

WAHEED AHMAD
FORMAL MODELLING OF COMPLEX EVENT PROCESSING
AND ITS APPLICATION TO A MANUFACTURING LINE
Master of Science Thesis

Examiner: Professor Jose L. Martinez
Lastra
Examiner and topic approved in the
Automation, Mechanical and Materi-
als Engineering Faculty Council on
07.12.2011

 I

ABSTRACT

TAMPERE UNIVERSITY OF TECHNOLOGY
Degree Programme in Machine Automation
AHMAD, WAHEED: Formal Modelling of Complex Event Processing and its
Application to a Manufacturing Line
Master of Science Thesis, 81 pages
January 2012
Major subject: Factory Automation
Examiner: Professor Jose L. Martinez Lastra
Keywords: Complex Event Processing, Event Processing Language, Formal
Methods, Timed Net Condition Event System

Identifying the significant and most needed information in huge enterprises at the right
time not only helps in decision making, but also plays an important role in overall per-
formance and profit making of enterprises. Complex Event Processing (CEP) is a de-
veloping method of processing different events from multiple sources and filtering them
to produce complex events.

This thesis provides a methodology to model CEP using Timed Net Condition Event
System (TNCES), a Petri Nets derived formalism. Petri Nets is a graphical, mathemati-
cal modelling language used to analyze and describe discrete-event dynamic systems.
The biggest advantage of representing CEP in TNCES is that it opens paths to the vali-
dation of the events filtering and decision making in different level of enterprise.

 II

PREFACE

This thesis not only describes the end of my Masters studies, but also represents small
journey in which I came across many new experiences and lessons. In this journey, I am
especially grateful to my teachers in Tampere University of Technology who passed
every possible help, knowledge and support to me.

I would also like to extend my profound gratitude to my supervisor Prof. Jose L.
Martinez Lastra for giving me an opportunity to be a part of his research group FAST.
Other than working on my thesis, my experience in FAST helped me a lot in grooming
myself personally.

I am also highly indebted to my co-supervisor Dr. Andrei Lobov for his guidance,
support, mentoring, advices, and patience during my thesis work.

My heartfelt thanks go to all my friends in Finland and at home for my moral sup-
port and care. My thanks are due to Ahmad Tariq, Tausif Babar and Faraz Amjad for
guiding me and supporting me at each step of my studies and working life. I am also
highly grateful to Muhammad Ahsan, Abdur Rehman, Ataul Ghalib, Faraz Ahmed,
Azaz Ahmad, Masoom Ahmad, Waqas Ahmed Malik, Bin Zhang and Jorge Leal for
making me feel Tampere is my home.

Most importantly, my deep-heart thanks to my family at this moment, for their un-
conditional love, support and guidance.

Waheed Ahmad
Tampere, January, 2012

 III

CONTENTS
Abstract ... I

1. Introduction .. 1

1.1. Background and Significance ... 1

1.2. Research Problem .. 2

1.3. Research Description.. 2

1.3.1. Objectives ... 2

1.3.2. Hypothesis .. 2

1.4. Contributions ... 2

1.5. Limitations of Scope .. 3

1.6. Outline ... 3

2. State of the Art ... 4

2.1. Complex Event Processing in Event Driven Architecture 4

2.1.1. Introduction .. 4

2.1.2. CEP Applications in Event Driven Architecture 6

2.1.3. CEP in Distributed Systems .. 10

2.2. Event Processing Language .. 11

2.2.1. EPL Syntax and Clauses ... 12

2.2.2. EPL Operators .. 20

2.2.3. EPL Functions .. 22

2.3. Event Pattern Language .. 23

2.3.1. Example 1... 26

2.3.2. Example 2... 26

2.4. Formal Methods Theory ... 27

2.4.1. Petri Nets .. 27

2.4.2. Timed Net Condition Event System .. 29

2.5. Utilizing Formal Methods in Factory Automation 32

2.5.1. Formal Verification and Validations of Systems 32

2.5.2. Planning and Scheduling ... 34

2.5.3. Deadlocking Prevention .. 34

3. Methodology .. 36

3.1. Composition Rules of representing an EPL statement into TNCES 36

3.2. Algorithm for representing an EPL statement into TNCES 37

3.3. Modelling EPL Constructs ... 42

3.4. Modelling Event Pattern Language Constructs 43

4. Results .. 47

4.1. Case Study ... 47

4.2. Modelling Distribution Station ... 48

4.2.1. Factory Floor .. 48

4.2.2. Manufacturing Execution System (MES) 57

4.2.3. Enterprise Resource Planning (ERP) 61

4.3. Modelling Event Processing Language Statements 63

 IV

4.3.1. Example 1: AutoID RFID Reader ... 63

4.3.2. Example 2... 66

4.4. Modelling Event Pattern Language Statements 68

4.4.1. Example ... 68

4.5. TNCES Modelling of an EPL and Pattern statement 70

4.6. CTL Formulae for Validation ... 73

5. Conclusions and Future work .. 75

5.1. Contributions ... 75

5.2. Lessons Learned ... 75

5.3. Future Research Directions .. 75

References .. 77

www References ... 81

 V

LIST OF FIGURES

Figure 2-1 Event Driven Model for MES (Shang Wengli, Duan Bin, Shi Haibo

2008) 7

Figure 2-2 Architecture of Event Driven Model (Y.H.Zhang, Q.Y. Dai and
R.H.Zhong 2009) 8

Figure 2-3 Architecture of CEP in Enterprise Information Systems (Chuanzhen
Zang, Yushun Fan 2007) 9

Figure 2-4 Event Warehouse for CEP Applications (Heinz Roth et. al 2010) 10

Figure 2-5 Concept of Event Hierarchy (David C. Luckham, Brian Frasca 1998) 11

Figure 2-6 Statement with an event stream filter (http://esper.codehaus.org/) 14

Figure 2-7 Statement with where-clause (http://esper.codehaus.org/) 15

Figure 2-8: Statement with a time window (http://esper.codehaus.org/) 16

Figure 2-9 Statement with a time batch view (http://esper.codehaus.org/) 17

Figure 2-10 Machine-Conveyor System 28

Figure 2-11 Machine Conveyor System 31

Figure 2-12 Model Checking (Clarke 2001) 33

Figure 2-13 Deadlock Example (Fanti M. P., Zhou M.C. 2004) 35

Figure 3-1: (a) Select (b) From 43

Figure 3-2 Every Module 44

Figure 3-3 Followed By Module 45

Figure 3-4 timer: within module 45

Figure 3-5 Repeat Module 46

Figure 4-1 Line case study 47

Figure 4-2 Line case study: Another view 48

Figure 4-3 (a) Equipment Initialization Module (b) Equipment Information Module
 51

Figure 4-4 (a) Recipe Request Module (b) Equipment Recipe Module 52

Figure 4-5 Workpieces Module 53

Figure 4-6 Storage Module 54

Figure 4-7 Workpiece Flow Module 56

Figure 4-8 (a) Start Production Module (b) Recipe Details Module 58

Figure 4-9 (a) Recipe Modified/New Recipe Module (b) Equipment Error Module 59

Figure 4-10 (a) Operator Action Needed Module (b) Item Information Module 59

Figure 4-11 (a) Equipment Paused Module (b) Equipment Stopped Module 60

Figure 4-12 (a) Operator Information Module (b) Item Information Module 61

Figure 4-13 (a) Equipment Information Module (b) Workpiece Needed Module 61

Figure 4-14 (a) Production Module (b) Equipment Down Time Module 62

Figure 4-15 Equipment Stopped Module 63

Figure 4-16 AutoID RFID Reader 64

Figure 4-17 TNCES model of Example 65

Figure 4-18 TNCES model of Example 2 67

 VI

Figure 4-19 TNCES module of Example 69

Figure 4-20 Sequence Diagram for EPL statement 71

Figure 4-21 TNCES module of EPL and Pattern Statement 72

 VII

LIST OF TABLES

Table 2-1 Arithmetic Operators 20

Table 2-2 Logical and Comparison Operators 20

Table 2-3 Concatenation Operator 20

Table 2-4 Binary Operators 20

Table 2-5 Single Row Functions 22

Table 2-6 Aggregated Function 22

Table 2-7 Pattern Operators 24

Table 2-8 Pattern Guards 25

Table 2-9 Pattern Observers 25

Table 2-10 Incidence Matrix for Figure 2.5 29

Table 3-1 Table of EPL Constructs translated in to TNCES 42

Table 3-2 TNCES modules taken from previous work 42

Table 4-1 Events Generated at Factory Floor 49

Table 4-2 Events generared at MES 57

Table 4-3 Events generated at ERP 61

Table 4-4 CTL Formulae 73

 VIII

LIST OF ABBREVIATIONS

BOM Bill of Materials

CEP Complex Event Processing

CTL Computational Tree Logic

EDA Event Driven Architecture

 EPL Event Processing Language

ERP Enterprise Resource Planning

IEEE Institute of Electrical and Electronics Engineers

 IL Instruction List programming language

MES Manufacturing Execution System

MOVIDA Modeling and Formal Verification of Industrial Pro-

gramming in Discrete Automation

PLC Programmable Programming Logic

PN Petri Nets

RFID Radio Frequency Identification

(T)NCES (Timed) Net/Condition Event System

UML Unified Modeling Language

XML eXtensible Markup Language

1. INTRODUCTION 1

1. INTRODUCTION

This chapter gives an overview of the whole thesis topic. It contains background, re-
search problem, objectives, hypothesis and contributions.

1.1. Background and Significance

From early 80’s, manufacturing industries slowly started shifting towards distributed
automation from centralized control approach (Ahmed Hambaba 1999). The major rea-
sons are modernization, rapidly changing global competition, huge growth of technol-
ogy and fast manufacturing times to name some. As a result manufacturing industries
tend towards demand-driven more than plan-driven.

On one side, distributed intelligence in automation has provided advantages like ro-
bustness, better manageability, simplification and efficiency of highly complex systems.
But, on the other side, one of the core issues which arose for management is availability
of relevant information instantly in order to take decisions and manage process effi-
ciently. But, this requires highly well-organized and efficient cross-layer communica-
tion which is able to provide relevant information to its destination in a very short time
(Baoan Li and Minxing Li 2009).

This issue has given birth to a concept of Complex Event Processing (CEP) which
includes taking in account many events generated in an organization from heterogene-
ous sources and then meaningful events are extracted out of them. Those meaningful
events are processed in real time and forwarded to respective sections of the organiza-
tion. In this way, process of acquiring information speeds up to a great extent (Heinz
Roth et. al 2010). Using the concept of CEP, managers, engineers and stake holders can
get required information in a very easy and simple manner. Other than getting informa-
tion, instructions and update can also be taken utilizing CEP.

With the advancement of computer technologies, it is relatively easy now to capture
events generated at different levels of enterprise with the help of very sensitive sensors
and thus, providing faster response. Also, with the help of different technologies
evolved in last decade, communication inside an industry has improved a lot. Using
these technologies, it is easy to integrate different equipments and communication pro-
tocols in an enterprise in an Event Driven Architecture (EDA). Service Oriented Archi-
tecture (SOA) is one of paradigm which allows us to integrate different systems based
on Services. (Curl, A., Fertalj, K 2009) (Ravier, Dominique 2010) (Tang Yongzhong
2009) (Jianfeng Qian, Jianwei Yin, Dongcai Shi, Jinxiang Dong 2008).

 Business Process Modelling (BPM) is another option to integrate low level equip-
ments on the factory floor. Business Process Execution Language (BPEL) or Web Ser-

1. INTRODUCTION 2

vices Choreography Description Language (WS-CDL) can be also other possible selec-
tions to implement commercial process engines (workflow engines) in enterprise serv-
ers.

1.2. Research Problem

CEP is an emerging technology which is able to identify meaningful events out of event
streams and creating complex events using correlation, abstraction and causality be-
tween events. But, in today’s agile world, technologies need more usability and valida-
tion to ensure fulfilment of specified requirements. According to Mark R. Blackburn
and Robert T. Busser (1998), the usability is one of the key features for adopting formal
methods in industry. This thesis concentrates on application of formal methods on CEP
and formal validation of systems.
Thus, research problem for this thesis can be states as follows:

“The development of methodology for complex event processing to represent event
aggregation and filtering and validation of methodology using formal methods.”

1.3. Research Description

1.3.1. Objectives

The main objectives of this thesis are formulated as:

O1: To develop methodology to model complex event processing using formal meth-
ods.
O2: To express system requirements using Computational Tree Logic (CTL) and per-
form validation based model-checking.

1.3.2. Hypothesis

The main hypothesis for the work documented in this thesis is that if a manufacturing
line generating events is translated into modular typed representations, then it is possi-
ble to devise a methodology to construct a model to influence generation of complex
events out of that line.

1.4. Contributions

This primary contribution of this thesis is a development of methodology for typed and
modular modelling of complex event processing. This methodology can be applied on
existing complex event processing concepts as well as newly introduced. The approach
followed in this document also provides a novel means of validating a system.

1. INTRODUCTION 3

1.5. Limitations of Scope

This thesis presents a methodology in modelling existing techniques and concepts of
complex event processing in terms of Petri Nets. However, this thesis does not formu-
late any new language to process events in enterprise architecture.

1.6. Outline

The remaining chapters of this thesis are structured as follows. Chapter 2 presents the
literature review which describes most notable and significant contributions in the field.
Chapter 3 explains the proposed methodology for modelling. Chapter 4 discusses im-
plementation on case study based on methodology and obtained results. Chapter sum-
marizes whole thesis, explains contributions made and possible research trends.

2. STATE OF THE ART 4

2. STATE OF THE ART

This chapter provides a deep insight into previous research done. The chapter starts with
introduction and explanation of Complex Event Processing and its application in Event
Driven Architecture in Section 2.1. A comprehensive overview of Event Processing
Language along with different examples is presented in Section 2.2. The Section 2.3
gives an introduction of Event Pattern Language and examples related to it.
 A comprehensive overview of Formal Methods theory is presented in Section 2.4.
The chapter ends with description of different applications of Formal Methods theory in
factory automation.

2.1. Complex Event Processing in Event Driven Architec-
ture

2.1.1. Introduction

Event is regarded as the meaningful change in the system (Y.H.Zhang, Q.Y.Dai and
R.Y.Zhong 2009) and they occur very frequently in manufacturing system. Common
examples are placing an order by customer by calling customer service, sending ma-
chine settings to workers, receiving of raw materials by warehouse and informing man-
ager about completion of order. These all events tend to inform system about any
change and expect response from system.

Events occurring in a distributed, heterogeneous databases and applications are
linked together to form a so called event cloud (Adrian Paschke 2009). Complex Event
Processing is to identify most meaningful events within whole event cloud to produce
complex events, analyzing those complex events, processing them and taking any action
in real time.

For this reason, complex event processing is an emerging field and is one of the big-
gest research areas in industries. As organizations are expanding in terms of quantity of
production and range of products, amount of events produced are also increasing by a
huge amount. As a result of high competition, companies need more agility and this
demand ability to manage unexpected amount of real-time data about their shop floor,
performance, supply chain information and enterprise information. Also, businesses
should have ability to extract meaningful information from seemingly irrelevant bunch
of data.

To cope with these challenges, businesses need a compact methodology to capture
all information irrespective of its location of occurrence and analyzing them. With CEP,
businesses can link their key performance indicators (KPIs) like revenue, profit, main-
tenance cost etc. with events.

