol itself contains a retransmis-

sion mechanism. Many protocols rely on TCP in the retransmission functionality. On

the other hand RADIUS AAA session must be completed fairly quickly, so even though

TCP would be handling data transfer reliably it could take too much time.

One of the advantages of RADIUS protocol is the extremely flexible message format. It

is based on Type-Length-Value (TLV) mechanism, where each parameter has type, val-

ue and length. RADIUS messages can contain improved TLV field called Vendor Spe-

cific Attribute (VSA), which offers possibility to encapsulate various kind of parameters

inside RADIUS messages. RADIUS VSA Attribute is described in Figure 3.5. Vendor-

id is identifier for the used VSA. Vendor type can be used for more specific information

about the attribute. Vendor length indicates the length of the whole VSA parameter.

Attribute-Specific section can contain multiple Attribute-Value pairs. Attribute data

length is restricted to 255 bytes.

Figure 3.5. RADIUS VSA-Attribute.

RADIUS Packet Header

Type Length Vendor-id

Vendor-id Vendor type Vendor length

Attribute-Specific...

Vendor type

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

 15

Packets are authenticated with a pre-shared secret which every entity in the same RA-

DIUS set must share. The pre-shared key is only used for message authentication. RA-

DIUS does not encrypt packets; only the user password is MD5 hash of the concatena-

tion of the pre-shared secret and password, when using Password Authentication Proto-

col (PAP). To maintain security in the communication, RADIUS can be deployed only

to a network which is secure from end to end. Privacy is also weak, since packets are

not encrypted and there is no protection for replay attack. RADsec [22] specification is

being developed to provide better security when using RADIUS over an insecure net-

work.

3.2.2 RADIUS Roaming

RADIUS Roaming can be used in a situation, where the client attaches to a foreign net-

work’s NAS. The NAS sends an access request to network’s local access controller,

which sends an RADIUS authentication to client’s home organization RADIUS server.

Request can be relayed through various RADIUS servers.

Finnish University and Research Network (FUNET) offers a RADIUS roaming service

to Finnish Universities and organizations. In FUNET RADIUS roaming a user, which is

a member of FUNET RADIUS roaming organization, attaches to a public access net-

work which is managed by other FUNET RADIUS roaming organization. An access

request is delivered to the FUNET Root Roaming Server, which delivers the request to

roaming user’s home organization RADIUS server. An answer to the request is relayed

back to the access controller, which decides if roaming user is allowed to connect to the

network. [23]

3.2.3 Diameter

Diameter protocol aims at responding to the AAA challenges of new Internet technolo-

gies and capability requirements. Diameter is used in the IP Multimedia Subsystem

(IMS) architecture and some other 3GPP applications to provide a AAA functionality

between entities [24]. It also tries to improve some shortcomings of the RADIUS proto-

col.

Diameter is a connection and session based protocol which supports TCP and SCTP

transmission protocols. Diameter supports capability negotiation so the client and the

server can try to find a service level which satisfies both. RADIUS requires static con-

figurations of peers while Diameter allows dynamic peer discovery [25]. The most im-

portant advantage in Diameter is the attribute size. It supports 16,777,215 byte length of

parameters while RADIUS supports only 255 bytes. This gives a good flexibility for the

vendor specific attributes. Diameter offers also a better reliability while RADIUS suf-

fers problems in congested networks [26].

 16

3.2.4 TACACS+

TACACS+ is a AAA protocol developed by Cisco [27]. It aims to fix some shortcom-

ings of the RADIUS protocol and add more security. TACACS+ employs TCP as a

transmission protocol and is session based. The most important security improvement is

that TACACS+ encrypts the whole packet body while RADIUS encrypts only the

passwords. A shortcoming is that the encryption is made with a secret key and MD5,

even though MD5 has some security vulnerabilities [28]. The whole packet body en-

cryption makes TACACS+ more feasible than RADIUS in insecure networks, if atten-

tion is paid to the MD5 vulnerability. Another improvement is separation of AAA func-

tionality while RADIUS combines the authentication and authorization. This allows

more advanced authorization scenarios where non-authenticated entities may still have

some privileges. The biggest shortcomings of TACACS+ are availability and distribu-

tion. It is not as widespread as RADIUS and available mainly in Cisco devices only, and

every entity attached to the TACACS+ infrastructure must share the same secret. TAC-

ACS+ is lacking integrity checks in the accounting packets which make them vulnera-

ble to tampering.

3.3 Hash Chains

Use of hash chains was introduced in [29]. Cryptographic hash function is a one-way

function which is easy to apply to a seed value(s), but computationally very expensive

to reverse. A hash chain is created when the cryptographic hash function is applied to

the results of previous hash functions. Equation (1) shows the creation process of a hash

chain.

 () () () (1)

Last piece of the chain is called an anchor value. Now it is easy for the receiver to veri-

fy, if the value belongs to the hash chain, by applying the hash function to the previous

value. On the other hand, it is computationally difficult to perform the verification pro-

cedure without knowing the seed value. Equation (2) shows the verification process.

 ()

(2)

Hash chains can be used in micropayment solutions [30] as well as in the onetime pass-

word (OTP) schemes [32] and many other purposes including authentication [31].

3.3.1 Infinite Length Hash Chains

One of the problems using traditional hash chains in micropayment solutions is the fi-

nite length. Typically the duration of the service usage is not known beforehand which

makes it difficult to estimate the right length of a hash chain.[33] proposes solution

 17

where a public-key technique is used to create an infinite length hash chain. This means

that the chain length can be increased without restarting. Equation (3) defines how the

infinite length chain is constructed by applying a public-key based algorithm (A) and a

private key (d) to a secret seed value (s).

 () () () (3)

The verification process goes similarly, the public key algorithm used in chain creation,

is applied to a chain piece. Equation (4) defines the verification process where (P) de-

notes the received piece and (e) chain creator’s public key.

 () (4)

It should be noticed that the chain creator must not send the first created chain piece or

the secret seed value is revealed to the verifier. This scheme requires the chain creator’s

public key to be transferred to the chain verifier before the chain use can begin.

3.3.2 Hash Chain Tree

An unbalanced one-way binary based hash chain tree is a special application for hash

chains [34]. In the hash chain tree one hash chain acts as a secret seed value for the oth-

er chains. This helps to save space when a large amount of pieces is need. Since every

piece of the hash tree can be generated from a single root value, the used device does

not have to store every value. Figure 3.6 shows an example of the unbalanced one-way

binary based hash tree. The first chain in the horizontal direction is so called an anchor

chain, which contains anchor values for each sub chain. The actual used chains are gen-

erated from these anchor values.

 18

Figure 3.6. Unbalanced one-way binary based hash chain tree.

In a micropayment scenario it is easy to send multiple anchor values under a single sig-

nature for the service providers. While this creates a little overhead it saves computation

power since cryptographic verification is not needed when switching to the next chain.

3.4 Public Key Certificates

Public key certificates are used to bind entity’s identity or some attributes to entity’s

public key [35]. A basic public key certificate contains only entity’s identifier, e.g.,

name or other verifiable subject, entity’s public key, issuer’s identifier and signature,

which performs the actual binding. Certificates can be self-signed or TTP, typically

called Certificate Authority (CA), provides a signing service for certificates. TTP may

provide a verification service for the identities in the certificates which TTP has signed.

Self-signed certificates are based on a web of trust. Certificate holders provide trust for

each other since typically there is some strong binding between the holders. For exam-

ple if Alice has a certificate which is signed by Bob. Alice does not know Bob, but Al-

ice knows Carol, who knows that Bob can be trusted. Now Alice can also trust on Bob,

because she knows Carol, who convinces Alice that Bob is a trustworthy person. Ulti-

mately, security is based only on trust. Compared with CA signed certificates, identity

provided in CA certificates hold more trustworthy status than self-signed certificates,

depending on what kind of verification CA performs to the certificate signing requester

before signing the certificate.

P2020P1920P220P120

P2019P1919P219P119

P201P191
P21P11

P200P190P20P10

Tree root

Anchor values

 19

Typically, certificates provide some additional information about the entity. This infor-

mation can be used in advanced authentication and authorization situations. Commonly

certificates have a validity period after which they have to be renewed. TTPs may offer

also a certificate revocation service. Revocation is used when the key pair used in the

certificate is compromised, or an entity which is certified performs some actions after

which it cannot be trusted. The revocation functionality requires typically online TTP.

3.4.1 X.509v3 Public-Key Infrastructure

X.509 Public-Key Infrastructure was developed by ITU-T. It is the most widely spread

and used PKI system in the electronic transactions. X.509 specifies certificate struc-

tures, the revocation process, and certification path validation procedures [35]. X.509v3

is the latest version of X.509 family specification and brings some new features and

improvements to the older ones. X.509 system uses a global namespace while, e.g.,

SPKI uses only application domain specific namespace. The global namespace and cer-

tificate complexity causes problems in scalability. Figure 3.7 shows an example of

X.509v3 certificate.

Figure 3.7. Example X. 509v3 certificate formatted for readability.

