

RSS v2.0: Spamming, User Experience and Formalization

Thrushna Nalam

University of Tampere

School of Information Sciences

Computer Science

Supervisor: Dr. Eleni Berki

July 2015

ii

University of Tampere

School of Information Sciences

Computer Science / Software Development

Thrushna Nalam: RSS v2.0: Spamming, User Experience and Formalization

M.Sc. thesis, 61 pages, 14 index and appendix pages

July 2015

RSS, once the most popular publish/subscribe system is believed to have come to an end

due to reasons unexplored yet. The aim of this thesis is to examine one such reason,

spamming. The context of this thesis is limited to spamming related to RSS v2.0. The

study discusses RSS as a publish/subscribe system and investigates the possible reasons

for the decline in the use of such a system and possible solutions to address RSS

spamming. The thesis introduces RSS (being dependent on feed readers) and tries to find

its relationship with spamming. In addition, the thesis tries to investigate possible socio-

technical influences on spamming in RSS.

The author presents the idea of applying formalization (formal specification technique)

to open standards, RSSv2.0 in particular. Formal specifications are more concise,

consistent, unambiguous and highly reusable in many cases. The merging of formal

specification methods and open standards allows for i) a more concrete standard design,

ii) an improved understanding of the environment under design, iii) an enforced certain

level of precision into the specification, and also iv) provides software engineers with

extended property checking/verification capabilities. The author supports and proposes

the use of formalization in RSS.

Based on the inferences gathered from the user experiment conducted during the course

of this study, an analysis on the downfall of RSS is presented. However, the user

experiment opens up different directions for future work in the evolution of RSS v3.0

which could be supported by formalization. The thesis concludes that RSS is on the verge

of death/discontinuation due to the adverse effects of spamming and lack of its

development which is evident from the limited amount of available research literature.

iii

RSS Feeds is a perfect example of what happens to a software if it fails to evolve itself

with time.

Key words and terms: RSS, RSS feeds, RSS spam, Feed readers, Socio-technical

influence, Formal Specification, Open standards, Publish/Subscribe, CafeOBJ.

iv

Acknowledgement

I dedicate this thesis work to my beloved mother, whose words of encouragement and

love has allowed me to be who I am today. I am happy for having chosen University of

Tampere, Finland for my Master’s degree. I have found a very good atmosphere and

learning facilities that have contributed towards my interest in the field of research. I

express my sincere gratitude to my parents and friends who motivated and supported me

to pursue a master degree.

I would like to thank Dr. Eleni Berki, my thesis supervisor and my mentor for helping

me choose this topic. During the course of this thesis, I have received constant support

and motivativation from her. She has always inspired me to conduct excellent research

in the field of security and Internet safety. This thesis work would have not been

possible without the proper guidance and feedback from her. I would like to express my

gratitude towards my research team headed by Dr. Eleni Berki for the excellent research

on open standards and formalization.

I would also like to thank Prof. Erkki Mäkinen, for his critical comments and giving

right direction to the thesis work. A special thanks to Saila Ovaska, Lecturer, University

of Tampere for assisting me in the conduct of the user experiment for this thesis. I

would also like to thank the participants of the user experiment conducted for the study.

They were very cooperative and supportive throughout the experiment.

v

Contents

1. Introduction ... 1

1.1 Research Questions ... 2

1.2 Research Methodology ... 3

1.3 Thesis Structure .. 3

2. Literature Review .. 5

2.1 Review Protocol .. 5

2.1.1 Data Sources and Search Strategy ... 5

2.1.2 Study Selection ... 6

2.2 Search Results ... 7

2.3 Selection of Final Articles .. 9

3. Publish/Subscribe Systems .. 11

3.1 Topic – Based Publish / Subscribe ... 12

3.2 Content – Based Publish / Subscribe .. 13

4. RSS Feeds .. 14

4.1 RSS Feeds: An Introduction ... 14

4.2 The Drawbacks of RSS ... 17

4.3 Security Constraints of RSS ... 18

4.4 RSS Feed Registries and Aggregators .. 19

4.4.1 Content-Based Filtering and Aggregation of RSS Feeds 22

4.4.2 Cobra-Content-based RSS Aggregator .. 23

5. Spamming in Publish/Subscribe Systems ... 24

5.1 Blogs ... 24

5.1.1 TrackBack Spam in Blogs .. 25

5.1.2 Splogs and Ping Servers ... 25

vi

5.2 Email Spam ... 26

5.3 Caching in Content-Based Spam .. 27

6. RSS Spam and Socio-Technical influence .. 29

6.1 Socio-Technical Influence of Spam .. 30

6.2 Socio-technical attacks ... 31

7. Formal Specification of Open Standards and the Case of RSS v2.0 34

7.1 Open Standards and Formalization: An Introduction ... 34

7.2 Formal Specification of Open Standards .. 34

7.3 Formalization of RSS v2.0 with CafeOBJ .. 36

7.4 Research Results ... 42

8. Investigation through User Experiment ... 43

8.1 The Target Group .. 43

8.2 Guidelines for the User Experiment ... 43

8.3 The Material Collection Process ... 45

8.4 Demographics ... 46

8.5 Inferences .. 46

8.7 RSS in Today’s World .. 50

9. Conclusion ... 52

10. Limitations and Future Work .. 56

References

Appendices

1

1. Introduction

A publish/subscribe system provides the subscribers the ability to interact or express

their interest in an event or be notified of the publisher, when an event is generated or

matches their interest. In simple words, publishers ‘publish’ information and

subscribers ‘subscribe’ to the information that they want to receive. The information

published by the publisher is termed as event and the act of delivering is denoted by

notification [Eugster et al., 2003].

Figure 1. A simple representation of publish/subscribe system

Rich Site Summary (RSS) is an XML1 code and is often referred to as RSS feeds which

is used for distributing and aggregating web content. The design and model of RSS is

quite simple: consumers subscribe to feeds of their interest by polling for the feeds

periodically, to stay up to date [Liu et al., 2005].

Users determine their favorite websites or blogs they want to read and a properly

configured RSS reader or an RSS integrated web browser will fetch the selected

information or hyperlinks and display the contents on the user’s desktop in regular

intervals.

1 XML stands for Extensible Markup Language

2

RSS feeds were once seen as the most essential tool to distribute web content and to

build traffic to a site. The demise of RSS feeds offers a very important case study of

how a technology could fail due to the lack of necessary improvements with the

changing times. The decline of RSS can be traced down to the following reasons:

i) RSS is a dependable software meaning it cannot function without the use of an RSS

feed reader or aggregator.

ii) Insufficient development made, failed to evolve.

One of the motivating factors behind this thesis is to apply formalization (formal

specification technique) to RSS v2.0 to investigate if it can be used to prevent

spamming or help it to evolve as RSS v3.0. By formalization, we mean to use a formal

specification technique. In context of this thesis, CafeOBJ, an algebraic specification

language has been used to demonstrate how formalization can be beneficial. The author

has been actively involved in research activities related to formalization and its

application to open standards.[Barlas et al., 2014]

A user experiment is conducted to track down the user experience of using RSS in

comparison to technologies such as Twitter2, Facebook3, etc. Furthermore, we would

would like to observe with the help of the user experiment, if there is a possible socio-

technical influence on RSS spamming. In other words, what could be the possible socio-

technical attributes related to RSS spam. The term Socio-technical systems was

introduced by Emery and Trist [1960] to stress the reciprocal interrelationship between

machines and humans.

1.1 Research Questions

The study focuses on RSS feeds and spamming. Since this thesis discusses about RSS

feeds as a publish/subscribe system, it is important to discuss the existing literature in

RSS feeds related to publish/subscribe systems. This thesis analyzes the following

research questions:

2 http://www.twitter.com
3 http://www.facebook.com

3

Q1. How RSS differs from other publish/subscribe systems?

Q2. What is RSS spam and how does spam look like in RSS feeds?

Q3. How was the overall experience of using RSS feeds with feed readers?

Q4. What is the possible socio-technical influence on spamming in RSS feeds?

Q5. What are the benefits of using formalization in RSS feeds?

1.2 Research Methodology

The research methodology for this thesis work is systematic literature review followed

by the analysis based on the user experiment.

The systematic review consists of a scientific methodology that goes one step further than

an overview. It is used to refer to a certain methodology used to gather and evaluate the

available information for a research. When performing systematic review a researcher is

able to select and quantify the results. Systematic review conduction process needs

planning, execution, and result analysis. During the planning phase the objectives and a

review protocol are defined. Usually the research questions and methods that need to be

used are discussed. The execution phase involves the initial studies and research leading

to the selection and evaluation of the already found knowledge. This involves the

inclusion and exclusion criteria of the data selected based on the review protocol made

earlier. Once the papers have been selected based on the review protocol and the research

questions the data can be extracted to the result analysis phase [Mian et al., 2007].

An experimental evaluation is generally divided into two parts where exploration takes

place in the first and evaluation takes place in the other part. The exploration identifies

what questions should be asked about the subject/system under discussion and the

evaluation attempts to answer those questions. The inferences of the user experiment

provide proof of concept and illustrate potential but they may not provide solid evidence.

1.3 Thesis Structure

The structure of the thesis proceeds as follows: Chapter 2 discusses the temporal and

contextual limitations of this thesis, elaborating about the review protocol, data sources,

search strategy and study selection. Chapter 3 explains the concepts of

publish/subscribe system and their types. Chapter 4 describes the characteristics of RSS

feeds and also an overview of the feed registries and aggregators. Chapter 5

4

concentrates on the spamming in publish/subscribe system. This chapter also focuses on

the various types of publish/subscribe spam, namely blog spam and email spam.

Chapter 6 describes about RSS, spam and socio-technical attributes. Chapter 7 presents

a research paper about formal specification of RSS. Chapter 8 is concerned with a user

experiment and its findings. Chapters 9 and 10 conclude the work and discuss the

limitations and future work.

5

2. Literature Review

Literature review is always the initial step of any research work as it illustrates the

importance of the research area and establishes the relevance of the research topic with the

existing research. The review focuses on the literature published in the last 10 to 15

years in order to have relevance with the current trends in the field of RSS feeds and its

relationship with publish/subscribe, spam and formalization.

2.1 Review Protocol

In order to find answers to the research questions defined in Section 1.1, a number of

tasks or steps have to be completed. These tasks are referred to as review protocol. The

review protocol helps to achieve consistent and consolidated results.

The components of review protocols are defined as follows:

 Data sources – refer to the scientific databases or other sources of information

which are to be used for searching the required literature.

 Search strategy or search process – shows how the data sources are queried to

obtain the desired search results.

 Study selection – defines the criteria for selection of the literature available after

the search process.

 Selection of final articles - involves the extraction of relevant literature according

to the research questions.

 2.1.1 Data Sources and Search Strategy

The following data sources have been selected for searching the literature:

• Springer Link4

• ACM Digital Library5

• IEEE Digital Library6

• Wiley Online Library7.

4 http://link.springer.com
5 http://dl.acm.org
6 http://ieee.org/ieeexplore
7 http://onlinelibrary.wiley.com

6

The search strategy has been divided into two phases:

• Search using individual keywords

• Using search strings.

The relevance of the second phase is considered to narrow down the number of articles

or to find articles more specific to the research questions. If the number of results for

individual keywords is high, the search string is to be used.

Keywords used are the following: RSS feeds, publish/subscribe, spam, feed readers,

formalization and the search strings used are: RSS feeds and spam, RSS feeds and

publish/subscribe, RSS feeds and formalization.

2.1.2 Study Selection

Inclusion and exclusion criteria have been defined for study selection. We used the

following inclusion and exclusion criteria.

Inclusion Criteria:

1) The literature is related to publish/subscribe systems with focus towards RSS feeds.

Reason: The study investigates RSS feeds as a publish/subscribe system.

2) The literature is related to spam in content-based publish/subscribe systems.

Reason: There has been much research on content-based systems and their evolution and

how they stand apart but very little about the reasons of spam in content-based

publish/subscribe systems.

3) The literature is related to formalization in RSS feeds.

