

JOHANNES MINOR
BRIDGING OPC UA AND DPWS FOR INDUSTRIAL SOA
MASTER OF SCIENCE THESIS

Examiner: Professor Jose L. Martinez Lastra

Examiners and topic approved in the
Automation, Mechanical and Materials
Engineering Faculty Council Meeting on
04.05.2011

I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Master of Science Degree Programme in Machine Automation
MINOR, JOHANNES: Bridging OPC UA and DPWS for Industrial SOA
Master of Science Thesis, 80 pages, 9 Appendix pages.
February 2012
Major: Factory Automation.
Examiner: Prof. José Luis Martínez Lastra.

Keywords: Complex Event Processing, Devices Profile for Web Services, Event

Driven Architecture, OPC UA, SCADA, Service-Oriented Architecture, Web Services

Two web-service based specifications, OPC Unified Architecture (OPC UA) and

Devices Profile for Web Services (DPWS), have been proposed by various researchers
and organizations as possible enabling technologies for an event-driven Service
Oriented Architecture for monitoring and control in manufacturing applications. This
paper aims to propose and demonstrate an approach for bridging these two technologies
in a way that is applicable in existing industrial applications.

A merger between OPC UA and DPWS that effectively combines their
complementary strengths could help pave the path toward future industrial event-driven
SOA applications, with the inherent modularity, agility, and interoperability envisioned
by researchers today.

A representation of DPWS devices, services, operations and events in the OPC UA
data model is proposed, and a DPWS Module is developed for Ignition, a commercially
available HMI/SCADA and MES platform with integrated OPC UA Server. The
module discovers DPWS devices in a local network, creates the representation in the
address space, and handles subscriptions, input and output parameter values, and
invoking operations. A Complex Event Processing component based on Microsoft’s
StreamInsight is also integrated with the system, input and output adapters exposing
web service interfaces.

The system prototype developed will be used as the base for a use case demonstrator
in the European Commission’s Framework Package 7 Project, “Architecture for
Service-Oriented Process Monitoring and Control (IMC AESOP).” The project aims to
develop a system of systems approach for monitoring and control, based on SOA for
very large-scale systems in the process industries.

II

PREFACE

The work described in this Thesis was performed at the Factory Automation
Systems and Technologies Lab (FAST) in the Department of Production Engineering at
Tampere University of Technology, under the direction of Prof. Dr. José Luis Martínez
Lastra, and Associate Professor Andrei Lobov.

Funding for this research came from the European Commission’s Framework
Package 7 Project, “Architecture for Service-Oriented Process Monitoring and Control
(IMC AESOP).”

Many thanks to Prof. Lastra and Dr. Lobov for giving me the opportunity to work in
FAST Lab, and for the guidance they provided while I studied and completed my
degree. A warm thank you as well to all the other FAST Lab members, and the staff
that helped me out when I needed it, including Matti, Sonja, Hanna, and Taina.

Thank you Jill, for your good advice and encouraging words these last few years.
Thanks also to Jorge and Jaacan for keeping life in the lab entertaining, for providing an
outlet for exchanging ideas and venting grievances, and for motivating me when I failed
to motivate myself.

Finally, thank you to my family for all the love and support over the years, and to all
friends in Thunder Bay, Vancouver, Tampere, and elsewhere for giving me confidence
and enriching my life.

Tampere, February 14, 2012.
Johannes Minor

III

CONTENTS

1	
 INTRODUCTION	
 ...	
 1	

1.1	
 BACKGROUND	
 ..	
 1	

1.2	
 PROBLEM	
 DEFINITION	
 ..	
 2	

1.2.1	
 Problem	
 Statement	
 ...	
 2	

1.2.2	
 Justification	
 of	
 the	
 Work	
 ...	
 2	

1.3	
 WORK	
 DESCRIPTION	
 ..	
 3	

1.3.1	
 Objectives	
 ...	
 3	

1.3.2	
 Methodology	
 ...	
 3	

1.4	
 THESIS	
 OUTLINE	
 ..	
 3	

2	
 TECHNOLOGY	
 OVERVIEW	
 ..	
 5	

2.1	
 SERVICE-­‐ORIENTED	
 ARCHITECTURE	
 ...	
 5	

2.1.1	
 Architectural	
 Tenets	
 ..	
 5	

2.1.2	
 Advantages	
 of	
 SOA	
 ...	
 7	

2.1.3	
 SOA	
 Design	
 Methodologies	
 ...	
 8	

2.2	
 WEB	
 SERVICES	
 ..	
 10	

2.2.1	
 SOAP	
 ...	
 10	

2.2.2	
 Web	
 Services	
 Description	
 Language	
 ...	
 12	

2.2.3	
 Devices	
 Profile	
 for	
 Web	
 Services	
 ...	
 16	

2.3	
 EVOLUTION	
 OF	
 SCADA	
 SYSTEMS	
 ...	
 21	

2.4	
 SOA	
 IN	
 INDUSTRIAL	
 APPLICATIONS	
 ...	
 23	

2.4.1	
 Devices	
 Profile	
 for	
 Web	
 Services	
 in	
 Industry	
 ...	
 24	

2.4.2	
 OPC	
 Unified	
 Architecture	
 ..	
 25	

2.4.3	
 OPC	
 UA	
 Companion	
 Specifications	
 ..	
 36	

2.5	
 EVENT-­‐DRIVEN	
 ARCHITECTURE	
 AND	
 EVENT-­‐DRIVEN	
 SOA	
 ...	
 38	

2.5.1	
 Complex	
 Event	
 Processing	
 ..	
 40	

2.6	
 OWL	
 WEB	
 ONTOLOGY	
 LANGUAGE	
 ..	
 41	

3	
 APPROACH	
 AND	
 METHODOLOGY	
 ..	
 49	

3.1	
 MERGING	
 OPC-­‐UA	
 AND	
 DPWS	
 ...	
 49	

3.1.1	
 Comparison	
 Between	
 the	
 Technologies	
 ..	
 49	

3.1.2	
 Adoption	
 in	
 Industry	
 ...	
 50	

3.1.3	
 Technology	
 Merging	
 Strategies	
 ..	
 51	

3.1.4	
 Chosen	
 Approach	
 ..	
 54	

3.2	
 COMPONENT	
 SELECTION	
 ..	
 55	

IV

3.2.1	
 OPC	
 UA	
 Client	
 and	
 Server	
 SDKs	
 ...	
 55	

3.2.2	
 Ignition	
 OPC	
 UA	
 Server	
 ...	
 56	

3.2.3	
 The	
 Ignition	
 SDK	
 ..	
 58	

3.2.4	
 JMEDS	
 WS4D	
 DPWS	
 Java	
 Stack	
 ..	
 59	

3.2.5	
 InicoTech	
 S1000	
 Smart	
 RTU	
 ..	
 59	

3.3	
 PROPOSED	
 INTEGRATION	
 APPROACH	
 ..	
 60	

3.3.1	
 Mapping	
 WSDL	
 to	
 OPC	
 UA	
 Address	
 Space	
 ..	
 60	

4	
 IMPLEMENTATION	
 ..	
 63	

4.1	
 SYSTEM	
 OVERVIEW	
 ...	
 63	

4.2	
 DPWS	
 MODULE	
 FOR	
 IGNITION	
 ..	
 63	

4.2.1	
 Ignition	
 Designer	
 Interface	
 ...	
 66	

4.3	
 MICROSOFT	
 STREAMINSIGHT	
 COMPONENT	
 ..	
 69	

4.4	
 OVERALL	
 SYSTEM	
 STRUCTURE	
 ..	
 71	

5	
 DISCUSSION	
 OF	
 RESULTS	
 ...	
 74	

5.1	
 TESTING	
 ..	
 74	

5.2	
 ASSESSMENT	
 ..	
 75	

5.3	
 NEXT	
 STEPS	
 ...	
 76	

6	
 CONCLUSION	
 ..	
 77	

7	
 REFERENCES	
 ..	
 78	

APPENDIX	
 A:	
 OPC	
 UA	
 EVENTING	
 MECHANISM	
 ...	
 83	

APPENDIX	
 B:	
 INSTRUCTIONS	
 FOR	
 IGNITION	
 MODULES	
 ..	
 87	

INSTALLING	
 AND	
 SETTING	
 UP	
 IGNITION	
 AND	
 THE	
 DPWS	
 DRIVER	
 ..	
 87	

BUILDING	
 MODULES	
 ..	
 88	

DPWS	
 DRIVER	
 PROJECT	
 OVERVIEW	
 ...	
 88	

CEP	
 OUTPUT	
 ADAPTER	
 SINK	
 PROJECT	
 OVERVIEW	
 ...	
 88	

BUILDING	
 THE	
 STREAMINSIGHT	
 PROJECT	
 FOR	
 VISUAL	
 STUDIO	
 (C#)	
 ...	
 89	

V

LIST OF FIGURES

FIGURE	
 1:	
 THREE	
 LAYERS	
 OF	
 SERVICE	
 ABSTRACTION	
 ...	
 6	

FIGURE	
 2:	
 A	
 SERVICE-­‐BASED	
 BUSINESS	
 APPLICATION,	
 COMPOSED	
 OF	
 ATOMIC	
 AND	
 COMPOSITE	
 SERVICES	
 	
 6	

FIGURE	
 3:	
 THE	
 SOMA	
 METHOD[34]	
 ...	
 9	

FIGURE	
 4:	
 SOAP	
 ENVELOPE	
 [3]	
 ..	
 11	

FIGURE	
 5:	
 WSDL	
 1.1	
 AND	
 2.0	
 DOCUMENT	
 STRUCTURE[14]	
 ..	
 13	

FIGURE	
 6:	
 ARRANGEMENT	
 OF	
 DPWS	
 CLIENTS,	
 DEVICES,	
 AND	
 SERVICES[10]	
 ...	
 16	

FIGURE	
 7:	
 NETWORK	
 PROTOCOLS	
 AND	
 SPECIFICATIONS	
 INCLUDED	
 IN	
 THE	
 DEVICES	
 PROFILE	
 FOR	
 WEB	
 SERVICES[25]	
 	
 20	

FIGURE	
 8:	
 EVOLUTION	
 OF	
 SCADA	
 SYSTEMS	
 [33]	
 ...	
 22	

FIGURE	
 9:	
 OPC	
 UA	
 STACKED	
 ARCHITECTURE	
 ...	
 27	

FIGURE	
 10:	
 OPC	
 UA	
 NODE	
 MODEL[38]	
 ..	
 28	

FIGURE	
 11:	
 OPC	
 UA	
 OBJECT	
 MODEL[39]	
 ..	
 30	

FIGURE	
 12:	
 A	
 VIEW	
 OF	
 THE	
 TOP-­‐LEVEL	
 NODES	
 OF	
 AN	
 IGNITION	
 OPC-­‐UA	
 SERVER	
 [43],	
 AS	
 SEEN	
 FROM	
 UNIFIED	
 AUTOMATION	

UAEXPERT	
 OPC	
 UA	
 CLIENT[42]	
 ..	
 32	

FIGURE	
 13:	
 OPC	
 UA	
 WEB	
 SERVICES	
 STACK	
 ...	
 36	

FIGURE	
 14:	
 OPC	
 UA	
 OBJECT	
 TYPES	
 INTRODUCED	
 BY	
 OPC	
 UA	
 FOR	
 DEVICES	
 COMPANION	
 SPECIFICATION	
 [49]	
 	
 37	

FIGURE	
 15:	
 OPC	
 UA	
 DEVICES	
 EXAMPLE	
 [48]	
 ..	
 38	

FIGURE	
 16:	
 OPC	
 UA	
 -­‐	
 DPWS	
 CONVERGENCE	
 PROTOTYPE	
 [47]	
 ...	
 52	

FIGURE	
 17:	
 DPWS/OPC	
 UA	
 ARCHITECTURE	
 FOR	
 EVENT	
 PROCESSING	
 ...	
 54	

FIGURE	
 18:	
 IGNITION	
 OPC	
 UA	
 SERVER	
 CONNECTIONS	
 ..	
 57	

FIGURE	
 19:	
 GENERIC	
 MAPPING	
 FROM	
 DPWS	
 TO	
 THE	
 OPC	
 UA	
 FOR	
 DEVICES	
 OBJECT	
 MODEL	
 	
 61	

FIGURE	
 20:	
 IGNITION	
 DPWS	
 MODULE:	
 SYSTEM	
 OVERVIEW	
 ...	
 64	

FIGURE	
 21:	
 SIMPLIFIED	
 DPWS	
 TO	
 OPC	
 UA	
 DEVICE	
 REPRESENTATION	
 FOR	
 IGNITION	
 OPC	
 UA	
 SERVER	
 	
 65	

FIGURE	
 22:	
 DPWS	
 MODULE	
 FOR	
 IGNITION	
 SERVER	
 -­‐	
 VIEW	
 FROM	
 DESIGNER	
 ...	
 66	

FIGURE	
 23:	
 OPC	
 UA	
 ADDRESS	
 SPACE	
 AND	
 SQLTAGS	
 BROWSER	
 PANELS	
 IN	
 IGNITION	
 DESIGNER	
 	
 67	

FIGURE	
 24:	
 IGNITION	
 CLIENT	
 HMI	
 ...	
 68	

FIGURE	
 25;	
 VIEW	
 OF	
 ADDRESS	
 SPACE	
 OF	
 IGNITION	
 OPC	
 UA	
 SERVER	
 FROM	
 A	
 THIRD	
 PARTT	
 OPC	
 UA	
 CLIENT	
 	
 68	

FIGURE	
 26:	
 DIAGRAM	
 OF	
 STREAMINSIGHT	
 CEP	
 COMPONENT	
 PERFORMING	
 DPWS	
 EVENT	
 FILTERING	
 	
 69	

FIGURE	
 27:	
 CONSOLE	
 APPLICATION	
 EXECUTING	
 STREAMINSIGHT	
 QUERIES	
 ...	
 71	

FIGURE	
 28:	
 IGNITION	
 OPC	
 UA	
 ADDRESS	
 SPACE,	
 AS	
 SEEN	
 IN	
 UAEXPERT	
 ..	
 71	

FIGURE	
 29:	
 DIAGRAM	
 OF	
 	
 COMPLETE	
 PROTOTYPE	
 SYSTEM,	
 SHOWING	
 INTERACTIONS	
 AND	
 IMPORTANT	
 CLASSES	
 	
 72	

FIGURE	
 30:	
 CREATING	
 AN	
 HMI	
 IN	
 THE	
 IGNITION	
 DESIGNER	
 ..	
 75	

FIGURE	
 31:	
 EVENT	
 REFERENCE	
 EXAMPLE	
 [39]	
 ...	
 84	

FIGURE	
 32:	
 MONITORED	
 ITEM	
 MODEL	
 [44]	
 ..	
 85	

VI

LIST OF TABLES

TABLE	
 1:	
 SOAP	
 FAULT	
 CODES	
 ...	
 11	

TABLE	
 2:	
 STRUCTURE	
 OF	
 WSDL	
 1.1	
 AND	
 WSDL	
 2.0	
 FILES	
 ...	
 13	

TABLE	
 3:	
 WSDL-­‐S	
 EXTENSIBILITY	
 ATTRIBUTES	
 AND	
 ELEMENTS	
 ...	
 15	

TABLE	
 4:	
 SPECIFICATIONS	
 IN	
 THE	
 DEVICES	
 PROFILE	
 FOR	
 WEB	
 SERVICES	
 ..	
 17	

TABLE	
 5:	
 ATTRIBUTES	
 COMMON	
 TO	
 ALL	
 OPC	
 UA	
 NODES	
 ...	
 29	

TABLE	
 6:	
 OPC	
 UA	
 SERVICE	
 SETS[44]	
 ...	
 32	

TABLE	
 7:	
 OBJECTTYPES	
 DEFINED	
 IN	
 THE	
 OPC	
 UA	
 FOR	
 DEVICES	
 COMPANION	
 SPECIFICATION	
 ...	
 37	

TABLE	
 8:	
 STACK	
 OF	
 W3C	
 RECOMMENDATIONS	
 RELATED	
 TO	
 THE	
 SEMANTIC	
 WEB	
 ..	
 41	

TABLE	
 9:	
 OWL	
 SUB-­‐LANGUAGES	
 [40]	
 ...	
 42	

TABLE	
 10:	
 OWL	
 LANGUAGE	
 CONSTRUCTS	
 ..	
 44	

TABLE	
 11:	
 COMMERCIAL	
 OPC	
 UA	
 CLIENT	
 AND	
 SERVER	
 SDKS	
 ...	
 55	

TABLE	
 12:	
 MAPPING	
 BETWEEN	
 OPC	
 UA	
 PRIMITIVE	
 TYPES	
 AND	
 XML	
 SCHEMA	
 TYPES	
 [55]	
 ...	
 61	

TABLE	
 13:	
 EVENT	
 SOURCE	
 REFERENCE	
 TYPES	
 ...	
 84	

VII

LIST OF ABBREVIATIONS

6LoWPAN Internet Protocol version 6 over Low-power Wireless
Personal Area Networks

API Application Programming Interface
ANSI American National Standards Institute
AWT Java AWT: Abstract Window Toolkit
BPEL Business Process Execution Language
BPM Business Process Management
BPMN Business Process Model and Notation
CDLC Connected Limited Device Configuration (Java)
CEP Complex Event Processing
COM Component Object Model
CORBA Common Object Request Broker Architecture
CRM Customer Resource Management
DCOM Distributed Component Object Model
DCS Distributed Control System
DDS Data Distribution Service for Real Time Systems
DPWS Devices Profile for Web Services
EA Enterprise Architecture
EDA Event-Driven Architecture
EDDL Electronic Device Description Language
EPL Event Patterning Language
ERP Enterprise Resource Planning
ESB Enterprise Service Bus
EXI Efficient XML Interchange
FDI Field Device Integration
FDT Field Device Tool
GUID Globally Unique Identifier
HMI Human-Machine Interface
HTTP Hypertext Transfer Protocol
HTTPS HTTP Secure
IMC-AESOP ArchitecturE for Service-Oriented Process - Monitoring

and Control
IEC International Electrotechnical Comission
IP Internet Protocol
IPv4 IP version 4
IPv6 IP version 6
ISA International Society of Automation
ITEA Information Technology for European Advancement
J2SE Java 2 Platform Second Edition
JBOWS Just a Bunch of Web Services

VIII

JMEDS Java Multi-Edition DPWS Stack
JSON JavaScript Object Notation
KPI Key Performance Indicator
LAN Local Area Network
LINQ Language Integrated Query
MEP Message Exchange Pattern
MES Manufacturing Execution System
MOM Manufacturing Operations Management
OASIS Organization for the Advancement of Structured

Information Standards
OLE Object Linking and Embedding
OMG Object Management Group
OPC OLE for Process Control (Obsolete Acronym)
OPC UA OPC Unified Architecture
OSGi Open Services Gateway initiative framework
OWL OWL Web Ontology Language
OWL DL OWL Description Logics
PLC Programmable Logic Controller
PROFIBUS Process Field Bus
PROFIBUS-DP PROFIBUS Decentralized Peripherals
PROFIBUS-PA PROFIBUS Process Automation
QoS Quality of Service
RDF Resource Description Framework
RDFS RDF Schema
REST Representational State Transfer
RMI Remote Method Invocation
RPC Remote Procedure Call
RT Real-Time
RTU Remote Terminal Unit
SCA Service Component Architecture
SCADA Supervisory Control and Data Acquisition System
SIRENA Service Infrastructure for Real Time Embedded

Networked Applications
SLA Service Level Agreement
SOA Service-Oriented Architecture
SOA4D SOA for Devices
SOAP Simple Object Access Protocol (Obsolete Acronym)
SOCRADES Service Oriented Cross-Layer Infrastructure For

Distributed Smart Embedded Devices
SOI Service-Oriented Integration
SOMA Service-Oriented Modeling and Architecture, from IBM
SPARQL SPARQL Protocol and RDF Query Language

IX

SPOF Single Point of Failure
SQL Structured Query Language
TCP Transmission Control Protocol
UDDI Universal Description Discovery and Integration
UDP Universal Datagram Protocol
UML Unified Modeling Language
UPnP Universal Plug And Play
URI User Resource Identifier
URL Uniform Resource Locator, or Universal Resource

Locator
UsiXML User Interface Extensible Markup Language
W3C World Wide Web Consortium
WAN Wide Area Network
WBF World Batch Forum
WS Web Service
WS4D Web Services For Devices
WS-* Collectively refers to Web Service-related standards
WS-BPEL Web Services Business Process Execution Language
WS-I Web Services Interoperability Organization
WSDAPI Web Services on Devices API
WSDL Web Services Description Language
WSDL-S Web Service Semantics
WSRF Web Services Resource Framework
XML eXtensible Markup Language
XSD XML Schema

1 INTRODUCTION

1.1 BACKGROUND

The Service-Oriented Architecture (SOA) Paradigm has been applied successfully
in IT systems for several years. Many benefits have been achieved by designing
complex enterprise systems from the ground up, as a set of loosely-coupled,
combinable, services that expose business-relevant functionality through a well-defined
interface. Service-oriented systems have been demonstrated to be agile, reconfigurable,
and scalable. Message-oriented communication using standard network protocols and
encoding enables easier integration of heterogeneous systems, and the availability of
real-time information from all parts of the enterprise has enabled businesses to quickly
respond to changing market conditions.

