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In a software environment composed of multiple collaborating applications, an agent
architecture is a suitable option for an integration architecture. The reason for
this is that functionality requiring many applications as participants can be easily
mapped to a single agent. Thus, maintainability increases, and functionality may
be developed incrementally. However, the environment is often heterogeneous. The
applications expose different APIs, potentially written in different programming
languages. Therefore, an agent, during its lifetime, may need to use APIs written
in different languages.

Most of the existing agent architectures are meant to be used in a single-language
environment. Using such architectures directly in multi-language environment re-
quires ad hoc solutions, which is undesirable. Expectedly, there are few agent archi-
tectures designed for multi-language environment. However, from the perspective
of heterogeneous application integration, their approach is not feasible. Using ap-
plication APIs written in different languages is cumbersome and prone to errors in
these approaches.

This thesis presents a model for agent architectures aimed for heterogeneous
application integration. The model allows mobile agents to use application APIs
written in different languages in native way. The native API usage along with the
mobility of the agents implies that agents must be transportable between applica-
tions written in different languages. Therefore, the full state of any agent is defined
using formal methods to guarantee the interoperability between languages.

The agent architecture adhering to the presented model was implemented in two
languages to validate the approach. Furthermore, the architecture is used in real-life
software environment consisting of applications written in different languages. The
native way of using application APIs is efficient and frees developers to concentrate
on domain-related problems. However, integration of additional applications written
in new language into existing software environment requires implementing agent
architecture in that language. A benefit outweighing this extra work is increased
maintainability. Since an agent is decomposed into tasks, they may be reused in
other agents throughout the software environment.
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Uusia sovellusympäristöjä voidaan luoda integroimalla olemassa olevia sovelluksia.
Usein uuden järjestelmän kokonaistoiminnan kannalta on tärkeää, että nämä ohjel-
mat tekevät yhteistyötä saumattomasti. Agenttipohjainen lähestymistapa soveltuu
hyvin tällaisen sovellusympäristön integrointiin, sillä toiminto, joka vaatii monen eri
ohjelman osallistumista, on helposti muunnettavissa agentiksi. Toiminnot voidaan
toteuttaa asteittain, ja koska ne ovat loogisesti yhdessä paikassa, niistä tulee helposti
ylläpidettäviä.

Yllämainitut sovellusympäristöt voivat kuitenkin olla heterogeenisiä, toisin sa-
noen integroitavien sovellusten paljastamat rajapinnat vaihtelevat ja voivat olla käy-
tettävissä eri ohjelmointikielillä. Silloin agentti joutuu elinaikanaan käyttämään ra-
japintoja, jotka ovat tehty eri kielillä. Suurimmassa osassa nykyisistä agenttiarkki-
tehtuureista tätä asiaa ei ole kuitenkaan otettu huomioon. Niissä agenttiarkkiteh-
tuureissa, joissa ympäristön heterogeenisyys on otettu huomioon, toisella kielellä
tehtyjen rajapintojen käyttö on hankalaa ja virhealtista.

Tässä diplomityössä esitellään malli agenttiarkkitehtuureille, jotka soveltuvat hy-
vin heterogeenisen sovellusympäristön integrointiarkkitehtuureiksi. Esitellyssä mal-
lissa agentit liikkuvat sovellusten välillä ja käyttävät sovellusten rajapintoja natiivis-
ti. Kahden eri kielellä tehdyn sovelluksen välisen liikkuvuuden mahdollistamiseksi
agentin tila määritellään formaalein menetelmin, jotka ovat riippumattomia mis-
tään ohjelmointikielestä. Tämän lisäksi agentit jaetaan tehtäviin, jotka suorittavat
agentin toiminnon pala kerrallaan.

Mallin toimivuuden osoittamiseksi mallin mukainen agenttiarkkitehtuuri toteu-
tettiin kahdelle kielelle. Kyseinen arkkitehtuuri toimii oikean heterogeenisen sovel-
lusympäristön integrointialustana. Sovelluksien rajapintojen natiivi käyttö oli se-
kä tehokasta, että auttoi ohjelmoijia keskittymään varsinaisten ongelmien ratkai-
suun. Agentin jako tehtäviin edisti nopeata ja asteittaista toiminnallisuuden toteut-
tamista. Tehtävät voidaan myös uudelleenkäyttää toisissa agenteissa, joten ylläpi-
dettävyyskin kasvoi. Haittapuolena tässä agenttiarkkitehtuurimallissa on se, että
agenttiarkkitehtuuri joudutaan toteuttamaan jokaista sovellusympäristössä käytet-
tyä kieltä kohden.
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TERMS AND DEFINITIONS

UML Unified Modeling Language [20]. The objective of UML is to provide
system architects, software engineers, and software developers with tools
for analysis, design, and implementation of softwarebased systems as well
as for modeling business and similar processes [20].

API Application Programming Interface [17]. An API is an interface exposed
by a program allowing external programs or developers to access its func-
tionality.

UTC Coordinated Universal Time. UTC is a time standard used to synchro-
nize clocks around the world.

DCI Data, Context, Interaction [25]. DCI is a software design pattern aimed
at maximizing extensibility and maintenance.

TCL Tool Command Language [3]. TCL is a simple, multi-paradigm program-
ming language.

TCP Transmission Control Protocol [24]. TCP is the connection-oriented pro-
tocol most widely used on the Internet.
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1. INTRODUCTION

A software modelling environment, called Trinity, is being developed in Tampere
University of Technology (TUT) since 2008. It consists of multiple applications, each
having some specific role in the environment. These applications let user visualize,
manipulate, and manage models. An important part of the functionality in Trinity
is cross application functionality, i.e., functionality that requires the coordination of
many applications, while at the same time appearing to user as a continuous and
single process.

To achieve cross application functionality, a way to integrate various applications
is needed. In Trinity, an agent-based architecture is used as an integration platform
for the applications. In this architecture, each cross application function is mapped
to an agent, making such functionality easy to implement and maintain. The agents
are also able to move among applications, and they can use the application APIs
natively, i.e., in the same language as the API is written in. The native use of
the APIs is efficient and enables developers to concentrate on the problems in their
domain of expertise.

In 2009, Trinity expanded to include a new tool written in a different program-
ming language than the rest of the applications. From the point of view of the agent
architecture, this raised a problem on how APIs of the applications should be used
in a multi-language environment. Additionally, the participants of cross application
functionality may now be written in different languages. This means that the agent
may need to be transported from one application written in some language to an-
other application written in a different language. How should the agent architecture
be designed in order to allow these kinds of scenarios not only in Trinity, but in
heterogeneous application integration in general?

It has been noticed that agent architectures are suitable to be used as integration
architectures [23, 6, 18, 15]. Despite this, only a few existing agent architectures
are designed for an environment where language-independence is an important as-
pect. From the perspective of heterogeneous application integration, however, their
approach is not feasible. This is because using APIs written in different languages
is cumbersome and prone to errors in these architectures.

This thesis provides a model for the agent architectures aimed for heterogeneous
application integration. The model preserves the benefits of agent architectures,
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while making it possible to integrate applications written in different languages. The
agents still use application APIs natively because of the benefits mentioned above.
Additionally, the state of any agent in such model is defined using formal methods.
This provides a sound theoretical basis strengthening the language independence of
the presented model.

To validate the approach, the agent architecture based on this model was imple-
mented in two languages. The implemented agent architecture is used in Trinity
as the integration architecture. It supports language independence by making it
possible to present a cross application function, requiring applications written in
different languages, as a single agent. The implementation is generic enough to
support cross application functionality in heterogeneous application environments
other than Trinity.

This thesis is structured as follows. Section 2 provides background about different
agent-based solutions, language-independent serialization mechanisms, and discusses
a little about their implementation-specific details. It is followed by Section 3,
which constrains and solidifies the requirements for the agent architecture with full
support for language-independence. This section also introduces Trinity and its cross
application functionality. In Section 4, the model for agent architectures designed for
heterogeneous application integration is presented, along with language-independent
data structures and serialization rules for them. Next, in Section 5, the specifications
for implementations of the agent architecture in various languages are defined. The
design and implementation specifications are evaluated in Section 6. Finally, the
conclusions are presented in Section 7.
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2. AGENT ARCHITECTURES AND

LANGUAGE-INDEPENDENT SERIALIZATION

2.1 Background and Purpose of Agent Architectures

2.1.1 Overview of Agent Architectures

In the mid to late ’90s a new concept for distributed applications emerged, called
mobile code application. This concept means that applications are designed for
a networked environment. In such an environment the code is no longer always
available on one single machine. There are three different approaches described for
designing mobile code applications: remote evaluation, code on demand, and mobile
agent.[10] This thesis concentrates on the last approach.

Mobile agents are autonomous entities migrating between network places, using
services provided by one or more of these places. During migration, the agents
carry the logic on how to use the services and possibly some intermediate results.[10]
Currently, there seems to be less applications using mobile agent paradigm, while
the code on demand paradigm is very common [8]. However, as noted in [23], mobile
agents are suitable approach for e.g. application integration. The advantages of the
agents, like loose coupling and aspect-like nature, are also noted by Baumann et al.
[6], Gray et al. [15], as well as Lange and Oshima [18].

Franklin and Graesser [12] provide the following definition for an autonomous
agent :

“An autonomous agent is a system situated within and a part of an
environment that senses that environment and acts on it, over time, in
pursuit of its own agenda and so as to effect what it senses in the future.”

This definition emphasizes less the mobility and more the autonomy of an agent —
the fact that an agent is aware of its environment and is temporal. Thus, all agents
must have a beginning of their lifespan, and an end. Please note that the definition
above does not rule out biological agents, such as humans. However, only agents in
the context of software are considered whenever mentioned in this thesis.

Muhametsin et al. [19] explain the abstract concepts regarding agent-based archi-
tectures, from now on just agent architectures. The following text until Section 2.1.3
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is rephrase from that paper. In that paper, agents are defined as “functional entities
that use an infrastructure to achieve their goals”. As a common terminology, the
concepts of Execution Environment, Execution Unit, and Service are also defined.

The Execution Environment works as an abstraction for the operation environ-
ment for the agent, and provides ways to address Services and Execution Units.
The Execution Units use the Services to provide the cross-application functional-
ity. The Services may be API or data exposed by some application, or it may be
a core service provided by Execution Environment. Typically, an agent is mapped
to an Execution Unit. However, an agent may also consist of other agents or some
other Execution Units. Using these concepts, a migration of agent happens among
Execution Environments. During migration, the exchanged information is agent’s
execution state, the logic on how to use the services, and the intermediate results.
If the Execution Environments are written in different languages, this information
must be in a language independent form. [19]

2.1.2 Existing Agent Architectures

There is other aspect of the language independence in agent architectures besides
the format of information to be exchanged in language independent agent migra-
tion. This aspect is the need of Execution Units to use Services written in different
programming languages. There are at least three solutions to this aspect: Generic,
Common Language, and Native.

In the Generic approach an interpreter or a core environment exists for all the
needed languages. Additionally, the Generic approach also provides some generic
mechanism to use Services from Execution Units, for instance, messages or events.
In the Common Language approach, the Services are exposed through interfaces
defined in a language usable by all Execution Units. Finally, the Native approach
exposes Services directly in their native language. This requires ability to switch
Execution Environments during the execution of the agent, and therefore, the prob-
lem of representing Execution Units, including an agent, in a language independent
form.[19]

The various benefits and drawbacks of the three solutions mentioned above are
discussed in [19]. The paper also discusses which solutions Agentscape [21], Ara
[22], D’Agents [15] and TACOMA [16] use to solve the problem of using Services
written in different programming languages. Additionally, the paper mentions an
article by Cucurull et al. [9] discussing the interoperability of the complete agent
architectures. The article discusses also inter-language interoperability resembling
the Native approach, where different parts of the agent are implemented in various
programming languages. This enables agent visiting and using Services written in
various languages, and even dynamically selecting the most appropriate language to
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use if there are many implementations in different languages for some part of the
agent. As a disadvantage of this approach, the complexity of the agent is increased
[9].