2. STATE OF THE ART 5

To elaborate CEP more, consider two examples with same result i.e. cancelled cus-
tomer order. In first example, customer tries to place an order through company’s ERP.
But, router is down and as a result, customer is unable to place an order. Customer calls
customer care of the company but customer care is unaware of this problem. He will
eventually place an order on competitor’s ERP.

In second example, a product is dispatched from the company but unfortunately
driver of the truck goes to the wrong airport which will result in the late delivery. The
customer will cancel the order or will place the order to the competitor next time. (Alan
Lundberg)

In both scenarios, customer care centre or marketing department of the company
needs to be in contact with customer from the time of placing the order on ERP to the
time where product reaches its final destination. To prevent all this mishap effectively,
businesses need a real time architecture that can identify most needed activities or
events e.g. throughput of router or location of driver. Then we can respond to them be-
forehand to avoid any mishap and CEP serves this purpose really well.

To explain how CEP works, consider mentioned examples of cancelled order. In
first example, if router generates events representing its throughput, then IT department
of the company can know about the failure of the router or it is about to fail, then they
can reroute data via any other backup router and meanwhile they can try to fix the issue.

In second example, if location of driver is informed to the customer care of the
company by producing events, then customer care can know about the mistake of driver
in advance, and then they can inform customer in advance and can offer discount on
delayed order delivery.

In order to combine simple events to produce complex events, there exists a need to
establish causality between events and set of causal events are called posets (partially
ordered set of events). (David C. Luckham and Brian Frasca 1998) (Kshemkalyani,
A.D. 1997) (Scherl R. and Shafer G., 1998)

The process of sorting out interesting events is done by filters that take posets of
events as input and filter meaningful events. Filtering of events depend on event pattern
matching. (David C. Luckham and Brian Frasca 1998) (Urban, S.D., Biswas, I., Die-
trich, S.W. 2006)

For the purpose of developing higher level events, maps also called aggregators are
used. Workings of maps depend on pairs of input and output event patterns. Maps out-
put the events in the output pattern, whenever subset of input event matches an input
pattern. (David C. Luckham and Brian Frasca 1998)

The previous knowledge about event filtering and mapping can be reused to con-
struct new CEP solutions with the help of patterns. There are many types of patterns
which enable the design engineers to build efficient and robust CEP solutions by taking
in account already built CEP models. (Adrian Paschke 2008).

Adrian Paschke (2009) has also designed a semantic CEP pattern language which is
formal, mark up and human readable. The main vocabulary of the CEP pattern language

2. STATE OF THE ART 6

is defined by design ontology language (DOL) and semantics of the language is com-
posed of three parts, explicit semantics, formal semantics and informal semantics.

2.1.2. CEP Applications in Event Driven Architecture

Very intense research has been done on event driven architecture (EDA) and their role
in CEP. In a research paper by Shang Wengli, Duan Bin and Shi Haibo (2008), they
have presented an event driven model for manufacturing execution system (MES) plat-
form shown in Fig. 2.1. They have divided MES platform into production model, visu-
alized modelling tool, real time message bus, heterogeneous data sources adaptor and
MES application suites. Production model is further is divided into product model, fac-
tory model, event model and execution model. Product model is responsible for defining
product, material and to build Bill of Materials (BOM). Factory model defines factory
floor, equipments and devices. Event model is to define production event of manufac-
turing process and Execution model defines production and process rules and traceabil-
ity of whole manufacturing process.

Based on this MES platform, response mechanism is also developed in which Event
model defines the message in production as event. Execution model is dependent on
Event model and after triggering of event, Execution model will be called to deal with
the created event.

Event model is further divided into two subparts i.e. Event Configuration Module
and Event Detection Module. Event configure module is responsible for configuration
of event to production cell and Event detection module configures the event trigger
condition and to build business logic to dispose created event. This paper presents an
excellent idea of dividing whole MES platform into sub-modules but this paper does not
address communication and message sequence between sub-modules so well.

2. STATE OF THE ART 7

MES Application Suites

Efficiency Quality Production Web Reporter Web Digital Meter

Real Time Message Bus

Visual
Modeling Tool

Product Model

Factory Model

Event Model

Execution
Model

SQL Server

Database
Manager Event Manager Service

Manager
Data Reader/

Writer

Heterogeneous Data Source Adapter

Real time Historical
Database OPC RS232

Automated Equipment/ HMI

Figure 2-1 Event Driven Model for MES (Shang Wengli, Duan Bin, Shi Haibo 2008)

In another journal by Y.H.Zhang, Q.Y. Dai and R.H.Zhong (2009), idea of event-
driven platform based on the MES is proposed. The proposed platform has loose cou-
pling between its modelling components. The idea is that shop floor level will produce
simple events while business level is more interested in statistical data. The proposed
platform based on MES will receive the events from shop floor level and will inform the
most meaningful data to enterprise level. The architecture is explained in more detail in
Fig 2.2.

Overall architecture of this extensible platform consists of event analyzer, event
configuration, event buffer zone, publisher/subscriber, customer platform and database.
Database is used to store events and their information. Publish/subscribe (pub/sub)
mechanism can be regarded as so called message broker and it distributes message effi-
ciently. User Interface allows user to communicate with system. Event Configuration is
the major part of the CEP and it registers and defines the event. In another words, it
provides patterns for event detection. Event Buffer Zone (EBZ) is to store the events. As
huge amount of events can be produced in seconds, EBZ provides buffer space in mem-
ory to store those events. Event analyzer is the most significant part of the whole system
and its responsibilities include converting primitive events into complex events, link
different parts of the system and connect all levels in the architecture.

2. STATE OF THE ART 8

Figure 2-2 Architecture of Event Driven Model (Y.H.Zhang, Q.Y. Dai and R.H.Zhong 2009)

In another publication by Chuanzhen Zang, Yushun Fan (2007), architecture of
complex event processing in enterprise information systems based on RFID is ex-
plained. Events produced by RFID, database and other enterprise information systems
are processed by EPA (Event Processing Agent) before passing them to event bus. EPA
filters duplicate events, resolve errors and match formats. In event bus, where process of
aggregation into complex pattern take place according to specified rules.

Event meta-model is also devised in which intrinsic relation between different levels
of event processing is shown. Also, the concept of event context is proposed. Event con-
text is utilized in aggregating lower level primitive events into higher level complex
events. Even context includes semantic space, workflow model and abstraction hierar-
chy. Semantic space is surrounded by two events named initiator and terminator. Initia-
tor initiates the semantic space and occurrence of terminator terminates it.

Architecture of event server is also implemented which includes meta data, complex
event modeller, complex event compiler, complex event detector and event receiving
and publishing server. The complex event modeller is responsible for creating complex
events, and calling complex event compiler to read and analyze the complex events.
Meta data has all the definitions of the event patterns.

Complex event detector is the central part of the whole architecture. It implements
all the semantics and optimization strategies. It is composed of complex event pattern
cache, instance classification table and complex event classification table. First of all,
event pattern cache extracts patterns from meta data. These complex event patterns help
in building complex event classification table. Whenever any event instance will arrive
to event receiving and publishing server, that instance will be classified into instance
classification table. Complex event detector will take out the instance one by one ac-

2. STATE OF THE ART 9

cording to complex event classification table and process the pattern. Fig. 2.3 illustrates
concept of architecture based on RFID in an EDA.

Figure 2-3 Architecture of CEP in Enterprise Information Systems (Chuanzhen Zang, Yushun Fan 2007)

Heinz Roth et. al (2010) have demonstrated an idea of Event Data Warehouse for
CEP Applications to store and retrieve events efficiently. Whole architecture is divided
into two parts i.e. Event Data Warehouse and Complex Event Processing. Events pro-
duced in shop floor will be fed into complex event processing part with the help of
event adapters. The adapters collect events in push and pull scheme and pass them to
Event Bus which will be forwarded to event processing models with the aid of sockets.
After mapping, events will be forwarded to Event Data warehousing where event will
be stored. From this storage, events can be retrieved with the help of any query lan-
guage SQL and the retrieved event data can be utilized in analytical and operational
purposes.

2. STATE OF THE ART 10

Figure 2-4 Event Warehouse for CEP Applications (Heinz Roth et. al 2010)

2.1.3. CEP in Distributed Systems

David C. Luckham and Brian Frasca (1998) introduced the concept of event hierarchy
and flexible viewing in event abstraction hierarchies. Flexible view allows picking of
only events which need ‘attention’, monitoring events and casual relationship between
them at any stage of abstraction hierarchy and converting primitive events into complex
events. Flexible view allows us to visualize events at any level of abstraction hierarchy.
For example, any worker who is happy in viewing the workflow events and then sud-
denly some problems occur. Worker will change the view from higher level view to
upper level view and determine the problem and its cause from relevant events.

Distributing whole complex system into smaller layers is called abstraction hierar-
chy and similarly we can develop event hierarchy which shows events at different lay-
ers. For example, we can divide control system of a conveyor line as middleware com-
munication, point-to-point communication, workflow and product dispatch.

2. STATE OF THE ART 11

Figure 2-5 Concept of Event Hierarchy (David C. Luckham, Brian Frasca 1998)

2.2. Event Processing Language

Event Processing Language (EPL) is a SQL-like language which provides set of rules
for processing events like filtering, correlating, applying constraints and aggregating.
These set of rules helps to derive information from event streams and merging them
together.

EPL provides the clauses like SELECT, FROM, WHERE, GROUP BY, HAVING
and ORDER BY. Similar to table SQL, EPL provides the built-in views for placing the
data. Moreover, EPL also provides the features like Patterns, Operators, Functions and
Views.

A simple EPL query contains a select clause and a single event stream definition.
But complex queries can be created by including different search conditions in where
clause, or by elaborating select clause and so on. An example EPL query is given
below in Code 2-1. (Yan Liu, Dong Wan 2010)

select select_list
from stream_def [as name] [, stream_def [as name]]

[,...]
[where search_conditions]

[group by grouping_expression_list]
[having grouping_search_conditions]

[output output_specification]
[order by order_by_expression_list]

Code 2-1 Select Clause Example

2. STATE OF THE ART 12

In the above query, select clause mentions which property to retrieve or select and
from clause specifies the name of event stream. The where clause is used to specify
search condition in order to filter output more and Group by clause divided the EPL
output into groups. The having clause allow events defined by Group By clause to pass
or reject them based on grouping search conditions. The output clause controls the rate
of generation of output events. The order by clause order output events according to
their properties.

2.2.1. EPL Syntax and Clauses

This section explains syntax of different EPL clauses and constructs (ESPER 2011).
Select Clause
It is required in all EPL statements and it is used to select event or event properties. The
wildcard character * is used to select all the properties or specific list of properties can
also be given.

Some special keywords like istream (input stream), rstream (remove stream) or ir-
stream (input or remove stream) can also be used to input or remove stream. The syntax
of where clause is given below.

select [istream | irstream|rstream] * | expres-

sion_list...
Code 2-2: Select Clause Keywords

Choosing all event properties: select *
The syntax of selecting all events is,

select.* from stream_Def
Code 2-3 Selecting All Events

Choosing specific event properties
The syntax from choosing specific event properties is given below.

select event_property [, event_property] from stream_def
Code 2-4 Selecting Specific Properties

Expressions
The select clause may consist of one or more expressions,

select expression [, expression] [, ...] from
stream_def

Code 2-5 Multiple Expressions in Select Clause

Renaming event properties
By following syntax below, event properties can be renamed.

select [event_property | expression] as identifier[,...]
Code 2-6 Renaming Event Properties

2. STATE OF THE ART 13

Choosing events properties and events in a join
If we want to join multiple streams, then we can specify properties which are unique
among the joined streams. In case, there is no unique property, then we need to use alias
name of stream as a prefix of the property.

In the following example, two streams StockTick and News are joined, and named
as ‘tick’ and ‘news’ respectively.

This example picks symbol value from StickTick event using ‘tick’ stream alias as
prefix.

select tick.symbol from StockTick.win:Time(10) as tick,

News.win:time(10) as news
Code 2-7 Joining Multiple Streams Example

The basic syntax of choosing events properties is,

select stream_name.* [as alias] from...

Choosing events properties and events from a pattern
If some expression uses pattern expressions, then those pattern expressions tag events
with a tag name. Each tag name can be used as a property in the select clause and other
clauses. Following example matches patterns whenever StockTick event is received
within 30 seconds after start of statement. The symbol and price properties of the
matching events are selected.

select tick.symbol as symbol, tick.price as price
from pattern [every tick=StockTick where timer:within(30

sec)]
Code 2-8 Selecting Events from a Pattern Example

Filters
Filters are used to filter out events before entering data window. In the following exam-
ple, only those Withdrawal events are selected which have amount value greater than
200.

select * from Withdrawal(amount>=200). win:length(5)
Code 2-9 Selecting Events using Filters Example

2. STATE OF THE ART 14

In the following figure, it can be seen that events W2, W4 and W5 cannot enter
Length Window as their amount is less than 200.

Figure 2-6 Statement with an event stream filter (http://esper.codehaus.org/)

Where Clause
In case of where clause, each event is allowed to enter length window, but only those
events are updated to listeners as new events which are qualified by the where-clause.
For example, in following only those events are updated to listeners having amount
greater than 200.

select * from Withdrawal.win.length(5) where amount >=200

Code 2-10 Where Clause Example

2. STATE OF THE ART 15

In the figure below, W2, W4 and W5 are not posted to listeners as new events as
their amount is less than 200.

Figure 2-7 Statement with where-clause (http://esper.codehaus.org/)

Time Window
Time window is a window which can be extended to the specified time interval into the
past. Following example selects the Withdrawal events in which amount per account is
greater than 1000 in last 4 seconds.

select account, avg(amount)
from Withdrawal.win:time(4 sec)

group by account
having amount > 1000

Code 2-11 Time Window Example

2. STATE OF THE ART 16

In the following figure, event W1 occurs at t+4. After 4 seconds, event W1 leaves
the window and it is posted as an old event to the listeners.

Figure 2-8: Statement with a time window (http://esper.codehaus.org/)

Time Batch
The time batch is used to buffer events and then to release them in a single update. In
following EPL statement, Withdrawal events are buffered up to 4 seconds and released
after 4 seconds.

select * from Withdrawal.event.win:time_batch(4 sec)
Code 2-12 Time Batch Example

2. STATE OF THE ART 17

In the following figure, W1 and W2 events are received at t+1 second and t+3 sec-
onds respectively, but they are not updated to listeners. Then at t+4 seconds, engine
processes the received events and update listeners about them.

Figure 2-9 Statement with a time batch view (http://esper.codehaus.org/)

Aggregation and Grouping
Consider the following statement,

select count(*) as mycount from Withdrawal having
count(*)=2

Code 2-13 Aggregation and Grouping Example

Whenever 2 Withdrawal events are encountered, the engine posts an update event to
listeners and updates value of ‘mycount’ property to 2.
From Clause
The from clause is required in each EPL statement. Multiple event streams and named
windows can be mentioned in the from clause. The general syntax of the from clause is
given below,

from stream_def [as name] [, stream_def [as stream_name]]

[, ...]
Code 2-14 From Clause Example

2. STATE OF THE ART 18

Specifying Filter Criteria
The criteria for filtering any stream of events is by placing it within parenthesis as
shown below,

select * from RfidEvent (category= ”Perishable”)
Code 2-15 Specifying Filter Criteria Example

The following operators can also be used in order to enhance filtering process.
 equals =

 not equals !=
 comparison operators <, >, >= and <=

Filtering Ranges
Ranges can be of 4 types as given below,

 (low : high)- Open ranges not containing endpoints.
 [low : high]- Closed ranges containing endpoints. The equivalent keyword ‘be-

tween’ can be also be used.
 [low : high)- Half open ranges that contain lower endpoint but not the higher

endpoint.
 (low : high]- Half closed ranges that contain the higher endpoint but not the

lower endpoint.

