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Abstract 

This thesis work builds on the recent discovery by Stergachis and his colleagues, which 

describes the process the genome uses to write genetic code. This work extends the previous 

vision in genome research, which states, that codons and regulatory elements work 

independently. Codons are a triplet of nucleotides that encode amino acids; and regulatory 

elements are responsible for regulation of the gene expression. However, as discovered by 

Stergachis and his colleagues in 2013, around 15% of codons within 85% of human genes are 

occupied by transcription factor binding sites (TFBSs) (see Stergachis et al., 2013). 

Consequently, these type of codons encode two types of information. They were labelled 

‘duons’ and described as highly conserved entities with low levels of genetic variation. 

Overall, regulatory proteins bind to the same stretches of As, Cs, Ts and Gs and influence the 

process of gene expression, and also specify the amino acids of the protein that is made. This 

work applies Stergachis findings of ‘duons’ to analyse a variant data. 

An interesting fact of Stregachis work is that a mutation may occur without affecting a 

protein. This happens due to the ability of some amino acids to be encoded by a multiple 
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combination of nucleotides (codons). Obviously, if an alteration occurs in the codon, which 

still encodes for the same amino acid, the functionality of the produced protein remains the 

same. In this case, transcription factors (TFs) bind to an altered (mutated) region, implicating 

a change of activity of TFs due to the fact, that the genetic pattern has been modified. As a 

result, wrong instructions are given to the expression of a gene, as Stergachis and his 

colleagues discovered (Stergachis et al., 2013). His discoveries led to the finding, that 13% of 

the deoxyribonucleic acid (DNA) mutations leading to a disease development are located in 

‘duons’. Thus it is important to investigate disease-associated variants within ‘duons’ that 

increase the risk of disrupting both regulatory and protein-structural function. 

 

A finding by Kircher in 2014 - the application of a method that aimed at the interpretation of 

pathogenicity of human genetic variations – lead to a new method. This method developed by 

Kircher in 2014 is called the combined annotation dependent depletion (CADD) tool. It uses a 

single C score to annotate a variant as pathogenic. In contrast to other methods the CADD 

takes into consideration regulatory elements, thus the CADD tool was selected for this project 

work.  

 

These two research findings are used in the thesis work. The goal of this work was therefore 

the extraction and recording of variants from provided data, which have potential for ‘duons’.  

To achieve this goal, the thesis applied the techniques of the C score, the position weight 

matrix (PWMs), and p value estimation. The aim of this study was to apply the PWMs 

framework, and C score on provided data, in order to extract and record those variants from 

the data that have potential for’ duons’. Thus they could be putative causes of a disease 

development. First of all, the provided data was filtered to identify pathogenic variants based 

on C score. Afterwards, the above presented concept was used to compute the TFBSs for 

original reference and mutated nucleotide sequences, where the maximum and minimum 

difference between these scores were found and used as a criteria for computing p value. 

Eventually, the resulting set of genes was submitted to the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) pathway database and analysed for correlation of mutations to the type of a 

disease. 

 

The outcome of the KEGG database analysis represents the main pathways where resulting 

genes are involved into metabolic, cancer, and neuroactive ligand-receptor interaction 

pathways.   
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1 Introduction 

One of the main challenges in biomedical research is to establish the association between 

genomic variation and phenotypic differences. It is believed that genetic variations play the 

main role in human diversity. Gene expression is the process which uses genetic information 

for proteins synthesis. Any dysregulation in this process will affect cells’ responses to the 

environment, cells communication and eventually will lead to development of diseases 

(Bryois et al., 2014).  

 

According to the Stergachis and colleagues the genome contains two codes (genetic code and 

regulatory code) that function collectively. The sequence of amino acids in a protein is 

represented by the genetic code, while regulatory code is responsible for specification of the 

recognition site for TFs (Stergachis et al., 2013). Thus, alteration in the sequence might lead 

to the production of the same protein, but alteration of function of binding TFs, that 

eventually will incorrectly instruct the gene expression process. Moreover, it was observed 

that 13% of human exons contain ‘duons’, so in the thesis work it was of high interest to 

investigate the exons regions of the genome (Stergachis et al., 2013).  

 

High-throughput sequencing techniques are used for producing a vast amount of genetic 

variants data. Exome sequencing method was represented as a technique capable of extracting 

only protein-coding regions out of the whole genome. Thus, it is considered as a time and 

money efficient method.  

 

As the term ’duons’ is related to a dual work of human codons, the goal of the thesis work 

was to estimate how binding of TFs to mutated region of a sequence alter TFs instructions, 

which genes could be affected by this event in provided data. The expected outcome was a set 

of putative genes.  

 

Overall, the understanding of occasions that cause a disease is exacerbated by complexity of 

events involved into this process. Thus it was important to examine and compute the TFs 

binding score and output the set of genes that could be provided by wrong instructions and 

produce a wrong protein. 
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2 Literature Review  

2.1 The Genetic Material of an Organism  

 The Human Genome Project (HGP) was an international research effort; that had the aim to 

determine sequences of the human genome that construct this genome. The achieved results 

were stunning as for the first time information about human genes structure, its organization 

and functions was accomplished. This type of information is essential for understanding 

human being, and has a major impact in medicine and biotechnology fields.  

Genome performs a complex hereditary material that consists of an organism’s genetic 

instructions encoded as DNA sequences strung together in 23 chromosomes pairs. This 

information is housed in a complex form of nuclear genome, which is 99.9995% of genetic 

information and a simple mitochondrial genome that is remaining 0.0005% (Strachan T, 

1999). 

Figure 2.1 illustrates two main keepers of human genetic information, which maintain 

different amount of genetic information. Majority of genetic information is stored at the 

nuclear genome. These two genomes are different in its structure.  

The mitochondrial genome is simpler in its architecture than nuclear genome. It is represented 

as one chromosome in a form of circular double-stranded DNA, it codes only for specific 

proteins that are generally used for mitochondria metabolic processes, such as an adenosine 

triphosphate (ATP) synthesis, fatty acids metabolism. The important fact about mitochondrial 

genome is that it is maternally inherited. Consequently, independently from the gender of an 

offspring the mitochondria genome comes only from a mother. The human mitochondrial 

genome contains double-stranded deoxyribonucleic acid (dsDNA) molecule, which encodes 

for (Figure 2.1) 13 polypeptides of oxidative phosphorylation system and 22 and 2 

mitochondrial ribosomal ribonucleic acid (rRNA) that belongs to ribonucleic acid (RNA) 

machinery (Strachan T, 1999).  
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Table 2.1 Differences in human nuclear and mitochondrial genome (Strachan T, 
1999)  

