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Abstract

This thesis work builds on the recent discovery Sigrgachis and his colleagues, which
describes the process the genome uses to writdigende. This work extends the previous
vision in genome research, which states, that co®dand regulatory elements work

independently. Codons are a triplet of nucleotitteg encode amino acids; and regulatory
elements are responsible for regulation of the geq@ession. However, as discovered by
Stergachis and his colleagues in 2013, around 1586dons within 85% of human genes are
occupied bytranscription factor binding site{TFBSs) (see Stergachis et al., 2013).
Consequently, these type of codons encode two tgpesformation. They were labelled

‘duons’ and described as highly conserved entitieh low levels of genetic variation.

Overall, regulatory proteins bind to the same shesg of As, Cs, Ts and Gs and influence the
process of gene expression, and also specify theoaacids of the protein that is made. This

work applies Stergachis findings of ‘duons’ to aisela variant data.

An interesting fact of Stregachis work is that atation may occur without affecting a

protein. This happens due to the ability of somenanacids to be encoded by a multiple



combination of nucleotides (codons). Obviouslyaiif alteration occurs in the codon, which
still encodes for the same amino acid, the funetionof the produced protein remains the
same. In this casé&anscription factorTFs) bind to an altered (mutated) region, impligt

a change of activity of TFs due to the fact, thet genetic pattern has been modified. As a
result, wrong instructions are given to the expoesf a gene, as Stergachis and his
colleagues discovered (Stergachis et al., 2013) didicoveries led to the finding, that 13% of
the deoxyribonucleic acidfNA) mutations leading to a disease developmentiarated in
‘duons’. Thus it is important to investigate diseassociated variants within ‘duons’ that

increase the risk of disrupting both regulatory pratein-structural function.

A finding by Kircher in 2014 - the application ofn@aethod that aimed at the interpretation of
pathogenicity of human genetic variations — lead teew method. This method developed by
Kircher in 2014 is called theombined annotation dependent deple(GADD) tool. It uses a
single C score to annotate a variant as pathogémnicontrast to other methods the CADD
takes into consideration regulatory elements, thasCADD tool was selected for this project

work.

These two research findings are used in the thesik. The goal of this work was therefore
the extraction and recording of variants from pded data, which have potential for ‘duons’.
To achieve this goal, the thesis applied the teples of the C score, thmosition weight
matrix (PWMs), and p value estimation. The aim of thisdgtwvas to apply the PWMs
framework, and C score on provided data, in ordegxtract and record those variants from
the data that have potential for duons’. Thus tlweuyld be putative causes of a disease
development. First of all, the provided data wéserkd to identify pathogenic variants based
on C score. Afterwards, the above presented congaptused to compute the TFBSs for
original reference and mutated nucleotide sequenghsre the maximum and minimum
difference between these scores were found and ase criteria for computing p value.
Eventually, the resulting set of genes was subthiitetheKyoto Encyclopedia of Genes and
GenomegKEGG) pathway database and analysed for correlatiionutations to the type of a

disease.

The outcome of the KEGG database analysis repseseatmain pathways where resulting
genes are involved into metabolic, cancer, and aaative ligand-receptor interaction

pathways.
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1 Introduction

One of the main challenges in biomedical reseascto iestablish the association between
genomic variation and phenotypic differences. Ibédieved that genetic variations play the
main role in human diversity. Gene expression ésgtocess which uses genetic information
for proteins synthesis. Any dysregulation in thiegqess will affect cells’ responses to the
environment, cells communication and eventuallyl welad to development of diseases
(Bryois et al., 2014).

According to the Stergachis and colleagues the menmntains two codes (genetic code and
regulatory code) that function collectively. Theggence of amino acids in a protein is
represented by the genetic code, while regulatodeds responsible for specification of the
recognition site for TFs (Stergachis et al., 20T3jus, alteration in the sequence might lead
to the production of the same protein, but alteratof function of binding TFs, that

eventually will incorrectly instruct the gene exggm®mn process. Moreover, it was observed
that 13% of human exons contain ‘duons’, so intthesis work it was of high interest to

investigate the exons regions of the genome (Sthigat al., 2013).

High-throughput sequencing techniques are usedpfoducing a vast amount of genetic
variants data. Exome sequencing method was repiegsas a technique capable of extracting
only protein-coding regions out of the whole genoffieus, it is considered as a time and

money efficient method.

As the term 'duons’ is related to a dual work ofrfan codons, the goal of the thesis work
was to estimate how binding of TFs to mutated mregiba sequence alter TFs instructions,
which genes could be affected by this event in jolexv data. The expected outcome was a set

of putative genes.

Overall, the understanding of occasions that caudisease is exacerbated by complexity of
events involved into this process. Thus it was irtggd to examine and compute the TFs
binding score and output the set of genes thatdcbelprovided by wrong instructions and

produce a wrong protein.



2 Literature Review

2.1 The Genetic Material of an Organism

TheHuman Genome Proje¢HGP) was an international research effort; theat the aim to
determine sequences of the human genome that gondtis genome. The achieved results
were stunning as for the first time information abbuman genes structure, its organization
and functions was accomplished. This type of infaron is essential for understanding
human being, and has a major impact in medicinebastdchnology fields.

Genome performs a complex hereditary material tmatsists of an organism’s genetic
instructions encoded as DNA sequences strung tegeth 23 chromosomes pairs. This
information is housed in a complex form of nuclganome, which is 99.9995% of genetic
information and a simple mitochondrial genome tisaremaining 0.0005% (Strachan T,
1999).

Figure 2.1 illustrates two main keepers of humanege information, which maintain
different amount of genetic information. Majority genetic information is stored at the

nuclear genome. These two genomes are differats structure.

The mitochondrial genome is simpler in its architee than nuclear genome. It is represented
as one chromosome in a form of circular doublersked DNA, it codes only for specific
proteins that are generally used for mitochondretainolic processes, such asaalenosine
triphosphate(ATP) synthesis, fatty acids metabolism. The intguoir fact about mitochondrial
genome is that it is maternally inherited. Consetjyeindependently from the gender of an
offspring the mitochondria genome comes only frormather. The human mitochondrial
genome containdouble-stranded deoxyribonucleic addsDNA) molecule, which encodes
for (Figure 2.1) 13 polypeptides of oxidative phieggylation system and 22 and 2
mitochondrialribosomal ribonucleic acidrRNA) that belongs taibonucleic acid(RNA)
machinery (Strachan T, 1999).



Table 2.1 Differences in human nuclear and mitochadrial genome (Strachan T,

1999)

Nuclear genome

Mitochondrial genome

Size

3300 Mb

16.6 kb

No. of different

DNA molecules

23 (in XX) or 24 (in XY) cells, all linear

One circular DNA

molecule

Total no. of DNA

molecules per cell

23 in haploid cells
46 in diploid cells

Several thousand

Associated protein

Several classes of histone and

nonhistone protein

Largely free of protein

Number of genes

~65 000-80 000

37

Gene density

~1/40 kb

1/0.45 kb

The great bulk of genes are transcribg

rdContinuous transcription

Transcription o )
individually of multiple genes

Introns Found in most genes Absent

% of coding DNA ~3% ~93%

Recombination

At least once for each pair of homolog

at meiosis

S
Not evident

Inheritance

Mendelian for sequences on X and

autosomes; paternal for sequences of

I\E{xclusively maternal
N

At the same time the genome may be organized withinuclear environment, defined as a
linear double stranded cellular DNA. The numbegehes holds in nuclear genome remains
unknown. However, some studies estimated aroun@d080genes (Strachan T, 1999). In
contrast to mitochondrial genome which mostly costgapproximately 93%) of the DNA
sequence protein-coding regions, nuclear genomermigsaround 2% of such regions. Table
2.1 illustrates other differences of mitochondaat nuclear genomes (Strachan T, 1999).



Human Genome ]7

Muclear Genome Mitochondrial Genome
Approx.80 000 genes 37 genes

— — N

Genes and ) 13 polypeptide-
Two rRMNA genes 22 tRMNA genes -

gene- related Ex'tgﬁ:mc g g encoding genes

Sequences
Coding DMA Moncoding DMNA Unique or low Moderate to

\r/’/?L\\" copy number highly repetitive
Introns
Gene ! Tandemly repeated Interspersed
SEELIIIETE fragments untranslated of clustered repeats repeats
sequences, etc

Figure 2.1 Human genome organizatiofiStrachan T, 1999)

Inside of each cell there is a nucleus that heaamledenetic information in a form of
chromosomes, and regulates activities of cellsufieig2.2). Chromosomes are made up of
genes. The process, called DNA packaging allowsremmously long DNA molecule easily
to fit into a chromosome. During this process DMNAtightly looped, coiled and wrapped
around proteins, called histones. All genetic infation is encoded in a long double helix
shaped DNA molecule, built with four chemical bunilgl blocks: adenine (A), guanine (G),
cytosine (C), and thymine (T). A DNA sequence madom order of nucleotides, which are
organised in triples, that eventually assembly mémious amounts of complexes, called
genes. There are approximately 20,500 protein-gpogénes in the human genome (Bolsover,
Shephard, White, & Hyams, 2011). The central dogimaolecular biology is interconnected
with complex series of events starting from progucbf RNA from DNA and turning on to a
final product protein that regulates cells funcéiofiAn Overview of the Human Genome

Project,” n.d.).
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Figure 2.2 The genome inside the cllAEpIA :: Australian Epigenetic Alliance,”
n.d.)

The DNA molecule can be divided into several regisach as protein-coding (around 2% of
human genome), that codes for proteins and nomgao@iround 98%). Although the amount
of noncoding regions is huge (approximately 99%9naoding DNA sequences have
important biological functions as well, such ans@iptional and translational regulation of
protein-coding sequences. On the other hand rengait’o of DNA protein-coding regions
(exons) is essential for understanding a diseassirga reasons. Development of massively
parallel sequencing technologies enable of sequgn@gions of the main interest. The
exome capture technique permits to extract onlyemecoding region. In addition although
the mitochondrial genome has smaller and simpleicgtre than nuclear, it also represents
one of the vital roles of genetic system. Thus, tatlons at mitochondrial genome play
essential role in research and considered as the caase of genetic disorders (Taylor &
Turnbull, 2005).

2.2 Gene Expression

The human body contains about 100 trillion cellbjoh can be separated in several groups
according to their functions. Each cell is respblesfor fulfilling its duties at specific time, in
certain quantity. A set of proteins that synthegitem specific genes provide a specific cell

type with instructions. So that each group of c&l®w exactly what, when and in what



quantities it has to produce. Thus, gene expressioone of the complex and important
processes in the human body that uses informati@oded in a gene for production of a
protein. Accordingly the fundamental dogma of malac biology is that proteins are
produced from DNA through RNA. More precisely theN® is transcribed into the
messenger ribonucleic ac{dhRNA) inside the nucleus, and afterwards mRNAmatigs into
the cytoplasm and each mRNA molecule is translated proteins. Obviously any
dysregulation during this process may lead to foionaof a disease (Alberts et al., 2002).
Gene expression is a sequential complex flow dieddht processes. Major steps of this
process are illustrated on the Figure 2.3.

Transcription Transcription
DNA start site Intron  Exon stop site
\ Promoter 'L Transcription
Potential
regulatory l Splicing Initial transcription product
elemnets
Intron 5equmcesm
removed during Finished transcription product
splicing " contamning only exons
[
¢ Translation

Initial translation _—"
product

(amino acid chain) ¢ Posttranslational modification

Finished protein

Figure 2.3 Gene expression workflowyMandal A, 2015)

Complex flow of gene expression events starts ftranscription. The transcription is the
process when genes are copied and produce an RNécut® where noncoding regions
(introns) are removed and mature transcript or mRiNAcreated. In order to initialize

transcription process, enzyme RNA polymerase shbaldctivated. Therefore TFs bind to



the core promoter (-30,-75,-9fase pairs(bp)) upstream from the transcription start site.
After RNA polymerase is activated it binds to th@moter region of the DNA molecule
(Figure 2.4).

Additionally, it is also known that RNA polymeraaetivity might be influenced by enhancer
sequences that provide binding sites for regulajnmyteins. Combination of regulatory
elements and enhancer alter chromatin structurectivasequently promotes or stops RNA
polymerase and TF binding (Clancy, 2008). The magta of RNA polymerase is to separate
double-stranded DNA molecule, by breaking hydrogbonds, afterwards adding
complementary nucleotides. This process is calledgation. The distinctive feature in
producing mMRNA molecule is that insteadtbymine(T) it contains ofuracil (U), which is
complementary tadenine(A). Furthermore, the RNA molecule is single-sttad non helical
molecule. The finalization of building complemenntatrand might be terminated in different
ways. It might terminate process until a polymeres&ches termination sequence, on the
other hand it can involve a termination factor whis special protein. Afterwards the process
of removing noncoding nucleotide regions (introbggins, and coding regions, exons are

spliced together

Upstream regulatory elements

[

Locus control region Insulator

Silencer  Ephancer

ﬂ

| |
Promoter (<1 kb)

Figure 2.4 Gene regulatory element@Maston, Evans, & Green, 2006)

The second major step during the gene expressitreiprocess of manufacturing different
proteins which is called translation, when the coration of three nucleotides, called codon
is translated into 20-letter code of amino acidse process begins in several ribosomal RNA
molecules in complex with certain proteins thanfaibosome. The initiation of this process

starts when small subunit of ribosome binds to mR&N®A searches for the start sequence



AUG (codes for methionine); afterwards a large sutbjoins to form the complete initiation
complex. The elongation process accumulates tr@asiaucleotides until all of codons are
read. The termination occurs when the complex =ach stop codon (UAA, UAG, and

UGA). Finally, produced protein is released.