Reason: The study tries to find a relationship between formalization and RSS feeds.

4) The literature is in the form of scientific publications, i.e., journal articles or conference

proceedings.

Reason: Journal articles and conference proceedings of high reputation and recognition

help to ensure that the literature review is unbiased and minimizes the possibility of favor

to a particular practitioner or approach to be followed.

7

Exclusion Criteria:

1) The literature is related to RSS feeds but does not handle spamming or any content-

based publish/subscribe system.

Reason: A study on content-based publish/subscribe system not involving spamming may

not be relevant to the actual research questions being discussed.

2) The literature does not relate to all type of content-based publish/subscribe systems, as

the area is vast and irrelevant to the focus of this study.

Reason: Not all content-based publish/subscribe systems are RSS feeds. A study not

related to this is thus not related to the research questions.

3) The literature belongs to formalization but does not address RSS feeds.

Reason: The context of formalization is limited to RSS feeds as per the scope of this

thesis.

4) The literature is not in the form of scientific publication.

Reason: Unrecognized publications or company reports may be biased in nature and may

lack scientific evidence.

2.2 Search Results

The search for the literature has been performed in September 2014.

The selected keywords have been searched using the selected data sources. Table 1 shows

the number of articles for each keyword in different data sources.

Keywords
Springer

Link

ACM

Digital

Library

IEEE

Digital

Library

Wiley

Online

Library

RSS Feeds 5110 1642 166 3313

Spam 8962 5083 1467 2698

Publish/Subscribe 3425 2400 711 17

RSS Feed readers 1543 556 15 960

Formalization 37,506 7040 1596 14,072

Table 1. Keyword search results

8

Since the number of articles for individual keywords in each data source was high and

low, the second phase of search strategy has been used.

The search strings “RSS feeds and publish/subscribe “, “RSS feeds and spam”, “RSS

feeds and formalization” have been used for different data sources. Table 2, Table 3, and

Table 4 show the results for the search strings respectively.

Database Total search

results

Article

publications

Other

publications

Springer Link 122 119 3

ACM Digital Library 200 159 41

IEEE Digital Library 4 4 0

Wiley Online Library 19 5 14

Table 2. Search results for ‘RSS feeds and publish/subscribe’

Database

Total search

results

Article

publications

Other

publications

Springer Link 273 41 228

ACM Digital Library 134 34 100

IEEE Digital Library 2 2 0

Wiley Online Library 102 41 61

Table3. Search results for ‘RSS feeds and spam’

Database Total search

results

Article

publications

Other

publications

Springer Link 116 111 5

ACM Digital Library 37 31 6

IEEE Digital Library 0 0 0

Wiley Online Library 0 0 0

Table 4. Search results for ‘RSS feeds and formalization’

9

2.3 Selection of Final Articles

After performing the study selection, the titles and abstracts have to be read to find their

relevance to the research questions. Ultimately, final articles for discussion have to be

selected.

As per the analysis made after reading the titles and abstracts a total of 17 articles were

selected to study the relationship between RSS feeds and publish/subscribe and RSS feeds

and spam. Although the number of articles published with the keyword ‘formalization’

was around 60,000, none of them addressed to a possible relationship between RSS feeds

and formalization. However, only one publication was found relevant to ‘RSS feeds and

formalization’ search string. This publication has been co-authored by the author of this

thesis and has been presented in Section 7.2.

The list of the 17 articles selected as per the result of systematic literature review has been

presented in Table 5.

Item Title Publication Title Publication

Year

Database

The many faces of

publish/subscribe

ACM Computing Surveys 2003 ACM

Enriching topic-based

publish-subscribe

systems with related

content

Proceedings of the 2008

ACM SIGMOD

International Conference on

Management of Data -

SIGMOD '08

2008 ACM

Securing publish-

subscribe overlay

services with

EventGuard

Proceedings of the 12th

ACM Conference on

Computer and

Communications Security -

CCS '05

2005 ACM

Cobra: Content-based

Filtering and

Aggregation of Blogs

and RSS Feeds.

NSDI'07 Proceedings of the

4th USENIX Conference on

Networked Systems Design

& Implementation

2007 ACM

A Two-Phase Approach

to Subscription

Subsumption Checking

for Content-Based

Publish/Subscribe

Systems

2010 24th IEEE

International Conference on

Advanced Information

Networking and

Applications

2010 IEEE

10

Security aware content-

based publish/subscribe

system

Proceedings - IEEE

Symposium on Computers

and Communications

2009 IEEE

A software

infrastructure for RSS

deployment and linking

on the web

WebMedia '05: Proceedings

of the 11th Brazilian

Symposium on Multimedia

and the Web

2005 ACM

A Semantic Map of RSS

Feeds to Support

Lecture Notes in Computer

Science

2012 Springer

RoSeS: A continuous

content-based query

engine for RSS feeds

Lecture Notes in Computer

Science

2011 Springer

Characterizing the

splogosphere

Proceedings of the 3rd

Annual Workshop on

Weblogging Ecosystem:

Aggregation, Analysis and

Dynamics.

2006 ACM

Towards Spam

Detection at Ping

Servers.

International Conference on

Weblogs and Social

Media'07

2007 ACM

TrackBack spam Proceedings of the 2009

ACM Workshop on Cloud

Computing Security -

CCSW '09

2009 ACM

Preventing Spam in

Publish/Subscribe

26th IEEE International

Conference on Distributed

Computing Systems

Workshops (ICDCSW'06)

2006 IEEE

Modeling

publish/subscribe

communication

systems: Towards a

formal approach

Proceedings - International

Workshop on Object-

Oriented Real-Time

Dependable Systems,

WORDS

2003 Springer

Caching in Content-

Based

Publish/Subscribe

Systems

GLOBECOM 2009 - 2009

IEEE Global

Telecommunications

Conference

2009 IEEE

Formal Specification of

Open Standards and the

Case of RSS v2.0

Proceedings of the 18th

Panhellenic Conference on

Informatics - PCI '14

2014 ACM

Table 5. Final list of selected articles.

11

3. Publish/Subscribe Systems

The basic model of a publish/subscribe system relies on the interaction between the

event publishing publishers and the event subscribing subscribers through an event

notifying service provider. The event here is the information passed by the publisher

through the event managing service provider. In order to generate an event a publisher

uses the operation Publish () and passes the event while the service provider propagates

the events to the subscribers. Every subscriber gets notified of the event according to

their interest. Subscribers choose the events they want to receive based on their interest.

Publishers have the ability to send out advertisement about the nature of their future

events using the advertisement () operation to keep the subscribers interested [Eugster et

al., 2003].

The event service between publishers and subscribers can be categorized into three

dimensions:

Space – The interacting parties do not need to know each other, as the publishers

publish the events through an event service provider and the subscribers receive these

events through the event service manager. Neither of the parties keeps track of the

references between them.

Time – The interacting parties do not necessarily need to be active at the same time. In

particular, the publisher might publish some events while the subscriber might not get

notified of the same at the original occurrence of the event.

Synchronization – The subscribers might not be getting notified of the event at the exact

occurrence of the event published but rather at different pace. The production and the

consumption of the events might not necessarily take place in a synchronous manner.

In a publish/subscribe system, the subscribers are usually interested in particular type of

events, and not all events published by the publisher. A subscriber can choose from a

variety of schemes for this purpose. In this section, the two most common types of

publish/subscribe systems are discussed.

12

3.1 Topic – Based Publish / Subscribe

The first publish/subscribe system was based on topics and subjects. It extents to the

channels used for communicating with methods for characterizing and classifying the

events content. Keywords are used as identification for subscribers to identify the topic

of their interest [Eugster et al., 2003]. The topic name is usually specified, every topic is

viewed as an event and is identified by a unique name, with an interface offering

publish/subscribe operations. Topic based publish/subscribe system is perfect fit for

event service schemes as the messages are classified into groups corresponding to the

users interest.

Topic based publish/subscribe systems had risen to popularity due to their simplicity.

When a user subscribes to a set of topics of his/her interest there is also a chance the

subscriber is completely unaware of the existence of similar topics of his/her interest.

This leads to loss of information making the whole purpose of publish/subscribe system

useless [Boim and Milo, 2008].

The interfaces of a topic based publish/subscribe system share operations such as

create, publish, subscribe and unsubscribe. To send messages, the publishers first create

topics, each topic is recognized by a unique id (topic ID) and serves as a mediator

between publisher’s side and subscriber’s side. To publish a message for a given topic,

the publishers call publish () operation with reference to its topic ID. This message is

propagated to the topic subscribers. To become a subscriber of a given topic, interested

users call subscribe () operation, with the appropriate topic ID. The corresponding

unsubscribe () operation removes the subscription.

In topic based publish/subscribe system subscribers specify their interest by subscribing

to a feed published by the publisher. In this case, the publishers and subscribers have to

agree upon a certain set of topics which would be covered by the channels. Producers

who generate content related to those topics, publish the content on the corresponding

topic channels to which the users are subscribed and the users receive asynchronous

updates via these channels.

The drawback with topic based publish/subscribe system is that all topics need to be

predefined and further classified into topics. Although the infrastructure of the topic

based publish/subscribe systems are simple, it still becomes difficult to connect

13

publishers and subscribers with predefined topics. This makes the whole purpose of

using a publish/subscribe system irrelevant. A content-based publish/subscribe system

fixes these constraints where publishers and subscribers specify their interest through

event filters and event contents [Liu et al., 2005].

3.2 Content – Based Publish / Subscribe

The most commonly used publish/subscribe system type after the topic-based systems is

the content-based publish/subscribe system. In content-based systems, the subscribers

have the ability to describe attributes of the content of their interest using an expressive

query language. The system then filters the matching content generated by the

publishers based on the subscribers queries [Rose et al., 2007].

In content-based publish/subscribe systems, subscribers can express more in detail and

specify constraints over the content they receive from publishers, network brokers

evaluate these constraints provided by the subscribers and deliver the interested

publications to the subscriber [Zhang et al., 2012].

An interesting feature of the content-based publish/subscribe systems is that they

provide a subscription scheme for the subscriber based on the content published

[Chaabane and Jmaiel, 2009]. In content-based publish/subscribe systems, the

subscribers have more hold over the content they receive as they have the ability to

filter the information published by the publisher. This has been the major reason for the

popularity of the content-based system.

Despite various improvements in topic-based publish/subscribe systems, they offer only

a static scheme, meaning a restricted or less expressive [Eugster et al., 2003]. Whereas

content-based publish/subscribe systems are more versatile and flexible for the

subscriber, letting the subscriber be more expressive and have more control over the

content received. Subscribers subscribe to only selective events based on their interests

by providing filters and are only notified upon occurrence of those events.

14

4. RSS Feeds

This chapter gives a detailed description about RSS feeds and an overview on the

characteristics of RSS feed registries and aggregators.

4.1 RSS Feeds: An Introduction

RSS commonly known as Really Simple Syndication and Rich Site Summary is based

on an XML query language that allows the syndication of lists of hyperlinks, along with

other information like publishing date and author’s name. This helps the subscribers to

decide whether they want to follow the link or not. RSS is mainly a content-based

publish/subscribe system used to syndicate news like information from news like

websites, community like blogs, and many more. Any information which can be broken

into discrete items can be syndicated via RSS. To enable RSS, a website owner needs to

provide a standard XML format that is mostly compatible with many programs and

machines through a channel or server. This XML page helps in fetching the most recent

information for the subscriber through the list of hyperlinks provided [Camacho-

Guerrero and Macedo, 2005].

RSS document is frequently called an RSS feed. RSS feeds involve publishers,

subscribers and a software called “RSS Feed Reader” or “RSS Feed Aggregator”. The

main purpose of RSS is that it allows the subscribers to receive the information that they

are interested in without having to visit the website manually each and every time.

Subscribers subscribe from one or many websites using the feed reader either using a

URL or by clicking the RSS feed icon available on the website. The feed reader fetches

the information regularly keeping the subscribers up to date with the latest news.

The basic structure of an RSS document is self-describing and uses a simple syntax.