Aggregate Functions
The aggregate functions are sum, avg, max, min, media, stddev, avedev. For example,
following example calculates total price of all Stock tick events occurred in last 30 sec-
onds.

select sum(price) from StockTickEvent.win:time(30 sec)
Code 2-16 Aggregate Function Example

Group-by Clause
It is an optional clause and it divided the output of an EPL statement into groups. The
statement below, finds out total price per symbol from all Stock Tick events occurred in
last 30 seconds.

select symbol, sum(price) from StockTickEvent.win:time(30

sec) group by symbol
Code 2-17 Group-by Clause Example

If group by clause result in null value, then null value becomes its own group and all
null values are aggregated into the same group. To avoid this, where clause can also be
used in which events not satisfying conditions are eliminated before any grouping is
done.

2. STATE OF THE ART 19

Having Clause
With having clause, events defined by group-by clause are rejected or passed. For ex-
ample, statement below calculates total price per symbol for events occurred in last 30
seconds only for those events symbols whose price is greater than 1000.

select symbol, sum(price)
from StockTickEvent.win:time (30 sec)

group by symbol
having sum(price) > 1000

Code 2-18 Having Clause Example

Interaction between Where, Group By and Having Clauses
To elaborate interaction between these 3 clauses, consider following statement.

select tickDataFeed, stddev(price)
from StockTickEvent(symbol='IBM').win:length(10)

where volume > 1000
group by tickDataFeed

having stddev(price) > 0.8
Code 2-19 Where, Group by and Having Clauses in Single Statement

In this example, events of only symbol IBM can enter length window over last 10
events and all other are discarded. The where clause excludes all those events whose
volume is less than or equal to 1000. Then each tickDataFeed value generates one event
and having clause let only those events for tickDataFeed groups whose standard devia-
tion of price is greater than 0.8.
The Order By Clause
The order by clause is also optional and it is used to order output events according to
their properties. The syntax of the order by statement is below,

order by expression [asc | desc] [, expression [asc |desc]

[, ...]
Code 2-20 Order By Clause

For example, the example below outputs batches of 5 or more events bys orting events
according to their ascending price values and then according to ascending volume val-
ues.

select symbol from StockTickEvent.win:time(60 sec)
output every 5 events
order by price, volume

Code 2-21 Order By Example

2. STATE OF THE ART 20

2.2.2. EPL Operators

EPL operators with their description are given below (ESPER 2011).

Arithmetic Operators
The following table explains arithmetic operators available.

Table 2-1 Arithmetic Operators

Operator Description
+,- As unary operators, they represent positive or negative expression. As bi-

nary operator, they add or subtract.
*, / Multiplication and division as binary operators.
% Modulo binary operator

Logical and Comparison Operators
All logical and comparison with their description are outlined in table below.

Table 2-2 Logical and Comparison Operators

Operator Description
NOT Returns false if condition is true and returns true if condition is false.
OR Returns true if either of the condition turns out to be true and false if all

conditions are false.
AND Returns true if all of the conditions are true and false if any of the condi-

tions are false.
=,!=,<,>,

<=,>=

Comparison

Concatenation Operators
The table below summarises concatenation operators of EPL.

Table 2-3 Concatenation Operator

Operator Description
|| Concatenates character strings

Binary Operators
The binary operators used in EPL are described in following table.

Table 2-4 Binary Operators

Operator Description
& Bitwise or Conditional AND
| Bitwise or Conditional OR
^ Bitwise XOR

2. STATE OF THE ART 21

Array Definition Operator
Arrays can be useful to pass to user-defined functions or to select any array data in a
select clause. The curly braces { } are used to define arrays.
The ‘in’ Keyword
The ‘in’ keyword determines if a given value matches any value in the list or not. The
syntax of the keyword is

test_expression [not] in (expression [,expression...])
Code 2-22 "in" Keyword

For example, the example below, checks if any of the expressions ‘OBSERVATION’
and ‘SIGNAL’ is equal to test_expression which is ‘command’.

select * from RFIDEvent where command in (’OBSERVATION’
,’SIGNAL’)

Above statement is equivalent to,

select * from RFIDEvent where command=’OBSERVATION’ or com-

mand=’SIGNAL’
The ‘between’ Keyword
The ‘between’ keyword is used to specify the range of the test. Its syntax is,

test_expression [not] between begin_expression and
end_expression
Code 2-23 "between" Keyword

The ‘like’ Keyword
The like keyword provides facility of standard SQL pattern matching by ‘like’ keyword.
SQL Pattern matching matches any single character by ‘_’ and arbitrary characters of
numbers by ‘%’.

Its syntax can be understood from following example.

select * from PersonalLocationEvent where name like
‘%Jack%’

Code 2-24 "like" Keyword

The ‘regexp’ Keyword
The regexp keyword is form of matching based on regular expressions which yield a
String type or numerical result. Its syntax is,

test_expression [not] regexp pattern_expression
Code 2-25 "regexp" Keyword

2. STATE OF THE ART 22

2.2.3. EPL Functions

EPL functions are classified as Single row functions and Aggregate Functions which are
explained below (ESPER 2011).
Single Row Functions
Single row functions returns a single value for every single result row. Single row func-
tions used in EPL are outlined in following table.

Table 2-5 Single Row Functions

Single Row Function Result
Case value

{

When compare_value then result

[when compare_value then result]

[else result]

end

Returns result where the first value
equals compare_value

Case

When condition then result

[when condition then result]

[else result]

End

Returns result for the first condition
that is true.

Max (expression, expression [, expression
...])

Returns the highest numeric value.

Min (expression, expression [, expression
...])

Returns the lowest numeric value.

Aggregate Functions
The EPL aggregated functions are summarized in table below.

Table 2-6 Aggregated Function

Aggregate Functions Description
Sum([all | distinct] expression) It sums all the (distinct) values in the

expression.
Avg([all | distinct] expression) It gives average of all the (distinct) val-

ues in the expression
Count([all |distinct] expression) It counts the total non-null (distinct) val-

ues in expression.
Count (*) Number of events
Max([all | distinct] expression) Highest (distinct) value in the expression
Min([all | distinct] expression) Lowest (distinct) value in the expression

2. STATE OF THE ART 23

2.3. Event Pattern Language

Event pattern are used to match event or multiple events whenever event matches defi-
nition of pattern (ESPER 2011).

There are 4 types of pattern operators,
1. Operator responsible for repeating pattern sub-expression: every, every-distinct,

[num] and until.
2. Logical Operators: and, or
3. Temporal operators that functions on a specific event order: → (followed by)
4. Guards control the life cycle of sub-expression: timer:within, timer:withinmax

and while.

This section discusses syntax, operators, pattern guards and pattern observers of Event
Pattern Language in detail with examples (ESPER 2011).
Pattern Syntax
Following pattern matches on every Car event in which value of petrol event property is
less than 1 litre.

every (ErrorMessage=Car(petrol<1)
Code 2-26 Pattern Syntax

In the above example, every specifies that pattern should match for every event, not
just the first one. Within brackets, there is a filter expression matches only events hav-
ing low petrol level.
Patterns in EPL
A pattern can appear anywhere in from clause in EPL statement. Pattern also can be
used in combination with where clause, group by clause and having clause.

The following statement selects total price per customer over events (ServiceOrder
event is followed by ProductOrder event for same customer id within 1 minute) occur-
ring in last 2 hours and where clause is used to filter on name and sum of the price is
greater than 100.

select a.custId, sum(a.price + b.price)
from pattern [every a=ServiceOrder ->

b=ProductOrder(custId = a.custId) where timer:within(1
min)].win:time(2 hour)

where a.name in ('Repair', b.name)
group by a.custId

having sum(a.price + b.price) > 100
Code 2-27 Pattern Example

Pattern Operators
Every
The every clause is used to restart sub-expression after it evaluates to true or false.
Without every operator, the sub-expression stops after it qualifies to true or false for the
first time.
Consider following statement.

every A -> (B -> C) where timer:within(1 hour)

2. STATE OF THE ART 24

The sequence of events arriving is,

퐴 퐴 퐵 퐶 퐵 퐶
This pattern always keeps on looking for A events. After 퐴 arrives, the pattern

keeps 퐴 in memory and starts looking for B events. Also at the same time, it keeps on
looking for more A events. After 퐴 arrives, the pattern keep 퐴 in memory and start
keep searching for any B event or any A event.

After arrival of 퐴 event, there are 3 sub-expressions active.
 The first sub-expression having 퐴 in memory looking for B events.
 The second sub-expression having 퐴 in memory looking for B events.
 The third sub-expression looking for more A events.

The pattern matches upon arrival of 퐶 event for the combination of (퐴 ,퐵 ,퐶) and
(퐴 ,퐵 ,퐶), with a condition that 퐵 and 퐶 arrives within an hour of 퐴 and퐴 .

Rest of pattern operators are explained in table below.
Table 2-7 Pattern Operators

Pattern Operator Syntax Description
Every-Distinct every-distinct(distinct_value_expr

[, distinct_value_exp[...][, ex-
piry_time_period])

Similar to every operator,
every-distinct restarts sub-
expressions after it evalu-
ates to true or false. The
only difference is that
every-distinct eliminates
duplicate results.

Repeat [match_count] repeating_subexpr The repeat operator contin-
ues to fire when pattern
sub-expression evaluates to
true for a given number of
times.

Repeat-Until [range] repeated_pattern_expr
until end_pattern_expr

The repeat-until operator
takes in consideration extra
control over repeated
matching by including a
second sub-expression that
ends the repetition.

And A and B In case of and operator,
both nested pattern expres-
sions need to be true.

Or A or B Pattern matches when either
one of the expression turns
true.

Not (A → B) and not C This operator negates the
truth value of an expression.

Followed By A → B This operator specifies that
first left hand value must
true and only then right
hand is evaluated.

2. STATE OF THE ART 25

Pattern Guards
Pattern Guards are where condition which specify the lifetime of a subexpression. Dif-
ferent pattern guards are explained below in Table 2.8.

Table 2-8 Pattern Guards

Pattern Operator Syntax Description
timer:within

timer:within(time_period_expressi
on)

The timer:within serves as
the stopwatch. If any certain
pattern expression does not
get true in the time speci-
fied in the timer:within, it is
stopped and permanently
false.

timer:withinmax

[match_count] repeating_subexpr The timer:withinmax is
similar to timer:within and
has a additional counter to
count number of matches.
The sub-expression ends
when stopwatch ends or
counter reaches maximum
value.

while

while (guard_expression) The pattern sub-expression
keeps on matching events
until the value of
guard_expression remains
true. As value of
guard_expression turns
false, the pattern sub-
expression ends.

Pattern Observers
The main function of pattern observers is to observe timer events. Different types of
pattern observers are explained below in Table 2.9.

Table 2-9 Pattern Observers

Pattern Operator Syntax Description
timer:interval

A → timer:interval (10 seconds)

The timer:interval observes
the time based events for
the specified time and then
truth value of observer is set
to true. In the statement
below, after arriving of A,
observers waits for 10 sec-
onds and then indicate that
pattern is matched.

timer:withinmax

timer:at (minutes, hours, days of
month, months, days of week, sec-

onds])

The timer:at sets any ex-
pression true after specified
time.

2. STATE OF THE ART 26

2.3.1. Example 1

Let us suppose that a production line in an industry manufactures 3 types of workpieces
of colour red, black and silver. Following pattern irrespective of sequences of produc-
tion of workpieces generates events whenever it matches any event.

on pattern [every red -> (black -> silver) while
(red_counter1 < 11)]

set red_counter1 = red_counter1 + 1
or

on pattern [every red -> (silver -> black) while
(red_counter2 < 11)]

set red_counter2 = red_counter2 + 1
or

on pattern [every black -> (red -> silver) while
(black_counter1 < 11)]

set black_counter1 = black_counter1 + 1
or

on pattern [every black -> (silver -> red) while
(black_counter2 < 11)]

set black_counter2 = black_counter2 + 1
or

on pattern [every silver -> (red -> black) while (sil-
ver_counter1 < 11)]

set silver_counter1 = silver_counter1 + 1
or

on pattern [every silver -> (black -> red) while (sil-
ver_counter2 < 11)]

set silver_counter2 = silver_counter2 + 1

For example the sequence of the workpieces production is

red1 black1 silver1 black2 red2 red3 black3 silver2 silver3

When red1 is received, then sub-expressions (every a=red -> (black(id= red.id ->
silver(id= red.id)) while (red.id < 11)) and (every a=red -> (silver(id= red.id ->
black(id= red.id)) while (red.id < 11)) matches it and waits for either black1 or silver1.
But black1 comes earlier than silver1, so sub-expression (every a=red -> (black(id=
red.id -> silver(id= red.id)) matches it and then waits for silver1. Whenever silver1
arrives, a complex event is sent. This event matching continues until 10 pieces have
been produced.

2.3.2. Example 2

Let us take another example of a production line in an industry which produces 3 types
of workpieces of colour red, black and silver. Following pattern generates an event
whenever it matches any pattern. This pattern keeps on matching events until 10 work-
pieces of all colours are produced within 300 seconds regardless of sequence of produc-
tion of workpieces.

2. STATE OF THE ART 27

(every red -> (black -> silver)) where timer:withinmax(300

seconds,10)
or

(every red -> (silver -> black)) where timer:withinmax(300
seconds,10)

or
(every black -> (red -> silver)) where timer:withinmax(300

seconds,10)
or

(every black -> (silver -> red)) where timer:withinmax(300
seconds,10)

or
(every silver -> (red -> black)) where timer:withinmax(300

seconds,10) or
(every silver -> (black -> red)) where timer:withinmax(300 sec-

onds,10)
For example the sequence of the workpieces generation is

red1 black1 silver1 black2 red2 red3 black3 silver2 silver3

When red1 is received, then sub-expressions (every a=red -> (black(id= red.id ->
silver(id= red.id)) while (red.id < 11)) and (every a=red -> (silver(id= red.id ->
black(id= red.id)) while (red.id < 11)) matches it and waits for either black1 or silver1.
But black1 comes earlier than silver1, so sub-expression (every a=red -> (black(id=
red.id -> silver(id= red.id)) matches it and then waits for silver1 . Whenever silver1
arrives, a complex event is sent. This event matching continues until 10 pieces have
been produced.

2.4. Formal Methods Theory

2.4.1. Petri Nets

Petri Nets (PN) consists of places, transitions and flowarcs (Murata 1989). The flowarcs
are used to connect places and transitions. A place is depicted by a circle and is used to
show distributed state of the system. A transition is depicted by a bar or a box and is
used to denote activity of the system. A place is an input place to a transition if a
flowarc exists from place to transition. On the other hand, a place is an output place if
there is a flowarc from transition to place.