Gene expression is a complex process that invalvesof intermediate steps and interaction
of biochemical elements such as genes, RNA molscaled proteins (including TFs). There
are varieties of different processes that cells aaohestrated for increasing or decreasing
proteins production. It is clear that any disruptio this process might lead to the serious

consequences, and eventually cause a disease.

There are three main steps that regulate the tiptiea stage: genetic, where control factors
interact with genes; modulation, where control destinteracts with transcription machinery;
epigenic, other factors than DNA alterations tHétc transcriptions. In order to control the
amount of mRNA translated into proteins, the poatgcriptional regulation adjust the
capping, splicing, addition of theolyadenylation(Poly(A)) Tail processes. The last major

step in the gene expression is translation, tlosges mostly regulated at initiation stage.

In addition, gene expression process is highly repr@disposed. According to D. Allan

Drummond and Claus O. Wilke, alterations of nuatedt may be seen once in 1000 to 10000
translated codons. The other concept was propogeshime authors saying that the more
intensively a gene is expressed, the higher chaoncst a protein will be predisposed to the

errors which are eventually affect organism’s mhgpe (Drummond & Wilke, 2009).

2.2.1 Structure of Protein-Coding Genes
Genome is represented as set of genes. Genes deeumaf DNA, a long polymer sequence
that is constructed from nucleotides. As the gen@mmentinued entity there are parts that do
not represent genes. These regions are calledyamierregions and they are genes separators.
Thus a term gene is referring to any region ofgheome that is essential for activation of
biological functions of cells. There are severglety of genes: non-transcribed regulatory

genes transcribed RNA-genes and translated protelmg genes.

Non-transcribed regulatory genes characterize $desnitiation and termination of DNA

replication. Transcribed RNA genes produce RNA potsl like ribosomal RNA, transfer



RNA and etc. Finally, the last type called traresdprotein-coding genes codes for proteins
respectively, which are illustrated on the Figu @.aszlo P, 2009).

2.2.1.1 Promoters

A promoter is a DNA sequence that defines wherastiaption of a gene begins together
with RNA polymerase. To initialize transcription RNpbolymerase and TFs have to bind to a
promoter region together. The other function of npoters is to define direction of
transcription and indicate which DNA strand to sembe. One prevalent type of promoters in
eukaryotes is called TATA box, which is an AT risaquence (consensus TATAA/TAA/T),
located in 28-34 bp upstream of the transcriptitamt site of a gene. Only about 24% of
human promoters contain a TATA box, which is assed with tissue- or context-specific
genes. The remaining 76% of promoters do not corddiATA box and thus require another
mechanism of initiation, which plays an essenié iin connecting key elements during the

transcriptional process (Sandelin et al., 2007).

There are other elements such as GC rich sequéme&pl box) or the CCAAT box located
in upstream of the promoter. The Spl box has ghdisubstitute TATA box main features in
case of its absence and initialize transcriptioh.these elements are essential for starting

transcription and failure one of them activatesabtion of another (Latchman, 2008).

2.2.1.2 Enhancers

Enhancers represent short regions of DNA seques@d 500 bp) which may be located at
upstream, downstream, or within transcription ragioOne of the distinctive characteristics
of these elements is that they are located quitérden a transcription site. In addition, their

major feature is ability to increase a rate of espion of a gene; on other words they
reinforce the gene expression process. Enhancegbt rbe tissue specific, whether they
activate specific promoter of a specific cell. Tdtaer type of enhancers active in all tissues

where it raise the level of gene expression icellltypes (Latchman, 2008).

2.2.1.3 Locus Control Regions

Genes that are presented on the same chromosomnecahed at a very close to each other
position, as well as co-regulated by a common eggHatory element are called linked genes.
These cis-regulatory elements are callextus Control RegiongLRC). One of essential
properties of the LRC is strong enhancer activllye process is tissue specific, that might

influence the mechanism of transcription machingl@. Li, Peterson, Fang, &
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Stamatoyannopoulos, 2002). Lack of these elem@miisilbute to the disruption of the normal
way of gene expression or its full cancelation ¢batan, 2008)

2.2.1.4 Silencers

Silencers are elements that have opposite propadienhancers and LCR, it is main task is
to inhibit expression of certain genes. A silems@s discovered at specific genes, thus it is
gene specific element. The activity of silencerdual it may be fully active or tissue specific
(Latchman, 2008)

2.2.1.5 Insulators

Insulators are elements that block interactionsveeh enhancers and promoters that enable
to act on the large distances. There are two mésiarhow insulators obstruct connections
between these elements. They either affect ontih@atin structure, or prevent DNA from

looping (Latchman, 2008).

2.2.2 Transcription Factors

2.2.2.1 General Information

TFsare proteins that behave in a similar way to a ‘lmeme’ that permits a certain amount
of genetic information to pass from DNA to RNA. Theantity of TFs present in the genome
depends on its size. The larger the size of theomgenis more TFs are present there.
Furthermore, TFs are capable to work in cooperatiibin other protein complexes or without

them. In addition, the gene expression is generaljyplated by a combination of TFs which
are typical arrangements for this process. TFangplex biological entity that are involved

in complex vital processes, like cells division ahffierentiation, metabolic and physiological

balance and others (Latchman, 1997).

The gene expression represents a complex flow dbus processes that generally are
divided into two main steps: transcription and slation. The transcription is initialized by
presence of TFs, when they bind to a DNA sequenhberefore the biological function of

DNA depends on a site where DNA binding proteins fiargets.

Although the mechanism of TFs preferences in speihding sites of the DNA sequence is
not fully understood, there are various concepas tity to describe the specific selectiveness
of TFs in binding. One of the concepts describésrattions between protein (TF) and the

DNA sequence from structural point of view and tendivided into two subclasses: ‘base
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readout’ based on the recognition of specific cltamsigns by the protein (Figure 2.5 -1);
and ‘shape readout’ based on recognition of segqidapendent DNA shape by the protein
(Figure 2.5-2). These two mechanisms are considesadcentive forces that permits the TF
to find a target (Rohs et al., 2010).

1) Base readout 2) Shape readout

Major groove Minor groove

0000 008 -9
0000 000 B AY &
0000 000 W
<0000 000

WNarrow minor groove

K @ H-bond acceptor ; p\,‘jq s

" (L) Nonpolar hydrogen &i\ s W
@ H-bond donor i .
() Methyl group DNA bending

Figure 2.5 Types of structural interactions betweerTF and DNA (Slattery et al.,
2014)

1) illustrates ‘base readout’ structural interactions between TF and DNA
sequence in major and minor groove. Where the majogroove has random
distribution of the key elements, than in the minor groove the structural

organization of the key elements is sedlattery et al., 2014)

2) illustrates ‘shape readout’ structural interactions between TF and DNA
sequence. The DNA sequence mostly has distorted pkathat affects the
electrostatic potential. (Slattery et al., 2014)

The other concept is built on computational methotigch are aimed to model DNA motifs
based on small experiments (likkeoxyribonucleas€DNase) | footprinting) or simulated
data. Microarray development enhances the amoumietfiods aimed to explain the way TFs

find their targets.
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According to Yongping Pan and his grorgsponse elemen{RE) are essential player in TF
binding mechanism. The strong affinity between Tl RE directs to the TF binding process
(Pan, Tsai, Ma, & Nussinov, 2009). However, hisugr has found that concentration of
protein factors is one of the essential conditifmmgurther selection of the binding positions.
The increase in concentration will lead to alteratbbsteric properties and eventually to the
protein structure. Consequently the protein witidoto the sequence position that is consistent
with the DNA sequence. Same strategy applies forAD#¢quence (Pan et al.,, 2009).
However, the other factors that might influence Tites binding affinity to a specific location

could be poor connection with DNA backbone.

Once TF is bound to DNA it can activate or repreegyme that controls translation, by

turning on or off genes respectfully. A human badwsist of various types of cells, which

are regulated by different genes at different tiMénile genes that regulate liver cells are
turned on, genes that regulate skin cells may tmetuoff. Similar scheme applies to a cancer
affected region, where genes that have to be esgueare suppressed. Despite all cells
contain the same genome they act differently, déipgnon cells type they represent

(“Transcription Factor | Broad Institute of MIT ahthrvard,” n.d.).

2.2.2.2 TF families

The expression of various genes activates functdmfferent cells; likewise the expression
of different types of genes is regulated by varid&s. There are four common groups of
DNA motifs that can be allocated: zinc finger, ti@ix-turn-helix, the leucine zipper, and the

helix-loop-helix motif.

Zn

Protein

Figure 2.6 Zinc finger proteins
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The zinc finger was first found 15 years ago in famstranscription factor A (TFIIIA)
(Laity, Lee, & Wright, 2001). The name came frome ttinc atom that builds the protein and
uses it for tightly wrapping around. This motif repent a range of function including DNA
recognition, RNA packaging, transcriptional activaf regulation of apoptosis, protein
folding and assembly, and lipid binding (Laity &t 2001). According to Alison Thomas,
zinc plays a role in loop stabilization of this o (Figure 2.6) by the R groups of two
cysteine and two histidine residues (Thomas, 200R)reover, one side of the loops is
represented as an alpha helix that is located enntilajor groove of the DNA sequence
(Thomas, 2013).

—~, lurn

()
[ aheix /(WJ
L/

*A dimer forms

*In each monomer one helix
lies in the major groove and
other at an angle across it

DNA
binding
helix 1
- . -|I l (- - o (—
- \-\\

Turn

Figure 2.7 The helix-turn-helix (Thomas, 2013)

The helix-turn-helix (Figure 2.7) consists of twiplaa helixes where both lies at an angle
across DNA. Alison Thomas suggests that the amand R-groups of the C-terminal helix
and bases operate with major groove and thus detertie selection of particular sequence
location during binding (Thomas, 2013). Moreovehe t helix-turn-helix contains

homeodomain, paired box, forkhead and heat shat&ra
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Figure 2.8 The leucine zipper motif(Thomas, 2013)

The leucine zipper motif (Figure 2.8) characteriaemmily of TFs, that have alpha helical
structure which is rich with leucine residues (gveeven residues is leucine), that plays
essential role in protein functioning. The protisiproduced when two proteins ‘zip’ together
and build a dimer, and the holding forces appeartdithe connections of amino-acid leucine

(“Atlas of Genetics and Cytogenetics in Oncology &taematology,” n.d.).

The helix-loop-helix motif, describes a family oF3 with alpha helices connected to a loop
structure. It plays an important role in activatspecific genes, and is similar in role to the

leucine motif.

TF classes described above represent 80% of knokls TFs control the amount of
transported genetic information from DNA to mRNAhely may also be characterized as
positive or negative units by acting as activatmrgepressors respectively. Moreover, the
process of gene expression is regulated more thignby TFs. The extracellular signals may
turn on (or off) the gene expressions, as welleseg themselves have a power of regulating
this process. One of the general features of bghgiroteins is frequent appearance of the
same amino acids like asparagine, arginine, glutanglycine, lysine. Another is that binding
occur through the major DNA groove. Finally, weakeractions such as hydrophobic, van
der Waals forces, ionic bonds create strong birgdfagces.



15

2.2.2.3 Mathematical Model of TF Binding

It is essential in the biomedical research to idfigaind describe the mechanism of binding TF
to the DNA sequence, as this would provide the tstdeding of gene expression regulatory
networks. The representation of TFBS model couldthveugh biophysical view of this

process. First of all, the process of binding ® EINA sequence is assumed to be reversible:

K in
TF + DNA —-2™¢ TF — DNA

Kaiss

Where,

S represents the rates;

K pbing (S) and Kgiss (S) the sequence dependent rate constants;
E(S) is the binding energy (Djordjevic, SenguptaS&raiman, 2003).

Kbind(s) _
Kea(S) Kexp(—BE(S))
Where,

B=1/kT

T absolute temperature
kg is Boltzmann’s constant

If we take into consideration the concentratiog) (@f the provided solution with TFs, than

probability of TF binding to sequence S is:

Kbind (S) ntf _ Kexp(_ﬂE(S))ntf

p(S) = Kpina () s + Kgiss (S) Kexp(—BE(S))nes +1

1
P =fEWS ~1) = Go0/mat 11

Where,
S, sequence;
Ny concentration;

W is the chemical potential (Djordjevic et al., 3D0
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This formula illustrates the Fermi-Dirac distribtarti This equilibrium describes that the TF
will bind to a sequence only if the binding eneigybelow the chemical potential. At the

same time if the binding energy is above the chahgotential the binding does not occur. It
is assumed that the binding properties do not ditpanthe neighbouring nucleotides. So the

binding energy could be written as:

L 4
E(S)~Se = ZZE?S{"

i=1a=1

Where,

&” shows the interaction energy of a nucleotids position = 1... L;

J; is the pair-dependent correction, is used as d@hnenpetrization for the sequence-specific
interaction (Djordjevic et al., 2003).

2.2.3 ChIP-Seq
The ChIP-seq is the experimental way of finding BsBthan the PWM method is statistical
approach. The major idea of both methods is ideatibn of binding sites at the DNA
sequence, but with utilization of different consepiThe understanding of how gene
expression is regulated by proteins that bind ON#A sequence plays an essential role in
understanding many biological processes. The CatPis a powerful tool that is used for

identifying the binding sites of TFs through theiengenome.

