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Genome-wide association study of copy
number variation with lung function
identifies a novel signal of association near
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Abstract

Background: Genome-wide association studies of Single Nucleotide Polymorphisms (SNPs) have identified 55 SNPs
associated with lung function. However, little is known about the effect of copy number variants (CNVs) on lung
function, although CNVs represent a significant proportion of human genetic polymorphism. To assess the effect
of CNVs on lung function quantitative traits, we measured copy number at 2788 previously characterised, common
copy number variable regions in 6 independent cohorts (n = 24,237) using intensity data from SNP genotyping
experiments. We developed a pipeline for genome-wide association analysis and meta-analysis of CNV genotypes
measured across multiple studies using SNP genotype array intensity data from different platform technologies. We
then undertook cohort-level genome-wide association studies of CNV with lung function in a subset of 4 cohorts
(n < =12,403) with lung function measurements and meta-analysed the results. Follow-up was undertaken for CNVs
which were well tagged by SNPs, in up to 146,871 individuals.

Results: We generated robust copy number calls for 1962 out of 2788 (70 %) known CNV regions genome-wide,
with 1103 measured with compatible class frequencies in at least 2 cohorts. We report a novel CNV association
(discovery P = 0.0007) with Forced Vital Capacity (FVC) downstream of BANP on chromosome 16 that shows
evidence of replication by a tag SNP in two independent studies (replication P = 0.004). In addition, we provide
suggestive evidence (discovery P = 0.0002) for a role of complex copy number variation at a previously reported
lung function locus, containing the rootletin gene CROCC, that is not tagged by SNPs.

Conclusions: We demonstrate how common CNV regions can be reliably and consistently called across cohorts,
using an existing calling algorithm and rigorous quality control steps, using SNP genotyping array intensity data.
Although many common biallelic CNV regions were well-tagged by common SNPs, we also identified associations
with untagged mulitallelic CNV regions thereby illustrating the potential of our approach to identify some of the
missing heritability of complex traits.
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Background
Genome-wide association studies (GWAS) of single nu-
cleotide polymorphisms (SNPs) have highlighted genes
and biological pathways associated with risk of a variety of
diseases and variability in quantitative health-related traits.
Quantitative lung function traits are of major public
health relevance and large GWAS have identified multiple
common variants which collectively explain only a small
proportion of the phenotypic variance. For lung function
traits (forced expired volume in 1 second, FEV1, forced
vital capacity, FVC and the ratio FEV1/FVC), the 55 SNPs
reported in recent large GWAS explain 6.6 % of the vari-
ance in FEV1/FVC, 5.3 % of the variance in FEV1 and
4.0 % for FVC [1–6].
Copy number variants (CNVs) are deletions or duplica-

tions of parts of a chromosome, ranging from a few hun-
dred to a few million base pairs in length [7], leading to
extra or fewer copies of a certain DNA sequence relative
to the usual 2 copies for a diploid genome. CNVs have
been associated with several disorders including Crohn’s
disease, rheumatoid arthritis and diabetes [8, 9] and
neurological disorders such as schizophrenia [10, 11],
autism [12, 13] and developmental delay [14], al-
though contribution of CNVs to phenotypic variance
is still uncertain for many common traits [9, 15, 16].
To date, no genome-wide survey of the effect(s) of
copy-number variants on lung function quantitative
traits has been carried out.
Platforms primarily designed for SNP genotyping can

additionally provide an estimate of copy number by
looking for deviations in the intensity signal from each
allelic SNP probe; “non-polymorphic” probes (probes at
genomic positions where there is no known SNP) have
been added to some GWAS platforms specifically for
this purpose. The wide availability of these intensity data
presents an opportunity to measure genome-wide copy
number variation across multiple studies and bring to-
gether large sample sizes for association testing.
Here we describe a pipeline for genome-wide CNV

genotype measurement using SNP array intensity data.
We first tested the pipeline and defined appropriate qual-
ity control filters using 6 cohorts comprising intensity data
from 5 different genotyping platforms. We then under-
took an analysis of genome-wide CNV associations with
lung function for up to 12,403 individuals in a subset of 4
cohorts with lung function measurements at 1962 copy
number variable loci. We show how this approach can
identify multiallelic variants that are not well-tagged by
SNPs and that potentially explain some of the missing her-
itability of lung function quantitative traits.

Methods
There were 2 stages of the analysis. In the first stage we
refined a pipeline for copy number calling to determine

the quality control steps required to obtain consistent
copy number measurement across multiple cohorts and
genotyping platforms. In this stage we analysed intensity
data from SNP genotyping platform experiments for
24,237 samples from 6 different cohorts (Busselton
Health Study (BHS, n = 3496), Young Finns Study (YFS,
n = 2682), British 1958 Birth Cohort (B58C, n = 2920),
Study of Health in Pomerania (SHIP, n = 4072), Raine
Study (n = 1685) and the Avon Longitudinal Study of
Parents and Children (ALSPAC, n = 9382)). The aim of
this first stage was to identify whether common CNVs
could be measured with consistency across multiple co-
horts with different intensity data. In the second stage
we tested for association of copy number with lung
function in 4 cohorts which had lung function measure-
ments. Lung function association results were then
meta-analysed across cohorts.
In stage 1 we selected known, common copy number

variable regions (CNVRs) from a map of 11,700 copy
number variants across the genome published by The
Genome Structural Variation Consortium [17], which in-
cluded 3276 autosomal CNVRs observed twice or more
in 20 HapMap CEU samples. Of these, 2788 CNVRs
were retained after quality control (Additional file 1).
The Log R Ratio (LRR) of the intensity signals from

the allelic probes used in the SNP genotyping was used
to estimate copy number. LRR is the ratio of the inten-
sity to the expected intensity of the relevant genotype
cluster and is a transformation of the raw X and Y inten-
sity signals that enhances the correlation with copy
number. The LRR was available for all of the cohorts
apart from ALSPAC where the sum of the X and Y in-
tensities from each of the allelic probes was used instead.
Replicate samples and samples which failed intensity
noise filtering (Additional file 1) were excluded before
copy number calling. Where SNP genotypes were avail-
able, we derived ancestry-informative principal compo-
nents using EIGENSOFT [18] and removed any samples
that had a score on any of the first 4 principal compo-
nents greater than 6 standard deviations from the mean.
At each CNVR the samples passing the above quality-