Manufacturing enterprises depend on complex business processes, often spanning
globally distributed production systems and supply chains. Minimizing downtime for
equipment integration and reconfiguration, and maximizing visibility throughout all
enterprise layers are essential for maintaining business agility, and responding to a
dynamic market. SOA is seen by some as a strong candidate solution for enabling the
modularity, interoperability, and fast reconfigurability needed to achieve these goals.
Furthermore, extending SOA down to the device level has become feasible, due to the
increasing presence of networked embedded devices on the shop floor, sufficiently
sophisticated to act autonomously, and to collaborate with other devices.

A responsive system requires that interested parties (devices and subsystems) be
informed of notable events inside or outside the manufacturing enterprise with minimal
latency. In large-scale factory monitoring systems, intelligent devices on the factory
floor must be capable of reading values from sensors, controlling actuators, and
performing some limited filtering and processing. In an Event-Driven Architecture
(EDA), devices and subsystems must also be able to asynchronously push notifications
of changes or alarms to higher-level systems. Powerful tools, such as Complex Event
Processing (CEP) engines, can be used to derive high-level information about the
present and future health of a system from analysis of these low-level, atomic events.

Much research effort has been spent on applying the concepts of SOA and EDA to
creating an event-driven SOA for manufacturing systems.

Two Web-Service based approaches have been proposed as strong candidates for
industrial SOA: DPWS and OPC UA. Devices Profile for Web Services (DPWS) was
designed to enable Universal Plug and Play (UPnP) –like functionality for networked
devices using Web Service technologies. The profile defines a minimal set of
implementation requirements for dynamic discovery, service description, secure
messaging, and events and subscriptions. DPWS-compliant devices will expose their
capabilities or data as a set of custom hosted services, or pre-configured events,

INTRODUCTION 2

exposing a service endpoint with an interface described in Web Services Description
Language (WSDL). OPC Unified Architecture (OPC UA) is the Web Service-based
evolution of classic OPC, a standard for accessing device data over COM on Windows
platforms. The standard defines a rich data model, and a fixed set of services for
navigating, reading, and modifying an OPC UA server’s address space.

The two technologies have complementary strengths. OPC UA was designed from
the ground up for security, and the specification defines a data model for enriching raw
data with semantics. OPC UA can be used across networks and through firewalls, and is
better suited to exposing simple device or Programmable Logic Controller (PLC)
memory or physical IOs to client applications. OPC UA servers are typically found in
ISA 95 Layer 3 (Manufacturing Execution Systems, MES). DPWS is lighter-weight,
supports dynamic discovery in local networks, and can be composed into higher-level
services using orchestration or choreography standards, such as WS-BPEL (Business
Process Execution Language for Web Services) or WS-CDL (Web Services
Choreography Description Language). DPWS is well suited to devices at the lowest
enterprise levels, such as systems at layers 2 and 1 (controllers, devices, and
sensors/actuators) of the ISA 95 Enterprise hierarchy model, but the web service
interface means that device access is possible even from the highest levels.

1.2 PROBLEM DEFINITION

1.2.1 Problem Statement

Two web-service based specifications, Devices Profile for Web Services (DPWS)
and OPC Unified Architecture (OPC UA), have been proposed by various researchers
and organizations as possible enabling technologies for an event-driven Service
Oriented Architecture for monitoring and control in manufacturing applications. This
research aims to propose and demonstrate an approach for merging these two
technologies in a way that is applicable in existing industrial applications.

1.2.2 Justification of the Work

Neither technology alone is sufficient for realizing all the advantages promised by
industrial SOA proponents. OPC UA approaches the problem from a “web services for
integration,” rather than an architectural point of view, while DPWS currently lacks the
sophisticated tools, clearly-defined adoption roadmap and reference architecture, and
standard data and security models required by system designers and integrators to
confidently deploy a full-fledged, large scale SOA across all levels of a production
enterprise. A successful merger between these two technologies would leverage their
combined strengths, and may help pave the path toward future industrial SOA
applications, with the inherent modularity, agility, and interoperability envisioned by
researchers today.

INTRODUCTION 3

1.3 WORK DESCRIPTION

1.3.1 Objectives

The objectives of this work is as follows:

1. Propose a practical approach for integrating two web service-based
standards, OPC UA and DPWS, to leverage their respective strengths for
creating a Service Oriented Architecture for monitoring and control of
process plant and manufacturing systems

2. Implement a proof-of-concept system, incorporating DPWS-enabled devices,
an OPC UA client and server, and a CEP engine with web service input and
output adapters.

1.3.2 Methodology

The approach followed to achieve the research and development objectives are:

• Perform an extensive review of the DPWS and OPC UA specifications
o Determine current best-practices for systems implementing the

standards,
o Investigate usage scenarios for both specifications, including

application domains of existing deployments, and relative adoption
rates

o Review previous published research on bridging DPWS and OPC UA
• Propose a new approach for integrating DPWS and OPC UA, appropriate in

the context of existing systems
• Investigate and evaluate available open source and commercial solutions for

the relevant technologies: OPC UA Clients and Servers, DPWS client and
device stacks, Complex Event Processing engines.

• Implement and demonstrate proof-of-concept system, integrating the two
technologies

1.4 THESIS OUTLINE

Chapter 2 introduces and discusses relevant background knowledge; theories,
specifications, and technologies, including SOA, EDA, DPWS, and OPC UA. It also
describes the state of the art in SOA for industrial applications. Chapter 3 describes the
methodology, including development platform selection and approach for technology
bridging. Chapter 4 documents the proposed approach for merging OPC UA and

INTRODUCTION 4

DPWS. The proof-of-concept system is presented in Chapter 6, and conclusions in
Chapter 7.

2 TECHNOLOGY OVERVIEW

2.1 SERVICE-ORIENTED ARCHITECTURE

Service-Oriented Architecture (SOA) is an architecture style for building
autonomous, interoperable, agile systems. The term describes a flexible set of design
principles for use in systems development and integration, whereby heterogeneous
systems expose their functionality as a set of granular, loosely-coupled services with
well-defined, standards-compliant interfaces, which can be used across multiple
business domains. Autonomy and interoperability are contradictory properties. One of
the challenges of SOA is, therefore, to reconcile these opposing principles [7].

Components of a Service-oriented system are implemented independently, and have
some capabilities that are abstracted and exposed as services. Services provide no API,
but rather a description of the functionality and protocols. Other components that are
aware of the service interface can use the capabilities provided, and large, complex
applications can be strung together using existing services.

2.1.1 Architectural Tenets

A service-oriented system is designed according to the following core principles:

Encapsulation The service implementation is opaque to the service consumer.
All relevant details about the results of invoking the service or the
quality of service are outlined in the service contract.

Granularity Services expose a coarse-grained piece of business functionality.

Generally, the preference is for a small number of operations with
complex input and output messages. Fine grained services are used
to help realize the higher-level services.

Autonomy Services have control over the logic they encapsulate, and each

service implementation is independent of other services. Services
contain no embedded calls to each other, and will not fail if other
services fail.

Service
Contract

Services adhere to a well-defined communications agreement a
Service Contract, which provides unambiguous information about a
service’s functionality, message formats and exchange patterns, and
acceptable communication protocols. Service policies can also
include non-functional information, such as Quality of Service

TECHNOLOGY OVERVIEW 6

(QoS), security information, and semantic requirements.

Loose-
Coupling

In a loosely-coupled system, a service requester has no
knowledge of the internal implementation details of a service
provider. A service’s functionality is exposed at its boundary, and
described in an interface contract. The functionality can be provided
by any component that implements the interface, and can be replaced
without affecting the dependent component. This promotes agility
and reuse.

Abstraction SOA design is business process-centric, not technology-centric.

A service is an abstracted, logical view of an actual program,
database or business process. There are three layers of abstraction:

Figure 1: Three layers of service abstraction

Composability Atomic services are just abstract implementations of a service.

Atomic Services can be composed into composite services, which
represent a more complex business process. These processes can
themselves be exposed as services. Composite services appear as
atomic services to service consumers, because any knowledge of the
service implementation would violate the rules of loose-coupling.

Figure 2: A Service-Based Business Application, composed of atomic and

composite services

Reusability A set of granular, loosely couple services can be re-used in a
variety of business processes across a variety of business contexts.
In the SOA design phase, a balance must be struck between coarse
granularity and reusability.

TECHNOLOGY OVERVIEW 7

Some additional principles extend the concept of Service Oriented Architecture to
provide further benefits:

Discoverability Services are outwardly descriptive, and accessible via
available discovery mechanisms. Once discovered service
consumers can bind to the services and invoke them

Message-
Orientation

Communication is based on a conversation-style exchange
of document-style messages. Services are formally defined in
terms of the message exchanges between service providers and
consumers.

Asynchronous
Communication

Loose-coupling and message-orientation enables
asynchronous communication between services. Actions are
invoked by sending a message, and responses, if any, are
returned without requiring the invoking entity to suspend
execution. This offers more scalability than RPC.

Platform-
Neutral

Messages are sent in a standardized format, not tied to any
particular platform, operating system, or programming language.

Reliance on
Open
Standards

Where possible, services are implemented using ubiquitous,
open standards for data representation and transport protocols
(XML, HTTP, TCP/IP)

Service-Oriented Architectures are well suited to applications distributed across a
network. When service-oriented applications are implemented in accordance with the
above-mentioned principles, using well established, widely used communication
protocols and encoding standards, many benefits can be achieved.

2.1.2 Advantages of SOA

A well-implemented service-oriented system can yield a number of benefits over
traditional systems:

• Integration Capability
Systems can be designed to use standard network infrastructure. The abstraction
between the implementation and the interface means that services can be
implemented on any hardware or software platform. Services can be easily
integrated with other services, and composed into higher-level services using
some process description tools. A gateway or mediator can provide a service
interface to expose the functionality of legacy systems.

• Agility, Flexibility, Reconfigurability
The aim of reconfigurable manufacturing systems is to compose and execute
several atomic, re-usable processes in given sequences in order to create

TECHNOLOGY OVERVIEW 8

complex processes of a higher order [8]. The SOA approach also enables
incremental deployment, and scalability. Ease of integration also implies ease of
reconfiguration. When business requirements change and new services are
created, the interoperable components can be re-combined using new logic with
minimal effort. Service implementations can be changed without affecting
service consumers, who are only aware of the service interface. Complex
information can be exchanged peer-to-peer, creating a more responsive and
adaptive system with better decision-making abilities.

• Reduced Development Costs
Simplified integration and reconfiguration leads to faster system setup, and
shorter downtime when redesign is required. This leads to lower development
costs, and more uptime. Improved integration capability also allows
organizations to choose the best-of-breed from all vendors for all components.
The service-oriented model facilitates the development of applications by
providing coarse-grained services that encapsulate clearly defined tasks. The
task-oriented paradigm reduces application development to workflow
sequencing and the coordination of subtasks [5].

• Encapsulated Complexity
Internal implementation complexities are encapsulated in the service, and
complex processes and combinations of services can also be exposed as
services.

• Programming at high level of abstraction
Services are abstracted business processes. By following a business-centric
service identification approach and defining services using the business domain
vocabulary, services can be combined and recombined into business processes
using relatively simple flowchart-like programming languages.

• Fault-Tolerance
A Single Point of Failure (SPOF) is a part of a system that, if failed, will cause
the whole system to fail. Systems made up of autonomous, loosely-coupled
components are inherently more fault-tolerant that traditional tightly-coupled
systems, because there are fewer SPOFs. Service implementations are
replaceable, and redundancy is easy to implement.

2.1.3 SOA Design Methodologies

To maximize the potential benefits, SOA design should be implemented from an
architectural rather than an integration-centric approach. Several SOA design
methodologies have been published by vendors, academics, and standards organization.
Two of the most prominent are the Service-Oriented Modeling and Architecture
approach from IBM [34], and the OASIS SOA Reference Model [35]. Generally, they
both advocate a similar approach. By analyzing the service-oriented application from

TECHNOLOGY OVERVIEW 9

the top-down, identifying the business processes and required process steps, and the
systems that can provide the required capabilities, a set of services that align with
business processes can be identified.

SOMA proposes an iterative approach, combining top-down analysis (domain
decomposition) to discover high-level business processes, goal-service modeling to
match services to business goals and sub-goals, and existing asset analysis (bottom-up)
to identify existing assets that can be externalized as services, or used to realize service
functionality.

Figure 3: The SOMA Method[34]

The OASIS Methodology advocates a pure top-down approach, starting from high-

level business functions, not business processes. It excludes bottom-up analysis entirely,
because it leads to an architecture that is technology-oriented, not purely service-
oriented. It also discourages the use of high-level business processes in service
discovery, because of the focus on ‘how’ (steps required to complete key functions)
rather than ‘what’ (the key functions themselves).

Choosing the right methodology depends very much on the application domain. An
entirely top-down approach risks identifying services that are difficult to implement
with existing systems. An entirely bottom-up approach risks exposing services that are
difficult to incorporate into a business application. Identifying services that are too
fine-grained can result in impractical overhead, while overly coarse-grained services
can be too specific to be reusable [36].

TECHNOLOGY OVERVIEW 10

2.2 WEB SERVICES

According to the W3C Web Services Architecture Working Group, a web service is
defined as “a software system designed to support interoperable machine-to-machine
interaction over a network [1].”

Generally, Web Service provider exposes its capabilities as an interface, abstracting
away the implementation details. The interface specifies a set of operations, with input
and output parameters. An operation invocation involves an exchange of messages
between the service requester, and service provider.

The interface, or contract, is described in an XML-based machine-processable
format, called Web Services Description Language (WSDL). Machines interact with the
Web Service by exchanging SOAP messages, typically using HTTP, in a manner
described by the service description.

Web Services technology can be used to implement a service-oriented architecture,
where SOAP messages are the basic unit of communication.

2.2.1 SOAP

SOAP is an XML-based protocol for exchanging structured, typed information
between machines in a distributed environment. SOAP was once an acronym for
Simple Object Access Protocol, but this meaning has been dropped in SOAP 1.2. SOAP
is a key component in the implementation of Web Services.

Raw SOAP is fairly lightweight compared to other distributed computing standards,
because it provides only the messaging framework, and relies on other standards to
provide other features, such as registry/discovery, location, transport, security, and
guaranteed delivery. SOAP is based on XML, a familiar and widely-used standard, and
retains all the extensibility and machine-readability advantages. It is language and
platform independent, and does not define any constraints on the transport protocol to
be used, so it is possible to pass through corporate firewalls without the need to open
ports. An incomplete summary of the relevant components of the standard is provided
here.

The SOAP specification defines a stateless, one-way message transmission between
SOAP nodes, but it is expected that applications can define more complex Message
Exchange Patterns (MEPs) by combining one-way exchanges. A message exchange
pattern is defined by providing

• A URI to name the MEP
• Describe the lifecycle of the exchange with a state machine
• Describe the temporal/causal relationships between the messages
• Describe the normal and abnormal termination of the MEP.
• Rules for generating SOAP Faults during MEP operation

TECHNOLOGY OVERVIEW 11

The specification provides a framework for conveying application information in an
extensible manner, but does not constrain the application-specific message content, or
specify anything about underlying routing or transport protocol. A SOAP document
consists of three key elements; the envelope, the header, and the body. Figure 4 shows
the structure of a SOAP Message.

Figure 4: SOAP Envelope [3]

SOAP Header Blocks generally contain the metadata, which are used to control how

the message is transmitted. They can contain addressing information, authentication
data, tracking information, or security tokens. Introducing header blocks is the primary
way in which Web Services standards extend SOAP. The SOAP body is usually
application-defined, with the exception of SOAP faults.

When an envelope cannot be interpreted by a SOAP Node, a SOAP fault is
generated. SOAP faults are specified to carry error information within a SOAP
message. A SOAP Fault contains, at minimum, a fault code and a text explanation of
the reason.

Table 1: SOAP fault codes

Fault Code Description
VersionMismatch Some element other than the Envelope element was found.

MustUnderstand A header block targeted at the faulting node with the attribute
mustUnderstand with value “true” was not understood

DataEncodingUnknown A header block or body child element is scoped with an
unsupported data encoding.

Sender The SOAP message was incorrectly formed, or did not
contain the appropriate information

Receiver The message could not be processed for some reason other
than the contents of the message itself.

TECHNOLOGY OVERVIEW 12

SOAP provides a distributed processing model. Every SOAP message is sent from
a SOAP Sender to a SOAP Receiver, and can be relayed through zero or more SOAP
Intermediaries. Senders, Receivers, and Intermediaries are all SOAP Nodes, identified
by a URI. Each SOAP Node is required to perform some processing according to the
SOAP processing model [2].

The SOAP messaging framework is designed to be extensible, using SOAP
Features. SOAP Features can be expressed through the SOAP Processing Model, or the
SOAP Protocol Binding Framework. These features can describe the behavior of a
node with respect to an individual message, or mediate the sending and receiving of
SOAP messages on an underlying transport protocol.

A SOAP Protocol binding operates between two adjacent nodes on a SOAP message
path. The standard provides the general rules for specifying protocol bindings, and the
relationship between bindings and Nodes that implement those bindings. A protocol
binding specification augments the core SOAP processing rules with additional
protocol-specific processing, and describes how the protocol is used to transmit
messages between nodes. The binding must enable at least one message exchange
pattern (MEP) and, at minimum, specify how a SOAP message infoset, consisting of an
XML document with one soap envelope child element, is encoded, transferred, and
reconstituted by the binding at the receiving SOAP node, and specify how the transfer is
initiated. The Protocol Binding Framework does not require that XML Serialization be
used for transmission; compression and encryption are also appropriate.

An HTTP binding is specified in Part 2 of the SOAP Specification [4]. It does not
require a full implementation of all HTTP features, but only the ones necessary to
transmit SOAP messages. Two message exchange patterns are supported, request-
response, and response, which map to the HTTP methods “POST” and “GET,”
respectively.

The HTTP Binding specification also maps HTTP Status Codes to MEP state
transitions, and SOAP Faults, where appropriate.

Web Service specifications (WS-*) from standards organizations such as OASIS
and the World Wide Web Consortium (W3C) build on SOAP, defining Header Blocks
and MEPs to provide features such as addressing and security.

SOAP-over-HTTP is most widely used, but other protocol bindings have been
defined, such as SOAP-over-HTTPS, and SOAP-over-UDP by OASIS [5].

2.2.2 Web Services Description Language

To make effective use of Web Services, clients need an unambiguous, machine-
interpretable description of the interface to the Web Service. The Web Services
Description Language (WSDL) specification from W3C was created to provide a
mechanism for describing the Web Service interface, including:

• All supported operations

TECHNOLOGY OVERVIEW 13

• Input and output parameters for each operation
• Types for all parameters, described in XML Schema format
• Binding address information for each Web Service, including location (URL)

and transport protocol
The current W3C recommendation is WSDL 2.0, but WSDL 1.1 is still relatively

widely used. The structure of the documents is quite similar for both versions, as
illustrated in Figure 5.

Figure 5: WSDL 1.1 and 2.0 Document Structure[14]

The information described in both is essentially the same [15]:

Table 2: Structure of WSDL 1.1 and WSDL 2.0 files

WSDL 1.0
(WSDL 2.0)

Description

definition
(description)

The root element of the WSDL document. It defines the
service name, and the namespaces used in the document.

types
(types)

The types section describes the input and output parameters of
operations in XML Schema format. This is all the type
information needed for the information exchange between the
service consumer and provider. External XML Schemas (.xsd
files) can also be imported.

TECHNOLOGY OVERVIEW 14

WSDL 1.0
(WSDL 2.0)

Description

message
(N/A)

Messages contain the information required to complete the
operation, and contain zero or more message parts, representing
parameters. The parts have name attributes, unique within the
message, and reference elements in the types section. Messages
do not specify direction. In WSDL 2.0, messages are eliminated,
and the input and output parameters of the operations simply
reference the types directly.

portType
(interface)

This defines the Web Service and each operation that the port
exposes.

operation
(operation)

This defines SOAP actions and the message encoding, as well
as the input and output parameters for the operation. If the input is
omitted, the operation represents an event. If the output is
omitted, no response is expected. If both input and output are
specified, the operation is a standard request-response operation.

Binding
(binding)

This element specifies the SOAP binding style and transport
protocol for the Web Service (portType or interface). The binding
style can be either “rpc” or “document.” One binding is specified
for each protocol that a Web Service supports.

service
(service)

The service element groups related ports together. None of the
ports communicate with each other, and if the ports have the same
portType and different bindings, then each provides semantically
equivalent behavior. A client can choose which port to
communicate with based on whatever criteria.

port
(endpoint)

This defines the connection point to a Web Service, typically
an HTTP URL string.

A WSDL file is a form of service contract. Through its WSDL file, the Web

Service is providing an outwardly-descriptive interface, consistent with SOA principles.
By locating and parsing a WSDL file, a client has all the syntactic information required
to use the operations provided by a Web Service.