The chromatin is laid in the foundation of the noells name, which represents
multifunctional molecule with properties of previagt the DNA from damage by fitting a
long DNA sequence into a chromosome. It also césitiloe gene expression process and
DNA replication, and tolerates mitosis after rencfog the DNA. The general idea of the
immunoprecipitation approach is ability to pull aofin by specific antibody, which is

specifically attracted to this protein.
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ChIP enriched _ o .
Nucleus  Crosslink and Fractionate DNA binsing sites Sequence Binding site Mapping
Chromatin

Figure 2.9 General ChlIP-seq workflow(“Transcriptomics | Modeling Immunity,”
n.d.)

The ChIP-seq workflow is illustrated on the Fig@®. First of all, the ChIP-seq approach
begins from the cross-linking process, which is atd@ of the histone modifications
localization and also may define nucleosome paosifidve histone fragmentation begins after
protein-DNA interactions are fixed. The length bé thistone fragments should be in a range
between 150 to 500 bp. An antibody that is speddi@ protein of the interest begins the
process of fragments enrichment of DNA-protein claxgs. Finally, sequenced reads are
aligned to the references genome with utilizatibramy alignment algorithm, such as BWA
or Bowtie. Peaks can be analysed by using pedikgalgorithms, for instance MACS (Liu,
Pott, & Huss, 2010).

The computational analysis of ChIP-seq takes imtasicleration the metrics of sequencing
depth, quality checking, mapping, data normalizatiassessment of reproducibility, peak
calling, differential binding analysis, controllindgpe false discovery rate, peak annotation,

visualization, and motif analysis (Bailey et aD13).

Consequently, the resulting data of ChlP-seq erparts varies from 100 to 10,000 predicted
locations with resolution of around 50 bp (Wilban&sFacciotti, 2010). The ChlP-seq

technique has certain limitations:

» this method is still labour consuming
» the method allows to study one protein at the time

« itis limited by antibody specificity (Park, 2009)

However the output data depends on the qualitynodratibody. A sensitive antibody makes

detection of binding events easier. In contrastrelare certain advantages:

» this method offers higher base-pair resolution
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» the hybridization step helps to avoid noise in ltesy data
« the probe sequences limitations are not appliegdeg@enome that makes analysis of

the iterative regions easier (Park, 2009)

2.2.4 Methods Used for Predicting TFBS

2.2.4.1 General Information

There is an abundance of different methods, sucboasensus sequence, PWM, position
affinity matrix and k-mer that have been implementer TFs binding sites (TFBSS)

identification on DNA. The knowledge about TFBS \pdes better understanding of

regulatory networks.

The main feature of TFs is to activate or reprhsseixpression of genes by binding to specific
sequence. Therefore, the ability to predict andntiie TFBSs is the key point in
understanding the gene regulation network. Moregoitecould help in understanding the
influence of genetic variation on the process ofiegexpression disruption (Zhao, Ruan,
Pandey, & Stormo, 2012).

The PWM is the quantitative approach used to pteth&Ss. PWM'’s are created based on
finite number of experimentally derived motifs peovto be responsible for certain process
like TF binding. The PWM for a DNA motif is repreded as a matrix array with four rows
named after nucleotides (A, C, T, and G) and tHensos that represent the length of the
binding sites. On the other hand the PWM for agrotnotif may be performed as a matrix
of 20 rows named after amino acids of a proteiuseges (G, A, V, L, I, P,F, Y, W, S, T, C,
M, N, Q, K, R, H, D, E).

The performance of the PWM approach considered qgaatitative model, for numerical
representation of the binding sites at specificalmn on the DNA sequence (Mourad
Elloumi, 2011). There are several methods thatuaesl to construct PWMs. One of them is
based on the experimentally determined binding ssife/pically by the chromatin
immunoprecipitation-sequencingChiP-seq approach) proposed by Staden (Nandi &
loshikhes, 2012). The binding preference of TFsrareconstant and vary from position to
position. However, the same TF may express congi@ierence to the same position or
variability. Consequently, observed binding siea® collected and stored at various
databases, for instance JASPAR database (Matle¢lar, 2014).
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Figure 2.10 Building models for predicting TFBS(Wasserman & Sandelin, 2004)

One of the first steps for modelling TF bindingesitis data collection. Such data could be
simulated artificially in the laboratory conditioms derived through the utilization of high-

throughput techniques, that allow to collect thouisa of binding sites (Figure 2.10-1).

Consensus sequences are one of the methods usewdetling TFBS. It shows the most

frequent appearing residues among aligned sequértpse 2.10-2). Despite this method

provides fast visual representation, it can’t perfobinding characteristics numerically

(Wasserman & Sandelin, 2004).
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2.2.4.2 PWM Construction

For constructing PWM (Figure 2.10-4), the firstpste to align a large number of registered
binding sites, and to calculate the relative fremies of each nucleotide at this position the
Position Frequency MatriXPFM). The PFM shows the frequency of observedeatice at

each position (Figure 2.10-3).dfis the PFM, whep(b,i) represents the number of counts of

baseb in positioni of the alignment. The nucleotide probability ismgmuted with equation

(1).

fo,i +5s(b)
N+ Ypeacers (b))

(1) pi)=

Where,

f i = counts of base b in position

N = number of siteg(b,i) = corrected probability of basein positioni;
s(b) = pseudocount function (Wasserman & Sandelin, 2004

The next step is to convert the PFM into a likeiianmatrix. The elements of the PWM are
calculated as log ratio of observed frequency @\g a relevant selected background model
(equation 2).

p (b,Q)
(2) Wp; =logy———

p (b)
Where,
p(b) = background probability of bake
p(b,i) = corrected probability of basein positioni;
Wi = PWM value of basbk in positioni (Wasserman & Sandelin, 2004)

Each nucleotide of reference sequence matched®tBWM site is recorded and total sum is
found (equation 3) (Figure 2.10-5).

w
(3) S= Z Wi,
i=1
Where,

li = the nucleotide in positianin an input sequence,;
S=PWM score of a sequence;
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w = width of the PWM (Wasserman & Sandelin, 2004).

In addition, the data can be performed visuallylechlsequence logo (Figure 2.10-6). To

compute the information content (in bits) in eaolsipon equation (4) can be used.
(4) Di=2+ Zpb,i logz Py,
b

Where,
D; = information content in positioin
p(b,i) = corrected probability of basein positioni (Wasserman & Sandelin, 2004).

Finally, the PWM method allows to get an accurasgad by taking into consideration
mismatches by imposing position-specific penalfi&®rmo, 2013). Moreover, the low level
of both sensitivity and specificity is also providleéy the PWM (Gershenzon, Stormo, &
loshikhes, 2005).

2.3 Mutations
Frequently, term ‘mutations’ is associated with @cess that has negative affects an
organism features. However, mutations are comments\that regularly occur in organisms

and are linked to the human diversity.

Mutations can be distinguished from each other dase the modification it brings to a
genome of an organism. The first type, considesed laarmful, and effect on the fitness of its
host. The second typically have very small or rfectfat all, called silent mutations. And the
third type is advantageous, it leads to evolutipraatvantage of certain phenotype (Keightley
& Eyre-Walker, 2007). Nevertheless, mutations dap be described based on the place they
occur. The event that leads to transmission ofralts to progeny is called germline
mutations. It has been estimated that offspringives around 100 new mutations from
parents (Keightley & Eyre-Walker, 2007). On theasthand, mutations that affect only a host
organism without being transmitted to an offsprang called somatic mutations (in non-

reproductive cells). They are presented only itatercells.

Another criterion that enable to group mutationsthe length of affected nucleotide
sequences. For short affected sequences the terealgel mutations is used. Obviously it

has impact on specific genes. In contrast the tdmaomosomal mutations is used to describe
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mutations that alter longer regions of DNA sequefib®&A Is Constantly Changing through
the Process of Mutation,” n.d.). The human genomesists of coding and non-coding
regions that both can be targets of mutations. Wewenajor interest for investigation is in
the coding region, which can have two types of suwh®ns: synonymous and non-
synonymous. While synonymous substitutions do riange the sequence of the gene
product; the non-synonymous substitutions resulaimmo acids, with having various effect

such as neutral, deleterious or positive (Stradhat999).

Single-base substitutions or point mutations, ergbaone nucleotide base to another. Clearly
this type of mutations belongs to the gene-leval @nncludes three subclasses: missense

mutations, nonsense mutations and silent mutations

Missense mutationg(a type of non-synonymous substitutions), are dyemutation

in which alteration of nucleotide in codon will afft the type of synthesized amino
acid. This type of mutation has dual effect as saases it has no effect at all, and
then others might be deleterious. It is difficdtestimate the impact of this mutation

on a disease development.

Nonsense mutations(a type of non-synonymous substitutions), theratien of
nucleotide leads to a creation of stop codon (TAAG, or TGA), that eventually
terminates synthesis of a protein. Sequentially ghrlier the translation process stops

the higher the chance to get non-functional protein

Silent mutations (a type of synonymous substitutions), the altenadf nucleotide in

codon doesn’t change amino acid, as the same aauitb might be encoded by
multiple combinations of nucleotides. The glycifa, instance is encoded by GGT,
GGA, GGC, and GGG. Alterations at the third positlead to the production of the

same amino acid, glycine.

Insertions and deletions mutations (a type of ngrmesymous substitutions) are the other type
of alterations that add or remove bp from the DNAaogene, respectively are called
frameshift mutations. The amount of inserted oetsl bp can vary from one to thousands.
Frameshift mutations obviously lead to the différeatput of synthesized protein comparing
to the possible output of original sequence (“DN#&\ Constantly Changing through the

Process of Mutation,” n.d.)
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There are several factors that assumed to caussiong in a DNA sequence. Some of them
arise due to the effect of exogenous environmdatabrs such asltraviolet (UV) radiation,
chemicals, radiation and viruses. The other souofenutations are endogenous; those are

spontaneous errors during DNA replication and mrepai

According, to Strachan, mitochondrial genome (Feg@rl) is predisposed to mutations as
well. There are various reasons for this event, afniem is that mitochondria genome has
high amount of coding regions compared to the nuscteenome (Strachan T, 1999).

2.4 Exome Sequencing

Exome sequencing is a technique directed to a semqge of all protein-coding regions
(exome) of genome. The “EXpressed regiON” made tdren ‘exon’, meaning there are
regions that are translated or expressed as psofeirEisenstadt, 2010). Exons represent a
small part of the exome, so pieces of exons coctsgmtire exome. Only 2% of the human
genome are covered by gene coding regions, bufisam amount (around 85%) of them are
disease-causing (“Whole Exome Sequencing | Costiefe analysis of protein coding
regions,” n.d.). Studies prove that exome regigoragents highly enriched region of the
genome, where variants have deleterious effecteddsof sequencing a whole genome, as
this process is time and finances consuming, tleenexsequencing approach helps to identify
only disease causing variants, found in codingamrgyiof genes. The other benefit of this

technique is unbiased examination (Teer & Mullik20,10).

2.4.1 Exome Sequencing Workflow
The exome capture techniques are used for isolatngcular exome region from the whole
human genome. The exome capture methods are bassly on the idea of hybridization.
The general workflow is represented on the Figufe 2First of all, the genomic DNA is
fragmented, than the process of hybridization iglieg. Fragments, that couldn’t undergo
this reaction, are washed away. Captured regiomst@&fest go through DNA sequencing and
are analysed (Bamshad et al., 2011).
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Figure 2.11 Exome sequencing workflow/Box 1: Exome sequencing as a tool for
Mendelian disease gene discoveNature Reviews Genetics,” n.d.)

Variety of methods exists for capturing genomicdaag. They are characterized according to
the used technique in capturing targetBolymerase Chain ReactiofPCR), solid-phase

capture and solution-phase capture methiblddecular Inversion ProbéMIP) (Yoon et al.,

2015).
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Figure 2.12 Commonly used target-enrichment methodd/ertes et al., 2011)

1) The hybridization target technique, where a) illustates solid support, and b) in
solution (Mertes et al., 2011)

2) Molecular inversion probes (MIP), where a) is alassical representation of
MIP concept b) shows restriction enzyme cocktaiMertes et al., 2011)
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3) PCR enrichment where a) shows typical single-tub per fragment assay b)
multiple PCR assay ¢) utilized for targeted enrichment (Mertes et al., 2011)

The hybridization technique (Figure 2.12 1)-a,bpiisferred for large target regions, can be
performed by two various methods: reactions in tsmu(good for small amount of DNA)
and reactions on a solid support (good for larggetasets) (Mertes et al., 2011). The
hybridization technique in solution is more effitiehan on solid support. However, the main
idea of these methods is based on hybridizatiomugfeic acid strands from sample data to
the constructed DNA library, where fragments armglementary to the interested regions
and capable of extracting an exome region (Mettet,e2011).

The second technique is called molecular invergimbes (MIP) or selective circularization
(Figure 2.12 2)-a,b). MIPs are constructed withap, which is eventually hybridized by a

region of interest and creates a circles strudiMieates et al., 2011).

The last type of exome capture technique is enrafirby polymerase chain reaction (PCR).

This approach use the main idea of DNA amplificaiiBigure 2.12 3)-a,b,c).