Each place may hold positive number of tokens which are depicted by black dots. In
order to understand PN, consider the following figure of a Machine-Conveyor system.

2. STATE OF THE ART 28

In the example below, a part is transferred from a machine to a conveyor of 1 location.

Figure 2-10 Machine-Conveyor System

The elements of this system are places ({p1, p2, p3, p4, p5}), transitions ({t1, t2, t3,
t4}) and flow arcs ({(p1, t1), (p2, t2), (p3, t3), (p4, t3), (p5,t4), (t1, p2), (t2, p3), (t3, p1),
(t3, p5), (t4, p4)}). The machine is in idle state if there is a token in place p1 (M_idle)
and conveyor is in idle state if there is a token in place p4 (C_idle). Places p2 (M_start)
denotes that machine has started processing part and place p3 (M_end) signifies that
machine has ended processing part. If there is a token in place p5 (C_busy), then it
shows that part has been placed from machine to conveyor. At any given time instance,
current tokens distribution is called Petri Net marking and it represents the current state
of the system.

Richard Zurawski and MengChu Zhou (1994) has defined Petri Nets formally as,
퐏퐍 = (퐏,퐓, 퐈,퐎,퐌ퟎ) (1)

where
P is a finite set of places,
T is a finite set of transitions,
I is a finite set of directed arcs from places to transitions,
O is a finite set directed arcs from transitions to places, and
푀 is the initial marking
A transition is enabled if its input place contains at least that number of tokens equal

to weight of flowarc from place to transition. For example, in Figure 2.5, transition t1 is
enabled as place p1 has a token. The transitions also govern the flow of tokens by a rule
called firing. Firing rule states that if transition is enabled and firing of tokens happens,
then number of tokens equal to weight of transition connecting p to t is removed from
input place. Then, number of tokens equal to weight of transition from t to p is depos-
ited in output place.

The flow of tokens can be also explained graphically by Incidence matrix. In the In-
cidence matrix, columns represent transitions and rows represent places. The Incidence
matrix of Figure 2.5 is shown in Table 2.1. Negative elements in matrix signify place-
transition flowarc e.g. W[p1][t1]= -1 and it means that there is a flowarc from p1 to t1.
Positive elements in matrix represent flowarcs from transition to place e.g. W[t1][p2]
and it means that there is a flowarc from t1 to p2.

2. STATE OF THE ART 29

Table 2-10 Incidence Matrix for Figure 2.5

t1 t2 t3 t4 W
-1 0 +1 0 p1
+1 -1 0 0 p2
0 +1 -1 0 p3
0 0 -1 +1 p4
0 0 +1 -1 p5

After firing of pre-defined sequence of transitions S from any intial mark-

ing M , marking M at that state can be obtained by following State Equation.
퐌 = 퐌ퟎ + 퐖.퐒 (2)

where S is the characteristic vector corresponding to S . For PN in Figure
2.5, marking after firing transition t1 can be calculated as,

⎣
⎢
⎢
⎢
⎡
0
1
0
1
0⎦
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡
1
0
0
1
0⎦
⎥
⎥
⎥
⎤
 +

⎣
⎢
⎢
⎢
⎡
−1 0 +1 0
+1 −1 0 0
0 +1 −1 0
0 0 −1 +1
0 0 +1 −1⎦

⎥
⎥
⎥
⎤
 .

1
0
0
0

Similarly, reachability graph or state space of Figure 2.5 can also be derived alge-
braically as shown below.

푀 = (1 0 0 1 0)→푀 = (0 1 0 1 0) →푀 = (0 0 1 1 0)→푀 (1 0 0 0 1)

With the help of Petri Nets, many qualitative characteristics of system can be

checked: reachability, boundedness and safeness, conservativeness, liveness etc. (Mu-
rata 1989).

Hence, Petri Nets is a graphical tool which has very powerful communication me-
dium between users, engineers and customers (Richard Zurawski and MengChu Zhou
1994). As it is a mathematical tool, formal analysis of any model is possible. Also many
other properties like deadlock avoidance, concurrent operations, suitable synchroniza-
tion among resources and mutual exclusion of shared properties can also be studied.
Joanne Bechta Dugan and Kishore S. Trivedi (1989), Nancy G. Leveson and Janice L.
Stolzy (1987), Fevzi Belli and Karl-E Grosspietsch (1991) have demonstrated how to
model real-time fault tolerant systems in Petri Nets. A. Chaillet, M. Combacau and M.
Courvoiser (1993), V.S. Srinivasan and M.A. Jafari (1991) and Valette R., Cardoso J.,
Dunois D. have studied fault detection and in-process monitoring using Petri Nets.

2.4.2. Timed Net Condition Event System

Timed Net Condition/Event Systems (TNCES) (Rausch M., Hanisch H.-M. 1995)
exist in several forms and have been utilized in modelling, verification and validation of
control systems. Modules used in modelling phase are pre-tailored and are used over
and over again.

t4

2. STATE OF THE ART 30

In TNCES, contrary to classical Petri Nets (PN) approach, firing of a token does not
depend on current marking but also on incoming condition and event signals. Transi-
tions are forced to be fired only if they are allowed by marking and condition signals.

Inputs and outputs are of two types,
1. Condition inputs/outputs which are responsible for carrying state information.
2. Event inputs/outputs which are responsible for carrying transition information.

TNCES can also be expressed in a tuple as follows by (Rausch M., Hanisch H.-M.
(1995).

퐓퐍퐂퐄퐒 = {퐏,퐓, 퐅 ,퐅 ,퐌ퟎ,훙,퐂퐍,퐄퐍,퐃퐂} (3)

where:
 퐏 ≔ {p , p , … , p } a set of places
 퐓 ≔ {t , t , … , t } a set of transitions
 퐅 ⊆ (퐏 퐗 퐓)⋃(퐓 퐗 퐏) a finite set of flow arcs between places and

transitions
 퐂퐍 ⊆ (퐏 퐗 퐓) a finite set of condition arcs
 퐄퐍 ⊆ (퐓 퐗 퐓) a finite set of event arcs
 M an initial marking
 ψ the input/output structure of a TNCES module

훙 = {퐂퐢퐧 ,퐄퐢퐧,퐂퐨퐮퐭 퐄퐨퐮퐭,퐁퐜,퐁퐞,퐂퐬,퐃퐭}

where:

o 퐂퐢퐧 a finite set of TNCES module condition input
signals

o 퐄퐢퐧 a finite set of TNCES module event input sig-
nals

o 퐂퐨퐮퐭 a finite set of TNCES module condition input
signals

o 퐄퐨퐮퐭 a finite set of TNCES module event input sig-
nals

o 퐁퐜 ⊆ 퐂퐢퐧 퐗 퐓 a set of TNCES module input condition arcs

o 퐁퐞 ⊆ 퐄퐢퐧 퐗 퐓 a set of TNCES module input event arcs

o 퐂퐬 ⊆ 퐏 퐗 퐂퐨퐮퐭 a set of TNCES module output condition arcs

o 퐃퐭 ⊆ 퐓 퐗 퐄퐨퐮퐭 a set of TNCES module output condition arcs

There are some time constraints related to flow arcs prior to transitions (F ⊆

(P X T)):
퐃퐂 = {퐃퐑,퐃퐋,퐃ퟎ}

where:
 DR: the minimum time that a token should remain

at a place before enabled transition(s) can fire.

2. STATE OF THE ART 31

 DL: the maximum time that a place should keep a
token (if all other necessary conditions for firing a transition are fulfilled).

 퐃ퟎ: the initial set of clocks associated with the
places (to record local current time associated with places).

An example of a TNCES system is described in Figure 2.11. A module with name
“Machine-Conveyor System” has places ({p1, p2, p3, p4, p5}), transitions ({t1, t2, t3,
t4}) and flow arcs ({(p1, t1), (p2, t2), (p3, t3), (p4, t3), (p5,t4), (t1, p2), (t2, p3), (t3, p1),
(t3, p5), (t4, p4)}). There is also a condition input ({c1}), an event input ({e1}), a condi-
tion output ({co1}) and an event output ({eo1}). The condition arc ({(ci1, t1), (p4,
eo1)}) connects condition input and transition/places and condition output. The event
arc ({(ei1, t3), (t4, eo1)}) connects event input and transition/ transition and event out-
put.

Figure 2-11 Machine Conveyor System

From Figure 2.6, it can be seen that elements of tuple given in (3) are listed below.
 P = ({p1, p2, p3, p4, p5})
 T= ({t1, t2, t3, t4})
 F= ({(p1, t1), (p2, t2), (p3, t3), (p4, t3), (p5,t4), (t1, p2), (t2, p3), (t3, p1), (t3,

p5), (t4, p4)})
 퐂퐢퐧 = {ci1}
 퐄퐢퐧 ={ei1}
 퐂퐨퐮퐭 ={co1}
 퐄퐨퐮퐭 ={eo1}
 퐁퐜={(ci1, t1)}; B ={(ei1, t2)}; B ={(p3, co1)}; B ={(t4, eo1)};
 퐃ퟎ(푷) = {0, 0, 0, 0, 0}; DR and DL matrices of size N X N .

Normally, there are two classes of transitions, i.e. spontaneous transitions and forced
transitions. Spontaneous transitions are those transitions which do not have any incom-
ing event signal and forced transition are those transitions which have at least one in-
coming event signal. But in TNCES, there is third type of transition which is forced to
be fired by time.

2. STATE OF THE ART 32

Lobov A., Popescu C. and Lastra J. L. M. (2006) described the possible approaches
in applying and modelling of any system using formal methods. Two main approaches
are model-based code generation and code- based model modelling. First approach is
common and widely used. In this approach, in the first step, formalization of the prob-
lem is done, then proof of correctness is achieved and in the last, implementation is
done based on the model.

Hanisch, H-M., Thieme, J., Luder, A., Wienhold, A (1997) had presented a PLC be-
haviour modelled in TNCES in which all transitions are dynamically fired as soon as
they are enabled. Whole model works in a way that binary inputs from sensors are read
and copied into process input storage. Then control program statements are executed
and output of the output storage are pushed out by firing relevant transition. Models of
AND, OR and Timers programmed by TNCES are also presented.

For automatic translation of PLC code into TNCES, a translator in MATLAB is de-
veloped. It is based on determining of elements in Instruction List (IL) and this is done
by recognisers. Depending on the input characters, recogniser will change its state. For
example, in first statement detected, it will be read completely and it will be determined
whether it is an operator and operand and depending on that, recogniser will change its
state.

Puttonen J., Lobov A. and Martinez Lastra J. L. (2008) had extended the idea of
TNCES to modelling of hybrid systems. The resulting system after combining TNCES
with hybrid Petri nets formalism is called hybrid TNCES or HNTCES. In this type of
formalism, discrete and continuous elements affect each other directly due to which
discrete change in the continuous variables is possible. Secondly, ordinary event signals
may not be used with continuous transitions as continuous transitions cannot fire at dis-
crete time intervals. Last, time values related to the flow arcs cannot be applied to con-
tinuous transitions rather than only to discrete transitions.

In another journal by Popescu C., Lobov A., Martinez Lastra J.L., Cavia Soto M.
(2008), TNCES representation of Split, Split+Join, Choice, If-Then-Else, Repeat-While,
Repeat-Until, AND logical connector and OR logical connector is explained in detail.

2.5. Utilizing Formal Methods in Factory Automation

In factory automation, formal methods are used to verify and validate any system and
ensure smooth manufacturing process such as scheduling and planning production and
prevention of deadlock. This section discusses how formal methods verify and validate
systems in factory automation and coordinate smooth production in automation systems.

2.5.1. Formal Verification and Validations of Systems

Formal verification is a process to check whether system satisfies a set of properties that
are derived from its specification and standard requirements (Are we building the thing
right?). Formal validation makes sure that whether the formal model is consistent with

2. STATE OF THE ART 33

the informal conception of design and product does that user actually requires. (Are we
verifying the right thing?).

Mainly there are two formal verification techniques: model checking (Clarke et. al
2001) and theorem proving (Duffy D.A. 1991). In model checking, specification of sys-
tem are checked automatically on a finite system model based on Petri Nets, automata
etc.

In model checking, the properties of a model of any system can be derived from the
requirements of the system. Those properties are studied by applying Computational
Tree Logic CTL (Clarke, 2001). CTL has two path quantifiers, “A” or “□” which repre-
sents for all paths” and “E” or “◊” which signifies “for some path”. With the aid of these
quantifiers, properties can be defined for all paths or some specific path. Moreover,
there are five other temporal operators.

 G (Globally) operator represents that the property exists for all possible on
the path.

 X (Next) operator shows that the property exists for next state on the path.
 F (Finally) operator specifies that property eventually holds somewhere on

the subsequent path.
 U (Until): ψ U Φ – expects that ψ has holds at least until Φ, which holds at

the current or a future position.
 R (Release) ψ R Φ – indicates that Φ holds until and including the point

where ψ first becomes true. If ψ never becomes true, Φ must remain true for-
ever.

Following figure also explains procedure of model checking.

Figure 2-12 Model Checking (Clarke 2001)

Kripke structure for any set of atomic propositions can be defined as:
푀 = ⟨푆, 푆 ,푅,퐿⟩

2. STATE OF THE ART 34

where:
 S– a finite set of states
 푆 – a set of initial states, 푆 ⊆ 푆
 푅:푆 × 푆 – is a transition relation between states
 퐿:푆 → 푆 - is a function which assigns each state with the atomic proposi-

tion which hold in that state.

The CTL formulae can consist of different combination temporal operators and path
quantifiers. In addition, Boolean operators are also allowed.

The other technique “Theorem proving” considers a mathematical model to formal-
ize system and its expected properties. Inference rules are then used to verify the prop-
erties of the system through its axioms.

2.5.2. Planning and Scheduling

Planning is deciding what actions should be taken to achieve some set of objectives. On
the other hand, scheduling is deciding how to perform a given set of actions using a
limited number of resources in a limited amount of time in order to enhance efficiency,
production, quality and minimization of costs.
 There are three techniques of scheduling which are found in literature which are
completely reactive scheduling, predictive-reactive scheduling and robust pro-active
scheduling.
 Completely reactive scheduling techniques execute real time schedules through heu-
ristic dispatching rules and bidding mechanisms rather than creating schedules before-
hand (Sousa P. and Ramos C. 1999).
 Predictive/reactive scheduling is a process of updating previously created schedules
in an iterative manner (Jain A.K. and Elmaraghy H. A. 1997).

Robust proactive scheduling is a process of creation of robust and efficient sched-
ules which satisfy performance requirements in a dynamic environment.

2.5.3. Deadlocking Prevention

Deadlocks are situations in which system or a part of it remains indefinitely blocked and
cannot terminate its task (Fanti M. P., Zhou M.C. 2004). The main cause of deadlock is
inappropriate allocation of resources to concurrent executing processes.

2. STATE OF THE ART 35

Figure 2-13 Deadlock Example (Fanti M. P., Zhou M.C. 2004)

There are four conditions for a deadlock to occur. First condition is called mutual
exclusion in which tasks claim exclusive control of the resource. Second condition is
called No pre-emption in which resources cannot be forcibly removed from tasks hold-
ing them until resources are used for completion. Third condition is known as Wait for
condition in which processes hold resources allocated to them while waiting for addi-
tional ones. The last condition is called Circular wait in which a circular claim of tasks
exists, in such a way that each task holds one or more resource that are being requested
by the next task in the claim.