control filters were clustered by a 1-dimensional sum-
mary of the intensity signals from the probes within the
CNVR boundary; only samples with non-missing data
for these probes were included when clustering each
CNVR. The cluster to which a sample belongs was used
as a proxy for the copy number class of the sample at
that CNVR. The clustering was performed by Bayesian
hierarchical mixture modelling implemented in the R
package CNVCALL [9, 19].
For the initial run of clustering no prior information

about the number of classes was included, with the algo-
rithm determining the most likely number of classes
from the data independently for each cohort. In the
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absence of a “gold standard” for the correct number of
classes at each CNVR, we used the number of classes
called by the best-performing cohort as our best esti-
mate of the true number of classes for a CNVR. The
best-performing cohort was the cohort in which the
clusters were most clearly defined and hence in which
the highest number of polymorphic CNVRs could be
called. In this way, where the number of classes initially
clustered in the first run of the algorithm was different
across cohorts, we re-clustered CNVRs, fixing the num-
ber of classes to be that obtained in the first run in the
best-performing cohort. CNVRs were determined to be
high quality if they were called in the best-performing
cohort or had class frequencies compatible with the
best-performing cohort (Additional file 1).
For stage 2, lung function measurements (FEV1, FVC

and FEV1/FVC) were available for 3 adult cohorts (BHS,
B58C and SHIP) and 1 child cohort (ALSPAC). We
tested for association of FEV1, FVC and FEV1/FVC with
CNVR copy number within each cohort and results were
then meta-analysed across up to 4 cohorts as the pri-
mary analysis and then across up to 3 cohorts of adults
to look for age specific effects. Only CNVRs called with
the same number of classes and consistent class frequen-
cies across cohorts in stage 1 (Additional file 1) were in-
cluded in meta-analyses. Uncertainty in copy number
assignment due to weakly defined clustering was taken
into account in association testing by using copy number
dose (Additional file 1) [20]. Association testing for co-
horts with unrelated individuals was performed using a
linear model of phenotype with copy number dose. Lung
function phenotypes were adjusted for age, age2, sex,
height and height2 and first 4 ancestry principal compo-
nents. As there were related individuals in BHS we used
a generalised-estimating equation (GEE) to account for
correlation within families [21]. A detailed description of
the cohorts is given in the Supplementary Material. A
flow diagram of the whole pipeline from all initially
available samples and CNVRs through to final meta-
analysis results is shown in Additional file 1: Figure S1.
For CNVRs which were well-tagged by SNPs (r2 > 0.7),

we sought replication of suggestive signals of association
(P < 0.001) for lung function in a large GWAS. Linkage
disequilibrium (r2) between each CNVR and SNPs
within 1 Mb of the CNVR start and end positions was
measured using samples in the BHS cohort that had
both copy number genotypes and imputed SNP genotypes
(1000 Genomes Project Phase 1 imputation reference
panel). For replication we used results from the SpiroMeta
and CHARGE consortia meta-analysis of 48,201 individ-
uals across 23 studies [3, 4], the UK BiLEVE lung function
GWAS [6] (n = 48,943, Additional file 1) and the subset of
samples from the 152,729 UK Biobank samples genotyped
at the time of writing that were not in UK BiLEVE and

with lung function measurements passing ERS/ATS
criteria (n = 49,727, Additional file 1). In the replication
studies lung function traits were adjusted for age, age2,
sex, height, pack years in smokers where available, and an-
cestry principal components where available. Residuals
were inverse rank inverse-normal transformed after ad-
justment apart from FVC in SpiroMeta and CHARGE,
which was untransformed [4], hence for FEV1 and FEV1/
FVC we used inverse-variance weighted meta-analysis
across the replication cohorts and for FVC we used
Z-score meta-analysis. All replication resources were
comprised of European ancestry individuals. For repli-
cation, we used a Bonferroni corrected 5 % threshold
for the number of CNVRs with a tag SNP available.
Replication was not available for CNVRs not well-
tagged by SNPs (r2 > 0.7).
We tested for enrichment of gene ontology (GO) terms

using DAVID [http://david.abcc.ncifcrf.gov/] within genes
spanned by CNVRs showing association with P < 0.01 for
our lung function traits in the meta-analysis of all cohorts
and separately within the meta-analysis of adult and child
cohorts. We used a Bonferroni correction for all GO
terms showing nominal significance of P < 0.05. We used
GTEx[22] to perform a look up of eQTL signals of SNPs
tagging CNVRs using an empirical 5 % threshold deter-
mined by permutation by GTEx.

Results
For the first stage of the analysis, aimed at developing a
pipeline for copy number calling across different geno-
typing platforms, intensity data was available for 24,259
samples from 6 cohorts. After filtering, 19,308 samples
were taken forward for CNVR clustering and copy num-
ber calling. The total number of CNVRs called and the
proportions of deletions, amplifications and multiallelic
CNVRs called in each cohort varied across genotyping
platforms (Table 1) and hence we only meta-analysed
CNVRs that were called consistently across platforms.
As CNVCALL was able to resolve the largest proportion
of the 2788 CNVRs as polymorphic in the BHS cohort
data (1962 CNVRs, 70.4 %) and the clustering gave the
best separation of classes in the BHS data (Additional
file 1), the number of classes called in the BHS cohort
was used as our best estimate of the true number of
classes and as the standard for calling CNV genotypes
with a consistent number of classes across all cohorts.
The numbers of CNVRs initially clustered in the 6 co-
horts are shown in Table 1 and the overlap of clustered
CNVRs across cohorts is shown in Additional file 1:
Figure S2. Differences in the numbers of CNVRs suc-
cessfully clustered in each cohort could be due to dif-
ferences in data quality, differences in probe content
on different genotyping platforms or the available in-
tensity measures (LRR vs X + Y). 1103 CNVRs could
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be clustered with number of classes and class fre-
quencies compatible with BHS (χ2 test described in
Additional file 1) in at least 1 other cohort. This fil-
tered set of CNVRs was enriched for deletions in all
cohorts compared to the initial set (Table 1).
For the second stage of the analysis, lung function data