2.5 Mutations Effect

The main aim of the HGP was to provide a completd @curate DNA sequence that build
up a human genome. That was revolutionary appraadhopened a new way of utilization
the DNA information towards large scale of inveatigns in biotechnology, disease causes,
drug development (“An Overview of the Human Gendngject,” n.d.) It is known now that
the human genome of any individual is at 99% eaual only 1% makes humans different.
That 1% is responsible for making living organidotk differently in shapes, sizes, weights,
personalities, accessibilities to diseases and ewdities to tolerate a food (Norrgard K,
2008). Genes that construct a genome come as Di#erees in a multiple versions. This
means that the same gene might have slightly difiggs in DNA sequences between
individuals. The eye colour is driven by the sanena but with the slightly different
variations in its architecture the variety of egetours is observed in different people. These
variations are caused by mutations, so the finallteis also different. Consequently,
mutations are primary source to variations thatuogandomly through the genome. The
study of human genetic variation has both evolatigrsignificance and medical applications.
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The HGP moved studies of a human genome forware. @rihe leading methodologies is
comparison of any human genome to the referencengenproduced by HGP. The easiest
way to contrast genomes from different people nspdy to compare them, as at some point
possible inequality can be noticed. @enome-Wide Association StufigWA or GWAS)
developed research technique that helps to ideg@ihes that are involved in human diseases.
The main idea of this approach is to compare gesoosheseveral groups of people, healthy
and carries of a studied disease, in order to iiyer@gions of genome variations that possibly
might lead to development of diseases. The exammaf rare genetic variants would lead to
the lack in associating to a disease. Thus the foams of the GWAS is study of common
genetic variants likesingle nucleotide polymorphisnifSNPs) or commosingle nucleotide
variants (SNVs) that have been often associated to a adis€&@enome-Wide Association
Studies Fact Sheet,” n.d.).

The term SNPs defines as the single-nucleotidetisutiizns found throughout the genome
that belong to members of one species that occuis ileast 1% of the population. It is
important to understand that SNPs are not speltifidacalized in the genome, the
appearance of SNPs might be found at any regioth@fhuman genome, for example in
coding sequences genes, non-coding regions of genés the intergenic regions (regions
between genes). However, the utilization of GWAS$Srapch helped to conclude that majority
(around 88%) of SNPs were identified at intergesridntronic regions(Edwards, Beesley,
French, & Dunning, 2013).

The SNPs that occur in the coding region of theogem are divided on two types
synonymous, that affect a protein, and non-synomgrbat change a sequence of a protein.
Non-synonymous are presented in two types as nsesand nonsense. Since mutations are
any changes in DNA, SNPs can be considered as ionytathich is presented at specific
location of a genome in many peoples, and the poesef these alterations eventually leads
to the human diversity. Therefore SNPs consideseevalutionary drivers, but not the cause
of diseases. However, the combination of diffel@NPs in various genes may influence the
risk of a single disease (DeWeerdt, 2004ppefully, the understanding of interactions and
influences of variations could help for the furtherderstanding how this events contributed
to the predisposition to common diseases suchas tisease, diabetes, and various forms of
cancer (Norrgard K, 2008).
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The exome sequencing method is significant forstigating Mendelian diseases. It has been
proved that the most common cause of Mendelianadeses thenon-synonymous single-
nucleotide variant(nsSNV) (M.-X. Li et al., 2013). Whether the tersingle nucleotide
variant (SNV) is similar to SNP, which is common nucleotalterations that are observed in

population.

After all, the coding regions give a wide rangedakctions to explore causes of different
diseases. The mutational landscape of tumours raayebined by focusing on somatic and

germline SNVs.

2.5.1 The Main Concepts Used to Predict Variant Pat hogenicity
With the help of the DNA sequencing technology stists know precise arrangements of
nucleotides in the genome. This knowledge helpgdamtifying disease-associated genes,
which can normally be seen as the alteration irquence. However, such changes may be
the representation of human diversity or causedisgase. Moreover, sometimes the rare
variants can be presented in healthy humans, siaskeof variant differentiation remains the

main challenge in the bioscience (Ruklisa, WarelsWaalding, & Cook, 2015).

The process of assigning the right label to thecaliered variant can be done through
experimental analysis by applying a suitable systdevertheless, this is time, labour and

money consuming technique. Consequently, an en@nasoount of methods has been
developed to recognize variants as harmful. Thesthads can be categorized in various
ways. Some of them are based on supervised matdangng approach, while others on

unsupervised machine learning; another type ofst@we based on statistical approaches,
while others use heuristic scores; some of metlhigdsphylogenetic relationships and others
pairwise comparison (Pollard, Hubisz, Rosenbloongié&pel, 2010).

The source of evidence that represent the pathageisian be allele frequency (definition:
proportion of seen allele among all allele copiemb considered (Cheung et al., 2000)),
amino acid conservation (definition: a base segaeeéna DNA molecule (or an amino acid
sequence in a protein) that has remained essgntimthanged throughout evolution
(“Glossary,” n.d.)), predictors based on physicocioal properties, and gene- and domain-

specific effects (Ruklisa et al., 2015).
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There are different ways how altered variant cédecaf protein functions and lead to the risk
of disorders. Some rules in predicting a variahhaving harmful properties have been

established experimentally:

* The location of a variant is characterized in SWIBBOT database as binding site,
active site, or involved in disulphide bond

» The variant has not suitable features to the faofilyomologous proteins

» Hydrophobic properties of a protein can be disrdfdig a variant (Sunyaev et al.,
2001)

» Avariant can affect electrostatic properties

» A variant might affect dissolubility of a protein

* A variant might destroy protein ligand interactid®sinyaev et al., 2001).

Furthermore, the online predicting programs utilei@gove mentioned features to predict
variant deleterious properties. Mainly they candbaded into three groups: sequence and
evolutionary conservation-based methods; protenuesece and structure-based methods;
supervised learning methods.

Sequence and evolutionary conservation-based metredased on amino acid conservation
knowledge, used multiple sequence alignments argtoring functions. It's found that
disease-associated variants are correlated to m@tie® concept. On the other hand, the
output depends very much on the provided multigusnce alignment. Tools that are
constructed based on these concepts are for iesthaecSorting Intolerant From Tolerant
(SIFT), and Mutation Assessor. (“Missense Predicliool Catalogue | NGRL Manchester,”

n.d.). More information concerning a work of thésels can be seen in the Table 2.2.

Protein sequence and structure-based methods éirédmed on the structure of the protein.
The output data might be interpreted in a wrong wakiout sufficient knowledge of protein
structure features. THeolymorphism Phenotypin@olyPhen-2) is a common tool that uses
this concept (Adzhubei et al., 2010).

Finally, supervised-learning based methods are aommway of variant pathogenicity
interpretation. These methods can includeural Networks(NNs), the Support Vector
Machines(SVMs) andRandom Forest§RFs) and naive Bayes classifiers. First of allata
that is used as reference have to be definedesalgorithm has the pattern. Secondly, variant

features are evaluated by using conservation deipratructure characteristics. Finally, the
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algorithm ‘learn’ how to distinguish difference eten variants. These types of learn

ing

require a wide range of known pathogenic variaotgeétting correct output. Mutation Taster

and CADD are typical tools that utilize these cqisg“Missense Prediction Tool Catalogue |
NGRL Manchester,” n.d.).

These methods are powerful have a lot of benéfitsvever, drawbacks are present as well.

First of all, conservation metrics are not allghedfic, than protein-based tools can’t be used

for non-coding variants. Secondly, supervised-legnmethods are trained on known

pathogenic variants.

Table 2.2 Tools used for pathogenicity detection

Method Name

Brief Description

SIFT

The sorting intolerant from tolerant (sift) thed based on sequence

homology, computes the likelihood that an aminal asubstitution will
have a negative effect on protein function. SIFTiseful in research fg

study the influence of mutations on protein funct{&im et al., 2012).

Mutation
Assessor

Mutation Assessor (ma), is the server which capablepredict the
functional impact of amino-acid substitutions inotgins (definition:

MutationAssessor.org). The method works by emplgyimultiple

sequence alignment, partitioning for identificatiminconserved positions;

computing conservation scores, a specificity semiek comparison of ther
for identification of the functional impact scordiutationAssessor.org /

functional impact of protein mutations,” n.d.).

LRT

The Likelihood Ratio Tedfirt) uses goodness-of-fit statistical technigie.

compares probabilities between conserved areas ségaence and
neutral model (Chun & Fay, 2009).

=

4

~~

a

PolyPhen

Polymorphism Phenotyping (PolyPhen-2), fethod is used to dete
deleteriousness of variants, by computing NaiveeBgyrobability, as a
output it estimates false positive or true positates. There are two typ
of Polymorphism Phenotyping: pp2_hdiv and pp2_hvVae difference ir
these methods is in training data, and also pp¥ isdised for evaluatin
rare alleles, than pp2_hvar used for differentratad harmful mutation

from all human variation (Adzhubei et al., 2010).
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Mutation Tester, TheMutation Tester (mt), a free, web-based application for rapid
evaluation of the disease-causing potential of Dd&&uence alterations.
The method uses information from the different beaical databases; the
key player of disease potential detection of areration is Bayes
classifier. The advantage of this method lays elibst performance from
speed and accuracy (“MutationTaster - documentatiord.; Schwarz

Roédelsperger, Schuelke, & Seelow, 2010).

CADD Combined Annotation Dependent Depletion (catidy determines th

[}

genetic variation through performance of the C scas the measure of

variant harmfulness (Kircher et al., 2014).

The study of pathogenic variants has to work indésm with other approaches such as
statistical association between a variant and ardiés, or ranking variants found from the
genome based on its functional effect (Buske, Maaj, Mital, Ray, & Brudno, 2013;

Pollard et al., 2010). In order to pick up a correethod to detect and label variants as
benign or harmful following features should be taketo consideration: type of input data,

methods that originates a data, and the trainingepties of selected methods.

There are many different studies that took placewestigating geography of pathogenicity
events that lead to pathogenicity. Various toold approaches were developed to identify
deleterious variants. Pauline C. Ng and Steven kddinin research article “SIFT: predicting
amino acid changes that affect protein functionsalide the SIFT tool as the source of
predicting if alteration in DNA sequence affect @retein functions or not (Ng & Henikoff,
2003). Research results of Jaaxin Wu and Rui Jamggested using multiple predicting
algorithms to increase the accuracy in naming wésias harmful (Wu & Jiang, 2013). On the
other hand there is opinion that synonymous SN\&y @l role in developing a disease by
affecting the way proteins are merged togetheir theression and eventually function. The
Silent Variant Analyze(SilVA) tool was developed by Orion J. Buske ansl ¢olleagues,
which is atomized application used to predict hatnsfynonymous variants within human
genome. It was concluded that there are two mosvigoing types of features, splicing
information and sequence conservation, that ard t@edetection of harmful synonymous

(silent) mutations (Buske et al., 2013).
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2.5.2 Combined Annotation Dependent Depletion (CADD )
The existence of vast amount of tools for pathaggnprediction mostly is based on one

metric. The CADD combines a lot of different mes$rinto one score.

2.5.2.1 Algorithm Implementation

The first step in training the algorithm is to ctrost a variant-by-annotation matrix. There
were two types of data used: experimentally deradégle frequency information (from 1000
Genomes and Ensembl Compara) and simulated dagd basempirical model of sequence
with CpG dinucleotide-specific rates and mutaticates. The annotation metrics like
conservation (fromGenomic Evolutionary Rate ProfilinGERP), Phylogenetic P-Values
(phyloP)), functional genomic data (from DNase) aries binding, exon-intron distance,
expression levels in studied cell lines and proteuel scores (from SIFT, PolyPhen) were
used to generate annotations information withaatiion Ensemblyariant Effect Predictor
(VEP), encyclopedia of DNA elemer{ftsNCODE) andJniversity of California at Santa Cruz
(UCSC) Genome Browser. The same type of modelusad to train possible substitutions.
The annotations were used in training a SVM withnaar kernel. Consequently, a rank
system was used to assign values from 1 to 9&itoe variants (Kircher et al., 2014).

2.5.2.2 Pros and Cons

There are quite many benefits of CADD utilizatidfitst of all, the CADD tool combines
multiple annotations into single C-score. Secon@gcore relates to allelic frequency, it can
be used for analysing coding or non-coding variantsrdly, C score capable to distinct a
rare allele from set of disease-associated all€learthly, C score can be associated with
somatic cancer mutations. Finally, CADD tool dentoates strong prediction properties in
pathogenicity, deleteriousness and molecular faneatity and can be used for exome or

genome studies (Kircher et al., 2014).

CADD method also has limitations. First of all, taecuracy of the tool can be limited be
local mutation rate, background selection or biagede conservation. Secondly, C scores
may omit the differences in selective intensityndfly, the ability to predict deleterious
features in noncoding regions still require improeat (Kircher et al., 2014).
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3 Research Goals

The vision of the thesis was to identify and cagavariants that contribute to pathogenicity

The objectives are:

To examine provided variants, to find location afrful regions
To identify more specific set of putative targehge
To use CADD tool for scoring deleterious variants

NI NERNEEN

To compare precomputed CADD results with resullseaed by using statistical

analyses

(\

To apply PWMs framework for TFBSs prediction
v To identify which variants from the provided datah the potential for ‘dual codon
usage’

v' To catalogue harmful variants

4 Tools

4.1 Python

Python is a freely available, an open source higldgdable programming language
(“Welcome to Python.org,” n.d.). In this work thgtRon was mostly used for writing scripts
for processing data. The Python version 2.7 wad tmerunning all scripts. Additionally the

NumPy package was installed, which is powerful tagled in scientific computing along
with Python, allowed to work easily with N-dimensa array objects (“NumPy — Numpy,”

n.d.). The NumPy was used in computational pathigfthesis to convert PWMs into arrays.