In an Automated Manufacturing System, first three conditions always hold. But
deadlock is prevented if last condition fails to hold. There are three strategies to prevent
deadlocks: Deadlock prevention methods, Deadlock detection and recovery methods
and Deadlock avoidance methods.

In Deadlock prevention methods, circular waits among concurring jobs at the design
stage are prevented. In Deadlock detection and recovery methods, there is a monitoring
mechanism to detect deadlock. If deadlock is detected, there is a recovery procedure to
get system out of deadlock. In Deadlock avoidance methods, proper operational control
of part flow is ensured to prevent condition of circular wait. To avoid circular waits, the
interaction of resources and tasks are normally depicted through graphs (Wysk R.A,
Yang N.S, Joshi S. 1991) (Kim C.O., Kim S.S. 1997) or Petri Nets (Banaszak Z.A,
Krogh B.H., 1990) (Viswanadham N., Narahari Y., Johnson T.L. 1990) (Hyun Joong
Yoon, Doo Yong Lee 2000)

3. METHODOLOGY 36

3. METHODOLOGY

For the purpose of modelling CEP into TNCES, we need to have TNCES model of Fac-
tory Floor and EPL statements. Then, events generated by Factory Floor are processed
by TNCES module of EPL statements to produce complex events. TNCES module of
EPL statements contains model of our desired EPL statement and that statement utiliz-
ing the concept of CEP, extracts meaningful events out of simple events from Factory
Floor.
 Modelling of Factory Floor is out of scope of this thesis work and very vast research
on this topic can be found in literature (Descrochers A. 1989) (Lobov A. 2008) (Pope-
scu C. 2009). On the other hand, modelling of EPL statements is done utilizing algo-
rithm presented in next section. For modelling and validation purpose, NCES Editor and
NCES Analyzer environment of Movida tools is used as a toolset (MOVIDA).

Section 3.1 explains composition rules needed to represent EPL statements into
TNCES and Section 3.2 describes the algorithm devised to represent EPL statement into
TNCES following rules given in Section 3.1. Section 3.3 and Section 3.4 presents
TNCES models of some clauses of EPL and event pattern language respectively.

3.1. Composition Rules of representing an EPL statement
into TNCES

The first important step in transferring EPL example into TNCES is dividing whole
EPL statement into prominent and generalized TNCES modules. Second step is to com-
pose sequence of events between modules. After identifying event sequence, next step is
to define task of each module and their internal working is represented in TNCES. Last
step is to connect modules via event and condition arcs in their correct order of se-
quence.

Let us consider an example below.

select * from MyEventStream
In this example, possible generalized TNCES modules can be Select, From, Proper-

ties and EventStreams. Select module initiates the Select construct and From module
allows selection of event streams or named windows from which we want to select de-
sired properties. In this example, we want to observe properties from events related to
stream ‘MyEventStream’.

Properties module selects desired properties. For example, in this example, we are
selecting all properties in the event stream by using asterisk *.

3. METHODOLOGY 37

The desired event stream or window, from which we want to select properties of
events, can be selected in module “EventStreams”. In the example, we have only one
stream called ‘MyEventStream’.

The algorithm presented in next section takes in account these composition rules and
is used to represent any EPL and event pattern language statement.

3.2. Algorithm for representing an EPL statement into
TNCES

EPL statements are represented into TNCES using Algorithm 3.1 and results are given
in next sections. Algorithms for translating Select clause, From clause, Every clause,
Followed By clause, timer_within clause and Repeat clause are given separately in Al-
gorithm 3.2, Algorithm 3.3, Algorithm 3.4, Algorithm 3.5, Algorithm 3.6 and Algo-
rithm 3.7 respectively and are referred in Algorithm 3.1.

Algorithm 3-1 Generating TNCES model for an EPL statement

Generating TNCES model for an EPL statement
Required Data:

vecSelect A vector of TNCES modules representing Select module. Initial
value is empty.

vecProperties A vector of TNCES modules representing Properties module. Initial
value is empty.

vecFrom A vector of TNCES modules representing From module. Initial
value is empty.

vecEventStrea-
mEngine

A vector of TNCES modules representing EventStreams module.
Initial value is empty.

vecEventMatching A vector of TNCES modules representing EventMatching module.
Initial value is empty.

vecExpressions A vector of TNCES modules representing Expressions module. Ini-
tial value is empty.

vecPattern A vector of TNCES modules representing Pattern module. Initial
value is empty.

Inputs:
EPL statement EPL statement containing event processing language and event pat-

tern language statements.
Outputs:

TNCES Model TNCES module representing EPL statement
Algorithm Steps:

1) while EPL statement has clauses do
2) Generate TNCES module representing Processor (tncesProcessor);
3) for a Select clause do
4) Apply algorithm for translating Select clause into TNCES (Algorithm 3.2);
5) od;
6) Add SelectTNCES to vecSelect;
7) for all Properties in Select Clause do
8) Generate TNCES module representing Properties (PropertiesTNCES);

3. METHODOLOGY 38

9) Add PropertiesTNCES to tncesProcessor;
10) Define event inputs SelectProperty;
11) Define event inputs for each property in the Select clause;
12) Interconnect event inputs and PropertiesTNCES module;
13) if Properties has Patterns, Operators, Functions
14) Generate TNCES module for each Property representing Pat-

terns/Operators/Functions to select (EventMatchingTNCES) where EventMaching
is replaced by specific name of Pattern/Operators/Functions;

15) Add EventMatchingTNCES to tncesProcessor;
16) Define event inputs and condition outputs and related event conditions arcs to

modify and observe values of EventMatchingTNCES;
17) fi;
18) Add EventMatchingTNCES to vecEventMatching;
19) od;
20) Add PropertiesTNCES to vecProperties;
21) for a From Clause do
22) Apply algorithm for translating From clause into TNCES (Algorithm 3.3);
23) od;
24) Add FromTNCES to vecFrom;
25) for each Stream_Def Clause do
26) Generate TNCES module to capture simple events (EventStreamEngineTNCES)

where EventStream is replaced by name of Event Stream;
27) Add EventStreamsTNCES to tncesProcessor;
28) Define event inputs to modify values of EventStreamEngineTNCES;
29) Interconnect event inputs and EventStreamEngineTNCES module;
30) od;
31) Add EventStreamEngineTNCES to vecEventStreamEngine;
32) for each of where, group by, having, output, order by Expression do
33) Generate TNCES module representing any of the Expression above (Expres-

sionTNCES);
34) Add ExpressionTNCES to tncesProcessor;
35) Define event inputs and condition outputs and related event conditions arcs to

modify and observe values of ExpressionTNCES;
36) od;
37) Add ExpressionTNCES to vecExpression;
38) while Pattern statement has clauses do
39) Generate Pattern module representing Processor (patternProcessor);
40) for a Every clause do
41) Apply algorithm for translating Every clause into TNCES (Algorithm 3.4);
42) od;
43) for a Followed By clause do
44) Apply algorithm for translating FollowedBy clause into TNCES (Algorithm 3.5);
45) od;
46) for a timer_within clause do
47) Apply algorithm for translating timer_within clause into TNCES (Algorithm

3.6);
48) od;
49) for a Repeat clause do
50) Apply algorithm for translating Repeat clause into TNCES (Algorithm 3.7);

3. METHODOLOGY 39

51) od;
52) for all other Pattern Operators do
53) Generate TNCES module representing Pattern Operators (PatternTNCES);
54) Add PatternTNCES to patternProcessor;
55) Define event inputs in PatternTNCES that would allow to modify the values of

PatternTNCES;
56) Interconnect event inputs and PatternTNCES module;
57) Define condition outputs in PatternTNCES that would allow to observe the val-

ues of PatternTNCES;
58) Interconnect condition outputs and PatternTNCES module;
59) od;
60) Add PatternTNCES to vecPattern;
61) do;
62) do;
63) Interconnect vecSelect, vecProperties, vecFrom, vecEventStreamEngine, ve-

cEventMatching, vecExpressions and vecPattern;

The following algorithm generates TNCES model of Select clause shown in Figure

3.1 (a). This is the module which initiates the Start clause and then ends the clause upon
its completion. Therefore, we have two event inputs “Select” and “EndSelect” which
serve the purpose. After starting Select module, we have to inform next module to start
working and event output “SelectProperty” is for this reason. Next event output is
“EndSelectConstruct” to stop all modules from operating whenever we want to end
execution of EPL statement.

Algorithm 3-2 Generating TNCES model of Select Clause

Generating TNCES model of Select Clause

1) Generate TNCES module representing Select (SelectTNCES);
2) Add SelectTNCES to tncesProcessor;
3) Define event inputs Select and EndSelect in SelectTNCES that would allow to

modify the input values of SelectTNCES;
4) Define event outputs SelectProperty and EndSelectConstruct in SelectTNCES

that would allow to modify the output values of SelectTNCES;
5) Create places p1 and p2;
6) Create transitions t1 and t2;
7) Create flow arcs (p1,t1), (t1,p2), (p2,t2) and (t2,p1);
8) Create event arcs (Select,t1), (EndSelect,t2), (t1, SelectProperty) and (t2, EndSe-

lectConstruct);

Similarly, From clause is represented in TNCES utilizing algorithm given below.

From module is shown in Figure 3.1 (b). From module starts working after desired
property is specified in the Properties module with the help of event input “PropertySe-
lected”. From module starts working with event input “From”. To inform next module
“EventStream” to start functioning, we have event output “ FromEventStream”.

3. METHODOLOGY 40

Algorithm 3-3 Generating TNCES model of From Clause

Generating TNCES model of From Clause

1) Generate TNCES module representing From (FromTNCES);

2) Add SelectTNCES to tncesProcessor;
3) Define event inputs PropertySelected and From in FromTNCES that would allow

to modify the input values of FromTNCES;
4) Define event output FromEventStream in FromTNCES that would allow to mod-

ify the output values of FromTNCES;
5) Create places p1 and p2;
6) Create transitions t1 and t2;
7) Create flow arcs (p1,t1), (t1,p2), (p2,t2) and (t2,p1);
8) Create event arcs (PropertySelected,t1), (From,t2) and(t2, FromEventStream);

Every module is a part of Event Pattern Language and it is developed using same

rules as of EPL. The following algorithm generates TNCES module of Every clause
which is shown in Figure 3.2. Whenever any sub-expression meets the criteria by Every
keyword, pattern is restarted by Every keyword. To start Every module, we need one
event input which receives events from Factory Floor and this input is called “A” in the
following algorithm. Then we need one event input, so that Every module initiates
working and we have event input “Start_A” for this purpose. Another event input is
“Reset” which resets Every module on completion of EPL statement.

Algorithm 3-4 Generating TNCES model of Every Clause

Generating TNCES model of Every Clause

1) Generate TNCES module representing Every (EveryTNCES);

2) Add EveryTNCES to patternProcessor;

3) Define event inputs A, Reset1, Start_A and Reset2 in EveryTNCES that would
allow to modify the input values of EveryTNCES;

4) Define event outputs Event_A andEvent_A_match in EveryTNCES that would
allow to modify the output values of EveryTNCES;

5) Define condition output A_available in EveryTNCES that would allow to ob-
serve the output values of EveryTNCES;

6) Create places p1, p2 and p3;
7) Create transitions t1, t2, t3, t4 and t5;
8) Create flow arcs (p1,t1), (t1,p2), (p2,t2), (p2, t5), (t2, p3), (p3, t3), (t3, p4), (p4,

t4), (t4, p1) and (t5,p1);
9) Create event arcs (Reset1,t1), (Start_A,t2), (Reset2, t3), (t1, Event_A) and (t2,

Event_A_match);
10) Create condition arcs (p2, A_available);

The algorithm 3.5 generates TNCES model of Followed By Clause and is shown in

Figure 3.3. The main function of Followed By operator is to first evaluate left hand side
expression to true and then right hand side. Therefore, we have two event inputs
“Event_LHS” and “Event_RHS” to make sure that first LHS expression is executed to
true and then RHS is evaluated. Another event input is “Reset” which resets whole

3. METHODOLOGY 41

module whenever needed. Then, we have two event outputs “Start_LHS” and
“Start_RHS” to indicate beginning of evaluation of LHS expression and RHS expres-
sion. Another event outputs “Complex Event” and “FollowedByFinished” signifies
completion of pattern language and generation of complex event.

Algorithm 3-5 Generating TNCES model of Followed By Clause

Generating TNCES model of Followed By Clause

1) Generate TNCES module representing FollowedBy (FollowedByTNCES);

2) Add FollowedByTNCES to patternProcessor;

3) Define event inputs Reset, Event_LHS and Event_RHS in FollowedByTNCES
that would allow to modify the input values of FollowedByTNCES;

4) Define event outputs Start_LHS, Start_LHS, ComplexEvent and FollowedByFi-
nishsed in FollowedByTNCES that would allow to modify the output values of
FollowedByTNCES;

5) Define condition outputs PatternSelected, LHS_available and RHS_available in
FollowedByTNCES that would allow to observe the output values of Followed-
ByTNCES;

6) Create places p1, p2, p3, p4, p5 and p6;
7) Create transitions t1, t2, t3, t4, t5, t6, t7, t8, t9 and t10;
8) Create flow arcs (p6,t6), (t6,p5), (p5,t1), (t1, p1), (p1, t2), (t2, p2), (p2, t3), (t3,

p3), (p3, t4), (t4,p4), (p4, t5), (t5, p6), (p3, t10), (p2, t9), (p1, t8), (p5, t7), (t10, p6),
(t9, p6), (t8, p6) and (t7, p6);

9) Create event arcs (Reset,t7), (Reset, t8), (Reset, t9), (Reset, t10), (Event_LHS,
t2) and (Event_RHS, t2);

10) Create condition arcs (PatternSelected, t6), (LHS_available, t1) and
(RHS_available, t3);

The algorithm given below translates timer_within clause in Event Pattern Language
and timer_within module is displayed in Figure 3.4. In this module, we have one event
input “Start_Timer_within” to specify starting of timer_within module. There are two
event outputs “Timer_within_started” and “End_timer_within”, which signifies starting
and ending of timer_within clause.

Algorithm 3-6 Generating TNCES model of timer_within Clause

Generating TNCES model of timer_within Clause

1) Generate TNCES module representing timer_within (timer_withinTNCES);

2) Add timer_withinTNCES to patternProcessor;

3) Define event input Start_timer_within in timer_withinTNCES that would allow
to modify the input values of timer_withinTNCES;

4) Define event outputs Timer_within_started and End_timer_within in ti-
mer_withinTNCES that would allow to modify the output values of ti-
mer_withinTNCES;

5) Create places p1, p2 and p3;
6) Create transitions t1, t2 and t3;
7) Create flow arcs (p1,t1), (t1,p2), (p2,t2), (p2, t2), (t2, p3), (p3, t3) and (t3, p1);
8) Create event arc (Start_timer_within,t1), (t1, Timer_within_started) and (t2,

End_timer_within);

3. METHODOLOGY 42

The following algorithm translates Repeat clause in Event Pattern Language. The

resulted Repeat module is shown in Figure 3.5. There is an event input “Start_Repeat”
and an event output “End_Check” to stipulates starting and finishing of Repeat operator.
Another event input is “Event” which is used to receive events from Factory Floor.