was available for 19,870 samples from 4 cohorts. After
filtering, 12,403 samples were taken forward for association
testing (Table 2). None of our CNVR associations reached
a 5 % Bonferonni threshold for 1962 independent tests
(P < 2.5 × 10-5); the full set of association results are pro-
vided in Additional file 2. We sought replication of sug-
gestive associations (P < 0.001) which included 12 CNVR-
trait combinations (11 distinct CNVRs) in the adult co-
horts analysis (Table 3; Quantile-Quantile and Manhattan
plots are in Additional file 1: Figure S4 and Figure S5).
Replication was sought for these 12 CNVR associations by

looking at association of SNPs tagging the CNVR in inde-
pendent cohorts (Table 3). Out of 12 CNVR-trait combina-
tions showing suggestive evidence of association with lung
function, (P < 0.001), 7 (including CNVR4222.1 which was
associated with both FEV1 and FVC; Table 3) were well
tagged by a 1000G SNP (r2 > 0.7). A SNP tagging
CNVR6854.1 (rs7501378, r2 = 0.94) showed replication of
association with FVC in UK BiLEVE and in the meta-
analysis of the 3 replication cohorts (Table 3) using a
Bonferroni-corrected 5 % threshold for 8 tests (P < 0.006).
The direction of effect of this CNVR was consistent across
the 3 discovery CNVR cohorts and was in the same direc-
tion in SpiroMeta, CHARGE and UK BiLEVE for the SNP
allele positively correlated with increased copy number, but

in the opposite direction in the non-significant UK Biobank
association (Table 3). CNVR6854.1 is located at 16q24.2 and
is 2.0 kb downstream of BANP (BTG3 Associated Nuclear
Protein, also known as Scaffold/Matrix-Associated Region-
1-Binding Protein [SMAR1]). The tag SNP rs7501378 is
420 bp further downstream of BANP than CNVR6854.1
(Additional file 1: Figure S6). There was no evidence for this
SNP as an eQTL in blood [23, 24] or lung [24].
The 3 strongest signals of association with lung func-

tion in the discovery meta-analysis (FEV1/FVC, P = 1.96-
2.69 × 10-4, CNVR94.3, CNVR94.4 and CNVR94.5) were
for 3 overlapping and correlated CNVRs within or near
to CROCC, a gene that encodes rootletin, a component
of cilia (Additional file 1: Figure S7). CNV94.3 was mea-
sured as a 3 class CNV in a previous study [17] and
showed consistent class frequencies with those observed
in BHS and B58C (Additional file 1: Table S1). However,
no tagging SNP was available.
Across the 45 genes implicated by CNVRs showing

nominal evidence of association (P < 0.01) with lung
function in this study, no enrichment of gene ontology
terms was seen (P < 0.05).

Discussion
We developed a quality-control pipeline for genome-
wide association analysis and meta-analysis of CNV ge-
notypes and generated robust copy number calls across
cohorts for 1962 CNVs genome-wide across 6 cohorts
comprising 5 different genotyping platforms. Of these,
1103 CNVs could be clustered consistently in at least 2
cohorts, 777 in 3 cohorts, 371 in 4 cohorts and 70 in 5

Table 2 Summary of samples with lung function phenotypes

Cohort BHS B58C SHIP ALSPAC

Samples passing QC (M/F) 3084 (1381/1703) 2492 (1293/1199) 1765 (863/902) 5062 (2547/2515)

Age yrs mean (range) 50.0 (16.5–97.3) 45.1 (44.5–46.0) 52.3 (25.0–85.0) 8.64 (7.42–10.33)

Height m mean (range) 1.69 (1.39–1.97) 1.70 (1.22–2.02) 1.70 (1.42–1.97) 1.33 (1.13–1.59)

FEV1 L mean (range) 3.09 (0.56–6.90) 3.30 (0.65–5.73) 3.28 (0.88–6.32) 1.7 (0.68–2.79)

FVC L mean (range) 3.96 (0.96–8.63) 4.22 (1.1–7.71) 3.86 (1.22–7.24) 1.93 (0.77–3.13)

FEV1/FVC mean (range) 0.78 (0.28–1.00) 0.79 (0.12–1.00) 0.85 (0.49–1.00) 0.88 (0.50–1.00)

Table 1 Platform probes, samples and CNVRs clustered

Cohort BHS YFS B58C SHIP Raine ALSPAC

Platform Illumina 660 Illumina 670 Illumina 1.2 M Affymetrix 6 Illumina 660 Illumina 550

Autosomal SNP probes 573462 580030 1115905 909508 578525 580694

CNV probesa 62092 63617 75114 945805 62138 0

Samples used in CNVR clustering 3496 2682 2920 4072 1685 9382

No. CNVRs clustered within cohort 1962 1933 1540 721 1929 491

Percentage of deletion/amplification/multiallelic 43.9/34.0/22.1 44.0/33.9/22.1 46.1/34.0/19.9 38.6/40.7/20.7 44.0/34.0/22.0 43.6/40.5/16.0

No. CNVRS consistently clustered with BHS 1962 393 855 224 838 11

Percentage of deletion/amplification/multiallelic 43.9/34.0/22.1 52.7/24.7/22.6 51.3/27.8/20.8 57.6/23.2/19.2 52.5/28.3/19.2 72.7/27.3/0
aA CNV probe is a monomorphic probe targeted in regions of known copy number variation
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Table 3 CNV association with lung function with P < 0.001 for meta-analysis of 3 adult cohorts with follow up of tag SNPs in replication cohorts
CNVR CNV results Replicationc