 Nuclear genome Mitochondrial genome 

Size 3300 Mb 16.6 kb 

No. of different 

DNA molecules 
23 (in XX) or 24 (in XY) cells, all linear 

One circular DNA 

molecule 

Total no. of DNA 

molecules per cell 

23 in haploid cells 

46 in diploid cells 
Several thousand 

Associated protein 
Several classes of histone and 

nonhistone protein 
Largely free of protein 

Number of genes ~65 000–80 000 37 

Gene density ~1/40 kb 1/0.45 kb 

Transcription 
The great bulk of genes are transcribed 

individually 

Continuous transcription 

of multiple genes 

Introns Found in most genes Absent 

% of coding DNA ~3% ~93% 

Recombination 
At least once for each pair of homologs 

at meiosis 
Not evident 

Inheritance 
Mendelian for sequences on X and 

autosomes; paternal for sequences on Y 
Exclusively maternal 

 

At the same time the genome may be organized within its nuclear environment, defined as a 

linear double stranded cellular DNA. The number of genes holds in nuclear genome remains 

unknown. However, some studies estimated around 80,000 genes (Strachan T, 1999). In 

contrast to mitochondrial genome which mostly contains (approximately 93%) of the DNA 

sequence protein-coding regions, nuclear genome has only around 2% of such regions. Table 

2.1 illustrates other differences of mitochondrial and nuclear genomes (Strachan T, 1999). 
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Figure 2.1 Human genome organization (Strachan T, 1999) 

 

Inside of each cell there is a nucleus that headed all genetic information in a form of 

chromosomes, and regulates activities of cells (Figure 2.2). Chromosomes are made up of 

genes. The process, called DNA packaging allows an enormously long DNA molecule easily 

to fit into a chromosome. During this process DNA is tightly looped, coiled and wrapped 

around proteins, called histones. All genetic information is encoded in a long double helix 

shaped DNA molecule, built with four chemical building blocks: adenine (A), guanine (G), 

cytosine (C), and thymine (T). A DNA sequence is a random order of nucleotides, which are 

organised in triples, that eventually assembly into various amounts of complexes, called 

genes. There are approximately 20,500 protein-coding genes in the human genome (Bolsover, 

Shephard, White, & Hyams, 2011). The central dogma of molecular biology is interconnected 

with complex series of events starting from production of RNA from DNA and turning on to a 

final product protein that regulates cells functions (“An Overview of the Human Genome 

Project,” n.d.).  
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Figure 2.2 The genome inside the cell (“AEpiA  :: Australian Epigenetic Alliance,” 
n.d.) 

 

The DNA molecule can be divided into several regions such as protein-coding (around 2% of 

human genome), that codes for proteins and non-coding (around 98%). Although the amount 

of noncoding regions is huge (approximately 99%), noncoding DNA sequences have 

important biological functions as well, such as transcriptional and translational regulation of 

protein-coding sequences. On the other hand remaining 1% of DNA protein-coding regions 

(exons) is essential for understanding a disease causing reasons. Development of massively 

parallel sequencing technologies enable of sequencing regions of the main interest. The 

exome capture technique permits to extract only protein-coding region. In addition although 

the mitochondrial genome has smaller and simpler structure than nuclear, it also represents 

one of the vital roles of genetic system. Thus,  mutations at mitochondrial genome play 

essential role in research and considered as the main cause of genetic disorders (Taylor & 

Turnbull, 2005).  

 

2.2 Gene Expression 

The human body contains about 100 trillion cells, which can be separated in several groups 

according to their functions. Each cell is responsible for fulfilling its duties at specific time, in 

certain quantity. A set of proteins that synthesized from specific genes provide a specific cell 

type with instructions. So that each group of cells know exactly what, when and in what 
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quantities it has to produce. Thus, gene expression is one of the complex and important 

processes in the human body that uses information encoded in a gene for production of a 

protein. Accordingly the fundamental dogma of molecular biology is that proteins are 

produced from DNA through RNA. More precisely the DNA is transcribed into the 

messenger ribonucleic acid (mRNA) inside the nucleus, and afterwards mRNA migrates into 

the cytoplasm and each mRNA molecule is translated into proteins. Obviously any 

dysregulation during this process may lead to formation of a disease (Alberts et al., 2002). 

Gene expression is a sequential complex flow of different processes. Major steps of this 

process are illustrated on the Figure 2.3.  

 

Figure 2.3 Gene expression workflow (Mandal A, 2015) 

 

Complex flow of gene expression events starts from transcription. The transcription is the 

process when genes are copied and produce an RNA molecule, where noncoding regions 

(introns) are removed and mature transcript or mRNA is created. In order to initialize 

transcription process, enzyme RNA polymerase should be activated. Therefore TFs bind to 
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the core promoter (-30,-75,-90 base pairs (bp)) upstream from the transcription start site. 

After RNA polymerase is activated it binds to the promoter region of the DNA molecule 

(Figure 2.4). 

 Additionally, it is also known that RNA polymerase activity might be influenced by enhancer 

sequences that provide binding sites for regulatory proteins. Combination of regulatory 

elements and enhancer alter chromatin structure that consequently promotes or stops RNA 

polymerase and TF binding (Clancy, 2008). The major role of RNA polymerase is to separate 

double-stranded DNA molecule, by breaking hydrogen bonds, afterwards adding 

complementary nucleotides. This process is called elongation. The distinctive feature in 

producing mRNA molecule is that instead of thymine (T) it contains of uracil (U), which is 

complementary to adenine (A). Furthermore, the RNA molecule is single-stranded non helical 

molecule. The finalization of building complementary strand might be terminated in different 

ways. It might terminate process until a polymerase reaches termination sequence, on the 

other hand it can involve a termination factor which is special protein. Afterwards the process 

of removing noncoding nucleotide regions (introns) begins, and coding regions, exons are 

spliced together.  

 

Figure 2.4 Gene regulatory elements (Maston, Evans, & Green, 2006) 

 

The second major step during the gene expression is the process of manufacturing different 

proteins which is called translation, when the combination of three nucleotides, called codon 

is translated into 20-letter code of amino acids. The process begins in several ribosomal RNA 

molecules in complex with certain proteins that form ribosome. The initiation of this process 

starts when small subunit of ribosome binds to mRNA and searches for the start sequence 
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AUG (codes for methionine); afterwards a large subunit joins to form the complete initiation 

complex. The elongation process accumulates translated nucleotides until all of codons are 

read. The termination occurs when the complex reaches a stop codon (UAA, UAG, and 

UGA). Finally, produced protein is released. 

Gene expression is a complex process that involves a lot of intermediate steps and interaction 

of biochemical elements such as genes, RNA molecules, and proteins (including TFs). There 

are varieties of different processes that cells are orchestrated for increasing or decreasing 

proteins production. It is clear that any disruption in this process might lead to the serious 

consequences, and eventually cause a disease.  

There are three main steps that regulate the transcription stage: genetic, where control factors 

interact with genes; modulation, where control factors interacts with transcription machinery; 

epigenic, other factors than DNA alterations that affect transcriptions. In order to control the 

amount of mRNA translated into proteins, the post-transcriptional regulation adjust the 

capping, splicing, addition of the polyadenylation (Poly(A)) Tail processes. The last major 

step in the gene expression is translation, this process mostly regulated at initiation stage. 