It is worth mentioning that none of the Agentscape, Ara, D’Agents, and TACOMA
agent architectures use the Native approach. Therefore they do not need to solve the
problem of language independent agent migration. Instead, they solve the problem
of how the Execution Units use Services written in different languages.

2.1.3 Agent Architectures in Application Integration

When the thesis talks about applications, it is considered synonymous with pro-
cesses. The key property of agent-based architecture used in application integration
is the mobility aspect of agents. The mobility makes the agents natural candidates
for performing goals spanning over multiple applications inside some software envi-
ronments. The applications to be integrated may sometimes, though, be written in
different languages, for the reasons out of the control of the developers. One such
reason might be organization-wide policy to use some specific software in all possible
situations.

While e.g. D’Agents has support for multiple languages, it is not possible to, for
example, transport a Java-based agent and start it as a TCL process. The previously
mentioned agent architectures (Agentscape, Ara, and TACOMA) are not answering
to this question, but instead assume that the agent itself never actually visits an
application written in different language than the agent itself. However, using large
components via agents communicating with them in non-native way may become a
performance bottleneck and complex to implement. Therefore language-independent
agent transportation is an important aspect when designing agent architectures for
heterogeneous application integration.

One of the key questions regarding the language-independent agent transporta-
tion is the transportation format. More concretely, how to represent data in lan-
guage-independent fashion when it is inside an application, and when it is outside
the application on some transportation channel, e.g. network.

2.2 Existing Mechanisms for Language-Independent Serial-
ization

2.2.1 Extensible Markup Language

The most common technique for language-independent data exchange is Extensible
Markup Language [27], or shortly XML. It is encountered mostly on the Internet,
where Hypertext Markup Language 4.0 and higher is an application of XML [5].
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Additionally, many applications use XML to store their settings. This way the same
settings file can be used in different environments.

There also exists a Document Type Definition [27], DTD for short, mechanism
for validation of XML files. The DTD provides ways to validate whether an XML
document adheres to the set of the rules described in a DTD document. However,
the content of XML document still remains same whether or not it is adhering to
any DTD rules.

A short example of an XML document follows. The example document contains
a string named StringValue with the value “StringVal”, a number named Numerical-
Value with the value 667, and a complex value named ComplexValue which has two
named sub-values, a string named SubStringValue with the value “SubStringVal”
and a number named SubNumericalValue with the value 8. This example document
is seen in Listing 2.1.

<?xml version=" 1 .0 " encoding="utf−8" standalone="yes "?>
<documentRootElement>

<Str ingValue>Str ingVal</ Str ingValue>
<NumericalValue>667</NumericalValue>
<ComplexValue>

<SubStringValue>SubStringVal</SubStringValue>
<SubNumericalValue>8</SubNumericalValue>

</ComplexValue>
</documentRootElement>

Listing 2.1: An example XML document.

The <?xml tag is required in the beginning of the document in order to parsers
successfully identify the meta-information about the XML document. The document

RootElement is not part of the actual data to be encoded. It is there because
multiple root elements are not allowed in XML.

2.2.2 JavaScript Object Notation

An alternative to XML is the JavaScript Object Notation [11], abbreviated JSON.
It is a slightly more light-weight approach to language-independent data exchange,
but because of that, it is not as extensible as XML. One current use of JSON is as
an optional format for exporting bookmarks from Mozilla Firefox.

A major difference between XML and JSON is that where everything in XML
is textual, JSON has certain pre-defined ways of expressing numbers, text, boolean
values, value for nothing, arrays, and maps. As a short introduction to JSON,
Listing 2.2 shows how the data shown in Listing 2.1 is expressed with JSON. Note
that similarly to XML, JSON data must be inside a single construct.
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{
" Str ingValue " : " Str ingVal " ,
"NumericalValue" : 667 ,
"ComplexValue" : {

"SubStringValue " : "SubStringVal " ,
"SubNumericalValue" : 8 }

}

Listing 2.2: An example JSON output.

The output produced by JSON is slightly more compact than the corresponding
XML document. Additionally, it is now clear that the value of NumericalV alue

really is a number. The value is not a complex construct, it does not have quotes
around it, nor is it boolean value or value for nothing.

2.2.3 Apache Thrift

Apache Thrift provides a way to describe data and services, and is used by Facebook
[26]. To describe data, Thrift provides bool, byte, i16, i32, i64, double, string as
primitive types, and struct to be used in the same way as in C++. Instead of
C++ types, however, the Thrift types are used (all primitive types, struct, as well
as list, set, and map containers of any of the types). The serialization format for
data is not specifically defined in Thrift, except that it should be deterministically
serializable and deserializable, and the Thrift white paper [26] provides an API for
writing meta-data before and after each data type, in addition to actually encoding
the data itself.

Before listing the output of our example in the Thrift format, let us first define
the data structure of our example. Listing 2.3 shows the structs to be used in order
to serialize the data of our example. The map container is not suitable for having
the ComplexV alue, since the ComplexV alue has members of different types: text
and integer.

s t r u c t Example {
1 : s t r i n g Str ingValue ,
2 : i 32 NumericalValue ,
3 : ExampleSubStruct ComplexValue

}
s t r u c t ExampleSubStruct {

1 : s t r i n g SubStringValue ,
2 : i 32 SubNumericalValue

}

Listing 2.3: An example Thrift of structs.
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Using these structs, Listing 2.4 shows one possible output for serializing our
example with Thrift. In this example, all integers are serialized in little-endian
format, text has the amount of bytes of UTF-8 format as prepended meta-data,
struct fields have field ID (32-bit integer) and field type ID (one byte) as prepended
meta-data. The type ID for string is 73, the type ID for integer is 69, and the type
ID for structs is 63.

63︸︷︷︸
struct type ID

01 00 00 00︸ ︷︷ ︸
field ID

73︸︷︷︸
field type ID

09 00 00 00︸ ︷︷ ︸
text length in bytes

53 74 72 69 6E 67 56 61 6C︸ ︷︷ ︸
UTF-8 representation of StringVal

02 00 00 00︸ ︷︷ ︸
field ID

69︸︷︷︸
field type ID

9B 02 00 00︸ ︷︷ ︸
little-endian byte representation of 667

03 00 00 00︸ ︷︷ ︸
field ID

63︸︷︷︸
field type ID

01 00 00 00︸ ︷︷ ︸
field ID

73︸︷︷︸
field type ID

0C 00 00 00︸ ︷︷ ︸
text length in bytes

53 75 62 53 74 72 69 6E 67 56 61 6C︸ ︷︷ ︸
UTF-8 representation of SubStringVal

02 00 00 00︸ ︷︷ ︸
field ID

69︸︷︷︸
field type ID

08 00 00 00︸ ︷︷ ︸
little-endian byte representation of 8

Listing 2.4: An example of Thrift binary output.

2.2.4 Apache Avro

Apache Avro [28] is an API and transport protocol specification for serializing and
deserializing data structures in a language-independent fashion. All serialization
and deserialization must be done in accordance to an Avro schema in order to make
compact binary output. In fact, the schema is required for each serialization and
deserialization process. Similar to Thrift, Avro has a type system with primitive
types being null, boolean, int, long, float, double, bytes, and string. The complex
types of Avro are record, enum, array, map, union, and fixed. This rich type system
is required due to the fact that a variety of data structures must be expressed. The
schemas themselves may be represented in JSON format, and the schema for our
example is seen in Listing 2.5. Note that the example is relatively simple. Avro
schemas do provide more ways to define much more complex schemas.

{
" type" : " record " ,
"name" : "avro example schema" ,
" f i e l d s " : [

{"name" : " Str ingValue " , " type" : " s t r i n g "} ,
{"name" : "NumericalValue" , " type" : " i n t "} ,
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{"name" : "ComplexValue" , " type" : {
" type" : " record " ,
"name" : "avro example subschema" ,
" f i e l d s " : [

{"name" : "SubStringValue " , " type" : " s t r i n g "} ,
{"name" : "SubNumericalValue" , " type" : " i n t "}

]
}

}
}

Listing 2.5: An example of an Avro schema.

Avro has several tricks to reduce the size of the output serialization process. One
of these optimizations is to transform a signed integer into an unsigned one by
using ZigZag-encoding [1], and then serialize the resulting unsigned integer using a
variable-length [2] format. Listing 2.6 shows the result of serializing the data content
of our example into Avro binary format in accordance to the schema specified in
Listing 2.5. The VLZZ format means Variable-Length ZigZag-encoded format.

12︸︷︷︸
text length in VLZZ format

53 74 72 69 6E 67 56 61 6C︸ ︷︷ ︸
UTF-8 representation of StringVal

B6 0A︸ ︷︷ ︸
667 in VLZZ format

18︸︷︷︸
text length in VLZZ format

53 75 62 53 74 72 69 6E 67 56 61 6C︸ ︷︷ ︸
UTF-8 representation of SubStringVal

10︸︷︷︸
8 in VLZZ format

Listing 2.6: An example of an Avro binary output.

2.3 Mathematical Notions and Implementation-Related
Techniques

2.3.1 Mathematical Notions

The used mathematical notions and other notations are explained in this section.
We start by defining the power set in Definition 2.3.1.

Definition 2.3.1 (Power set). Let L be a set. The power set of L is P(L) = {A |
A ⊆ L}.

Basic notations for first-order logic are also presented. These notations are quite
standard.

Definition 2.3.2 (First-order logic syntax shorthands). Let n ≥ 1. Then
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1. a shorthand for ∀x1∀x2∀ · · · ∀xn

(
F (x1, x2, . . . , xn) → G(x1, x2, . . . , xn)

)
is

∀x1, x2, . . . , xn;F (x1, x2, . . . , xn) : G(x1, x2, . . . , xn),

2. a shorthand for ∃x1∃x2∃ · · · ∃xn

(
F (x1, x2, . . . , xn) ∧G(x1, x2, . . . , xn)

)
is

∃x1, x2, . . . , xn;F (x1, x2, . . . , xn) : G(x1, x2, . . . , xn),

3. a shorthand for ∀x; x ∈ A : G(x) is ∀x ∈ A : G(x), and

4. a shorthand for ∃x; x ∈ A : G(x) is ∃x ∈ A : G(x).

In order to operate on strings of symbols, some basic notations are defined for
clarity. These consists of defining an empty string, and a set of all non-empty strings,
of a certain alphabet.

Definition 2.3.3 (Basic definitions for operating with strings). Let K be a set of
symbols, and n ≥ 0. Then

1. the basic finite string b = a1a2 . . . an, where ∀i; 1 ≤ i ≤ n : ai ∈ K is a
concatenation of ais, and

2. the length of b is |b| = n, and if n = 0, then a1 . . . an = ε, the empty string.

3. Additionally, K ∗ = {a1a2 . . . an | n ≥ 0 ∧ ∀i; 1 ≤ i ≤ n : ai ∈ K} is a set of all
finite strings of K , and

4. the set K+ = K ∗ \ {ε} is a set of all non-empty finite strings of K .

It is not always obvious what various terms mean in connection with graphs. We
define the required terms now so that the definitions later in this paper would be
unambiguous.