SEMANTIC INFORMATION IN SERVICE CONTRACTS

Still missing, however, is a semantic description of the interface, as well as other
non-functional service characteristics, such as Security, Reliability, and Quality of
Service(QoS). Traditionally, this is accomplished with a human-readable README file
or other type of documentation, which a programmer can use when composing available

TECHNOLOGY OVERVIEW 15

services into a business application. Several standards and proposals exist to assist in
providing or structuring this additional metadata.

The W3C Recommendation Web Services Policy (WS-Policy) [17] defines a
container for specifying a range of policy considerations, but provides no actual
semantics for describing policy behavior. These policies can refer to domain-specific
capabilities, requirements, and general characteristics of Web Service-based systems.

Web Service Semantics (WSDL-S) is a W3C member submission for annotating
WSDL 2.0 documents with semantic information to enable dynamic discovery,
composition, and invocation of services [16]. The annotations are defined by a set of
WSDL extension elements and attributes, which reference semantic descriptions of
operations and their input and output parameters. The Semantic Web and Ontology
languages are introduced in a later section. WSDL-S is not tied to any particular
ontology representation language.

The submission focuses on the providing annotations for the three abstract
constructs defined in WSDL 2.0, namely types, interface, and operation. Service and
binding annotations are assumed to be addressed by WS-Policy. Five new extensibility
attributes and elements are defined:

Table 3: WSDL-S extensibility attributes and elements

Attribute or Element Description
modelReference Specifies the association between a WSDL entity and a

concept in some semantic model
Scope: complex types, element, operation, as well as

extension elements precondition, and effect

schemaMapping Added to XSD elements and complex types to handle
structural differences between schema elements and their
corresponding semantic concept descriptions

precondition
effect

Child elements of the operation element, used mostly in
service discovery and composition. The standard does not
restrict the semantic description or use of these elements.

category An extension attribute to the interface element, which
can be used for semantic categorization in service registries,
such as UDDI.

Each operation, type and message can be linked to a semantic description in a

domain ontology description, and the conditions for invoking an operation, as well as
the expected result of the operation can also be unambiguously defined.

TECHNOLOGY OVERVIEW 16

2.2.3 Devices Profile for Web Services

To promote interoperability between resource-constrained devices, the Devices
Profile for Web Services (DPWS)[18] defines a minimal set of implementation
requirements for dynamic discovery, service description, secure messaging, and events
and subscriptions. The goals of the standards are to provide interoperability analogous
to Universal Plug and Play (UPnP) for networked devices, fully aligned with Web
Services technology. The profile defines constraints on formats and protocols so that
Web Services can be implemented on peripheral and consumer electronics-class
devices.

The general layout of DPWS clients, devices, and services is as follows:

Figure 6: Arrangement of DPWS Clients, Devices, and Services[10]

DPWS defines a service as a software system that exposes its capabilities by
receiving and/or sending messages on one of several network endpoints. Messages in
DPWS are always transmitted in a SOAP envelope, generally transported via HTTP and
TCP/IP, or SOAP-over-UDP in the case of discovery services.

From a SOA perspective, a DPWS-compliant device is a type of service that hosts
other services. The device acts primarily as a resource for device-wide metadata, and
for metadata about the services it hosts. A hosted service is outwardly visible, not
encapsulated by the hosting service, and is addressed separately from the host.

DPWS specifies a set of built-in services that the device must implement:
• Discovery services, for clients to discover devices, and for devices to announce

themselves in a network
• Services to retrieve device and hosted service metadata
• Eventing and Subscription Management services, for asynchronous notifications

TECHNOLOGY OVERVIEW 17

A client can discover devices in the network that match specified criteria, retrieve
and interpret metadata, invoke operations available in the hosted services, and subscribe
to and receive notifications.

DPWS assembles a set of core web standards, and extends or constrains them to
provide a base set of capabilities for resource-constrained devices:

Table 4: Specifications in the Devices Profile for Web Services

SPECIFICATION DESCRIPTION
WSDL 1.1 The WSDL describes the messages each hosted service

is capable of sending and receiving.

SOAP 1.2 All messages are transported in a SOAP envelope, and
additional specs make use of SOAP headers.

WS-Addressing [23] This Specification standardizes endpoint references and
message information headers, to convey information
typically provided by transport protocols and information
systems. A Web Service endpoint is a referenceable entity
that can send and receive messages. An endpoint reference
can be used to provide information for accessing a Web
Service endpoint, or to provide an address for an individual
message inside a message information header, along with
message characteristics, source and destination addressing,
and message identity.

DPWS should rely solely on WS-Addressing 1.0, with
added restrictions for device identifiers.

WS-Transfer [19] Specification that defines a mechanism for acquiring
XML-based representations of entities using the Web
Services infrastructure. It defines two operations for sending
and receiving resource representations (Get, Put), and two
for creating and deleting (Create, Delete) a resource using a
“resource factory”.

DPWS uses the WS-Transfer Get operation as a means
for the Client to retrieve resource representation data for a
device, which includes relationship metadata for itself and
hosted services, and addressing data for the hosted services.

WS-MetadataExchange
[20]

This specification is intended for the retrieval of Web
Service Description Information. It defines an encapsulation
format for metadata, and treats the metadata about a web

TECHNOLOGY OVERVIEW 18

SPECIFICATION DESCRIPTION
service endpoing as a WS-Transfer resource. The
specification defines two mechanisms that clients can use to
ask a WS-MetadataExchange endpoint for its metadata:
GetWSDL/GetWSDLResponse, and GetMetadata/
GetMetadataResponse.

DPWS uses the GetMetadata operation to retrieve
metadata for a hosted service, which includes the WSDL
document. The hosted service can return either the WSDL
document, or a reference to the document in a GetResponse
envelope.

WS-Policy[17] This specification provides a general framework for
specifying a variety of capabilities, requirements, and
characteristics of entities in a Web Service-based system. A
policy assertion identifies a behavior that is a requirement of
a policy subject. A policy alternative is a set of policy
assertions. Generally, a policy is used to convey conditions
on interaction between two endpoints. A provider exposes a
policy to describe the conditions for providing the service. A
requester uses policies when deciding whether to use the
service.

DPWS defines the dpws:Profile policy assertion,
indicating that compliance with the profile is required.

WS-PolicyAttachment
[21]

This specification provides two generalized mechanism
for associating policies with the subjects to which they
apply. It also specifies how the mechanisms can be used to
associate WS-Policy with WSDL and UDDI descriptions.
The global attribute “wsp:PolicyURIs” and child elements
“wsp:Policy “ and “wsp:PolicyReference” are defined, so
that resources can reference applicable policies.

DPWS uses this to attach the dpws:Profile policy
assertion to binding in the WSDL file.

WS-Discovery This specification describes how to announce availability
of services, search for services, and locate previously
referenced services on a local network using a multicast
discovery protocol based on SOAP-over-UDP. Two one-
way messages are defined, Hello and Bye, as well as two
two-way search messages, Probe and Resolve. Two

TECHNOLOGY OVERVIEW 19

SPECIFICATION DESCRIPTION
discovery modes are defined.

In ad-hoc mode, clients send probes to a multicast group,
and target services matching the search criteria send unicast
responses back to the client. The specification also defines
multicast hello messages that target services send when they
join a network.

In managed mode, a discovery proxy receive unicast
hello messages from target services, and unicast resolve
messages from clients.

DPWS specifies that devices must be compliant WS-
Discovery target services, but hosted services should not.
The profile also specifies additional discovery-related
behaviors for devices.

WS-Eventing [22] It is often useful for web services to receive messages
when events occur in other services. This specification
provides a means to create and delete subscriptions, manage
subscription expiry and renewal, and define a preferred
delivery mechanism.

WS-Eventing provides an extension point called
“Delivery Modes,” and defines a default delivery mode
called “Push Mode.”

DPWS requires full support for WS-Eventing, including
Push Mode, where the hosted service pushes Notifications to
the Event Sink (the client). It also specifies fault behavior,
appropriate for distributed, low-resource devices, and
support for event subscription filtering by action.

DPWS also recommends a security model based on WS-Security, but support is

optional, and other security models are permitted. DPWS also overrides global
constants from other specifications to suit devices, such as packet size limits, timeouts,
and delays.

The web service specifications and transport protocols that are part of the Devices
Profile for Web Services are shown in Figure 7:

TECHNOLOGY OVERVIEW 20

Figure 7: Network Protocols and Specifications included in the Devices Profile for Web
Services[25]

DPWS IMPLEMENTATIONS

A number of DPWS implementations exist in various languages, for various
operating systems.

The Web Service on Devices API (WSDAPI) [18] is a Microsoft implementation of
DPWS for several versions of Windows, including Vista, Windows 7, and Windows
Server 2008. The WSDAPI omits some parts of the standard, and introduces additional
ones. Some of the omissions include:

• Ignoring size restrictions on UDP packets, strings, and URIs
• Devices and services built on WSDAPI do not provide their WSDL in metadata

exchange unless extended by the application to provide this information. The
WSDAPI Client implementation does not validate WSDL files, or support late
binding. By default, WSDL provision is not part of the programming model.

• Discovery proxies are ignored, and additional WS-Discovery functionality is
implemented for cross-network discovery [17].

WSDAPI provides generic client and service DPWS stacks, as well as utilities to
facilitate application development. The Web Service on Devices Code Generator is
used to create both client proxy and service implementation stub code from WSDL
service descriptions.

The .NET Micro Framework is designed to simplify development for resource-
constrained, embedded devices, by providing developers with a modern programming
environment for creating devices and device drivers. The Framework is currently
supported for ARM processors, and includes support for common peripherals and
interconnects, such as USB as Flash Memory. The Micro Framework also provides a
DPWS stack, fully compatible with WSDAPI. The MfSvcUtil tool, similar to
WsdCodeGen, is used to create three files from a WSDL file [51]:

TECHNOLOGY OVERVIEW 21

• A service contract class, describing data types for requests and responses,
and providing code for serializing the data types to XML

• A client proxy, which hides communication with the service under a layer of
abstraction

• Stub code for a hosted service, deriving from the DpwsHostedService class

European ITEA research project SIRENA [30] had the objective of developing a
Service Infrastructure for Real Time Embedded Networked Applications. The outcome
of this project was one of the first to apply the SOA paradigm to communication and
interoperability at the level of small embedded devices. Two open-source DPWS
projects resulted from this project; SOA4D and WS4D.

The SOA4D (Service-Oriented Architecture for Devices) DPWS Core and DPWS4J
Core project are other DPWS-compliant Web Services stacks for C and Java,
respectively [28]. Plugins for additional WS standards are also available. Schneider
Electric maintains this project.

Web Services for Devices (WS4D) is managed by the University of Rostock,
University of Dortmund, and MATERNA [58]. The Java Multi-Edition DPWS Stack
(JMEDS) is a framework for implementing and running DPWS Services, Devices, and
Clients. Multiple versions of the stack support multiple versions of DPWS, and are
tested for compatibility with Windows versions. Additional versions are provided,
including a Java implementation for Apache Axis, and a C implementation using
gSOAP for small devices.

WS4D-uDPWS [27], DPWS for highly resource-constrained devices, was
developed to demonstrate the use of DPWS protocols on IPv6 Low Power Wireless
Personal Area Networks (6LoWPAN), and is currently supported for two 8-bit
platforms. It supports many features of DPWS, with the notable exclusion of WS-
Eventing.

The JMEDS client stack automatically discovers devices, and validates WSDL files,
making this stack a workable option for late binding, and “DPWS explorer-” type
applications. Also, being written in Java, it is cross-platform. Microsoft’s WSDAPI and
.NET Micro Framework make developing services and clients for .NET applications
relatively simple by hiding all the messaging and implementation detail behind proxy
classes, which must be present at compile time. Support for late-binding requires
additional programming effort, when compared to JMEDS.

2.3 EVOLUTION OF SCADA SYSTEMS

Trends in technology development over time influence the design of Supervisory
Control and Data Acquisition (SCADA) Systems. Microcontrollers and CPUs reduce in
size, and improve dramatically in processing power, leading to the proliferation of
small, intelligent, embedded, networked devices. Field devices can now contain sensing,

TECHNOLOGY OVERVIEW 22

control, and decision-making code. Improvements in network infrastructure make
transferring data between nodes faster and more reliable.

The trend in SCADA has been toward distributed systems, using open protocols and
standard network infrastructure. Three generations have been identified, shown in
Figure 8.

1. The first generation SCADA systems featured a monolithic Master Terminal
Unit, independent from other systems, communicating via a WAN to dumb
RTUs using proprietary protocols, and rarely integrated with other systems.
RTUs had little to no autonomy.

2. The second generation saw the emergence of networked devices, connected
by LANs, enabling real-time information sharing and distribution of
processing. Protocols and data encodings tended to remain proprietary.

3. Today, the third generation favours open communication protocols and
architecture standards, and Internet connectivity.

Figure 8: Evolution of SCADA Systems [33]

SCADA systems, traditionally reacting to system faults detected from information

gathered from field devices, now behave more proactively, including data processing,
security, and prediction based on historical data [62].

Future SCADA systems will likely continue this trend, with globally distributed
subsystems becoming more dynamic and collaborative, and real-time information will
be shared across all systems at all layers of a manufacturing enterprise. Some

TECHNOLOGY OVERVIEW 23

researchers have proposed that SOA and Event-Driven SOA as technologies that can
enable this trend to continue.

2.4 SOA IN INDUSTRIAL APPLICATIONS

The SOA paradigm was developed as an architecture style for enterprise IT systems,
but the guiding principles and best practices are also applicable in industrial domains. A
SOA solution for industrial automation and monitoring systems can provide the same
advantages over traditional systems that Enterprise SOA provides over other
architectural styles.

Future manufacturing systems will be required to be rapidly and cost-effectively
integrated, and easily reconfigured in order to cope difficult and dynamic markets [13]:

• Short product lifecycle and quick product introduction
• Demand for mass customization
• Introduction of new processes and machines into the manufacturing

workflow
• Scaling production up and down in response to fluctuating demand

The case for applying Service Oriented Architecture (SOA) to industrial control
systems has been made in many previous research projects and publications [37]. The
benefits that Service Orientation at the device level is expected to bring to industrial
applications include:

• Easier and less costly equipment integration, reusability and
reconfigurability: a substantial portion of the operating cost of a manufacturing
plant comes from setup and integration, as well as maintenance downtime.
Introducing new equipment requires additional downtime and integration effort.
The improved integration capability that SOA promises could minimize costly
downtime.

• Cross-vendor compatibility: Proprietary standards dominate today’s factory
floors and enterprise systems. Building systems around open standards reduces
a business' reliance on proprietary protocols, systems, and data formats, and can
drastically decrease the effort with which systems from multiple vendors can be
integrated, allowing factories to choose the best-of-breed components for all
systems, without worrying about interoperability.

• Improved cross-layer integration: Traditional rigid, hierarchical systems with
different communications infrastructure and data formats at all levels are not
conducive to full, seamless cross-layer integration. A SOA-style flat architecture
could enable Enterprise Resource Planning (ERP) systems to have visibility all
the way down to the level of smart embedded devices.

• Improved business agility: Service- and event-based systems, coupled with
technologies like Complex Event Processing (CEP) can enable calculation of

TECHNOLOGY OVERVIEW 24

more complex Key Performance Indicators (KPIs) at the Manufacturing
Execution System (MES) level, and more complete information about the
factory floor at the ERP level. This allows businesses to adapt more quickly to
changing market conditions, and optimize business activities in new ways.

The two most important technologies for creating service-oriented industrial

applications are Devices Profile for Web Services (DPWS) and OPC Unified
Architecture (OPC-UA). Both solutions are based on Web Services, but follow
fundamentally different approaches.

2.4.1 Devices Profile for Web Services in Industry

The ITEA project SIRENA (Service Infrastructure for Real Time Embedded
Networked Applications) laid the groundwork for industrial SOA, proving the
feasibility of web services at the embedded device level, and produced the SOA4D
open-source Devices Profile for Web Services (DPWS) stack, which continues to be
maintained. Two projects stemmed from SIRENA, which further developed this idea:
ITEA SODA, and FP6 SOCRADES.

ITEA SODA [31] investigated the ecosystem required to implement a SOA system
with high-level web service-based communication between devices in several domains,
including industry, home, automotive, and telecommunications. They investigated the
required development tools, architecture, and methodology for designing, building,
deploying, and running a service-oriented application on embedded devices. The
SODA project succeeded in embedding web services in very low power, low-cost
devices, and promoted the DPWS standard as a platform-neutral integration technology.

FP6 SOCRADES[32] (Service Oriented Cross-Layer Infrastructure For Distributed
Smart Embedded Devices) evaluated a variety of SOA solutions applicable at the device
level in the manufacturing automation domain, and created a SOA-based infrastructure
for manufacturing, where smart embedded devices could interact seamlessly with other
service-based components. It also demonstrated how legacy systems could be integrated
into a service ecosystem using the gateway or mediator approach, and how
manufacturing activities could be automated using service-based orchestration and
choreography tools. The project also demonstrated how SOA could enable integration
between business-level systems and the factory floor, by providing a flat architecture,
applicable to multiple domains.

A DPWS-based solution was demonstrated for electronics assembly. A potential
merger between DPWS and OPC Unified Architecture (OPC-UA), another industrial
SOA solution, was identified, but not implemented.

SOCRADES did not demonstrate real-time integration of low level devices into
high-level applications – the only requirement was the use of Web Services as a
communication technology. FP7 IMC-AESOP (ArchitecturE for Service-Oriented
Process - Monitoring and Control) is another European Commission-sponsored research

TECHNOLOGY OVERVIEW 25

initiative that builds on the results from these previous projects. IMC-AESOP is
addressing challenges specific to very large scale distributed systems:

• Distributed monitoring and control of tens of thousands of devices
• Determining what percentage of devices can be service-enabled, considering the

performance and real-time considerations
• Managing the large range of plant functionality and dynamic business

requirements
• Service lifecycle management for all the autonomous devices operating in a

plant
• Defining a transition path for integrating existing devices, manufacturing

operations systems, and business systems into the service-based application

The goal of the project is to define a reference SOA architecture for monitoring and

control in process industries, and investigate the technology limits for SOA in
subsystems, addressing issues such as security, scalability, real-time performance,
event-aggregation and filtering, and merging scan-based and event-driven systems.

2.4.2 OPC Unified Architecture

OPC Unified Architecture (OPC UA) is a relatively new specification from the OPC
Foundation for data exchange between systems in industrial applications, based on web-
service concepts. OPC UA is designed for accessing large amounts of real-time device
data using standard network infrastructure, while maintaining sufficiently high
performance. OPC UA specifies a client-server model for information exchange, where
a client can access, read, and modify the address space of a server. The specification
defines an Object model for information representation on a server, and a pre-defined
set of services for browsing, querying, creating, and manipulating Objects in the address
space. Information is communicated using OPC UA- and vendor-defined data types,
encodings, and transport mappings

OPC UA evolved from classic OPC, which was a data access for Windows-based
systems, using Microsoft’s OLE, COM, and DCOM technologies. OPC was formerly an
acronym for Object Linking and Embedding (OLE) for Process Control, but this
acronym has been dropped. The standard was developed to bridge Windows systems
and process control devices, and defines standard objects, methods, and interfaces for
retrieving field data from devices on the factory floor. A vendor would implement an
OPC server for their hardware, which would provide a method for any OPC client to
access device data for use in any MES, ERP, HMI/SCADA, or other system.

The OPC UA specification eliminates the reliance on COM/DCOM, and specifies a
platform-independent, service-based communication model, and a richer, integrated
Address Space Model. In the interest of security and performance, OPC UA defines two
data encodings [55]:

TECHNOLOGY OVERVIEW 26

• UA Binary: The specification defines a non-portable binary message
encoding, optimized for message size, and fast encoding and decoding. The
specification relies on a set of primitive data types, for which binary
encodings are defined. The encoding excludes type and field name
information, because applications are expected to have advance knowledge
of the services and data structures being transmitted.

• UA XML: The specification also defines a plain text XML representation of
elements in the object model for SOAP/HTTP Web Services. The UA XML
encoding uses the formats defined in the W3C XML Schema specification.

Furthermore, two transport mappings are defined [55]:

• UA TCP (UA Native): A TCP-based OPC UA-specific protocol for
establishing a full-duplex channel for transmitting binary data between an
OPC UA client and server. Unlike HTTP, responses can be returned in any
order, and allows responses to be returned on a different socket, if
communication failure causes an interruption. OPC TCP is designed to
work secure SecureChannel, implemented at a higher layer.

• SOAP/HTTP (Web Service): OPC UA messages are serialized to XML,
wrapped in a SOAP envelope, and exchanged using the request-response
model defined in the SOAP specification. HTTP or HTTPS transport
bindings are used. A message is sent in the body of a POST request, and the
response comes in the HTTP response.

The client-server communication paradigm of OPC UA lends itself well to
hierarchical application architectures. A higher level client application retrieves data
and writes values to a lower-level server. Application layers can be stacked by having
an OPC UA Server and Client running on the same component, as shown in Figure 9.