Algorithm 3-7 Generating TNCES model of Repeat Clause

Generating TNCES model of Repeat Clause

1) Generate TNCES module representing Repeat (RepeatTNCES);

2) Add RepeatTNCES to patternProcessor;

3) Define event inputs Start_Repeat and Event in RepeatTNCES that would allow
to modify the input values of RepeatTNCES;

4) Define event output End_Check in RepeatTNCES that would allow to modify
the output values of RepeatTNCES;

5) Create places p1, p2 and p3;
6) Create transitions t1, t2 and t3;
7) Create flow arcs (p1,t1), (t1,p2), (p2,t2), (p2, t2), (t2, p3), (p3, t3) and (t3, p1);
8) Create event arcs (Start_Repeat,t1) and (Event,t2);
9) Create condition arcs (t3, End_Check);

3.3. Modelling EPL Constructs

The following constructs of EPL and event pattern language are represented into
TNCES in this thesis. These are most commonly used constructs and by following algo-
rithm presented in Table 3.1, any other construct can be translated into TNCES.

Table 3-1 Table of EPL Constructs translated in to TNCES

1. Select
2. From
3. Every
4. Followed By
5. Repeat
6. timer_within

The TNCES models of following logical constructs are taken from previous work.

(Popescu C. 2009).
Table 3-2 TNCES modules taken from previous work

1. AND
2. OR
3. NOT
4. TimeCheck

3. METHODOLOGY 43

Select Module
Select module initiates the Select construct and it is developed using Algorithm 3.2 ex-
plained in last section. It sends an event ‘SelectProperty’ to the next module ‘Proper-
ties’. On the completion of the query, an event ‘EndSelect’ is received which ends the
Select construct and an event ‘EndSelectConstruct’ is sent to module ‘Properties’.
From Module
This module utilizes Algorithm 3.3 and allows selection of event streams or named
windows from which we want to select desired properties. After selecting event stream,
an event is sent to module associated with that event stream.

(a) (b)

Figure 3-1: (a) Select (b) From

Properties Module
In this module, desired properties of events can be selected. After receiving event ‘Se-
lectProperty’, this module sends an event ‘PropertySelected’ to ‘From’ module. In case
if Select Construct has been ended or truncated, an event ‘EndSelectConstruct’ is re-
ceived, and in turns an event ‘EndSelecting’ is sent.
EventStreams Module
In this module, the desired event stream or window, from which we want to select prop-
erties of events, can be selected.

3.4. Modelling Event Pattern Language Constructs

Some of the most needed event pattern language constructs explained in Section 2.3 like
every, followed by, timer:within, repeat are modelled in TNCES.
Every
The every operator restarts the pattern whenever the sub-expression qualified by every
keyword evaluates to true or false. This module is created with the aid of algorithm
given in last chapter in Algorithm 3.4.

The above module shown in Figure 3.2 keeps on receiving events by event input ‘A’
and keep them stored in place m (p2). The Every module is triggered by an event input

3. METHODOLOGY 44

‘Start_A’ and then it sends an event ‘Event_A_match’ to the next module. There is one
event input called ‘Reset1’ and it is used to reset token in m(p2). Another reset called
“Reset2” and it is used to reset whenever it is turn for next module to match Events B.

Figure 3-2 Every Module

Followed By
The followed by operator makes sure that first left hand expression must evaluate to true
and then right hand expression is evaluated to match patterns.

The Followed By module is explained in Figure 3.3. The above module first waits
for left hand expression to turn true by checking the condition ‘LHS_available’ and then
it allows module on the left hand side to start matching events by sending an event
‘Start_LHS’. When the next module evaluates to true by sending back an event
‘Event_LHS’, the Followed By module allows module on right hand side to match
event. The Followed By module sends an event ‘Start_RHS’ and when right hand side
matches event, it sends back an event ‘Event_RHS’. Then the Followed By module
comes to know that events are matches and it sends a complex event called ‘Com-
plexEvent’ and “FollowedByFinished” event in the end.

3. METHODOLOGY 45

Figure 3-3 Followed By Module

Timer:within Pattern Guard
The timer:within acts like a stopwatch and it stops the pattern permanently after speci-
fied time.

The module shown below after getting being started by an event
‘Start_timer_within’ starts executing. And after 60 seconds, it sends an event called
‘End_timer_within’ and stops the pattern from further working.

Figure 3-4 timer:within module

3. METHODOLOGY 46

Repeat
The repeat operator fires whenever any pattern sub-expression evaluates to true for a
given number of times.

The following ‘Repeat’ module waits for five sub-expressions to get true. The fol-
lowing module is triggered by an event ‘Start_Repeat’. Event input ‘Event’ receives
events from the corresponding module which is generating complex events. After 5 sub-
expressions get true, the following module stops executing and informs corresponding
module by event ‘End_Check’.

Figure 3-5 Repeat Module

4. RESULTS 47

4. RESULTS

This chapter discusses the proposed methodology to model complex event processing
into formal languages. Section 4.1 briefly describes case study taken for this thesis. Sec-
tion 4.2 explains modelling of case study in TNCES. Section 4.3 and Section 4.4 fo-
cuses TNCES models of different event processing languages statements and event pat-
tern language statements respectively. Section 4.5 presents an example of an EPL
statement and its translation into TNCES modules and then communication sequence
between those modules. In the last, Section 4.6 emphasises on CTL formulae used to
validate developed TNCES module.

4.1. Case Study

In order to model CEP, first events generated at Factory Floor are modelled in TNCES.
For this purpose, Festo Modular Production System is selected as a case study.

Festo Modular Production System (MPS) system shown in Figure 4.1 is taken as a
line case study in this thesis studies. The line consists of seven stations: Distribution,
Testing, Processing, Handling, Robot, Assembly and Storing Station.

Figure 4-1 Line case study

The line is able to manufacture red, silver and black workpieces. Total manufactur-
ing process consists of feeding workpieces by distribution station and then testing sta-
tion checks colour and size of workpiece. The processing station again checks size of
the workpiece and perform drilling. It also acts as a buffer. The handling station is used

4. RESULTS 48

to handle workpieces between stations and also to store workpieces. The next step is to
perform assembly operations and store the magazines based on colour of workpieces
and it is done by robot station. The assembly station supplies pistons, caps and maga-
zines to assemble workpieces and assembly is done by robot. In the last step, storing
station sorts the assembled workpieces according to its colour and stores them in appro-
priate place. Figure 4.2 shows production line from another view.

Figure 4-2 Line case study: Another view

4.2. Modelling Distribution Station

By considering that Festo MPS line is present at factory floor, distribution station of line
is modelled in TNCES. The events generated at factory floor are taken from IPC stan-
dard IPC-2541 (IPC, ANSI 2001) and corresponding events at MES and ERP are also
modelled in TNCES. The toolset used for supporting methodology proposed in this
chapter is called Movida NCES Generator (MOVIDA).

4.2.1. Factory Floor

The Distribution System is the first equipment in the whole production line. It has got
two zones, Stack Magazine and Changer Module.

4. RESULTS 49

Stack Magazine
It consists of following parts,

i. Double acting ejecting cylinder pushing workpiece out.
ii. Magazine Barrel of the stack magazine holding 8 workpieces.

iii. Through-beam sensor to detect available workpiece.
iv. Control valves for adjusting speed of ejecting cylinder.

Changer Module
This module has following parts,

i. Suction Cup to pick up the workpiece.
ii. Mechanical end stops to adjust swivelling range.

iii. Electric limit switches to sense end position.

Different events which are generated by Factory Floor are given below with their
description.

Table 4-1 Events Generated at Factory Floor

Events Description
ItemWorkStart By Equipment to MES, after pressing of

Start Button
ItemWorkPause By Equipment to MES, after pressing of

the Pause Button
ItemWorkResumed By Equipment to MES, after resuming

the work.
ItemWorkAbort By Equipment to MES, if Stop Button is

pressed
ItemTransferIn Stack Magazine

By Equipment to MES, when Magazine
is in front position.

ItemTransferOut Changer Module
By Equipment to MES, when suction
cup places the workpiece on the next
station.

ItemTransferZone By Equipment to MES, when workpiece
changes zone from stack magazine to
changer module.

ItemInformation By Equipment to MES, when Bar Code
of the item is read by Suction Cup

EquipmentBlocked If there is already a workpiece on the
next station. There is a signal from the
next station, that there is already a work-
piece.

EquipmentUnBlocked There is no workpiece now on the next
station.

EquipmentInitializationComplete By Equipment, that equipment is being
initialized.

EquipmentRecipeSelected By Equipment, that Equipment Recipe
sent by MES is selected

EquipmentRecipeReady By Equipment, that selected recipe is ready
for execution

4. RESULTS 50

EquipmentRecipeModified By Equipment to MES, that equipment
has stopped processing workpieces with
last recipe and is ready to receive new
recipe.

EquipmentError By PLC, If any error occurs in the
equipment like any human is near to the
machine or robot collides with any ma-
chine or any zone of the equipment is
not working properly.

EquipmentErrorCleared By Equipment to MES, if error is
cleared.

EquipmentInformation By Equipment to MES and information
of equipment is sent.

ProductionStarted By Equipment to MES, after production has
been started.

RecipeActive By Equipment to MES that selected Recipe
has been activated.

RecipeList Recipe List is available.

RecipeListRequest Request from Equipment to MES to send
recipe list.

Refill_Workpieces By ‘Storage’ module to ‘Workpieces’ mod-
ule to refill workpieces to Storage.

WaitingforOperatorAction By Equipment to MES, if there are no
more workpieces in Stack Magazine,
then machine halts and operator has to
refill them and restart the machine.

WorkpiecesLessInNumber By Equipment to MES that work pieces in
Storage are less in number.

WorkpiecesShort By ‘Workpieces’ module to ‘Storage’ mod-
ule to inform that amount of workpieces in
Stack Magazine is less than a specific
amount.

The explanation of different modules modelled in TNCES and events generated by

them on Factory Floor is given below.
Equipment Initialization
Equipment Initialization module makes sure that instruction to start a certain order from
MES has been received and equipment is ready to process material using provided rec-
ipe by MES. It then informs MES about the commencement of the order.

Figure 4.3 (a) shows the events linked to equipment initialization. Equipment re-
ceives an event ‘StartProduction’ from the MES and Operator present at shop floor
presses the Start Button and equipment is initialized and it generates two events, ‘Pro-
ductionStarted’ and ‘EquipmentInitializationCompleted’. ‘ProductionStarted’ event is
sent to MES to inform that production of a certain order has been started and ‘Equip-
mentInitializationCompleted’ event is sent to next modules, ‘RecipeRequest’ and
‘EquipmentInformation’.

This module is activated only when production is not being done on equipment be-
fore and there is a need to initialize the equipment.

4. RESULTS 51

Equipment Information
Equipment Information module sends the necessary information of equipment to MES
e.g. number of lanes and zones in the equipment.

After getting an event ‘EquipmentInitializationComplete’ from Equipment initiali-
zation module and ‘OperatorInformation’ event from MES, an event ‘EquipmentInfor-
mation’ is sent to MES. Equipment Information module and its associated events is
shown in Figure 4.3 (b).

(a) (b)

Figure 4-3 (a) Equipment Initialization Module (b) Equipment Information Module

Recipe Request
This module requests recipe list from the MES. The recipe list contains all recipes re-
quired in completion of an order. Figure 4.4 (a) displays Recipe Request module and all
events corresponding to it.

If condition ‘EquipmentInitializationComplete’ is satisfied, ‘RecipeRequest’ module
sends an event ‘RecipeListRequest’ to MES. MES acknowledges by sending an event
‘RecipeListReceived’ and ‘RecipeRequest’ module sends an event ‘RecipeList’ to next
module ‘Equipment_Recipe’ and then informs back MES that sent recipe is active by
sending an event ‘RecipeActive’.
Equipment Recipe
TNCES model of this module is illustrated in Figure 4.4 (b). This module is responsible
for making recipe operational and for taking necessary measures, if recipe is modified
or changed by MES during the process.

After receiving an event ‘RecipeDetails’ which contains Recipe List from ‘Reci-
peRequest’ module, ‘Equipement_Recipe’ module sends an event ‘EquipmentReci-
peReady’ to next module ‘Workpiece_Flow’ and condition ‘Recipe_Ready’ is enabled
until MES decides to replace the recipe with the new one or modify the existing one. If
new recipe is selected or existing recipe is modified, an event ‘EquipmentRecipeModi-
fied’ is sent to MES and ‘Recipe_Ready’ condition is not satisfied any more.

4. RESULTS 52

(a) (b)

Figure 4-4 (a) Recipe Request Module (b) Equipment Recipe Module

Workpieces
Stack magazine in Distribution Station is able to store up to 8 workpieces. ‘Workpieces’
module makes sure that if there are enough workpieces in the stack magazine or not. If
not, then this module sends necessary events to MES and ‘Storage’ module. Figure 4.5
shows the TNCES model of this module.

If ‘Recipe_Ready’ condition is satisfied which means that selected recipe is ready to
be implemented and if there is a workpiece in the stack magazine, then an ejecting cyl-
inder pushes a workpiece out of the stack magazine.

There are three possibilities on the basis of the workpieces in the Stack Magazine,
i. If remaining number of workpieces in Stack Magazine is four, then ‘Work-

pieces’ module sends an event ‘WorkpiecesShort’ to ‘Storage’ module. The
‘Storage’ module then immediately refills the stack magazine.

ii. If remaining number of workpieces in Stack Magazine is two, then an event
‘EquipmentError’ is sent to MES. MES instructs ‘Storage’ to refill the work-
pieces in Stack Magazine.

iii. For any reason, if Storage is unable to refill the workpieces and Stack Magazine
goes empty, then FactoryFloor sends an event ‘WaitingforOperatorAction’ to
MES and equipment stops. In this case, operator has to refill the workpieces by
sending an event to ‘Storage’ manually.

4. RESULTS 53

Figure 4-5 Workpieces Module

Storage
Storage is a part in factory floor which can accumulate up to 100 workpieces. When-
ever, remaining quantity of workpieces in Stack Magazine reaches a specific amount,
‘Storage’ refills them. TNCES modelling of ‘Storage’ module is shown in Figure 4.6.

Let us suppose that 8 workpieces are refilled to Stack magazine already and as it can
be seen in Figure 4.6 that remaining number of workpieces in place ‘WorkpiecesInStor-
age’ is 92. If number of workpieces refilled to Stack Magazine exceeds 50, then Storage
sends an event ‘WorkpiecesLessInNumber’ to MES which means that workpieces in
Storage are also less in number. MES responds back with event ‘WorkpiecesAvailable’
and refills the workpieces in the Storage.

4. RESULTS 54

Figure 4-6 Storage Module

WorkPiece Flow
Figure 4.7 explains module ‘WorkpieceFlow’ modelled in TNCES.
In this module, following sequence takes place.

i. If workpiece is pushed out by ejecting cylinder out of stack magazine and recipe
is active, then an event ‘ItemWorkStart’ is sent to MES:

ii. Then an event ‘ItemTransferIn’ is sent to MES explaining that workpiece is
ready to be processed.

iii. Each workpiece has a unique bar code which is read by suction cup. This bar
code contains information like lot number and order number to which this work-
piece belongs. All this information is sent to MES through event ‘ItemInforma-
tion’. By this event, MES can keep track of all the workpieces. MES can also de-
termine which workpiece is under process and thus it can monitor the current
status of the order.

iv. After workpiece has been pushed out of stack magazine and is picked by suction
cup, an event named ‘ItemTransferZone’ is sent to MES indicating that work-
piece has been transferred from one zone to another zone.

v. When workpiece moves to next station, event ‘ItemTransferOut’ is sent repre-
senting that workpiece has now transferred to next equipment.