Definition 2.3.4 (Terms and definitions related to graphs). Let V be a finite set
of vertices, and E ⊆ V × V the set of edges. Then

1. (V ,E ) is a directed graph,

2. a path is a sequence v0v1 . . . vn such that ∀i; 0 ≤ i ≤ n : vi ∈ V and ∀i; 1 ≤
i ≤ n : (vi−1, vi) ∈ E , and

3. in order to say y is reachable from x, in other words that there exists a path
from x to y, we use notation x →∗ y.

Please notice that Definition 2.3.4 (3) allows loops. There comes a need to express
something to be optional. This is achieved using the special object nil.

Definition 2.3.5 (The nil object). We define a special object nil to mean something
with no value.

For example, when one wants to express optionality of some element x of some
set X , one writes x ∈ X ∪{nil}. When x = nil, it is then interpreted as “having no
value”.
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2.3.2 Data, Context, Interaction Pattern

The implementation of the agent-based architecture this thesis describes has been
designed using the DCI (Data, Context, Interaction) [25] pattern. The concept of
data contains relatively passive data model for the software, it should not contain
any functionality or behaviour. The concept of context has the binding between each
role and each object. One object may be in one or more roles — typically a role is
an interface. The concept of interaction has the actual algorithms that operate on
the objects through roles. The algorithms use the role map provided by the context
to resolve the concrete objects based on the roles.

As a small example of what DCI pattern is aiming for, here is an excerpt from
Rickard Öberg’s weblog [7].

“As mentioned, with the transition from procedural to OO we went from:

procedure ( id , param1 , param2 )

to

object<id>. method (param1 , param2 )

And with DCI we are now going from:

s e r v i c e . method ( id1 , id2 , id3 , param1 , param2 )

to

context<id1 , id2 , id3>. i n t e r a c t i o n (param1 , param2 )”

This thesis uses the following interpretation of the DCI pattern. The data is
depicted by a standard UML [20] class diagram. Context classes or interfaces are
marked with the context stereotype, and the used role types are positioned on the
top-left side of the class or interface, with rectangles drawn in dashed line. Each
context type holds one or more interactions, visible as methods. Typically, For all
interactions of any context class there is a mapping available between the roles and
objects, with roles as keys. This mapping is fully readable and modifiable. The role
mappings are nested — any role mapping may have another role mapping as its
parent. If exists, the parent role mapping is used to lookup objects when an object
with a given role is not found in the current role map.

2.3.3 Composite Pattern

A data model often contains hierarchical data structures, which may be presented by
a tree with arbitrary depth. For these kinds of data structures, a composite design
pattern [13] is used. In this pattern, the tree items are either nodes or leaves. Nodes
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may have other nodes or leaves as children. Leaves can not have any children. The
composite pattern is shown in Figure 2.1.

Item

LeafNode
1

0..*

Figure 2.1: The UML class diagram of composite pattern.

Figure 2.1 shows that Item is a generalization of both Leaves and Nodes. This
way the user of the hierarchical data structure may treat both nodes and leaves in
a uniform manner [13].

2.3.4 Abstract Factory Pattern

When specifying interfaces to be used, the purpose is to abstract away the imple-
mentation. This means that we do not want the code that accesses the interface
to access the implementation. However, in order to create the concrete resources
implementing desired interfaces, there must be access to the implementation. To
solve this problem, an abstract factory design pattern [13] is used. Figure 2.2 shows
an example of an abstract factory design pattern.

+createSomething() : Something

«interface»

Factory «interface»

Something

+createSomething() : Something

FactoryImpl
SomethingImpl

«create»

Figure 2.2: The UML class diagram of an example of an abstract factory pattern.

The abstract factory pattern enables code, that only has access to the interfaces,
to create concrete resources. Additionally, there may exist several different imple-
mentations for a factory interface, and the user of the factory does not need to know
about which implementation it is using.
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3. AGENT ARCHITECTURES IN

MULTILANGUAGE ENVIRONMENT

3.1 The Multilanguage Environment

3.1.1 Heterogeneous Application Integration

A special case of application integration is heterogeneous application integration.
This means that applications within the software environment to be integrated are
not alike, implying that they may be written in different languages.

The domain-specific functionality in any application integration is beyond the
boundaries of single applications. This functionality requiring co-operation of mul-
tiple applications is called cross-application functionality in this thesis. Since the
applications may be written in different languages, the execution state and serializ-
ing mechanisms native to some language can not be used.

Often architecture used in heterogeneous application integration is message-based
[17, 30]. However, with message-based architecture solutions, the increase in number
and complexity of cross-application functionality tends to directly decrease main-
tainability and extensibility of the applications. [30]

Agent-based solutions are optimized for solving integration of control flow. By
using these solutions, each cross-application function can be implemented as a single
agent. Thus the maintainability does not decrease with new functions. To further
elaborate functionality of a heterogeneous software environment, a case study fol-
lows.

3.1.2 Case Study: Trinity Software Environment

A software modelling environment called Trinity has been developed at Tampere
University of Technology since 2008. The environment is seen in Figure 3.1. All
data related to modelling is kept in the data repository. The Model Management
Application, or MMA for short, uses the repository to visualize the model structure,
and each application of the manipulator “stereotype” uses the repository to visualize
a model or part of it. Additionally, all manipulators and the MMA require the
Main Application to run. The Main Application is responsible for some common
repository-related features, which are beyond the scope of this thesis.
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Data 

repository

Main 

Application

Model

Management

Application

«manipulator»

Visio Add-in

«manipulator»

Word Add-in

«manipulator»

Excel Add-in

«manipulator»

Eclipse Plug-in

esuesu

requirerequire

use

require

able to start and stop

use

Figure 3.1: Overview of the Trinity modelling software environment.

The Eclipse plug-in is written in Java for compatibility with the Eclipse envi-
ronment, while the remaining applications visible in Figure 3.1 are written in C#
language. It is a high-level language with access to the APIs for programs in the
Microsoft Office family (Word, Excel) and Microsoft Visio.

The data contained in the repository can be seen as a collection of models. The
actual data schema of the repository covers much more than just that, but for the
purpose of this thesis, it is sufficed to see the repository as a collection of models.
The rest of unrelated data is composed of things and settings specifically related to
some application part of Trinity, but it is not used by other applications.

Each model can have an arbitrary amount of views, while each view can have an
arbitrary amount of view elements. Each view element contains the visualisation-
related data, and has exactly one associated model element, which contains all data
related to the modelling.

Trinity has multiple cross-application functions, each of them with constraints on
where the functions may be started and what and where it does. Below is some of
the current cross-application functionality of Trinity.

Function: Opening view

Possible starting applications: MMA, Main Application.

Description: commands a manipulator application to show a specified view
stored in the repository. Will start up the manipulator application if it
is not running.

Function: Closing view

Possible starting applications: MMA, Main Application.
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Description: commands a manipulator application to close a specified view
that it is possibly showing. Does nothing if the manipulator application
is not showing that view.

Function: Closing manipulator application

Possible starting applications: MMA, Main Application.

Description: commands a manipulator application to shut itself down. Does
nothing if that application is not running.

Function: Informing about opening a view

Possible starting applications: Any manipulator application.

Description: informs the MMA application that this manipulator applica-
tion successfully opened a view. Does nothing if the MMA application is
not running.

Function: Informing about closing a view

Possible starting applications: Any manipulator application.

Description: informs the MMA application that this manipulator applica-
tion successfully closed a view. Does nothing if the MMA application is
not running.

Function: Informing about manipulator application shutting down

Possible starting applications: Any manipulator application.

Description: informs the MMA application that this manipulator appli-
cation is shutting down. Does nothing if the MMA application is not
running.

Function: Selecting a view element

Possible starting applications: MMA, Main Application.

Description: commands a manipulator application to select a specified view
element. If the view owning this view element is not currently open in
this manipulator application, the application will open it.

Function: Validating a model

Possible starting applications: MMA.

Description: takes some model in Trinity repository, transforms it into an
EMF [14] format, and uses Eclipse-based tool to perform validations on
the model.
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Part of the responsibilities of the MMA is to show which views are currently
opened. However, views may be opened by other applications than MMA. Therefore
the MMA needs to know which manipulator is showing which view. This is why the
functionality related to informing MMA about opening and closing views is present.

3.1.3 An Example of a Cross-Application Function

Let us take opening view as an example functionality. This function is shown in
Figure 3.2. The figure uses UML Statechart notation to represent each unit of work
as a state, and transitions between states as transitions between units of work.

Start Manipulator Application

Tell the Manipulator Application to open view

[Application is not running]

[Application is running]

Figure 3.2: The cross-application functionality of opening view.

Figure 3.2 shows that the manipulator application will be started if it is not
running. Only once it is running, will it be commanded to open the specified view.
The function to open a view will have the view identification information and the
exact type of manipulator specified at the beginning. This example will be continued
after the design of the agent architecture has been specified.

3.2 Requirements for the Agent Architecture

3.2.1 General Requirements for the Agent Architecture

From the perspective of software development, the main goals for the language-in-
dependent agent architecture is to support incremental development and to increase
maintainability. Additionally, the work load distribution is also essential require-
ment. In a context of heterogeneous application integration these requirements to-
gether allow quick implementation of complex cross-application functionality. This
functionality still remains easily maintainable and evolves painlessly during software
lifetime.

The requirement for an agent architecture with full language-independence with
mobile agents is that the architecture itself must be designed in such a way that
transporting agents between applications written in different languages is feasible.
Therefore there must be a way to express the full state of an agent, in a language-
independent way, so that the execution may be fully resumed after transportation.
Since the execution states are incompatible between different languages, the execu-
tion model of the agent must be descriptive in a language-independent way. Addi-
tionally, to make the transportation transparent for users of the agent architecture,
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there should be a concept of pause in execution flow, when the transportation may
occur. During this pause, if the agent transportation occurs, the data and execution
state of the agent are serialized and transported to another location. Consequen-
tially, the agent architecture must have its own concept of execution state, so it
would know where to resume the execution after transportation.

The agent architecture must have some specification on how the agents interact
with an environment. This specification must be abstract enough to provide a uni-
form method of the interaction, but also be customizable enough to make interaction
seamless when using the agent architecture.

The agent architecture must provide an easily understandable way for the ap-
plications to connect to each other. This connectivity specification must also be
customizable, allowing users of the agent architecture to write their own implemen-
tations for non-standard network channels. In this thesis, the standard network
channel is considered to be a TCP connection. This kind of connection easily ab-
stracts away the connection either to a different application on the same computer,
or a different application on a different computer.

Furthermore, the description of the destination of agent transportation must be
expressible in a language-independent format. This is required, for example, in a
situation where an agent is transported from application A to application B through
application C. Each of these applications may be written in different languages.
Therefore, the task destination lookup must operate on a more abstract level than
the types of a programming language or other native constructs.

3.2.2 Constraints for the Agent Architecture from the Case
Study

There are multiple approaches for designing a system to be used in a cross-language
environment. For example, one approach would be to create a language-independent
format to describe the behaviour and the knowledge necessary to use the components
of the system. Another approach would be to develop a custom-made framework for
each programming language in the environment, and agree on an interchangeable
format for the frameworks to communicate and transport agents between each other.