4.2 Unix
Unix is a computer operating system, that mostlg haen used in computational part as
intermediate steps, like filtering, ordering, filgbservation (“The UNIX System, UNIX

System,” n.d.). Some of the Python scripts weraingfrom the Unix platform as well.
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4.3 R: Statistical Analysis Tool

R is an open source programming language for statiscomputing and graphics (“The R
Project for Statistical Computing,” n.d.). R platfo has been mostly used for the initial part
of the project. It was used for creating a file hwrtecessary data, as well as for graphical

visualization of genes frequency.

4.4 Combined Annotation-Dependent Depletion Tool

The CADD is powerful scoring tool that identifidgetgenetic variation through performance
of the C score as the measure of variant harmfslifggcher et al., 2014). It is freely
available open source tool.

The CADD training algorithm is based on the SVMrigag method trained on potential
pathogenic variants, used to distinguish benignatiarts from deleterious. The C score
represented all various characteristics of disemsesing mutations into one single score.
These characteristics include conservation metfiosctional genomic data, TFs binding,
transcript information like distance to exon-intrdoundaries or expression levels in
commonly studied cell lines; and protein-level esoBasically it combines into one C score
a lot of various metrics that are used by manyraib@s related to detection of pathogenicity,
such as GERP, DNase, SIFT and many others. Thigréemakes the CADD tool extremely
strong and accurate in resulting data.

The thesis computational part has been built basetthe main idea of using C score, which
enable to estimate the pathogenicity potential afagant, the rest of irrelevant data was
sorted out. The threshold was set to 20, meanirgettare predicted to be the 20% most

deleterious variants.

4.5 BEDTools

BEDTools is a tool which allows to users easilymork with genomics analysis tasks. In the
thesis the following BEDTools functions were usidersect, slop and getfasta (“bedtools: a

powerful toolset for genome arithmetic,” n.d.).

bedtools INTERSECT -a <file> —b <filel> —-wo
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The intersect function allows to check overlappesha of provided genome with reference
genome collected from the Genome Reference Couosorti*Genome Reference
Consortium,” n.d.). The ‘~wo’ symbol is responsilide the output data, which retrieves only

overlapped region of provided sequence.

bedtools SLOP —i <BED>-g <GENOME> -b 25

The slop function allows to increase a size of lajea by a required number of bp. In case of
this work it was extended from both sides by 25 bp.

bedtools GETFASTA —fi <FASTA> —bed <BED> <butput FASTA>

The getfasta function converts data into FASTA fatnThe information holds in the output

file was chromosomal position, start and end cotgis of sequence.

4.6 JASPAR and UNIPROBE Databases

JASPAR and Universal PBM Resource for Oligonucleotide-Bindingvaluation
(UNIPROBE) databases were used as the repositofi@sformation for the PWMs. The
JASPAR CORE is an open access database, whichdpsounformation about TF for
eukaryotes found experimentally (Mathelier et 2014). The UniPROBE database was used
as the resource which contains information of PWAMrte, Barrera, Gisselbrecht, & Bulyk,
2015).

4.7 KEGG

Kyoto Encyclopedia of Genes and Genomes (KEGG)atslzhse resource which contains
information about genomes, biological pathwayseaées, drugs and chemical substances. In
the thesis work the KEGG database was used as gathvapping tool in order to find
possible associations of genes to disease (“KEG@otd Encyclopedia of Genes and
Genomes,” n.d.).
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5 Methods and Approaches

5.1 Computational Analysis Overflow

"DATA RETRIEVAL

» 134 Blood Samples

* 75 Adjacent Tissue Samples
» Retrieve aFile from ANNOVAR

' DATA PRE-PROCESSING - l -
» Filtering a File Based on C score 20 N 4
* Preparing a Data with Bedtools v

* Generating Variant Sequences
= Genrating Reference File with Variant Sequences
Information: RefSeq. Chr, Start Coordinate, End

Coordinate, Ref nt. Alt nt. Gene, VarSeq |
/DATA PROCESSING = II —
» CalculatingVariant and Onginal Sequences 3 \\vx-’
Scores with PWhIs

* Removing Similar Scores

» Finding Min and Max Scores

* Generating Artificial Sequences

» Calculating Artificial Sequences Scores with
PWMs

* Calculating Artificial Sequences P vale

» Sorting Based on Cutoff (.01 s
mr_

RESULTING DATA N

* Matching Information of Original Sequences with NS
Reference File

» Additing C score into a Final File

EVALUATING RESULTS N 7
» Selecting Genes from the Resulting File NS
* Submiting into KEGG db

» Finding Pathways

Figure 5.1 C computational analysis main steps

Figure 5.1 gives a full overview of the data preteg during the computational part.

Moreover, there were several main concepts, useidnfdementing this part: C score, PWMs
score and p value concept. The final data was atedu
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5.2 The PWM Concept

Step | Step Il Step il
Sequence Sequence Sequence
[alafelrfefaljfalafejrfela] |[A]aJc]recTal]
Al 04 0,4 0.2 0.3 Al 01 0.4 02 03 Al D4 0.4 02 03
c| 02 0.2 02 0.1 c 02 02 0.2 0.1 C| 04 0.2 03 01
= |c|o6 |01 |oz]|o03 x|6|06]01)o02|os = (604 03 ]o1]o3
Elr|o1]03] 0403 Ef71]o01]02]| 04|01 Eft)o1]o01]|o04]o3
[o01 ] o4 ] o02] 03| ([o.ooza [o1 o2 oa]os] [[ooos]] [04 o1 o1 ]o3] [ooore]]
Multiply Scores Total Multiply Scores Total Multiply Scores Total

Figure 5.2 The main idea of PWMs utilization

Figure 5.2 describes the main idea, which was us@dmputational part for implementing
the PWM concept. Based on this idea the script watten with the use of Python
programming language. Step I illustrates the fragihof the DNA sequence and matrix with
the size 4*4. The first nucleotide of the sequeisc&, the corresponding score in the matrix
to the letter A is 0.1; next is again A with a s=@4 and etc. All collected scores have to be
multiplied together, consequently a total valuehef step 1 is 0.0024. Matrix shifts to the next
nucleotide (Step 1l) and repeats the same procedditer all scores have been collected the
greatest score has to be selected as the besbpdsit TF binding. In this example, step II
gives the highest score, meaning that TF has tiieekt likelihood of binding to the part of

sequence starting from the second base of thisssegqu

5.3 P value Concept

In the thesis work the p value concept, the conoépesult significance was used. The null
hypothesis (k) of this work was that TF-match score is likelyaocur by chance. Then the
alternative hypothesis (H) stated that TF-matchrescmesn’t occur by chance. Hence, a null
hypothesis was tested against an alternative. TVedye was computed and sorted based on
established significant leved£0.01). The provided data was described with tatrowersial

statements:

* Hy, variant data hasn’t pathogenic properties

* H, variant data has pathogenic properties
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* P value <0, shows strong evidence against the null hypothessning all the

data that fulfil this condition is actually pathoge

e Table 10.1 and Table 10.2 show final results wihiate deleterious properties.

6 Overall Procedure

Total 309 samples /
234 btlood samples
75 normal adjacent
tissues

Database

DATA RETRIEVAL
b

A File with Samples Data

DATA PRE-FROCESSING

L

Removwe Irrelevant
Information from the File

3

Original Sequence Variant Sequence
Calculation of Scores Calculation of Scores with
with PWMs PWMs
score e S e
Finding the Most Finding the Most Finding the Most Finding the Most
Maximum Score Minimum of Score Maximum Score Minimum Score

MAY Seore Original Seq MAX Score Variant § MIN Seore Original Seq ﬁ Score Variant Seq
Select

Calculate th; Difference
btw s MAX Original Seq
Scores and MAX Variant

MAX or MIN Diff Scores

as Following Computational

Criteria

Calculate tﬁe Difference
btw s MIN Criginal Seq
Scores and MIM Variant Seq

Seq Scores E—
P Value Calcaulation
i p_val = amount of (max S
Generate Calculation of e s —— Genert
Artificial  [—3  Scores with — . N
Sequences PWMs scores) devided by threshold=0.01
amount of generated
artiff seq
DATA PROCESSING
Find Pathways Submit to the Select Genes K |
KEGG Pathway
Database

RESULTING DATA

Figure 6.1 Schematic presentation of the computational part wdkflow

Figure 6.1 shows the flow of the computational pastich starts from extracting, required

samples from blood and adjacent tissues. These islagtored and supplied as a file for

computational analysis. The computational part diggled into four main parts: data pre-

processing, data

description of each step will be described below.

processing, generating fina datl evaluation of results. The detailed
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6.1 TCGA Data Source

The data which was provided for the computatiorsat pf this thesis derived from patients,
as the total amount of 309 samples. There weres28#ples derived from the white blood
cells as the source of human DNA information. Tést i75 were extracted from an adjacent
normal tissue. These data was functionally anndtatiéh ANNOVAR software. There are
1887215 rows and 41 columns in the ANNOVAR annatdile. Table 6.1 represents the first

eight columns and seven rows of this file as amgta of the provided information.

Table 6.1 A part of the file with data annotated byANNOVAR

Chr | Start End Ref | Alt | Func.refGene Gene.refGene GeneDetail.refGene
1 | 10109 | 10109 | A T intergenic NONE,DDX11L1 dist=NONE;dist=1765
1 | 10177 | 10177 | A C intergenic NONE,DDX11L1 dist=NONE;dist=1697
1 | 10180 | 10180 | T C intergenic NONE,DDX11L1 dist=NONE;dist=1694
1 | 10234 | 10234 | C T intergenic NONE,DDX11L1 dist=NONE;dist=1640
1 | 10235 | 10235 | T A intergenic NONE,DDX11L1 dist=NONE;dist=1639
1 | 10248 | 10248 | A T intergenic NONE,DDX11L1 dist=NONE;dist=1626
1 | 10250 | 10250 | A C intergenic NONE,DDX11L1 dist=NONE;dist=1624

Additionally to the information described above thle with PWMs was provided. The
information of corresponding PWMs was retrieved nfroAJASPAR and UniPROBE
repositories. The file contains the name of theaT Bwn row and matrix represented as single
nucleotide probabilities of size*4_, where L is the length of a matrix. The lengfhatrices

varies from 6 to 30 across the file.
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Table 6.2 A part of the file which contains PWMs

YY1 6

0.352941 0.01 0.01 1 0.01 0.176471

0.058824 0.941176 1 0.01 0.01 0.47058;8

0.411765 0.01 0.01 0.01 0.01 0.17647]

0.176471 0.058824 0.01 0.01 1 0.17647]

IRF1 2

0.066667 0.001 0.001 0.733333 0.001 0.001 0.001
0.001 0.066667 1 0.001 0.533333 0.001 0.001
0.001 0.001 0.001 0.001 0.266667 0.001 0.001
0.933333 0.933333 0.001 0.266667 0.2 1 1
GATAZ2 4

0.245283 0.01 0.981132 0.01

0.245283 0.09434 0.01 0.01

0.339623 0.90566 0.018868 0.01

0.169811 0.01 0.01 1

Table 6.2 gives a visual example of the providégviihich contains PWMs. There are three
examples of matrices; fist row shows TFs name,thadext four rows represent the matrix’s
row. For example, YY1 _6 is TF with 4*6 size matrikg second is the TF IRF1_2 with 4*7

size matrix; and the last matrix contains the TRT&2_ 4 with 4*4 size matrix.
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6.2 Data Preparation

6.2.1 Filtering Based on ‘exonic’ and C Score
Script 1: C-Script.py

scri pt FilterExonicAndCScore (inputfile) r et ur n outputfile

i nputfile, afilewith atable (e.g. coordinates, chromosome)
VAR

, where each

i nput :
row contains values. Data annotated by ANNO

out put: outputfil e, afile that contains the variant data with the columns

and rows filtered by exonic and C Score

t abl e = READ-DATA-FROM-FILE (i nputfile)
tnp-tabl e = SELECT-FROM-TABLE-COLUMNS-WITH-VALUES (t abl e,

“exonic” )

“Func.refGene”,

tnp-table =
> 20)

WRITE FILE ( tp-tabl e)
Description: The input file contains various variant featuresnatated by ANNOVAR tool. The output fil
contains a table with the columns chr, start, ened, alt, func.refgene, gene.refgene, genedetaigene,

exonicfunc.refgene, change.refgene, snp138, cadd.