Meta analysis of BHS, B58C & SHIP Best tag SNP SpiroMeta &
CHARGE

UK BiLEVE UK Biobank Meta-analysisd

N Beta L (SE) Effectb P Genes SNP r2 Beta (SE) P Beta (SE) P Beta (SE) P Beta (SE) Effecte P

FEV1 CNVR1073.1
(2q32.1) 640 bp
deletion (2 class)

5560 -0.0467 (0.0135) –. 5.55×10-4 Upstream DNAJC10 rs2696127 0.766 -0.0069 (0.008) 0.38 -0.0073 (0.007) -0.0061 (0.007) 0.37 0.0068 (0.004) —— 0.11

CNVR217.1a

(1p31.1) 45.7kbp
multiallelic (3 class)

7258 0.0268 (0.0078) +++ 5.55×10-4 Upstream NEGR1 rs2568958 1 0.0084 (0.007) 0.24 0.0040 (0.007) 0.56 0.0072 (0.007) 0.27 -0.0065 (0.004) ++++ 0.10

CNVR4222.1a

(9p21.2) 4.01kbp
deletion (2 class)

7284 -0.0868 (0.0263) — 9.78×10-4 Intronic LINGO2 rs10968307 0.980 0.0067 (0.031) 0.83 -0.0129 (0.026) 0.61 0.0084 (0.024) 0.73 0.0003 (0.015) - + -+ 0.99

FVC CNVR4742.1
(10q21.1) 1.35kbp
deletion (3 class)

5528 0.0599 (0.0174) ++. 5.65×10-4 intergenic rs1903969 0.995 0.0020 (0.005) 0.72 0.0082 (0.010) 0.40 0.0048 (0.009) 0.61 ++++ 0.32

CNVR4222.1a

(9p21.2) 4.01kbp
deletion (2 class)

7284 -0.1126 (0.0329) — 6.30×10-4 Intronic LINGO2 rs10968307 0.980 0.0342 (0.106) 0.75 -0.0150 (0.026) 0.56 -0.0126 (0.024) 0.60 - + – 0.65

CNVR6854.1a

(16q24.2) 3.25kbp
deletion (3 class)

7281 0.0389 (0.0116) +++ 7.72×10-4 Downstream BANP rs7501378 0.940 0.0111 (0.005) 0.017 0.0232 (0.008) 0.0037 -0.0021 (0.008) 0.79 +++- 0.0038

CNVR7142.1a

(17q22) 2.62kbp
deletion (3 class)

5519 -0.0454 (0.0136) –. 8.20×10-4 Downstream
SCPEP1

rs880266 0.766 -0.0021 (0.006) 0.73 -0.0048 (0.008) 0.53 0.0108 (0.007) 0.14 —+ 0.77

FEV1 / FVC CNVR94.3a

(1p36.13) 14.5kbp
deletion (3 class)

4800 0.0061 (0.0016) +.- 1.96×10-4 Upstream CROCC rs696095 0.263

CNVR94.5
(1p36.13) 51.3kbp
deletion (4 class)

3005 0.0045 (0.0012) +.. 2.08×10-4 Exonic CROCC rs696095 0.169

CNVR94.4
(1p36.13) 106kbp
multiallelic (4 class)

2951 0.0046 (0.0013) +.. 2.69×10-4 Exonic CROCC rs696095 0.169

CNVR3585.1 (7q34)
560 bp multiallelic
(4 class)

3082 -0.0052 (0.0014) -.. 2.89×10-4 Intronic MGAM rs62477625 0.644

CNVR7927.1a

(20q13.33) 880 bp
gain (3 class)

5548 0.0056 (0.0016) ++. 5.98×10-4 upstream HAR1A;
downstream
HAR1B; downstream
LOC63930

rs4809276 0.818 -0.0037 (0.010) 0.71 0.0083 (0.008) 0.30 0.0056 (0.008) 0.47 -0.0044 (0.005) +-++ 0.37

FEV1 Forced Expiratory Volume in 1 second, FVC Forced Vital Capacity (FVC). aCNVR class frequencies consistent with independent cohort (Additional file 1: Table S1). bEffect direction: BHS/B58C/SHIP (a dot signifies no
result). r2 correlation coefficient between CNVR copy number and SNP genotype in BHS. Replication was performed where there was a tag SNP with r2 > 0.7. cLung function traits are rank inverse-normalised apart from
FVC in SpiroMeta & CHARGE which is untransformed mL. dInverse-variance weighted meta-analysis for FEV1 and FEV1/FVC; Z-score meta-analysis for FVC. eEffect direction: CNVR/SpiroMeta & CHARGE/UK BiLEVE/UK
Biobank. Gene annotations provided by ANNOVAR [30]
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cohorts. No CNVRs could be clustered across all 6 co-
horts (Additional file 1: Figure S2). We tested for associ-
ation of each CNVR with lung function in a subset of 4
cohorts and then undertook meta-analyses for adults
and children combined and adults only. A signal of asso-
ciation with FVC for a CNVR downsream of BANP on
chromosome 16 was replicated using a tag SNP in 2
large independent studies. The class frequencies of this
CNVR observed in our study were consistent with those
previously measured [17] providing reassurance that this
CNVR has been measured accurately. BANP is expressed
in a range of organ tissues including respiratory epithelial
cells [http://www.proteinatlas.org/] and has been shown
to have a role in regulation of alternative splicing via a
histone deactylase 6 (HDAC6)-mediated deactylation
pathway [25, 26] (other HDACs, including HDAC6, have
previously been implicated in chronic obstructive pulmon-
ary disease (COPD) and lung function [27, 28]).
An additional five CNVRs which showed suggestive evi-