In addition, gene expression process is highly error predisposed. According to D. Allan 

Drummond and Claus O. Wilke, alterations of nucleotides may be seen once in 1000 to 10000 

translated codons. The other concept was proposed by same authors saying that the more 

intensively a gene is expressed, the higher chances to that a protein will be predisposed to the 

errors which are eventually affect  organism’s phenotype (Drummond & Wilke, 2009).  

 

2.2.1 Structure of Protein-Coding Genes 

Genome is represented as set of genes. Genes are made up of DNA, a long polymer sequence 

that is constructed from nucleotides. As the genome is continued entity there are parts that do 

not represent genes. These regions are called intergenic regions and they are genes separators. 

Thus a term gene is referring to any region of the genome that is essential for activation of 

biological functions of cells. There are several types of genes: non-transcribed regulatory 

genes transcribed RNA-genes and translated protein-coding genes.  

Non-transcribed regulatory genes characterize sites for initiation and termination of DNA 

replication. Transcribed RNA genes produce RNA products like ribosomal RNA, transfer 
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RNA and etc. Finally, the last type called translated protein-coding genes codes for proteins 

respectively, which are illustrated on the Figure 2.4 (Laszlo P, 2009).   

2.2.1.1 Promoters 

A promoter is a DNA sequence that defines where transcription of a gene begins together 

with RNA polymerase. To initialize transcription RNA polymerase and TFs have to bind to a 

promoter region together. The other function of promoters is to define direction of 

transcription and indicate which DNA strand to transcribe. One prevalent type of promoters in 

eukaryotes is called TATA box, which is an AT rich sequence (consensus TATAA/TAA/T), 

located in 28–34 bp upstream of the transcription start site of a gene. Only about 24% of 

human promoters contain a TATA box, which is associated with tissue- or context-specific 

genes. The remaining 76% of promoters do not contain a TATA box and thus require another 

mechanism of initiation, which plays an essential role in connecting key elements during the 

transcriptional process (Sandelin et al., 2007).  

There are other elements such as GC rich sequence (the Sp1 box) or the CCAAT box located 

in upstream of the promoter. The Sp1 box has ability to substitute TATA box main features in 

case of its absence and initialize transcription. All these elements are essential for starting 

transcription and failure one of them activates the action of another (Latchman, 2008).  

2.2.1.2 Enhancers  

Enhancers represent short regions of DNA sequence (50-1500 bp) which may be located at 

upstream, downstream, or within transcription regions. One of the distinctive characteristics 

of these elements is that they are located quite far from a transcription site. In addition, their 

major feature is ability to increase a rate of expression of a gene; on other words they 

reinforce the gene expression process. Enhancers might be tissue specific, whether they 

activate specific promoter of a specific cell. The other type of enhancers active in all tissues 

where it raise the level of gene expression in all cell types (Latchman, 2008).  

2.2.1.3 Locus Control Regions  

Genes that are presented on the same chromosome and located at a very close to each other 

position, as well as co-regulated by a common cis-regulatory element are called linked genes.  

These cis-regulatory elements are called Locus Control Regions (LRC). One of essential 

properties of the LRC is strong enhancer activity. The process is tissue specific, that might 

influence the mechanism of transcription machinery (Q. Li, Peterson, Fang, & 
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Stamatoyannopoulos, 2002). Lack of these elements contribute to the disruption of the normal  

way of gene expression or its full cancelation (Latchman, 2008). 

2.2.1.4 Silencers 

Silencers are elements that have opposite properties to enhancers and LCR, it is main task is 

to inhibit expression of certain genes. A silencer was discovered at specific genes, thus it is 

gene specific element. The activity of silencers is dual it may be fully active or tissue specific 

(Latchman, 2008). 

2.2.1.5 Insulators 

Insulators are elements that block interactions between enhancers and promoters that enable 

to act on the large distances. There are two mechanisms how insulators obstruct connections 

between these elements. They either affect on the chromatin structure, or prevent DNA from 

looping (Latchman, 2008).   

 

2.2.2 Transcription Factors 

2.2.2.1 General Information  

TFs are proteins that behave in a similar way to a ‘membrane’ that permits a certain amount 

of genetic information to pass from DNA to RNA. The quantity of TFs present in the genome 

depends on its size. The larger the size of the genome is more TFs are present there. 

Furthermore, TFs are capable to work in cooperation with other protein complexes or without 

them. In addition, the gene expression is generally regulated by a combination of TFs which 

are typical arrangements for this process. TFs are complex biological entity that are involved 

in complex vital processes, like cells division and differentiation, metabolic and physiological 

balance and others (Latchman, 1997).  

The gene expression represents a complex flow of various processes that generally are 

divided into two main steps: transcription and translation. The transcription is initialized by 

presence of TFs, when they bind to a DNA sequence. Therefore the biological function of 

DNA depends on a site where DNA binding proteins find targets.  

Although the mechanism of TFs preferences in specific binding sites of the DNA sequence is 

not fully understood, there are various concepts that try to describe the specific selectiveness 

of TFs in binding. One of the concepts describes interactions between protein (TF) and the 

DNA sequence from structural point of view and can be divided into two subclasses: ‘base 
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readout’ based on the recognition of specific chemical signs by the protein (Figure 2.5 -1); 

and ‘shape readout’ based on recognition of sequence-dependent DNA shape by the protein 

(Figure 2.5-2). These two mechanisms are considered as incentive forces that permits the TF 

to find a target (Rohs et al., 2010).     

 

Figure 2.5 Types of structural interactions between TF and DNA (Slattery et al., 

2014) 

1) illustrates ‘base readout’ structural interactions between TF and DNA 

sequence in major and minor groove. Where the major groove has random 

distribution of the key elements, than in the minor groove the structural 

organization of the key elements is seen (Slattery et al., 2014). 

2) illustrates ‘shape readout’ structural interactions between TF and DNA 

sequence. The DNA sequence mostly has distorted shape that affects the 

electrostatic potential.  (Slattery et al., 2014) 

 

The other concept is built on computational methods which are aimed to model DNA motifs 

based on small experiments (like deoxyribonuclease (DNase) I footprinting) or simulated 

data. Microarray development enhances the amount of methods aimed to explain the way TFs 

find their targets.  
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According to Yongping Pan and his group response elements (RE) are essential player in TF 

binding mechanism. The strong affinity between TF and RE directs to the TF binding process 

(Pan, Tsai, Ma, & Nussinov, 2009).  However, his group has found that concentration of 

protein factors is one of the essential conditions for further selection of the binding positions. 

The increase in concentration will lead to alter of allosteric properties and eventually to the 

protein structure. Consequently the protein will bind to the sequence position that is consistent 

with the DNA sequence. Same strategy applies for DNA sequence (Pan et al., 2009).  

However, the other factors that might influence the TFs binding affinity to a specific location 

could be poor connection with DNA backbone. 

Once TF is bound to DNA it can activate or repress enzyme that controls translation, by 

turning on or off genes respectfully. A human body consist of various types of cells, which 

are regulated by different genes at different time. While genes that regulate liver cells are 

turned on, genes that regulate skin cells may be turned off. Similar scheme applies to a cancer 

affected region, where genes that have to be expressed are suppressed. Despite all cells 

contain the same genome they act differently, depending on cells type they represent 

(“Transcription Factor | Broad Institute of MIT and Harvard,” n.d.). 