SELECT-FROM-TABLE-COLUMNS-WITH-VALUES$t abl e, “cadd_phred”, values

)

6.2.2 Subtract One

Script 2: One-Script.py

scri pt SubtractOneFromStartCoordinate ( inputfile) return outputfile

input: inputfile, afilewithatable , Where values are sorted based on C score

> 20 and exonic annotation
rdinate

out put: outputfil e, afile that contains variant data where start coo

has value minus one

t abl e = READ-DATA-FROM-FILE (i nputfile)

t np- t abl e=SELECT-FROM-TABLE-COLUMN-WITH-VALUES ¢ abl e,
“Start” , -1)

“Start”, *)

t mp-t abl e=SUBTRACT-FROM-COLUMN-A-VALUEt abl e,

WRITE FILE ( t p-tabl e)
Description: The input file contains a table with the columhs, start, end, ref, alt, func.refgene, gene.refge
genedetail, refgene, exonicfunc.refgene, changenef, snp138, cadd. The output file contains aetakhere

from values of the column ‘start’ one is subtracted
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6.2.3 BEDTools Functions

BEDTools

BEDTools ( coordi nstart_val ue_m nus_one, tf_sites-encode, genome_inform )
return outputfile

i nput: coordinstart_val ue_m nus_one, a file that contains the variant data where
start coordinated has value minus one ;

tf_sites_encode, a file with TF sites from ENCODE database ;

genone_i nf o, afile which contains a sequence information in FAS TA format

output: outputfile,aFASTAffile

bedtools INTERSECT -a coordinstart_value_mnus_one —-b tf_sites_encode -wo
> tf_sites-encode

bedtools SLOP —i coordi nstart_val ue_m nus_one —g genone_info —b 25>
file_seq_extension

bedtools GETFASTA —fi genone_info —bed file_seq_extension—f> outputfile

Description: There are three input files: épordinstart_value_minus_ortlat contains various variant
information in BED format, but the main features ehromosome, start coordinated has value minas o
reference and altered nucleotides, TRf Zites-encodéBED format) contains information about TF sites
length from ENCODE database ;@nome_inforna file in FASTA format with sequence informatiaor f
homo sapiens. The output file is in FASTA formamiins the information about original sequence,
chromosome, start and end coordinates

6.2.4 Generate Variant Sequence

Script 3: VariantSequence.py

scri pt GenerateVariantSequence ( file_seq_extension, file_orig_seq) return
outputfile

input: file_seq_extension, a file that contains sequence extension information;
file_orig_seq, a file that contains variant sequence information

out put: outputfil e, afile that contains variant sequence

list_of _orig_seq=READ-DATA-FROM-FILE( file_orig_seq)
list_of alt_nucl = READ-DATA-FROM-FILE ( fil e_seq_extensi on)
list_of variant_seq =[]
FOR x IN list_of_orig_seq
repl ace_nucl = GET-ALTER-NUCLEOTIDES ( list_of _alt_nucl [x])
chronosome = GET-CHROMOSOME (i st_of _ori g_seq[x])
APPEND-TO-LIST ( list_of _variant_seq, chronpsone)

new_seq = REPLACE-STRING-WITH-CHAR-AT-POSITION ( |ist_of _orig_seq[x],
r epl acenent char, 26)

APPEND_TO_LIST( list_of _variant_seq, new_seq)
WRITE_FILE ( list_of _variant_seq)
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Description: The input filefile_seq_extensio(BED format) contains a table with the columns chosome,
start and end coordinates, reference and alterel@atides, TF. The input filéle_orig_seqis FASTA format
file, contains chromosomal information, start amdl eoordinates, and original sequence. The outite]
contains a variant sequence, chromosome, stagmhdoordinates.

GET-ALTER-NUCLEOTIDES : get the information from the column with alterectleotides
GET-CHROMOSOME : get the information from the “chr” column about clmosomal position
REPLACE-STRING-WITH-CHAR-AT-POSITION:  substitute 28 position of a sequence string by altef

nucleotide

6.3 Data Processing

6.3.1 Calculating Scores with PWMs

Script 4. ComputeScoresWithPWMforOriginalAndVari8atjuences.py

Functions and Declarations of the Script

Not e:  NumPy package was uploaded for this script. Utitizéhis package allows to convert matrix
into an array

function PWM_San (input: sequence, output: scores)

Description: PWMs moves by a single nucleotide along a sequenbimding score is collected at each
position of a nucleotide. hmatrix reaches the end of a sequence recordeglssat each
nucleotide are multipliedtek matrix scans complete sequence the max ss€ardected as the
best binding score.

function ConvStr ToFl oat (input: strings, output: f 1 oat values)

Description: the function converts strings into float numbers

function ConvStrTol nteg (input: strings, output: i nt egers)

Description: the function converts strings into float integers

Description of the Script

scri pt ComputeScoreWithPWMconcept ( file_orig seq, file_pwn) return outputfile

input: file_orig_seq, contains an original sequence;
fil e_pwm contains Position Weight Matrices (PWMs)

out put: outputfil e, afile that contains scores information for the o riginal
sequence

list_of _original _seq = READ-DATA-FROM-FILE ( fil e_orig_seq)

Ii st_pwm= READ-DATA-FROM-FILE ( file_pwn

list_of _convert_orig_seq=CONVERT-SEQCHAR-INTO-DIGITS ( |ist_of _original _seq)
list_of tfs=COLLECT-TF-NAMES-FROM-LIST ( |ist_pwm

array_matri ces = CONVERT-MATRICES-INTO-ARRAY ( i st _pwn)

list_tf_matrix =ZIP-DATA-OF-LISTS (list_of _tfs, array_matrices)

ed
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dictin_tf_matr = GET-KEY-TF-VALUE-ARRAY (list_tf_matrix)
orig_seqg_scores_dictionary ={}
FORXIN |ist_of _convert_orig_seq
one_nucl eotide = ConvStrToFl oat (GET-SEQUENCE(x ))
FOR key, value IN dictin_tf_matr
score= PWM San (one_nucl eotide, key, val ue)

WRITE FILE ( score)

Description: The input filefile_orig_seqcontains a table with the columns original seqaeemtiromosome,
start and end coordinates, reference and alteretbatides, gene name. The input fiile_pwm contains
information about TFs and matrices. The output dibmtains a table with original sequence, TF nasuere,
start and end binding sites.

CONVERT-SEQCHAR-INTO-DIGITS: a sequence is representation of nucleotides, waiehconverted intg
digits A-1,C-2,G-3,T-4

COLLECT-TF-NAMES-FROM-LIST: takes a list as input, and collects TF names
CONVERT-MATRICES-INTO-ARRAY: takes matrices from a file and converts them intaya
GET-KEY-TF-VALUE-ARRAY: takes a dictionary as input and assigns TF as &ey,array representation pf
matrix as value

FOR x IN: takes a string of sequence and converts each ¢aanaio float number
FOR key, value IN scans sequence with PWM_Scan function

*The same process runs for variant sequences

6.3.2 Removing Similar Scores

Script 5: RemoveSimilarScore.py

scri pt RemoveSimilarScoresBetweenOriginalAndVariantSeq ( orig_seqg_scores,
vari ant _seq_scores) return outputfile

input: orig_seq_scores, contains original sequence scores;
vari ant _seq_scor es, contains variant sequence scores

out put: outputfil e, afile that contains unique scores for both origi nal and
variant sequences

line_orig_seq=READ-DATA-FROM-FILE ( ori g_seq_scores)
diff_orig_seq_scores = GET-ORIGSEQ-SCORES ( line_orig_seq)
line_variant _seq = READ-DATA-FROM-FILE ( vari ant _seq_scores)

IF TF-1S-NOT- EQUAL(line_orig_seq, line_variant_seq) AND SCORE-| S- NOT- EQUAL
(line_orig_seq, line_variant_seq)

score_di ff = FI ND- DI FFERENCE- BETWEEN- SCORES (| ine_orig_seq, |ine_variant_seq)

normal i ze_score = score_diff / diff_orig_seq_scores

WRI TE- FI LE (score_diff, normalize_score)

Description: The input file orig_seq_scoregontains an original sequence, TF name, score, @ta end
binding sites. The filevariant_seq_scoresontains variant sequence, TF name, score, gtdrtead binding
sites. The output file contains original and variaequences with unique scores, chromosome, stdread
coordinates.

FIND-DIFFERENCES-BETWEEN-SCORES: score from original sequence — score from variagtisnce
normalize_scorescore difference divided by original sequence score
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6.3.3 Finding the Most Minimum and the Most Maximum Scores

Script 6: FindMaxMinScore.py

scri pt FindTheMostMaxAndMinScores ( uni que_ori g _variant_seqg_scores) return
outputfile

i nput: unique_orig_variant_seq_scores, contains unique scores for original
sequence and variant sequence

out put: outputfil e, afile that contains the most maximum and minimum scores for
original sequence and variant sequence

orig_var_data_row = READ-DATA-FROM-FILE ( uni que_ori g_vari ant _seq_scores)
first_sequence = GET-SEQUENCE-FROM-ROW-FROM-TABLE ¢ri g_var _data_i n_one_r ow, 0)
current_pos =0
WHILE current_pos <= LEN ( orig_var_data_row
m n_scor e =1000
max_score =0

current _sequence = GET-SEQUENCE-FROM-ROW-FROM-TABLE ¢ri g_var _data_row,
current_pos)

WHILE ( first_sequence == current_sequence)

IF GET-SCORE ( current _sequence)< nmin_score

THEN m n_scor e = GET-SCORE (first_sequence)
IF GET-SCORE ( current _sequence)> nax_score
THEN max_scor e = GET-SCORE (first_sequence)

current_pos = current_pos +1

IF current_pos <= LEN ( orig_var_data_row)
current _sequence = GET-SEQUENCE-ON-POSITION-FROM-TABLE
( ori g_var _dat a_r ow, current_pos)
ELSE
WRITE-FILE ( first_sequence, mns_score, max_score)
EXIT

WRITE-FILE ( first_sequence, mns_score, max_score)

first_sequence = current_sequence

Description: The input fileunique_orig_variant_seq_scoresntains an original sequence, TF name, orig

sequence score, start and end binding sites, eliféers in scores between original and variant segsen

normalization score, variant sequence, TF naméamasequence score, start and end binding sites olitput

file contains original sequence, TF name, maximwatuer of original sequence score, start and endirgnd

sites, differences in scores between original aamibat sequences, normalization score, variantesemsgy TF
name, maximum value of variant sequence scord,atdrend binding sites AND original sequence, &fe,
minimum value of original sequence score, start @and binding sites, differences in scores betwedginal
and variant sequences, normalization score, vagagtience, TF name, minimum value of variant semp

nal

score, start and end binding sites.
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6.4 Generating a Final File

6.4.1 Generating Artificial Sequences, Computing Sc ores with PWMs,
Computing P Value

Script 7: GenerateAtrtificialSequenceComputScorekvay

Functi ons and Decl arations of the Script

functions Conv St r ToFI oat (input: strings, output: f 1 oat values)

Description: the function converts strings into float numbers

scri pt GenerateAtrtificialSeqComputeScoreWithPWMconceptAnd Pvalue
( di ff_max_score_criteria, file_pwr) return outputfile

input: max_score_criteria, containsthe most maximum scores for original and
variant sequences;
fil e_pwm contains PWMs information

out put: outputfil e, afile that contains p values

list_of tfs=COLLECT-TF-FROM-FILE ( file_pwm)
I en_matrices = COLLECT-MATRICES-FROM-FILE ( file_pwm
initial _nunber_of artific_seq =888

list_of _scores =]]

artif_seq_score = CREATE-ARTIFSEQ-WITH-LENGTH-EQUALS-LENGTH-OF-MATIRCES-AND-
COMPUTE-SCORE (I en_matri ces)

APPEND-TO-LIST artif_seq_scores ( Iist_of scores)

dictin_tf_matr = KEY-TF-VALUE-SCORES ( list_of _tfs, array_matrices)

val ues = GET-VALUES-FROM-DICT dictin_tf_matr []

FORXIN( max_score_criteria)
new_seq = REPLACE-DIGITS-WITH-CHAR ( x)
p_val ue = HOW-MANY-TIMES (di ff_max_score_criteria< values)/ initial_nunber_seq
WRITE FILE ( p_val ue, new_seq)

Description: The input filediff_max_score_criteriaontains a table with the columns original seqeedd
name, the most maximum value of original sequestmee, start and end binding sites, differencescores
between original and variant sequences, normabizettore, variant sequence, TF nhame, the most maxim
value of variant sequence score, start and endrigirgites. The input filéile_pwm contains information about
TFs and matrices. The output file contains a talile original sequence, start and end binding sit€sname, p
value, variant sequence, start and end binding.site
CREATE-ARTIFSEQ-WITH-LENGTH-EQUALS-LENGTH-OF-MATRICES-AND-COMPUTE- SCORE:
generate one artificial sequence with the lengtrakqgto the length of taken matrix and calculategtore at the
same time. As length of artificial sequence is édoathe length of the matrix, for each charactérthe
sequence the relevant score is found from the mawhnsequently these scores are multiplied.
KEY-TF-VALUE-SCORES : create an dictionary, where TF names representé&éyasand value as computed
with PWMs concept artificial scores (the amountsobre equals to amount of generated artificial seges,
888)

REPLACE_DIGITS_WITH_CHAR : nucleotide sequence was converted into digitsthne task is to converted
back into nucleotides 1-A, 2-C, 3-G, 4-T

p_value: calculate the total amount of difference maximurores that are less than scores of artificially
generates sequences divided by amount of genesatgrnces (888) T
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6.4.2 Sorting Based on Cut-Off Value
Script 8: SortBasedOnCuttOff.py

scri pt SortBasedOnCutOff ( p_value _file) return outputfile
input: p_value_file, containsthe p value found with selected criteria ( maximum or

minimum difference);

out put: outputfil e, afile that contains scores less than p value 0.0 01

t abl e = READ-DATA-FROM-FILE ( p_val ue_file)
t mp-t abl e = SELECT-COLUMN-WITH-PVALUES-FROM-TABLE (t abl e, “p values”)

t hreshol d =0.001
sorted_t abl e = SORT-PVALUE-COLUMN-BASED-ON-THRESHOLL{t np-t abl e, threshol d)

WRITE FILE (sorted_table)

Description: The input filep_value_filecontains original sequence, start and end binsiiteg coordinates, TF
name, p value, variant sequence, start and endnbirsites. The output file contains the same vahsfput

file but the p values scores are less than 0.001.