dence of association with lung function in our study were
complex (i.e. did not have 3 copy number classes) and
hence not well tagged by bi-allellic 1000G SNPs. Amongst
these were 3 correlated CNVRs which had the strongest
evidence of association for FEV1/FVC (P = 2.0-2.7 × 10-4)
and which involved the CROCC gene in a region that has
previously been shown to be associated with lung function
[3]. These 3 CNVRs are not tagged (r2 = 0.005) by the pre-
viously reported SNP showing strong evidence of associ-
ation with FEV1/FVC (rs2284746, P = 7.5x10-16), which is
within 25 kb [3]. Collectively, these 3 CNVRs would ex-
plain an additional 0.46 % of the variance in FEV1/FVC in
addition to the 3.2 % of variance in FEV1/FVC already
accounted for by genome-wide significantly associated
SNPs [3]. It has been shown in Crocc knockout mice that
loss of rootletin (the protein encoded by Crocc) prevents
the formation of the ciliary rootlet in airway epithelial cells
leading to a reduction in motile cilium function with
pathological changes consistent with insufficient mucocili-
ary clearance [29]. CROCC is in a region which is anno-
tated as containing several overlapping CNVRs [17]
(Additional file 1: Figure S7); however some nested
CNVRs could actually be the result of incomplete meas-
urement of the larger CNVR within which they are found.
The preliminary CNV associations in CROCC warrant
further verification. Determining the precise genomic
architecture of the region is needed to understand the
nature of the associations observed in this study.
Meta-analysis of association test statistics from mul-

tiple cohorts is a routine approach to increase sample
sizes in GWAS based on SNP data when individual-level
data cannot be analysed all together. SNPs that are
assayed on commercial platforms are biallelic and well
characterised in terms of expected allele frequencies and
the assays themselves are designed to accurately measure

SNP genotypes. In contrast, CNVRs are less well-
characterised and although the use of SNP genotyping
platform intensity presents a useful and economical ap-
proach to measure copy number variation, this also pre-
sents challenges. In this study, we presented a pipeline
for ensuring compatibility of CNV genotypes before
meta-analysis when these have been derived from different
data sources (both in terms of platform and probe set).
We were able to generate compatible copy number calls
across at least 2 cohorts for over one thousand CNVRs
genome-wide. Differences in concordance of CNV class
frequencies between pairs of cohorts with SNP genotyping
data from the same or similar versions of Illumina plat-
forms could be due to differences in intensity data quality.
It was evident that older versions of the platforms had
poorer probe coverage of the CNVRs than the more re-
cent platforms, some of which had content designed spe-
cifically for the larger set of CNVRs from which the subset
analysed here were selected. We chose to use the number
of copy number classes and class frequencies from one co-
hort as the best estimate of the true number of classes to
which other cohorts were compared with validation of the
genotypes measured in this reference cohort against CNV
genotypes in an independent cohort. As new cohorts
emerge and existing cohorts update their genotype data
using newer arrays, compatibility across cohorts for in-
creasing numbers of CNVRs is likely to increase.

Conclusions
We demonstrate how common CNV regions can be reli-
ably and consistently called across cohorts, using an exist-
ing calling algorithm and rigorous quality control steps,
using SNP genotyping array intensity data. Using this ap-
proach, we describe a novel signal of association with FVC
for a copy number variable locus downstream of BANP
on chromosome 16 and present evidence that copy num-
ber variation may play a role at a locus previously reported
as being associated with lung function (CROCC).

Additional files

Additional file 1: Supplementary methods, description of studies,
supplementary tables and figures. (PDF 913 kb)

Additional file 2: Copy number class frequencies and lung function
association results (FEV1, FVC and FEV1/FVC) for all 1962 CNVRs that were
tested. (XLSX 1019 kb)

Abbreviations
1000G, 1000 genomes project; ALSPAC, avon longitudinal study of parents
and children; B58C, British 1958 birth cohort; BHS, busselton health study;
CHARGE, cohorts for heart and aging research in genomic epidemiology;
CNV, copy number variant; CNVR, copy number variable region; ERS/ATS,
european respiratory society / american thoracic society; FEV1, forced
expiratory volume in 1 second; FVC, forced vital capacity; GWAS, genome-
wide association study; LRR, Log R ratio; SHIP, study of health in pomerania;
SNP, single nucleotide polymorphism; UK BiLEVE, UK biobank lung exome
Variant Evaluation; YFS, young finns study

Shrine et al. BMC Genetics  (2016) 17:116 Page 6 of 8

http://www.proteinatlas.org/
dx.doi.org/10.1186/s12863-016-0423-0
dx.doi.org/10.1186/s12863-016-0423-0


Acknowledgements
This research used the ALICE and SPECTRE High Performance Computing
Facilities at the University of Leicester. We acknowledge the Wellcome Trust
Case Control Consortium for making data available about SNP tagging of
common CNVs [http://www.wtccc.org.uk/wtcccplus_cnv/supplemental.shtml].
We acknowledge the SpiroMeta and CHARGE consortia for look up of SNP
associations for replication. We acknowledge the UK BiLEVE study for
look up of SNP associations for replication. This research has been conducted
using the UK Biobank Resource.
Generation Scotland authors are Jennifer Huffman and Caroline Hayward at
the Institute of Genetics and Molecular Medicine, University of Edinburgh
Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK (lead author
contact: caroline.hayward@igmm.ed.ac.uk). UK BiLEVE lead author contact is
Ian P Hall, Medical School, Queen’s Medical Centre, Nottingham, NG7 2UH,
UK (ian.hall@nottingham.ac.uk). ALSPAC: We are extremely grateful to all the
families who took part in this study, the midwives for their help in recruiting
them, and the whole ALSPAC team, which includes interviewers, computer
and laboratory technicians, clerical workers, research scientists, volunteers,
managers, receptionists and nurses. This publication is the work of the
authors and Nick Shrine and Louise Wain will serve as guarantors for the
contents of this paper.

Funding
This work was supported by Medical Research Council Senior Clinical
Fellowship [grant number G0902313 to Martin Tobin]. The research was
part-funded by the National Institute for Health Research (NIHR). The
views expressed are those of the authors and not necessarily those of
the National Health Service, the National Institute for Health Research or
the Department of Health. SHIP is part of the Community Medicine Research
network of the University of Greifswald, Germany, which is funded by
the Federal Ministry of Education and Research (grants no. 01ZZ9603,
01ZZ0103, and 01ZZ0403), the Ministry of Cultural Affairs as well as the
Social Ministry of the Federal State of Mecklenburg-West Pomerania, and
the network ‘Greifswald Approach to Individualized Medicine (GANI_MED)’
funded by the Federal Ministry of Education and Research (grant 03IS2061A).
Genome-wide data have been supported by the Federal Ministry of Education
and Research (grant no. 03ZIK012) and a joint grant from Siemens Healthcare,
Erlangen, Germany and the Federal State of Mecklenburg- West Pomerania. The
University of Greifswald is a member of the ‘Center of Knowledge Interchange’
program of the Siemens AG. UK BiLEVE was funded by a Medical Research
Council (MRC) strategic award (MC_PC_12010).