RSS is written in XML which makes the elements case sensitive and must be properly

nested. Listing 1 shows the basic structure of RSS.

15

<?xml version="1.0" encoding="UTF-8" ?>

<rss version="2.0">

<channel>

 <title>abc homepage</title>

 <link>http://www.abc.com</link>

 <description>abc content</description>

 <item>

 <title>RSS </title>

 <link>http://www.abc.com/rss</link>

 <description>New RSS structure on abc</description>

 </item>

 <item>

 <title>RSS as XML</title>

 <link>http://www.abc.com/RSSXML</link>

 <description>New RSS XML on abc</description>

 </item>

</channel>

</rss>

Listing 1: RSS

The basic structure of RSS includes a channel element which consists of the complete

information of the website or the blog like ‘link’, ‘title’ and ‘description’. The

<channel> element contains three required child elements namely <title> (defines the

title of a channel), <link> (defines the link to a channel) and <description> (provides the

description of the channel). Each <channel> element can have one or more <item>

elements. Each <item> element describes the article. The <item> element consists of

three required child elements namely <title>, <link> and <description> [Montgomery,

2003].

16

Table 6 lists the elements and their description in standard RSS v2.0.

Element Definition

Title The title of the channel

Link The link of the website or blog

Description The description of the feed

Language (Optional) Specifies the language of the feed

Copyright (Optional) Copyright material

managingEditor (Optional) Specifies the managing editor of the content

pubDate (Optional) Defines the last publication date

lastBuildDate (Optional) Defines the last build date

Image The image information of the feed

Table 6. RSS 2.0 Elements

Table 7 shows the required and optional elements of the <item> element.

Element Definition

<author> (Optional) Specifies the mail address of the author of the feed

<category> (Optional) Defines the category of the feed

<comments> (Optional) Allows an item to link to comments about that item

<description> Required. Describes the feed

<enclosure> (Optional) Allows a media file to be included with the item

<link> Required. The link of the website or blog

<pubDate> (Optional) Defines the last publication date

<source> (Optional) Specifies the source of the feed

<title> Required. Defines the title of the feed

Table 7. RSS 2.0 <item> Elements

17

Table 8 shows the required and optional elements of the <channel> element.

Element Definition

<category> (Optional) Defines the category of the feed

<copyright> (Optional) Information on Copyright material

<description> (Required) Describes the channel

<docs>

(Optional) Specifies a URL to the documentation format

used in the feed

<generator> (Optional) Specifies the program used to generate the feed

<image> (Optional) Allows an image to be displayed

<language> (Optional) Specifies the language the feed

<lastBuildDate> (Optional) Defines the last build date

<link> Required. The link of the website or blog

<managingEditor> (Optional) Specifies the managing editor of the content

<pubDate> (Optional) Defines the last publication date

<skipDays>

(Optional) Specifies the days where feed aggregators

should skip updating the feed

<skipHours>

(Optional) Specifies the hours where feed aggregators

should skip updating the feed

<textInput>

(Optional) Specifies a text input field that should be

displayed with the feed

<title> Required. Defines the title of the channel

<webMaster>

(Optional) Defines the email address to the webmaster of

the feed

Table 8. RSS v2.0 <channel> elements

4.2 The Drawbacks of RSS

RSS is changing in the world of publish/subscribe, one must understand that it goes

beyond news publishing and searching news. It is one step ahead by allowing

information providers to communicate to their subscribers. Although RSS is a free and

easy to use, there are difficulties in it which have not been addressed so far. The first

one is the difficulty to identify and choose relevant data sources that match their interest

18

and to know how to subscribe to them. In RSS, there is no standard method or an agreed

upon method to locate the feeds and subscribe to them. In simple terms, RSS feeds are

just subscribed by entering the link or URL to the aggregator or feed reader. The second

one is that RSS cannot work without a compilation of a feed reader or aggregator

thereby making it dependable [Hochard et al., 2012].

Each RSS document consists of both static and dynamic information of the site. The

<item> tag defines the story of the website subscribing to, with information like

headline, title, URL and description. An example of the same can be found in Listing 1.

Although the process of subscribing to a web feed is not as simple as visiting the

website, there are three ways to subscribe to RSS feeds:

1. The easiest and the most common method is to subscribe directly through the

web browser, called RSS auto discovery method, as most internet browsers

include a RSS feed aggregator.

2. The second method is to use an online service provider, such as “Google

Reader”.

3. The third method is to use a desktop based feed aggregator to subscribe to feed,

were users need to locally install the client application.

In the latter two methods, the subscribers need to manually enter feed URL of the

websites or blogs they are interested onto the feed reader in order to receive feeds. The

difficulty arises when the subscriber must manually search for the feed stream they are

interested in and decide on a subscription process provided by the feed aggregator

[Hochard et al., 2012].

4.3 Security Constraints of RSS

When discussing about RSS feeds it is very important to discuss its security constraints.

RSS feeds can deliver any type of content, the publishers can include any type of

executables or documents in the enclosure field of their feed. It is highly possible that

these files can contain viruses or other type of unwanted programs. The developers of

RSS feed readers usually take precautions when creating the program to ensure that if a

feed contains suspicious file types, in such a case the programs provides a warning to

19

the user viewing the feed. The other problems concerning RSS is the potential exploits

in both online and offline RSS aggregators or RSS readers. Some RSS feeds can contain

HTML which include scripting language like JavaScript, exploits could occur if an

infected RSS feed is viewed. The danger lies in the fact that many RSS readers, news

aggregators automatically download the information contained in the enclosure field

regardless of the file type or the source. Unfortunately, not all RSS readers and

aggregators consider the possible security threats associated with RSS feeds. Some

users will automatically download enclosures without warning or any thoughts of

security.

As RSS feeds became more and more popular, security threats grew large. Even though

publishers are finding new and innovative methods for RSS feeds, hackers are taking

notice of the vulnerability that can be caused. Housley [2010] quoted, “The power and

extendibility of RSS in its simplest form is also its Achilles heel.” The vulnerabilities lie

in the expansion capabilities of RSS specifications especially in the enclosure field,

which is used to launch the podcasting scheme. Though the enclosure field in particular

is not the problem as most RSS feeds do not use the enclosure tag. The enclosure tag is

mainly used to link file types, images, documents, mp3 files and executables that could

be found in most email spam. [Housley, 2010]

Problems may arise when a subscriber wants to subscribe to an individual section of a

website or blog, instead of the all the sections in it. The subscriber cannot subscribe to

the individual sections of a website or blog unless the corresponding section's URL

and/or XML code is available. The reasons of which and why are discussed in the user

experiment conducted for the purpose of this thesis in Chapter 8.

4.4 RSS Feed Readers and Aggregators

RSS being the most convenient software to receive news and updates is interestingly a

dependable software. In order to use RSS one needs a special software called “feed

reader” or “feed aggregator”. There are a variety of open source and commercial readers

available on the internet, some of which have been explained in Table 9.

20

Feed

aggregator Classification Feed search Type

Google

Reader

topic

hierarchy

category,

description

social network,

recommendation

Digg category list content

social network,

recommendation

Netvibes category list keyword widgets, mashup

Feedzilla

topic

hierarchy category, keyword widget generator

NewsIsFree category keyword feed discovery

Feedsee topic topic, keyword keyword discovery

Search4rss - keyword feed discovery

Syndic8

topic

hierarchy keyword feed discovery

Table 9. RSS feed registries and aggregators (Adapted from [Hochard et al., 2012])

GoogleReader8 is a RSS feed registry and feed reader that allows Google users to create

a personalized hierarchy of RSS feeds. Feeds from websites or blogs can be searched

via keywords and have to be added manually. One of the reason why Google Reader

was popular was because it allows the integration of social network in its feed registry

letting the users share and recommend feeds online among friends and family.

Feedzilla9 is a RSS feed registry that helps in collecting and categorizing the contents of

the RSS feeds. Feedzilla lets the users filter and categorize their feeds, and also supports

in building a user interface widget that enables in publishing the chosen news feeds.

NewsIsFree10 is a feed registry and also a feed reader where users have the ability to

choose the feed contents based on feed category, feed name, feed date and feed

language. Feeds can also be searched using name and description of the feed, Feedsee11

lets the users search feeds in blogs and websites using topic and keyword search. This is

unlike the above feed registries and readers which are mostly content-based. In

Search4RSS12 users can discover feeds from websites and blogs using a feature called

‘discover feed’. This feed registry also has its own search engine for searching web

8 http:// www.google.com/reader
9 http:// www.feedzilla.com
10 http:// www.newsisfree.com
11 http:// www.feedsee.com
12 http:// www.search4rss.com

21

feeds published by web pages. Syndic8.com13 is a popular RSS registry mainly built and

maintained for gathering syndicated news. It provides a number of RSS syndication

tools to evaluate and validate various RSS services [Hochard et al., 2012].

RSS cannot function without a feed reader or aggregator, making it a dependable

software. The feed aggregator can run on a local computer or can be online based. So

what does the feed reader do exactly? The feed aggregator or reader regularly checks

the websites or blog files that the users are interested in and when a new item has been

added by the publisher or the website owner, the software notifies the user in a similar

way a user is notified when a new email arrives. In the online version of the feed

aggregator or reader, a website performs the same functionalities as the client

application. When the user wants to view the information, he/she logs into the website

and avails the information gathered by the feed aggregator or reader.

Figure 2 is a diagrammatic representation of how the websites, RSS feed and a local

computer having a feed aggregator are related [Software Garden Inc, 2004]. It shows

that a web browser is first used to read the files from the first website and then the

second website. While the RSS XML file monitors the websites simultaneously by the

RSS feed aggregator.

Figure 2. RSS feeds and feed aggregators

13 http:// www.elsindi8.com

22

4.4.1 RoSeS-Content-based RSS Aggregator

RoSeS (Really Open Simple and Efficient Syndication) [Tomàs et al., 2011] is a

content-based RSS feed aggregation system which allows individual users to create

personalized feeds by defining content-based aggregation queries on selected

collections of RSS feeds. RSS query language allows users to define personalized RSS

feeds. The result of each query is a new feed that can be accessed locally and, if

necessary, be published for other users. The RoSeS language can be explained in two

parts, the publication language and the subscription language.

A publication language query contains three clauses:

– A mandatory from clause, which specifies the input feeds that produce output items,

called main feeds.

– Zero, one or several join clauses, each one specifying a join with a secondary feed.

Secondary feeds only produce annotations (no output) to main feed elements.

– An optional where clause for filtering conditions on main or secondary feeds.

A subscription language query allows defining subscriptions to existing publications or

source feeds. A subscription specifies a feed, a notification, a periodicity and possibly a

transformation.

For example, a user wants to create a new feed PubSubRoSeS.rss which aggregates all

articles about RoSeS published by Tomàs et al. This can easily be translated into the

aggregation query in Figure 3 which applies a simple conjunctive filtering condition on

the union of the corresponding feeds.

Figure 3. An example of RoSeS query language as per Tomàs et al. [2011]

Tomàs et al. [2011] stated that “RoSeS is a large scale RSS feed aggregation system

based on a continuous multi-query processing and optimization”. RoSeS is a simple

and expressive aggregation language for RSS Feeds, when compared to centralized

register feed PubSubRoses

as http://www. PubSub.com/Roses/feed/ChanKey = PubSubRoSeS

Where item contains “RoSeS” and item.author contains “ Tomàs”

23

server-based feed aggregators like GoogleReader, YahooPipes! And Cobra, RoSeS

advocates a distributed client-based aggregation infrastructure which allows users to

install and personalize their local feed aggregator.

4.4.2 Cobra-Content-based RSS Aggregator

Cobra (Content-Based RSS Aggregator) provides its users a distributed and scalable

system for a personalized view of articles from millions of RSS feeds. Cobra consists of

a three tiered network of crawlers that extract data from web feeds, filters that match

articles against user subscriptions, and reflectors that serve matching articles on each

subscription as an RSS feed, which can be using any RSS reader [Rose et al., 2007].