2.2.2.2 TF families 

The expression of various genes activates functions of different cells; likewise the expression 

of different types of genes is regulated by various TFs. There are four common groups of 

DNA motifs that can be allocated: zinc finger, the helix-turn-helix, the leucine zipper, and the 

helix-loop-helix motif. 

 

Figure 2.6  Zinc finger proteins 
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The zinc finger was first found 15 years ago in Xenopus transcription factor IIIA (TFIIIA) 

(Laity, Lee, & Wright, 2001). The name came from the zinc atom that builds the protein and 

uses it for tightly wrapping around. This motif represent a range of function including DNA 

recognition, RNA packaging, transcriptional activation, regulation of apoptosis, protein 

folding and assembly, and lipid binding (Laity et al., 2001). According to Alison Thomas, 

zinc plays a role in loop stabilization of this protein (Figure 2.6)  by the R groups of two 

cysteine and two histidine residues (Thomas, 2013). Moreover, one side of the loops is 

represented as an alpha helix that is located in the major groove of the DNA sequence 

(Thomas, 2013).  

 

Figure 2.7 The helix-turn-helix (Thomas, 2013) 

 

The helix-turn-helix (Figure 2.7) consists of two alpha helixes where both lies at an angle 

across DNA. Alison Thomas suggests that the amino acid R-groups of the C-terminal helix 

and bases operate with major groove and thus determine the selection of particular sequence 

location during binding (Thomas, 2013). Moreover, the helix-turn-helix contains 

homeodomain, paired box, forkhead and heat shock factors.  
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Figure 2.8 The leucine zipper motif  (Thomas, 2013) 

The leucine zipper motif (Figure 2.8) characterizes a family of TFs, that have alpha helical 

structure which is rich with leucine residues (every seven residues is leucine), that plays 

essential role in protein functioning. The protein is produced when two proteins ‘zip’ together 

and build a dimer, and the holding forces appear due to the connections of amino-acid leucine 

(“Atlas of Genetics and Cytogenetics in Oncology and Haematology,” n.d.).  

 

The helix-loop-helix motif, describes a family of TFs with alpha helices connected to a loop 

structure. It plays an important role in activating specific genes, and is similar in role to the 

leucine motif.  

 

TF classes described above represent 80% of known TFs. TFs control the amount of 

transported genetic information from DNA to mRNA. They may also be characterized as 

positive or negative units by acting as activators or repressors respectively.  Moreover, the 

process of gene expression is regulated more than only by TFs. The extracellular signals may 

turn on (or off) the gene expressions, as well as genes themselves have a power of regulating 

this process. One of the general features of binding proteins is frequent appearance of the 

same amino acids like asparagine, arginine, glutamine, glycine, lysine. Another is that binding 

occur through the major DNA groove. Finally, weak interactions such as hydrophobic, van 

der Waals forces, ionic bonds create strong bindings forces.  
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2.2.2.3 Mathematical Model of TF Binding 

It is essential in the biomedical research to identify and describe the mechanism of binding TF 

to the DNA sequence, as this would provide the understanding of gene expression regulatory 

networks. The representation of TFBS model could be through biophysical view of this 

process. First of all, the process of binding to the DNA sequence is assumed to be reversible: 

TF + ��� �	
��
�

���
�	�

�  �� − ��� 

Where, 

S represents the rates; 

K bind (S) and K diss (S) the sequence dependent rate constants; 

E(S) is the binding energy (Djordjevic, Sengupta, & Shraiman, 2003).  

 

�����(�)
�����(�) =  � !"(−#$(�)) 

Where, 

β= 1 / kB T 

T absolute temperature  

kB is Boltzmann’s constant 

 

If we take into consideration the concentration (ntf) of the provided solution with TFs, than 

probability of TF binding to sequence S is: 

%(�) =  ����� (�) &'(
����� (�) &'( + ����� (�) = � !")−#$(�)*&'(

� !")−#$(�)*&'( + 1 

 

%(�) = ,($(�) − -) = 1
.(/(0)12) 34 ⁄ 6 + 1 

Where, 

S, sequence; 

ntf  concentration;  

µ is the chemical potential (Djordjevic et al., 2003).  
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This formula illustrates the Fermi-Dirac distribution. This equilibrium describes that the TF 

will bind to a sequence only if the binding energy is below the chemical potential. At the 

same time if the binding energy is above the chemical potential the binding does not occur. It 

is assumed that the binding properties do not depend on the neighbouring nucleotides. So the 

binding energy could be written as:  

$(�) ≈ � 8 ≡  : : 8�;��;
<

;=>

?

�=>
 

Where, 

εi
α shows the interaction energy of a nucleotide α at position i = 1... L;   

 Jij
αβ is the pair-dependent correction, is used as the parametrization for the sequence-specific 

interaction (Djordjevic et al., 2003). 

 

2.2.3 ChIP-Seq 

The ChIP-seq is the experimental way of finding TFBSs, than the PWM method is statistical 

approach. The major idea of both methods is identification of binding sites at the DNA 

sequence, but with utilization of different concepts. The understanding of how gene 

expression is regulated by proteins that bind to a DNA sequence plays an essential role in 

understanding many biological processes. The ChIP-seq is a powerful tool that is used for 

identifying the binding sites of TFs through the entire genome.  

The chromatin is laid in the foundation of the method’s name, which represents 

multifunctional molecule with properties of preventing the DNA from damage by fitting a 

long DNA sequence into a chromosome. It also controls the gene expression process and 

DNA replication, and tolerates mitosis after reinforcing the DNA. The general idea of the 

immunoprecipitation approach is ability to pull a protein by specific antibody, which is 

specifically attracted to this protein.  
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Figure 2.9 General ChIP-seq workflow (“Transcriptomics | Modeling Immunity,” 
n.d.) 

 

The ChIP-seq workflow is illustrated on the Figure 2.9. First of all, the ChIP-seq approach 

begins from the cross-linking process, which is capable of the histone modifications 

localization and also may define nucleosome position. The histone fragmentation begins after 

protein-DNA interactions are fixed. The length of the histone fragments should be in a range 

between 150 to 500 bp. An antibody that is specific to a protein of the interest begins the 

process of fragments enrichment of DNA-protein complexes. Finally, sequenced reads are 

aligned to the references genome with utilization of any alignment algorithm, such as BWA 

or Bowtie. Peaks  can be analysed by using peak-calling algorithms, for instance MACS  (Liu, 

Pott, & Huss, 2010).  

The computational analysis of ChIP-seq takes into consideration the metrics of sequencing 

depth, quality checking, mapping, data normalization, assessment of reproducibility, peak 

calling, differential binding analysis, controlling the false discovery rate, peak annotation, 

visualization, and motif analysis (Bailey et al., 2013).  