Certificate:

 Data:

 Version: 3 (0x2)

 Serial Number: 103 (0x67)

 Signature Algorithm: md5WithRSAEncryption

 Issuer: C=FI, O=Tampere University of Technology, OU=IT Management, CN=TUT

Internal Root CA

 Validity

 Not Before: Aug 20 06:39:13 2001 GMT

 Not After: Aug 18 06:39:13 2011 GMT

 Subject: C=FI, O=Tampere University of Technology, OU=IT Management, CN=TUT

Internal Root CA

 Subject Public Key Info:

 Public Key Algorithm: rsaEncryption

 RSA Public Key: (1024 bit)

 Modulus (1024 bit):

 00:b1:76:a0:67:24:86:06:e1:e5:a6:7d:34:62:a9:

 81:18:32:7a:81:9f:c9:aa:30:55:8a:43:df:1e:a7:

 11:a6:e8:7c:3d:d0:f3:ce:bc:87:71:7a:11:a6:39:

 81:ad:23:b3:33:f7:4a:c6:f5:fc:a1:5c:95:ca:76:

 c6:dd:88:4b:3d:07:04:63:c3:84:7a:07:ee:2c:7c:

 e3:90:bb:90:60:78:09:0d:cd:5b:a1:9e:bb:3a:f4:

 eb:99:a1:50:a7:5e:7b:d1:a1:aa:b2:58:bf:e8:01:

 6d:82:60:f2:0d:7c:ac:99:80:c4:c6:73:6f:da:dc:

 ad:b2:74:b0:69:b4:01:99:a9

 Exponent: 65537 (0x10001)

 Signature Algorithm: md5WithRSAEncryption

 2d:ef:65:71:ec:82:2d:91:df:43:49:3c:eb:5a:75:e1:eb:9d:

 cf:61:de:db:28:4d:3f:3b:d8:42:10:45:68:31:85:9c:04:27:

 cd:c8:a1:7c:7c:fd:d8:5c:62:0b:81:e4:3d:3b:6f:9f:65:63:

 a2:7b:84:85:76:5f:31:07:87:9a:d5:20:cd:b4:b5:5e:2b:4f:

 ab:42:5b:3c:24:97:06:21:50:9a:94:ee:d4:73:87:b6:3d:85:

 10:92:bc:81:13:e0:33:92:e2:a5:31:30:1d:b8:56:79:79:7c:

 35:b2:11:20:75:fd:f4:19:87:b4:92:19:0a:60:80:9e:aa:26:

 96:18

 20

In an example situation user wants to use X.509 certificate as a proof of his or her iden-

tity. As mentioned before, a public key certificate binds user’s identifier to a public key.

X.509 structure allows only binding user’s actual name, which is used as a identifier, to

the public key instead of identity. When users with the same names exist, it is difficult

to distinguish the users from each other.

3.4.2 SPKI

Simple Public Key Infrastructure (SPKI) defines a simple certificate structure for decen-

tralized and distributed authorization scenarios [36]. SPKI defines two basic types of

certificates, naming and authorization. Figure 3.8 shows an example of SPKI certificate.

Figure 3.8. Example SPKI certificate.

Naming allows binding names to public keys. Naming is valid only in the specific do-

main where SPKI is used. Authorization certificates include the possibility to delegate

some or all of the original authorizations. This makes it possible to create chains of au-

thorization where original authorization propagates through the chain. SPKI certificates

transferred from machine to another must be encoded in canonical S-expressions [36].

Canonical S-expression is a form of S-expression, where length of the element is coded

before the atom. Figure 3.9 shows example canonical S-expression.

Figure 3.9. Example canonical S-expression.

Length is in the ASCII decimal format and a colon is used to separate the length from

the actual element.

3.4.3 KeyNote

KeyNote introduces a trust management based solution to perform authorization. It uses

credentials to decide whether the user is allowed to perform some actions. In the exam-

ple case when using KeyNote, used applications must provide a KeyNote Application

Programming Interface (API). After an application has received some action request

from the user, the application sends a KeyNote query to local the KeyNote Interpreter.

This interpreter interprets the action request and asks authorization from the credential

(

(cert

(issuer(hash sha1 (abcd)))

(subject(hash sha1 (efgh)))

(validity

(not-before 2011-03-11_12:00:00)

(not-after 2011-03-21_12:00:00)))

(signature

(rsa-sha1(abcd))))

)

(7:example10:expression)

 21

management entity. Based on the users’ credentials, the action is granted or denied. Two

main advantages of KeyNote are easy importability and flexibility in the message syn-

tax. The syntax is less structured than, e.g., SPKI or X.509 so it allows more expressive

notations.

Figure 3.10 shows an example of KeyNote assertion statement. [37]

Figure 3.10. Example KeyNote assertion.

KeyNote can be used in various scenarios to provide access control and authorization.

[38] shows example solution where KeyNote is used with IPsec to provide access con-

trol. Due to the flexibility of KeyNote syntax, it is also suitable to be used in micro-

payment solutions [39].

KeyNote-Version: 2

Authorizer: “rsa-hex:1234abcd”

Licensees: “dsa-hex:5678efgh”

Comment: “Authorizer offers WLAN service with time or volume based billing”

Conditions: app_domain == “wlan” -> “true” && currency == “EUR” && amount ==

“0.15” && date < “20110315” -> “true”;

Signature: “sig-rsa-sha1-hex:4321cdea”

 22

4 SYSTEM REQUIREMENTS

When the implementation phase began, some functional and non-functional require-

ments were set for the implementation. The functional requirements were related to

providing the non-repudiation properties while the non-functional requirements focused

on the user experience and security issues. The non-functional requirements were also

used to evaluate the implementation.

4.1 Functional Requirements

Non-repudiable service usage implementation (NoRSU) focuses on three main goals.

The first goal is to make it possible to offer different kind of non-repudiation services

using HIP. These services can be for example a WLAN usage or streaming service. The

second goal is to bind the service provider and user undeniably to the service usage. The

third main goal is the gathering of evidences about the communication between entities.

It should be also possible to choose whether to operate using NorSU implementation or

traditional HIP. NoRSU incapable Responder should be capable of performing the tradi-

tional base exchange with NoRSU capable Initiator. Operation must be possible vice

versa where Initiator is incapable to use NoRSU to provide a backward compatibility

with vanilla HIP implementations.

4.2 Non-Functional Requirements

The most important non-functional requirement is to provide non-repudiation for the

communication. All transactions and agreements made between entities must be bound

to their identities. Also the evidence of all transactions must be gathered.

4.2.1 Non-Repudation and Fairness

In the base exchange Responder must commit to a service offer with a signature. If Ini-

tiator decides to agree the offer, it must commit to the agreement with a signature. Ei-

ther one of the entities must not be able to deny involvement in the agreement after-

wards. After the base exchange both entities must be bound to the sent messages until

the session tear down. Either one of the entities must not be in a considerably weaker

position than the other at any point in the transaction. If either one of the entities feels

its position unfair, it must be able to withdraw from the session, without noticeable

losses.

 23

4.2.2 Expandability

The implementation must establish a modular and easily expandable framework for the

non-repudiable service provisioning. Because of the general nature of the framework,

the main components must be easily changeable and modifiable. The implementation

should provide an interface to easily add and modify new certificate types and encod-

ings. The implementation configuration files and statements should be flexible to sup-

port possible future parameters. Also the use of longer key lengths and new types for

cryptographic algorithms and hash functions should be possible to implement easily.

Charging schemes should be easy to customize to fulfill the needs of different service

providing scenarios. The framework should also provide an interface for using and

switching between different kinds of AAA protocols. There should also be an interface

for local evidence handling. The possibility for saving evidence into files should be pro-

vided, which could be extended with a database connection in the future.

4.2.3 Compatibility

The framework should be compatible with existing HIP solutions, so no changes to the

basic HIP functionality should be made. The compatibility includes HIP aware firewalls

and middleboxes. Use of the NoRSU modes should require support only in the connec-

tion initiating and responding devices. The NoRSU functionality should be as transpar-

ent as possible to upper level applications, so no support for NoRSU is needed from the

upper layers. However, there should be an API which is used to inform the user about

the NoRSU related information and gather user’s approval or rejection to the service

offers. No modifications should be made to the HIP API and legacy API.

4.2.4 Usability

The configuration and usage of NoRSU implementation should be simple. Configura-

tion files must be in a simple attribute value pair format. The main functionalities of the

implementation must be configurable; this includes hash chain lengths, certificate va-

lidities and used identities. The controlling of the implementation is done using an exist-

ing HIP configuration command line user interface. There should be information availa-

ble for the user when NoRSU mode is enabled or disabled and possible error situations.

This should be done using existing HIP debug information mechanism. The user should

be able to adjust the amount of information given by the implementation, but the most

critical error situations, which have effect on the service usage, must override existing

settings. When the base exchange is finished successfully in the NoRSU mode, the user

is not able to turn off the NoRSU functionality since this could compromise the fairness

and non-repudiation properties.

 24

4.2.5 Efficiency

Compared to the original HIPL, NoRSU modifications must not cause major lack of the

efficiency including hardware and network requirements. This includes minimizing the

bandwidth usage of the NoRSU related communication. Since the original HIPL does

not have clearly defined hardware and network requirements, efficiency can only be

measured in how many sessions one server machine can handle. This is difficult to veri-

fy without a large test environment, so the base exchange duration and control packet

handling times must be used to estimate the efficiency. [40] shows some evaluation

about the performance of several HIP implementations.

4.2.6 Security

The implementation must not weaken existing HIP security properties. This includes

DoS protection and a secure communication channel between the participating entities.

The solution must also fulfill security requirements which are derived from the non-

repudiation functionality. This includes protection against denying being involved in the

communication afterwards, protection against faking the identity of a participant, and

fair execution of the base exchange. If the base exchange execution is compromised,

implementation must try to ensure a fair position to all involving entities. In the actual

payment phase, it must be computationally difficult to forge the units used to pay for the

service usage.

 25

5 DESIGN

The basic principle of the design was modularity. Existing HIP properties were used as

much as possible to provide non-repudiation. New modules can be disabled so HIP can

operate in the original mode. This chapter describes the main components of the imple-

mentation and interoperation between different components.

5.1 Architecture

The system architecture is presented in Figure 5.1. The component interaction is de-

scribed in more detail in Section 0. Key components are HIP Daemon, RADIUS Dae-

mon (RDaemon) and RADIUS Client (RClient). HIP Daemon is responsible for the HIP

functionality. RDaemon handles the capsulation of RADIUS packets inside HIP pack-

ets. RClient is used to communicate with the actual RADIUS server. In the first phase,

marked with 1 in Figure 5.1, the client initiates the connection to the server. If the nor-

mal mode is used, the base exchange continues traditionally. If the client wants to use

the non-repudiable service, NoRSU mode is enabled in the phase one. If the TTP is not

available, the base exchange continues as in the normal mode with NoRSU additions. If

a HIP capable TTP is available and the server wants further verification of the client, it

can establish a connection to the TTP.

In the phase two the server requests TTP’s HIT from RDaemon. In the phase three the

server begins the base exchange with the TTP. If the TTP is not HIP capable, the server

goes to the phase four and connects to the TTP using RClient and the RADIUS proto-

col. If the TTP is HIP capable, in the phase four the server requests RADIUS communi-

cation from RClient. RClient creates a RADIUS message with requested parameters and

sends it. When using RADIUS encapsulation RDaemon captures the message coming

from RClient and transforms it to a HIP parameter in the phase five.