The most interesting part about Cobra is that it makes use of the offline service

provisioning technique, using minimal amount of resources and supporting a given

number of source feeds. The number of crawlers, filters, and reflectors, and the

interconnectivity between these services helps the technique to determine the

configuration of the network.

Crawlers, filters, and reflectors constitute the three-tier architecture of Cobra. Crawlers

periodically crawl web feeds, such as blogs, news sites, and other RSS feeds which are

collectively termed as source feeds. Cobra crawlers make use of different techniques to

reduce polling load. They check for updates in a lightweight manner in the source feeds

while a typical blog or news feed will present the most recent articles only. The content

of new articles is sent to the filters which match it using a case-insensitive and index-

based algorithm against the content of those selected by user subscriptions. An

appropriate reflector receives the articles matching a given subscription by push

mechanism and then presents a personalized RSS feed to the end user which can be

browsed using a feed reader. The reflector caches the last ‘n’ matching articles for the

feed (where n is typically 10), requiring that the user poll the feed periodically in order

to detect all the matching articles. Many existing RSS feeds that limit the number of

articles included in the feed show same similar behavior. Although the reflector must be

polled by the user (as required by the current RSS standards), yet this polling traffic is

very low as compared to the requiring users to poll many thousands of source feeds

[Rose et al., 2007].

24

5. Spamming in Publish/Subscribe Systems

This chapter deals with the kind of spam encountered by the internet users while using

publish/subscribe systems such as blogs and email. An overview of caching in content-

based publish/subscribe system is also presented.

Spam is a well known problem related to internet based applications. The spammers

find internet a haven for creation and distribution of plagiarized content. Spamming in

blogs and in email applications has not been studied well though the past research has

advocated that spam can be minimized on the World Wide Web (WWW) [Kolari et al.,

2006].

Spam blogs, or splogs feature plagiarized or auto generated content. They create link

farms to promote affiliates, and are motivated by the profitability of hosting ads. Splogs

are generated with two often overlapping motives. The first is the creation of fake blogs,

containing gibberish or hijacked content from other blogs and news sources with the

sole purpose of hosting profitable context based advertisements. The second, and better

understood form, is to create false blogs that realize a link farm [Kolari et al., 2007].

Spam blogs or splogs are identified by plagiarized or auto generated content and

creation of link farms to promote advertisements. They are motivated by by their

affliates and profitability of hosting ads. The motivation could be the creation of fake

blog that may contain hijacked content from other sources with the purpose of hosting

profitable ads [Kolari et al., 2007]. A detailed description about link farms, fake blogs

and other modes of spamming has been presented in the following sections.

5.1 Blogs

Blogs and the blogosphere are characterized by the following features: (i) the blog hosts

host them freely (ii) content syndication for distribution is provided by them, (iii)

remote web service applications for publishing are supported by them [Kolari et al.,

2006].

The term ‘Blog’ is a “contraction of the term weblog”. Blogs can be used for any topic,

but are usually used by bloggers to share and exchange information on various subjects

such as personal life to food and video games. They also provide personal opinions on

the same. Due to their informal tone of language, blogs are used by companies to build

25

and maintain relationships with their customers. Blog articles are often referred to as

posts. [Bursztein and Mitchell, 2009].

Kolari et al. [2006] indicated that spam ranges as high as 75% at ping servers, to around

20% at blog search engines. A similar trend can be noticed in web search engines in

general where a user searches for a particular string and the results are flooded by

irrelevant content and back links.

5.1.1 TrackBack Spam in Blogs

Cross-references between blogs can be inserted using the TrackBack mechanism. The

TrackBack interface can be used by a new blog post citing an older one to insert a link

in the older post automatically. According to Bursztein and Mitchell [2009], TrackBack

is important because it provides link reciprocity.

TrackBack mechanism works well for two reasons. First, it is more time consuming and

error prone for a blogger to notify each blog cited in a post, and second it is tedious for

a blogger to add manual notification to all the blogs that cite it. These features of

TrackBack attracted malicious users to use it soon after it appeared. TrackBack

mechanism may be utilized to perform search engine optimization in addition to lure

users to malicious sites. A small quantity of TrackBack holds a potential of providing

large amount of internet traffic. Thus, spammers might lure thousands of blog readers to

a particular site using one spam TrackBack [Bursztein and Mitchell, 2009].

5.1.2 Splogs and Ping Servers

Blogs may use standard interfaces defined by ping servers to notify new or updated

posts. The pings usually are associated with the blog title, homepage and sometimes

with syndication feed location. Pings are restricted only by their frequency. Being

restriction free in nature and by providing an improved exposure to search engines, ping

servers are frequently buzzed by Splogs.

Ping servers face two kinds of spams - (i) pings from non-blogs, and (ii) pings from

splogs, both of which could be referred to as spings. Splogs constitute around 88% of all

pinging URLs but they account for only 75% of all pings. This follows from the fact

that many splog pings are one-time pings [Kolari et al., 2006].

26

Subsequent pings do not use the same URL but specify arbitrary pages as blog

homepages even though they have no relationship with blogs or the blogosphere.

Zombie pings, spings that exist even though the splog (or page) they represent is non-

existent (or is already eliminated) in the blogosphere are one of the favorites of the

spammers. Most of the popular web search engines give particular importance to the

URL tokens of page. Splogs exploit the ranking criteria of search engines with the help

of similar but fake URLs by hosting blogs in the info domain, where domain

registrations are less expensive and easily available [Kolari et al., 2006].

5.2 Email Spam

Tarkoma [2006] explained about email spam which comes in two forms inbound and

outbound spam, with inbound spam originating from and outbound being sent to a

foreign network. Spam originates from networks infested with a host machine (zombie

machine) that has been taken over by spammers or their helpers, e.g., using Trojans or

viruses. Prevention of spam is not possible with any one particular technique.

Spammers are difficult to get identified and located as they use several techniques such

as open relays, spoofing and zombie machines.

In a similar manner, publish/subscribe spam may also be classified into inbound and

outbound types. Publish/subscribe systems are typically multi-hop, filters describe their

end points and have a static or configured topology to support efficient online filtering.

In the inbound case, an active filter that matches a lot of unwanted messages signifies

the presence of spam in a client’s queue. The client has the ability to change the filter to

a more concise using spam detection filters that are available. The client has also the

option to use a combination of techniques such as sender verification, white listing,

black listing, computational puzzles, grey listing, sender verification, and content

filtering. In short, the client application is responsible for the reduced performance

impact of unwanted messages [Tarkoma, 2006].

Tarkoma [2006] estimates client interests through filters. Spammers operate with email

address in email spam and in publish/subscribe they operate with filters. For spammers

to maximize their throughout, the author emphasizes on two ways such as “out-of-band”

27

and “online”. For out-of-band the spammers have external information of the clients

through long term monitoring of the users interests and application behavior. In online,

the spammers try to compromise the servers of the publish/subscribe networks with the

help of brokers. This way the spammer has complete understanding of the filters used

which helps them to reconstruct the subspaces through frequently used filters [Tarkoma,

2006]. Since publish/subscribe systems have a different architecture than email,

therefore the ways of prevention of spam should also be different.

5.3 Caching in Content-Based Spam

Any message is supposed to reach all interested destinations in a publish/subscribe

system [Baldoni et al., 2003]. This holds good for all the active clients and therefore

their subscriptions are available in the system at publish time. However, it is possible

that a client joins the network after the publishing of an interesting message in a

dynamic environment. A new subscriber in publish/subscribe system cannot retrieve

messages matching to the subscription that have been published earlier. Hence, the

retrieval of previously published content with the help of caching is one of the most

challenging problems in publish/subscribe. A large part of network traffic is redundant

despite extraordinary volumes. Multiple users, at any given site, request for almost the

same content. Caching facilitates replication of the content and serve identical requests

locally, and prevent them from over utilizing the network resources. The content is

stored on a storage device that is physically or logically closer to the user by a cache.

Sourlas et al. [2009] have described some key points through the caching points and

request/response mechanism with which they have proposed the enhancement of

retrieval of previously published content in publish/subscribe systems.

In caching points, caches are installed in brokers and a request/response mechanism is

introduced with the aim to provide a publish/subscribe system with the ability to ensure

the availability of old information for future clients.

28

Furthermore, Sourlas et al. [2009] quoted the following to elaborate the caching points:

 “In their system each broker is selected as a candidate caching point for a message as

long as it has in its subscription table at least one client subscribed in this message. A

published message is transferred to all brokers with client subscribers. Also, a broker

with a client subscriber is easily reached by a request message.”

In request/response mechanism when a client requests for a previously published

content from the network, he/she makes a request message apart from subscribing. The

request message works similarly to the publish message, but in this case it carries along

with it a series of broker identifiers. Brokers upon receiving the request message check

for a subscription filter matching it. For every matching subscription filter a request

message is passed on, when there is no subscription filter, the request message is

dropped. Only when a matching is found a response message is initiated. The response

message carries the previously published messages as well as a sequence of nodes. Once

a broker receives a response message, it pops off its identifier from the sequence and

forwards it to the first broker of the remaining sequence. Using the above procedure,

every new subscriber and only that one will receive every old message matching its

filter. Although the mechanism proposed by the author helps in retrieving the old

content, it lacks in addressing the problem of event replication and also fails to discuss

about the spamming caused due to the mechanism.

29

6. RSS Spam and Socio-Technical influence

In the context of the this thesis, we refer RSS spam to be any content that has not been

subscribed to by the user.

RSS spam is not the same as what you get in your email inbox. With email spam you

are getting unwanted messages. RSS spam targets directories and search engines rather

than the end user itself. RSS feeds are indexed by search engines and directories and can

be considered as news. This, however, has not gone unnoticed by the spammers who are

using RSS to spam search engines. RSS spam largely consists of four main types most

often found in RSS search engines. The first type is keyword stuffing, the second type

involves RSS feed link farms, the third type is the creation of fake RSS feeds and the

fourth is event replication.

Key word stuffing involves in filling each RSS feed article with high value keywords

for a specific topic. The articles are not for the end users (human visitors) but instead

are for the search engine robots to direct traffic to a target website. This technique is

nothing more than an adaptation of typical keyword stuffed web page, often banned by

major search engines.

The RSS feeds involving RSS feed farms contain very little content, mostly a simple

keyword. Their main attraction is their feed title. When one enter the title it is routed to

a blog containing tens or hundreds of other blogs and RSS feeds, each of which

redirecting to more other links within the farm. The goal is to trick the user to clicking

advertisements or directing them to a product website.

Fake RSS feeds appear to be legitimate but are often duplicated article content. Whether

the content is valuable or not is debatable. These feeds are usually created in mass,

using automated scripts, and appear to be similar to that of link farms. By attracting the

users to seemingly valuable content, they hope to gain advertisement clicks or product

website traffic.

Event replication is the main issue in publish/subscribe spam. In simple terms, event

replication means the forwarding and replication of a published event until it has been

circulated throughout the network. Event replication is by in itself one of the most

scalable techniques to disseminate spam. Filters inferred by the spammer may generate

30

notifications generated and delivered to the neighboring brokers. However, this does not

guarantee the spammer a 100% circulation of notifications [Tarkoma, 2006].

6.1 Socio-Technical Influence of Spam

A socio-technical system is a social system built upon a technical base (hardware and

software). A social system may arise from technology (social media) or the physical

world (human interactions) [Whitworth, 2004].

Whitworth and Liu [2009] redefined spam as ‘tragedy of the commons’ in new

technical clothes. They advocated that socio-technical problems can be solved only by

socio-technical solutions. This is because neither technological answers like filters nor

social answers like laws can solve them. Social or technical responses alone seem

powerless against sociotechnical problems like spam. Spam is just a face for a whole

genre of antisocial acts that threaten online society, including spyware, phishing,

spoofing, scams, unwanted pornography, identity theft, libel, privacy invasions, piracy,

plagiarism, and online harassment.

Social or technical responses alone seem powerless against socio-technical problems

like spam. spam is just a face for a whole genre of antisocial acts that threaten online

society, including spyware, phishing, spoofing, scams, unwanted pornography, identity

theft, libel, privacy invasions, piracy, plagiarism, and online harassment.