The approach chosen for this use case is the latter, where agent architecture exists
as a customized framework for each language, but the communication between the
frameworks is of a certain format. This approach has been chosen for the Trinity
environment because the Microsoft Office family only supports a few languages
for implementation of Office add-ins. However, the plug-in for Eclipse must be
implemented in Java, since Eclipse is written in Java. Therefore it is feasible for
there to be many “incarnations” of the agent architecture on different languages.
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There are two main requirements for the chosen agent-based approach to hetero-
geneous application integration. The first is that the execution state of the agent
should be fully serializable in such a way that execution may be resumed in any
language after deserialization of the agent. The second requirement is that the
data state of the agent should be accessible and modifiable in a uniform way across
many languages. The latter exists to ensure maintainability and extensibility of
each cross-application function.

The most important requirement for the interchangeable communication format
is that serializing and deserializing things with it does not happen too slowly. The
agents may arrive in very quick succession in some applications, therefore it is useful
to spend as few cycles as possible on (de)serialization. All performance- related
resources that the application can spare should be given to the agents.

One can conclude from Section 2.2 that Avro is the most compact format of
those presented in this thesis. The reason for Avro being the most compact is that
the schema provides the required meta-information in order to know what type of
data comes next. However, when creating a framework to be used in demanding
environments, schemas are not always known for every single item being serialized
or deserialized. Furthermore, in order to minimize workload, it is unwanted for an
agent programmer to provide a schema every time he or she stores data into an
agent. This is because the Trinity environment is meant to be developed in a rapid
succession of brief steps.

In order to support serializing data without a schema, a hybrid approach is re-
quired. In this approach, the data is serialized in a more compact format whenever
a schema is present. Otherwise the less compact format will be used in order to
enable deserialization without the schema.

Error tolerance has little impact on the implementation of Trinity at this stage
due to the reliability of the current network protocols. Thus the error tolerance is
not considered as an important requirement, yet.
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4. THE LANGUAGE-INDEPENDENT AGENT

ARCHITECTURE

4.1 A Model for the Language-Independent Agent Architec-
ture

4.1.1 Conceptual Architecture

As a starting point for the agent architecture, the design presented by Peltonen and
Vartiala [23] was used and enhanced to fully support language-independence. A
basis for this design was chosen to be Native approach, described in Section 2.1.2,
mainly due to the fact that it is very efficient to call Services in native way. Figure 4.1
depicts this design, also presented in [19].
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Figure 4.1: The design of the language independent agent architecture.

The following explanation of the Figure 4.1 until mentioned otherwise is a direct
excerpt from [19]. In the proposed model, the agent infrastructure consists of hier-
archical and parallel Execution Environments called areas. Each area is written in
the programming language of its host applications. A main area can be composed
of sub-areas. This way a larger Execution Environment, like a single computer in a
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network, can be composed efficiently of smaller ones, having, e.g. their own process
borders.

Areas consist of locations that provide Services, and can be either application
adapters or transporters. An application adapter acts as a bridge between the agent
architecture and an application. There may be several application adapters for an
application, and each application adapter may expose only certain logically con-
nected parts of the full API of the application. A transporter is a core service for
transporting agents to and from other areas. Its purpose is to abstract away the
actual implementation of transporting data over some network channel.

Agents are the top-level Execution Units in this model. An agent contains the
business logic of a single aspect in the system. As an important feature, all agents are
mobile, i.e. they are serializable and may be transported among different Execution
Environments. Each agent has an execution plan composed of tasks, transitions
between them, and conditions limiting the transitions. An agent has also a data
container the tasks use to access the data carried by an agent.

Tasks are the the smallest Execution Units in an agent architecture based on this
model. They use the Services provided by locations to perform their functionality.
Each task is performed on a single location of a single area, and thus, a task is
written in the same programming language as the location it uses. Within an agent,
tasks can be executed sequentially, in parallel, or in a combination of both.

Each agent has a common data container for all its tasks. The data container
stores the domain-specific data of the agent in a language independent format. This
way the same data is available for all tasks, regardless of the language. Thus, the
tasks can share data, i.e. communicate, with other tasks of the agent in an efficient
and language independent way.

A critical part in a design of a language independent agent architecture according
to this model, is the transportation of an agent. As mentioned before, each task is
always performed in a single location in a single area. Therefore, the migration of
the agent is constrained to occur only in the transitions between tasks.

Agents migrate between locations, and locations can be written in various lan-
guages. Therefore, the transportation format must be language independent. The
need for transportation and the heterogeneous environment together imply that the
full state of the agent, composed of data state and execution state, must be describ-
able in a language independent fashion. However, the full internal execution state
of the task does not need to conform to this requirement.

As seen in Figure 4.1, task, area, and location have tags. These tags exist because
of the need for tasks to express the required location in a language independent way.
Each tag is a single unit of some data describable in a language independent way.
When a task needs some specific location, it only needs to provide the tags that
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the location, and possibly the area owning the location, must have, instead of using
native information. Using the tags provided by the task, the agent architecture can
take care of finding the proper location, and transporting the agent there automat-
ically. Importantly, also the tasks themselves have tags, since the native tasks need
to be resolved based on language independent information of agent execution state.
This enables the re-use of tasks, since an agent only needs to provide the tags for the
required tasks, and the agent architecture will take care of looking up the correct
task and transporting agent to the target site.

The transportation format used to transport agents and data between trans-
porters needs to be carefully specified. If changes are made to the format, agent
architectures for all languages used in a software environment must be upgraded to
be compatible with the new format. If this kind of an upgrade needs to be done,
is should be transparent for the users of the agent architecture, as they are not
required to directly interact with the transportation of the agent.

At this point ends excerpt from [19]. As a side-remark, on high level, this im-
plementation of agent architecture adheres to the DCI principles. The task acts as
interaction, the data container acts as data, and the location together with area and
methods act as context. This is purely coincidental and was not intended by the
designers of agent architecture.

4.1.2 An Example of Implementing a Simple Function As an
Agent

This section continues the example begun in Section 3.1.3. Constructs required
by the function for opening view and related to the agent architecture are shown
in Figure 4.2. For the purpose of demonstration, the manipulator in question is
Eclipse. Therefore, the task to start a manipulator is written in C#, whereas the
task to open a view is written in Java. The agent architecture infrastructure setup
for this situation has one instance of Area for each application. The manipulator
has a sub-area connected to the main area of the Main Application. Every time the
manipulator starts, the sub-area is created inside the manipulator and connected
to the main area. Consequentially, every time the manipulator shuts down, the
sub-area is deleted in the manipulator and disconnected from the main area.

The functionality itself is represented by an agent. Each part of the function,
shown in Figure 3.2 as a state, is a task. The agent will be created and started
up in the area of the MMA, and the agent will be transported to the area of the
manipulator for its final task. The task structure of the agent imitates closely the
structure of the function itself. At the agent execution time, the task to start the
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Figure 4.2: The constructs related to agent architecture of the example.

manipulator application will do nothing, if the manipulator is already running. The
task to start the manipulator does not have any specific location requirements.

The tasks and locations are now neutral to what languages the MMA and the
manipulator are implemented in. The tasks to start up the manipulator will be
implemented in the language of the MMA, and the task to show data will be imple-
mented in the language of the manipulator. The areas, locations, and transporters
used will be implemented in whatever language the application they reside in are
implemented. As an additional benefit, these tasks may be reused in other agents
representing additional cross-application functionalities.

4.1.3 An Example of Implementing a Complex Function As
an Agent

Complex cross-application functionality also maps into agent. Section 3.1.2 contains
a list of various functionality in Trinity. Figure 4.3, adapted from [19], shows the
agent and the infrastructure it requires for the last function in that list, the model
transformation into EMF format. The “Modeling UI” in Figure 4.3 means same as
MMA in this thesis.

As before, the dashed line represents the route an agent travels during the model
transformation. At first, the agent is created as a result from user input in MMA.
The agent then reads the desired model into its data container at stage two. Then,
a language-independent agent transportation occurs at third stage. In stage four,
the actual model transformation into EMF format happens. The transformation
utilizes Eclipse API for creating EMF objects, and uses agent’s data container as
input. Finally, at stage five, the testing and validation tool is started and EMF
model is passed to it. After the tool completes, it will display results to the user.
More detailed description is provided in [19].
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Figure 4.3: The applications, agent architecture infrastructure, agent, and tasks of the
EMF model transformation.

4.2 Language-Independent Definition of the Agent State

4.2.1 The Formal Definition of the Agent State

The different implementations, one for each language, of the agent architecture
presented in this thesis must be compatible between language boundaries. Therefore,
the full state of any agent must be defined in a language-independent fashion. First
the basic components used throughout definitions concerning agent state are defined
in Definition 4.2.1.

Definition 4.2.1. Let the set of all Unicode symbols [29] be Σ. Then

1. the set of all possibly usable task outputs is TO = Σ∗,

2. the set of all possibly usable instance IDs is I = Σ+, and

3. the set of all possibly usable tags is T = Σ+ × Σ+.

A function to retrieve agent state, when agent’s instance ID is given, is defined
next. This function might return different results, depending at which point in
lifecycle of agent the function is called, since the state of the agent most likely is
changing as the agent is being executed. One way to map this function to reality is
that this function is interpreted as the agent architecture. The function consumes
the instance ID of the agent, and returns the state for such agent.

Definition 4.2.2 (The function to retrieve an agent state). To begin, a set of all
possible execution states for any agent is defined to be ES , and a set of all possible
data states for any agent is defined to be DS . Let I be as in Definition 4.2.1 (2).
The function to retrieve an agent state with given agent instance ID is AS : I →
{nil} ∪ (ES × DS ). AS produces nil if the agent with given instance ID does not
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exist in agent architecture environment. However, if the agent exists, it will return
the state of the agent as ∈ ES × DS .

Next, constraints for ES and DS are defined, so that results produced by AS are
meaningful. First, the constraints for a set of all possible execution states ES are
defined.

Definition 4.2.3 (Constraints for execution states). All elements of ES are of the
form (V ,E , v̂,VT ,ET ,EX ), where

1. V is a set, and E ⊆ V × V . Together V and E are interpreted as a directed
graph. This graph is called the agent task graph, since every vertex represents
a single task to execute, and edges are transitions between tasks.

2. v̂ ∈ V is a root vertex of the task graph. It must hold that every vertex is
reachable from the root vertex, that is, ∀v ∈ V : v̂ →∗ v.

3. VT is a function such that VT : V → P(T ), where T is as in Definition 4.2.1
(3), and ∀v ∈ V : |VT (v)| < ∞. The meaning of VT is that it returns a set
of tags, which the agent task must have so that the task represented by this
vertex gets executed.

4. ET is a function so that ET : E → P(TO), where TO is as in Definition 4.2.1
(1), and ∀e ∈ E : |ET (e)| < ∞. The meaning of ET is that in order for the
task represented by target vertex vt to be executed, the task represented by
source vertex vs must return task output tovs such that tovs ∈ ET (vs, vt).

5. EX ∈ P(EP × ST ) is a set of the execution lifelines of the agent. The EP

is a set of all possible paths starting at v̂ so that EP = {ep0ep1 . . . epn |
n ≥ 0 ∧ ep0 = v̂ ∧ ∀i; 1 ≤ i ≤ n : (epi−1, epi) ∈ E}, and ST is a set of
execution statuses such that ST = {executing, in_transition, stopped}.
The meaning of EX is that it is a set of all current execution lifelines of the
agent.

Additionally, the elements V ,E , v̂,VT , and ET are fixed for each agent. That is,
given specific agent instance ID, they must always stay the same regardless of the
call time of AS .

Each time the task completes, the vertex representing this task is added to the
path of the current execution lifeline. Furthermore, for all epi+1 in all paths, the task
executed by epi returned task output to so that to ∈ ET (epi, epi+1). This means
that execution path must traverse only those edges, for which there exist task output
in ET .
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If EX = ∅, then agent execution is considered to be stopped. If there are many
execution lifelines with status other than stopped, then it means that the lifelines
are executing concurrently. Next, the constraints for all possible data states DS are
defined.