 26

Figure 5.1. NoRSU system architecture.[41]

In the phase six TTP’s HIP Daemon sends the HIP parameter which contains a RADI-

US message for extraction. RDaemon extracts the message from the parameter and de-

livers message to RADIUS Server in the phase seven. The eight phase describes the

logical connection between Server and TTP RADIUS services. HIP infrastructure offers

delivery service for RADIUS messages.

5.2 Basic Modules

Additions to the core HIPL modules are presented in Figure 5.2. Four building blocks

for the non-repudiation are added to HIP Daemon. The first block is the certificate han-

dling module which creates, verifies, signs, encodes and decodes certificates used in the

communication. It is extended from the basic HIP certificate module by adding support

for S-encoding and efficient encoding, which is described in more detail in Section 6.3.

HIP Firewall contains a usage control module which is used in the volume based charg-

ing. The module keeps track of transmitted data of every NoRSU enabled HIP-

connection and signals HIP Daemon when the set threshold is exceeded. The NoRSU

control module is responsible for handling NoRSU configuration options.

Client Server TTP

HIP

Daemon

HIP

Daemon

HIP

Daemon

RDaemon

R
C

lie
n

t

RDaemon

RADIUS

Server

DAEMON

HIP HIP

H
IP

IN
T

E
R

N
A

L

HIP

INTERNAL

HIP

INTERNAL

RADIUS

RADIUS

RADIUS

RADIUS

SERVER

F
re

e
R

A
D

IU
S

C
lie

n
t lib

ra
ry

1.

2.

3.

4.

5.

6.

7.

8.

 27

Figure 5.2. Basic structure of the design.

The hash chain module is responsible for creating and verifying hash chains. It also cre-

ates parameters for the hash chain renewal. Hash chain renewal is a procedure, where

exhausted chain is replaced with new one, without interruption in the service usage.

Hash chain module supports traditional hash chains and public key signature based infi-

nite length hash chains. The usage control module contains functionality to monitor the

non-repudiation process. It monitors the timers related to charging and creates mapping

between the gathered evidence and security associations.

5.3 RADIUS Processing

RADIUS processing modules are presented in Figure 5.3. RDaemon contains a func-

tionality to convert RADIUS parameters to HIP parameters and vice versa. RClient

connects to RDaemon which encapsulates the received RADIUS message to a HIP Pa-

rameter. When RDaemon receives HIP Parameter which contains an answer to the mes-

sage, it extracts the RADIUS message and returns it to RADIUS client. RDaemon also

contains a TTP selector, which is used to select an appropriate TTP. TTP is used to veri-

fy the client side authorization certificate, which the client may supply in the base ex-

change. Different clients may have authorizations from different TTPs, so mechanism to

choose right one is needed. RDaemon is only needed when using HIP to secure RADI-

US messaging.

HIP

Daemon

Certificate

module
Hash chain

module

Usage control

module
RADIUS API

HIP

Firewall

Usage control

module

HIP Configuration

tool

NoRSU control

module

 28

Figure 5.3. RADIUS modules.

HIP Daemon uses RClient to send RADIUS messages. RClient contains an API to

communicate with RADIUS Client library. It also transforms NoRSU service attributes

to RADIUS vendor specific attributes and RADIUS messages to NoRSU actions. For

example, if a RADIUS message is AccessReject, RClient signals HIP Daemon to termi-

nate the base exhange.

5.4 Operation Modes

The implementation can operate in several modes. This includes the NoRSU mode and

the normal mode. In the NoRSU mode the system can operate in two different setups.

The first setup contains an initiator and a responder. This is the most basic situation

where the responder offers non-repudiable service and the initiator wants to use it. In

the second mode the responder uses a TTP to get additional verification of the initiator.

Communication between the responder and the TTP is done using a RADIUS protocol.

The responder and the TTP can also establish a HIP connection where RADIUS is en-

capsulated inside HIP control messages.

5.4.1 Initiator Functionality in NoRSU Mode

On the initiator side, once the NoRSU mode is enabled an additional parameter to indi-

cate the NoRSU is added to the I1 packet. The HIP Daemon configuration mechanism

must support enabling and disabling the NoRSU mode. The user must be able to specify

the contents of the NoRSU parameter via a configuration file. When receiving an R1

packet, the implementation must check if an offer parameter is included, determine the

encoding used in the certificate and verify validity time and the signature. The initiator

must support at least SPKI certificates in canonical S-encoding and efficient encoding

[42] formats. If either one is invalid or missing, or the whole certificate is missing, the

base exchange continues in a normal mode. The initiator must determine which charg-

ing type is used. At least traffic and volume based charging must be supported on the

initiator side. In the traffic based charging support to monitor the amount of incoming

and outgoing traffic of a specific HIP connection is added. HIP Firewall must also be

capable of receiving threshold values, which defines how much traffic can pass through

RDaemon

RADIUS

Parameter

handling

TTP Selector

RClient

RADIUS Client

API

 29

with one token from the HIP Daemon and notify the HIP Daemon when the threshold

value is exceeded.

When creating the I2 packet, the initiator must use the specified configuration file to

create a response certificate. The configuration file contains a validity period of the re-

sponse, the used hash chain and length, and HIT used in the certificate. The response

certificate must use the same encoding that the offer certificate used. The initiator may

also include a TTP authorization and delegation certificates in the I2 packet. If they are

included, efficient encoding must be used. TTP and delegation certificates are specified

in the separate configuration file. After accepting the offer and signaling the acceptance

by sending the response certificate, the initiator must begin to monitor the hash chain

piece sending interval condition. Pieces must be sent in the UPDATE packets and they

must be encrypted.

5.4.2 Responder Functionality in NoRSU Mode

The responder supports three operating modes: a normal mode, a NoRSU mode and a

NoRSU mode with AAA messaging. In the NoRSU mode when the responder receives

an I1 packet with the NoRSU parameter it must include a service offer in the R1 packet.

The responder may also include a TTP service authorization. If the I1 packet contains

information about the desired service, the responder may follow the wish. Types of of-

fered services, charging amounts and intervals, used encodings and service offer dura-

tions are specified in the configuration file. The responder must support at least SPKI

certificates in canonical S-encoding and efficient encoding formats. If a TTP authoriza-

tion is included, the efficient encoding is mandatory. Use of the S-encoding would

cause the control packet to fragment. If the I1 packet does not contain the NoRSU pa-

rameter, the base exchange continues in the normal mode which is described in Section

5.4.4. If the I2 packet contains a response certificate, the responder must verify the hash

of the offer, a validity period of the certificate and the signature. The response certifi-

cate, which the initiator creates, must also be in the same encoding format as the offer

certificate. If any of these conditions are not met, the responder must continue the base

exchange in the normal mode. If the response certificate is accepted, monitoring the

charging must be initialized and in the volume based charging HIP Firewall must be

configured similarly as on the initiator side. The configuration file must specify thresh-

old values for how many and how long chain pieces can be missing. Figure 5.4 de-

scribes the base exchange in NoRSU mode.

 30

Figure 5.4. Base exchange in NoRSU mode.

5.4.3 Responder Functionality in NoRSU Mode with AAA Messaging

In the NoRSU mode with AAA messaging, after receiving the I2 packet, the responder

contacts the AAA server specified in the configuration file. The server may ask further

verification for initiator’s identity and establishes an accounting session. If the AAA

server returns a negative answer to the query, the responder must tear down the base

exchange. The responder must support at least the RADIUS protocol for the AAA func-

tionality. After connection teardown between the initiator and the responder, the re-

sponder must send used certificates and accounting information using AAA functionali-

ty to the AAA server. In the NoRSU mode the responder must save this information

locally. Communication using the AAA server is described in Figure 5.5

Initiator Responder

I1: HITi, HITr(opt), NoRSU trigger

R1: (HITi, HITr, Puzzle, D-Hr, Pubkeyr,

(offer, authz(opt))signaturer)signaturer

I2: (HITi, HITr, Solution, D-Hi, Pubkeyi,
(response, authz(opt), deleg(opt))signaturei)signaturei

R2: (HITi, HITr)signaturer

ESP(Data)

 31

Figure 5.5. Base exchange with AAA support.

If the used network is insecure and the AAA provider is HIP capable, it is possible to

establish a HIP session between the responder and the AAA provider. Communication

goes like in the previous case, though the HIP responder must now relay AAA messages

carried by HIP to the available AAA server. After the connection establishment, it may

remain available to further AAA communication. The responder side HIP must be able

to relay AAA requests over the second HIP connection. This functionality is described

in Figure 5.6.

The responder may try to establish connection to several AAA providers during the base

exchange. If any of them do not respond, it may fall back to a simple scenario where the

AAA information is stored locally. The initiator may also include information about the

AAA provider during the base exchange.

Initiator Responder

I1: HITi, HITr(opt), NoRSU trigger

R1: (HITi, HITr, Puzzle, D-Hr, Pubkeyr,

(offer, authz(opt))signaturer)signaturer

I2: (HITi, HITr, Solution, D-Hi, Pubkeyi,
(response, authz(opt), deleg(opt))signaturei)signaturei

R2: (HITi, HITr)signaturer

ESP(Data)

AAA Server

AccessRequest

AccessResponse

AccountingRequest

AccountingResponse

 32

Figure 5.6. Base exchange with HIP capable AAA.

5.4.4 Normal Mode

In the normal mode the implementation must act as specified in [8]. A NoRSU unaware

initiator must be able to establish connection to a NoRSU aware responder. It is not al-

lowed to move from the normal mode to the NoRSU mode without establishing the base

exchange first. Transition to the normal mode from the NoRSU mode during the base

exchange must be supported in both the initiator and the responder side. The normal

mode is only for maintaining compatibility. Transition to the normal mode will immedi-

ately end the service usage.