4. RESULTS 55

If during the process, Pause button is pressed by an operator, event ‘ItemWork-
Paused’ is sent to MES and whole equipment is paused. After pushing Resume button,
equipment resumes working from same position from where it was paused and event
‘ItemWorkResumed’ is generated.

In case, operator stops whole equipment by pressing Stop button, equipment stops
working and MES is informed by an event ‘ItemWorkAbort’. In this case, whole pro-
duction has to be started from beginning by sending ‘StartProduction’ event from MES.

4. RESULTS 56

Figure 4-7 Workpiece Flow Module

4. RESULTS 57

4.2.2. Manufacturing Execution System (MES)

Description of different events generated on MES is given in Table 4.2.

Table 4-2 Events generared at MES

Events Description
BOM By MES to ERP, to inform workpieces in

Storage of Factory Floor are less in
amount and to send new workpieces.

EquipmentStopped By MES to ERP, to inform Equipment is
not under production.

NewWorkpiecesAvailable By MES to Factory Floor, informing new
workpieces are refilled to Storage.

PauseTime By MES to ERP, notifying how many
hours, machine was paused.

Production_Started By MES to ERP, reporting production by
equipment has been started.

OperatorInformation By MES to Factory Floor, giving informa-
tion about new operator.

RecipeDetails By MES to Factory Floor, in response of
‘RecipeListRequest’.

RecipeModified/NewRecipe By MES to Factory Floor, when MES
decides to set up new recipe or modify
existing recipe.

RefillingWorkpieces By MES to ‘Storage’ module of Factory
Floor in response of ‘OperatorAction-
Needed’, instructing to refill 8 workpieces
to Stack Magazine.

Start_Production By MES to Factory Floor, when MES
wants to start production.

StoppageTime By MES to ERP, notifying how many
hours, machine was not in stop mode.

Different modules present in MES and events generated by them are given below.
Start Production
Start Production module is used by MES to schedule and start the production.

ERP informs MES about any new order by an event ‘OrderDetails’ and MES de-
pending on its capacity schedule it. After planning, MES sends an event
‘Start_Production’ to Factory Floor and Operator present on the Factory Floor presses
the Start button and equipment sends back the event ‘ProductionStarted’ by which MES
comes to know that production has been started. MES also informs ERP about the start-
ing of the production by which ERP can monitor the time of the completion of the or-
der. After sending event ‘ProductionStarted’, equipment present on Factory Floor starts
to initialize and so on. TNCES model of this module is shown in Figure 4.8 (a) below.

4. RESULTS 58

Recipe Details
This module sends recipe details to equipment when requested. Figure 4.8 (b) shows its
TNCES model.

Equipment sends an event ‘RecipeListRequest’ to MES and MES sends then all the
details of the recipe list and including recipes by an event ‘RecipeDetails’. After activat-
ing sent recipe, equipment generates an event ‘RecipeActive’ which is received by MES
as an event ‘RecipeResponse’.

(a) (b)

 Figure 4-8 (a) Start Production Module (b) Recipe Details Module

Recipe Modified/New Recipe
Figure 4.9 (a) shows TNCES model of this module. If MES decides to modify the rec-
ipe being processed or to employ new recipe, then MES sends an event ‘RecipeModi-
fied/NewRecipe’ to Factory Floor. Factory Floor after getting this event stops process-
ing new workpieces and requests details of new recipe by sending ‘RecipeModifiedRe-
sponse’. This event is received by ‘RecipeModified/NewRecipe’ module by which MES
comes to know that recipe has been changed. Another module which receives this event
is ‘RecipeDetails’ as ‘RecipeListRequest’ event. After that, MES sends details of new
recipe to equipment.
Equipment Error
Equipment error event arises in Factory Floor whenever there are two workpieces left in
stack magazine. Figure 4.9 (b) demonstrates working of module ‘EquipmentError’.

After getting this event, MES sends an event ‘RefillingWorkpieces’ to Storage
which in response refills six workpieces to stack magazine. Factory floor then sends an
event ‘EquipmentErrorCleared’ back to MES showing that equipment is free of any
error.

4. RESULTS 59

(a) (b)

 Figure 4-9 (a) Recipe Modified/New Recipe Module (b) Equipment Error Module

Operator Action Needed
This module works whenever, equipment is in such a condition that further processing
is not possible and involvement of operator is necessary to eradicate such condition. In
case of Distribution System, if there is not workpieces left in the stack magazine, then
Factory Floor sends an event ‘OperatorActionNeeded’ to MES and MES has to manu-
ally instruct Storage to refill eight workpieces to Stack Magazine by sending an event
‘RefillingWorkpieces’. Figure 4.10 (a) demonstrates of working of this module.
Item Flow Information
This module keeps track of the workpieces under production e.g. location of a work-
piece belonging to any certain order in Distribution Station. Its TNCES model is exhib-
ited in Figure 4.10 (b).

The events in this module are same as of ‘Workpiece Flow’ module in Factory Floor
except ‘ItemWorkAbort’, ‘ItemWorkPause’ and ‘ItemWorkResumed’ events. So,
whenever workpiece changes its location in equipment present on Factory Floor, it in-
forms MES and in this way, MES gets to know the exact location of any workpiece.

(a) (b)

Figure 4-10 (a) Operator Action Needed Module (b) Item Information Module

4. RESULTS 60

Equipment Paused
If operator pauses the equipment for any reason, then equipment sends an event ‘Item-
WorkPause’ to MES. As soon as equipment is paused, counter starts and after every 60
minutes of total pausing time of equipment, an event ‘PauseTime’ is send to ERP. After
recommencing working of equipment, MES receives ‘ItemWorkPause’. If during any
time of processing, equipment is stopped, then this module comes to its initial state.

In this way, ERP can show its concern to MES about delaying of order due to fre-
quent pausing of machines and MES in turn can inquire operator about the reasons of
pausing the equipment and can try to rectify it. Following these lines, MES can reduce
the downtime of equipment. Figure 4.11 (a) shows all the conditions and events gener-
ated in this module.
Equipment Stopped
If for any reason, working of equipment is terminated, then equipment informs immedi-
ately by an event ‘ItemWorkAbort’. In the similar fashion as in ‘Equipment Paused’
module, after every 60 minutes of total stoppage time of equipment, MES informs ERP
by an event ‘StoppageTime’. Figure 4.11 (b) shows working of ‘EquipmentStopped’
module.

(a) (b)

 Figure 4-11 (a) Equipment Paused Module (b) Equipment Stopped Module

Operator Information
Whenever, any new operator starts his/her shift, MES sends his/her information to
equipment via event named ‘OperatorInformation’ as shown in Figure 4.12 (a).
Item Information
TNCES model of ‘Item Information’ module is shown in Figure 4.12 (b). This module
consists of an event generated from Factory Floor containing all the information in the
bar code of the workpiece e.g. unique number of the workpiece and the order to which it
belongs.

4. RESULTS 61

(a) (b)

 Figure 4-12 (a) Operator Information Module (b) Item Information Module

Equipment Information
This module is responsible for receiving information related to equipment e.g. number
of zones, its software etc and is shown in Figure 4.13 (a).
Workpieces Needed
This module shown in Figure 4.13 (b) is approached whenever amount of workpieces in
the Storage of the Factory Floor is less than 50. This module ‘WorkpiecesNeeded’ on
getting an event ‘AmountofWorkpieces’, sends BOM (Bill of Materials) to ERP with
the help of an event ‘BOM’ demanding for new workpieces. When new workpieces are
provided by ERP, MES sends an event ‘NewWorkpiecesAvailabe’ to Storage.

(a) (b)

 Figure 4-13 (a) Equipment Information Module (b) Workpiece Needed Module

4.2.3. Enterprise Resource Planning (ERP)

Events which are generated on ERP with their brief detail are given in Table 4.3.

Table 4-3 Events generated at ERP

Events Description
OrderDetails By ERP to MES, upon receiving new

order ERP sends its detail.
NewWorkpiecesAvailable By ERP to MES, that workpieces are re-

ceived from supplier.

4. RESULTS 62

Different modules and their generated events in ERP are described below.
Production Tracking
The module ‘Production Tracking’ monitors either equipment is under any production
or not. When ERP receives new order, it sends detailed explanation to MES by sending
an event ‘OrderDetails’. And when production starts at Factory Floor, ERP is informed
by an event ‘ProductionStarted’. If production is aborted in between, ERP is updated by
an event ‘MachineStopped’. On receiving event “ProductionFinished” from last station
of line, token returns back to “Idle” place. Figure 4.14 (a) elaborates functioning of this
module.
Equipment Downtime
Total downtime of the equipment is informed to ERP, from which ERP determines the
efficiency and reproach MES if completion of order is being delayed.

After equipment being stopped or paused for total 60 minutes, MES informs ERP by
events called ‘StoppageTime’ and ‘PauseTime’. In this fashion, ERP can find out how
many hours, equipment was not in working condition.

Counters can be reset using events ‘ResetStoppageCounter’ or ‘ResetPauseCounter’.
Conditions and events related to this module are portrayed in Figure 4.14 (b).

(a) (b)

Figure 4-14 (a) Production Module (b) Equipment Down Time Module

Bill of Materials (BOM)
A bill of materials (BOM) is a list of the raw materials, sub-assemblies, components or parts and
the quantities of each needed to manufacture an end product.

Whenever, new workpieces are needed at Factory Floor, Distribution System informs MES
and MES informs ERP through an event ‘BOM’. ERP on getting this event sends Purchase Or-
der (PO) to corresponding supplier. When supplier sends required number of workpieces, ERP

4. RESULTS 63

informs MES by an event ‘NewWorkpiecesAvailable’ and in turn MES informs Storage of Dis-
tribution System. The module “BillOfMaterials (BOM)” is shown in Figure 4.15.

Figure 4-15 Equipment Stopped Module

4.3. Modelling Event Processing Language Statements

This section describes two examples having simple EPL constructs represented in
TNCES.

4.3.1. Example 1: AutoID RFID Reader

This example is taken from Esper (ESPER 2011) in which there is an array of 4 RFID
Readers with Ids, urn:epc:1:4.16.30, urn:epc:1:4.16.32, urn:epc:1:4.16.36 and
urn:epc:1:4.16.38 which generates XML documents after sensing RFID tags as pallets
come within the range of one of the readers. The generated XML document contains
information such as reader sensor ID, observation time and tags observed. An EPL
statement computes the total number of tags per reader sensor within last 60 seconds.

The EPL statement which computes the total number of tags per sensor reader is
given below,

select ID as sensorId, sum(countTags) as numTagsPerSen-
sor

from AutoIdRFIDExample.win:time(60 seconds)
where Observation[0].Command = 'READ_PALLET_TAGS_ONLY'

group by ID

Figure 4.16 shows snapshot of AutoID RFID Receiver. User has to give number of

events to be generated and given number of events is generated. The generated event
contains information time of observation, SensorID and total number of tags generated.

4. RESULTS 64

Figure 4-16 AutoID RFID Reader

Let’s consider that there are two sensors R1 and R2 installed in Factory Floor and
they generate an event stream AutoIdRFIDExample whenever they read any pallet hav-
ing a RFID tag. We want to determine IDs of the tags and total number of tags per ID
counted within 60 seconds. The EPL statement for this example is

select ID, sum(countTags)
from AutoIdRFIDExample.win:time(60 seconds)

group by ID

The TNCES representation of this example is given in the figure below. The
TNCES model consists of Select, From, Properties, EventStreams, AutoIDRFIDExam-
ple Engine and ID+Sum modules. The Select module initiates the EPL statement fol-
lowed by From module which specifies name of event stream from which events are
selected. In the EventStreams module, desired event stream is selected. The AutoIDR-
FIDExample Engine captures events from Factory Floor and ID+Sum module selects
IDs of tags read by sensors and sum of the total tags within 60 seconds.

4. RESULTS 65

Figure 4-17 TNCES model of Example

4. RESULTS 66

4.3.2. Example 2

Consider another example which is having an event stream called EStream1 and it com-
prises of three types of events E1, E2 and E3. If we want to select all events plus E1, E2
and E3 events separately, then EPL statement for this purpose is,

select *,E1,E2,E3 from EStream1

In the Figure 4.18, the EPL statement given above is translated in TNCES. There are
5 modules namely Select, From, EventStreams, Properties and EStreamEngine. The
Select module starts executing the EPL statement. The EventStreams module contains
list of all events streams and From module selects desired event stream from that list.
Properties module signifies properties of the events to be selected and the EStreamEn-
gine module selects all indicated properties in the EPL statement which are all, E1, E2
and E3 in this example.

4. RESULTS 67

Figure 4-18 TNCES model of Example 2

4. RESULTS 68

4.4. Modelling Event Pattern Language Statements

In this section, different event pattern language statements are represented in TNCES.
To support developed models in Section 3.4, an example is given in which event pattern
language statement is translated in TNCES.

4.4.1. Example

Let us consider a production line which produces workpieces of 3 colours i.e. red, black
and silver. Following pattern matches any red, black or silver workpiece is manufac-
tured within 60 seconds.

every (red) or every (black) or every (silver) where
timer:within(60 seconds)

The above pattern is represented in TNCES in Figure 4.19. There are 3 separate
Every module for red, black and silver workpieces. Then there is an OR module which
selects any of the workpiece manufactured. The timer:within module keeps check that
pattern remains true only for 60 seconds and hence events are generated only for work-
pieces manufactured within 60 seconds.

4. RESULTS 69

Figure 4-19 TNCES module of Example

4. RESULTS 70

4.5. TNCES Modelling of an EPL and Pattern statement

Let us consider a conveyor system having two pallets palletA and palletB on it. EventA
and EventB are generated on passing of palletA and palletB from the specific location
on conveyor respectively. Following EPL statement counts number of tags whenever a
specific pattern of EventA followed by EventB is matched.

select count(Tags)
from pattern [every (EventA → EventB)]

The above statement is translated into TNCES by developing different modules for dif-
ferent purposes which are described below.

 Controller module – This module activates all modules on their turn one by one
by sending events.

 Select module – Select module initiates the Select construct.
 Properties Module – This module has list of all properties and user can select de-

sired property by sending respective event. In our case, we want to select Count
of Tags, so a Count event is sent to “Properties” module.

 From Module – From module has list of all event streams or patterns from
where we want to select events or event properties.

 Pattern Module – Pattern module has sub-modules needed to represent specific
pattern. In this case, we need “FollowedBy” and “Every” modules to represent
“every (EventA→ EventB)”.

 FollowedBy Module – This module makes sure that EventA is captured first
and then EventB is captured.

 EveryA and EveryB Modules – These modules are responsible for capturing and
matching events EventA and EventB.

 Count Module – Count module counts number of tags. Similarly, every property
has its own dedicated module.