Consequently, the resulting data of ChIP-seq experiments varies from 100 to 10,000 predicted 

locations with resolution of around 50 bp (Wilbanks & Facciotti, 2010). The ChIP-seq 

technique has certain limitations: 

• this method is still labour consuming 

• the method allows to study one protein at the time 

• it is limited by antibody specificity (Park, 2009)  

However the output data depends on the quality of an antibody. A sensitive antibody makes 

detection of binding events easier. In contrast, there are certain advantages: 

• this method offers higher base-pair resolution 
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• the hybridization step helps to avoid noise in resulting data 

• the probe sequences limitations are not applied to the genome that makes analysis of 

the iterative regions easier (Park, 2009) 

 

2.2.4 Methods Used for Predicting TFBS  

2.2.4.1 General Information 

There is an abundance of different methods, such as consensus sequence, PWM, position 

affinity matrix and k-mer that have been implemented for TFs binding sites (TFBSs) 

identification on DNA. The knowledge about TFBS provides better understanding of 

regulatory networks.  

The main feature of TFs is to activate or repress the expression of genes by binding to specific 

sequence. Therefore, the ability to predict and identify TFBSs is the key point in 

understanding the gene regulation network. Moreover, it could help in understanding the 

influence of genetic variation on the process of gene expression disruption (Zhao, Ruan, 

Pandey, & Stormo, 2012).  

The PWM is the quantitative approach used to predict TFBSs. PWM’s are created based on 

finite number of experimentally derived motifs proven to be responsible for certain process 

like TF binding. The PWM for a DNA motif is represented as a matrix array with four rows 

named after nucleotides (A, C, T, and G) and the columns that represent the length of the 

binding sites. On the other hand the PWM for a protein motif may be performed as a matrix 

of 20 rows named after amino acids of a protein sequences (G, A, V, L, I, P, F, Y, W, S, T, C, 

M, N, Q, K, R, H, D, E). 

The performance of the PWM approach considered as a quantitative model, for numerical 

representation of the binding sites at specific location on the DNA sequence (Mourad 

Elloumi, 2011). There are several methods that are used to construct PWMs. One of them is 

based on the experimentally determined binding sites (typically by the chromatin 

immunoprecipitation-sequencing (ChIP-seq approach) proposed by Staden (Nandi & 

Ioshikhes, 2012). The binding preference of TFs are not constant and vary from position to 

position. However, the same TF may express constant preference to the same position or 

variability.  Consequently, observed  binding sites are collected and stored at various 

databases, for instance JASPAR database (Mathelier et al., 2014).  
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Figure 2.10 Building models for predicting TFBS (Wasserman & Sandelin, 2004) 

 

One of the first steps for modelling TF binding sites is data collection. Such data could be 

simulated artificially in the laboratory conditions or derived through the utilization of high-

throughput techniques, that allow to collect thousands of binding sites (Figure 2.10-1). 

Consensus sequences are one of the methods used for modelling TFBS. It shows the most 

frequent appearing residues among aligned sequences (Figure 2.10-2). Despite this method 

provides fast visual representation, it can’t perform binding characteristics numerically 

(Wasserman & Sandelin, 2004).   
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2.2.4.2 PWM Construction 

For constructing PWM (Figure 2.10-4), the first step is to align a large number of registered 

binding sites, and to calculate the relative frequencies of each nucleotide at this position the 

Position Frequency Matrix (PFM). The PFM shows the frequency of observed nucleotide at 

each position (Figure 2.10-3). If p is the PFM, when p(b,i) represents the number of counts of 

base b in position i of the alignment. The nucleotide probability is computed with equation 

(1). 

(1)     p(b, i) = ,�,� + D(E)
� +  ∑ D (E′)�H∈ JK,L,M,6N

 

Where, 

 f b,i = counts of base b in position i;  

N = number of sites; p(b,i) = corrected probability of base b in position i;  

s(b) = pseudocount function (Wasserman & Sandelin, 2004). 

 

The next step is to convert the PFM into a likelihood matrix. The elements of the PWM are 

calculated as log ratio of observed frequency divide by a relevant selected background model 

(equation 2). 

(2)     WQ,R  = logV
% (E, W)
% (E)  

Where, 

 p(b) = background probability of base b;  

p(b,i) = corrected probability of base b in position i;  

W b,i = PWM value of base b in position i (Wasserman & Sandelin, 2004) . 

 

Each nucleotide of reference sequence matched to the PWM site is recorded and total sum is 

found (equation 3) (Figure 2.10-5). 

(3)     � = : Y Z� , W
[

�=>
 

Where, 

 l i = the nucleotide in position i in an input sequence;  

S = PWM score of a sequence;  
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w = width of the PWM (Wasserman & Sandelin, 2004). 

In addition, the data can be performed visually called sequence logo (Figure 2.10-6). To 

compute the information content (in bits) in each position equation (4) can be used. 

(4)     �W = 2 +  : %�,�   logV %�,� 
�

 

Where, 

Di = information content in position i;  

p(b,i) = corrected probability of base b in position i (Wasserman & Sandelin, 2004).  

  

Finally, the PWM method allows to get an accurate data, by taking into consideration 

mismatches by imposing position-specific penalties (Stormo, 2013).  Moreover, the  low level 

of both sensitivity and specificity is also provided by the PWM (Gershenzon, Stormo, & 

Ioshikhes, 2005).   

 

2.3 Mutations 

Frequently, term ‘mutations’ is associated with a process that has negative affects an 

organism features. However, mutations are common events that regularly occur in organisms 

and are linked to the human diversity.  

Mutations can be distinguished from each other based on the modification it brings to a 

genome of an organism. The first type, considered as a harmful, and effect on the fitness of its 

host. The second typically have very small or no effect at all, called silent mutations. And the 

third type is advantageous, it leads to evolutionary advantage of certain phenotype (Keightley 

& Eyre-Walker, 2007). Nevertheless, mutations can also be described based on the place they 

occur. The event that leads to transmission of alterations to progeny is called germline 

mutations. It has been estimated that offspring receives around 100 new mutations from 

parents (Keightley & Eyre-Walker, 2007). On the other hand, mutations that affect only a host 

organism without being transmitted to an offspring are called somatic mutations (in non-

reproductive cells). They are presented only in certain cells.  

Another criterion that enable to group mutations is the length of affected nucleotide 

sequences. For short affected sequences the term gene-level mutations is used. Obviously it 

has impact on specific genes. In contrast the term chromosomal mutations is used to describe 
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mutations that alter longer regions of DNA sequence (“DNA Is Constantly Changing through 

the Process of Mutation,” n.d.). The human genome consists of coding and non-coding 

regions that both can be targets of mutations. However major interest for investigation is in 

the coding region, which can have two types of substitutions: synonymous and non-

synonymous. While synonymous substitutions do not change the sequence of the gene 

product; the non-synonymous substitutions result on amino acids, with having various effect 

such as neutral, deleterious or positive (Strachan T, 1999).  

Single-base substitutions or point mutations, exchange one nucleotide base to another. Clearly 

this type of mutations belongs to the gene-level and it includes three subclasses: missense 

mutations,  nonsense mutations and silent mutations. 