Availability of data and materials
The data sets supporting the results of this article are included within the
article (and its additional files).

Authors’ contributions
LVW designed the study. NRGS, MDT, LVW wrote the manuscript. NRGS, LVW,
CS, MSA performed the analysis. CS, JH, QWA provided data formatting and
summaries. TL, OTR, CEP, DPS, GH, SG, SBF, DME, JH, RG, LJP, GE, JH, CH, AM,
BM, ALJ provided data. CS, JH, RG, DPS, OTR provided additional text. All
authors read and approved the final manuscript.

Competing interests
The author(s) declare that they have no competing interests.

Consent to publication
Not applicable.

Ethics approval and consent to participate
Ethical approval was obtained from all 6 cohorts.
The Busselton Health Study genetics study is approved by the University of
Western Australia Human Ethics Committee under project numbers RA/4/1/
1516 and RA/4/1/2077. Access to Busselton data was approved by the Research
Committee for The Busselton Population Medical Research Foundation
(approval number SN10/06).
The Young Finns Study has been approved by the Ethics Committee of the
South-western Finland Hospital District. Access to Young Finns data was ap-
proved by the Young Finns Study group.
The British 1958 birth cohort biomedical follow-up (2002–2004), which
included the DNA collection on which all subsequent genetic association

studies have been based, was approved by the South East England
Multi-Centre Research Ethics Committee (reference: MREC/01/1/44). Access to
British 1958 Birth Cohort data was approved by the British 1958 Birth Cohort
Access Committee/Access Committee for CLS Cohorts (approval:
2009_DATA_05_Wain).
The Study of Health in Pomerania was approved by the local ethics
committee of the University of Greifswald. Access to Study of Health in
Pomerania data were via the Community Medicine Research Network,
Department for Management and Transfer of Data and Biomaterials of
the University of Greifswald (http://www.medizin.uni-greifswald.de/icm/
transferstelle/).
Recruitment to the Raine Study and all follow-ups were approved by the
Human Ethics Committee at King Edward Memorial Hospital and/or Princess
Margaret Hospital for Children (PMH). Access to the Raine data was approved
by the Raine Study Executive Committee.
Ethical approval for the Avon Longitudinal Study of Parents and Children
(ALSPAC) was obtained from the ALSPAC Ethics and Law Committee and
the Local Research Ethics Committees. All data provided for the analyses was
anonymised and no patient identifying information was held by the central
analysis group. Access to the Avon Longitudinal Study of Parents and
Children was approved by the ASLPAC Executive Committee (approved
project B1186, http://www.bristol.ac.uk/alspac/researchers/data-access/).

Author details
1Department of Health Sciences, University of Leicester, University Road,
Leicester LE1 7RH, UK. 2National Institute for Health Research (NIHR) Leicester
Respiratory Biomedical Research Unit, Glenfield Hospital, Leicester LE3 9QP,
UK. 3Department of Functional Genomics, University Medicine Greifswald,
Interfaculty Institute for Genetics and Functional Genomics, Greifswald,
Germany. 4DZHK (German Center for Cardiovascular Research), partner site
Greifswald, 17475 Greifswald, Germany. 5Busselton Population Medical
Research Institute, Sir Charles Gairdner Hospital, Nedlands, Australia.
6Department of Clinical Chemistry, Fimlab Laboratories, University of
Tampere and Tampere University Hospital, Tampere 33521, Finland.
7Department of Clinical Physiology, Research Centre of Applied and
Preventive Cardiovascular Medicine, University of Turku, Turku University
Hospital, Turku 20521, Finland. 8School of Women’s and Infants’ Health, The
University of Western Australia, Perth, Australia. 9Division of Population
Health Sciences, St. George’s University of London, London, UK.
10Department of Internal Medicine B – Pulmonary Medicine, Weaning and
Infectious Diseases and Scientific Division of Pneumology and
Pneumological Epidemiology, University Medicine Greifswald, Greifswald,
Germany. 11Department of Internal Medicine B – Cardiology, University
Medicine Greifswald, Greifswald, Germany. 12MRC Integrative Epidemiology
Unit, University of Bristol, Bristol, UK. 13School of Social and Community
Medicine, University of Bristol, Bristol, UK. 14University of Queensland
Diamantina Institute, Translational Research Institute, Brisbane, Queensland,
Australia. 15School of Public Health, University of Adelaide, Adelaide,
Australia. 16Institute of Genetics and Molecular Medicine, University of
Edinburgh Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK.
17Pfizer Worldwide Research and Development, Sollentuna, Sweden.
18Department of Respiratory Medicine, Sir Charles Gairdner Hospital,
Nedlands, Australia. 19Department of Pulmonary Physiology and Sleep
Medicine, Sir Charles Gairdner Hospital, Nedlands, Australia.

Received: 8 January 2016 Accepted: 29 July 2016

References
1. Repapi E, Sayers I, Wain LV, Burton PR, Johnson T, Obeidat M, Zhao JH,

Ramasamy A, Zhai G, Vitart V, Huffman JE, Igl W, Albrecht E, Deloukas P,
Henderson J, Granell R, McArdle WL, Rudnicka AR, Barroso I, Loos RJF,
Wareham NJ, Mustelin L, Rantanen T, Surakka I, Imboden M, Wichmann HE,
Grkovic I, Jankovic S, Zgaga L, Hartikainen A-L, et al. Genome-wide
association study identifies five loci associated with lung function. Nat
Genet. 2010;42:36–44.