Definition 4.2.4 (Constraints for data states). All elements of DS are of the form
(aid, hlid,N ,VN ), where

1. aid ∈ I , where I is as in Definition 4.2.1 (2), is the instance ID of the agent.
It must hold that AS (id) produces the state which has the instance ID aid of
same value as id given to AS .

2. The hlid ∈ I is the instance ID of the home location of the agent,

3. N is a domain-specific set of names for domain-specific data contained by this
agent. Formally, N ⊆ Σ+ and |N | < ∞.

4. VN is a function VN : N → LI . It returns the language-independent data
structure for each name in N . All elements of LI are software objects.

Additionally, the elements aid and hlid are constants for each agent.

4.2.2 Agent State During Transportation

In order to specify more concretely what sort of data is transported in agent trans-
portation, a set of properties for agent state during transportation is defined. First,
we decompose this state into two parts: the execution state, and the data state.
Additionally, we assume that all areas, locations, and agents have an ID unique in
the scope of their type. This means that an area and an agent may have the same
IDs.

Data state — agent architecture related

Agent instance ID The ID of the agent.

Home location ID The ID of location, where agent was originally created.

History information An ordered list, in ascending order, of history infor-
mation items. The order is determined by completion time of each task.
After execution of a task has been completed, the history information
item is appended to this set. This item is composed of the tags of the
task, the ID of location, and an UTC time of completion of the task.

Destination

Criteria for area tags A set of tags that area must have in order to
execute the next task. Optional.
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Criteria for area ID The ID that area must have in order to execute
the next task. Optional.

Criteria for location tags A set of tags that location must have in
order to execute the next task. Optional.

Criteria for location ID The ID that location must have in order to
execute the next task. Optional.

Criteria for agent history True if the location ID may be in history
information of this agent. False otherwise.

Data state — domain-specific

Data container The contents of the data container of the agent.

Execution state

Task graph

Vertices A set of task graph vertices. Each vertex represents a task to
be executed, and has an ID, unique in scope of this graph, and a set
of tags. The actual task must have all the tags of this vertex to be
executed.

Edges All the transitions between vertices. Each transition has the pre-
vious and next vertices, and the task output (a single string), which
the previous task must return in order the transition to be used.

Next task The ID of the vertex in task graph, which will be used to search
for the next task to execute.

In the execution state, there is only one vertex for the task to be executed next.
This is because transportation occurs one execution lifeline at a time. Thus, only
one task at a time may be executing at any point in the lifeline. There is a possibility
for execution lifelines to perform forks (where a single lifeline spawns at least one
new lifeline) and joins (where at least two lifelines merge into one). Hence, there is
a need to define what exactly happens during such join. That is, what to do when
two lifelines with different data container are merged? The answer for this question
is not presented in this thesis, since the agent architecture is still in prototype stage.

4.3 Language-Independent Data Structures

4.3.1 Language-Independent Data Structure Types

In order to have a uniform way of handling the language-independent data in dif-
ferent programming languages, we define here a set of language-independent data
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structure types. The types are further decomposed into atomic types and composed
types. Each atomic type contains a single datum easily transformable and under-
standable in a type systems of most programming languages. Correspondingly, each
composed type is a container for other language-independent data structures, and
also easily transformable and understandable in a type systems of most programming
languages.

Next we list all language-independent data structure types required for agent
architecture operation. Formally, we define types for the software objects in set LI

defined in Definition 4.2.4.

Atomic types

Int32 and Int64: data structures representing signed 32-bit and 64-bit in-
tegers, respectively.

Real32 and Real64: data structures representing 32-bit and 64-bit floating
point values [4], respectively.

String: data structure representing a string of n characters, where n ≥ 0.

Boolean: data structure having two possible values, either true or false.

Binary: data structure representing sequence of n binary numbers, where
n ≥ 0.

Composed types

List: data structure representing an ordered list of n other data structures,
where n ≥ 0.

Map: data structure representing an unordered list of named other data
structures. Each name is unique in scope of a single Map.

These data structure types are enough to present data common to all program-
ming languages. However, the user of the agent architecture is able to extend these
types and provide her own custom types.

4.3.2 Serialization Rules for Language Independent Data
Structures

Each language-independent data structure type has a serialization rule. This rule
is two-way in the sense that unambiguous deserialization must be possible from the
serialized format without any loss of data. The serialization format is binary in order
to be as compact as possible. The rules have two variations: one variation should be
used when schema is available during serialization of data structure, and the other
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variation should be used when such schema is not available during serialization of
data structure.

Now follows a list of serialization rules for all defined language-independent data
structure types.

Int32 and Int64:

Serialized with schema: variable-length [2] ZigZag [1] encoding, in little-
endian byte order.

Serialized without schema: serialized unique string value for the type of
data structure, followed by same value as when serializing with schema.

Real32 and Real64:

Serialized with schema: 32 and 64-bit number, respectively, as defined in
IEEE 754 [4], in little-endian byte order.

Serialized without schema: serialized unique string value for the type of
data structure, followed by same value as when serializing with schema.

String:

Serialized with schema: amount of bytes of string encoded in UTF-8 for-
mat [29], as per serializing Int64 with schema, followed by the encoded
string.

Serialized without schema: serialized unique string value for the type of
data structure, followed by same value as when serializing with schema.

Boolean:

Serialized with schema: for true, byte 1, and for false, byte 0.

Serialized without schema: serialized unique string value for the type of
data structure, followed by same value as when serializing with schema.

Binary:

Serialized with schema: amount of bytes, as per serializing Int64 with
schema, followed by the bytes.

Serialized without schema: serialized unique string value for the type of
data structure, followed by same value as when serializing with schema.

List:
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Serialized with schema: amount of contained items, as per serializing
Int64 with schema, then for each contained item, whether it matches any
contained schema, as per serializing Boolean with schema, followed by, if
needed, index of matched contained schema, as per serializing Int64 with
schema, followed by serialized contained item.

Serialized without schema: serialized unique string value for the type of
data structure, followed by same value as when serializing with schema.

Map:

Serialized with schema: for each named sub-schema, in ascending alpha-
betical order, whether the corresponding contained item is present, as per
serializing Boolean with schema, followed by serialized contained item,
as with List. For all remaining contained items, amount of the remain-
ing contained items, as per serializing Int64 with schema, then for each
contained item, the name of item in Map, as per serializing String with
schema, followed by serialized contained item, as with List.

Serialized without schema: serialized unique string value for the type of
data structure, followed by same value as when serializing remaining con-
tained items when serializing with schema, only using all of contained
items as remaining items.

The unique strings mentioned in the serialization rule list are listed in Table 4.1.
It is assumed that possible extensions to the language-independent data structures
will not be using these same strings for their custom data structure types.

Table 4.1: Unique strings for each data structure type defined in this thesis.

Data structure type The unique string identifying the type

Binary bi
Boolean b
Int32 i
Int64 l
Real32 f
Real64 d
String s
List o
Map m
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5. IMPLEMENTATION OF THE

LANGUAGE-INDEPENDENT AGENT

ARCHITECTURE

5.1 The Implementation of the Agent Architecture

5.1.1 The Data Content Definition of the Agent Architecture

The implementation of the agent architecture follows DCI pattern quite closely. The
data model of the agent architecture itself is very static, as seen in Figure 5.1. The
only extension point is LIObject, covered later. The LIObject represents the base
type of all language-independent data structures.

Area

Location

-homeLocationID[1] : Text

-visitedLocationInfos[*]
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TaskInfo Available tasks
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1

1Agent’s starting task

Figure 5.1: Data model for agent architecture.

The data model in Figure 5.1 shows that area, location, and agent all have in-
stance IDs. This ID is some arbitrary string, and it should be unique in domain-
specific scope, which may be anything from a single application on single computer
to big cloud network. Area has zero or more locations, and zero or more tasks are
available for execution on the area.

The agent contains an arbitrary amount of LIObjects, associated with manda-
tory unique name, and optional schema to use when serializing the LIObject. All
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information about the tasks of the agent, and the order of tasks to execute, is in
TaskTransition and TaskNode objects. The transition has previous node, next node,
and task output. When task described by previous node completes with transition’s
task output, the task(s) described by the next node should be executed next. The in-
formation about currently parallelly executing tasks of the agent is available through
association between Agent and TaskNode. The other association between those two
classes specifies the very first task to be executed by the agent.

5.1.2 Functionality of the Agent Architecture

In order to retrieve the methods for location and tasks for tags, the DCI pattern
is used. The contexts, interactions, and creators for location method and task
retrieving are seen in Figure 5.2 and in Figure 5.3, respectively. In the Figure 5.2
there exists a singleton object LocationMethodRetrieverService, marked with service
stereotype. The service contains the mapping used to look up the context creator
for appropriate location based on the tags of the location itself and the area owning
the location. This creator then creates an instance of the concrete subtype of the
RetrieverContext containing the implementation for actually retrieving methods for
this location.

RetrieverContextCreator

-Area ID : Taggable

-Location ID : Taggable

LocationInfo

«create»

{Location info 

is unique}

+createContext(in  : Location, in  : AgentTask) : RetrieverContext

«service»

LocationMethodRetrieverService

+getMethods()

«context»

RetrieverContext

1

*

{Disjoint, Incomplete}

Location

Figure 5.2: Contexts and interactions related to retrieving location methods in the agent
architecture.

The Figure 5.3 has TaskPool as service mapping context creators based on task
tags. After looking up the context creator, the service creates context, which is
actually AgentTask in this case. The task has Agent and Location as two required
roles. The task may use the location to retrieve the methods using LocationMethod-
RetrieverService. The agent architecture is responsible of maintaining the execution
of agent and using TaskPool to retrieve correct tasks for the agent.
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+getTask(in  : Taggable, in  : Agent)

«service»

TaskPool

-Tags : Taggable

TagInfo

{Tags are unique}

1 *

{Disjoint, Incomplete}

+executeTask() : Text

+getRequirements() : TaskDestinationSearchFilter

«context»

AgentTask

TaskCreator

«create»

Agent

-matchingAreaTags : Taggable

-matchingAreaID : Text

-matchingLocationTags : Taggable

-matchingLocationID : Text

-visitedLocationAllowed : Boolean

TaskDestinationSearchFilter

«create»

Location

Figure 5.3: Contexts and interactions related to retrieving tasks in the agent architecture.

5.1.3 An Example of Using the Agent Architecture Tasks

This section continues example of Section 4.1.2. Figure 5.4 shows the tags for agent
architecture infrastructure defined in Figure 4.2. This figure has been extended
from Figure 4.2 by specifying which tags each entity has. Agent architecture will
automatically assign the IDs for each entity, if needed, so they are not required to
be explicitly defined. Typically, the decision of what kind of tags things have is
design-time decision.
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Figure 5.4: The agent architecture setup for the opening a view in Eclipse.

The tags are shown as a rectangle with dashed border line inside the boxes of the
used areas, locations, and tasks. Inside the rectangle, each tag is on its own line.
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The pattern for the text on each line is key = value. The tags of the Transporter
are omitted from the picture for brevity.