Initiator Responder

I1: HITi, HITr(opt), NoRSU trigger

R1: (HITi, HITr, Puzzle, D-Hr, Pubkeyr,

(offer, authz(opt))signaturer)signaturer

I2: (HITi, HITr, Solution, D-Hi, Pubkeyi,
(response, authz(opt), deleg(opt))signaturei)signaturei

R2: (HITi, HITr)signaturer

ESP(Data)

AAA Server

AccessRequest

AccessResponse

AccountingRequest

TTP

I1: NoRSU trigger

R1: (

(authz)signaturer)si

gnaturer

I2: AccessRequest

R2:

AccessResponse

UPDATE: AccountingRequest

AccountingResponse

UPDATE:

AccountingResponse

 33

6 IMPLEMENTATION

In this chapter, most of the key implementation details are described. The implementa-

tion was done using C programming language and Ubuntu Linux 9.04 as development

environment. The implementation is based on the HIPL 1.04 and it can be installed as

an update to normal HIPL 1.04.

6.1 Host Association Database

Host Association Database (HADB) contains all data related to a one host association.

Host association is a connection between two HIP hosts and which endpoints have

common keying material. This was a natural place to store the NoRSU specific infor-

mation. HADB is a single struct containing pointers to connection options. The follow-

ing parameters were added to the struct. Table 6.1 contains certificate related variables.

Table 6.1. Certificate related variables in HADB.

Variable Type Description

hip_cert_spki_offer struct Storage for SPKI encoded

offer certificate

hip_cert_spki_response struct Storage for SPKI encoded

response certificate

hip_cert_eff_offer struct Storage for efficient en-

coded offer certificate

hip_cert_eff_response struct Storage for efficient en-

coded response certificate

hip_cert_eff_ttp struct Storage for efficient en-

coded TTP certificate

hip_cert_eff_dele struct Storage for efficient en-

coded delegation certificate

For the infinite hash chain support, separate variables were needed. Since only one type

of hash chain can be used simultaneously, the same counter variables are used for both

chain types. Table 6.2 lists hash chain related variables.

 34

Table 6.2. Hash chain related variables in HADB.

Variable Type Description

norsu_hash_chain_values unsigned char * array Array to store pointers

to unused hash chain

value in the client side

norsu_hash_chain_values_switch unsigned char * array Array to store pointers

to received hash chain

switch parameters

norsu_rcvd_chain_values unsigned char * array Array to store received

hash chain pieces the

server side

sent_hash_counter unsigned int Counter for amount of

sent hash chain pieces

in the current chain

client side

rcvd_hash_counter unsigned int Counter for amount of

received hash chain

pieces in the current in

the server side

norsu_first unsigned char * Even hash chain piece

in infinite length chain.

Sent piece in the client

side and received in the

server side

norsu_second unsigned char * Uneven hash chain

piece in infinite length

chain. Sent piece in the

client side and received

in the server side

The general service related parameters are also stored in the HADB. These include type

of used encodings, hash chain types, hash chain lengths, RADIUS specific variables and

timers for service usage. Table 6.3 contains the service related variables.

 35

Table 6.3. Service related variables in HADB.

Variable Type Description

cert_counter int long Counter used to monitor

elapsed time, when using

time based charging

cert_clock int Flag to store information, if

time or traffic based charg-

ing is used.

norsu_encoding int Flag to store information, if

SPKI or efficient encoding

is used.

norsu_chain_len int Used hash chain length

norsu_duration int Duration of the service

usage

rad_state int Flag to indicate RADIUS

message exchange state

ttp_ha int HIT of the used TTP

hash_total unsigned int Total amount of received

and sent hash chain pieces

The HADB stores history information about the service usage which is needed when

sending evidence to the TTP. Though the RADIUS protocol is stateless, the NoRSU

usage requires keeping track of the state, so decision about when to accept or deny the

incoming connection based on the RADIUS authorization and the accounting infor-

mation can be made. Since the host association database is removed when a HIP con-

nection is closed, the connection related information must be stored before sending

CLOSE/CLOSE ACK packets.

6.2 Packet Size Restrictions

To avoid vulnerability against DoS attacks, packet sizes were decided to keep under the

IPv6 recommended MTU size of 1280-byte to prevent fragmentation of the packets

[43]. Table 6.4 shows mandatory HIP control packet sizes with default sizes of 1536-bit

D-H key length and 1024-bit RSA keys in the signatures. The two possible sizes for R1

are offer certificate and offer certificate along TTP certificate. The three possible sizes

for the I2 packet are response certificate, response and TTP certificate and response

certificate with TTP and delegation certificates.

 36

Table 6.4. HIP packet sizes in bytes.

Encoding I1 R1 I2 R2

S-enc. 152 966/1352 968/1354/1698 216

Eff. 152 807/950 807/950/1137 216

Normal 40 640 608 216

6.3 Certificate Modifications

Vanilla HIP has support for handling X.509v3 and SPKI based certificates with a mini-

mal required content. This support was extended with NoRSU certificates. Figure 6.1

shows certificate parameter structure [44]. The only restriction for the certificate field

length is the size of the control packet.

Figure 6.1. HIP Certificate parameter structure.

Certificates are created based on the configuration file. The parser reads this configura-

tion file and transforms configuration options to SPKI statements. Options are in a sim-

ple attribute value-pair format. Options for NoRSU certificates were added to this con-

figuration and parser was modified to accept new options. Table 6.5 shows new certifi-

cate types, HIP parameters and numbers. HIP allows grouping of CERT parameters so

long certificates can be divided into multiple control packets. This option could not be

used in this solution since the agreement of the service usage must be made during the

base exchange.

Type

Cert-group Cert count Vendor-id

Certificate...

Padding

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

0 1 2 3

Length

Cert ID Cert type

 37

Table 6.5. New certificate parameters.

Certificate HIP Parameter

SPKI Encoded Offer Certificate HIP_PARAM_CERT_SPKI_OFFER

(32826)

SPKI Encoded Response Certificate HIP_PARAM_CERT_SPKI_RESPONSE

(32827)

Efficient Encoded Offer Certificate HIP_PARAM_CERT_EFF_OFFER

(32828)

Efficient Encoded Response Certificate HIP_PARAM_CERT_EFF_RESPONSE

(32829)

For the efficient encoding, the same configuration file parser was used for the options.

Options were transformed into binary encoding. Table 6.6 describes used SPKI state-

ments in the efficient encoding format. All statements are encoded in a type value for-

mat containing fixed size values to avoid collisions when parsing the certificate.

Table 6.6. SPKI statements and binary encoded equivalents.

SPKI statement Binary

encoding

Size in

bytes

Description

cert 0xaeba 4 Beginning statement for SPKI certificate

validity not after 0xff02 6 Validity period of the offer

issuer 0xff03 22 Issuer of the certificate

offer s 0xff04 6 Offer using time based charging, unit se-

cond

offer b 0xff05 6 Offer using volume based charging, unit

byte

hash of offer 0xff08 22 Hash of the offer

hash chain anchor 0xff09 22 Anchor value of the used hash chains

subject 0xff10 22 Subject of the certificate

target service 0xff11 22 Target service for delegation

amount-max 0xff12 6 Maximum amount of usage, unit second

propagate 0xff13 2 Is propagation allowed

validity period 0xff14 10 Validity range of the certificate

signature-rsa-sha1 0xffaa 128 RSA-SHA1 signature

signature-dsa-2048 0xffbb 448 2048 bit DSA signature

In the SPKI encoded certificate verification, a parser based on regular expressions is

used. Based on the input statement, the parser returns value of the statement. For NoR-

SU statements the parser was modified to verify NoRSU related values. The parser also

 38

configures the NoRSU connection attributes in the HADB based on the parsed values.

Efficient encoding is parsed based on known lengths of the fields.

Figure 6.2 shows example certificate in the efficient encoding format presented in hexa-

decimals and in the canonical S-expression formatted for readability. The efficiently

encoded SPKI statements are bolded.

Figure 6.2. Offer certificate in efficient and canonical S-expression encoding format.

6.4 Hash Chain Support

For testing purposes the hash chain method is capable of creating two kinds of hash

chains. The traditional chains are created using SHA-1 hash function and a random seed

value. Parameters related to the chain are located in the HIP configuration file. These

parameters are the hash chain length and the amount of chains. The first chain is created

after receiving the offer from the server. The mechanism supports also importing exter-

nally created chains. The used hash chain values are stored in the host association data-

base. This enables the implementation to recover from the situation where several hash

chain pieces are lost in the transport channel.

It is also possible to chain multiple traditional hash chains using the hash chain switch-

ing. In the hash chain switch a special switch parameter is created. The switch parame-

ter contains a concatenation of the second last value of the exhausted chain and the an-

chor value of the new chain. This concatenation parameter is signed with client’s private

Canonical S-expression:

(

(4:cert

(6:issuer(4:hash4:sha120:abcd..))

(5:offer(4:time(1:1(3:s60)))

(8:validity(9:not-after19:2012-01-16_19:00:00))

)

(9:signature(8:rsa-sha1128:abcd...))

)

Efficient encoding:

03 00 00 c0 01 01 00 32 f0 b2 48 b7 ae ba ff 10 d4 33 61 21 fb 6a

64 e5 ad 5a 8a 9c 4a 97 69 73 c3 47 a0 2e ff 04 00 03 ff 02 4e 34

3f 2e ff aa 3d c6 7b 62 c6 b3 e9 21 df 20 e0 85 d8 c0 a5 17 18 77

59 4a ed d5 be b6 75 e0 63 e3 1b 57 ec 16 2b 06 d7 43 14 ab f1 be

23 f0 9f c5 10 a1 fc ce 8d 24 7c 0b a8 a5 3f db 63 70 65 07 95 21

b2 14 7d 84 be d1 cd 3f c2 4c 40 e3 1b a6 1c 21 b2 cd 0b b8 b7 04

dd 17 f7 3c d5 b3 c3 c6 b1 fe 44 67 65 09 f7 05 ba 4c 93 9b 6b 2f

8c 9a a1 d6 0b 02 3a 29 ce 9d ab 8e e0 e6 fd dd e5 01 b7 e2 3f 09

20 01 00 10 ad e5 28 6d 36 84 7d e7 91 80 a7 f6

00 00 00 00

 39

key to ensure the continuation of the evidence chain needed in the non-repudiation. If a

UPDATE packet containing the switch parameter is lost, it is impossible to recover

from the situation and the connection must be terminated.

The second kind of hash chains are infinite length hash chains, which are created using

RSA algorithm and host’s private key. The first value is created from a random seed

value and the next element is generated using previous value as a seed. Because of the

packet size caused by infinite length chain pieces, this functionality is disabled by de-

fault. It can be enabled from the HIP configuration file or using the HIP configuration

tool. Appendix A: Example Norsu Configuration shows an example configuration file.