Missense mutations (a type of non-synonymous substitutions), are types of mutation 

in which alteration of nucleotide in codon will affect the type of synthesized amino 

acid. This type of mutation has dual effect as some cases it has no effect at all, and 

then others might be deleterious. It is difficult to estimate the impact of this mutation 

on a disease development.  

Nonsense mutations (a type of non-synonymous substitutions), the alteration of 

nucleotide leads to a creation of stop codon (TAA, TAG, or TGA), that eventually 

terminates synthesis of a protein. Sequentially, the earlier the translation process stops 

the higher the chance to get non-functional protein.  

Silent mutations (a type of synonymous substitutions),  the alteration of nucleotide in 

codon doesn’t change amino acid, as the same amino acid might be encoded by 

multiple combinations of nucleotides. The glycine, for instance is encoded by GGT, 

GGA, GGC, and GGG. Alterations at the third position lead to the production of the 

same amino acid, glycine.  

Insertions and deletions mutations (a type of non-synonymous substitutions) are the other type 

of alterations that add or remove bp from the DNA of a gene, respectively are called 

frameshift mutations. The amount of inserted or deleted bp can vary from one to thousands. 

Frameshift mutations obviously lead to the different output of synthesized protein comparing 

to the possible output of original sequence (“DNA Is Constantly Changing through the 

Process of Mutation,” n.d.). 
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There are several factors that assumed to cause mutations in a DNA sequence. Some of them 

arise due to the effect of exogenous environmental factors such as ultraviolet (UV) radiation, 

chemicals, radiation and viruses. The other sources of mutations are endogenous; those are 

spontaneous errors during DNA replication and repair.  

According, to Strachan, mitochondrial genome (Figure 2.1) is predisposed to mutations as 

well. There are various reasons for this event, one of them is that mitochondria genome has 

high amount of coding regions compared to the nucleus genome (Strachan T, 1999).   

 

2.4 Exome Sequencing  

Exome sequencing is a technique directed to a sequencing of all protein-coding regions 

(exome) of genome. The “EXpressed regiON” made the term ‘exon’, meaning there are 

regions that are translated or expressed as proteins (L. Eisenstadt, 2010). Exons represent a 

small part of the exome, so pieces of exons construct entire exome. Only 2% of the human 

genome are covered by gene coding regions, but significant amount (around 85%) of them are 

disease-causing (“Whole Exome Sequencing | Cost-effective analysis of protein coding 

regions,” n.d.). Studies prove that exome region represents highly enriched region of the 

genome, where variants have deleterious effect. Instead of sequencing a whole genome, as 

this process is time and finances consuming, the exome sequencing approach helps to identify 

only disease causing variants, found in coding regions of genes. The other benefit of this 

technique is unbiased examination (Teer & Mullikin, 2010).  

 

2.4.1 Exome Sequencing Workflow 

The exome capture techniques are used for isolating particular exome region from the whole 

human genome. The  exome capture methods  are based mostly on the idea of hybridization. 

The general workflow is represented on the Figure 2.11. First of all, the genomic DNA is 

fragmented, than the process of hybridization is applied. Fragments, that couldn’t undergo 

this reaction, are washed away. Captured regions of interest go through DNA sequencing and 

are analysed (Bamshad et al., 2011).  
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Figure 2.11 Exome sequencing workflow (“Box 1 : Exome sequencing as a tool for 
Mendelian disease gene discovery : Nature Reviews Genetics,” n.d.) 

 

Variety of methods exists for capturing genomic regions. They are characterized according to 

the used technique in capturing targets:  Polymerase Chain Reaction (PCR), solid-phase 

capture and solution-phase capture methods, Molecular Inversion Probe (MIP)   (Yoon et al., 

2015).  

 

Figure 2.12 Commonly used target-enrichment methods (Mertes et al., 2011) 

1) The hybridization target technique, where a) illustrates solid support, and b) in 
solution (Mertes et al., 2011)  

2)  Molecular inversion probes (MIP), where a) is a classical representation of 
MIP concept b) shows restriction enzyme cocktail (Mertes et al., 2011) 
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3) PCR enrichment where a) shows typical single-tube per fragment assay  b) 
multiple PCR assay c) utilized for targeted enrichment  (Mertes et al., 2011) 

The hybridization technique (Figure 2.12 1)-a,b) is preferred for large target regions, can be 

performed by two various methods: reactions in solution (good for small amount of DNA) 

and reactions on a solid support (good for large target sets) (Mertes et al., 2011). The 

hybridization technique in solution is more efficient than on solid support. However, the main 

idea of these methods  is based on hybridization of nucleic acid strands from sample data to 

the constructed DNA library, where fragments are complementary to the interested regions 

and capable of extracting an exome region (Mertes et al., 2011).    

The second technique is called molecular inversion probes (MIP) or selective circularization 

(Figure 2.12 2)-a,b).  MIPs are constructed with a gap, which is eventually hybridized by a 

region of interest and creates a circles structure (Mertes et al., 2011). 

The last type of exome capture technique is enrichment by polymerase chain reaction (PCR). 

This approach use the main idea of DNA amplification (Figure 2.12  3)-a,b,c).   

 

2.5 Mutations Effect 

The main aim of the HGP was to provide a complete and accurate DNA sequence that build 

up a human genome. That was revolutionary approach as it opened a new way of utilization 

the DNA information towards large scale of investigations in biotechnology, disease causes, 

drug development (“An Overview of the Human Genome Project,” n.d.). It is known now that 

the human genome of any individual is at 99% equal and only 1% makes humans different. 

That 1% is responsible for making living organisms look differently in shapes, sizes, weights, 

personalities, accessibilities to diseases and even abilities to tolerate a food (Norrgard K, 

2008). Genes that construct a genome come as DNA sequences in a multiple versions. This 

means that the same gene might have slightly differences in DNA sequences between 

individuals. The eye colour is driven by the same gene, but with the slightly different 

variations in its architecture the variety of eyes colours is observed in different people. These 

variations are caused by mutations, so the final result is also different. Consequently, 

mutations are primary source to variations that occur randomly through the genome. The 

study of human genetic variation has both evolutionary significance and medical applications.  



26 
 

 

The HGP moved studies of a human genome forward. One of the leading methodologies is 

comparison of any human genome to the reference genome, produced by HGP. The easiest 

way to contrast genomes from different people is simply to compare them, as at some point 

possible inequality can be noticed. A Genome-Wide Association Study (GWA or GWAS) 

developed research technique that helps to identify genes that are involved in human diseases. 

The main idea of this approach is to compare genomes of several groups of people, healthy 

and carries of a studied disease, in order to identify regions of genome variations that possibly 

might lead to development of diseases. The examination of rare genetic variants would lead to 

the lack in associating to a disease. Thus the main focus of the GWAS is study of common 

genetic variants like single nucleotide polymorphisms (SNPs) or common single nucleotide 

variants (SNVs) that have been often associated to a disease (“Genome-Wide Association 

Studies Fact Sheet,” n.d.).  