Each component running an OPC UA Server manages its own address space. The
server can map nodes in the address space to IOs on devices in a connected fieldbus
network or PLC memory, or expose data from a database. A single OPC UA Server
integrates data, type definitions, Alarms and Events, and historical data into its Address
Space. The Server supports a set of Web Services, which a Client can use to establish a
session, browse and query the address space, subscribe to notifications, and invoke
object methods.

TECHNOLOGY OVERVIEW 27

Figure 9: OPC UA Stacked Architecture

OPC UA DATA MODEL

OPC Unified Architecture is fundamentally about data modelling and transport. In
classic OPC, only pure data was provided, such as raw sensor values, with only limited
semantic information, such as the tag name and the engineering unit. OPC UA offers
more powerful capability for semantic modelling of data.

OPC UA uses object-oriented techniques, including type hierarchies and
inheritance, to model information. Type information is stored on Servers and accessed
in the same way as instances, similar to relational database systems. The OPC UA Node
model allows for information to be connected in various ways, by allowing for
hierarchical and non-hierarchical reference type. This facilitates exposing the same
information in many ways, depending on the use case. Both the type hierarchies and
references types can be extended, allowing information models of existing systems to be
exposed natively, without the need for mapping between models. Information models
are always contained in an OPC Server, so an OPC Client is not required to have an
integrated OPC UA Information model.

The base OPC UA specifications provide the only the infrastructure to model
information, and encourage additional, industry specific information model
specifications to be defined by vendors and standards organizations. Development has
begun on a base model for exposing device information and device types in OPC UA
(UA Devices), which can be extended with vendor-specific information. Also, efforts
are underway to expose the ISA 95 model in OPC UA to provide information to MES
and ERP systems.

TECHNOLOGY OVERVIEW 28

OPC	
 UA	
 Address	
 Space	

The objects and related information that an OPC UA Server makes available to a

Client comprises its Address Space. The contents of the address space are represented as
a set of Nodes, described by Attributes, and interconnected by References.

Figure 10: OPC UA Node Model[38]

The AddressSpace is designed hierarchically, and the top levels are the same across

all OPC UA Servers to promote interoperability. OPC UA defines a set of Web
Services that allow OPC UA Clients to browse and edit objects in the Address Space of
an OPC UA Server. The address space model is described in Part 3 of the OPC UA
Specification, and summarized here.

Each Node in the AddressSpace is an instance of a NodeClass, which describes the
Attributes and References that must be instantiated when a Node is defined in the
AddressSpace.

Attributes are the only elements in the OPC UA AddressSpace that have Data
values. Attributes are elementary components of nodes, included in NodeClass
definitions, and are not themselves represented as nodes in the AddressSpace. Attribute
values on a Server can be accessed by a Client using Read, Write, Query, and
Subscription/MonitoredItem Services. Attribute definitions consist of the following
information

• Attribute id
• Name
• Description
• Data type
• A Mandatory/Optional indicator

NodeClasses define a fixed set of Attributes that cannot be extended by the Client or

Server. Additional descriptive information about nodes can be added using Properties.

TECHNOLOGY OVERVIEW 29

References describe connections between nodes. They are also elementary
components of nodes, not nodes themselves, but differ from Attributes in that they are
defined as instances of ReferenceType nodes, described by the ReferenceType
NodeClass. References are accessed indirectly using browsing and querying services.
The node that contains the Reference is referred to as the SourceNode, and the node
being referenced is the TargetNode. All References are typed, and the ReferenceType
defines the semantics of the relationship between the Source and Target nodes. The
TargetNode can be in the AddressSpace of the same OPC UA Server as the
SourceNode, or in the AddressSpace of another OPC UA Server. The specification does
not require that the TargetNode exists. References are generally not ordered, but there
are ReferenceTypes that define order for References of that type, such as
HasOrderedComponent.

All NodeClasses inherit attributes from the BaseNodeClass, which defines the
attributes common to all nodes, allowing identification, classification, and naming [39]:

Table 5: Attributes Common to all OPC UA Nodes

Attribute DataType
NodeId NodeId Uniquely identifies the node in the OPC UA

Server, and used to address the node in OPC UA
Services

NodeClass NodeClass An enumeration identifying the NodeClass of a
node

BrowseName QualifiedName Identifies the node when browsing the OPC UA
Server. Not necessarily unique, and not localized.

DisplayName LocalizedText The name that should be used to display the
node in a user interface.

Description LocalizedText Optional textual description of the node.
WriteMask UInt32 This optional attribute specifies which

attributes of the node are writeable by an OPC UA
Client.

UserWriteMask UInt32 This optional attribute specifies which
attributes can be modified by a user connected to
the server.

NodeClasses make up the metadata of the AddressSpace. Client and Servers may
neither extend the NodeClass definitions in the OPC UA Specification, nor define their
own.

OPC	
 UA	
 Object	
 Model	

Objects are defined in terms of Properties, Variables and Methods, as well as Events

The OPC UA Object Model is how information is structured and enriched with
semantics in the address space, allowing domain-specific relationships between objects
to be expressed.

TECHNOLOGY OVERVIEW 30

Figure 11: OPC UA Object Model[39]

Objects, Variables, and Methods are represented in the AddressSpace of a server as
instances of ObjectType, VariableType, and Method NodeClasses.

Variables	
 and	
 Methods	

Variables represent values, and can be either Properties or DataVariables.
Properties are characteristics of Objects. Properties characterize what a Node

represents and are server-defined, while Attributes define metadata common to all
Nodes of a NodeClass. To prevent recursion, Properties may not have sub/properties
defined for them.

DataVariables represent the content of an Object. DataVariables can have properties
defined for them, but only complex DataVariables can have additional DataVariables. A
complex DataVariable can represent aggregates of other DataVariables in the
AddressSpace by defining a HasComponent Reference to each Node.

Methods are functions, whose scope is bounded by an owning Object, similar to
static methods of a class. Each method is described by a node of the Method NodeClass,
which identifies the method’s arguments, and describes the behaviour. Methods are
invoked by Clients using the Method Call service. Methods run to completion, and
return the result to the client.

Type	
 Definitions	

OPC Servers are required to provide type definitions for Objects and Variables. A

BaseDataVariableType is defined so a server can use this type if no more specialized
type is available. The HasTypeDefinition reference links an instance with its type
definition, represented by a TypeDefinitionNode. Objects and Variables inherit the
Attributes described in their TypeDefinitionNodes. Industry organizations and
standardization groups can define a TypeDefinitionNode that is well known in industry,
so that Clients can interpret it without reading it from the Server.

Complex TypeDefinitionNodes can define References to other Nodes as part of the
type definition. TypeDefinitionNodes reference instances instead of other
TypeDefinitionNodes, to allow several instances of the same type to have unique
References, names, and default values. These are called InstanceDeclarations. Some
instances can be shared, and therefore referenced by TypeDefinitionNodes,
InstanceDeclarations, and instances.

TECHNOLOGY OVERVIEW 31

Figure 12: Representation of a Simple Object in the Address Space of an OPC UA Server

Type Definitions can by subtyped to add additional characteristics. This is

represented by creating a new Type with the desired characteristics, which is a
TargetNode for a HasSubtype Reference from the original VariableType or ObjectType.

Figure 12 shows a possible representation of a simple object, a flow meter with a
value variable, a calibration method, and an engineering unit property, on an OPC UA
Server.

TECHNOLOGY OVERVIEW 32

OPC	
 UA	
 Information	
 Model	

The OPC-UA Information model describes standardized nodes of a Server’s
AddressSpace. The information Model defines the address Space of an empty OPC-UA
Server. For compatibility, the top-level nodes of each Server’s address space must look
the same.

Figure 12: A View of the top-level nodes of an Ignition OPC-UA Server [43], as seen from
Unified Automation UaExpert OPC UA Client[42]

The Nodes are standardized types, and as well as standardized instances used for
diagnostics or as entry points to server-specific nodes.

OPC UA SERVICE SETS

OPC UA defines fixed service sets, which cannot be extended by applications. The
service sets allow discovery via a discovery server, secure communication, browsing
and querying a server’s address space, and creation of Monitored Items and
Subscriptions.

The service sets are described in Table 6:

Table 6: OPC UA Service Sets[44]

Service Set Service Description
Discovery Used to discover Endpoints implemented by a server, and to read the

security configuration for the Endpoints. Each Server has a Discovery
Endpoint that the Clients can access without establishing a Session.
FindServers Returns the Servers known to a Server or

Discovery Server. Client can specify filter
criteria.
A Server returns only a record that describes
itself, while a Gateway Server returns a record

TECHNOLOGY OVERVIEW 33

for each Server that it provides access to, itself
included (optionally).

GetEndpoints Returns the Endpoints supported by a Server, and
all the configuration information required to
establish a SecureChannel and Session.

RegisterServer A Server registers itself with a Discovery Server.
The Server establishes a SecureChannel with the
Discovery Server before calling this Service.

SecureChannel A SecureChannel is a long-running logical connection between a single
Client and single Server, which ensures the Confidentiality and Integrity
of all Messages exchanged. The channel contains a set of authentication
and encryption keys known only to the Client and Server.
A SecureChannel is not implemented by the OPC UA Application, but are
instead provided by the OPC UA Communication Stack.
OpenSecureChannel Open or renew a SecureChannel.
Close Secure Channel Terminate a SecureChannel.

Session A Session is an application layer connection. Sessions are independent of
the underlying communication connection, so they are not immediately
terminated if the connection fails. The recovery mechanism depends on
the SecureChannel mapping.
CreateSession Client creates a Session with the Server. Returns

two values, SessionId and AuthenticationToken,
which uniquely identify the Session.
A SecureChannel must be opened before a
Session is created.

ActivateSession Client submits its SoftwareCertificates to the
Server for validation, and to identify the user
associated with the Session.
Must be called before any other Service, or else
the Server closes the Session.

CloseSession Terminate the Session. Stop accepting requests,
return negative responses to all outstanding
requests, removes the Client from the
SessionDiagnosticArray variable.

Cancel Client cancels outstanding service requests.
NodeManagemen
t

Add and delete AddressSpace Nodes and References between them.
AddNodes Add Node(s) to the AddressSpace Heirarchy.

Each Node is added as the TargetNode of a
HierarchicalReference to ensure that the
AddressSpace is fully connected.

AddReferences Add Reference(s) to Node(s).

TECHNOLOGY OVERVIEW 34

DeleteNodees Delete Node(s) from the AddressSpace.
DeleteReferences Delete Reference(s) of a Node. Triggers a

ModelChange event.
View Client uses browse Services to navigate the AddressSpace or View, a

subset of the AddressSpace created by a Server.
Browse Discover References of a Node. Can be limited

by using a View.
BrowseNext Request the next set of Browse or BrowseNext

responses that is too large for a single response.
TranslateBrowse...
PathsToNodeIds

Translates browse path(s), consisting of a starting
Node and RelativePath, to NodeId(s).

RegisterNodes Clients register Nodes they will access
repeatedly, to be used for any potential Server-
side, vendor-specific optimization. Useful it the
Server doesn’t have direct access to the
information that in manages.

UnregisterNodes Unregister Nodes to free up resources.
Query Used to Query a Server, used to access a wide variety of OPC UA Data

stores and information management systems. A Query permits a Client to
access data maintained by a Server, without knowledge of the logical
schema used for internal storage.
Clients can also Query Views (subsets of the AddressSpace), and historical
data, by specifying a ViewVersion or TimeStamp.
QueryFirst Issue a Query to a Server. Request Data from

instances of a TypeDefinitionNode, or request
data from instances of related Node types, by
specifying a RelativePath.

QueryNext Request the next set of QueryFirst or QueryNext
response information, if it is too large for a single
response.

Attribute Provides access to Attributes, that are part of Nodes.
Read Read Attribute(s) from Node(s). Attributes with

indexed elements (e.g. arrays) can be read as a
composite of a range of indexed values.

HistoryRead Read Historical values or Events of Node(s).
Historical values are not visible in the
AddressSpace, but can be accessed with this
Service.

Write Write Attribute(s) to Node(s).
HistoryUpdate Insert, Replace, or Delete historical values or

Events of Node(s).

TECHNOLOGY OVERVIEW 35

Method Represents Function calls of Objects. Methods are invoked and return
only after completion.
Call Invoke a list of Methods within the context of an

existing Session. This Service provides for
passing input and output arguments to/from a
Method, defined by a Method’s Properties.

MonitoredItem Clients define MonitoredItems to subscribe to data and Events.
MonitoredItems identify the Node Attribute to be monitored, and the
Subscription to use to send Notifications. Notifications are data structure
that describes the occurrence of data changes and Events.
CreateMonitoredItems Create and add MonitoredItem(s) to a

Subscription.
ModifyMonitoredItem
s

Modify MonitoredItems(s) of a Subscription.

SetMonitoringMode Set the monitoring mode for MonitoredItem(s) of
a Subscription. {DISABLED; SAMPLING;
REPORTING}

SetTriggering Create and delete triggering links for a triggering
item. Triggering links are represented by the
MonitoredItem id for the item to report, and link
triggering items to items.

DeleteMonitoredItem Remove MonitoredItem(s) from a Subscription.
Also removes its triggered item links.

Subscription Subscriptions are used to report Notifications to Clients. They have a set
of MonitoredItems, assigned by the Client, which attempt to send
NotificationMessages, containing Notifications, to the Client at the
specified publishing interval.
The Subscription periodically sends NotificationMessages at user-
specified publishing intervals (interval of 0, if event-based).
CreateSubscription Creates a Subscription, which monitors a set of

MonitoredItems for Notifications, which are
returned to the Client in response to Publish
requests.

ModifySubscription Modify a Subscription.
SetPublishingMode Enable sending Notification(s) on

Subscription(s).
Publish Acknowledge receipt of NotificationMessages

for Subscription(s), or request the Server to
return a NotificationMessage or keep-alive
Message. Publish requests can be used by any
Subscription.

TECHNOLOGY OVERVIEW 36

Republish Request the Subscription to republish a
NotificationMessage from its retransmission
queue.

TransferSubscriptions Transfer Subscription and its MonitoredItems
between two Sessions of a single Client, or from
one Client’s Session to another Client’s Session.

DeleteSubscriptions Client deletes one or more Subscriptions that
have not been transferred to another Client, or
that have been transferred to it.

OPC UA defines two data encodings

• XML/text
• UA Binary

And two transport protocols:
• TCP
• SOAP Web Services over HTTP

The XML Web Services Stack is shown in Figure 13 below:

WS-SecureConversation

W
S-

Se
cu

rit
yP

ol
ic

y
1.

2

WS-Security 1.1 WS-Trust 1.3
XML Signature

1.0
XML Encryption

1.0
WS-Addressing

1.0
SOAP 1.2

HTTP or HTTPS (SSL/TLS)
Figure 13: OPC UA Web Services Stack

2.4.3 OPC UA Companion Specifications

The OPC UA Data Model is designed to be extended with object and information
models from other standards organizations, as OPC UA Companion Specifications. The
following standard organizations have been identified as potential candidates for
companion specifications to describe how their data is exposed in OPC UA, and some
working groups have been formed to

• EDDL, in cooperation with Foundation Fieldbus, Hart, Profibus
• Field Device Integration (FDI)
• ISA 88/95
• MIMOSA
• IEC TC57 WG13

UA Companion Specifications already exist for Devices and PLCopen (IEC 61131-
3). The OPC UA for Devices specification defines an information model, providing a

TECHNOLOGY OVERVIEW 37

unified view of devices, irrespective of the underlying device protocols. It specifies
ObjectTypes used to represent devices and components in the OPC UA Address Space,
mainly for device configuration and diagnostics. The standard is general enough to
allow any application to access device data. The ObjectTypes defined include:

Table 7: ObjectTypes defined in the OPC UA for Devices Companion Specification

ObjectType Description
TopologyElementType Base element in a device topology model,

specifying parameters and methods

DeviceType Supports sub-devices and Blocks

BlockType Used to organize an address space. Block models
can be specified by Fieldbus Organizations

ProtocolType Represents a specific communication
protocolimplemented by a TopologyElement, such as
PROFIBUS, FFBusType, etc.

ConfigurableObjectType Used to create modular topology units, used by
devices to organize blocks.

The hierarchy of these objects is shown in Figure 14. A device would be represented

as an object of type DeviceType, which inherits the properties and attributes of
TopologyElementType.

Figure 14: OPC UA Object Types Introduced by OPC UA for Devices Companion Specification [49]

Functional groups can be used to organize parameters and methods inside a

Topology Element. A single Parameter or Method can be referenced from multiple

TECHNOLOGY OVERVIEW 38

functional groups. Functional Groups can represent interfaces such as Configuration
and Process Data, as shown in Figure 15.

Figure 15: OPC UA Devices Example [48]

OPC UA For Devices 1.00 Companion Specification contains complete descriptions
of all blocks, as well as examples.

IEC 61131-3 part of a family of standards, which attempts to standardize
programming languages for industrial automation. The PLCOpen OPC UA Information
Model extends the OPC UA for Devices models to represent IEC61131-3 elements and
programming languages. This specification, create by a joint committee of the OPC
Foundation and PLCOpen, defines an information model to represent IEC61131-3
architectural models in the OPC UA Address Space.

The specification document contains examples of representations of Ctrl
Configurations, Programs, Function Blocks, and other ObjectTypes. As in the Devices
data model, FunctionalGroups can be used to expose groups of parameters and variables
as ‘interfaces’ for different use cases.

2.5 EVENT-DRIVEN ARCHITECTURE AND EVENT-DRIVEN SOA

The service model described in most SOA literature generally prescribes a
synchronous request-response interaction. A device or system exposes its capabilities as
services, and another device or system makes use of the capabilities, invoking the
exposed operations via SOAP message. The services and operations are discoverable
using dynamic discovery mechanisms, or in a service registry. This model creates a
degree of dependency between the client and the service, generally not loosely-coupled
in practice. Furthermore, following a request-response message exchange pattern results

TECHNOLOGY OVERVIEW 39

in information about system state being pulled on request from lower-level systems by
higher-level systems.

This model is well suited to composing capabilities of devices and systems into
higher-level business processes, but in a manufacturing environment, it is not always
optimal. For a large-scale factory or process plant monitoring system, large numbers of
intelligent, low-resource embedded devices can be deployed on the shop floor. To
achieve a maximally responsive system, one that senses the environment and reacts to
changes, notifications of events must be generated immediately. When an alarm is
triggered or changes are detected in some monitored value, such as a tank level or flow
rate, notification messages can be “pushed” to event subscribers [52]. The result is an
extremely loosely-coupled system, where the event source detects an event, publishes a
notification, and has no knowledge of the subsequent processing.

In a service-oriented system, service invocation is generally driven in one of two
ways[53]. In a composite application, user interaction triggers invocation of one service,
or a sequence of services. Alternatively, business processes and events drive service
invocations. A service may generate an event, which may indicate a problem, a potential
problem, some deviation from normal operation, or a completed milestone. Events are
immediately disseminated to all interested systems, which evaluate the event, and, as
needed, trigger execution of a business process, invoke a service, or generate another
event. An event-generating service or business process can be just one of many event
sources in an Event-Driven Architecture (EDA).

David Luckham defines an EDA as “an SOA in which all communication is by
events, and all services are reactive event processes (ie. React to input events, and
produce output events).” [54]

An event is a notable thing that happens inside our outside a business or system
[53]. Each event will typically be specified in business terms, rather than raw data or in
application terms, for the event to retain some meaning for interested parties. Event
notifications will usually be delivered with a header, and body. The header will
typically contain information such as event name, type, timestamp, occurrence number,
event source. It may also contain a reference to some semantic information, such as an
ontology file containing an event description. The body will contain the actual event
data, describing what occurred. In the case of a threshold limit being exceeded, the body
may contain the threshold limit level, the measured value, and perhaps the previous
value and some severity indicator.

OPC UA and DPWS both support event generation, although the models are quite
different. DPWS requires full support for WS-Eventing, including push mode, where
the hosted service pushes notifications to the event sink (the client)[22]. This
specification provides a means to create and delete subscriptions, manage subscription
expiry and renewal, and define a preferred delivery mechanism. OPC UA’s event
model defines a general-purpose eventing system, in which a client creates a
Subscription object on a server, and collection of MonitoredItems, which use the
Subscription to publish EventNotifications. Each Monitored item identifies the item to

TECHNOLOGY OVERVIEW 40

monitor, such as Variables, Attributes, EventNotifiers, and generates a notification
when they detect a data or status change that match a client-specified filter. A more
detailed description of the OPC UA eventing mechanism can be found in Appendix A.

A SOA-based system for shop floor monitoring requires devices capable of
acquiring data from sensors and controlling actuators. In many scenarios, such as some
pressure or temperature level exceeding a configured threshold, or an access violation in
a restricted area, a single sensor value can indicate a fault or emergency situation.
However, reading from a single sensor is often not sufficient for detecting an
emergency or maintenance situation. Systems should be able to react to situations
identified by a sequence or combination of low-level events from one or more sources.