6.5 Charging

Two types of charging schemes were implemented: time and volume based charging. In

the time based charging the customer pays for the time he or she uses the service. In the

volume based charging the customer pays for some resource consumed during the ser-

vice. In this solution the chargeable resource is transferred data. Other chargeable re-

source could be f. ex. processor time or amount of database queries.

6.5.1 Time Based

The time based charging uses ticks to determine the moment to send the hash chain

piece. The tick length is in the offer certificate and when the client accepts the offer;

both the entities adjust their internal timers to the agreed tick length. Any time synchro-

nization protocol is not used so both timers run in a little bit different time. Timers

coarsely synchronize when the hash chain piece is sent and verified. Depending on

whether the timer reset is made on UPDATE sent or UPDATE ACK, server’s or client’s

clock is always a little bit ahead. In this solution client’s timer is a little bit ahead to

avoid unnecessary timer expirations caused by the transmission delay. Server’s timer

contains a threshold which allows the delay of three ticks before the timer expires. Be-

cause of coarse timing, extremely long or short tick times should not be used to achieve

smooth operation. In this solution the default tick length is one second.

6.5.2 Volume Based

Transferred data based charging in this solution is implemented using HIP Firewall. The

used threshold value is in the offer certificate and when the agreement is made, the cli-

ent and the server setup their HIP Firewalls with the agreed value. The used socket op-

tions are described in Table 6.7. The client monitors incoming IPsec traffic for the spe-

cific connection and when the threshold value is exceeded, HIP Firewall signals HIP

Daemon to send the hash chain piece. The server monitors outgoing IPsec traffic for the

specific connection. Figure 6.3 shows interaction between HIP Daemon and Firewall

when a traffic threshold is first set and later exceeded.

 40

Table 6.7. Socket options used in firewall communication.

Signaled event HIP Socket option

Threshold exceeded SO_HIP_HASHCHAIN_OFF (203)

Reset traffic threshold monitor SO_HIP_COUNTER_RESET (207)

Set value to traffic threshold monitor SO_HIP_COUNTER_SET (208)

If the hash chain piece is not received when the threshold value is exceeded, depending

on how many missing chain pieces is allowed, the connection expires. Since IPsec traf-

fic is encrypted, also TCP/UDP and IP overhead is included in the monitored traffic.

This causes inaccuracy to the measurement.

Figure 6.3. Interaction between HIP Daemon and Firewall.

HIP Firewall is based on iptables tool [45]. HIP Firewall monitors incoming and out-

going packets based on preconfigured rules. Because of this, settings for the HIP Fire-

wall must be configured before the base exchange. This restricts the usability since

HITs, IP address, or the used network interface must be known beforehand to create the

appropriate rules for the connection monitoring.

6.6 HIPconf

HIPconf is a utility to set the runtime configuration to HIP Daemon. HIPconf uses the

internal communication mechanism and sends parameters and configuration options to

HIP Daemon as socket options. HIPconf works one way only, so it does not receive a

response from the HIP Daemon for the sent commands. HIPconf is used to enable and

enable various NoRSU related options. The possible options are listed in Table 6.8. All

existing configuration options remained untouched.

HIP Daemon (Client) HIP Daemon (Server)
HIP Firewall (Server)

I1

R1

I2

HIP Firewall (Client)

SO_HIP_COUNTER_SET

SO_HIP_COUNTER_SET

R2

UPDATE

SO_HIP_COUNTER_SET

SO_HIP_HASHCHAIN_OFF

ACK

SO_HIP_COUNTER_SET

 41

Table 6.8. Added HIPconf options.

Configuration option HIPconf pa-

rameter

HIP socket option (number)

Enable NoRSU service norsu on SO_HIP_NORSU_ON (204)

Disable NoRSU service norsu off SO_HIP_NORSU_OFF (205)

Enable NoRSU server

mode

norsu server

on

SO_HIP_NORSU_SERVER_ON (209)

Disable NoRSU server

mode

norsu server

off

SO_HIP_NORSU_SERVER_OFF (210)

Enable SPKI encoding encoding spki SO_HIP_NORSU_ENCODING_SPKI

(211)

Enable efficient encoding encoding eff SO_HIP_NORSU_ENCODING_EFF

(212)

Enable infinite length

hash chains

pubkeyhash

on

SO_HIP_NORSU_PUBKEYHASH_ON

(213)

Disable infinite length

hash chains

pubkeyhash

off

SO_HIP_NORSU_PUBKEYHASH_OFF

(214)

Recreate pre created cer-

tificates

create offer on SO_HIP_NORSU_CREATE_OFFER

(215)

Enable RADIUS mes-

sage relay to external

RADIUS server

radrelay on SO_HIP_RADIUS_RELAY_ON (219)

Disable RADIUS mes-

sage relay to external

RADIUS server

radrelay off SO_HIP_RADIUS_RELAY_ON (220)

All of the configuration options cannot be used simultaneously. Certificate encoding can

be either SPKI or efficient encoding for example. The encoding mode must be chosen

before the base exchange and cannot be changed on the fly during the connection.

6.7 RADIUS Implementation

The RADIUS support is divided into two components. RClient offers functionality to

use the RADIUS client with the HIP internal communication mechanism. RDaemon

offers functionality to establish a HIP connection with TTP and RADIUS message en-

capsulation to HIP control packets. Figure 6.4 shows interaction between different com-

ponents. Components and phases are similar to Figure 5.1.

 42

Figure 6.4. Interaction between different components.[41]

If the HIP connection between the TTP and the server is already established when the

base exchange between the client and the server begins, RADIUS messages are deliv-

ered to the TTP using UPDATE packets in the phase 3.

.

Client Server(HIP) Rdaemon(SERVER) RClient(SERVER) TTP(HIP) Rdaemon(TTP) RADIUS Server

I1

R1

I2

I1

R1

GET_TTP_HIT

HIP_PARAM_RADIUS

SIGNAL_ACCESS_REQUEST

AccessReq

I2

RELAY_PARAM_TO_RADIUS_SERVER

AccessReq

AccessResp

RELAY_RADIUS_MSG_TO_HIP_DAEMON

R2

RELAY_PARAM_TO_RADIUS_CLIENT

AccessResp

ACCESS_RESPONSE_RESULT

R2

TTP_HIT

1.

2.

3.

4.

5.

2.

3.

6.

7.

6.

2.

5.

4.

1.

3.

 43

6.7.1 RClient

RClient is a daemon which performs the RADIUS protocol client functionality. RClient

offers an API to RADIUS clients and HIP internal communication mechanism. RClient

receives RADIUS connection requests from HIP Daemon and is connected to RDae-

mon. When HIP Daemon requests a RADIUS message, RClient creates an appropriate

message using attached the RADIUS client. After this the RADIUS client sends the

message to RDaemon which emulates the RADIUS server. The RADIUS message trav-

els through the HIP connection to the actual RADIUS server. HIP socket options used

between RClient and HIP Daemon are described in Table 6.9.

Table 6.9. RClient communication socket options.

Signaled event HIP Socket option

Access Request SO_HIP_RADIUS_SEND (222)

Accounting Request (Start) SO_HIP_RADIUS_ACC (223)

Access Accepted SO_HIP_RAD_AUTH_OK (224)

Accounting Request (Stop) SO_HIP_RAD_ACC_DATA (225)

When the response is received, RDaemon returns the response to RClient. This func-

tionality hides the actual transport channel from the RADIUS client. The RADIUS cli-

ent interprets the contents of the message and signals HIP Daemon about the response

type. RClient supports access and accounting request messages. RClient contains a par-

ser to create RADIUS vendor specific attributes based on the parameter received from

HIP Daemon. Figure 6.5 shows interaction between components in connection

teardown. HIP Daemon sends evidence collected in the HADB during the connection to

RClient. Certificates are transported in HIP_PARAM_CERT and hash chain sets in

HIP_PARAM_RADIUS_HASHVALUE. RClient creates vendor specific attributes

based on the received evidence. Table 6.10 shows how evidence is encapsuled in VSA.

Table 6.10. Evidence in Vendor Specific Attributes.

Archived evidence Vendor Type

Offer certificate 1

Response certificate 2

TTP certificate 3

Delegation certificate 4

Total received hash chain pieces 5

Hash chain anchor value 6

Last received chain value 7

Received pieces in chain 8

Hash chain switch value 9

 44

If the connection to TTP is already established when closing procedure begins, the UP-

DATE packet is used to carry RADIUS parameters. Otherwise connection to the TTP is

established to deliver the evidence. One UPDATE packet is able to carry Offer, Re-

sponse, TTP, Delegation certificates and two hash chain sets, if the certificates use the

efficient encoding. For rest of the hash chain sets as much UPDATE packets as needed

is sent to deliver all connection related data to the TTP.

Figure 6.5. Connection teardown.

6.7.2 RDaemon

RDaemon implements two major functionalities. The first one is TTP finding mecha-

nism. Available TTP HIT’s are configured to the HIP configuration file under [ttp_hit]

section. HIP Daemon uses internal HIP messaging via dedicated socket to signal TTP

Client Server(HIP) Rdaemon(SERVER) RClient(SERVER) TTP(HIP) Rdaemon(TTP) RADIUS Server

CLOSE

HIP_PARAM_RADIUS

SIGNAL_ACCOUNTING_REQUEST_STOP

AccessReq

UPDATE

RELAY_PARAM_TO_RADIUS_SERVER

AccountingReq

AccountingResp

RELAY_RADIUS_MSG_TO_HIP_DAEMON

UPDATE

RELAY_PARAM_TO_RADIUS_CLIENT

AccountingResp

ACCOUNTING_RESPONSE_RESULT

CLOSE_ACK

 45

connection request to RDaemon. The same mechanism is used in the communication

between HIP Daemon and HIP Firewall.

When RDaemon receives a TTP connection request, it chooses the first suitable HIT

and triggers HIP a base exchange via internal communication mechanism. Because HIP

Daemon runs in a single thread, all other active and incoming HIP connections are

blocked until the triggered base exchange is finished.