The sequence diagram shows order of interaction between different modules in Fig-
ure 4.20. First “Controller” sends an event “Select” to module “Select”. The “Select”
module sends an event “SelectProperty” to module “Property”. The module “Property”
has the list of properties from where desired property can be selected. Each property in
the EPL statement has its own module but we need to trigger only needed module(s)
which is “Count” in our case. The “Controller” module specifies that property called
“Count” of the events has to be selected by sending event “Count” to “Properties” mod-
ule. The “Properties” module in turn sends an event “Count” to “Count” module in or-
der to activate it.

After property is selected, “Properties” module sends an event “PropertySelected” to
“From” module which is an indication that “From” module can start working. “From”
module has list of all possible event streams. After “Controller” module sends an event

4. RESULTS 71

“From” to “From” module, “From” module specifies event stream or pattern from
where we are going to select events by sending an event “FromPattern”.

The “Controller” module signifies that its turn for “Pattern” module to start working
by sending an event “Pattern1”. The “Pattern” module starts functioning after sub-
module “FollowedBy” generates an event “Start_Every_A” to sub-module “EveryA”.
After EventA is matched, sub-module “EveryA” sends back event “Event_A_match”.
Then “FollowedBy” sub-module sends an event “Event_B_match” to sub-module “Eve-
ryB” so that EventB can be matched. After EventB is matched, “Event_B_match” is
sent back to sub-module “FollowedBy” indicating whole pattern is matched and com-
plex event can be generated. As a result, sub-module “FollowedBy” generates Complex
Event and sends relevant event “ComplexEvent” to module “Count”. The module
“Count” keeps on counting number of tags and sends an event “EndConstruct” to mod-
ule “Controller” after EPL statement stops executing.

Figure 4-20 Sequence Diagram for EPL statement

Complete TNCES model is displayed in Figure 4.21.

4. RESULTS 72

Figure 4-21 TNCES module of EPL and Pattern Statement

4. RESULTS 73

4.6. CTL Formulae for Validation

CTL formulae used to validate the TNCES system given in Figure 4.26 are given below
in Table 4.4 along with their brief description. In Fig. 4.21, m(p29), m(p30), m(p27),
m(p28), m(p25) and m(p26) denote those places in Table 4.4 which receive a token
when complex event is not yet generated, when complex event is generated, when
EventB is not yet matched, when EventB is matched, when EventA is not yet matched
and when EventA is matched respectively. From the table below, we can see that our
designed model is working as intended.

Table 4-4 CTL Formulae

Req.
No.

Requirement Corresponding
CTL Formula

Result Description

1. There exists a path that
does not generate
Complex Event until
EventA and EventB is
captured.

E[(m(p29)=1) U
(m(p28)=1 AND
m(p26)=1)]

True This formula checks
whether modelled
system generates a
complex event only
after capturing both
events EventA and
Event B. The result is
true.

Counter
1

There exists a path that
generates Complex
Event until EventA and
EventB is captured.

E[(m(p30)=1) U
(m(p28)=1 AND
m(p26)=1)]

False This formula is con-
verse formula of Re-
quirement 1 and it
turns out to be false.

2 There exists a path that
does not capture
EventB until EventA is
captured.

E[(m(p27)=1) U
(m(p26)=1)]

True This formula checks if
modelled system
every time first cap-
tures EventA and then
EventB and the result
is true.

Counter
2

There exists a path that
captures EventB until
EventA is captured.

E[(m(p28)=1) U
(m(p26)=1)]

False This formula is oppo-
site of Requirement 2
and it checks if there
is any path which cap-
tures EventB before
EventA and it results
in false.

3 There exists a path that
does not capture
EventA until EventB is
captured.

E[(m(p25)=1) U
(m(p28)=1)]

False This formula ensures
if there is a possibility
to capture EventB
before EventA and
outcome is false.

Counter
3

There exists a path that
captures EventA until
EventB is not captured.

E[(m(p26)=1) U
(m(p27)=1)]

True This formula is
counter formula for
Requirement 3 and it
checks if every time
EventA is captured

4. RESULTS 74

before EventB. The
result turned out to be
true

4 There exists a path that
generates Complex
Event until EventA is
captured.

E[(m(p30)=1) U
(m(p26)=1)]

False This formula validates
if there is any chance
that Complex Event is
generated if only
EventA is captured
and result is false.

5 There exists a path that
generates Complex
Event until EventB is
captured.

E[(m(p30)=1) U
(m(p28)=1)]

False This formula checks if
there is any path
which generates
Complex Event if
only EventB is cap-
tured and result is
false.

5. CONCLUSIONS AND FUTURE WORK 75

5. CONCLUSIONS AND FUTURE WORK

5.1. Contributions

Despite of remarkable progress in the field of complex event processing, yet compact
set of rules and standards for CEP are needed to represent real time events in virtual
world. (Dindar, N., Balkesen, C. ; Kromwijk, K., Tatbul, N. 2009) (Kumar, S. 2009)
(Hemani, A., Shamsi, J. 2010) (Leavitt, N. 2009).

By translating complex event processing into TNCES, we have defined set of stan-
dards and rules for processing complex events. TNCES also allows us to prevent differ-
ent uncertainties involved in an event driven architecture EDA like machine breakdown
and deadlocks. Also planning and scheduling EDA is more governed conveniently. Ad-
ditional advantage of proposed methodology is insertion and deletion of elements
to/from the model.

Furthermore, the designed methodology of formal modelling CEP systems also
opens the path to the validation of events. It can be verified beforehand whether we
have designed the correct model of the system or not. Also, we can validate if certain
properties are held by our system or not.

5.2. Lessons Learned

This thesis includes research areas like Formal Methods, Complex Event Processing,
Cognitive Science, and Temporal Logics.

5.3. Future Research Directions

Very comprehensive research has been done on the development of multi agent systems
MAS in past decade, but on the other hand, small amount of work is done on formal
modelling methods of MAS. (Zhenhua Yu, Zhiwu Li 2005)

Therefore, future trends could include multi agents which on the basis of different
events can take real time actions. For example, if agent receives an event “Equipment-
Blocked”, it can operate to take equipment of this situation. Also, agents could also help
to resolve different legacy problems in manufacturing systems and integrate with CEP
based systems in different activities like designing, planning, scheduling and execution.

Moreover, nowadays first system is modelled in TNCES and then validation tech-
niques are applied on the system. But formal models do not include knowledge about
sensors and actuators. If we incorporate knowledge of sensors and actuators in the

5. CONCLUSIONS AND FUTURE WORK 76

model, then we can introduce significant fairness constraints for the verification step of
the model.

Finally, adding ontologies could further support accurate development of models at
run time by recognizing suitable recovery strategies for equipment.

 77

REFERENCES

Adrian Paschke, “Design Patterns for Complex Event Processing”, In Proceedings of
2nd International Conference on Distributed Event-Based Systems (DEBS'08), Rome,
Italy, 2008.

Adrian Paschke, “A Semantic Design Pattern Language for Complex Event
Processing”, AAAI Spring Symposium, 2009.

Ahmed Hambaba, “Soft-Object Technology for Flexible Machining Systems (FMS)”,
In Proceedings of Second International Conference on Intelligent Processing and Manu-
facturing of Materials, Honolulu, USA, July 1999.

Banaszak Z.A, Krogh B.H., “Deadlock avoidance in flexible manufacturing systems
with concurrently competing process flows”, IEEE Transactions on Robotics and Au-
tomation, 1990

Baoan Li and Minxing Li, “Research and Design on the Refinery ERP and EERP Based
on SOA and the Component Oriented Technology”, In Proceedings of International
Conference on Netwrokign and Digital Society, Guizhou, China, May 2009.

Chuanzhen Zang, Yushun Fan, “Complex event processing in Enterprise Information
Systems based on RFID”, 2007.

Clarke E.M, Grumberg O., Peled D.A., “Model Checking”, MIT Press, 2001, ISBN
0262032708 9780262032704

Curl, A., Fertalj, K., “A review of enterprise IT integration methods”, In Proceedings of
31st International Conference on Information Technology Interfaces, 2009.

David C. Luckham and Brian Frasca, “Complex Event Processing in Distributed Sys-
tems”, Stanford University, August 2008.

Descrochers A., “Modeling and control of automated manufacturing systems”, IEEE
Press, 1989, ISBN:0-8186-8916-1, pp.239-251

Dindar, N. ; Balkesen, C. ; Kromwijk, K. ; Tatbul, N., “Event Processing Support for
Cross-Reality Environments”, In Proceedings of IEEE Pervasive Computing, Zurich,
2009

Fanti M. P., Zhou M.C., “Deadlock Control Methods in Automated Manufacturing Sys-
tems”, IEEE Transactions on Systems, Man and Cybernetics, 2004

 78

Fevzi Belli and Karl-E Grosspietsch, “Specification of Fault-Tolerant System Issues by
Predicate/Transition Nets and Regular Expressions-Approach and Case Study”, In Pro-
ceedings of IEEE Transactions on Software Engineering,, Vol. 17, No. 6, June 1991

Hanisch, H-M., Thieme, J., Luder, A. and Wienhold, A., “Modelling of PLC behaviour
by means of timed net condition/event systems”, paper presented at the 6th International
Conference on Emerging Technologies and Factory Automation, pp.391–396, 1997

Heinz Roth, Josef Schiefer, Hannes Obweger and Szaboles, “Event Data Warehousing
for Complex Event Processing”, In Proceedings of Fourth International Conference on
Research Challenges in Information Science, France, May 2010

Hemani, A.; Shamsi, J., “Foundations of a generic design for complex event
processing” International Conference on Information and Emerging Technologies
(ICIET), 2010

Hyun Joong Yoon, Doo Yong Lee, “Deadlock-free scheduling method for track systems
in semiconductor fabrication”, IEEE International Conference on Systems, Man, and
Cybernetics, 2000

Jianfeng Qian, Jianwei Yin, Dongcai Shi, Jinxiang Dong, “Exploring a Semantic Pub-
lish/Subscribe Middleware for Event-Based SOA”, In Proceedings of Asia-Pacific Ser-
vices Computing Conference, 2008.

Joanne Bechta Dugan and Kishore S. Trivedi, “Coverage Modeling for Dependability
Analysis of Fault-Tolerant Systems”, In Proceedings of IEEE Transactions on Comput-
ers, Vol. 38, No. 6, June 1989.

Kim C.O., Kim S.S., “An efficient real time deadlock-free control algorithm for algo-
rithm for automated manufacturing systems”, Int.J. Prod. Res., vol. 35, 1997

Kshemkalyani, A.D., “Causality between nonatomic poset events in distributed compu-
tations”, In Proceedings of the 6th IEEE Computer Society Workshop on Future Trends
of Distributed Computing Systems, 1997

Kumar, S., “Challenges for Ubiquitous Computing”, Fifth International Conference on
Networking and Services, ICNS 2009.

Leavitt, N., “Complex-Event Processing Poised for Growth”, IEEE Computer Society,
2009

 79

Lobov A., “Formal Validation of Discrete Automation Systems Applying Structural
Reasoning and General Unary Hypothesis Automation Methods”. Dissertation. Tampere
2008. Tampere University of Technology. Publication – Tampere University of Tech-
nology. Publication 782.

Lobov A., Popescu C. and Lastra J. L. M., “An Algorithm for Siemens STL representa-
tion in TNCES”, In Proceedings of IEEE Conference on Emerging Technologies and
Factory Automation, ETFA 2006.

Mark R. Blackburn and Robert T. Busser, “Requirements for industrial-strength formal
method tools”, In Proceedings of 2nd IEEE Workshop on Industrial Strength Formal
Specification Techniques, 1998.

Murata T. “Petri nets: Properties, analysis and applications”, In Proceedings of the
IEEE, vol. 77, no. 4, pp 541-580, April 1989.

Nancy G. Leveson and Janice L. Stolzy, “Safety Analysis Using Petr Nets”, In Proceed-
ings of IEEE Transactions on Software Engineering, Vol. SE-13, No. 3, March 1987

Popescu C., “An Approach to Incremental Modelling of Web Services Orchestration”.
Dissertation. Tampere 2009. Tampere University of Technology. Publication – Tampere
University of Technology. Publication 832.

Popescu C., Lobov A., Martinez Lastra J.L., Cavia Soto M. (2008), “A modeling ap-
proach to formally represent service orchestration”, International Journal of Computer
Aided Engineering and Technology (IJCAET), Vol. 1, Is. 1, pp. 1-30.

Puttonen, J., Lobov, A. and Martinez Lastra, J.L. (2008) ‘An application of BPEL for
service orchestration in an industrial environment’, Proceedings of the IEEE Interna-
tional Conference on Emerging Technologies and Factory Automation, Hamburg, Sep-
tember 2008, pp. 530-537.

R.Valette, J. Cardoso, D. Dubois, “Monitoring manufacturing systems by means of
Petri nets with imprecise Markings”, In Proceedings of IEEE Symposium of Intelligent
Control, 1989

Rausch M., Hanisch H-M, “Net condition/event systems with multiple condition out-
puts”, In Proceeding of Symposium on Emerging Technologies and Factory Automa-
tion, Paris, France, 1995

 80

Ravier, Dominique, “A Service Oriented Framework Architecture for Intelligent Video
Surveillance Systems”, Fifth International Conference on Digital Telecommunications
(ICDT), 2010

Richard Zurawski and MengChu Zhou, “Petri Nets and Industrial Applications: A Tu-
torial”, In Proceedings of IEEE Transactions on Industrial Electronics, Vol. 41, No. 6,
December 1994.

Shang Wengli, Duan Bin, Shi Haibo “Event-driven Model for Manufacturing Execution
System Platform”,International Symposium on Computer Science and Computational
Technology, 2008.
Scherl R., Shafer G., “ A Logic of Action, Causality, and the Temporal Relations of
Events”, In Proceedings of Fifth International Workshop on Temporal Representation
and Reasoning, 1998.

Sousa P. and Ramos C., “A distributed architecture and negotiation protocol for sche-
duling in manufacturing systems”, Computers in Industry (1999), pp 103-113

Tang Yongzhong, “Pervasive high reliable monitor and alert system based on EDA”,
Joint Conferences on Pervasive Computing (JCPC), 2009

Urban S.D., Biswas I., Dietrich S.W., “Filtering Features for a Composite Event Defini-
tion Language”, International Symposium on Applications and the Internet, SAINT
2006.

V.S. Srinivasan and M.A. Jafari, “Monitoring and Fault Detection in Shop Floor using
Time Petri Nets”, In Proceedings of IEEE International Conference, 1991

Viswanadham N., Narahari Y., Johnson T.L, “Deadlock prevention and deadlock avoid-
ance in flexible manufacturing systems using Petri net models”, IEEE Transactions on
Robotics and Automation, 1990

Wysk R.A, Yang N.S, Joshi S., “Detection of deadlocks in flexible manufacturing
cells”, In Proceedings of IEEE Transactions on Robotics and Automation, 1991

Y.H. Zhang, Q.Y. Dai, R.Y. Zhong, “An Extensible Event-Driven Manufacturing Man-
agement with Complex Event Processing Approach”, International Journal of Control
and Automation Vol.2, No.3, September 2009

Yan Liu, Dong Wan, “Complex Event Processing Engine for Large Volume of RFID
Data”, In Proceedings of 2010 Second International Workshop on Education Technolo-
gy and Computer Science (ETCS) 2010

 81

WWW REFERENCES

ESPER, http://esper.codehaus.org

IPC-2541, http://webstds.ipc.org/2541/2541pub.pdf

MOVIDA, http://www.pe.tut.fi/movida3/tools/