Now that the tags has been decided, it is time to actually implement things. Let
us assume that the MMA is written in C#, and the Eclipse plug-in is written in Java.
Two methods shown in Listing 5.1 contain the code required to construct the main
area of MMA. This code uses the AreaFactory and TaskPool services to create area
and set up the task pool, respectively. The AreaFactory is part of abstract factory
design pattern used to create Areas. These services are singletons and obtained at
run-time using suitable frameworks of the native language.

public class MMASetup
{

public Area CreateTAArea ( AreaFactory areaFactory )
{

return areaFactory . CreateSubArea (new MMAAreaArchetype ( ) ) ;
}

public void DoMMATaskPoolSetup( TaskPool taskPool )
{

taskPool . Regis terContextCreator (
new DefaultTaskCreator (

new StartAppl icat ionTaskArchetype ( )
) ) ;

}
}

Listing 5.1: Setting up the agent architecture environment for the sub-area of MMA.

The MMAAreaArchetype is a simple class implementing the required interface
specified in agent architecture. This interface has methods to extract the information
about what kind of tags, tasks, and locations the area will have. Thus building an
area is a very simple action.

The StartApplicationTaskArchetype is similarly to MMAAreaArchetype informa-
tion-encapsulating class about the starting application task. The task archetype
provides information about the tags associated with the task, and the class of the
task. Thus the TaskPool service will use the tags to locate the correct context cre-
ator, and the context creator will know which class to instantiate. This instantiated
class will be the task to be executed. The code for both MMAAreaArchetype and
StartApplicationTaskArchetype is given in Appendix 1.

The agent arhictecture-related task implementation to start an application can
be seen in Listing 5.2. Each task must implement the AgentTask context interface
defined by agent architecture. Additionally, agent architecture provides an Agent-
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TaskSkeleton, a helper class with implementation for DCI-related things. This way
task writer can concentrate on actual task. The AgentTaskSkeleton class also imple-
ments AgentTask but leaves those methods abstract, hence the ShowDataTask only
extends AgentTaskSkeleton without needing to explicitly implement AgentTask.

public class StartAppl i cat ionTask : AgentTaskSkeleton
{

public override TaskDes t ina t i onSearchF i l t e r GetRequirements ( )
{

// A l l o ca t e the f a c t o r y
TaskDest inat ionFactory td f = . . . ;

return td f . Crea t eF i l t e r (
null , // Any area ta g s are ok
null , // Any l o c a t i o n t ag s are ok
null , // No need to match s p e c i f i c area ID
null , // No need to match s p e c i f i c l o c a t i o n ID
true // V i s i t e d l o c a t i o n s are a l l owed

) ;
}

public override St r ing ExecuteTask ( )
{

// Agent and Locat ion are r o l e s o f AgentTask
Agent agent = this .RoleMap .Get<Agent>() ;
Locat ion l o c a t i o n = this .RoleMap .Get<Location >() ;

// S ta r t up a pp l i c a t i o n i f needed
. . .

// Return ta s k r e s u l t t e l l i n g t ha t a l l went f i n e
return "TaskResultOK" ;

}
}

Listing 5.2: Model implementation for task to start up application.

The GetRequirements method returns the filter to match locations against when
searching the location to execute task. The task to start the application can be
executed on any location, since it does not use any location methods. Therefore all
task destination filter values are null. Abstract factory pattern is used once again
to create TaskDestinationSearchFilter in order to express required location for task.
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The ExecuteTask method will be invoked only when suitable location has been
found for the task to execute on. Inside the method, it is shown how one gets hold
of agent and location. Furthermore, it is visible how the task result is returned.

Listing 5.3 contains the code necessary to create an agent and start it up. Once
again, the archetype is used to provide agent architecture with required information
in order to create new agent. For this example functionality, the task graph is
simple, as shown in Figure 5.4. There are two tasks to execute, and there is only
one transition from first to second task. The the requirement of the transition that
the output of the previous task is TaskResultOK. The agent archetype is given in
Appendix 1.

public void OpenView( AgentFactory agentFactory ,
S t r ing manipulatorInfo , S t r ing appl i cat ionPath ,
Int32 viewID ) {
agentFactory . CreateAgent (

new OpenViewAgentArchetype (
manipulatorInfo , app l i cat ionPath , viewID )

) . StartExecutingInNewThread ( ) ;
}

Listing 5.3: Instantiation of agent for opening a view.

The agent archetype is given chance to add some data to its Data Container
before the agent is returned to whoever wanted to create it. In this case, the name
of manipulator, its application path, and the ID of the view are added to agent’s
Data Container. Once the agent has been created, it is started by either Star-
tExecutingInNewThread or StartExecutingInThisThread methods. The first method
creates designated thread to start executing the agent, and the second one blocks
until this agent execution lifeline stops or the agent is transported elsewhere. No
further actions are required from the user of the agent architecture. The framework
will take care of the task resolution, the serialization and the deserialization, and
the transportation of the agent.

Listing 5.4 and Listing 5.5 show the required code to set up sub-area of Eclipse
plug-in and the implementation of the task to show data, respectively. Note that
except for different syntax, code is very similar to C# version.

public class Ecl ipseSetup
{

public Area createTest ingArea ( AreaFactory areaFactory )
{

return areaFactory . createArea (new TestingAreaArchetype ( ) ) ;
}
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public void doEcl ipseTaskPoolSetup ( TaskPool taskPool )
{

taskPool . r eg i s t e rContex tCrea to r (
new DefaultTaskCreator (

new OpenViewTaskArchetype ( )
) ) ;

}

public void doEc l ipseLocat ionSetup (
Locat ionMethodRetr i everServ ice methods ,
Ec l ipseManipu lator manipulator )

{
methods . r eg i s t e rContex tCrea to r (

new DefaultLocationMethodContextCreator (
new Tags ( // Area tag s

new Tag( "example" , " i n f r a " ) ,
new Tag( " i n f r a " , "TestingArea " )

) ,
new Tags ( // Locat ion ta g s

new Tag( "example" , " i n f r a " ) ,
new Tag( " i n f r a " , " Ec l i p s e " )

) ,
manipulator // Resource

)
) ;

}

Listing 5.4: Setting up the agent architecture environment for Testing sub-area.

public class OpenViewTask extends AgentTaskSkeleton
{

public TaskDes t ina t i onSearchF i l t e r getRequirements ( )
{

Agent agent = this . getRoleMap ( ) . get (Agent . c lass ) ;
St r ing manipu lator In fo = agent . getDataContainer ( )

. get ( "manipulator " ) . t oS t r i ng ( ) ;
TaskDest inat ionFactory td f = . . . ;

i f ( " Ec l i p s e " . equa l s ( manipu lator In fo ) )
{

return td f . c r e a t e F i l t e r (
new Tags ( // Required t a g s f o r area

new Tag( "example" , " i n f r a " ) ,
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new Tag( " i n f r a " , "TestingArea " )
) ,
new Tags ( // Required t a g s f o r l o c a t i o n

new Tag( "example" , " i n f r a " ) ,
new Tag( " i n f r a " , " Ec l i p s e " )

) ,
null , // No need to match s p e c i f i c area ID
null , // No need to match s p e c i f i c l o c a t i o n ID
true // V i s i t e d l o c a t i o n s are a l l owed

) ;
} else { . . . }

}

public St r ing executeTask ( )
{

// Agent and Locat ion are r o l e s o f AgentTask
Agent agent = this . getRoleMap ( ) . get (Agent . c lass ) ;
Locat ion l o c a t i o n = this . getRoleMap ( ) . get ( Locat ion . c lass ) ;

Locat ionMethodRetr i everServ ice locat ionMethods = . . . ;

// Re t r i eve some na t i v e resource repre sen t ed by t h i s l o c a t i o n
Ecl ipseManipu lator manipulator = locat ionMethods

. createContext ( l o c a t i o n )

. getResource ( Ec l ipseManipu lator . c lass ) ;

// Command manipulator to open view
. . .

// Return ta s k r e s u l t t e l l i n g t ha t a l l went f i n e
return "TaskResultOK" ;

}
}

Listing 5.5: Model implementation for task to collect data in Eclipse plug-in.

As in C# version, archetypes are used to supply required information to agent
architecture. All the archetypes of the Listing 5.4 are presented in the Appendix 1.
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5.2 The Implementation of the Language-Independent Data
Structures

5.2.1 The Data Content Definition of the Data Structures
and Schemas

All the data structures defined in Section 4.3.2 are seen in Figure 5.5. The data
structures specialize the common supertype LIObject. All hierarchical data struc-
tures further specialize the Composed, and atomic data structures specialize the
Atomic. This kind of structure is just slightly more complicated version of compos-
ite pattern. The Composed is the abstraction of all the nodes, and the Atomic is
the abstraction of all the leaves.

AtomicComposed

LIObject

Map

List

*

*

*

*
Boolean String

{Ordered}

{Disjoint, Complete}

{Disjoint, Incomplete}{Disjoint, Incomplete}

Int64

Binary

Int32 Real64Real32

{Name is unique}

-name : Text

Map Entry

Figure 5.5: The language-independent data structures.

The inheritance hierarchies of Composed and Atomic are marked as Incomplete
because these classes are extension points. The users of the agent architecture may
introduce their own, customized, language-independent data structure types. This
customization makes it easier to use the agent architecture in applications with a
complex data model.

The concept of schemas has already been discussed in Section 2.2.4 and Sec-
tion 4.3.2. The data model for schemas is seen in Figure 5.6. It imitates the schema
data model in Apache Avro [28], but has fewer schema types. The functionality
implemented in Avro as different schema types is partly implemented in Acceptor.

Each Schema has exactly one Acceptor, concrete subtypes of which may imple-
ment the nil-check, whereas this check is implemented in Avro as a special schema
for nil objects. All of Schema, ComposedSchema, and Acceptor are extension points.
Like with the language-independent data structures, the users of the agent architec-
ture may add their custom schemas and Acceptors. Together with data structure
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Figure 5.6: Data model for schemas to be used with the language-independent data struc-
tures.

extensibility, even the complex data models used in applications may be integrated
seamlessly into the agent architecture. Once again, the composite pattern is visible
in both schema and acceptor structures.

Additionally, each schema has zero or more Tags. These tags act as schema
identifying mechanism. A schema with one or more tags may be referenced by just
supplying tags, much like the naming mechanism in the Avro [28]. Whenever the
actual schema behind this reference is required, the schema is retrieved from some
persistence store using these tags as search criterion. This implies that there cannot
exist two schemas associated with same tags in the persistence store.

5.2.2 Principle for Moving Native Objects Over a Network

Whenever there is a need to move some native object over a network, a certain
principle is used. Using an agent as an example, the pattern is depicted in Figure 5.7.

First, the native agent object is de-constructed into language-independent data
structures. During this phase, the formal definition for agent state, introduced in
Section 4.2.1, is used to decide what data related to the agent to use, and which data
structures to create. Then, these data structures are serialized into binary format,
using a common schema for all agents. This schema, shown in Appendix 2, uses the
formal definitions of Section 4.2.1 in order to create correct constraints for the data
structures. Additionally, validation is performed during serialization, in order to see
which data structures adhere to the provided schema. A more compact serialization
format is used for the data structures adhering to the schema.
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Figure 5.7: Principle for moving agents over a network using language-independent data
structures.

On a receiving end, this process is reversed. First, the received binary data is
deserialized into data structures using the schema for all agents. Then, the native
agent object is reconstructed from these data structures.

5.2.3 Implementation of Deconstruction and Reconstruction

Before transmitting any language-independent data structures among applications,
these data structures must be created. Since the data structures should be easy to
create from existing structures, native to the programming language in use, the con-
cepts of deconstruction and reconstruction are introduced. During deconstruction,
a single language-independent data structure is created from a single native data
structure. Consequentially, during reconstruction, a single native data structure is
created from a single language-independent data structure.