The second functionality is RADIUS message encapsulation and decapsulation. HIP

Daemon works in cooperation with RClient. RDaemon listens to the port 985 for UDP

messages and emulates a RADIUS server to RClient. After a RADIUS message is re-

ceived RDaemon creates HIP Parameter from the received RADIUS message and uses

internal HIP communication mechanism to deliver the parameter to HIP Daemon. After

this, HIP Daemon applies the received parameter to an appropriate HIP control packet.

Table 6.11 shows mapping between RADIUS messages and HIP parameters.

Table 6.11. Mapping between RADIUS messages and HIP Parameters.

RADIUS Message HIP Parameter

Access-Request HIP_PARAM_RADIUS (32832)

Accounting-Request HIP_PARAM_RADIUS_ACC (32835)

On the other side, HIP Daemon delivers received HIP Parameters containing RADIUS

messages to RDaemon. RDaemon extracts the RADIUS message and forwards it to the

receiver. Depending on the role, a server or a client, the receiver can be a RADIUS

server or RClient. RDaemon remains listening to the input channel for the possible re-

sponse message.

 46

7 ANALYSIS

The performance of the implementation was tested to study the effects of the non-

repudiation modifications. The other focus of testing was to evaluate the fulfillment of

functional and non-functional requirements introduced in Chapter 4. Test setup was

designed to act as a typical usage scenario for the implementation. Actual test cases

often used in software engineering [46] were not designed. Since the focus of the work

was to evaluate the user experience and the functionality of the system as a whole, it

was found not so useful to put effort to verify the operation of some minor feature. Con-

firming the requirements guided the testing process.

7.1 Test Environment

Testing was performed in a laboratory environment. The test setup contained three ma-

chines which were connected to each other. Machines were connected to a local area

network. In the RADIUS roaming setup introduced in 0, 1000Mbit Internet connection

to FUNET was used. Figure 7.1 shows the physical setup in the laboratory. NoRSU1

and NoRSU2 were connected using SMC Wireless 54Mbit USB Adapters. NoRSU2

and NoRSU3 were connected with 1000Mbit Ethernet connection.

Figure 7.1. Physical setup in the laboratory.

NoRSU1
Client

NoRSU2
Server

NoRSU3
TTP, RADIUS Server

DHCP

 47

DHCP server was running in a VMWare based virtual machine. IPv6 addressing was

used between all hosts and IPv4 addressing was disabled.

7.1.1 Test Platform

The used test machines had corresponding performance of today’s low end home com-

puters. Tests were also performed in a virtual machine environment, but results were

inconsistent because of the unbalanced processor load. The virtualization platform ma-

chine had two physical processor cores, but when three virtual machines and host oper-

ating system were running at the same time, the load grew too high. Machines intro-

duced in Table 7.1 gave consistent results through the measurements.

Table 7.1. Test machine specifications.

Device Processor Memory

NoRSU1 Pentium 4 1,7 GHz 1024MB

NoRSU2 Athlon XP 1,53 GHz 1024MB

NoRSU3 Pentium 4 2,4 GHz 1024MB

Because of the physical setup instead of virtualization, testing was restricted to single

connections between hosts. Because of the different processor types, processor loads

were not monitored. Hyperthreading in NoRSU3 was turned off during the tests.

7.1.2 Test Software and Execution

The operating system in the test machines was Debian 5.0.2 “Lenny”. The kernel ver-

sion was 2.6.26-2-686, which contains BEET functionality. All tests were performed

using 1024-bit RSA keys and 1536-bit Diffie-Hellman group. For other options HIP

default values were used. A special version of HIPL 1.04 was used, which contains pos-

sibility to set measurement points in the source code. These points were used to measure

different events during the base exchange. The original source code contained approxi-

mately 50 000 and non-repudiation modifications consisted of 5000 lines of code. This

includes new and modified lines.

7.2 Performance Measurements

In the performance measurements, the main focus was in the base exchange duration. It

can be used to evaluate how well the implementation would work in the actual scenari-

os. It also gives some hints about how many clients one server can handle. If one base

exchange takes some amount of time, this time can be used to evaluate the user experi-

ence in the client side. All measurement results are comparable with each other.

 48

7.2.1 Non-Repudiation Modifications

The first round of measurements was performed with non-repudiation modifications. In

this setup, NoRSU1 and NoRSU2 were used. Figure 7.2 shows base exchange duration

on the server side in three cases. Normal refers to Vanilla HIPL implementation and two

others to the implemented version. Measurements were made using a script which start-

ed a base exchange, waited 4 seconds, disconnected and started the base exchange again

after 1 second. Results are averages of 100 measurements. With all versions measure-

ment began on the server side, when server started to process the I1 packet and finished

after the R2 packet was sent.

Figure 7.2. Server side base exchange duration.

In the version with NoRSU modifications, the verification of the response certificate

was done on the client side. The creation of the offer certificate was not counted since it

is pre-created when creating a R1 packet. Figure 7.3 shows the base exchange duration

in same three scenarios on the client side.

Figure 7.3. Client side base exchange duration.

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0,45

Server Side Base Exchange Duration

D
u

ra
ti

o
n

 (
s)

S-Enc

Eff. Enc

Normal

0,52

0,54

0,56

0,58

0,6

0,62

0,64

0,66

Client Side Base Exchange Duration

D
u

ra
ti

o
n

 (
s)

S-Enc

Eff. Enc

Normal

 49

On the client side the measurement was done from the I1 packet creation to the verifica-

tion of the R2 packet. This includes the verification of the offer certificate and creation

of the response certificate. Traditional, not infinite length, hash chain anchor value was

used in the response certificate. The hash chain was created during the creation of the I1

packet. The hash chain length of 100 was used. Table 7.2 shows processing times in

more detail. Results were quite near what was expected. The most of the delay in the

server side is caused from the verification of the response certificate RSA signature. In

the client side verification of the offer certificate signature and creation of the response

certificate signature causes the delay.

Table 7.2. Detailed processing times in seconds.

 R1 Handling (Cli-

ent)

I2 Handling (Serv-

er)

I2 Creation (Cli-

ent)

S-Enc 0,106 0,116 0,039

Eff. Enc 0,090 0,093 0,036

Normal 0,062 0,085 0,017

The difference between the S-Encoding and efficient encoding is caused by the parser.

The S-Encoded parser is based on the regular expressions and allows more flexible cer-

tificates. The efficient encoding is assumed to follow strict order in the certificate struc-

ture which improves the performance but weakens the flexibility. Figure 7.4 shows per-

formance in the creation of the UPDATE packet.

Figure 7.4. Client side UPDATE packet creation times.

Vanilla HIP UPDATE packet contains RSA signature. However, in this implementation

it was removed as unnecessary since hash chain mechanism is able to provide authentic-

ity of the packet. Normal column in Figure 7.4 and Figure 7.5 means modified UP-

DATE packet, which contains a hash chain piece. UPDATE packet containing the

0

0,001

0,002

0,003

0,004

0,005

0,006

Update packet creation times

D
u

ra
ti

o
n

 (
s)

Normal

Switch

Inf. Chain

 50

switch parameter is used to replace the exhausted chain to a new one. It also binds

chains together with the client RSA signature, which causes the greater time consump-

tion. Similarly infinite hash chains are based on signatures. Even though both times are

approximately five times higher than normal UPDATE packet creation times, they are

still nearly ten times faster than the creation of the I2 packet.

The most time consuming operation on the processing of the switch parameter and the

infinite length hash chain is RSA signature verification. Difference between switch pa-

rameter and infinite length chain verification time is caused by the verification of the

traditional chain piece. Figure 7.5 shows UPDATE packet verification times in the

server side, which is evaluated in three cases.

Figure 7.5. Server side UPDATE packet verification times.

Again, normal refers to the packet with a single hash chain piece. Since the switch pa-

rameter contains values from two chains, it must be verified that other value belongs to

the old chain before taking the new chain’s anchor into use. Though these verification

times are much faster than any base exchange related operations, it must be noticed that

the server typically receives messages from multiple customers. However, it is unlikely

that many clients send switch parameters simultaneously. More typical operation to the

server is the verification of the traditional chain piece, which takes only 0,0002s.

7.2.2 RADIUS Support and Roaming

The next measurement target was the base exchange duration when using TTP. In the

first setup TTP connection was static and during the base exchange the server verified

the client’s identity from the TTP using the RADIUS protocol, which was encapsulated

inside HIP UPDATE packets. In the second setup, a connection between the server and

the TTP was dynamic during the base exchange. Figure 7.6 shows the base exchange

duration in the client side when using TTP.

0

0,0002

0,0004

0,0006

0,0008

0,001

Update packet verification times

D
u

ra
ti

o
n

 (
s)

Normal

Switch

Inf. Chain

 51

Figure 7.6. Base exchange duration when using TTP.

The use of dynamic base exchange duration is almost three times greater in the client

side than the normal HIP base exchange. Typically, this happens only once and the con-

nection to the TTP remains open. The most of the duration is caused by slow socket

handling when using HIP internal communication mechanism between daemons. Rea-

son for this was artificial delay in socket handling. Decreasing this delay caused errors

in the socket functionality, especially in the UNIX select() function performance [47].

Although this issue was investigated, no obvious reason was found. It must also be no-

ticed that because of the single threaded nature of HIP Daemon, it is in the blocking

state for the whole base exchange duration, which can be problematic with a large

amount of clients. In this setup the RADIUS server and TTP located physically in the

same machine, but in a real life scenario they can operate in separate machines which

causes even more delay.

RADIUS roaming was tested in an additional test setup. NoRSU1 acted as a client who

wished to roam into the network where NoRSU2 acted as a gateway. During the base

exchange between NoRSU1 and NoRSU2, NoRSU2 asked confirmation from the

FUNET RADIUS server, if NoRSU1 is allowed to roam. This server acted as a proxy

and forwarded the request to the RADIUS server of the home organization of NoRSU1,

which made decision to accept or decline the request. This server replied to the FUNET

server which relayed the answer to NoRSU2. If roaming was allowed, NoRSU2 contin-

ued the base exchange. Figure 7.7 shows the test setup.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

Client Side Base Exchange Duration

D
u

ra
ti

o
n

 (
s)

TTP-Connection online

TTP connection offline
(Dynamic base exchange)

RADIUS Roaming

Normal

 52

Figure 7.7. Test setup in the RADIUS roaming scenario.