Several styles of event processing can be found in event-driven systems today [53].
A single event notification can communicate valuable information about a specific part
of the system at a specific time, but detecting patterns and correlations in events in all
sub-systems over an extended time period can be a powerful tool for performance
prediction, fault detection and prediction, and complex system-wide situations which
can enable companies to make better decisions about future control instructions,
maintenance, or production scheduling [50]. Event processing tools can be used to gain
greater insight, and perform advanced analytics using simple atomic events generated
by individual components in a large system. In the simplest case, Simple Event
Processing, an event occurrence initiates some downstream action, driving real-time
application flow. Slightly more complex, Stream Event Processing involves analysing a
continuous, high-speed stream of time-ordered events, scanning ordinary events for
notability, and applying algorithms to the data. Stream event processing facilitates real-
time decision-making. Complex Event Processing (CEP) is a more powerful technology
for performing analysis on multiple event streams, which has been the subject of much
investigation by industrial SOA researchers.

2.5.1 Complex Event Processing

CEP has gained popularity in the domains of network monitoring and Business
Process Management (BPM) in recent years [54]. CEP provides tools for handling and
analysing events in temporal, combinational, and sequential occurrences, using
platform-dependent query language, such as Event Patterning Language (EPL), or
Language Integrated Query (LINQ) [50]. The ultimate goal of CEP is to extract high-
level knowledge from a cloud of low-level events.

CEP feature sets vary widely, depending on query language and platform. However,
capabilities generally include event correlation, composition and aggregation,
extraction, parsing, filtering and ordering, semantic matching, structure transformation,
and content-based routing. CEP engines can also split, generate, and enrich events, and
trigger actions.

Modern processing engines running on adequate hardware can handle on the order
of 100,000 events per second, depending on query complexity, but in a very large-scale

TECHNOLOGY OVERVIEW 41

system, low-level event sources (devices) themselves should possess some filtering and
decision-making capabilities.

Both commercial and open source solutions are available. Microsoft's
StreamInsight, CORAL8, and TIBCO Business events are commercial CEP offerings,
while Esper (NEsper) and StreamCruncher are free, open-source alternatives.

2.6 OWL WEB ONTOLOGY LANGUAGE

The Semantic Web is a concept where human-readable web-content is extended by
machine-readable information with explicit meaning, allowing machines to
automatically interpret, process, and integrate information on the Web, and intelligently
perform tasks. The OWL Web Ontology Language is the top layer in a stack ofW3C
recommendations related to the Semantic Web[40].

Table 8: Stack of W3C recommendations related to the Semantic Web

OWL
OWL adds another layer for richer descriptions of classes,

properties, and relationships between classes and properties.

RDF
Schema

RDF Schema defines a vocabulary for describing properties
and classes of RDF Resources, as well as semantics for
generalization hierarchies of these classes and properties.

RDF
Resource Description Framework is a data model for

describing objects (“resources”) and relationships between
objects. The simple semantics can be represented in XML.

XML
Schema

XML Schema extends XML with datatypes, and restricts
the structure of XML Documents.

XML
eXtensible Markup Language provides the base syntax for

structured information, but does not constrain semantics.

A rich descriptive language for knowledge representation is required for machines

to perform useful interpretive tasks on information in documents. The Semantic Web
requires structured ontologies.

An ontology defines the terms in some vocabulary, and the relationships between
these terms. The ontology represents the area of knowledge (the “domain”), and
consists of descriptions of three kinds of concepts:

• Classes (general things) in the domain
• Relationships between things
• Properties or attributes of these things
Ontology languages allow users to write formal descriptions of domain models.

Some key requirements of an Ontology Language are:
1. A well-defined syntax

TECHNOLOGY OVERVIEW 42

The well-defined syntax is necessary for machine-processing of the information.
Although human users will likely be developing their domain ontologies using graphical
tools, the basic philosophy of the language should be natural and easily understandable.

2. Well-defined semantics
Formal semantics precisely define the meaning of the knowledge, leaving no room

for subjective interpretations by different persons or machines. It also allows human
reasoning based on the knowledge, and machine reasoning support

3. Sufficient expressive power
An Ontology language needs to be more expressive than RDF Schema, supporting

ideas such as cardinality restrictions, symmetrical and asymmetrical relationships,
disjointness of classes, and defining new classes based on unions, intersections, and
complements of classes. A language needs to be able to express wide variety of
information, but also allow for reasoning within the information. The expressivity of a
language defines what can be represented, and thus determines the reasoning
capabilities should be expected from a system that implements it.

4. Efficient reasoning support
As the expressive power of the language increases, the reasoning efficiency

decreases. Reasoning for ontological knowledge can be about class membership, class
equivalence, knowledge consistency, and classification. Machine reasoning support is
indispensible when designing large, shared ontologies with multiple authors, or
integrating and sharing ontologies between organizations. Machines can rapidly and
automatically

• Check for ontology knowledge consistency
• detect unintended relationships
• Automatically classify instances

The OWL Web Ontology Language is designed to meet these requirements. It can
be used to explicitly describe the terms and relationships in a domain, for applications
where content of information in documents needs to be processed by applications, rather
than just presented to a human user. OWL goes beyond XML, Resource Description
Framework (RDF), and RDF Schema (RDF-S), to allow greater machine interpretability
of web content.

W3C has defined three sub-languages of OWL:

Table 9: OWL Sub-Languages [40]

Sub-
Language

Description

OWL Lite OWL supports classification hierarchy and simple constraints. It is
designed for easy implementation, and easier understanding. Some
concepts, such as disjointness, arbitrary cardinality, and enumerated
classes, cannot be expressed in OWL Lite.

TECHNOLOGY OVERVIEW 43

OWL DL DL is short for Description Logic, which forms the formal foundation
for OWL. OWL DL includes all OWL language constructs, but with some
restrictions to ensure that the language corresponds to a well-studied
description logic. This allows maximum expressiveness, while retaining
computational completeness (meaning all conclusions are guaranteed to be
computable) and decidability (all computations will finish in finite time.)
Every OWL DL document is a valid RDF document, but the converse is
not necessarily true.

OWL Full OWL Full is for applications where maximum expressiveness and
syntactic freedom are required, without computational guarantees. It uses
all OWL language primitives, with arbitrary combinations of these
primitives, including the possibility of changing the meaning of pre-
defined vocabulary of RDF and OWL. OWL retains full RDF
compatibility.

OWL Full can be viewed as an extension of RDF, while OWL Lite and OWL DL

are extensions of restricted views of RDF. All OWL sub-languages use RDF syntax,
and all instances are declared as in RDF, using RDF descriptions and typing
information. All OWL constructors are specializations of RDF counterparts.

OWL Language Primitives

The OWL Language constructs are listed below [41]:

TECHNOLOGY OVERVIEW 44

Table 10: OWL Language Constructs

OWL-Lite, DL, and Full
RDF Schema
Features:
Class (Thing,
Nothing)
rdfs:subClassOf
rdf:Property
rdfs:subPropertyOf
rdfs:domain
rdfs:range
Individual

Property Characteristics:
ObjectProperty
DatatypeProperty
inverseOf
TransitiveProperty
SymmetricProperty
FunctionalProperty
InverseFunctionalProperty

Annotation Properties:
rdfs:label
rdfs:comment
rdfs:seeAlso
rdfs:isDefinedBy
AnnotationProperty
OntologyProperty

Datatypes:
xsd datatypes

Property Restrictions:
Restriction
onProperty
allValuesFrom
someValuesFrom

Versioning:
versionInfo
priorVersion
backwardCompatibleWith
incompatibleWith
DeprecatedClass
DeprecatedProperty

Header Information:
Ontology
imports

Boolean
Combinations of
Class Expressions
intersectionOf

Cardinality:
minCardinality
maxCardinality
cardinality

on
ly

 0
 o

r 1

un
-r

es
tri

ct
ed

(In)Equality:
sameAs
differentFrom
AllDifferent
distinctMembers
equivalentClass
equivalentProperty

unionOf
complementOf

Class Axioms:
oneOf,dataRange
disjointWith

Filler Information:
hasValue

equivalentClass
rdfs:subClassOf

(applied to
class
expressions)

OWL DL and Full Only

Structure of an OWL Ontology

To those familiar with XML syntax, and Object Oriented Programming concepts,
the structure and philosophy of an OWL document are easy to understand.

TECHNOLOGY OVERVIEW 45

An OWL Ontology uses RDF’s XML Syntax. The root of an OWL document is an
rdf:RDF element, which will contain a number of namespace declarations.

<rdf:RDF
 xmlns ="http://www.tut.fi/fast/2011/aesop-owl-overview#"
 xmlns:ns ="http://www.tut.fi/fast/2011/aesop-owl-overview#"
 xmlns:base ="http://www.tut.fi/fast/2011/aesop-owl-overview#"
 xmlns:owl ="http://www.w3.org/2002/07/owl#"
 xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

Sample Code 1: OWL Document Root Element

Generally, the first two namespaces will be the default namespace, to which all

unprefixed qualified names will belong, and the second associates a prefix. The third
identifies the base URI for the document. The last four define the prefixes needed for
the items from the OWL, RDF, RDF Schema, and XML Schema namespaces.

The Ontology will then start with an owl:Ontology element, which contains
annotations, version information, and imports of other OWL documents. The only
information in the owl:Ontology element with any logical effect are the owl:imports
elements, because they indicate other documents that are assumed to be part of the
ontology. Typically, there an owl:import element for each namespace used.

<owl:Ontology rdf:about="">
 <rdfs:comment>Sample OWL ontology</rdfs:comment>
 <owl:priorVersion rdf:resource="http://www.tut.fi/fast/2005/aesop-owl-
overview#"/>
 <owl:imports rdf:resource="http://www.tut.fi/fast/2011/external-
document"/>
 <rdfs:label>Sample Ontology</rdfs:label>
 ...

Sample Code 2: owl:ontology Element

Next, come the definitions that make up the Ontology: Classes and Individuals,
Properties, and Property Characteristics and Restrictions.

Classes (objects, things) are defined using owl:Class elements, containing Class
Axioms, defining relationships to other classes. The rdfs:subClassOf relation relates a
specific class to a more general one.

<owl:Class rdf:ID="temperature">
 <rdfs:subClassOf rdf:resource="#PhysicalProperties"/>
 <rdfs:label xml:lang="en">temperature</rdfs:label>
 <rdfs:label xml:lang="fr">température</rdfs:label>
 ...
</owl:Class>

<owl:Class rdf:ID="employee">
 <rdfs:subClassOf rdf:resource="#person" />
 ...
</owl:Class>

Sample Code 3: RDF Subclassing

TECHNOLOGY OVERVIEW 46

Classes can also be declared as boolean combinations of other classes and
restrictions on classes.

<owl:Class rdf:ID="Actuator">
<rdfs:comment>
For simplicity sake, actuators are disjoint with sensors
</rdfs:comment>
<owl:disjointWith="#Sensor"/>
</owl:Class>

<owl:Class rdf:ID="Sensor">
<rdfs:comment>Sensorare devices that measure</rdfs:comment>
<rdfs:subClassOf rdf:type="#Devices"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#measures"/>
<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">
1
</owl:cardinality >
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Sample Code 4: Boolean Combination

Describing instances, or individuals, is done by declaring it as a member of a class

in one of two ways:

<Sensor rdf:ID="thermometer" />
or
<owl:Thing rdf:ID="thermometer" />
<owl:Thing rdf:about="#thermometer">
<rdf:type rdf:resource="#Sensor"/>
</owl:Thing>

Sample Code 5: Instance declaration

Properties can be either ObjectProperties, relating Objects to other Objects, or

DatatypeProperties, which relate Objects to data values. OWL uses XML Schema data
types, and does not specify any restrictions on these types. ObjectProperties can restrict
the relation they represent by, for example, specifying domain and range. These values
can also be inherited from inverse properties by interchanging domain with range.
When multiple domains are declared, the domain is taken as the intersection of all
declared domains. The same applies to ranges.

<owl:ObjectProperty rdf:ID="measuredBy">
 <rdfs:domain rdf:resource="#PhysicalProperties"/>
 <rdfs:range rdf:resource="#Sensor"/>
<owl:inverseOf rdf:resource="#measures"/>
</owl:ObjectProperty>

Sample Code 6: Domain and Range

OWL instances are declared with their properties

TECHNOLOGY OVERVIEW 47

<owl:Class rdf:ID="SR-20">
<rdfs:comment>
Kytola SR-20 Oval Gear FlowMeters have max flow rate of 20 litres per
minute
</rdfs:comment>
<rdfs:subClassOf rdf:resource="#FlowMeter"/>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#maxFlowRate"/>
<owl:hasValue>
<xsd:double rdf:value="20"/>
</owl:hasValue>
</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource="#manufactured-by"/>
<owl:hasValue>
<xsd:string rdf:value="Kytola"/>
</owl:hasValue>
</owl:Restriction>
</rdfs:subClassOf>
</owl:Class>

Sample Code 7: Instance declaration with properties

Properties can also be extended using the rdfs:subPropertyOf relation:

<owl:ObjectProperty rdf:ID="hasMaxOperatingTemperature">
 <rdfs:subPropertyOf rdf:resource="#hasPerformanceParameter" />
 <rdfs:range rdf:resource="#Sensor" />
 ...
</owl:ObjectProperty>

Sample Code 8: Extending properties

DatatypeProperties contain data in any of the XML Schema data types:

<owl:DatatypeProperty rdf:ID="manufactured-by">
<rdfs:domain rdf:resource="#product"/>
<rdfs:range rdf:resource="&xsd;string"/>
</owl:DatatypeProperty>

Sample Code 9: DatatypeProperty

A more complete treatment can be found in the OWL Web Ontology Language

Specifications online from the World Wide Web Consortium.
There are many ways to construct an ontology. Choosing the best approach for a

single application depends on the view that the ontology designer takes of the system.

OWL	
 and	
 the	
 OPC-­‐UA	
 Address	
 Space	
 	

The OWL Web Ontology Language and the OPC-UA AddressSpace have some

fundamental similarities. Objects, Variables, and References in the OPC UA Object
Model are conceptually similar to Class instances, ObjectProperties, and
DatatypeProperties in OWL. The OPC UA Specification states that the object model

TECHNOLOGY OVERVIEW 48

was intended to extend classic OPC’s Data Access specification with more semantic
capability. Some further analysis can be done to determine which OWL constructs are
expressible in the OPC UA Address Space, and whether any use cases exist that would
make such a mapping worthwhile.

3 APPROACH AND METHODOLOGY

3.1 MERGING OPC-UA AND DPWS

3.1.1 Comparison Between the Technologies

OPC UA and DPWS have both been proposed as solutions for industrial SOA.
Although there is considerable overlap between the core Web Service standards that
comprise DPWS and OPC UA, the philosophies behind these specifications are
fundamentally different. DPWS devices have a set of built in services for discovering
and providing interface descriptions for hosted services, which expose the functionality
of the device as custom services. OPC UA servers allow OPC UA clients to access and
edit nodes in their AddressSpace using a fixed set of services. DPWS is “action,” or
“verb”-oriented, while OPC UA is more “object,” or “noun” –oriented, with optional
support for methods associated with objects.

Although communication in OPC UA is based on services, a common criticism of
OPC UA is that it is not compliant with SOA principles [46]:

• It makes only restricted use of services; fixed service sets are specified,
which the user cannot extend

• It is based on a traditional object-oriented data model and does not inherently
allow systems or resources to be represented in terms of their capabilities

• It requires a connection to be established, and depends on stateful message
exchange patterns.

DPWS, on the other hand, has none of these restrictions. Services can be discovered,
operations invoked, and subscriptions established by posting the appropriate SOAP
message to the endpoint.

DPWS devices support asynchronous eventing, delivering custom event messages to
subscribers using “push mode,” defined in WS-Eventing. Events are described in the
WSDL file of the hosted service on the device. A client sends a subscription request
with the event name and duration, and thereafter, notifications are delivered
asynchronously, with no response required. DPWS does not include a mechanism for
enabling clients to specify conditions and custom notifications. OPC UA has a more
complex eventing mechanism, allowing clients to create “MonitoredItems” on a server
to sample Node attribute values in the address space and server-created
“EventNotifiers,” and generate Notifications via Subscriptions when the client-specified
conditions are met. Notifications are delivered as NotificationMessages if and when a
publish request has been received from the client. Event notifications delivery still

APPROACH AND METHODOLOGY 50

requires that a session be established. A more detailed description of the OPC UA
eventing mechanism is presented in Appendix A.

OPC UA defines a rich data model, with additional companion specifications for
domain specific information models, such as ISA95/ISA88 plant hierarchy and batch
control models, and IEC 61131-3 PLC models. All nodes in the AddressSpace of an
OPC UA Server must be an instance of a one of a fixed set of NodeClasses defined in
the standard. DPWS uses XML Schema types, and does not attempt to specify any other
information model or data meta-model.

OPC UA has built-in security on multiple levels, requiring that clients establish a
Session and Secure Channel to browse and access nodes in the AddressSpace. The
specification includes WS-Security, WS-SecureConversation, and WS-Trust [56]. The
standard also defines a binary message encoding (UA Binary) with a TCP (non-HTTP)
transport mapping to avoid transmitting any messages in plain text. DPWS specifies an
optional security model based on WS-Security, but can be extended with any other
security model.

3.1.2 Adoption in Industry

OPC UA is being adopted at a much faster rate than DPWS in industrial
applications. This could be due to a number of factors:

• The OPC UA specification is more complete, which makes interoperability
easier to achieve. Integrators must only specify a plant-specific information
model, and all layers below (data meta-model, encoding, transport, physical.)
In a DPWS-based solution, interoperating devices must also have common
security and information models, and they must understand the semantics of
the services they are interoperating with.

• The OPC Foundation has stronger support and involvement from groups in
the process, manufacturing, and automation industries, and was designed
from the ground up for process control. DPWS originated from the high-
level IT field, backed primarily by OASIS and Microsoft, with the goal of
providing UPnP-like behaviour got networked devies using Web Service
standards. Although much research has been done to assess the applicability
of DPWS as a solution for Industrial SOA, most of the commercial
implementations have been focused on home automation.

• OPC UA does not represent a major paradigm shift from traditional plant
control and monitoring systems. It is an integration technology, which can be
used to access data on existing devices, using a model that is compatible
with existing fieldbuses: reading and writing nodes in some address space
that correspond to physical inputs and outputs, or memory locations on
devices. A full DPWS implementation, on the other hand, requires a
departure from traditional thinking and substantial changes in overall

APPROACH AND METHODOLOGY 51

application architecture, because equipment must expose its capabilities as
abstracted, composable services, rather than its raw memory and data values.

• In many industries, some Process Industries, for example, the dynamic
discovery, reusability, and asynchronous eventing features of DPWS are
either not desirable, or not worth the performance cost and uncertainty
associated with verbose XML/SOAP message encoding, and non-
deterministic transport protocols. In factories, fieldbuses, traditional PLCs,
and explicit, cyclic access to raw data are desirable, and interoperability at
Level 3 and above is sufficient.

• A typical plant may have tens or hundreds of OPC UA servers, serving as
gateways to existing systems, controllers, fieldbuses, and devices. The same
plant, on the other hand, may require tens of thousands of DPWS-compatible
devices, along with a set of design, deployment, orchestration, management,
and semantic mapping tools that do not currently exist.

For these reasons, DPWS adoption in industrial applications is less prevalent, and
any existing non-OPC UA service-based offerings have proprietary, vendor-specific
service semantics, and security and data models.

The advantage of DPWS is at the level of intelligent low-resource devices. While
OPC UA is typically only found in Level 3 networks and higher, DPWS is a lighter-
weight technology, and is well suited to being deployed on small, resource-constrained
devices. A small, intelligent device with a fine-grained piece of functionality can
expose a DPWS-compliant service interface, but it is unlikely to host a full OPC UA
server. DPWS also supports dynamic discovery, and is a better fit for managing mobile
or intermittently connected devices, which can join and leave networks, or migrate from
one sub-network to another.

By merging these two technologies, a system can leverage the respective strengths
of each, and create a true Service Oriented Architecture at the device-level. From
DPWS, lightweight, simple, discoverable services at the device level. From OPC UA,
the rich data model, security, and market momentum.

3.1.3 Technology Merging Strategies

A number of potential merging strategies have been proposed. These strategies can
be roughly categorized as follows:

• OPC UA over DPWS: Implementing the OPC UA Service Sets in a DPWS-
compliant client or server, including all session and security specifications,
and implementing a UA-Binary mapping and OPC UA TCP transport
binding.

• DPWS over OPC UA: Implement a DPWS Client extension to an OPC UA
server, which can discover DPWS devices in a sub-network and map them
into the server’s AddressSpace

APPROACH AND METHODOLOGY 52

• Merging at the protocol-level: Implement a Web Services protocol stack that
supports both OPC UA and DPWS

• Merger through another technology: Creating OPC UA and DPWS input and
output adapters for some other application, such as a Complex Event
Processing (CEP) Engine or Database.