6.4.3 Generating a Final File
Script 9: GeneratingFinalFile.py

scri pt GenerateresultingFile ( threshol d_sorted_p_value_file, reference_sequence,

Cscor e_great er 20) return outputfile
input: p_value_file, contains the p value found based on max criteria ( or
minimum);

out put: outputfil e, resulting file

list_orig_seq=READ-DATA-FROM-FILE ( reference_sequence)
list_orig_seq_info = READ-DATA-FROM-FILE ( t hreshol d_sorted_p_val ue_file)
mat ched_i nfo =]
FORXIN( list_orig_seq_info)
FOR Yy IN ( list_orig_seq)
IF list_orig_seq_info[x] == 1list_orig_seq [v]
char_seq = CONVERT-DIGITS-TO-CHAR (list_orig_seq_info [X])
APPEND-TO-LIST ( y)
c_score =ADD-CSCORE (Cscore_great er 20)
WRITE FILE ( matched_info, char_seq, c_score)

Description: The input filep_value_filecontains original sequence, start and end binsiiteg coordinates, T
name, p value, variant sequence, start and endhigisites. The output file contains resulting imfation about
original sequence, chromosome, start coordinaferenece and altered nucleotides, gene name, TF,nan
value, C score and criteria that used to find itifisrmation (either maximum or minimum score diface)

ref erence_sequence is a fileoutputfilecreated in the beginning of computational partf®&: BEDTools
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6.5 Data Evaluation

A final file was generated and contained inform@atdd original sequence, chromosome, start
coordinates, reference nucleotide and altered atidks gene name, TF, p value, C score and
maximum difference. As it was mentioned maximum amdimum difference criteria were
used in parallel that gave the opportunity to corageal results. The gene data was selected

and uploaded into free available KEGG databasedlandesulting pathways were evaluated.

« select genes from the final file
* submit to the KEGG database

+ evaluate the results

7 Results and Discussion

The main goal of the thesis was to estimate patiomye of human genetic variants by

comparing the results produced by the CADD tool stadistical approaches. First of all, the
CADD tool would produce variants annotated by Oecés the second main step, the sorted
out data based on C score was processed withtisetEpproaches to reduce amount of false

positive results. Eventually the output of botthteiques was compared.

The computational part of the thesis was run bamedwo criteria: the maximum and
minimum difference score criteria in parallel toesthe differences or similarities in final
results. The difference between scores was founsubgracting a score found with PWM of
original sequence from a score found with PWM dafarg sequence. The resulting files are
different in data size such that the data compuliased on minimum difference score
produces wider range of genes (16873 genes) theedltan maximum difference score (6752

genes).

Majority of different processes in our body areidedl, controlled and regulated by proteins
that are manufactured by genes. Accordingly, paygwallocations of the resulting genes
were not surprising. The majority genes were ingdlunto the metabolic pathways, the
process that enables a cell to keep living, grovand dividing due to the set of chemical
reactions. The second place was related to theecgrathways and the last to neuroactive

ligand-receptor interaction.
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Hence, 6752 genes were submitted to the KEGG patlsearch tool from the resulting file
based on maximum difference scores criteria. Caresgtity, 156 genes represent metabolic
pathways, 62 genes characterize pathways in caaodr52 in neuroactive ligand-receptor
interaction. There were eight genes such as, CREE3;, ERBB2, FGFR1, FOXO1,
IKBKG, LEF1, RB1 indicated under prostate canuathway by KEGG database.

In a like manner, the same outcome pathways derik@d the file based on minimum
difference scores criteria. However, the amoungeries three times exceeded comparing to
the previous file. There were 272 genes that remtesnetabolic pathways, 116 genes
characterized pathways in cancer, and 102 in netivea ligand-receptor
interaction pathways. The KEGG database indicaledehes under prostate cancer pathway,
such as ARAF, CASP9, CCND1, CDKN1B, CREB3, CREBSFE, EGF, EP300, ERBB2,
FGFR1, FOXO1, IGF1R, IKBKB, IKBKG, LEF1, PDGFB, PBH®A, PDGFRB, RB1,
TCF7.

In the beginning of the computational part befaseng the statistical approaches the provided
file was cleaned out for the data with C score tgreéthan 20. Table 9.2 illustrates the
pathogenic variants; where the data was sortedaséd on C score greater than 20. The table
represents the chromosomal position, start coaielimaference and alternatacleotide, the
genome region, gene, type of mutation, dbSNP nstifters and C score. The result of this

table will be compared to the final result aftetistical calculations.

Figure 7.1 illustrates the most frequent genes W@itbcore greater than 20. The set of these
genes with predicted harmful properties was evéigtsabmitted into KEGG database and
related pathways were extracted.

Top 20 most frequent genes with C score greater than 20

Figure 7.1 Most frequent genes with C score great¢han 20
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The CADD tool predicted only 0,88 % of variantsnr@rovided data as deleterious, the same
result was achieved by using statistical appro&dnsequently only 0.88% from the given

data represents deleterious variants.

The CADD tool represents in one score (the C sate&arious characteristics that associated
with pathogenic variants. That was one of the niatierest to check if a set of genes with C
score greater than 20 matched the set of gendsinesulting file. Surprisingly, the KEGG
database shown 21 genes that lead to the prostatercsuch as ARAF, CASP9, CCND1,
CDKN1B, CREB3, CREBS5, E2F2, EGF, EP300, ERBB2, FGHROXO1, IGF1R, IKBKB,
IKBKG, LEF1, PDGFB, PDGFRA, PDGFRB, RB1, TCF7 witRO % match. Consequently,
these results confirm that CADD tool revealed atttyegenes that lead to the prostate cancer
comparing to the results which were elaborated wwititistical methods to exclude false
positive rates. As it was discussed in the sectighthe CADD tool combines a lot of
different features (63 distinct annotations) redate identification of deleteriousness in one
score, and this makes the output extremely accutatehe other hand the provided data was
relatively small in size, compared to the resultagiant-by-annotation matrix contained 29.4
million variants (half observed, half simulated).

There is 100% match between genes that were acbraglby three different criteria. For
further analysis the wider range of information vieeen: sequence, chromosomal, start, gene
name, TF, p value, C score and minimum differerogesinformation were extracted (Table
9.1 Linked data from the final file with minimumitgria and ANNOVAR file Table 9.2
Filtered data based on C score greater than 2@)CIscore column of the table was sorted in
descending way, and as the result three the masedeus (according to the C score) genes,
such as PDGFRA, CREB5, FGFR1 were selected (Tab)e

The C score indicates the pathogenic propertiea wériant, higher C score more harmful

variant is predicted to be. Due to the specifigfycomputational techniques the p value is
equal to zero than in reality it is just a scorattis very close to the zero. The higher value of
C score was correlated to the zero value of thalpey there was no strong correlation to the

minimum difference score, however it was still tiedaly small in range of -0.001 to -0.04.



Table 7.1 Top three resulting genes with the highe€ score
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ch Ref | Alt G TF Cad Min

igi e ene adg
Original Sequence Start-End Diff Score
AGAGACTGAGC chra:
GCTGACAGTGG
CTACATCATTCC | 55156627-| C A PDGFRA | CREB1_5 43 -0.045464449
TCTGCCTGACAT | 55156678
TGACC
ACAATACAGCC chr7:
ACCCCAGCCCA
CAGGGGGGCGC | 28848839-| G C CREB5 USF2_ 1 36 -0.01507
CGGCGAAGGGT | 28848890
GGTAGAC
AGGTCTGACAA 8chrs:
GTCTTTCTCTGT
TGCGTCCGCTTT | 38274903-| C T FGFR1 RFX1 36 -0.0017136
AAAGAACACGT 38274954
TGAGA

One of the top three genes was the PDGFA gene idathtified TF CREB1. PDGFA is a

subunit of a typical cancer gene platelet-derivenwh factor (PDGF) (“GeneCards - Human
Genes | Gene Database | Gene Search,” n.d.). Té& RDd its isoforms PDGFA, PDGFB
heterodimer (all three present in the final resaifg responsible for cell proliferation, cellular
differentiation, cell growth, development (Held2013). The resulting data showed the non-
synonymous single nucleotide variation. Overexpoes®r mutation events of this gene

might lead to the tumour cell growth (Heldin, 201Bglow Figure 7.2 shows transcription

starting site of PDGFA, and four possible bindings of TFCREB1 (“Sample to Insight -

QIAGEN,” n.d.).
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111 |
Lesend: ~J Transcription Starting site of PDGFA
| CREBI binding site

e ChIP-qPCR Assay
Scale:  600bp

579.491

Figure 7.2 Transcription starting site of the PDGFAgene and possible binding
sites of the TF CREB1(*Sample to Insight - QIAGEN,” n.d.)
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The transcriptional factor CREB1 belongs to theciee zipper family of DNA binding
proteins. Its function is to bind to certain DNAgsences such asyclic adenosine
monophosphatécAMP) response elements, as a result it regulategene expression (a
transcription of the downstream genes is increasedecreased) (“GeneCards - Human
Genes | Gene Database | Gene Search,” n.d.). Oubmlproperties of TF CREB1 that
impact on the gene expression, might be alteredaueutation events in the gene PDGF or
its isoforms, consequently leading to the overvagtof PDGFA and eventually tumour cells’
growth. Moreover, it was proved by microarray asak/ that PDGHR mMRNA expression

relapse prostate cancer (Heldin, 2013).

The second in the range was gene CREB5 and TF UB¥2.CREBS5 is a protein-coding
gene that belongs to cyclic AMP-responsive elenemtiing family, activates transcription
(“GeneCards - Human Genes | Gene Database | GanehSen.d.). Figure 7.3 shows four
possible transcription starting sites and only bimeling site of TF USF2 (“Sample to Insight
- QIAGEN,” n.d.).

C rr C

chr7: 28._318:940 28._'.-‘35__'.-‘2i

4 T Transcription Starting site of CREBS
| USF2 binding site
%= ChIP-gPCR Assay

Scale: _ 8336 bp

Legen

Figure 7.3 Transcription starting site of the geneCREB5 and binding site of the
TF USF2 (“Sample to Insight - QIAGEN,” n.d.)

The USF2 is transcriptional factor that binds tgyamametrical DNA-sequence. The USF2
gene provides instructions for making a proteidechlUSF2, it impacts on cellular growth
and proliferation. It involved in the series of ate of transferring genetic information from
DNA to mRNA by DNA-directed RNA polymerase. Oneitsf functions is to act as cellular
TF.

N Chen and others studied the role of USF2 in ptediumorigenesis. It was found that one

possible way of developing cancer by USF2 is taile#g@ many cancer- and proliferation-
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associated genes (Cox-2, BRCA2, p53 and etc). fiéyppens due to the correlation of its
function to transcriptional activity (Chen et &Q06).

Finally, the third gene FGFR1 and TF RFX1 were idieal as genes related to the cancer
pathway. The FGFR1, is also called fibroblast ghovactor receptor 1 is involved into cell

division, growth, maturation formation of blood gets.

According to Yang F FGFR1 gene expressed in pmstatcinoma cells is not specific for
this type of genes, mostly it is not expressedpithelial cells. Even though the role and
mechanism of this gene is not completely underst¥adg and the team suggest that FGFR1
signalling is a key regulator of prostate cancetifaration, histopathological phenotype, and

cancer progression to metastasis (Yang et al.,)2013

TF RFX1is a member of the regulatory factor X (RFX) gene fgnmit has wide range of
functions starting from response of DNA damage meqdh ciliary gene regulation (Min et al.,
2014).

In addition the final data was linked to the iditieesults that were extracted from
ANNOVAR. The ANNOVAR tool provides information abbthe functional consequences
of the variants by annotating them. The resultiagads shown in the Appendix (Table 9.1
and Table 9.2). The fourth column shows type ofatioh characterization for a variant.
There is a vast amount of data represented mostitapgain in the beginning of the table
with the highest C score. Stopgain defines by ANM®Vas non-synonymous SNV or
frameshift insertion/deletion mutations that leadtérmination of translation (stop codon).
When the C score turns to the smaller values viariare defined mostly as non-synonymous
SNV. In this thesis only single nucleotide subsitiio was observed. Since the core role of the
stopgain is to terminate translation, this fact esak obvious that a final protein would be

synthesized incorrectly.

There is a huge amount of genes present in a hongamism, which have various duties. All

these genes can be grouped into three groups fegaiheir contribution to cancer.

The main group is tumour suppression genes, wheseregulate cells growth, by monitoring
the speed of division, repairing mismatched DNA andtrolling a cell live time. Mutations
in these genes will affect this process dramaticalining the process from positive into
tumour growing. The typical member of this groul BRCA1 and BRCA2, which are also

observed in the final data Table 7.2.
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Table 7.2 BRCA2 and BRCAL from resulting file withminimum criteria

Chr | Start Gene Mutations TF C score  Min Diff

13 | 32972626 | BRCA2 | Stopgain EN1 EN2 1 51 -0.033382
17 | 41234556 | BRCA1l | stopgain NFIC_1 37 -0.04065513
13 | 32954181 | BRCA2 nonsynonymous SN\ ZNF354C_1 36 | -0.005737616
13 | 32953550 | BRCA2 nonsynonymous SN\ HNF4A 5 24.9 -0.011436927
17 | 41203095 | BRCAl nonsynonymous SN\ NFYA_2 22.5 0.13351328

13 | 32972525 | BRCA2 nonsynonymous SN\ UBP1:TFCP2| 1 21.9 -0.037197775
17 | 41219631 | BRCAl nonsynonymous SN\ HLX_2 20.9] .0060312052
17 | 41249297 | BRCAl nonsynonymous SN\ HSF1 HSF2_1 0.3 2 | -0.999

Two top genes BRCA2 and BRCA1 with the highest Grescb1 and 37 respectively are

considered as deleterious and they are also defip@d\NNOVAR tool as stopgain, meaning

the mutations in these genes disrupted the pramtuaif a correct protein by stop codon

process. The rest of these two genes are defm@drasynonymous SNV that is clearly the

process of nucleotide substitution that is not @mered as harmful.