In this setup RADIUS messages went directly from NoRSU2 to the FUNET server

through the Internet. Because there is no delay caused from the HIP socket handling and

processing, roaming is almost as fast as the normal HIP base exchange. However, the

connection between NoRSU2 and the FUNET RADIUS server is not protected, which

makes this scenario not feasible to actual use, since privacy of the roaming client is

compromised.

7.3 Implementation Analysis

The implementation was evaluated against the non-functional requirements which were

set in Section 4.2. Objective measurements to these requirements are difficult to per-

form, so the main focus is on introducing the solutions which were made in the imple-

mentation. In overall the requirements were pretty loose due to the prototype nature of

the project.

7.3.1 Expandability

The implementation is pretty modular in most core functions. New certificate types can

be added by just implementing new creation and verification functions and adding new

parameter types. New encoding types for existing certificates require re-implementation

of existing creation functions. Since various encoding types exist, creating a general

NoRSU1
Client

NoRSU2
Server

NoRSU
Organization

RADIUS SERVER

FUNET
RADIUS
Server

 53

encoding framework was too time-consuming within the confines of the project. New

cryptographic hash functions can be easily taken into use by implementing hash chain

creation and verification functions for new hash function type. However, new hash

functions must not produce larger chain pieces than the existing one, because of the

packet size restrictions in the Section 0.

The configuration mechanism follows the original HIPL implementation, so new con-

figuration definitions must follow the HIPL mechanism. This includes creating a parser

for the configuration option and adding new socket options for the configuration. The

used AAA-protocol can be easily changed by creating a new AAA Daemon which of-

fers message handling for Access/Accounting requests and responses. The same dae-

mon can offer improved evidence handling and a database client. Support for different

kind of service offer setups requires modification to several modules. Offering a general

platform for unknown service types turned out to be difficult with the existing architec-

ture. One of the main reasons is the single threaded functionality of HIPL. This caused

that every action done during the base exchange stalled the other connections until the

action was finished.

7.3.2 Compatibility

Tests revealed that the implementation is able to interoperate with the original HIPL.

Actual version control between different versions of NoRSU implementations was not

implemented. Future modifications in the server or the client side may or may not break

the compatibility with original HIPL. Because there is not any general handling func-

tionality for parameters, HIPL assumes that parameters are constructed strictly under the

definition of [8]. As a whole this implementation provides the minimum operations to

realize NoRSU functionality. Transparency to the upper layer protocols and middlebox-

es was maintained.

7.3.3 Usability

Because of the subjective nature of usability, objective evaluation is difficult. The name

value pair type configuration was implemented, but less Linux oriented users may find

it difficult to use. Since this implementation aims to support various kinds of service

offerings, a typical user may not be very skilled in Linux. Still, most of the users find it

very welcome to get the possibility to reduce the risk of being defrauded. Because the

implementation is command line based, information about the connection is provided as

text based. Understanding this information may be difficult to an average user. Howev-

er, the whole configuration can be done in a single file, so the operator could offer these

configuration files including pre-created hash chains but this can compromise the non-

repudiation. Pre-created hash chain is already known by the creator, so it can forge the

amount of sent pieces. The only configuration task for the user would be putting the

configuration file to the right place and configuring right key pair for the device. Even

 54

though this may be considered complicated, the whole functionality of the implementa-

tion should be transparent to the user in normal situations. When an upper level applica-

tion requires a connection which requires non-repudiation, HIP base exchange of the

implementation is triggered automatically. Handling the error situation may require

some expertise from the user.

7.3.4 Security and Non-Repudiation

All the existing HIP security properties were maintained. Yet, there are multiple threats

against NoRSU. Identity faking is protected with the use of Host Identities. However,

the Host Identity binds the identity only to the device, not to the actual user. This must

be taken into account when planning the service scenario. The offer certificate binds the

service provider to the offer and the response certificate binds the client to the agree-

ment. Both certificates are signed with host’s private key, which protects certificates

against forging. The response certificate contains the hash of the offer which prevents

the client from tampering the offer to a more favorable one. TTP certificate provides

additional trust for the service provider about the customer. The hash chain anchor is

bound to the signed certificate. The payment is made by sending hash chain pieces. Due

to the irreversible nature of the hash chain, only the chain creator knows the predecessor

of the chain piece. Now payments are bound to payer’s identity and identity is bound to

the agreement. So the client cannot deny payments afterwards. Messages which contain

hash chain pieces are encrypted, so even if the message was captured, the capturer could

not gain advantage of it. If the client stops sending the chain pieces, the service provider

stops the service. If a threshold against missing chain pieces is used, a dishonest client

could get advantage since service is not stopped immediately after a chain piece is miss-

ing. The implementation cannot protect against this directly, but this can be avoided by

keeping the single chain piece value minimal and keeping the chain sending interval

rather small.

If the client does not receive satisfactory service, it can simply stop sending chain piec-

es. In certain service types, this may cause a problem. When using NoRSU based

streaming, the client may face unsatisfactory service in the middle of a movie. Now the

client has already paid half, but even though he or she does not have to pay further, val-

ue of a half seen movie cannot probably compensate the price the client has already

paid.

7.3.5 Feasibility

The implementation works pretty well in a prototype usage. Using the implementation

in a real environment requires some further work. The implementation offers a technical

platform for the NoRSU, but lacks non-technical procedures. For example, the situation,

where evidence is needed to point out a dishonest participant, needs some kind of de-

fined procedure and an adjudicator. The hash chain delivery and key management re-

 55

quires also some business planning. Even though the Host Identity helps to provide

identity for a device, there must be also binding to the device owner’s identity. This user

identity management is out of the scope in this implementation. The implementation

technical side also requires some fine tuning depending on the usage scenario. For ex-

ample, used RADIUS parameters may require adjustments to acquire compatibility with

the deployment environment.

One of the biggest feasibility problems is the single threaded functionality of HIPL.

This makes the handling of large user amounts very difficult. Depending on the speed of

the authentication, users will face delay. Also malicious clients may stall the base ex-

change, which causes even more delay to various operations for other users. To prevent

this, timeouts in the base exchange must be minimized which may cause problems to

users with a large network delay. Delay in the network may cause problems in the tim-

ers when using time based charging.

 56

8 FUTURE WORK

Before the implementation began, HIPL was chosen to act as a platform. HIPL is the

most actively developed and supported HIP implementation at the moment. As earlier

mentioned, one of the biggest downsides in the NoRSU implementation was the single

threaded design of the HIPL. Since the development of the platform was too time con-

suming to this project, the restriction had to be accepted. In the future, HIPL could be

modified to support event based functionality, where operation is divided into atomic

operations called events. This mechanism should contain improvements to select() func-

tion based performance. Events are placed in a queue where HIP Daemon could act as a

scheduler and pick events sequentially to execution. This could reduce clients from

blocking each other during the base exchange. The challenge in this approach is how to

prioritize the different events, to prevent blocking.

Other solution could be the use of threading in the implementation. Each client connec-

tion could run in its own thread. This solution would prevent blocking well, but with a

large number of clients it can be very resource consuming to the server. Also managing

the concurrent operation is difficult for the developer. There are available HIP imple-

mentations which support threaded operation. In the future it should be studied if such

an implementation can be ported to other HIP platform.

From the service variety point of view, using the implementation as a secure WLAN

hotspot is the most interesting one. Existing charging schemes could be used in a sce-

nario where HIP server acts as a controller to multiple WLAN bridges. A client con-

nects to a base station which directs all the requests to a HIP capable controller. All ne-

gotiation related to the service usage is done with the controller. However, this requires

breaking the original idea of the HIP to act only in a point to point connection. The

WLAN operation would require changing the IPsec BEET mode to the tunnel mode, so

incoming traffic from the clients to the controller could be forwarded securely. This

would require also developing a proxy service to the access point, which would keep

track of the open tunnels, so the returning traffic could be directed to the right tunnel.

Modified HIP firewall could handle this kind of service. [48] [49]

To move the implementation towards actual usage, a few things require some adjust-

ment. The first one is the time based charging. The existing system is pretty coarse and

large number of clients may cause problems, because connections just lose the track of

common time, which is synchronized after each sent and received chain piece. Some

 57

kind of synchronization mechanism is needed to maintain a reliable service. One solu-

tion could be adding synchronization parameters to UPDATE packets when sending

hash chain pieces. HIP measures the round trip time of the connection, so the parameter

could contain the time at the moment of sending including the measured round trip time.

Based on these, both sides could adjust the counters. Other solution could be using

some kind of existing time synchronization protocol. This would require binding the

moment of sending of the hash chain piece to time instead of duration.

One interesting research subject is mobility. Since HIPL has been ported to Maemo and

Android mobile operating systems, it is possible to use this implementation also in mo-

bile devices. During this project there was not enough time and expertise to investigate

the compatibility of the implementation in the mobile devices, but theoretically there

should be no obstacles to port the implementation to smart phones.

 58

9 CONCLUSIONS

Based on the experiences gained from the implementation, HIP and HIPL seem to pro-

vide a suitable development platform for non-repudiable services. HIP has various built-

in mechanisms needed to accomplish the non-repudiation which helped a lot during the

implementation phase. The protocol specification is pretty loose and the architecture is

made quite modular, which helps the development and specialization of the protocol. In

the implementation none of the design choices were forced to be changed because of the

restrictions of the HIP protocol specification.

On the technical side, the biggest problem of the implementation was the single thread-

ed operation of HIPL. In spite of this restriction it was possible to implement a proto-

type which fulfilled the functional and non-functional requirements at least in a satisfac-

tory manner. For many requirements, the functionality was achieved but the operation is

pretty coarse. However, as a proof of concept type of solution, the implementation ful-

filled its purpose. During the development, no major blocking problems were faced,

which tells about the good modularity of the HIPL platform.

Results of the performance measurements support the feasibility of the implementation

in actual use. If the aforementioned single threaded problem is not taken into account,

none of the measurements showed the signs of severe performance problems. No major

unexpected behavior of the implementation was found during the testing. Reason for the

slow socket operation of the HIPL was not found. If this had been known beforehand,

the use of the HIP internal communication mechanisms would have been minimized.