Agent architecture uses DCI-pattern in order to automatize the deconstruction
and reconstruction of Schemas and Acceptors. This is done because both of these
types are extension points and thus the functionality of deconstruction and recon-
struction for them should be easily extended. Figure 5.8 presents the contexts and
required roles used for deconstruction and reconstruction of Schemas and Acceptors.
These context creation services are not visible in the figure since they operate on
the exactly same principle as services presented in Figure 5.2 and Figure 5.3. The
only concrete difference is that context creators are mapped based on the type in-
formation. The correct context creator is looked up at runtime based on the type
of the given Schema or Acceptor.

Additionally, Tags and Agents can be deconstructed and reconstructed, and the
services to perform these processes are also visible in the Figure 5.8. However, since
neither is an extension point, the usage of DCI-pattern is not required.
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Figure 5.8: Contexts and services for deconstruction and reconstruction of schemas, ac-
ceptors, tags, and agents.

5.2.4 Implementation of Serialization and Deserialization

Now we have a customizable and automated way to transform native data structures
into language-independent data structures. These language-independent data struc-
tures can be further used in serialization and deserialization processes. Figure 5.9
shows contexts and required roles for serialization and deserialization.

+serialize(in  : Schema) : NativeBinary

«context»

BinarySerializationContext

LIObject

+deserialize(in  : Schema) : LIObject

«context»

BinaryDeserializationContext

NativeBinary

Figure 5.9: Contexts for serialization and deserialization of language-independent data
structures.

In this case the usage of DCI-pattern is required because both extension points
Composed and Atomic extend LIObject. Once again, the context creator lookup
logic works same way as with deconstruction and reconstruction. Context creator is
looked up based on runtime type information of the LIObject to be serialized or de-
serialized. The BinaryDeserializationContext has a native binary object in the role
of NativeBinary as data source. A language-independent data structure is produced
as a result, using the context creation service for deserialization to deserialize pos-
sibly contained serialized language-independent data structures. Correspondingly,
the BinarySerializationContext does exactly the same thing in other direction. The
Schema parameter in the methods serialize and deserialize is optional.
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Presented serialization and deserialization processes can operate only on lan-
guage-independent data structures. Coupled with deconstruction and reconstruc-
tion, this kind of mechanism is extremely extensible and robust. The logic to decom-
pose and recompose native data structures is in one place, and the logic to serialize
and deserialize the language-independent data structures is in another place.

Additionally, since the Schemas themselves are fully deconstructable and thus
serializable, agent architectures may exchange the schemas between application
boundaries. This enables easy solution for situations, where the Data Container of
the transported agent contains LIObject serialized with Schema that is not present
in the application receiving the agent. Then the receiving application just needs to
ask the schema to be transported from the application from where agent arrived.
The only problem will arise if the schema or acceptor are customized and their corre-
sponding implementation is not present in the receiving application. Such situations
however typically indicate an error in the design of the software environment.

5.2.5 Implementation of the Validation of the Data Struc-
tures

The serialization output can be further optimized by using some Schema during
serialization and deserialization. This is shown in Figure 5.9, where the serialize and
deserialize -methods both take schema as parameter. In order to detect whether
some data structure adhers to certain schema, agent architecture has concept of
validation. The validation provides information which data structure matches which
schema, and it is typically used during serialization and deserialization of language-
independent data structures. Figure 5.10 provides a detailed information on how
the validation is implemented using DCI-pattern. This figure is more detailed than
the previous ones because the validation is a little more complex functionality.

The singleton object, service ValidationService is used to start the validation pro-
cess. First, the context is created for validation — the concrete type of this context
will be decided by ValidationContextCreator. The service holds a mapping based
on type information, and will use the runtime type of given Schema or Acceptor as a
key to look up the context creator. The context creator will create the actual context
with the implementation of its validate method corresponding the given Schema or
Acceptor. This context will have given LIObject in the role of its type, and either
Schema or Acceptor in the role of their type. The roles are then used by a context
to determine whether the given LIObject adhers to the given Schema or Acceptor.
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Figure 5.10: Context, context creation service, and context creator for validation process.

5.2.6 The Default Validation Functionality

The Figure 5.6 only has a few of concrete Acceptors defined in order to keep the
figure simple. Table 5.1 lists all the default acceptor types. Each acceptor type is
concrete type, and Acceptor(a, o) means the behaviour of the acceptor’s validation
context validate method seen on Figure 5.10, where a is instance of the acceptor,
and o is the data structure given to acceptor.

5.2.7 An Example of Using the Language-Independent Data
Structure

This section continues working on the same example as in the Section 5.1.3. Now it is
time to show the full code of the task executing methods for both Java and C# tasks.
This code typically uses language-independent data structures when interacting with
the Data Container of the agent. The task implementation for C# is shown in
Listing 5.2, and for Java in Listing 5.5.

public override St r ing ExecuteTask ( )
{

// Agent and Locat ion are r o l e s o f AgentTask
Agent agent = this .RoleMap .Get<Agent>() ;
Locat ion l o c a t i o n = this .RoleMap .Get<Location >() ;

// S ta r t up a p p l i c a t i o n i f needed
i f (<app l i c a t i o n not running >)
{
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Table 5.1: Full feature list of the LID along with the explanations.

Acceptor type Acceptor(a, o)

AcceptNonNil o is Primitive and value(o) ̸= nil
AcceptNil o is Primitive and value(o) = nil
AlwaysAccept true
ConjunctionAcceptor Acceptor(left(a), o) ∧ Acceptor(right(a), o)

DisjunctionAcceptor Acceptor(left(a), o) ∨ Acceptor(right(a), o)

MandatoryNames o is Map, and
∀name ∈ names(a) : o has object with name name,
where names(a) returns all names associated with a

NegationAcceptor ¬Acceptor(negated(a), o)
NeverAccept false
NonEmpty o is Composed, String, or Binary, and

length(o) > 0, where length(o) returns amount of
contained data structures of o in case of Composed,
or length of contents otherwise

OneOf ∃p : p ∈ objects(a) ∧ p = o,
where objects(a) returns set of objects associated
with a

RegexpAcceptor o is String, and contents match the regular
expression of the acceptor

St r ing path = agent . DataContainer
.Get<StringObj >(" app l i ca t i onPath " ) . Str ingValue ;

Process . Star t ( path ) ; // Process i s na t i v e .NET c l a s s
}

// Return ta s k r e s u l t t e l l i n g t ha t a l l went f i n e
return "TaskResultOK" ;

}

Listing 5.6: Starting an application inside an agent task.

The creation of language-independent data structures uses abstract factory pat-
tern. The code to detect whether the application is running is omitted for brevity,
since the check involves some concurrency and security issues. Furthermore, the
code assumes that archetype stored path to application, Eclipse in this case, by the
name applicationPath in the Data Container of the agent.

public class OpenViewTask extends AgentTaskSkeleton
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{
public St r ing executeTask ( )
{

// Agent and Locat ion are r o l e s o f AgentTask
Agent agent = this . getRoleMap ( ) . get (Agent . c lass ) ;
Locat ion l o c a t i o n = this . getRoleMap ( ) . get ( Locat ion . c lass ) ;

Locat ionMethodRetr i everServ ice locat ionMethods = . . . ;

// Re t r i eve some na t i v e resource repre sen t ed by t h i s l o c a t i o n
Ecl ipseManipu lator manipulator = locat ionMethods

. createContext ( l o c a t i o n )

. getResource ( Ec l ipseManipu lator . c lass ) ;

// Command manipulator to open view
int viewID = agent . getDataContainer ( )

. get ( Int32Obj . class , "viewID" ) . get Intege rVa lue ( ) ;
manipulator . openView ( viewID ) ;

// Return ta s k r e s u l t t e l l i n g t ha t a l l went f i n e
return "TaskResultOK" ;

}
}

Listing 5.7: Retrieving a 32-bit integer into agent’s data container.

The Java code assumes that the agent archetype stored the ID of the view to
open by the name viewID in the Data Container of the agent. The way to use
LocationMethodRetrieverService is also presented in the Java code of Listing 5.7.

In case of any language, once the data is stored into data container, it will be
automatically serialized by the agent architecture if agent is transported. No further
effort is required from the user of the agent architecture. However, she may provide
a schema to use when serializing some object in data container.
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6. EVALUATION

6.1 Experiences Related to Case Study

Because of the prototype nature of Trinity, first positive experience related to agent
architecture is that it actually works. There are currently agents successfully trans-
ported between MMA and Eclipse plug-in. The data and execution state of these
agents are fully serialized before transportation, and successfully deserialized after
the transportation. Additionally, the execution itself is resumed after transportation
and is continued on target area successfully. The full schema for the agents is shown
in Appendix 2.

As an example, Trinity’s open view function was described in great detail in
Sections 3.1.3, 4.1.2, 5.1.3, 5.2.7. It was shown that during the agent transportation,
the deserialization process happens completely out of the sight of the user of the
agent architecture. The data container is fully deserialized, and the tasks may ask it
for data in the native, language-dependent way. Of course, when the user of the agent
architecture wishes to extend its language-independent capabilities, she is required to
directly interact with reconstruction, deconstruction, serialization, deserialization,
and validation mechanisms. However, the data model and each mechanism can
be easily and independently extended, easening up the learning curve and effort
required to extend the language-independent capabilities of the agent architecture.

By having agent architecture plugged into each application in Trinity, the man-
agement of cross-application features becomes easy. The incremental development
is well supported since each task is an independent item, and the task graph for
each agent can be customizable at runtime. Additionally there are no limitations as
to which task is usable in which agent, so each task may be reused in any agent.

The ability of agent architecture to abstract away all the details of language-
independent way of moving both data and execution state has proven out to be
invaluable. There is no need to worry about custom protocols or network channels,
since that part is handled by the agent architecture. Instead, the users of the agent
architecture may concentrate purely on domain-specific features to be implemented.
Thus, a lot of work is saved.

As a downside, the agent architecture is still something one would not use for small
applications or applications that do not interact with other applications. Because
of language-independence, the way things are done is very indirect and may be



6. Evaluation 47

hard to follow by someone unfamiliar with the agent architecture. Also, the agent
architecture needs a lot of configuration to be done before it is usable. This is partly
because of the nature of the agent architecture. However, this makes the threshold
to use the agent architecture higher.

6.2 General Observations

The problem of heterogeneous software application was solved by the language-inde-
pendent agent architecture in an adequate way. The cross-application functionality
was easy to maintain and extend. Furthermore, the users of the agent architecture
did not need to worry about the details of working in heterogeneous software envi-
ronment. These details include, but are not limited to, serializing domain-specific
data in a language-independent way, looking up the task destination in the envi-
ronment and determining whether transportation was required, and finally, running
the agent itself and making it execute the required tasks.

The general security problem of mobile code is that it possesses a threat for
the machine where it is executed. The code from remote machine may hijack the
local machine and use it for some malicious purposes. This threat is not present
in the implemented agent architecture, since the transported agents contain only
description of the code to execute in form of the tags used for task resolution. Thus,
we always know what code will be executed on local machine, and this security
threat is eliminated.

This security problem did not, however, completely vanish. Instead, the imple-
menters of the agent tasks must now trust completely that a task with certain tags
will indeed do what it is supposed to do. However, this should not be a big problem
in closed software environments.

The implementation of the agent architecture utilized very heavily the DCI pat-
tern. Overall, the pattern has left positive impression. Both data model and features
may be extended independently and easily, and the features may be customized at
runtime, by providing a new context creator for some feature. Additionally, in most
cases, the roles of interactions proved out to be just interfaces of data model. The
only exceptions occurred when the roles needed to be some native resources, such as
NativeBinary in Figure 5.9. As a downside, each time feature is used, some per-
formance loss occurs as the lookup for context creator, and creation of the context
object is performed.