2. Hancock DB, Eijgelsheim M, Wilk JB, Gharib SA, Loehr LR, Marciante KD,
Franceschini N, van Durme YMTA, Chen T, Barr RG, Schabath MB, Couper
DJ, Brusselle GG, Psaty BM, van Duijn CM, Rotter JI, Uitterlinden AG, Hofman
A, Punjabi NM, Rivadeneira F, Morrison AC, Enright PL, North KE, Heckbert
SR, Lumley T, Stricker BHC, O’Connor GT, London SJ. Meta-analyses of

Shrine et al. BMC Genetics  (2016) 17:116 Page 7 of 8

http://www.wtccc.org.uk/wtcccplus_cnv/supplemental.shtml


genome-wide association studies identify multiple loci associated with
pulmonary function. Nat Genet. 2010;42:45–52.

3. Soler Artigas M, Loth DW, Wain LV, Gharib SA, Obeidat M, Tang W, Zhai G,
Zhao JH, Smith AV, Huffman JE, Albrecht E, Jackson CM, Evans DM, Cadby
G, Fornage M, Manichaikul A, Lopez LM, Johnson T, Aldrich MC, Aspelund T,
Barroso I, Campbell H, Cassano PA, Couper DJ, Eiriksdottir G, Franceschini N,
Garcia M, Gieger C, Gislason GK, Grkovic I, et al. Genome-wide association
and large-scale follow up identifies 16 new loci influencing lung function.
Nat Genet. 2011;43:1082–90.

4. Loth DW, Soler Artigas M, Gharib SA, Wain LV, Franceschini N, Koch B,
Pottinger TD, Smith AV, Duan Q, Oldmeadow C, Lee MK, Strachan DP,
James AL, Huffman JE, Vitart V, Ramasamy A, Wareham NJ, Kaprio J, Wang
X-Q, Trochet H, Kahonen M, Flexeder C, Albrecht E, Lopez LM, de Jong K,
Thyagarajan B, Alves AC, Enroth S, Omenaas E, Joshi PK, et al. Genome-wide
association analysis identifies six new loci associated with forced vital
capacity. Nat Genet. 2014;46:669–77.

5. Soler Artigas M, Wain LV, Miller S, Kheirallah AK, Huffman JE, Ntalla I, Shrine
N, Obeidat M, Trochet H, McArdle WL, Alves AC, Hui J, Zhao JH, Joshi PK,
Teumer A, Albrecht E, Imboden M, Rawal R, Lopez LM, Marten J, Enroth S,
Surakka I, Polasek O, Lyytikainen L-P, Granell R, Hysi PG, Flexeder C, Mahajan
A, Beilby J, Bosse Y, et al. Sixteen new lung function signals identified
through 1000 Genomes Project reference panel imputation. Nat Commun.
2015;6:8658.

6. Wain LV, Shrine N, Miller S, Jackson VE, Ntalla I, Soler Artigas M, Billington
CK, Kheirallah AK, Allen R, Cook JP, Probert K, Obeidat M, Bossé Y, Hao K,
Postma DS, Paré PD, Ramasamy A, Mägi R, Mihailov E, Reinmaa E, Melén E,
O’Connell J, Frangou E, Delaneau O, Freeman C, Petkova D, McCarthy M,
Sayers I, Deloukas P, Hubbard R, et al. Novel insights into the genetics of
smoking behaviour, lung function, and chronic obstructive pulmonary
disease (UK BiLEVE): a genetic association study in UK Biobank. Lancet
Respir Med. 2015;3:769–81.

7. Wain LV, Armour JA, Tobin MD. Genomic copy number variation, human
health, and disease. Lancet. 2009;374:340–50.

8. McCarroll SA, Huett A, Kuballa P, Chilewski SD, Landry A, Goyette P, Zody
MC, Hall JL, Brant SR, Cho JH, Duerr RH, Silverberg MS, Taylor KD, Rioux JD,
Altshuler D, Daly MJ, Xavier RJ. Deletion polymorphism upstream of IRGM
associated with altered IRGM expression and Crohn’s disease. Nat Genet.
2008;40:1107–12.

9. Craddock N, Hurles ME, Cardin N, Pearson RD, Plagnol V, Robson S, Vukcevic
D, Barnes C, Conrad DF, Giannoulatou E. Genome-wide association study of
CNVs in 16,000 cases of eight common diseases and 3,000 shared controls.
Nature. 2010;464:713–20.

10. Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M. Strong
association of de novo copy number mutations with sporadic
schizophrenia. Nat Genet. 2008;40:880–5.

11. Ruderfer DM, Chambert K, Moran J, Talkowski M, Chen ES, Gigek C, Gusella
JF, Blackwood DH, Corvin A, Gurling HM, Hultman CM, Kirov G, Magnusson
P, O’Donovan MC, Owen MJ, Pato C, St Clair D, Sullivan PF, Purcell SM, Sklar
P, Ernst C. Mosaic copy number variation in schizophrenia. Eur J Hum
Genet. 2013;21:1007–11.

12. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B,
Yoon S, Krasnitz A, Kendall J, Leotta A, Pai D, Zhang R, Lee Y-H, Hicks J,
Spence SJ, Lee AT, Puura K, Lehtimaki T, Ledbetter D, Gregersen PK,
Bregman J, Sutcliffe JS, Jobanputra V, Chung W, Warburton D, King M-C,
Skuse D, Geschwind DH, Gilliam TC, et al. Strong Association of De Novo
Copy Number Mutations with Autism. Science. 2007;316:445–9.

13. Girirajan S, Dennis MY, Baker C, Malig M, Coe BP, Campbell CD, Mark K, Vu
TH, Alkan C, Cheng Z, Biesecker LG, Bernier R, Eichler EE. Refinement and
Discovery of New Hotspots of Copy-Number Variation Associated with
Autism Spectrum Disorder. Am J Hum Genet. 2013;92:221–37.