The term SNPs defines as the single-nucleotide substitutions found throughout the genome 

that belong to members of one species that occurs in at least 1% of the population. It is 

important to understand that SNPs are not specifically localized in the genome, the 

appearance of SNPs might be found at any region of the human genome, for example in 

coding sequences genes, non-coding regions of genes, or in the intergenic regions (regions 

between genes). However, the utilization of GWAS approach helped to conclude that majority 

(around 88%) of SNPs were identified at intergenic or intronic regions (Edwards, Beesley, 

French, & Dunning, 2013).  

The SNPs that occur in the coding region of the genome are divided on two types 

synonymous, that affect a protein, and non-synonymous that change a sequence of a protein. 

Non-synonymous are presented in two types as missense and nonsense. Since mutations are 

any changes in DNA, SNPs can be considered as mutation, which is presented at specific 

location of a genome in many peoples, and the presence of these alterations eventually leads 

to the human diversity. Therefore SNPs considered as evolutionary drivers, but not the cause 

of diseases.  However, the combination of different SNPs in various genes may influence the 

risk of a single disease (DeWeerdt, 2004). Hopefully, the understanding of interactions and 

influences of variations could help for the further understanding how this events contributed 

to the predisposition to common diseases such as heart disease, diabetes, and various forms of 

cancer (Norrgard K, 2008).   
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The exome sequencing method is significant for investigating Mendelian diseases. It has been 

proved that the most common cause of Mendelian disease is the non-synonymous single-

nucleotide variant (nsSNV) (M.-X. Li et al., 2013). Whether the term single nucleotide 

variant (SNV) is similar to SNP, which is common nucleotide alterations that are observed in 

population.  

After all, the coding regions give a wide range of directions to explore causes of different 

diseases. The mutational landscape of tumours may be defined by focusing on somatic and 

germline SNVs. 

 

2.5.1 The Main Concepts Used to Predict Variant Pat hogenicity  

With the help of the DNA sequencing technology scientists know precise arrangements of 

nucleotides in the genome. This knowledge helps in identifying disease-associated genes, 

which can normally be seen as the alteration in a sequence. However, such changes may be 

the representation of human diversity or causes of disease. Moreover, sometimes the rare 

variants can be presented in healthy humans, so the task of  variant differentiation remains the 

main challenge in the bioscience (Ruklisa, Ware, Walsh, Balding, & Cook, 2015). 

 The process of assigning the right label to the discovered variant can be done through 

experimental analysis by applying a suitable system. Nevertheless, this is time, labour and 

money consuming technique. Consequently, an enormous amount of methods has been 

developed to recognize variants as harmful. These methods can be categorized in various 

ways. Some of them are based on supervised machine learning approach, while others on 

unsupervised machine learning; another type of tools are based on statistical approaches,  

while others use heuristic scores; some of methods use phylogenetic relationships and others 

pairwise comparison (Pollard, Hubisz, Rosenbloom, & Siepel, 2010). 

The source of evidence that represent the pathogenicity can be allele frequency (definition: 

proportion of seen allele among all allele copies being considered (Cheung et al., 2000)), 

amino acid conservation (definition: a base sequence in a DNA molecule (or an amino acid 

sequence in a protein) that has remained essentially unchanged throughout evolution 

(“Glossary,” n.d.)), predictors based on physicochemical properties, and gene- and domain-

specific effects (Ruklisa et al., 2015).  
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There are different ways how altered variant can affect a protein functions and lead to the risk 

of disorders.  Some rules in predicting a variant of having harmful properties have been 

established experimentally: 

• The location of a variant is characterized in SWISS_PROT database as binding site, 

active site, or involved in disulphide bond  

• The variant has not suitable features to the family of homologous proteins  

• Hydrophobic properties of a protein can be disrupted by a variant  (Sunyaev et al., 

2001) 

• A variant can affect electrostatic properties  

• A variant might affect dissolubility of a protein  

• A variant might destroy protein ligand interactions (Sunyaev et al., 2001). 

Furthermore, the online predicting programs utilize above mentioned features to predict 

variant deleterious properties.  Mainly they can be divided into three groups: sequence and 

evolutionary conservation-based methods; protein sequence and structure-based methods; 

supervised learning methods.    

Sequence and evolutionary conservation-based methods are based on amino acid conservation 

knowledge, used multiple sequence alignments and   scoring functions. It’s found that 

disease-associated variants are correlated to conservation concept. On the other hand, the 

output depends very much on the provided multiple sequence alignment. Tools that are 

constructed based on these concepts are for instance the Sorting Intolerant From Tolerant 

(SIFT), and Mutation Assessor. (“Missense Prediction Tool Catalogue | NGRL Manchester,” 

n.d.). More information concerning a work of these tools can be seen in the Table 2.2.  

Protein sequence and structure-based methods are built based on the structure of the protein. 

The output data might be interpreted in a wrong way without sufficient knowledge of protein 

structure features. The Polymorphism Phenotyping (PolyPhen-2) is a common tool that uses 

this concept (Adzhubei et al., 2010).  

Finally, supervised-learning based methods are common way of variant pathogenicity 

interpretation. These methods can include Neural Networks (NNs), the Support Vector 

Machines (SVMs) and Random Forests (RFs) and naive Bayes classifiers. First of all a data 

that is used as reference have to be defined, so the algorithm has the pattern. Secondly, variant 

features are evaluated by using conservation or protein structure characteristics. Finally, the 
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algorithm ‘learn’ how to distinguish difference between variants.  These types of learning 

require a wide range of known pathogenic variants for getting correct output. Mutation Taster  

and CADD are typical tools that utilize these concepts (“Missense Prediction Tool Catalogue | 

NGRL Manchester,” n.d.). 

These methods are powerful have a lot of benefits. However, drawbacks are present as well. 

First of all, conservation metrics are not allele specific, than protein-based tools can’t be used 

for non-coding variants. Secondly, supervised-learning methods are trained on known 

pathogenic variants.  

Table 2.2 Tools used for pathogenicity detection  

Method Name Brief Description 

SIFT The sorting intolerant from tolerant (sift) method based on sequence 

homology, computes the likelihood that an amino acid substitution will 

have a negative effect on protein function. SIFT is useful in research for 

study the influence of mutations on protein function (Sim et al., 2012).  

Mutation 

Assessor 

Mutation Assessor (ma), is the server which capable to predict the 

functional impact of amino-acid substitutions in proteins (definition: 

MutationAssessor.org). The method works by employing multiple 

sequence alignment, partitioning for identification of conserved positions; 

computing conservation scores, a specificity score and comparison of them 

for identification of the functional impact score (“MutationAssessor.org /// 

functional impact of protein mutations,” n.d.). 

LRT 

 

The Likelihood Ratio Test (lrt) uses goodness-of-fit statistical technique. It 

compares probabilities between conserved areas of a sequence and a 

neutral model (Chun & Fay, 2009). 