Social engineering is a non-technical means of intrusion used by hackers to interact with

humans which often involves tricking people into furnishing private information. The

term ‘social engineering’ meant to represent smart methods that solve the social

problems. Due to the positive ideas related to the word ‘engineering’ it was

appropriated for various social problems of the time. The use of cultural tactics, social

disguises and tricks to facilitate illegal use of computer systems and networks may be

defined as social engineering [Erbschloe, 2004; Hansson, 2006]

31

6.2 Socio-technical attacks

In this section, we briefly explain major socio-technical attacks, i.e., the techniques used

by attackers/spammers in socio-technical aspect. Most of the attacks are directly or

indirectly related to malware infection and gathering user information in unethical ways.

Malware

Several types of invasion programs acting as parasites are designed to install and

maintain themselves on a computer without the permission of the user. They track the

activities and the usage details of the computer once they get installed. The information

is gathered and sent across the internet to malicious user(s). In addition, unauthorized

websites may install desktop items or plug-ins to the web browser with the intention of

collecting information or infecting the computer. Some programs are inspired by social

engineering and phishing techniques. On the other hand, some programs force the users

to follow a particular set of steps or instructions before allowing them to access a

particular program on their computer or login to the computer itself.

These kind of programs, malicious software, plug-ins, web bugs, worms, viruses,

Trojans can be collectively be called as malware [Abraham and Chengalur-Smith, 2010;

Erbschloe, 2004; Ivaturi and Janczewski, 2011; Luo et.al., 2009].

The malware attacks are considered to be most successful of all types of socio-technical

attacks because malwares are persistent and pervasive. The malware involves both

technical and psychological tactics to intrude and maintain itself into a computer

[Abraham and Chengalur-Smith, 2010; Ivaturi, 2011]. The attackers may use social

skills in order to persuade the victim to perform an action that is beneficial to them.

They try to exploit anything related to the users to bring greed, fear or curiosity in them

and then make them their prey. Another reason for which malware attacks have been

successful is their availability on the internet in different forms and platforms [Ivaturi

and Janczewski, 2011].

Pop-ups

Computer users usually encounter unwanted alert messages while browsing on the

internet or using a web based application/software. These messages open in a new

window of the web browser with the intention of online advertising and marketing

32

[McCoy et.al., 2007; Palmer, 2005]. A number of instances have fake messages,

obscene images and/or graphic content in these messages. These kind of new window

messages or alert boxes are called pop-ups. The attackers present these messages to lure

or scare the users to convince them to download a particular software which is a

malware in disguise [Abraham and Chengalur-Smith, 2010; Erbschloe, 2004; Ivaturi

and Janczewski, 2011].

Search engine poisoning

Search Engine Optimization (SEO) is a collective term for a number of tricks and

techniques to elevate the rank of a web link on a search engine i.e. to facilitate easy

searching of a web link using particular keywords and increasing the number of visitors.

The major search engines viz. Google, Yahoo, Bing issue support guidelines on how to

improve search result rankings. Search engines have become the first choice of the users

on the internet to dig out the most relevant form of information. Most of the traffic

(number of visitors) on a website is governed by the search engines. As such, website

owners strive to boost the number of visits on their websites by optimizing their

exposure in relevant search results. [Howard and Komili, 2010; Leontiadis et.al., 2014;

Lu and Lee, 2011]

Even though legitimate SEO techniques are used and encouraged by the search engines,

dishonest web developers and attackers may choose to abuse these techniques to get a

favorable ranking which is referred to as ‘blackhat’ SEO. The attackers lure the users to

their websites using unethical practices and blackhat SEO. Lu and Lee [2011] studied

malicious search engine redirection with a deeper analysis on blackhat SEO. This

practice of conducting SEO attacks luring the web users to visit malicious websites,

fake links, etc. is called Search Engine Poisoning (SEP). [Howard and Komili, 2010;

Ivaturi and Janczewski, 2011; Lu and Lee, 2011]

Howard and Komili [2010] discussed different types of SEO attacks including keyword

stuffing, farms, fake web links, etc. They explained how hackers/attackers automate

search engine poisoning attacks to distribute malware. The users have trust in the search

results provided by the search engines. The attackers exploit this trust to launch

malware attacks. SEP is becoming popular as it doesn’t require social skills as in a

typical social engineering technique.

33

The terms keyword stuffing, fake feeds, link farms, event replication have been

introduced in the beginning of this chapter in the context of RSS feeds. As such there is

a similarity between the techniques used for spamming in RSS and different types of

socio-technical attacks. Due to this similarity, we can say that there might be a possible

socio-technical influence on RSS spamming. We will try to investigate further on this

possible influence as per our research question with the user experiment.

34

7. Formal Specification of Open Standards and the Case of RSS v2.0

In this chapter, the relevant research content with respect to formalizing RSS is

presented. The author along with five other members of a research group at University

of Tampere tried to establish a relation between open standards and formalization and

presented the same at 18th Panhellenic Conference on Informatics - PCI '14 in Greece.

7.1 Open Standards and Formalization: An Introduction

An ‘Open Standard’ refers to a format or a protocol that is subject to full public

assessment without any usage constraints. Open standards allow people to freely use

and transfer data through fidelity. In the open source software community open standard

means that it is open and can be freely adopted, implemented and extended. Usually

open standards are either un-owned or owned by a collective body. There are many

definitions of open standards from national IT agencies, Interoperable Delivery of

European Government Services to Public Administrations, Businesses and Citizens

(IDABC), and World Trade Organization (WTO). Open standards specifying formats

are sometimes referred to as open formats [Barlas et al., 2014].

Formalizing industrial standards and communication protocols is not a new idea. Recent

research and development results have outlined the importance of formalizing standards

in various industrial areas and production lines. In brief, a formalized standard can i)

enhance communication and understanding among various stakeholder groups, ii) be a

management tool for various management teams, and iii) standardize production and

production lines.

7.2 Formal Specification of Open Standards

Formal specification involves investing a lot more effort upfront by mathematically

modelling the constructs in the early stages of software development. This reduces

requirements errors as it forces a detailed analysis of the requirements. Incompleteness

and inconsistencies can be discovered and resolved. Therefore, savings are made as the

amount of re-work due to requirement problems is reduced. The algebraic approach of

formal specifications focuses on specifying a system in terms of its operations and the

relationships between those operations. Types of data are formally specified along with

operations on those data types. The implementation details, such as the size of

representations are quite abstract in nature.

35

Benefits of using the formal specification method

 Fewer ambiguity issues: Natural language specifications are informal and usually

contain ambiguities. Even if written very carefully, no one can ensure that when

an individual reads this specification in order to make use of the standard, his/her

understanding of how things should work matches exactly what the designers of

the standard had in mind. While the natural language specification can not really

be eliminated, as it is way more natural for humans to start with a formal

specification, its involvement can be minimized: Instead of using a natural

language specification all the way through the standard building process, it can

be used to begin with (requirements part) and then use the formal version. Using

natural languages to carry out requirements during phases can lead to

misinterpreting errors, due to the obvious linguistic ambiguities. Formalizing that

means of communications reduces that factor, since mathematical specifications

can only be interpreted in one way

 More concrete system design: A standard’s interoperability depends on the precision

of its requirements. The better the requirements of a standard are specified the easier

it is to make full, correct, use of the standard, especially when it is a part of an

interoperable system. Besides, there might even be a financial gain, as a standard that

has been formally specified early on requires less maintenance costs and is easier to

upgrade.

 Important to have a means of specification where you are going to be able to verify

formally and ensure that you can go from phase to phase without losing track of the

original requirements.

 Verbosity of the specification: Formal specifications of standards are significantly

more compact than the ones written in natural languages. One example of that is the

specification for the format of ARPA Internet text messages [Crocker, 1982] that is

almost 40 pages. A formal specification of that could be just a few pages. Also, a

36

well written specification of a small module can be applicable in other bigger systems

as well, so re-usability shrinks the size even more.

 Under circumstances (using an algebraic specification methodology), we can extend

the specification, allowing for property checking and verification. Verification most

often makes sure that the standard is working as designed regardless of the

implementation. Of course the formal specification may not be always executable,

so there is transformation needed towards programming language. If the

transformation is not algorithmically and automatically done, with correctness

preserving transformations, nothing is gained [Dijkstra, 1981]. That is, if human

activity is needed in the transformation, the correctness of the specification does not

prove that the implementation does the same as what was specified.

7.3 Formalization of RSS v2.0 with CafeOBJ

RSS’ v2.0 specification files can be found in RSS Advisory Board [2014]. The

specification files provided there are quite different from the kind of documents you

would expect to find because, while every single parameter of RSS is explained,

sometimes the explanation can be quite messy and sometimes unclear. The RSS v2.0

specification files provided in RSS Advisory Board [2014] are quite verbose, as all natural

language specifications, but surprisingly less verbose than usual specifications.

CafeOBJ is a new generation algebraic executable, industrial strength algebraic

specification language/system. The main underlying logics of CafeOBJ are order-sorted

algebras [Diaconescu and Futatsugi, 2000; Goguen and Meseguer, 1992] (used to specify

abstract data types) and hidden algebras [Barr et al., 1998; Diaconescu and Futatsugi,

2000] used to specify abstract state machines, providing support for object oriented

specifications. As a direct successor of OBJ, it inherits all its features (flexible mix-fix

syntax, powerful typing system with sub-types, and sophisticated module composition

system featuring various kinds of imports, parametrized modules, etc.) but it also adds

combinations of rewriting logic and hidden algebra. Listing 2 displays a sample CafeOBJ

module. Keyword mod! declares the module with tight semantics. List is the visible sort

of that represents a list, and sort Elt is a subset of that, representing an element of that

37

list, both declared by enclosing [and]. pr(NAT) denotes protecting import of module

NAT (built-in module specifying natural numbers). The keyword op is used to declare

operators. The operator nil is a constant denoting the empty list. Operator _|_ takes an

element and a list and returns the new list with that item merged and _//in_ searches if a

given element is inside a given List. Keyword var (vars) declares a CafeOBJ variable(s),

while the equations defining axioms of the specification begin with eq or ceq when the

equation is conditional. The equations on this module define the behavior of the operators

we declared. The CafeOBJ system uses declared equations as left-to-right rewrite rules

and reduces a given term. Usually, we write equations for each operator that observe a

system’s state (observational operator) over each operator that changes the system state

(transition operators). We usually write equations for the operators that observe a

system’s state (observational operators).

mod! LIST (X : : TRIV) {

pr (NAT)

[Elt < Li s t]

op n i l : −> Li s t .

op | : Elt Li s t −> Li s t .

op // in : Elt Li s t −> Bool

op = : Li s t Li s t −> Bool {comm} .

vars L L1 L2 : Li s t . vars E1 E2 : Elt .

eq (L = L) = true . eq (n i l = (E2 | L2)) = f a l s e .

eq ((E1 | L1) = (E2 | L2)) = (E1 = E2) and (L1 = L2) .

ceq (E1 // in E2) = true i f (E1 = E2) .

ceq (E1 // in (E2 | L)) = true i f (E1 = E2) or (E1 // in L) .

eq (E1 // in n i l) = f a l s e .

Listing 2. A Sample of CafeOBJ Module

The channel is the most important block of an RSS feed. It contains three mandatory

elements (link, title, description) and a number of other, optional elements. To declare

such a module in CafeOBJ, we import the modules that correspond to those three required

elements (pr command) and a module that contains all the other optional elements

38

(CHANNELOPTIONAL). Then we introduce the sort Channel, the transitional operators

that create an empty channel (createchannel) and then set the channel details. Operator

setchannel is declared twice since a channel can be created with or without the optional

elements. Observational operators getXXX return the link, title and description of a given

channel. Observational operator optionalcontent-exists? is true if the channel contains

any of the optional elements and if so, observational operator getoptionalfrom-channel

returns this content.