6.3 Proposals for Improvement and Criticism

We briefly brief mentioned about task-level forks and joins in Section 4.2.2. Cur-
rently there is no implementation nor definitions as to how to implement parallelism
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on task level. The biggest difficulty lies in defining the logic for merging the Data
Container in join situations, and performing sync for other execution lifelines to
complete the join. These definitions are left to be defined later. However, as a
temporary workaround, these limitations can be overcome by creating agents with
tasks to execute in parallel, and by waiting for their execution to finish.

The agent architecture is defined to be separately implemented for each program-
ming language in Section 3.2.2. This is not a problem if the amount of the languages
to support is small, like two or three. However, when this amount rises to higher
numbers, the actual agent architecture implementation becomes fragmented.

In such situations, every decision changing something in the concept of agent
architecture propagates into multiple changes in implementations of agent architec-
ture. One possible solution would be creating some kind of customizable way of de-
scribing code of many programming languages in one place. Then agent architecture
implementation for each language would be generated from this description, limiting
the design-level changes into one place. Fortunately, the concept-level changes occur
rarely.

The implementation-level changes to e.g. transportation format may occur more
often, and they still require action to keep all agent architecture implementations up
to date. However, these changes are invisible to the users of the agent architecture,
as these implementation details are abstracted away.

Finally, even though performance has not been completely forgotten in the de-
sign and implementation of agent architecture, it has not been the major priority.
Therefore it is required to perform an inspection into possible performance bottle-
necks and extensive testing on whether these bottlenecks actually appear. It is not
clear what are the situations when, for example, message-based approach is more
performance-effective, and when it is less performance-effective. Therefore it would
also be necessary to gain some comparable data on this issue.

Currently the agent architecture is implemented only in two languages: Java
and C#. Because of very similar nature of these languages, it is not yet completely
clear whether the same design- and implementation-specific definitions will work
with more exotic programming languages. Therefore some effort should be made
into implementing agent architecture in other languages. One interesting idea is
to provide implementation in C++-language, as it lacks reflection completely, and
some DCI-related services rely heavily on existence of at least rudimentary reflection
mechanism.
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7. CONCLUSIONS

In this thesis a language-independent agent-based architecture was defined. The
language-independence support was achieved by first designing a very high-level
description of the concepts of the agent architecture. Then the data state and
execution state of the agent were formally defined. Finally, the specifications for
implementations of the agent architecture were provided, aimed to maintain high
level of extensibility and ease of use.

The design and definitions used in this agent architecture were verified by having
a software environment composed of applications written in different languages. The
cross-application features of this heterogeneous environment were successfully imple-
mented and used. Additionally, this thesis examined one cross-application function
of the use case very closely as an example. The agent architecture fulfilled well the
requirements posed by being used as an integration architecture in heterogeneous
software environment.

Despite having full language-independence aspect, this agent architecture is not
too complicated to use. One way to achieve this was to make decision that there
is be one agent architecture implementation for each programming language. Addi-
tionally, the logical design of the agent architecture was kept as simple as possible,
letting the users of agent architecture to be able concentrate on domain-specific
issues.

The agent architecture implementation for each language was also specified as
strictly as possible. The key requirements for the implementations were the exten-
sibility and ease of use. The requirements were fulfilled well thanks to the DCI
pattern used in the implementation. The concepts of DCI aim to support the exten-
sibility as much as possible, and the paradigm proved out to be worth the promises
in implementations of agent architecture for Java and C#.

There are some features still left undefined, such as task-level parallelism of the
agent. As future work, a detailed performance analysis is required. Additionally,
implementation for more exotic or low-level programming languages is aimed to be
provided. Thus, the language-independence of design and implementation specifi-
cations of agent architecture will be more thoroughly verified.
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APPENDIX 1: THE CODE FOR ARCHETYPES

public class MMAAreaArchetype : AreaArchetype
{

public MMAAreaArchetype ( )
{

this
. withAreaTags (new Tags (new Tag( "example" , " i n f r a " ) ,

new Tag( " i n f r a " , "MMAArea" ) ) )
. withLocat ionArchetypes (

new LocationArchetype ( ) . withTags (
new Tags (new Tag( "example" , " i n f r a " ) ,

new Tag( " i n f r a " , "MMA" ) ) ) ,
new LocationArchetype ( ) . withTags (

new Tags (new Tag( "example" , " i n f r a " ) ,
new Tag( " i n f r a " , "Transport " ) ) )

)
. withTasks (new Tags (new Tag( "example" , " task " ) ,

new Tag( "example" , " s t a r t " ) ) ) ;
}

}
public class StartAppl icat ionTaskArchetype : TaskArchetype
{

public StartAppl icat ionTaskArchetype ( )
{

this
. withTags (new Tags (new Tag( "example" , " task " ) ,

new Tag( "example" , " s t a r t " ) )
. withType ( typeof ( StartAppl i cat ionTask ) ) ;

}
}
public class OpenViewAgentArchetype : AgentArchetype
{

private readonly St r ing _manipulatorName ;
private readonly St r ing _app l i ca t i onPath ;
private readonly Int32 _viewID ;
public OpenViewAgentArchetype ( S t r ing manipulatorName ,

S t r ing appl i cat ionPath , Int32 viewID )
{

this ._manipulatorName = manipulatorName ;
this ._app l i ca t i onPath = app l i ca t i onPath ;
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this ._viewID = viewID ;
this

. withTask (new Tags (new Tag( "example" , " task " ) ,
new Tag( " task " , " s t a r t " ) ) )

. withTask (new Tags (new Tag( "example" , " task " ) ,
new Tag( " task " , "openView" ) ) )

. withTrans i t i on (1 , "TaskResultOK" , 2) ;
}
public override void PopulateDataContainer (Agent agent )
{

LIObjectFactory l i f = . . . ;
agent . DataContainer . Set ( " app l i ca t i onPath " ,

l i f . CreateSt r ing ( this ._app l i ca t i onPath ) ) ;
agent . DataContainer . Set ( "manipulator " ,

l i f . CreateSt r ing ( this ._manipulatorName ) ) ;
agent . DataContainer . Set ( "viewID" ,

l i f . CreateInt32 ( this ._viewID ) ) ;
}

}

The code for archetypes to be used in MMA.

public class TestingAreaArchetype extends AreaArchetype
{

public TestingAreaArchetype ( )
{

this
. withAreaTags (new Tags (new Tag( "example" , " i n f r a " ) ,

new Tag( " i n f r a " , "TestingArea " ) ) )
. withLocat ionArchetypes (

new LocationArchetype ( ) . withTags (
new Tags (new Tag( "example" , " i n f r a " ) ,

new Tag( " i n f r a " , " Ec l i p s e " ) ) ) ,
new LocationArchetype ( ) . withTags (

new Tags (new Tag( "example" , " i n f r a " ) ,
new Tag( " i n f r a " , "Transport " ) ) )

)
. withTasks (new Tags (new Tag( "example" , " task " ) ,

new Tag( " task " , "openView" ) ) ) ;
}

}
public class OpenViewTaskArchetype extends TaskArchetype
{
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public StartAppl icat ionTaskArchetype ( )
{

this
. withTags (new Tags (new Tag( "example" , " task " ) ,

new Tag( " task " , "openView" ) )
. withClass ( StartAppl i cat ionTask . c lass ) ;

}
}

The code for archetypes to be used in Eclipse plug-in.
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APPENDIX 2: THE SCHEMA FOR AGENTS

Agent Schema : MapSchema
{name=”agent ID”}

ID Schema

{name=

”home location”}

Names = {"id", "home location", "execution state", "data container", "history"}

: MandatoryNames

History Schema : ListSchema Data Container Schema : MapSchema

Destination Schema : MapSchema Execution State Schema : MapSchema

{name=”data container”}
{name=

”history”}

{name=”execution state”}

{name=

”destination”}

Figure A2.1: The schema for agents in the agent architecture.

Destination Schema : MapSchema

ID Schema

ID Schema

Tags Schema Tags Schema

ObjectType = Boolean

: AtomicSchema

: AcceptNonNil
{name=”area ID”}

{name=”location ID”}

{name=

”location tags”}

{name=

”area tags”}

{name=

”visited allowed”}

acceptor

Figure A2.2: The schema for agent destination in the agent architecture.

ObjectType = String

ID Schema : AtomicSchema : NonEmptyAcceptor
acceptor

Figure A2.3: The schema for IDs in the agent architecture.
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Tags Schema : ListSchema Tag Schema : MapSchema

Non-Empty Tags Schema : ListSchema : NonEmptyAcceptor
acceptor

item schema

item schema

Figure A2.4: The schema for tags in the agent architecture.

ObjectType = String

Tag Key Schema : AtomicSchema

ObjectType = String

Tag Value Schema : AtomicSchema

: NonEmptyAcceptor
acceptoracceptor

Names = {"key", "value"}

: MandatoryNames
acceptor

{name=”key”}

{name=”value”}

Tag Schema : MapSchema

Figure A2.5: The schema for a single tag in the agent architecture.

Data Container Schema : MapSchema

Data Container Entry Schema : MapSchema

Non-Empty Tags Schema Schema for All Schemas

ObjectType = Binary

Data Container Object Schema : AtomicSchema

Names = {"object"}

: MandatoryNames

{name can be anything}

acceptor

{name = ”schema”}{name = ”schema”}

{name = ”object”}

: AcceptNonNil

acceptor

{XOR}

Figure A2.6: The schema for data containers in the agent architecture.
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Schema for All Schemas : MapSchema

Names = {"tags", "acceptor", "schema type"}

: MandatoryNames

Tags Schema

Acceptor Schema : MapSchema

Names = {"acceptor type"}

: MandatoryNames

ObjectType = String

Acceptor Type Schema : AtomicSchema

: NonEmptyAcceptor

ObjectType = String

Schema Type Schema : AtomicSchema

: NonEmptyAcceptor

acceptor

acceptor

acceptor

{name = ”tags”}

acceptor{name = ”acceptor type”}

{name = ”acceptor”} {name = ”schema type”}

Figure A2.7: The schema for all schemas in the agent architecture.

Execution State Schema : MapSchema

Tasks Schema : ListSchema

Non-Empty Tags Schema

Transitions Schema : ListSchema

Transition Schema : MapSchema

Names = {"previous", "next", "output"}

: MandatoryNames

ObjectType = Int32

Previous Task Index : AtomicSchema

ObjectType = Int32

Next Task Index : AtomicSchema

ObjectType = String

Previous Task Output : AtomicSchema

: AcceptNonNil

: AcceptNonNil

: AcceptNonNil

ObjectType = Int32

Current Task Index : AtomicSchema : AcceptNonNil

acceptor

acceptor

acceptor

acceptor

acceptor

{name=”previous”}

{name=

”next”}

{name=

”output”}

item schema

Names = {"tasks", "transitions"}

: MandatoryNames

acceptor

{name=”transitions”} {name=”tasks”}

item schema

{name=”current task”}

Figure A2.8: The schema for agent execution states in the agent architecture.
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History Schema : ListSchema

History item : MapSchema

item schema

Non-EmptyTags Schema

ID Schema

ObjectType = String

Timestamp Schema : AtomicSchema

Regular Expression = matching timestamp

: RegexpAcceptor

Names = {"id", "task", "time"}

: MandatoryNames

{name=”id”}

{name=”task”}

{name=”time”}

acceptor

acceptor

Figure A2.9: The schema for agent history information in the agent architecture.
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