The other category of genes that contributes toerais oncogenes that turn healthy cells into

cancerous cell. One of the typical genes associai#id this group is WNT. Table 7.3

represents 19 genes that belong to WNT gene farmhigre are two genes WNT5A and

WNT11 that have the highest C score. Mutationshes¢ genes lead to uncontrolled cells
growth.

Table 7.3 WNT family genes from resulting file withminimum criteria

Chr | Start Gene Mutations TF P valu Cscore  Min Diff

3 55508479 WNT5A stopgain RUNX1_1 0 38 -0.001646881
11 | 75902750 WNT11 stopgain DEAF1 4 38 -0.0387292

7 120978983 WNT16 nonsynonymous SNV GABPA_1 36 059504176

1 113058989 | WNT2B | stopgain EVX1 _EVX2_| 35 -0.089667

2 219736411 WNT6 nonsynonymous SNV MZF1_3 35 28536945

2 219754966 WNT10A| nonsynonymous SNV E2F1 34 48@375

2 219747090 WNT10A| stopgain NR3C1_3 33 -0.018505368
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22 46318765 WNT7B nonsynonymous SNV MTF1_3 0 33 01P622572
12 49363980 WNT10B| nonsynonymous SNV HNF4A_6 0 32 0.009207

17 44847372 WNT3 nonsynonymous SNV WT1 1 0 29.7 026867188
2 219755011 WNT10A| nonsynonymous SNV IRF8_2 0 29.4| 0.034280205
1 113059840 WNT2B nonsynonymous SNV E2F1_ 0 241 .18125

3 13896262 WNT7A nonsynonymous SNV E2F1 0 24 2209947
1 22446566 WNT4 nonsynonymous SNV ZNF354C_1 0 23.3| 0.001610957
17 44952508 WNT9B nonsynonymous SNV E2F1:TFDP1 1 O 22.8 -0.1875

12 49374437 WNT1 nonsynonymous SNV GABPA_1 0 22.7 .004284668

The last group is DNA repair genes that correcttakiss during process of cells division.
Obviously mutations in these genes can lead tdatitleof repair. There are different types of
DNA repair where various genes are participatinBCB1 and WNT are one example of

typical for this process gene.

It is important to be aware of certain limitatiaihat can bias the results produced by selected
tools. The quality of the experimental data affeeesghts, used in the PWMs. Moreover, the
sensitivity and specificity of the PWMs are at tbes level (Gershenzon et al., 2005). The
CADD tool also has limitations, for example thewwecy of the C score might be affected by
the local mutation rate, background selection, laiaded gene conversion parameters. There
is a need of the 'gold standard' data, which cdm ineannotating variants better (Kircher et
al., 2014).

8 Conclusion

This section compiles the key-results of the thesisk. The main result of the thesis is the
following basic conclusions:
e The set of putative genes was produced as thefiieal
e The computational implementation of the PWMs wotloveed to compute TFs
binding scores, which are essential in predictivegTFBSs;
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The first research questiotQ1: Which variants from provided input data havetgential for
“dual codon usage?’led to the set of variants that have potentialdoal codon usage’ and
was represented in the final file. It was importemtextract and record those variants from
provided data that could have potential for ‘duomgoreover, three types of genes PDGFA,
CREBS5, FGFR1 with TFs as CREB1, USF2, and RFX1eae$plly were analysed in the
section ‘Results and Discussion’. Mutations in agystructure could lead to the production of
the same amino acids as they can be encoded byltgpleneombination of nucleotides.
However, the TF that binds to such region receaeasrong pattern and obviously wrong
instructions are given to the expression of a géable 7.1 illustrates that the PDGFRA gene
has alteration of nucleotide C into A, where TF GRES5 binds to the altered sequence thus

represents pathogenic properties.

The second research questid@2: How TFBSs can be predicted by applying quattie
PWMs framework?indicates the quantitative approach called PWMsiclwhs used for
computing TFs binding scores and predicting the biegling site. It is essential to know TF

binding sites as this process reflects on a gapdaton process.

The third research questiolQ3: What kind of tools can be applied for implenrent
theoretical concepts to lead the research to thalfresult? was answered that CADD and
PWMs were the main sources used to achieve firsalltee The CADD tool was used as the
most significant tool for detecting deleterious igats from provided data. As the major
feature of this tool is combination of differentachcteristics used by other recourses into one
score, that makes evaluation of an output signiflgaeasy. This thesis work proved that the
computational outcome by CADD tool is very accuratel time efficient, and indeed can be
used as the trustful resource for scoring and lialgelariants. The comparison of statistical
analysis and CADD results of this project provedtt score produced by CADD tool
determines the data correctly as pathogenic. Orotiner hand the perfect match of CADD
tool might be explained by a relatively small ambahexamined data and possibly perfect
match to the variants that were already detectetkbeterious by many other resources. The
concept of computing TF binding scores was base®\WMs, which was implemented by
Python scripting language.

Overall analysis indicates that exome regions cardysease causing amount of data, which

requires thorough investigation and cataloguingeafion of variants catalogues can help



56

bioscience in further investigations. It makes jible easier in comparing results to already
existing variants catalogues and eliminating ivatd data. It has also been seen that dual
work of codons might lead to the distraction of thetructions that TFs provide than bind to

the mutated sequence.

Only 0.88% variants from entire provided data welentified as deleterious. These genes
from the resulting data were analysed for capabibtdevelop prostate cancer. The KEGG
pathway database supports the view that the pataitihese genes can progress into prostate

cancer.
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Table 9.1 Linked data from the final file with minimum criteria and ANNOVAR file

Chr Start Gene ExonicFunc.refGene TF P value @sco Min Diff
19 9033237 MUC16 stopgain NKX3-2_1 0 61 -0.00968&262
2 179463948 TTN stopgain DEAF1 5 0 60 -0.10699776
2 179473091 TTN stopgain LEF1_1 0 60 -0.0082875
7 100389677 ZAN unknown NFIC_1 0 59 -0.023013089
7 100392843 ZAN unknown CREB1_5 0 59 -0.431372216
1 89729430 GBP5 stopgain ETS1 6 0 57 -0.002495556
19 7964978 LRRCS8E nonsynonymous SNV DEAF1_5 0 56 .004070077
4 1389433 CRIPAK stopgain MYC_1 0 55 -0.196483597
16 67318742 PLEKHGA4 stopgain GABPA 1 0 55 -0.0044820
1388436 CRIPAK stopgain MTF1_3 0 54 -0.329175
1389215 CRIPAK stopgain AHR_ARNT_HIF1A 0 54 8@019
38998103 DNAHS8 stopgain HSF1_HSF2_2 0 54 -0.16%a%
14 64560092 SYNE2 stopgain TEAD1 1 0 53 -0.00014755
16 20946773 DNAH3 stopgain BRCAl1 1 0 53 -0.0067@393
2 152474966 NEB stopgain YY1l 6 0 52 -0.0143856
16 20944746 DNAH3 stopgain BRCA1 1 0 52 -0.00214822




Table 9.2 Filtered data based on C score greaterdin 20
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Chr Start Ref Alt Func.refGene Gene ExonicFunc.refGene Snp138 C scor Min Diff
19 9033237 G T exonic MUC16 stopgain NA 61 -0.0085E60
2 179463948 G A exonic TTN stopgain NA 60 -0.1068®7
2 179473091 C A exonic TTN stopgain rs79432997 60 | 0.0082875
7 100389677 C T exonic ZAN unknown rs14910444( 59 | 0.023013089
7 100392843 T A exonic ZAN unknown NA 59 -0.4313182
1 89729430 T A exonic GBP5 stopgain NA 57 -0.005885H
19 7964978 G A exonic LRRC8E non-synonymous SNV 70430409 56 -0.004070077
4 1389433 C A exonic CRIPAK stopgain rs14520807% 55 | -0.196483597
16 67318742 C T exonic PLEKHGA4 stopgain rs142861229 55 -0.004420431
1388436 C G exonic CRIPAK stopgain rs367925864 54 | -0.329175
1389215 C T exonic CRIPAK stopgain rs112507956 54 | -0.80919
38998103 C T exonic DNAHS8 stopgain rs146551804 54 | -0.168066747
14 64560092 G A exonic SYNE2 stopgain rs2781377 53 | -0.000197554
16 20946773 C T exonic DNAH3 stopgain rs14442618y 3 5 | -0.006708936
2 152474966 C T exonic NEB stopgain NA 52 -0.014385
16 20944746 C T exonic DNAH3 stopgain rs377349475 2 5 | -0.002148221
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Table 10.1 Final result, based on max difference iteria
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Original Sequence Chy Start Ret Alt Gene TF P valug C score Max Diff
o e A e 2 | 179463948 | G A TTN DEAF1_5 0 60 0.0336
AT A o | 19 | 7964978 G A LRRCSE DEAF1_5 0 56 0.0594
QOSACTOCCCOCCTOCTCACACSTS | 4 | 1380433 c A CRIPAK MYC 1 0 55 0.2673
s T T N se | 16 | 67318742 c T PLEKHG4 GABPA_1 0 55 0.4137
COCTO oS CSCISEeeEIoce | 4 | 1389215 c T CRIPAK AHR_ARNT_HIF1A 1|  0.0011 54 016
P Avavvea ol 14 | 64560092 G A SYNE2 TEADL_1 0 53 0.2398
Pyl 2 | 152474966 | C T NEB YY1 6 0 52 0.0275
O T SO OIS | 8 | 100832183 | C T VPS13B ZFP161_2 0 51 0.0006
Dvvavelvesnlilabasasgney 3 | 130187662| G T COL6AS SPI1_1 0 50 0.0088
GTACCTCCACARAAGGGGOACAGCCC | 1 | 144852300 | C T PDE4DIP ZNF354C_1 0 49 0.3746
ACPCCTOCCTOASCTACICIOCTTOCG | 3 | 110306449 | G A ADPRH CHURC1_1 0 49 0.0115
NSRS S savaioviadl 6 | 51752011 G T PKHD1 ZNF384_1 0 49 0.0154
T oo " | 8 | 110477086 | C T PKHD1L1 IRFL_2 0 49 0.1702
TCTCACABCPCIRCTCTICCATTTGAA | 11 | 108183151| G T ATM SPIL 1 0 49 0.0184
B e LCTARAG 13 | 103527930 G T | Erces erccs NFATC2_1 0 49 0.1514
e e TeceecTe T ee 16 | 70016361 c T PDXDC2P NFATC1 1 0 49 0.0974




Table 10.2 Final result, based on min difference geria
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Original Sequence Chy Start Ret Alt Gene TF P valug C score Min Diff
e AR C T TACCIeAS . | 19 | 9033237 G T MUC16 NKX3-2_1 0 61 -0.009683
e e 2 | 179463948| G A TTN DEAFL_5 0 60 -0.106998
e e S 2 | 179473001| cC A TTN LEF1 1 0 60 -0.008288
CCCORTGTAGCOCOGRGORAGCTES | 7 | 100389677 |  C T ZAN NFIC_1 0 59 10.023013
RCCCCOToTe SenomCeceiS. | 7 | 100302843| T A ZAN CREBL 5 0 59 10.431372
ot AL 1 | 89729430 T A GBP5 ETS1 6 0 57 -0.00249
o e ee | 19 | 7964978 G A LRRCSE DEAF1_5 0 56 10.00407,
QOACTECCCOOCTOCTCACASETS | 4 | 1380433 C A CRIPAK MYC 1 0 55 -0.196484
SOCTOACTIOOCTCCTOCCCACTIS, | 16 | 67318742 c T PLEKHG4 GABPA_1 0 55 10.00442
I CONTOCBoROTOSooe et | 4 | 1388436 c G CRIPAK MTF1 3 0 54 10.329175
CoACOTGGAGTOCCoOCLTACTCAGE | 4 | 1389215 | C | T CRIPAK S 54 | -0.80919
COAACAGTGTIGTCCCCGOATCACTG | 6 | 38998103 | C | T DNAH8 o 54 | -0.168067
Ve pvveals ool 14 | 64560002 | G A SYNE2 TEADL 1 0 53 -0.00019¢
A noRoRIceA | 16 | 20046773 c T DNAH3 BRCAL 1 0 53 -0.006704
Povagvesasegaiiials 2 | 152474966| C T NEB YY1 6 0 52 -0.014386
vvrsilieraliscl SIS 16 | 20944746 c T DNAH3 BRCAL_ 1 0 52 -0.00214¢
BESSloiE st sl 2 | 21208410 | G T APOB GATA2_4 0 51 10.116028
ppesivasis s RaEevaslie 8 | 100832183 C T VPS13B ZFP161 2 0 51 10.09114
GAATTCTCCTCAGATGACTCCATTTA 13 32072626 A T BRCA2 ENl_ENZ_l 0 51 -0.03338

AAAAATTCAATGAAATTTCTCTTTT
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