With a few modifications, from the technical point of view the NoRSU implementation

is feasible for the operator to use in actual business. However, this requires the operator

to define procedures which are still open on the commercial and the legal side. The im-

plementation does not define how the operator should take care of the identity manage-

ment, since now the identities are based on devices. Also the adequacy of the gathered

evidence remains open. There are no exact definitions in the Finnish law about the non-

repudiation evidence and their validity in the court. So procedures in the misbehavior

situations require more development to transform them into marketing aspects. In the

present state, the implementation offers the tools for the customer to get more secure

service, but lacks the ability to provide the fully secure and reliable service.

 59

On the whole, HIP offers a good platform to develop non-repudiable service provision

for operators. HIP is still under heavy development and the implementations are not yet

completely mature for commercial use, but in a few years the situation may be better. It

is not very widespread yet, but the trend of the Internet to containing more and more

malicious actors may act as a good catalyst for protocols like HIP to spread.

 60

REFERENCES

[1] P. Louridas, “Some guidelines for non-repudiation protocols”, ACM

SIGCOMM Computer Communication Review, Volume 30, Issue 5, October

2000, pp. 29-38.

[2] S. Herda, “Non-repudiation: Constituting evidence and proof in digital cooper-

ation”, Computer Standards & Interfaces, Volume 17, Issue 1, January 1995,

pp. 69-79.

[3] S. Kremer, O. Markowitch, J. Zhou, “An intensive survey of fair non-

repudiation protocols”, Computer Communications, Volume 25, Issue 17, No-

vember 2002, pp. 1606-1621.

[4] N. Asokan, ‘‘Fairness in electronic commerce”, Ph.D. thesis, University of

Waterloo, Waterloo, Canada, 1998.

[5] I. Ray, I. Ray, “Fair exchange in E-commerce”, SIGecom Exch. Volume 3, Is-

sue 2, March 2002, pp. 9-17.

[6] B. Schneier, “Applied Cryptography”, Second Edition, John Wiley & Sons,

1996.

[7] L. 7.8.2009/617 Law of strong electronic identification and digital signatures

(in Finnish).

[8] R. Moskowitz, P. Nikander, P. Jokela, T. Henderson, "Host Identity Protocol",

IETF RFC 5201, April 2008.

[9] C. Rigney, S. Willens, A. Rubens, W. Simpson, “Remote Authentication Dial

In User Service (RADIUS)”, IETF RFC 2865, June 2000.

[10] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, ”Internet Key Exchange Protocol

Version 2”, IETF RFC 5996, September 2010.

[11] R. L. Rivest, A. Shamir, L. Adleman, “A method for obtaining digital signa-

tures and public-key cryptosystems”, Communications ACM, Volume 21, Is-

sue 2, February 1978, pp. 120-126.

[12] P. Nikander, J. Laganier, F. Dupont, “An IPv6 Prefix for Overlay Routable

Cryptographic Hash Identifiers (ORCHID)”, IETF RFC 4843, April 2007.

[13] US Federal Information Processing Standard, “Digital Signature Standard”,

FIPS 186-3, June 2009.

[14] E. Rescorla “Diffie-Hellman Key Agreement Method “, IETF RFC 2631, June

1999.

[15] S. Kent, R. Atkinson, “IP Encapsulating Security Payload (ESP)”, IETF RFC

2406, November 1998.

[16] S. Kent, R. Atkinson, “Security Architecture for the Internet Protocol”, IETF

RFC 2001, November 1998.

[17] P. Nikander, J. Melen “A Bound End-to-End Tunnel (BEET) mode for ESP”,

IETF Draft draft-nikander-esp-beet-mode-09, Expired February 2009.

[18] InfraHIP, “Host Identity Protocol for Linux”, [WWW] available in

http://infrahip.hiit.fi/index.php?index=about (accessed 10/2011).

 61

[19] B. Adoba et al, “Criteria for Evaluating AAA Protocols for Network Access”,

IETF RFC 2989, November 2000.

[20] D. Carrel, L. Grant,”The TACACS+ Protocol Version 1.78”, IETF Draft draft-

grant-tacacs-02, Expired June 1998.

[21] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, J. Arkko, “Diameter Base Pro-

tocol”, IETF RFC 3588, September 2003.

[22] S. Winter, M. McCauley, S. Venaas, K. Wierenga, “TLS encryption for RA-

DIUS”, IETF Draft draft-ietf-radext-radsec-08, Expired September 2011.

[23] S. Keski-Kasari, K. Huhtanen, J. Harju, “Applying Radius-based Public Ac-

cess Roaming in the Finnish University Network (FUNET)”, In proceedings of

TERENA Networking Conference and CARNet User's conference, May 2003.

pp. 1-2.

[24] 3GPP TS 23.228 “IP Multimedia Subsystem (IMS) Stage 2”, 3GPP Specifica-

tion, March 2011.

[25] H. Ventura, “Diameter - Next Generation’s AAA Protocol”, M. Sc. Thesis,

Linköping University, Linköping, April 2002.

[26] M. Stanke, M. Sikic, “Comparsion of the RADIUS and Diameter Protocols”,

In proceedings of the 30th International Conference on Information Technolo-

gy Interfaces, June 2008, pp. 893-898.

[27] Cisco, “AAA Servers”, [WWW] available in

http://ciscosecurity.org.ua/index.html?page=1587051672/ch11lev1sec2.html

(accessed 03/2011).

[28] US-CERT, “MD5 vulnerable to collision attacks”, [WWW] available in

http://www.kb.cert.org/vuls/id/836068 (accessed 03/2011).

[29] L. Lamport, “Password authentication with insecure communication”, Com-

munications ACM, Volume 24, Issue 11, November 1981. pp. 770-772.

[30] R. L. Rivest, A. Shamir, “PayWord and MicroMint: Two Simple Micropay-

ment Schemes”, In Proceedings of the International Workshop on Security Pro-

tocols, May 1997. pp. 69-87.

[31] T. Heer, “LHIP Lightweight Authentication Extension for HIP”, IETF Draft

draft-heer-hip-lhip-00, Expired August 5, 2007.

[32] A. Chefranov, “One-Time Password Authentication with Infinite Hash

Chains,” Book of Novel Algorithms and Techniques In Telecommunications,

Automation and Industrial Electronics, 2008, pp. 283-286

[33] K. Bicakci, N. Baykal, “Infinite Length Hash Chains and Their Applications”,

In Proceedings of the 11th IEEE International Workshops on Enabling Tech-

nologies: Infrastructure for Collaborative Enterprises (WETICE '02), 2002, pp.

57-61.

[34] I-C. Lin, M-S. Hwang, C-C. Chang, “The General Pay-Word: A Micro-

payment Scheme Based on n-dimension One-way Hash Chain”, Des. Codes

Cryptography, Volume 36, Issue 1, July 2005, pp. 53-67.

 62

[35] D. Cooper et al, “Internet X.509 Public Key Infrastructure Certificate” IETF

RFC 5280, May 2008.

[36] C. Ellison, “SPKI Requirements”, IETF RFC 2692, September 1999.

[37] M. Blaze, J. Ioannidis, A. D. Keromytis, “Experience with the keynote trust

management system: applications and future directions”, In Proceedings of the

1st international conference on Trust management (iTrust'03), May 2003, pp.

284-300.

[38] M. Blaze, J. Ioannidis, A. D. Keromytis, “Trust Management for IPsec”, In

proceedings of Network and Distributed System Security Symposium (NDSS),

February 2001, pp. 139-151.

[39] M. Blaze, J. Ioannidis, A. D. Keromytis, ”Offline Micropayments without

Trusted Hardware”, In proceedings of the 5h International Conference on Fi-

nancial Cryptography, January 2001, pp. 21-40.

[40] O. Ponomarev, A. Gurtov, “Stress Testing of Host Identity Protocol (HIP) Im-

plementations”, In proceedings of Third International Conference on Internet

Technologies and Applications, September 2009.

[41] S. Heikkinen, S. Siltala, “Service Usage Accounting”, IEEE Vehicular Tech-

nology Magazine, Volume 6, Issue 1, March 2011, pp. 60-67.

[42] W. Arbaugh, A. D. Keromytis, D. Farber, J. Smith , "Automated Recovery in a

Secure Bootstrap Process", In Proceedings of Network and Distributed System

Security, March 1998, pp. 155-167.

[43] S. Deering, R. Hinder, "Internet Protocol, Version 6 (IPv6) Specification",

IETF RFC 2460, December 1998.

[44] T. Heer, S. Varjonen, “Host Identity Protocol Certificates”, IETF Draft draft-

ietf-hip-cert-12, Expired September 2011.

[45] E. Vehmersalo, “Host Identity Protocol Enabled Firewall: A Prototype Imple-

mentation and Analysis”, Master's thesis, September 2005.

[46] F.P, Brooks, P. Frederick, "No Silver Bullet: Essence and Accidents of Software

Engineering", Computer, Volume 20, Issue 4, April 1987, pp. 10-19.

[47] G. Banga, J. C. Mogul, P. Druschel, “A scalable and explicit event delivery

mechanism for UNIX”. In Proceedings of the annual conference on USENIX

Annual Technical Conference (ATEC '99), June 1999, pp. 253-266.

[48] T. Heer, S. Li, K. Wehrle, “PISA: P2P Wi-Fi Internet Sharing Architecture” In

proceedings of Seventh IEEE International Conference on Peer-to-Peer Com-

puting, September 2007, pp. 251-252.

[49] W. Hu, “Proxy for Host Identity Protocol” M. Sc. Thesis, Aalto University,

April 2010.

 63

APPENDIX A: EXAMPLE NORSU CONFIGURA-

TION

[hip_spki]

issuerhit = 2001:0016:cf10:25f8:9f8a:e55f:b3f8:5b94 // Our Hit

days = 10 // Validity for certificates

duration = 10000 // Duration of NoRSU Service

chainlen = 10 // Length of hashchains

amount = 8 //

type = time // Type of service, time or traffic

unit = s // Unit for service, s or kb

token = 1 // Amount of chains sent per update

[hip_norsu_param]

encoding = 3 // Encoding type

name = NoRSUStreamingService // Service name

subtype = 12 // Service type

[hip_radius]

ttphit = 2001:0019:765d:4422:189b:8de4:72a6:5633 // Hit of TTP

Server