Channel module protects other modules, like link, title, etc. Those modules have to be

declared before the channel, as CafeOBJ follows this bottom-top approach. To define the

module title, we protect CafeOBJ’s built in module, string, that introduces the string sort

and also provides useful utilities for string manipulation. Sort title is a sub sort of String,

as all titles are strings but not the other way around. Then we have transitional operators

createtitle (creates an empty title) and settitle (sets the contents of the title) and

observational operators gettitle (returns the title) and c-propertitle that is only true if we

have used the settitle operator to create and set the contents of a title. An important benefit

of formal specifications is the re-usability of the modules. For instance, both the channel

and item blocks use the link, title and description entities. So, if we specify those three

modules then both the channel and item blocks can import and make use of those

modules. In fact, since all of those three modules are quite similar,we can declare a

generic module (Listing 3) and use CafeOBJ’s module term importing/renaming to create

the three different modules (TITLE, DESCRIPTION and LINK) out of just one module

declaration (BUILDINGBLOCK) [R.ăzvan Diaconescu et al., 1999]. So, Listing 3’s title

reference, creates the Title module by importing BUILDINGBLOCK and renaming sort

MS1 to Title, operators create to createtitle, set to settitle, get to gettitle and c-proper to

c-propertitle. The * in the module’s declaration tells us that this module is declared in

loose semantics as it can be used as a constructor for other modules.

mod! CHANNEL {

pr (LINK + TITLE + DESCRIPTION + CHANNELOPTIONAL)

[Channel]

op createchanne l : −> Channel

op setchanne l : Link Title Description −> Channel

39

op setchanne l : Link Title Description

 Channeloptional −> Channel

op getlinkfromchannel : Channel −> Link

op gettitlefromchanne l : Channel −> Title

op getdescriptionfromchannel : Channel −> Description

op optionalcontent−exists ? : Channel −> Bool

op getoptionalfromchannel : Channel −> Channeloptional

var C : Channel .

var L : Link .

var T : Title .

var D : Description .

var OPT : Channeloptional .

eq getlinkfromchannel(setchannel (L,T,D)) = L .

eq getlinkfromchannel(setchannel (L,T,D,OPT)) = L .

eq getlinkfromchannel (setchannel (L,T,D)) = T .

eq getlinkfromchannel (setchannel (L,T,D,OPT)) = T .

eq getlinkfromchannel (setchannel (L,T,D)) = D .

eq getlinkfromchannel (setchannel (L,T,D,OPT)) = D .

eq optionalcontent−exists ?(C) = if C = setchannel (L,T,D,OPT) then true

 else false fi.

ceq getoptionalfromchannel (C) = OPT

 if optionalcontent−exists ?(C) . }

Listing 3. The Channel module.

The Image module is quite similar to Channel module; an image has to include a url, a

title, a link and optionally some other elements too. So we have the appropriate module

imports, the new sort introduction (Image), transitional operators to create and set the

image details (twice declared as we do have optional elements) and observational

operators that return the title, url, link and if present, the optional elements given an

image. Listing 4 displays the Image module.

40

What’s interesting is the IMAGEOPTIONAL module that contains all of the optional

elements that can accompany an image declaration. Those elements are < width > and <

height > numbers, indicating the width and height of the image in pixels and < description

> that contains text that is included in the TITLE attribute of the link formed around the

image in the HTML rendering [RSS Advisory Board, 2014]. To model this requirement

we use CafeOBJ’s record structure. A record consists of fields and an element of the type

is completely determined by the value of each field (slot). When we declare a record: i)

A sort with the record name is declared, ii) a mix-fix operator is declared, so that a term

of the form record − nameslot − name1 = value1, slot − name2 = value2, ... is an element

of record-name. Moreover, the slot-value pairs in the braces may be written in whatever

order, and you may even omit some of them (helpful since all of those three elements are

optional). Finally, for each slot, two access functions are declared and defined; one that

returns a slot-name given the record-name and one that sets a value to a slot-name of a

record-name [Nakagawa et al., 1999]

mod IMAGE {

pr (LINK + TITLE + URL + IMAGEOPTIONAL)

[Image]

op createimage : −> Image op setimage : Url Title Link −> Image

op setimage : Url Title Link Imageoptional −> Image

op gettitlefromimage : Image −> Title

op geturlfromimage : Image −> Url

op getlinkfromimage : Image −> Link

op optionalcontent−exists ? : Image −> Bool

op getimageoptional s : Image −> Imageoptional

var U : Url

var T : Title

var L : Link

var I : Image

var IOPT : Imageoptional

eq gettitlefromimage (setimage (U,T,L)) = T .

ceq gettitlefromimage (setimage (U,T,L, IOPT)) = T

if (properimage ?(IOPT)) .

41

eq geturlfromimage (setimage (U,T,L)) = T .

ceq geturlfromimage (setimage (U,T,L, IOPT)) = U

 if (properimage ?(IOPT)) .

eq getlinkfromimage (setimage (U,T,L)) = L .

ceq getlinkfromimage (setimage (U,T,L, IOPT)) = L

 if (properimage ?(IOPT)) .

eq optionalcontent−exists ?(setimage (U,T, L, IOPT)) = true .

eq optionalcontent−exists ?(setimage (U,T, L)) = false .

ceq getimageoptional s (I) = IOPT if optionalcontent−exists ?(I) . }

Listing 4. The Image module.

RSS limits the dimensions of an image; width can not be more than 135 pixels and height

can not be more than 400 pixels. To model that, we create three new observational

operators; properheight? becomes true if the height is within range, same as

properwidth?. Operator properimage? becomes true if both image dimensions are within

range

An item can contain a link, a title and a description. All elements of an item are optional,

however at least one of title or description must be present [RSS Advisory Board ,2014].

To model that, we declare the setitem operator five times, with the possible combinations

that can take place, just like setchannel operator from the Channel module. A channel

though may contain many items and in order to model that properly, after we declare the

Item module, we declare a module called C-ITEMS, that acts as a list of items. To do

that we use the LIST module that we have declared in Listing 2, with some sort and

operator renaming. C-Items can hold an arbitrary number of Items and this is exactly

what a Channel may contain. We’ve modeled the RSS v2.0 standard in CafeOBJ,

preserving the exact same structure (entities containing other entities), ensuring that

some elements are required (or that entity won’t be accepted as proper) while others are

optional (including them does not make a difference, just as long as they have been

properly set) and made sure that some properties of the specification are held, e.g., image

dimensions have to be within some limits, date restrictions. That concludes the formal

specification of RSS v2.0 standard with the help of CafeOBJ.

42

7.4 Research Results

The author with the research group presented the idea of applying formal specification

techniques to open standards specifications and demonstrated what we support and

mean by formally specifying RSS v2.0. This is a novel and original work. No-one else

ever made a formal specification of an open standard, and this is the reason that there is

no related research work to compare and contrast our work. To our knowledge and until

now, there has been no similar published work in scope, aims and results in the research

field.

Among the reasons for not attempting formalization of open standards and other

standards in general might be the feasibility of the approach. One might ask the general

question: are formal methods applicable to all types of standards? RSS looks like a

suitable case, but in other cases (e.g. rather richer and more complicated standards like

the Creative Commons or other) might require a different specification approach and

formal method. The latter might be more or less known to different groups of people. We

chose CafeOBJ, an inhouse specification tool that we are very familiar with in modeling

and specifying concepts like those of open standardization.

Unfortunately many software engineers are not educated enough in the use of formal

methods, or they apply them very rarely. Although formal methods have a slow learning

curve, they are also easy to forget and, as mentioned earlier, standards’ readers could be

alienated if not sufficiently prepared when reading a formally specified standard.

43

8. Investigation through User Experiment

This chapter elaborates the course of the user experiment which includes the user task,

the target group, the material collection process (the interview method) followed by the

inferences. An overview of how RSS is in today’s world is presented. This is important

in terms of understanding the overall experience of using RSS.

Since the research conducted for this thesis does not have a specific or well formed

background to compare or analyze, it is not appropriate to formulate specific or detailed

hypothesis. We decided to use a free text form with generic questions about RSS feeds,

RSS spam, RSS feed readers and aggregators and the overall user experience.

8.1 The Target Group

By nature, the research area of this thesis is related to the experience of the users,

namely how end users (students in our case) consider using RSS in today's world

compared to better technologies like Twitter or Facebook. This requires that the users

participating in the user experiment are able to think creatively and are open to

technology.

In general, the target group used in this user experiment were students using social

network systems. This was because, the study conducted for this thesis required people

to be using the on going social network systems such as, Facebook and Twitter. The

students were from an undergraduate program majoring in interactive technology from

the University of Tampere. Furthermore the goal was to have students with long

experience of social media as the research tasks required students to have knowledge of

how to subscribe to websites or blogs etc., using RSS feeds. The target group was not

limited to certain nationality of age or language. Both genders were covered. About 30

people had agreed to participate in the study among which only five participants had

previous experience in using RSS.

 8.2 Guidelines for the User Experiment

The user task was supposed to be performed individually and required users to perform

the task for a period of two to four weeks. The task list first consisted of a manual

providing basic information about RSS feeds, feed aggregators and their ’how to use’.

44

The students had to choose from a list of websites or blogs provided in the task list

along with a feed aggregator which could be either web based or client application on

the local computer to subscribe to feeds. They had the oppurtunity to choose any feed

reader or aggregator of their choice. The task list along with the manual was distributed

to the students via email.

The choice of websites and blogs for this thesis were choosen based on their popularity

and the frequency of polling. The list of website and blogs are mentioned in the list

below:

• TechCrunch

• Simply Recipes

• BoingBoing

• Mashable

• Read/Write web

• John Battelle’s Searchblog

• 43Folders

• 37signals

• DumbLittleMan

• Interesting Thing of the Day

• CrunchGear.

The most important part of this user experiment was to subscribe to individual sections

of websites or blogs, an example of which can be seen in Figure 4.

Figure 4. An example of subscribing to individual feeds (TechCrunch)

45

At the end of the two to four weeks period the students were advised to submit a free

text form addressing the following questions:

a) How relevant was the content you received with respect to the content you

subscribed to in your feed aggregator ?

This is necessary for analyzing the content they recieve in terms of spamming.

According to this thesis we define any content recieved by the user that has not been

subscribed to as RSS spam.

b) How was your user experience with RSS and RSS feed reader? Did you face any

difficulties ? If any, specify.

The aim of this question is to understand the ease of use in RSS. RSS being a

dependable software which means not just mastering one but two or more softwares in

order to use it.

c) What was the choice of RSS feed reader and why ?

This helps in undertanding the various feed readers and analyzing the functionality of

different feed readers. This also helps in understanding what makes each and every feed

reader unique and popular among users.

d) How do you rate your overall experince using RSS feeds? Will you continue to

use RSS feeds?

This explains the future of RSS among users and provides users experience of the

product when compared to today’s technologies such as Twitter.

8.3 The Material Collection Process

For the process of material collection, the interview method was choosen for getting

comments and feedback on the task. The purpose was to also test if the task was

understandable and if it had changed their views about RSS. The interview method

proved to be a good choice as the participants had the ability to explain more in detail

about their user experince and the secuirty issues related to RSS. After the task was

submitted online, the participants were called for a personal interview.

46

The research material used in this user experiment consists of the inputs recieved via the

free form text and the interview process. About 30 students participated in the user

experiment. Other tools used in the study were the RSS feed readers.

8.4 Demographics

The user experiment was succesfully completed by 23 males and seven females. Ages of

participants varied from 20 to 30 years. Most of the participants were Finns, the others

were from India, Ukraine, and Russia. Only five out of 30 participants had used RSS

before the experiment. This indicated that the participants may find difficulties in using

RSS feeds. The rest had some distant knowledge of RSS but have not used it until the

study.

8.5 Inferences

In this section, the research objectives and task results are addressed, and conclusions

are made based on the results derived from the user experiment.

There were a number of interesting findings as an outcome of the user experiment

conducted. The inference are illustrated with the help of Figures 5-8.

a) How relevant was the content you received with respect to the content you

subscribed to in your feed aggregator ?

Figure 5. Relevance of the content received.