Some examples are described in brief below:
Candido et.al. extend the SOCRADES proposal [46] by starting with DPWS and

WS-Management for a generic device-level framework. DPWS provides a general
purpose, extensible architecture for WS-based interoperability at the device-level, while
WS-Management provides a standard for managing resources (servers, devices,
information). They then suggest extending it with support for the additional protocols
required by OPC-UA, including service sets, security specifications, UA Binary
mapping, and UA Native (TCP) transport protocol. Furthermore, they advocate defining
a two-way mapping between device data and the OPC UA Object Model, and a low-
resource version of the combined protocol.

Bony et al. propose another approach to convergence, by implementing the
following components [47]:

• A Node Manager containing a cross-layer domain data model and address
space, and exposes an interface to handles access to data in the address
space.

• The application (includes devices) Gets and Sets information via the node
manager interface

• Client is connected to the network, requests data from server, and sets
parameters

Figure 16: OPC UA - DPWS Convergence Prototype [47]

Address Space
(Data Model)

Application (Device)

DPWS StackANSI C Stack

Shared LIBs

OPC UA
over Binary

OPC UA
over WS

DPWS
WS

N

od
e

M
an

ag
er

Sensor

Method
Parameter 1

Device

Parameter 2

APPROACH AND METHODOLOGY 53

For the communication stack, they propose two parallel stacks at the encoding

and transport levels: an ANSI C Stack for UA Binary over TCP-based UA
Native, and a combined Web Services stack (SOAP/XML over HTTP/HTTPS)

for OPC WSs and DPWS WSs. Both stacks would access shared libraries, which
manage endpoints, certificates, sessions, and binding to the node manager. The

combined stack is shown in
Figure 16.
In addition, they present some suggestions for merging various parts of the

standards:

• Extend OPC UA with dynamic discovering using WS-Discovery,
implemented only in OPC UA Discovery servers, or in all OPC UA servers.

• OPC UA as a Middleware Server: An OPC UA Server maintains a virtual
instance of every DPWS device discovered in the address space,
dynamically WS-Discovery mechanisms, such as discovery probes and
Hello/Goodbye messages. Vendor-defined hosted web services could be
exposed as OPC UA methods, invoked by clients using the appropriate OPC
UA service set, or the Server would read and store all parameter values of a
device periodically.

 Garcia et al. [50] proposed a convergence of DPWS and OPC UA eventing
mechanisms by mapping OPC UA Notifications and DPWS Event messages into a
common Complex Event Processing (CEP) engine event format. An Event Translator
component has an integrated DPWS client stack for discovering devices and subscribing
to WS-Eventing push events, and an OPC UA client for connecting to an OPC UA
Server to configure Monitored Items and receive responses to Publish requests. This
middleware component converts incoming DPWS and OPC UA into a generic event
stream, consumed by the CEP engine.

APPROACH AND METHODOLOGY 54

Figure 17: DPWS/OPC UA Architecture for Event Processing

3.1.4 Chosen Approach

All of the OPC UA/DPWS convergence strategies described previously have their
merits. However, given the realities of today’s market, and the comparative advantages
and disadvantages of each technology, an alternative approach is presented:

• Define a representation of DPWS devices using the OPC UA Object model.
This representation must be based on:

o WSDL descriptions of DPWS hosted services
o OPC UA Device Information Model Specifications

• Implement an OPC UA gateway to DPWS, consisting of
o A DPWS Client, which discovers devices, creates and maintains a

representation of the device, its hosted services, and input and output
parameters in an OPC UA AddressSpace, and manages service
invocations and event subscriptions.

o An OPC UA Server, which enables OPC UA clients to browse the
representations of all devices, and invoke and subscribe to the
available operations and events.

This approach has the following advantages:

• Light-weight DPWS is used at ISA 95 Levels 2 and 1, where it performs
best. Devices can be discovered, and forgotten. Once devices are discovered,
OPC UA’s built-in status and data quality attributes for objects can carry
current information about connectivity, device health, most recent invocation

APPROACH AND METHODOLOGY 55

or time since last event. This is especially advantageous for persistent
representations of intermittently connected devices.

• OPC UA is used for interoperability at higher levels, taking advantage of its
data model, security mechanisms, and industry presence. DPWS can be used
with minimal security overhead in local subnets, and cross-network secure
transactions can take place via OPC UA without the need for establishing
new security specifications.

• Device functionality is represented in the Object Model, using a WSDL-
based service representation. Device memory or physical IOs are not
exposed.

• Mature DPWS and OPC UA stacks already exist.

Following this approach, a prototype OPC UA Gateway to DPWS devices is
implemented.

3.2 COMPONENT SELECTION

3.2.1 OPC UA Client and Server SDKs

There are few free or open-source OPC UA stacks currently available for this style
of development. The OPC Foundation maintains an official OPC UA SDK for both
ANSI C and .NET, available only to corporate members. Several commercial offerings
are available:

Table 11: Commercial OPC UA Client and Server SDKs

Company Name Description
Embedded Labs
www.embeddedlabs.com

OPC UA
Device Server
SDK

This SDK is designed to allow
embedded developers to easily add
an OPC UA Server to their
resource-constricted
microcontroller- or microprocessor-
based product.

Inductive Automation
www.inductiveautomation.com

Ignition OPC
UA Server

Ignition is a mature, web-based,
industrial application server, with
HMI, SCADA, and MES
capabilities. The Ignition OPC UA
Server is a module for Ignition,
which can serve as a standalone
OPC UA server. Ignition features a
free driver API and SDK for
developing custom modules for

APPROACH AND METHODOLOGY 56

interfacing with all parts of Ignition,
including the OPC UA server.

Prosys
www.prosysopc.com

OPC UA Java
SDK

This commercial SDK includes
OPC UA client and server stacks
that can be integrated royalty-free
into custom applications. A free
evaluation version can be requested.

Softing
www.softing.com

OPC Toolbox
UA

Another commercial SDK for easily
incorporating full OPC UA
functionality into client and server
applications. A free downloadable
demo is available

Unified Automation
www.unified-automation.com

C++ and ANSI
C OPC UA
Client and
Server SDKs

Server and Client SDK/Toolkit
includes precompiled libraries and
header files, documentation and
samples, as well as utilities for
designing information models and
generating code.

Of these options, the Ignition OPC UA Server from Inductive Automation is ideal,

for the following reasons:

1. The OPC UA Server is integrated into a larger system designed for industrial
control systems.

2. The Ignition OPC UA Server license is free for end-users, and the licensing
is favourable for developing experimental modules and drivers using the
Ignition Developer SDK

3. Ignition Server is written in Java, so it can be run on any platform that
supports Java (Windows, OS X, Linux, etc.), and an existing DPWS stack
implemented in Java can be integrated into Ignition Modules

4. An infinitely restartable two-hour trial of the integrated web-based HMI, and
ability to create custom visual components for the HMI

3.2.2 Ignition OPC UA Server

Ignition is an industrial application server from Inductive Automation[45], used to
create HMI, SCADA, and MES systems. Ignition (formerly FactorySQL and
FactoryPMI) is a mature, well-tested application. The feature list includes

• web-based gateway configuration and HMI drag-and-drop editor
• a rich set of visual components

APPROACH AND METHODOLOGY 57

• database-centric architecture
• advanced reporting and alerting mechanisms
• designed from the ground-up for scalability.
• implemented in Java, so it can be run on a wide range of platforms, on all major

operating systems.
• Control system access on mobile devices
The OPC UA Specification has gained significant industry traction since its release,

and Ignition has gained significant popularity over the last few years resulting from the
addition of a built-in OPC UA Module, using a custom OPC UA stack, to its feature set.
The OPC UA Module can act as a communication layer for other modules, or as a
standalone OPC UA Server for third party OPC UA clients. Currently, drivers are
available for Modbus Ethernet, as well as Allen Bradley and Siemens S7 PLCs, but
more are in development. In the interest of performance, Ignition OPC UA supports
only the UA-Binary/TCP transport encoding and protocol, not the XML/text mapping
via SOAP-over-HTTP.

Figure 18: Ignition OPC UA Server Connections

APPROACH AND METHODOLOGY 58

Ignition also features an open driver API, allowing development of OPC UA driver
modules, and general Ignition modules in Java.

An example of a system built around an Ignition OPC UA server is shown in Figure
18. The core of an Ignition-based application is the Ignition gateway. The gateway can
be distributed over multiple hardware devices for scalability or redundancy. The
gateway has an HTML configuration interface that can be accessed through a browser.
Modules can add additional communication capabilities to the Gateway, and expose
memory or information as nodes in the OPC UA Address Space. For example, the
Modbus Over Ethernet Driver for Ignition is a module that allows the addressable
memory on a Modbus device to be exposed as nodes.

The Ignition Designer is launched from the Gateway Configuration interface in a
browser. The Java-based designer allows the user to link SQLTags to OPC UA nodes,
SQL queries in a database, or functions of other SQLTags, expressed in Python. Client
interface windows can be designed by adding visual components to display and set the
information contained in SQLTags. The client programs can then be launched from the
gateway configuration page.

The Ignition OPC UA Server has some disadvantages. While the SDK does not
explicitly exclude objects, it is suited best to a simplified view of the OPC UA Object
Model, which corresponds one to one with the SQLTags system that the Ignition
Gateway is built around. This simplified view consists only of FolderNodes and
DataVariableNodes. Functionally, a system built with these restrictions would be
identical to a full implementation, but the potential for enriching data with semantic
information by structuring the data using the object model is reduced.
 OPC UA Methods are not supported in the Ignition Client or Ignition Designer.
The OPC UA Server can expose methods, but to link Ignition Visual Components to
operations or event output parameters, another approach is required.

3.2.3 The Ignition SDK

The Ignition SDK is a collection of libraries and sample code for creating custom
Ignition Modules in Eclipse IDE. Three types of modules can be created:

• Gateway Module: These modules can provide new communication
interfaces, manipulate a database, provide SQLTags to the Ignition System,
or add Nodes to the OPC UA Address Space.

• Designer Module: Programming for the Ignition Designer. This can include
making custom menus, buttons, and toolbars, or adding custom client-
creation utilities.

• Visual Components: Custom visual components, written in Java, similar to
any 2D or 3D Java Swing or AWT or user interface. Accessing custom
visual components requires a custom designer module, which creates a new
component pallet, and adds the custom components.

APPROACH AND METHODOLOGY 59

A new gateway module can be created, containing a DPWS client stack. This client
stack will discover DPWS devices, and create representations of the devices as nodes in
the OPC UA Address Space. Any OPC UA client connecting to the Ignition OPC UA
server must be able to invoke operations, and subscribe to events on the discovered
DPWS devices, using the OPC UA service sets.

3.2.4 JMEDS WS4D DPWS Java Stack

Custom Ignition Gateway Modules are written in Java. The WS4D JMEDS Java
Stack is a full open-source DPWS implementation, with two versions: Version 0.9.7
supports DPWS v1.0, while v2.3.7 supports DPWS v1.1. The stack is used to discover
devices, and parse device and hosted service metadata to create a java object structure
representing the device, along with all services, operations, and events, including input
and output parameters.

JMEDS is available for download at http://ws4d.e-technik.uni-rostock.de/jmeds/,
under the Eclipse Public License[58].

3.2.5 InicoTech S1000 Smart RTU

The S1000 from InicoTech is a compact controller with a DPWS communication
stack. The device executes program code written in Structured Text (ST), an IEC
61131-3 programming language, and can be configured with custom Web Services.
The device can host operations, and publish events using WS-Eventing push mode. A
device can also invoke operations on other WS-enabled devices, provided that the
request and response messages are pre-configured.

The S1000 comes standard with eight digital inputs, eight digital outputs, and an
RS-232 serial communication port. The version used in this project also features four
analog inputs. Other IO expansion modules are available, including additional digital or
analog IO, high-speed pulse counter, and three-phase power meter.

The device supports WS-Discovery, including listening on UDP port 3702 for
discovery probes, and broadcasting Hello/Goodbye messages when joining and leaving
a network. The device will supply references to WSDL files for each hosted service in
response to a GetMetadata Request message, which describes the action identifiers, and
input and output message format v the operations and events for the hosted service.

These devices are selected, because they are uniquely well suited to this type of
research activity, no other programmable DPWS devices are commercially available at
time of writing, and deployment and testing with a large number of devices is relatively
painless.

APPROACH AND METHODOLOGY 60

3.3 PROPOSED INTEGRATION APPROACH

To create representations of discovered DPWS devices in the AddressSpace of an
OPC UA Server, we can use the device metadata, and the WSDL descriptions of hosted
services.

As discussed in Section 2.2.2, the WSDL file describes the web service interface,
including all operations, events, and input and output message format. The first step is
to establish a mapping from the WSDL file to the OPC UA Node model.

3.3.1 Mapping WSDL to OPC UA Address Space

In Section 2.4.3, the ObjectTypes introduced in the OPC UA Companion
Specification “OPC UA for Devices [49]” are described. This can be used as a starting
point for representing DPWS devices in the OPC UA Object Model:

• The DeviceType object type, extending the TopologyElement type, can be
used to represent the Hosting Service.

• A special functional group called “Identification” is specified, for organizing
metadata for Topology elements, stored as Parameters in the
TopologyElement’s ParameterSet. Alternatively, the DeviceType can be
extended to include attributes for representing DPWS-specific device
metadata, returned in response to a WS-Transfer “Get” request.

• In the simplest case, each Hosted Service can be represented by a Functional
Group, which organizes a set of methods and parameters.

• Alternatively, if a more complex structure is required, the Hosted Services
could themselves be represented as extensions of the TopologyElement type,
containing FunctionalGroups to organize the operations.

• For including semantic data, new types can be defined, extending the
existing MethodTypes and ParameterTypes, to include the extension
attributes and elements defined in Web Service Semantics (WSDL-S) [16]

A generic mapping is shown in Figure 19. The MethodSet gathers all the methods
that are exposed to the client, and the ParameterSet gathers all parameters that the
device has. The FunctionalGroups representing the hosted services organize the
methods and parameters of the device. Multiple FunctionalGroups can reference the
same methods and parameters.

Asynchronous push-mode events defined in WS-Eventing do not clearly fit into the
OPC UA for Devices Object Model. One approach is shown in Figure 19, although
many different approaches could be designed. Events are grouped in a separate
functional group, nested within the Hosted Service, with the appropriate output
parameters, and a method for subscribing and unsubscribing to each event.

APPROACH AND METHODOLOGY 61

Figure 19: Generic Mapping from DPWS to the OPC UA for Devices Object Model

The data values themselves must be represented in the parameters. DPWS uses
XML Schema types, whereas OPC UA defines a fixed set of primitive types that cannot
be extended. Fortunately, Part 6 of the OPC UA Specification defines mappings from
OPC UA primitive types to XML Schema types. These are summarized in Table 12.
When mapping values between OPC UA Nodes and DPWS messages, this table is
followed.

Table 12: Mapping between OPC UA Primitive Types and XML Schema Types [55]

 OPC UA Primitive Type XML Schema Types
Integer
SByte xsd:byte
Byte xsd:unsignedByte
Int16 xsd:short
UInt16 xsd:unsignedShort

APPROACH AND METHODOLOGY 62

 OPC UA Primitive Type XML Schema Types
Int32 xsd:int
UInt32 xsd:unsignedInt
Int64 xsd:long
UInt64 xsd:unsignedLong
Floating Point
Float xsd:float
Double xsd:double
Other
String xsd:strting
DateTime xsd:dateTime
Guid xsd:string
ByteString xsd:base64Binary
XML Element xsd:complexType
NodeId, xsd:string
ExpandedNodeId, xsd:string
StatusCode, xsd:unsignedInt
DiagnosticInfo, QualifiedName,,
LocalizedText, ExtensionObject, Variant,
DataValue, Enumerations, Arrays,
Structures, Messages

Some xs:complexType. See OPC UA
Specification Part 6: Mappings

Simple types can be represented as simply as named parameters of the appropriate

OPC UA primitive type. Complex Types can also be easily represented using an
appropriately structured object.

Now that the DPWS device, service, and operation representation in the OPC UA
Address Space has been established, a proof of concept system can be implemented,
following the integration approach proposed in Section 3.1.4.

4 IMPLEMENTATION

4.1 SYSTEM OVERVIEW

In Section 3.2, components were selected for implementing a system to demonstrate
a merger between OPC UA and DPWS. The following components were selected:

• OPC UA Server: Ignition OPC UA Server from Inductive Automation, and
the Ignition Java SDK [45]

• DPWS Stack: Java Multi-Edition DPWS Stack (JMEDS) from WS4D.org
[58]

• DPWS-enabled Devices: InicoTech S1000 Smart RTU [59], and virtual
devices, implemented with WS4D’s JMEDS [58].

The system diagram is shown in Figure 20. The core of the system is the Ignition
Gateway, hosting the OPC UA Server. The Ignition Gateway has a browser interface,
which is used for gateway configuration, connecting databases, installing and
configuring devices and additional modules, and launching the Ignition Designer and
Client applications. The Ignition Project Designer is used for creating graphical user
interfaces (SCADA HMIs) for Client applications, driven by the SQLTags system.

4.2 DPWS MODULE FOR IGNITION

The DPWS Driver is written using the Ignition SDK, and includes JMEDS. The
DPWS Driver module:

• Uses WS-Discovery to dynamically discover all DPWS devices in the
network

• Creates, manages, updates, and deletes representations of the devices in the
OPC UA Address Space, and in the Ignition SQLTags system, and maintains
consistency between the two representations

• Connects the actual device with its representation in the OPC UA Address
Space

• Handles communication with the discovered devices, including subscription
management, receiving events, and operation invocations and responses

RESULTS 64

Figure 20: Ignition DPWS Module: System Overview

As of version 7.2.8 of Ignition Server and the Ignition SDK, three different
approaches exist for adding nodes to the OPC UA address space [60]:

1. Using The OPC UA Server Connection Extension Point: Create a custom
implementation of an OPC UA Server, and register it with the system
through the OPCManager

2. Create and manage nodes on the default Ignition OPC UA Server using the
interface provided.

3. Implement a NodeMapDriver, which is added as an OPC UA Device in the
gateway configuration

To use the Ignition Vision Module for creating and displaying graphical HMIs,
SQLTags must be created, linked to the appropriate DataVariableNode in the OPC UA
Address Space. Tags can be created and managed using the API to the system default
tag provider, or a custom tag provider can be written and registered.

RESULTS 65

For the DPWS Module, implementing a NodeMapDriver for handling the OPC UA
nodes, and a custom Tag Provider for creating and updating the SQLTags appears to
lead to the optimal balance between performance and maximizing reuse of existing
utility classes and object implementations in the SDK.

DataVariableNodes and SQLTags that correspond to parameters in an service
response message, or an event message are defined as “Read Only,” so that only the
back-end DPWS Module code can change these values.

As discussed in Section 3.2.2, the NodeMapDriver interface and the OPC Browser
in the Ignition designer present a simplified view of an OPC UA Address space, limited
to FolderNodes and DataVariableNodes. The representation of a WSDL service
interface description in an OPC UA address space proposed in Section 3.3 is modified
to meet these restrictions. The representation, as implemented, is shown in Figure 21.

Figure 21: Simplified DPWS to OPC UA Device Representation for Ignition OPC UA Server

Functionally, this implementation would be identical to a solution using a more
object-oriented representation, but the semantic and organizational strengths of the OPC
UA data model are not being leveraged.

RESULTS 66

4.2.1 Ignition Designer Interface

When the designer is launched, the user creates a new project. An annotated view of
the Ignition Designer is shown in Figure 22. Various browsers appear down the left
side, including:

• Project Browser, for managing project resources, and creating HMI
Windows for editing

• SQLTags Browser, for creating and managing SQLTags, which can be
linked to OPC UA Data Variable Nodes, historical data in an attached
Database, functions of other SQL Tags, or just used as variables. Ignition
Visual Components use SQL Tags for input and output.

• OPC Browser, for viewing the OPC UA Address Space. This interface only
shows the nodes themselves, not the values of any attributes. When an SQL
Tag is created and linked to an OPC UA Node, changes in the value of one
are reflected in the other, after some delay configured in the scan class
associated with the tag.

For building HMIs, Ignition provides a large set of visual components, including
text and numeric input and output, tanks, and gauges. Custom components can also be
designed. A simple example of a custom component was created, to show the state of
the digital inputs for the S1000, taking change-based events as input.

Figure 22: DPWS Module for Ignition Server - View from Designer

RESULTS 67

A DPWS toolbar was added to the designer for discovering devices in the local
network, removing discovered devices, including ending all active subscriptions,
deleting all OPC UA nodes and SQL tags created when the device was discovered.

When a device is discovered, a representation is created in the OPC UA address
space as described in Figure 21. A single device, hosting a single service with several
events and operations, is shown in the OPC Browser and the SQL Tag Browser in
Figure 22. The organization of the SQL Tags is changed slightly for convenience.

Figure 23: OPC UA Address Space and SQLTags Browser panels in Ignition Designer

When the HMI is created and published, the HMI application can be launched from
the front page of the Ignition Gateway browser interface. The Client is shown in Figure
24.

To improve the responsiveness when receiving DPWS events, the custom Tag
provider and the Node Map Driver are connected using an asynchronous eventing
mechanism to minimize the delay between the time that the DPWS client receives the
event, and the time that the values received are reflected in the OPC UA address space,
and SQL Tags. The default scan class detects changes every 0.5 seconds, and reducing
this time caused performance to degrade as the number of devices and nodes increased.