14. Coe BP, Witherspoon K, Rosenfeld JA, van Bon BWM, Vulto-van Silfhout AT,
Bosco P, Friend KL, Baker C, Buono S, Vissers LELM, Schuurs-Hoeijmakers JH,
Hoischen A, Pfundt R, Krumm N, Carvill GL, Li D, Amaral D, Brown N,
Lockhart PJ, Scheffer IE, Alberti A, Shaw M, Pettinato R, Tervo R, de Leeuw N,
Reijnders MRF, Torchia BS, Peeters H, Thompson E, O’Roak BJ, et al. Refining
analyses of copy number variation identifies specific genes associated with
developmental delay. Nat Genet. 2014;46:1063–71.

15. Chen X, Li X, Wang P, Liu Y, Zhang Z, Zhao G, Xu H, Zhu J, Qin X, Chen S,
Hu L, Kong X. Novel Association Strategy with Copy Number Variation for
Identifying New Risk Loci of Human Diseases. PLoS One. 2010;5:e12185.

16. Marques F, Prestes P, Pinheiro L, Scurrah K, Emslie K, Tomaszewski M, Harrap
S, Charchar F. Measurement of absolute copy number variation reveals
association with essential hypertension. BMC Med Genomics. 2014;7:44.

17. Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J,
Andrews TD, Barnes C, Campbell P, Fitzgerald T, Hu M, Ihm CH, Kristiansson
K, MacArthur DG, MacDonald JR, Onyiah I, Pang AWC, Robson S, Stirrups K,
Valsesia A, Walter K, Wei J, Tyler-Smith C, Carter NP, Lee C, Scherer SW,
Hurles ME. Origins and functional impact of copy number variation in the
human genome. Nature. 2010;464:704–12.

18. Patterson N, Price AL, Reich D. Population Structure and Eigenanalysis. PLoS
Genet. 2006;2:e190.

19. Cardin N, Holmes C, The Wellcome Trust Case Control Consortium, Donnelly
P, Marchini J. Bayesian hierarchical mixture modeling to assign copy
number from a targeted CNV array. Genet Epidemiol. 2011;35:536–48.

20. Kutalik Z, Johnson T, Bochud M, Mooser V, Vollenweider P, Waeber G,
Waterworth D, Beckmann JS, Bergmann S. Methods for testing association
between uncertain genotypes and quantitative traits. Biogeosciences. 2011;
12:1–17.

21. Manichaikul A, Chen W-M, Williams K, Wong Q, Sale M, Pankow J, Tsai M,
Rotter J, Rich S, Mychaleckyj J. Analysis of family- and population-based
samples in cohort genome-wide association studies. Hum Genet. 2012;131:
275–87.

22. The GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis:
Multitissue gene regulation in humans. Science. 2015;348:648–60.

23. Westra H-J, Peters MJ, Esko T, Yaghootkar H, Schurmann C, Kettunen J,
Christiansen MW, Fairfax BP, Schramm K, Powell JE, Zhernakova A,
Zhernakova DV, Veldink JH, Van den Berg LH, Karjalainen J, Withoff S,
Uitterlinden AG, Hofman A, Rivadeneira F, ’t Hoen PAC, Reinmaa E, Fischer
K, Nelis M, Milani L, Melzer D, Ferrucci L, Singleton AB, Hernandez DG, Nalls
MA, Homuth G, et al. Systematic identification of trans eQTLs as putative
drivers of known disease associations. Nat Genet. 2013;45:1238–43.

24. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, Hasz R, Walters G,
Garcia F, Young N, Foster B, Moser M, Karasik E, Gillard B, Ramsey K, Sullivan
S, Bridge J, Magazine H, Syron J, Fleming J, Siminoff L, Traino H, Mosavel M,
Barker L, Jewell S, Rohrer D, Maxim D, Filkins D, Harbach P, Cortadillo E,
et al. The Genotype-Tissue Expression (GTEx) project. Nat Genet. 2013;45:
580–5.

25. Nakka KK, Chaudhary N, Joshi S, Bhat J, Singh K, Chatterjee S, Malhotra R, De
A, Santra MK, Dilworth FJ, Chattopadhyay S. Nuclear matrix-associated
protein SMAR1 regulates alternative splicing via HDAC6-mediated
deacetylation of Sam68. Proc Natl Acad Sci. 2015;112:E3374–83.

26. Chakraborty S, Das K, Saha S, Mazumdar M, Manna A, Chakraborty S,
Mukherjee S, Khan P, Adhikary A, Mohanty S, Chattopadhyay S, Biswas SC,
Sa G, Das T. Nuclear Matrix Protein SMAR1 Represses c-Fos-mediated HPV18
E6 Transcription through Alteration of Chromatin Histone Deacetylation.
J Biol Chem. 2014;289:29074–85.

27. Lam HC, Cloonan SM, Bhashyam AR, Haspel JA, Singh A, Sathirapongsasuti
JF, Cervo M, Yao H, Chung AL, Mizumura K, An CH, Shan B, Franks JM, Haley
KJ, Owen CA, Tesfaigzi Y, Washko GR, Quackenbush J, Silverman EK, Rahman
I, Kim HP, Mahmood A, Biswal SS, Ryter SW, Choi AMK. Histone deacetylase
6-mediated selective autophagy regulates COPD-associated cilia
dysfunction. J Clin Invest. 2013;123:5212–30.

28. Ito K, Ito M, Elliott WM, Cosio B, Caramori G, Kon OM, Barczyk A, Hayashi S,
Adcock IM, Hogg JC, Barnes PJ. Decreased Histone Deacetylase Activity in
Chronic Obstructive Pulmonary Disease. N Engl J Med. 2005;352:1967–76.

29. Yang J, Gao J, Adamian M, Wen X-H, Pawlyk B, Zhang L, Sanderson MJ, Zuo
J, Makino CL, Li T. The Ciliary Rootlet Maintains Long-Term Stability of
Sensory Cilia. Mol Cell Biol. 2005;25:4129–37.

30. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic
variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:
e164–4.

Shrine et al. BMC Genetics  (2016) 17:116 Page 8 of 8


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Results
	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent to publication
	Ethics approval and consent to participate
	Author details
	References