47

For this thesis we have defined RSS spam based on the relevance of the content

received as per the subscritions of the user. It was observed that 25 out of 30

participants who took up the user experiment, had been directly or inderctly affected by

spamming. During the interview it was noticed that participants were unable to even

identify the kind of content they recieved (spam or not).

The contents the partipants received via their feed reader included advertisements,

incomplete content with links to web pages, auto downladable links, images (obscene

images), partial feed content leading to spammed links and search engines. The content

received by the participants belonged to the kind of RSS spam explained in Chapter 6.

b) How was your user experience with RSS and RSS feed reader? Did you face any

difficulties ? If any, specify.

About 90% of the participants found it very tedious to use RSS feed readers. The

participants felt that the subscription part of the RSS feeds is the easiest, provided that

the RSS feed readers are well organized. They observed that there was flooding of the

inbox when they did not use appropriate filters. Users found it very difficult to master

the feed reader. Since RSS feeds cannot function without a feed reader, participants felt

demotivated to use RSS. Subscribing to individual sections of websites or blogs were

intense as most websites or blogs did not have the option, leaving the users to depend on

the filters provided by the feed reader. Most participants felt convenient to visit the

website directly rather than use RSS feeds due to this.

Among the participants, 13 of them used an online feed reader such as Feedly14,

Feedbucket15 and Diggreader16 etc, and the rest used a client version of feed reader

which they had installed locally on their computers for this study. The participants who

used a client feed reader complained of many feeds which have been pre-loaded into the

reader already.We found that it was difficult for the users to omit the pre-loaded feeds

from the feed readers. On further exploration, we have noticed that only the

professional version has the feauture to delete the pre-loaded feeds. These pre-loaded

feeds had reportedly flooded the inbox of the RSS feeds users with content they

14 http://www.feedly.com
15 http://www.feedbucket.com
16 http://www.digg.com/reader

48

were not interested or had not subscribed to. If we take notice, this is also a kind of

spamming through feed readers and not RSS. This makes us question if it is the feed

reader that is to blame for the spamming in RSS.

c) What was the choice of RSS feed reader and why ?

Figure 6. Different types of Feed readers and aggregators used for the experiment.

Based on the inputs recieved from the participants, Feedly was the most popular RSS

feed reader among the participants followed by FeedDemon17 and Diggreader.

Feedly is an online feed reader, much like the Google Reader itself which has been

discontinued. The reasons why Feedly was very popular among the users is the ease of

use. Many participants mentioned that the tool is very light and does not send a lot of

irrelevant feeds. But what is interesting is that it is tolerable and acceptable for many

users to allow irrelevant feeds to an extent.

FeedDemon is a client application which does not support any updates due to the

discontinuation but this does not affect the users from using it. Even after the

discontinuation, it is still popular among the users. One of the reason being its filters.

Feed demon provides easy filters that can be applied which helps in minizing the spam

content.

17 http://www.feeddemon.com

1

6

3

9

1

2

1

3

2
2

Feed Readers and Aggregators

RSSowl

FeedDemon

NewzCrawler

Feedly

Akregator

Microsoft Office Outlook

2013

49

Among the participants Diggreader is the third most popular feed reader. The main

feature that interest users is the social-media connect available. It lets the users connect

to Facebook,Twitter or Google+18 and share the content directly without much

difficulties.

d) How do you rate your overall experince using RSS feeds? Will you continue to

use RSS feeds?

Figure 7. An overall rating of the experince using RSS feeds

Figure 8. Responses on continued usage of RSS feeds.

18 https://www.plus.google.com

4

26

0

10

20

30

Overall rating

How do you rate your overall experince using
RSS feeds?

Good Bad

3

25

2

Will you continue to use RSS feeds?

YES NO MAY BE

50

Figure 7 and 8 clearly explains the fate of RSS in today's world. The participants did not

feel very motivated to use RSS feeds beyond one week of the user experiment.

Although they found it useful and interesting at the begining, they were not happy with

the content they received in the form of feeds. And preferred visiting the website itself

as it saves them from being spammed. Most websites have RSS button because the

publishers of the website cannot loose the existing users who prefer using RSS.

Table 10 presents a summary of the comments from participants and the types of spam

encountered by them during the user experiment. The RSS spam identified from the

comments of the participants fall under the kind of RSS spam discussed in Chapter 6.

Participants Notable comments from participants RSS spam identifier

Participant 1 Partial feed content RSS feed link farms

Participant 2 Obscene images Spam blogs or Splogs

Participant 3 Auto downloadable links Fake RSS feeds

Participant 4 Flooded inbox Event replication

Participant 5 Repeated feeds Event replication

Participant 6 Pre-subscribed feeds in the feed reader Spam blogs or Splogs

Participant 7 Unwanted images Plagiarized content

Participant 8 Advertisements
 Auto generated

content

Participant 9 Malicious software Fake URLs

Participant 10 Duplicates of feeds
 TrackBack

mechanism

Participant 11 Unwanted feeds Keyword stuffing

Participant 12 Links leading to advertisements RSS feed link farms

Participant 13 Feeds contain obscene images Spam blogs or Splogs

Table 10. RSS spam techniques identified from the user experiment

8.7 RSS in Today’s World

RSS has been widely accepted by the masses, and is still very useful. And there’s been a

contrast between RSS and Twitter. Twitter is and was never a competitor for RSS. RSS

users may variably argue that social media services such as Twitter, Facebook or

51

Google+ is no substitute. They may be right but in true form of things the two never

competed, but for many Twitter is believed to the substitute for RSS.

According to many, RSS is considered to be the root of today’s Twitter(tweets). The

main difference between the two is the time relevancy, also the social media connect

that attracts the masses. The reasons for the popularity of Twitter are many, one of them

is the instantness factor meaning real time news based on the persons interest. In Twitter

one can follow accounts that tweet their articles or stories, so you still have the latest

content updated but here people are more into following their friends or influncers. The

social media connect that Twitter offers its users attracts them the most. Through tweets

users get real time up to date information of the people or any type of news in a more

instanttaneous way.

Having said all that about Twitter, one must understand that RSS is different, and most

importantly not a competitor. RSS is not instant, yet it is contemporary. RSS is not

100% real time though it is a good news platform customized by you, with only the

things you care about.Average RSS users have drifted towards Facebook or Twitter

rather than subscribing to RSS feeds. Especially after Google shut down its much

popular Google Reader.

The death of Google Reader does not mean the death of RSS, although it does show that

the experience was not satisfactory for it evolve. If Google Reader had not taken over

the RSS reader market and then failed to innovate, perhaps an RSS reader would have

offered a more compelling experience for the non-information readers and more of

mainstream users.

52

9. Conclusion

In this thesis, the author has discussed the role of RSS as a publish/subscribe system in

terms of spamming, user experience and formalization. The research questions are

examined based on the available literature and a user experiment.

Q1. How RSS differs from other publish/subscribe systems?

The systematic literature review performed in this thesis explains RSS as a

publish/subscribe system. However, RSS cannot be completely defined as a

publish/subscribe system as RSS is an XML code that relies on a RSS feed reader. The

client behavior needs to be monitored as RSS cannot function without a feed reader.

Q2. What is RSS spam and how does spam look like in RSS feeds?

We have answered this research question based on the user experiment as the available

scientific literature on RSS spam was very limited. RSS spam is a kind of spam that

affects the RSS feeds. RSS spam targets directories, search engines rather than the end

user. This is due to the fact that RSS feeds are indexed by search engines and directories

and can be considered news. It is an unfortunate side effect of free communication.

While RSS users can typically unsubscribe to feeds they consider as spam, some users

fail to identify whether the content they receive from RSS feeds is spam or not. This

was mainly identified in the user experiment conducted for this thesis. In some cases,

browsing with keywords in an RSS search engine is where the problem arises. RSS

spam is not the same as the spam that you get in your email inbox.

The reasons behind RSS spamming are yet to be studied extensively, but the author

wants to emphasis that the major reason for not being able to control or prevent RSS

spam is lack of evolution. By lack of evolution, the author means that adequate time

and efforts have not been given to sustain RSS in today’s world. Unlike Twitter and

Facebook, RSS has failed to evolve itself with the changing times. It is no surprise that

the user experience with RSS has not captured the imagination of people over the years.

Especially after the advent of technologies like Facebook, Twitter and Google+.

53

Q3. How is the overall experience of using RSS feeds with feed readers ?

The overall user experience of RSS feeds can be deduced from the user experiment

conducted for this thesis. According to the results mentioned in Chapter 8, 26 out of 30

participants found the overall user experience of using RSS feeds as bad. They found it

tedious to set up and use a feed reader. The participants from the user experiment

expressed their disregard over RSS mainly due to the feed readers and the content they

received through them.

As per the scope of this thesis, the participants were limited to university students. The

author wants to establish a critique on the target group as it only included students of a

particular level of expertise and familiarity to the use of RSS and feed readers. The

same has been explained in Section 8.1. Had the target group consisted of participants

regularly involved with RSS, there would have been a better knowledge of RSS and

familiarity with feed readers. Consequently, the results of the user experiment might

have varied.

During the course of the user experiment, the participants were not able to identify or

detect RSS spam. An assertion can be made that most number of internet users require

a basic learning about internet safety and spam detection in order to fight spam. In a

survey conducted by a research team (including the author), it was found that there has

been very limited education and training on security and privacy awareness.

The author also wants to bring forward the importance of training facilities on

awareness on internet safety and security related issues. Moreover, the author wants to

highlight, security and spamming issues and the role of awareness about internet safety

in course curriculum while students are pursuing their higher education.

Q4. What is the possible socio-technical influence on spamming in RSS feeds?

RSS feeds may be treated as a socio-technical system considering the technical and

social implications of this web syndication. A range of elements are linked together to

achieve the functionality of a socio-technical system. These elements include user

practices, cultural meanings, technology, markets, maintenance networks, content

platform, etc. [Geels, 2005]. The intention of a user, type of feed readers, and

54

subscribed content (keywords) constitute the same type of elements in the case of RSS

feeds.

Chapter 6 brought forward a possible relationship between socio-technical attributes

and RSS feeds. We observed that there is a socio-technical influence on spamming in

general. Section 6.2 particularly pointed out three major types of socio-technical attacks,

i.e., malware, pop-ups and SEP. The ways in which these attacks are executed were

found to be quite similar to the type of spam received by the subscribers during the user

experiment. The sample responses from the participants as presented in Table 10

confirm a significant similarity between socio-technical attacks and the spamming in

RSS feeds. However, an exploratory study involving socio-technical attributes and feed

readers would be needed to investigate how the attackers or illegitimate internet users

use RSS feeds for sending irrelevant content to their subscribers.

Q5. What are the benefits of using formalization in RSS feeds?

Chapter 7 presented a research paper that has been co-authored by the author of this

thesis. We are able to find the benefits of using formal specification method based on

the test case (RSS v2.0 and CafeOBJ) presented in the research paper. Formalizing RSS

helps in reducing the ambiguity issues and is most beneficial in early stages of software

development cycle. Well defined and frozen requirements are the basis of a successful

software development. This is helpful in reducing requirement errors as it provides a

detailed analysis. Formalization helps in identifying the incompleteness and

inconsistencies of a standard. Formalization is not effective on RSS v2.0 in its current

version. This is in terms of spam control or prevention. We propose RSS V3.0 to be an

evolved version of RSS V2.0 i.e. formally specified version of RSS v3.0. This

proposed version could be more effective.

While formalization is beneficial, it is important to mention the difficulties of using

formalization technique. Unfortunately many software engineers are not educated

enough in the use of formal methods, or they apply them very rarely. Although formal

methods have a slow learning curve, they are also easy to forget and, as mentioned

earlier, open standards’ readers could be alienated if not sufficiently prepared when

reading a formally specified standard.

55

The research conducted in this thesis is a novel and unique work and has not been

attempted yet. Therefore, it is very difficult to compare and contrast this thesis work

with any other related research. The inferences of the user experiment provide proof of

concept and illustrate potential but they cannot provide solid evidence. An experimental

evaluation is generally divided into two parts where exploration takes place in the first

and evaluation takes place in the other part. The exploration identifies what questions

should be asked about the subject/system under discussion and the evaluation attempts

to answer those questions.