RESULTS 68

Figure 24: Ignition Client HMI

The OPC UA address space of the Ignition Server can be navigated and manipulated
using any third party OPC UA Client. For example, a free client available from Unified
Automation is used to subscribe to an event and monitor the contents of the event
message in Figure 25.

Figure 25; View of Address Space of Ignition OPC UA Server from a third partt OPC UA Client

RESULTS 69

4.3 MICROSOFT STREAMINSIGHT COMPONENT

As discussed in Section 2.5, in an Event Driven SOA, communication is in the form
of passing asynchronous event notification messages, and service invocations are
triggered by internal or external events. From a manufacturing perspective, events can
include equipment state changes, customer orders, changes in market conditions, or
changes in measured values. Event-driven applications can have very high event rates,
strict latency requirements on the order of milliseconds, and a need for systems
processing continuous queries on incoming event streams.

Complex Event Processing (CEP) engines are a powerful tool for deducing high-
level information about overall system state or patterns. StreamInsight is a CEP engine
from Microsoft, included as a component of SQL Server 2008 R2. To enhance the
proof-of-concept system, a component with StreamInsight, with Web Service input and
output adapters was created to demonstrate integrating a CEP engine executing
continuous queries into a DPWS and OPC UA based monitoring and supervisory
control system. A rough system overview is shown in Figure 26.

This component is not described exhaustively, because the focus of the thesis is the
DPWS and OPC UA integration. It is, however, relevant when discussing event-driven
SOA, and a CEP engine is a significant part of EDA.

Figure 26: Diagram of StreamInsight CEP Component performing DPWS event filtering

Development for StreamInsight applications is done in C#. As indicated in Section
2.2.3, Microsoft provides two DPWS implementations: The .NET MicroFramework,

RESULTS 70

and WSDAPI. To accelerate prototype development, the subscription model from WS-
Eventing was not used. Instead, devices publish event notifications to a well-known
web service endpoint, exposed by the StreamInsight input adapter. Similarly, the output
adapter publishes complex events, the output of queries executing continuously on a
stream of input events, to a well-known endpoint exposed by another module running in
Ignition Server. The Ignition CEP Output Adapter Sink Module creates a service and
operation, with a representation in the OPC UA address space designed according to the
same approach as the Ignition DPWS Module.

For demonstration purposes, the low-level events are generated by an S1000 from
InicoTech. An event is generated when the state of a digital input changes, and a
notification message is to the StreamInsight input adapter, containing the number of the
input (1 to 8), and the new state (TRUE/FALSE). The input adapter transforms the
incoming SOAP message into a CepStream event type, and the CEP executes the
queries, defined in Language Integrated Query (LINQ). A sample two-stage query is
shown below:

var Q1 = from m in input.TumblingWindow(TimeSpan.FromSeconds(1),
HoppingWindowOutputPolicy.ClipToWindowEnd)
 select new EventType{
 ID = 12,
 State = m.OneAndTwo()
 };

var Q2 = from e in Q1
 where e.State == true
 select e;

Sample Code 10: Code for defining sample query in C# for StreamInsight

In this particular query, an output event is generated when the first and second
inputs change state to TRUE within a tumbling 1-second window. The first query, Q1,
creates an output event, with an ID, and a Boolean state, which is some function of all
the incoming events in the previous 1 second window. Query Q2 takes the output of Q1,
and generates an output event based if the State variable of the Q1 output event is true.

It should be noted that designing complex LINQ queries that apply to real use cases
is not the focus of this thesis.

Figure 27 shows the output to the console window from the StreamInsight program,
reacting to arbitrary manual switch changes. The event rate in the demo is low, so the
input and output event queues never contain more than a single event.

When switches 1 and 2 are set to the high position in short succession, this is
detected at the end of the 1s window, and an output event is generated, and the code
‘12’ is reported to the CEP Output Sink module in Ignition.

RESULTS 71

Figure 27: Console application executing StreamInsight Queries

The Address Space of the Ignition OPC UA server, as seen from the UAExpert third
party OPC UA Client browser can be seen in Figure 28. An output event has been
successfully received, and this is reflected in the OPC UA’s representation of the
Service.

Figure 28: Ignition OPC UA Address Space, as seen in UAExpert

These OPC UA Nodes have corresponding SQL Tags, similar to the discovered
devices and services in Figure 23, and can be connected to visual components, or
logged in a database, using Ignition-provided functionality.

4.4 OVERALL SYSTEM STRUCTURE

A diagram of the complete prototype system is shown in Figure 29, showing the key
classes in the DPWS Module for Ignition, and the interaction points between various
parts of the system.

RESULTS 72

Figure 29: Diagram of complete prototype system, showing interactions and important classes

RESULTS 73

Some of the important classes were introduced previously, but they are summarized
here. The DPWSDriver class extends NodeMapDriver, which already implements some
of the OPC UA Node searching, reading, and querying functionality. Some of this
functionality is overridden to minimize time delay between SQLTag and OPC UA node
updates.

The DPWSDriver also implements the TagProvider interface, and registers itself
with the SQLTagsManager on startup. In the SQLTags Browser in Ignition Designer,
the DPWSDriver module shows up as a separate Tag provider. The class also contains a
TagTree, a data structure for managing SQLTags, and a Map structure, for mapping
node addresses to the actual OPC UA Nodes.

The DPWS module also implements some custom BrowseNode and SQLTag types,
optimized for module-specific tag types, such as subscription tags and operation invoke
triggers.

The DPWSDriver class also creates an instance of DPWSClient, an extension of the
Client class in the WS4D Stack. This class handles discovery, subscribing and
receiving events, and invoking operations.

Two most important classes provided by the Ignition Gateway for this application
are the OPCManager, and SQLTagsManager. These are the major interfaces between
the module and the rest of the system, including the OPC UA AddressSpace of the
server, and the SQLTags system. External OPC UA Clients can access the nodes
provided by the DPWS Module through the address space, and the Ignition Designer
and Client access the Tags provided by the module through the Ignition SQLTags
system.

A DPWS Toolbar was added to the Ignition Designer. For discovery triggering and
device management, a Remote Procedure Call (RPC) interface was established between
the Ignition Designer and the DPWSDriver Module. In future implementations, this
devices could be managed via OPC UA, and this RPC interface would be unnecessary.

The design of the CEP Output Adapter Sink module and DPWSDriver modules are
similar, and were only separated for the purposes of rapid prototyping. The DPWS
devices send notifications to the DPWS Input Adapter for StreamInsight, and when the
continuously executing queries produce an output event, the DPWS output adapter
forwards this notification to the module. The code for handling tags and OPC UA nodes
is identical.

RESULTS 74

5 DISCUSSION OF RESULTS

The result of this project was a working prototype of an industrial SCADA system
for monitoring and control, bridging two web service-based integration specifications:
OPC UA and DPWS. The general approach was to define a representation for DPWS
devices in the OPC UA address space, using existing specifications as a guide, and
implement a system prototype. To demonstrate the feasibility of adding CEP
functionality to the system for deducing higher-level information from low-level system
events, a CEP component was also developed, and integrated with the system.

5.1 TESTING

Ignition is a fairly mature product, and is presumably well-tested and reliable. The
application server is distributable, and scalable, and there is no particular limit on the
size of the address space. Any performance limitations or errors would likely come
from the JMEDS stack from WS4D, or from programming errors in the Ignition DPWS
Module, developed using the Ignition SDK.

The system was tested with up to four InicoTech S1000 DPWS devices
simultaneously, with no detectable performance shortcomings. The JMEDS stackhas
was tested independently with upwards of 30 devices, and performance problems, such
as dropped events or failed service invocations were rare. Occasionally, when large
numbers of devices return discovery probe matches simultaneously, some may be lost.
Sending a second discovery probe and ignoring duplicate responses was a suitable
solution in these cases.

Functionally, the system performs reasonably well. Discovered DPWS devices
appear in the OPC UA Address Space, and parameters can be set and read, operations
can be invoked, and events can be subscribed to. The typical workflow being tested
would be as follows:

1. Launch the Ignition Designer, and create a new Project. Put the Ignition
Designer in “Gateway Read/Write” mode in the toolbar.

2. Click the “Discover Devices” button in the DPWS Toolbar.
3. Refresh the OPC Browser and SQL Tag Browsers to view the discovered

devices.
4. Create an HMI, such as the one in Figure 30: Create a new window in the

Project Browser, drag tags from the SQL Tags Browser onto the window and
select a visual component from the context menu, or add components from
the component pallets and link their properties to SQL Tags in the Property
Editor.

5. Ensure that all events of interest have the “Subscribe” Node set to TRUE.

RESULTS 75

6. Save and publish the project.
7. Launch the client project from the Ignition Gateway Browser Interface
8. Test setting parameters, invoking operations, and viewing incoming events.

An important part of the testing also included setting parameters and invoking
operations via the OPC UA address space, and viewing the output of event messages
using a third party OPC UA Client in a local network.

Figure 30: Creating an HMI in the Ignition Designer

Testing of the StreamInsight component, and its Web Service input and output

adapters, was limited to functional testing using a single S1000 DPWS-enabled device,
and adding components on an existing HMI for viewing the incoming messages from
the StreamInsight output adapter.

5.2 ASSESSMENT

The system performed well under testing, and could prove quite useful for quickly
designing and deploying high-quality HMIs for a set of DPWS devices in a real
application. The feasibility of integrating low-level DPWS devices into an OPC UA-
based infrastructure was demonstrated satisfactorily.

Also, an approach for integrating a CEP engine into such an architecture was also
demonstrated. Although the queries tested were simple, and the implementation did not

RESULTS 76

use WS-Eventing, this implementation could easily be expanded for a more complex
use case.

This system will be used as the base for one of the demonstrators in the European
Commission’s Framework Package 7 Project, Architecture for Service-Oriented Process
Monitoring and Control (IMC-AESOP)[61], which aims to develop a system of systems
approach for process monitoring and control based on SOA for very large distributed
systems.

5.3 NEXT STEPS

Although the results are promising, several areas for potential improvement have
been identified.

As a first version prototype, there is always room for optimization and improvement
in reliability. In order for the module to be truly useful, additional tools for managing
discovered devices and discovering devices outside local networks would need to be
added. Currently, it is possible to conditionally trigger operation invocations based on
some arbitrary criteria using the Python scripting functionality of the SQL Tags system.
This functionality should be further explored and exploited, and perhaps wrapped in a
clearer interface.

In future versions of the Ignition SDK, it may be easier to create the more object-
oriented device representation described in Section 3.3.1, rather than the simplified
Address Space view used in this implementation, consisting of just Folder Nodes and
Data Variable nodes. This could even allow linking objects representing entire services,
operations, or events to custom components.

Designing HMIs is a very manual process, that doesn’t take advantage of any of the
semantic information in the OPC UA address space or WSDL file. Using semantic
information linked in a WSDL-S file, many tedious aspects of user interface creation
could be automated. For example, a value identified as a tank level or could
automatically be given an appropriate representation, or a custom component designed
for a specific hosted service, or with multiple input properties, could be automatically
linked to the relevant SQL Tags.

The StreamInsight component should be enhanced with a full DPWS client
implementation in the Input Adapter, a full WS-Eventing implementation in the Output
Adapter, and a web service interface for managing and defining queries.

6 CONCLUSION

Various researchers and industry groups have proposed Service Oriented
Architecture (SOA) and Event-Driven SOA as solutions for providing interoperability,
vendor independence, cross-layer integration, and real-time visibility across all levels of
a globally distributed manufacturing enterprise. OPC Unified Architecture (OPC UA)
and Devices Profile for Web Services (DPWS) have both been proposed as possible
enabling technologies for industrial SOA. Although both specifications are based on a
Web-Service communication model, they differ substantially in terms of philosophy,
design, completeness, and adoption rate in industry.

The goal of this research was to propose and demonstrate an approach for merging
these two web service-based technologies, OPC UA and DPWS, in a way that is
applicable in existing industrial applications.

Using Ignition, a commercial HMI/SCADA and MES system with an integrated
OPC UA Server, and JMEDS from WS4D.org, an open source DPWS stack, a system
was designed and implemented to leverage the complementary strengths of both
technologies. A representation of DPWS devices in the OPC UA Address Space was
defined, and a plugin module was created for Ignition OPC UA Server to discover
DPWS devices, create and maintain representations in the address space, and link them
to the physical device. The module supports events and operations. To further prove the
concepts of Event-Driven SOA for monitoring and control systems, web service input
and output adapters were created for StreamInsight, a commercial CEP Engine from
Microsoft, to demonstrate an approach for deducing high-level information from a
cloud of low-level events.

This work hopefully contributes something useful to the body of knowledge related
to Event-Driven SOA for industrial applications, and helps further the progress toward
future event-driven industrial SOA applications, with the inherent modularity, agility,
and interoperability envisioned by researchers today.

7 REFERENCES

[1] HAAS, H., AND BROWN, A., “WEB SERVICES GLOSSARY, WORLD WIDE WEB

CONSORTIUM (W3C) WORKING GROUP NOTE, FEBRUARY 2004;
HTTP://WWW.W3.ORG/TR/WS-GLOSS/

[2] GUDGIN, M. ET AL., “SOAP VERSION 1.2 PART 1: MESSAGING FRAMEWORK

(SECOND EDITION)”, WORLD WIDE WEB CONSORTIUM (W3C)

RECOMMENDATION, APRIL 2007; HTTP://WWW.W3.ORG/TR/SOAP12-PART1/
[3] MITRA, N. AND LAFON, Y., “SOAP VERSION 1.2 PART 0: PRIMER (SECOND

EDITION)”, WORLD WIDE WEB CONSORTIUM (W3C) RECOMMENDATION, APRIL

2007; HTTP://WWW.W3.ORG/TR/SOAP12-PART0/
[4] GUDGIN, M. ET AL., “SOAP VERSION 1.2 PART 2: ADJUNCTS (SECOND EDITION)”,

WORLD WIDE WEB CONSORTIUM (W3C) RECOMMENDATION, APRIL 2007;
HTTP://WWW.W3.ORG/TR/SOAP12-PART2/

[5] DELAMER, I.M., MARTINEZ LASTRA, J.L. AND CAVIA SOTO, M.A ́. (2007) “AN

EVENT-BASED SERVICE-ORIENTED INFRASTRUCTURE FOR RECONFIGURABLE

MANUFACTURING SYSTEMS”, INT. J. MANUFACTURING RESEARCH, VOL. 2, NO. 1,
PP.21–50.

[6] “SOAP-OVER-UDP VERSION 1.1”, OASIS STANDARD, JULY 2009;
HTTP://DOCS.OASIS-OPEN.ORG/WS-DD/SOAPOVERUDP/1.1/WSDD-SOAPOVERUDP-
1.1-SPEC.HTML

[7] JAMMES, F.; SMIT, H.; LASTRA, J.L.M.; DELAMER, I.M.; , "ORCHESTRATION OF

SERVICE-ORIENTED MANUFACTURING PROCESSES," EMERGING TECHNOLOGIES

AND FACTORY AUTOMATION, 2005. ETFA 2005. 10TH IEEE CONFERENCE ON ,
VOL.1, NO., PP.8 PP.-624, 19-22 SEPT. 2005

[8] DELAMER, I.M.; LASTRA, J.L.M.; , "SELF-ORCHESTRATION AND CHOREOGRAPHY:
TOWARDS ARCHITECTURE-AGNOSTIC MANUFACTURING SYSTEMS," ADVANCED

INFORMATION NETWORKING AND APPLICATIONS, 2006. AINA 2006. 20TH

INTERNATIONAL CONFERENCE ON , VOL.2, NO., PP. 5 PP., 18-20 APRIL 2006
[9] PUTTONEN, J., LOBOV, A., SOTO, M., AND LASTRA, J.L.M. 'A SEMANTIC WEB

SERVICES-BASED APPROACH FOR PRODUCTION SYSTEMS CONTROL', ADVANCED

ENGINEERING INFORMATICS, VOL.24, NO. 3, AUGUST 2010.
[10] LASTRA, J.L.M.; DELAMER, M.; , "SEMANTIC WEB SERVICES IN FACTORY

AUTOMATION: FUNDAMENTAL INSIGHTS AND RESEARCH ROADMAP," INDUSTRIAL

INFORMATICS, IEEE TRANSACTIONS ON , VOL.2, NO.1, PP. 1- 11, FEB. 2006
[11] LOBOV, A.; LOPEZ, F.U.; HERRERA, V.V.; PUTTONEN, J.; LASTRA, J.; , "SEMANTIC

WEB SERVICES FRAMEWORK FOR MANUFACTURING INDUSTRIES," ROBOTICS AND

REFERENCES 79

BIOMIMETICS, 2008. ROBIO 2008. IEEE INTERNATIONAL CONFERENCE ON ,
VOL., NO., PP.2104-2108, 22-25 FEB. 2009

[12] LOBOV, A.; PUTTONEN, J.; HERRERA, V.V.; ANDIAPPAN, R.; LASTRA, J.; , "SERVICE

ORIENTED ARCHITECTURE IN DEVELOPING OF LOOSELY-COUPLED

MANUFACTURING SYSTEMS," INDUSTRIAL INFORMATICS, 2008. INDIN 2008. 6TH

IEEE INTERNATIONAL CONFERENCE ON , VOL., NO., PP.791-796, 13-16 JULY 2008
[13] DELAMER, I.M.; LASTRA, J.L.M.; , "LOOSELY-COUPLED AUTOMATION SYSTEMS

USING DEVICE-LEVEL SOA," INDUSTRIAL INFORMATICS, 2007 5TH IEEE

INTERNATIONAL CONFERENCE ON , VOL.2, NO., PP.743-748, 23-27 JUNE 2007
[14] CRISTCOST, WIKIMEDIA COMMONS IMAGE, DECEMBER 2007;

HTTP://EN.WIKIPEDIA.ORG/WIKI/FILE:WSDL_11VS20.PNG
[15] CHRISTENSEN, E. ET AL., “WEB SERVICES DESCRIPTION LANGUAGE (WSDL) 1.1”,

WORLD WIDE WEB CONSORTIUM (W3C) NOTE, MARCH 2001;
HTTP://WWW.W3.ORG/TR/WSDL

[16] AKKIRAJU, R. ET AL., “WEB SERVICE SEMANTICS - WSDL-S”, WORLD WIDE WEB

CONSORTIUM (W3C) SUBMISSION, NOVEMBER 2005;
HTTP://WWW.W3.ORG/SUBMISSION/WSDL-S/

[17] VEDAMUTHU, A.S. ET AL., “WEB SERVICES POLICY 1.5 – FRAMEWORK”, WORLD

WIDE WEB CONSORTIUM (W3C) RECOMMENDATION, SEPTEMBER 2007;
HTTP://WWW.W3.ORG/TR/WS-POLICY/

[18] “DEVICES PROFILE FOR WEB SERVICES (DPWS)”, OASIS STANDARD, JULY 2009;
HTTP://DOCS.OASIS-OPEN.ORG/WS-DD/NS/DPWS/2009/01

[19] ALEXANDER, J. ET AL., “WEB SERVICES TRANSFER (WS-TRANSFER)”, WORLD

WIDE WEB CONSORTIUM (W3C) SUBMISSION, SEPTEMBER 2006;
HTTP://WWW.W3.ORG/SUBMISSION/WS-TRANSFER/

[20] DAVES, D. ET AL., “WEB SERVICES METADATA EXCHANGE (WS-
METADATAEXCHANGE)”, WORLD WIDE WEB CONSORTIUM (W3C) PROPOSED

RECOMMENDATION, SEPTEMBER 2011; HTTP://WWW.W3.ORG/TR/WS-METADATA-
EXCHANGE/

[21] BAJAJ, S. ET AL., “WEB SERVICES POLICY 1.2 - ATTACHMENT (WS-
POLICYATTACHMENT)”, WORLD WIDE WEB CONSORTIUM (W3C) SUBMISSION,
APRIL 2006; HTTP://WWW.W3.ORG/SUBMISSION/WS-POLICYATTACHMENT/

[22] BOX, D. ET AL., “WEB SERVICES EVENTING (WS-EVENTING)”, WORLD WIDE WEB

CONSORTIUM (W3C) SUBMISSION, MARCH 2006;
HTTP://WWW.W3.ORG/SUBMISSION/WS-EVENTING/

[23] BOX, D. ET AL., “WEB SERVICES ADDRESSING (WS-ADDRESSING)”, WORLD WIDE

WEB CONSORTIUM (W3C) SUBMISSION, AUGUST 2004;
HTTP://WWW.W3.ORG/SUBMISSION/WS-ADDRESSING/

[24] “WEB SERVICES DYNAMIC DISCOVERY (WS-DISCOVERY)”, OASIS STANDARD,
JULY 2009; HTTP://DOCS.OASIS-OPEN.ORG/WS-DD/NS/DISCOVERY/2009/01

REFERENCES 80

[25] “ADDITIONAL WS-DISCOVERY FUNCTIONALITY”, MSDN LIBRARY, JULY 2009;
HTTP://MSDN.MICROSOFT.COM/EN-US/LIBRARY/BB736556(V=VS.85).ASPX

[26] “ABOUT WEB SERVICES ON DEVICES”, MSDN LIBRARY, JULY 2009;
HTTP://MSDN.MICROSOFT.COM/EN-US/LIBRARY/AA385800(V=VS.85).ASPX

[27] “WS4D-UDPWS: DPWS FOR HIGHLY RESOURCE-CONSTRAINED DEVICES”,
GOOGLE CODE OPEN SOURCE PROJECT, AUGUST 2010;
HTTP://CODE.GOOGLE.COM/P/UDPWS/

[28] “SOA4D SERVICE-ORIENTED ARCHITECTURE FOR DEVICES”, OPEN SOURCE

PROJECT, JUNE 2007; HTTPS://FORGE.SOA4D.ORG/
[29] A. MENSCH AND S. ROUGES, DPWS CORE VERSION 2.1 USER GUIDE, APRIL 2009;

HTTPS://FORGE.SOA4D.ORG/DOCMAN/VIEW.PHP/8/45/DPWSCORE+USER+GUIDE.
PDF

[30] ITEA SIRENA CONSORTIUM; 2003-2005; HTTP://WWW.SIRENA-ITEA.ORG/
[31] ITEA SODA CONSORTIUM; 2006-2008; HTTP://WWW.SODA-ITEA.ORG
[32] FP6 SOCRADES CONSORTIUM; 2007-2009; HTTP://WWW.SOCRADES.EU
[33] FP7 IMC-AESOP CONSORTIUM, D1.1A: STATE-OF-THE-ART REPORT; FEBRUARY

2011.
[34] ARSANJANI, A. ET AL., "SOMA: A METHOD FOR DEVELOPING SERVICE-ORIENTED

SOLUTIONS," IBM SYSTEMS JOURNAL , VOL.47, NO.3, PP.377-396, 2008
[35] MACKENZIE, C.M., ET AL., REFERENCE MODEL FOR SERVICE ORIENTED

ARCHITECTURE 1.0, OASIS STANDARD, OCTOBER 2006; HTTP://DOCS.OASIS-
OPEN.ORG/SOA-RM/V1.0/SOA-RM.PDF

[36] “DEFINITION OF SOA”, THE OPEN GROUP,
HTTP://WWW.OPENGROUP.ORG/SOA/SOA/DEF.HTM

[37] JAMMES, F.; SMIT, H.; , "SERVICE-ORIENTED PARADIGMS IN INDUSTRIAL

AUTOMATION," INDUSTRIAL INFORMATICS, IEEE TRANSACTIONS ON , VOL.1,
NO.1, PP. 62- 70, FEB. 2005

[38] MAHNKE, W., LEITNER, S., AND DAMM, M., “OPC UNIFIED ARCHITECTURE”.
BERLIN, GERMANY: SPRINGER, 2009.