56

10. Limitations and Future Work

Although the author has been very critical of the thesis work based on contextual and

temporal limitations yet the results of the user experiment and the inferences drawn

from them are worth applauding. In spite of inadequate number of citations/research

material and primary references, the study has addressed all the research questions.

However, there have been temporal and contextual limitations. Since the literature in

RSS is very limited, this study limits according to following:

 The study considers literature published in the last two decades and focuses on

the literature published in last 10-15 years in order to have relevance with the

current trends in the field of publish/subscribe systems.

 The research made on RSS for this thesis included publish/subscribe systems,

types of publish/subscribe system and spamming in publish/subscribe system.

There were a significant number of journals related to publish/subscribe system

but none related to RSS and spamming.

The context of this thesis is very niche and therefore it could serve as a basis of future

work on RSS in different directions namely formalization, anti-spamming and internet

safety. A focused and empirical research approach involving case studies in research,

academia and industrial practice is needed to evolve RSS v2.0 and define standardized

characteristics of open standards.

Future research would identify explanatory cases to justify and validate certain points or

issues related to spamming in RSS. Furthermore, it would deeply investigate the

problems related to spamming in RSS and the possible measures to counter this

problem. This study provided important directions to look for solutions to the problems

relating to RSS spamming.

One of the possibilities to extend this study is to evolve RSS v3.0 based on

formalization which could be accomplished by formalization of RSS as an independent

web news syndicator. This would enable RSS to function without being dependent on

Feed Readers or Aggregators. A similar inspiration of RSS in today’s world is Twitter

which promises to be a replacement of RSS but can never be. However, Section 8.7 of

this thesis has already established that RSS and Twitter cannot be competitors.

57

References

Abraham, Sherly, and InduShobha Chengalur-Smith. 2010. “An Overview of Social

Engineering Malware: Trends, Tactics, and Implications.” Technology in Society

32(3): 183–96. http://dx.doi.org/10.1016/j.techsoc.2010.07.001.

Baldoni, R., M. Contenti, S. T. Piergiovanni, and a. Virgillito. 2003. “Modeling

Publish/subscribe Communication Systems: Towards a Formal Approach.”

Proceedings - International Workshop on Object-Oriented Real-Time Dependable

Systems, WORDS: 304–11.

Barlas, Konstantinos, Eleni Berki, Iulia Adomnita, Thrushna Nalam, Golnaz S. Nejad,

and Jari Veijalainen. 2014. “Formal Specification of Open Standards and the Case

of RSS v2.0.” In Proceedings of the 18th Panhellenic Conference on Informatics -

PCI ’14, 1–6. http://dl.acm.org/citation.cfm?doid=2645791.2645809.

Barr, Michael, Charles Wells, and Category Theory. 1998. “BACK MATTER.”

http://www.worldscientific.com/doi/abs/10.1142/9789812816108_bmatter.

Boim, Rubi, and Tova Milo. 2008. “Enriching Topic-Based Publish-Subscribe Systems

with Related Content.” Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data - SIGMOD ’08: 1327.

http://portal.acm.org/citation.cfm?doid=1376616.1376767.

Bursztein, Elie, Peifung E. Lam, and John C Mitchell. 2009. “TrackBack Spam.” In

Proceedings of the 2009 ACM Workshop on Cloud Computing Security - CCSW

’09, http://portal.acm.org/citation.cfm?doid=1655008.1655010.

Camacho-Guerrero, José Antonio, Macedo, Alessandra Alaniz, and Alessandra Alaniz

Macedo José Antonio Camacho-Guerrero. 2005. “A Software Infrastructure for

RSS Deployment and Linking on the Web.” In WebMedia ’05: Proceedings of the

11th Brazilian Symposium on Multimedia and the Web, 1–9.

http://dl.acm.org/citation.cfm?id=1114236 (October 16, 2014).

Chaabane, Amina, and Mohamed Jmaiel. 2009. “Security Aware Content-Based

Publish/subscribe System.” In Proceedings - IEEE Symposium on Computers and

58

Communications, IEEE, 538–43.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5202383.

Creus Tomàs, Jordi, Bernd Amann, Nicolas Travers, and Dan Vodislav. 2011. “RoSeS:

A Continuous Content-Based Query Engine for RSS Feeds.” In Lecture Notes in

Computer Science, , 203–18. http://link.springer.com/chapter/10.1007/978-3-642-

23091-2_19 (November 6, 2014).

Crocker, David. 1982. “Standard for the Format of ARPA Internet Text Messages.”

Dept. of Electrical Engineegring,University of Delaware, Newark, DE,19711.

https://tools.ietf.org (June 6, 2015).

Diaconescu, R.ăzvan, Kokichi Futatsugi, and Shusaku Iida. 1999. “Component-Based

Algebraic Specification and Verification in cafeOBJ.” In FM’99 — Formal

Methods, , 1644–63. http://link.springer.com.ezp-

prod1.hul.harvard.edu/chapter/10.1007/3-540-48118-4_37.

Diaconescu, Rǎzvan, and Kokichi Futatsugi. 2000. “Behavioural Coherence in Object-

Oriented Algebraic Specification.” Journal of Universal Computer Science 6(1):

74–96.

Dijkstra, E.W. 1981. “The Correctness Problem in Computer Science.” Academic Press.

Emery, F.E, and E.L Trist. 1960. “Socio-Technical Systems.” Management Science

Models and Techniques, Oxford, UK 2: 83–97.

Erbschloe, Michael. 2004. Trojans, Worms, and Spyware: A Computer Security

Professional’s Guide to Malicious Code.

Eugster, Patrick Th., Pascal a. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.

2003. “The Many Faces of Publish/subscribe.” ACM Computing Surveys 35(2):

114–31. http://portal.acm.org/citation.cfm?doid=857076.857078.

Geels, F.W. 2005. Technological Transitions and System Innovations: A Co-

Evolutionary and Socio-Technical Analysis. Edward Elgar Publishing.

59

Goguen, Joseph a., and José Meseguer. 1992. “Order-Sorted Algebra I: Equational

Deduction for Multiple Inheritance, Overloading, Exceptions and Partial

Operations.” Theoretical Computer Science 105(2): 217–73.

Hochard, Gaïane, Zoé Lacroix, Jordi Creus, and Bernd Amann. 2012. “A Semantic Map

of RSS Feeds to Support Discovery.” In Lecture Notes in Computer Science, 122–

33.

Housley, Sharon. 2010. “RSS Security.” http://www.feedforall.com/rss-security.htm

(March 15, 2015).

Howard, Fraser, and Onur Komili. 2010. “Poisoned Search Results : How Hackers Have

Automated Search Engine Poisoning Attacks to Distribute Malware .” Sophos

Technical Papers: 1–15.

Ivaturi, Koteswara, and Lech Janczewski. 2011. “A Taxonomy for Social Engineering

Attacks.” Proceedings of CONF-IRM.

Kolari, Pranam, Tim Finin, Akshay Java, and Anupam Joshi. 2007. “Towards Spam

Detection at Ping Servers.” International Conference on Weblogs and Social

Media’07 (iv): 1–2. http://aisl.umbc.edu/resources/342.pdf (October 16, 2014).

Kolari, Pranam, Akshay Java, and Tim Finin. 2006. “Characterizing the Splogosphere.”

In Proceedings of the 3rd Annual Workshop on Weblogging Ecosystem:

Aggregation, Analysis and Dynamics, 15th World Wid Web Conference. University

of Maryland, Baltimore County, 2006, 1531–36.

Leontiadis, Nektarios, Tyler Moore, and Nicolas Christin. 2014. “A Nearly Four-Year

Longitudinal Study of Search-Engine Poisoning Categories and Subject

Descriptors.” Proceedings of the 2014 ACM SIGSAC Conference on Computer and

Communications Security: 930–41.

Liu, Hongzhou, Venugopalan Ramasubramanian, and Emin Gün Sirer. 2005. “Client

Behavior and Feed Characteristics of RSS, a Publish-Subscribe System for Web

Micronews.” Proceedings of the 5th ACM SIGCOMM Conference on Internet

Measurement: 3–3. http://portal.acm.org/citation.cfm?doid=1330107.1330111.

60

Lu, Long, and Wenke Lee. 2011. “SURF : Detecting and Measuring Search Poisoning

Categories and Subject Descriptors.” Proceedings of the 18th ACM Conference on

Computer and Communications Security (CCS ’11): 467–76.

Luo, Weimin Luo Weimin, Jingbo Liu Jingbo Liu, Jing Liu Jing Liu, and Chengyu Fan

Chengyu Fan. 2009. “An Analysis of Security in Social Networks.” 2009 Eighth

IEEE International Conference on Dependable, Autonomic and Secure Computing:

648–51.

McCoy, Scott, Andrea Everard, Peter Polak, and Dennis F. Galletta. 2007. “The Effects

of Online Advertising.” Communications of the ACM 50(3): 84–88.

Mian, Paula, Tayana Conte, Ana Natali, Jorge Biolchini, and Guilherme Travassos.

2007. “A Systematic Review Process for Software Engineering.” Empirical

Software Engineering 32: 1–6.

http://portal.acm.org/citation.cfm?id=1241572.1241584.

Montgomery, Molly. 2003. “RSS Tutorial.” Lone Star lIbrarian 56(2).

http://www.sla.org/chapter/ctx/lsl/lslv56n2.pdf (April 4, 2015).

Nakagawa, A.T., Toshimi Sawada, and Kokichi Futatsugi. 1999. “CafeOBJ User’s

Manual -- ver.1.4.2 --.” http://www.ldl.jaist.ac.jp/cafeobj/doc/.

Palmer, Daniel E. 2005. “Pop-Ups, Cookies, and Spam: Toward a Deeper Analysis of

the Ethical Significance of Internet Marketing Practices.” Journal of Business

Ethics 58(1): 271–80.

Rose, Ian, Rohan Murty, and PR Pietzuch. 2007. “Cobra: Content-Based Filtering and

Aggregation of Blogs and RSS Feeds.” NSDI’07 Proceedings of the 4th USENIX

Conference on Networked Systems Design & Implementation: 29–42.

http://static.usenix.org/legacy/events/nsdi07/tech/full_papers/rose/rose_html/

(October 16, 2014).

RSS Advisory Board. 2014. “RSS Advisory Board.” http://www.rssboard.org/rss-

specification (July 5, 2015).

Software Garden Inc. 2004. “What Is RSS?”

http://rss.softwaregarden.com/aboutrss.html (May 30, 2015).

61

Sourlas, Vasilis, Georgios S. Paschos, Paris Flegkas, and Leandros Tassiulas. 2009.

“Caching in Content-Based Publish/Subscribe Systems.” GLOBECOM 2009 -

2009 IEEE Global Telecommunications Conference: 1–6.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5425532.

Sven Ove Hansson. 2006. “A Note on Social Engineering and the Public Perception of

Technology.” Technology in Society 28(3): 389–92.

Tarkoma, S. 2006. “Preventing Spam in Publish/Subscribe.” 26th IEEE International

Conference on Distributed Computing Systems Workshops (ICDCSW’06): 21–21.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1648911.

Whitworth, Brian. 2009. “The Social Requirements of Technical Systems.” Handbook

of Research on Socio-Technical Design and Social Networking Systems: 3–22.

Whitworth, Brian, and Tong Liu. 2009. “Channel E-Mail: A Sociotechnical Response to

Spam.” Computer 42(7): 63–72.

Zhang, Kaiwen, Vinod Muthusamy, and Hans-Arno Jacobsen. 2012. “Total Order in

Content-Based Publish/Subscribe Systems.” 2012 IEEE 32nd International

Conference on Distributed Computing Systems: 335–44.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6258006 (March

12, 2014).

62

Appendices

Sample responses collected during the user experiment are presented as per the

following:

63

64

65

66

67

68

69