[39] “OPC UNIFIED ARCHITECTURE SPECIFICATION PART 3: ADDRESS SPACE MODEL”,
OPC FOUNDATION, RELEASE 1.01, FEB 6, 2009.

[40] MCGUINNESS, D.L., AND VAN HARMELEN, F., “OWL WEB ONTOLOGY LANGUAGE

OVERVIEW”, WORLD WIDE WEB CONSORTIUM (W3C) RECOMMENDATION,
FEBRUARY 2004; HTTP://WWW.W3.ORG/TR/OWL-FEATURES/

[41] SMITH, M.C., WELTY, C., AND MCGUINNESS, D.L., “OWL WEB ONTOLOGY

LANGUAGE GUIDE”, WORLD WIDE WEB CONSORTIUM (W3C)

RECOMMENDATION, FEBRUARY 2004; HTTP://WWW.W3.ORG/TR/OWL-GUIDE/
[42] UNFIED AUTOMATION, UAEXPERT OPC UA CLIENT APPLICATION, NOVEMBER

2010; HTTP://WWW.UNIFIED-AUTOMATION.COM/UAEXPERT.HTM

REFERENCES 81

[43] INDUCTIVE AUTOMATION, IGNITION OPC-UA SERVER;
HTTP://WWW.INDUCTIVEAUTOMATION.COM/SCADA-SOFTWARE/OPC-UA-SERVER

[44] “OPC UNIFIED ARCHITECTURE SPECIFICATION PART 4: SERVICES”, OPC

FOUNDATION STANDARD, FEBRUARY 2009.
[45] INDUCTIVE AUTOMATION, IGNITION SERVER;

HTTP://WWW.INDUCTIVEAUTOMATION.COM/SCADA-SOFTWARE
[46] CANDIDO, G.; JAMMES, F.; DE OLIVEIRA, J.B.; COLOMBO, A.W.; , "SOA AT DEVICE

LEVEL IN THE INDUSTRIAL DOMAIN: ASSESSMENT OF OPC UA AND DPWS

SPECIFICATIONS," INDUSTRIAL INFORMATICS (INDIN), 2010 8TH IEEE

INTERNATIONAL CONFERENCE ON , VOL., NO., PP.598-603, 13-16 JULY 2010
[47] BONY, B.; HARNISCHFEGER M.; JAMMES, F.; , "CONVERGENCE OF OPC UA AND

DPWS WITH A CROSS-DOMAIN DATA MODEL," IN INDIN’11 – ANNUAL

CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2011.
[48] PLCOPEN OPC UA INFORMATION MODEL 1.00 SPECIFICATION
[49] UA PART DI: OPC UA COMPANION SPECIFICATION FOR DEVICES, VERSION 1.00
[50] IZAGUIRRE MONTEMAYOR, J.A.G.; LOBOV, A; LASTRA, J.L.M.; , "OPC-UA AND

DPWS INTEROPERABILITY FOR FACTORY FLOOR MONITORING USING COMPLEX

EVENT PROCESSING," INDUSTRIAL INFORMATICS (INDIN), 2011 9TH IEEE

INTERNATIONAL CONFERENCE ON , VOL., NO., PP.205-211, 26-29 JULY 2011
[51] INVOKING MFSVCUTIL FROM THE COMMAND LINE. MSDN LIBRARY ARTICLE.

HTTP://MSDN.MICROSOFT.COM/EN-US/LIBRARY/EE435401.ASPX
[52] LUO, M. ET AL. EVENT-DRIVEN SERVICE ORIENTED FRAMEWORK FOR INTEGRATIVE

SERVICEABILITY MANAGEMENT OF NETWORKED MANUFACTURING SYSTEMS.
IEEE/ASME INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT

MECHATRONICS. SINGAPORE, JULY 2009.
[53] MICHELSON, B. “EVENT-DRIVEN ARCHITECTURE OVERVIEW”, PATRICIA SEYBOLD

GROUP, BOSTON, FEBRUARY 2006.
[54] LUCKHAM, D.C., "WHAT’S THE DIFFERENCE BETWEEN ESP AND CEP?",

AVAILABLE ONLINE, 2006.
[55] “OPC UNIFIED ARCHITECTURE PART 6: MAPPINGS”, OPC FOUNDATION

STANDARD, FEBRUARY 2009.
[56] “OPC UNIFIED ARCHITECTURE PART 2: SECURITY MODEL”, OPC FOUNDATION

STANDARD, FEBRUARY 2009.
[57] “OPC UNIFIED ARCHITECTURE PART 2: SECURITY MODEL”, OPC FOUNDATION

STANDARD, FEBRUARY 2009.
[58] WS4D.ORG, JAVA MULTI-EDITION DPWS STACK:, HTTP://WS4D.E-TECHNIK.UNI-

ROSTOCK.DE/JMEDS/
[59] INICOTECH: S1000 SMART REMOTE TERMINAL UNIT,

HTTP://WWW.INICOTECH.COM/S1000_OVERVIEW.HTML

REFERENCES 82

[60] INDUCTIVE AUTOMATION, IGNITION PROGRAMMER’S GUIDE V7.2.8 (AVAILABLE

WITH SDK DOWNLOAD),
HTTP://FILES.INDUCTIVEAUTOMATION.COM/RELEASE/BUILD7.2.8/08-04-
2011_16_13/IGNITION-MODULESDK-7.2.8.ZIP

[61] ARCHITECTURE FOR SERVICE-ORIENTED PROCESS MONITORING AND CONTROL

(IMC-AESOP). HTTP://WWW.IMC-AESSOP.EU
[62] KING, P. “SCADA SYSTEMS: LOOKING AHEAD”, CONTROL MICROSYSTEMS

WHITEPAPER, AUGUST 2005.

 83

Appendix A: OPC UA Eventing Mechanism

OPC is a specification that allows interoperability between applications and field
devices via COM/DCOM. Following the current trent toward interoperability using
standard network protocols, the OPC Foundation has adopted a Web Service
communication model for its latest specification. OPC servers, commonly known as
"classic OPC servers", can be wrapped and unified with OPC-UA. Such wrapping
provides a set of services and operations which, in contrast to DPWS, are pre-defined in
the specification.

OPC UA’s event model defines a general purpose eventing system. Events represent
transient occurrences, such as configuration changes, value changes, and errors. Event
Notifications report occurrences of events. Events themselves are not directly visible in
the AddressSpace, but Objects and views can be used to subscribe to Events. Clients
subscribe to Nodes and receive Notifications of Event Occurrences using the
MonitoredItem and Subscription Service sets.

An OPC UA server that supports eventing exposes one or more EventNotifier
Nodes. The Server Object, defined in the OPC UA Part 5: Information Model, is an
example of an EventNotifier. The Events generated by the server are available via the
Server Object. Events can also be exposed through any node in the AddressSpace
identified by the EventNotifier attribute, which indicates if the Node can be used to
subscribe to Events or read / write historic Events. The server determines which events
are provided by which node.

Each event is of a specific EventType. The OPC UA Specification defines a
BaseEventType, and many others that derive from this type, such as SystemEventType,
AuditCreateSessionEventType, AutidUpdateEventType, DeviceFailureEventType, and
ModelChangeEvents. EventTypes do not have a special NodeClass, but are instead
represented as ObjectTypes in the AddressSpace. EventTypes can be either abstract or
not. Abstract event types are never instantiated in the AddressSpace, and their
occurrence is only exposed through Subscriptions. Non-abstract event types can be
visible in the AddressSpace, and are also accessible through Event Notification
mechanisms.

Events are categorized by subtyping existing EventTypes without extending them by
defining additional properties or changing the inherited semantics. For example,
DeviceFailureEventType could be subtyped into TransmitterFailureEventType and
ComputerFailureEventType. The following reference types are used for organizing
Events and Event Sources in the OPC UA Address Space [39]:

 84

Table 13: Event Source Reference Types

Reference Type Semantics

GeneratesEvent Indicates EventTypes that ObjectTypes and VariableTypes
generate, or Methods may generate on Method calls.

AlwaysGeneratesEvent Indicates the EventTypes that Methods must generate on
each Method call.

HasEventSource Used for categorization and organization of Event sources.
Any Object that is the source of Event Subscriptions can
reference as an Event Source any Node of any NodeClass that
can generate event notifications via a subscription.

HasNotifier Used for hierarchical organization of Event Notifiers.
Objects or Views that are a source of event subscriptions can
specify any other objects or views that are a source of event
subscriptions as notifiers. If the target node generates an event,
the event is also provided in the source node.

Categorization of Event Sources using HasEventSource and HasNotifier

ReferenceTypes is shown in Figure 31.

Figure 31: Event Reference Example [39]

MonitoredItem
A Subscription is an endpoint in the Server that publishes notifications to Clients.

Clients control the publishing rate by sending Publish Requests.

 85

MonitoredItems are created on the Server by the Client using the MonitoredItem
Service Set. A MonitoredItem monitors Variables, Attributes, and Event Notifiers, and
generate a Notification when they detect a data or status change, or an event/alarm
occurrence. The Notification is then transferred to the Client by a Subscription. This
model is shown in Figure 32:

Figure 32: Monitored Item Model [44]

Each MonitoredItem identifies the item to monitor, and the Subscription to use to
periodically publish Notifications. The MonitoredItem also specifies the rate at which
the item is to be sampled, and the filter criteria for generating Notifications in the case
of Variables and EventNotifiers. Filter Criteria for Attributes are indicated by their
Attribute Definitions.

The sample rate for the Monitored Item may be faster than the publishing rate of the
Subscription. For this reason, the Monitored Item can be used to Queue all
Notifications, or just the latest Notification for transfer by the Subscription.
MonitoredItem services also define a monitoring mode, configured to disable sampling
and reporting, enable sampling only, or enable both sampling and reporting. Each
sample is evaluated to determine if a Notification should be generated. If yes, the
notification is queued. If reporting is enabled, the queue is made available to the
Subscription for Transfer.

Subscriptions
The Subscription service set is used to create and maintain subscriptions.

Subscriptions periodically publish NotificationMessages for the set of MonitoredItems
assigned to them. The NotificationMessage contains a common header, followed by a
series of Notifications. The format is specific to the node type being monitored.

NotificationMessages are sent to the Client in response to Publish requests. Publish
requests are queued in the Session as they are received, and one is dequeued and
processed by a Subscription related to the Session each publishing cycle if there are
Notifications to report. If there are Notifications available, but no Publish requests, the

 86

Server enters a wait state and sends a NotificationMessage as soon as the Publish
request is received. NotificationMessages are uniquely identified by sequence numbers.

Subscriptions have a keep-alive counter, which tracks how many publishing cycles
have passed without having a Notification to report. If the keep-alive counter reaches
some configured maximum amount specified when the Subscription was created, a
Publish request is dequeued, and a keep-alive message informs the Client that the
Subscription is still active. A NotificationMessage contains one or more Notifications.
Subscriptions have a configured lifetime, which clients periodically renew. If
unrenewed, the subscription is closed, and all MonitoredItems assigned to the
Subscription are deleted.

 87

Appendix B: Instructions for Ignition Modules

INSTALLING AND SETTING UP IGNITION AND THE DPWS DRIVER

 0) Set up network interface (ip address 192.168.2.XXX, Subnet Mask 255.255.0.0)
 1) Install Ignition v. 7.2.8, from the archived downloads section of
 http://www.inductiveautomation.com/downloads/ignition/archive
 2) Register for a free developer license:
 https://www.inductiveautomation.com/developers/register
 3) Go to Ignition Gateway configuration page in browser (admin/password)
 http://localhost:8088/main/web/config/
 4) Receive CD Key in email
 5) Put the Gateway in Developmer Mode
 In sidebar:
 System > Licensing > "Purchase or activate this Ignition Gateway"
 Continue on to activation, then enter the CD Key
 6) Install the DPWS Module in the Gateway configuration page:
 Configuration > Modules > Install or Upgrade a Module
 Choose DpwsDriver-module-unsigned.modl
 7) Add The OPC UA Device in the Gateway Configuration
 OPC-UA > Devices > Add a Device
 Choose DPWS>DPWS Driver
 Click Next
 Enter a name, such as "DPWSDevice"
 Choose the Network Interface, such as "eth3"
 8) Launch Designer, create new project
 In Toolbar:
 Put Designer in full Read/Write gateway communciation mode
 DPWS Scan (radar icon)
 Delete discovered devices (red X)

NOTE: On some Laptop computers, if you unplug the network cable, the network
adapter is powered down, and errors may occur in the module. It is best to plug an
ethernet cable into the port, before starting the Ignition Gateway Service.

 88

BUILDING MODULES

These modules were written for Ignition Version 7.2.8. They have not been tested
with the latest version, and will likely not work, due to changes in the SDK in 7.3. To
Download Ignition 7.2.8, go to www.inductiveautomation.com, and visit the Archived
Downloads section.

• Install and launch eclipse.
• Choose the folder IgnitionModuleSDK-7.2.8 as the workspace.
• Right-click in the Package Explorer (left column) and choose "Import."
• Choose General > Existing Projects into Workspace, click Next
• Import all the projects from "aesop_projects."

To compile a module, right click the appropriate build script (build-dpwsdriver.xml
or build-cepoutputinterface.xml) in the "Build" project, and select Run As > Ant Build.

DPWS DRIVER PROJECT OVERVIEW

The DPWS Driver module consists of four projects

• DPWSDriver_Client - A Sample custom Visual component
• DPWSDriver_Common - The RPC Interface description
• DPWSDriver_Designer - A tab for the custom component, and toolbar

buttons for DPWS Scan and Erasing discovered devices
• DPWSDriver_Gateway - The back end, including Tag Provider, OPC UA

Node Map Driver, DPWS Client, and configuration information.

 This driver module discovers DPWS Devices, maps the events and operations into
the Ignition OPC UA Server's address space, and exposes each of the nodes as
SQLTags.

CEP OUTPUT ADAPTER SINK PROJECT OVERVIEW

The CEP Output Interface Module consists of just one project:
CEPOutputInterface. This module exposes a Web Service in Ignition for the
StreamInsight Output Adapter to invoke when events are generated as a result of a CEP
Query.

 When this project is re-built, and the module is re-installed, the Igntion Gateway
must be restarted from Windows Control Panel > Administrative Tools > Services (run
as administrator)

 89

 When adding the device in the Gateway Configuration browser interface, you must
specify a service name, and a port number. Changing either of these requires that you
restart the Ignition Server. The defaults are "OutputAdapterSink" and 8099.

BUILDING THE STREAMINSIGHT PROJECT FOR VISUAL STUDIO (C#)

Setup:

• Install Microsoft Visual C# 2010 Express
• Install StreamInsight (See Note below)
• Run Microsoft Visual C# 2010 Express as administrator.
• Open StreamInsightCEP\AesopCepBeta\AesopCepBeta.sln
• Open Program.cs in the project AesopCepBeta, and change the input adapter

URL to match your local IP address, and the output adapter URL to match
the address of the CEPOutputAdapterInterface Ignition Module. Using the
default settings in the ignition module, this should be
"http://192.168.X.XXX:8099/OutputAdapterSink".

• Run the Program, post SOAP messages to the input URL, and watch for
Output events in Ignition.

•

NOTE: Installing StreamInsight creates a windows user group called
"StreamInsightUsers." WCF needs the appropriate URL permissions to create the Web
Service endpoints, so if you run the application as administrator, you will have to add
the administrator to the StreamInsightUsers group in "User Account > Advanced"
settings.

 Alternatively, run the following commands in an admin shell:

netsh http add urlacl
url=http://192.168.2.123:8000/CepInputAdapter/ChangeReporting
user=domain\username

 You will give your StreamInsight server a name when you install. I used

"CEPServer." Whichever name you give needs to appear at Line 34 of Program.cs

 using(Server server = Server.create("CEPServer");

The input event format, output event format, and LINQ query will have to be

changed for demonstrating some real application. Once you're familiar with LINQ
queries, and as long as you make sure that the input interface descriptions are consistent
with the external message source or recipient, this should be pretty straightforward.

 90

The IPointInputAdapter interface and WcfPointInputAdapter implementation
correspond to the LevelChange and SwitchChange input and output events in the S1000
project cepInputAdapter_test.xml

The IOutputAdapterSink interface and CepPointOutputAdapter implementation
correspond to the service and action defined in org.fast.cep.CEPHostedService in the
CEPOutputInterface Ignition Module. The interface description is equivalent to the
CepOutput Output Message defined in cepInputAdapter_test.xml.

When running cepInputAdapter_test.xml, two global variables define the input
adapter, and Ignition CEP Sink service addresses:

service_address
 "http://192.168.2.123:8000/CepInputAdapter/ChangeReporting"
cep_sink_address http://192.168.2.123:8099/OutputAdapterSink

These should be changed to reflect the address of the computer that the services are
running on.

The way the test program is written, the first four digital inputs send messages to the
input adapter when the state changes, and the last four digital inputs send messages to
the Ignition CEP Sink Service. The StreamInsight query sends a message with ID=12
and State=true when Switch 1 and Switch 2 both change from false to true within a one
second window. A more sophisticated query can be defined after reading up a bit on
LINQ.
The Visual Studio Solution contains two projects:
AesopCepBeta - main project where the query is defined, and the input and output
adapters are configured.
WsIOAdapters - The Web Service Input and output adapters. The following files are
of interest:

• CepOutputAdapterFactory.cs
o Creates an output adapter for a specific event type. Right now, only

point events are supported.
• CepPointOutputAdapter.cs

o Creates the web service client, and handles receiving output from the
queries, and sending output through the Web Service Client

• ClientAdapter.cs
o A facade over a WCF exposed client adapter proxy. Handles retry

logic.
• ClientOutputAdapterSink.cs

o Facade over the output adapter proxy.
o Handles preparing the parameters for the output message.

• ClientPointInputAdapter.cs

 91

o In Program.cs, there is a method called "ProduceEvents." This can
be used to simulate input events. This is the input adapter for
sending the messages to create simulated events.

• IOutputAdapterSink.cs
o This is where the output service and message format are defined.

• IPointInputAdapter.cs
o This is where the input service interface is defined.

• WcfInputAdapterFactory.cs
o Same as CepOutputAdapterFactory, but for the input adapter

• WcfPointEvent.cs
o An event definition, used only for the ClientPointInputAdapter for

simulating events.
• WcfPointInputAdapter.cs

o The implementation of the IPointInputAdapter service interface.