PolyPhen Polymorphism Phenotyping (PolyPhen-2), the method is used to detect 

deleteriousness of variants, by computing Naïve Bayes probability, as an 

output it estimates false positive or true positive rates. There are two types 

of Polymorphism Phenotyping: pp2_hdiv and pp2_hvar. The difference in 

these methods is in training data, and also pp2_hdiv is used for evaluating 

rare alleles, than pp2_hvar used for differentiation of harmful mutation 

from all human variation (Adzhubei et al., 2010). 
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Mutation Tester The Mutation Tester (mt), a free, web-based application for rapid 

evaluation of the disease-causing potential of DNA sequence alterations. 

The method uses information from the different biomedical databases; the 

key player of disease potential detection of an alteration is Bayes 

classifier. The advantage of this method lays in the best performance from 

speed and accuracy (“MutationTaster - documentation,” n.d.; Schwarz, 

Rödelsperger, Schuelke, & Seelow, 2010).  

CADD Combined Annotation Dependent Depletion (caddgt10) determines the 

genetic variation through performance of the C score as the measure of 

variant harmfulness (Kircher et al., 2014).  

 

The study of pathogenic variants has to work in tandem with other approaches such as 

statistical association between a variant and a disorder, or ranking variants found from the 

genome based on its functional effect (Buske, Manickaraj, Mital, Ray, & Brudno, 2013; 

Pollard et al., 2010). In order to pick up a correct method to detect and label variants as 

benign or harmful following features should be taken into consideration: type of input data, 

methods that originates a data, and the training properties of selected methods.    

There are many different studies that took place in investigating geography of pathogenicity 

events that lead to pathogenicity. Various tools and approaches were developed to identify 

deleterious variants. Pauline C. Ng and Steven Henikoff in research article “SIFT: predicting 

amino acid changes that affect protein function” describe the SIFT tool as the source of 

predicting if alteration in DNA sequence affect the protein functions or not (Ng & Henikoff, 

2003). Research results of Jaaxin Wu and Rui Jiang suggested using multiple predicting 

algorithms to increase the accuracy in naming variants as harmful (Wu & Jiang, 2013). On the 

other hand there is opinion that synonymous SNVs play a role in developing a disease by 

affecting the way proteins are merged together, their expression and eventually function. The 

Silent Variant Analyzer (SilVA) tool was developed by Orion J. Buske and his colleagues, 

which is atomized application used to predict harmful synonymous variants within human 

genome. It was concluded that there are two most convincing types of features, splicing 

information and sequence conservation, that are used for detection of harmful synonymous 

(silent) mutations    (Buske et al., 2013).  
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2.5.2 Combined Annotation Dependent Depletion (CADD )  

The existence of vast amount of tools for pathogenicity prediction mostly is based on one 

metric. The CADD combines a lot of different metrics into one score.  

2.5.2.1 Algorithm Implementation  

The first step in training the algorithm is to construct a variant-by-annotation matrix. There 

were two types of data used: experimentally derived allele frequency information (from 1000 

Genomes and Ensembl Compara) and simulated data based on empirical model of sequence 

with CpG dinucleotide-specific rates and mutation rates. The annotation metrics like 

conservation (from Genomic Evolutionary Rate Profiling (GERP), Phylogenetic P-Values 

(phyloP)), functional genomic data (from DNase) and TFs binding, exon-intron distance, 

expression levels in studied cell lines and protein-level scores (from SIFT, PolyPhen) were 

used to generate annotations information with utilization Ensembl, Variant Effect Predictor 

(VEP), encyclopedia of DNA elements (ENCODE) and University of California at Santa Cruz 

(UCSC) Genome Browser.  The same type of model was used to train possible substitutions.  

The annotations were used in training a SVM with a linear kernel. Consequently, a rank 

system was used to assign values from 1 to 99 to trained variants (Kircher et al., 2014).  

2.5.2.2 Pros and Cons 

There are quite many benefits of CADD utilization. First of all, the CADD tool combines 

multiple annotations into single C-score. Secondly, C score relates to allelic frequency, it can 

be used for analysing coding or non-coding variants. Thirdly, C score capable to distinct a 

rare allele from set of disease-associated alleles. Fourthly, C score can be associated with 

somatic cancer mutations. Finally, CADD tool demonstrates strong prediction properties in 

pathogenicity, deleteriousness and molecular functionality and can be used for exome or 

genome studies (Kircher et al., 2014).   

CADD method also has limitations. First of all, the accuracy of the tool can be limited be 

local mutation rate, background selection or biased gene conservation. Secondly, C scores 

may omit the differences in selective intensity. Finally, the ability to predict deleterious  

features in noncoding regions still require improvement (Kircher et al., 2014).    
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3 Research Goals 

The vision of the thesis was to identify and catalogue variants that contribute to pathogenicity 

 

The objectives are: 

� To examine provided variants, to find location of harmful regions 

� To identify more specific set of putative target genes 

� To use CADD tool for scoring deleterious variants 

� To compare precomputed CADD results with results achieved by using statistical 

analyses 

� To apply PWMs framework for TFBSs prediction  

� To identify which variants from the provided data have the potential for ‘dual codon 

usage’  

� To catalogue harmful variants 

 

4 Tools  

4.1 Python 

Python is a freely available, an open source highly readable programming language 

(“Welcome to Python.org,” n.d.). In this work the Python was mostly used for writing scripts 

for processing data. The Python version 2.7 was used for running all scripts. Additionally the 

NumPy package was installed, which is powerful tool, used in scientific computing along 

with Python, allowed to work easily with N-dimensional array objects (“NumPy — Numpy,” 

n.d.). The NumPy was used in computational part of this thesis to convert PWMs into arrays.  

 

4.2 Unix 

Unix is a computer operating system, that mostly has been used in computational part as 

intermediate steps, like filtering, ordering, file observation (“The UNIX System, UNIX 

System,” n.d.). Some of the Python scripts were running from the Unix platform as well.  
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4.3 R: Statistical Analysis Tool  

R is an open source programming language for statistical computing and graphics (“The R 

Project for Statistical Computing,” n.d.). R platform has been mostly used for the initial part 

of the project. It was used for creating a file with necessary data, as well as for graphical 

visualization of genes frequency.  

 

4.4 Combined Annotation-Dependent Depletion Tool 

The CADD is powerful scoring tool that identifies the genetic variation through performance 

of the C score as the measure of variant harmfulness (Kircher et al., 2014). It is freely 

available open source tool.  

The CADD training algorithm is based on the SVM learning method trained on potential 

pathogenic variants, used to distinguish benign mutations from deleterious. The C score 

represented all various characteristics of disease causing mutations into one single score. 

These characteristics include conservation metrics, functional genomic data, TFs binding, 

transcript information like distance to exon-intron boundaries or expression levels in 

commonly studied cell lines; and protein-level scores. Basically it combines into one C score 

a lot of various metrics that are used by many other tools related to detection of pathogenicity, 

such as GERP, DNase, SIFT and many others. This feature makes the CADD tool extremely 

strong and accurate in resulting data.  

The thesis computational part has been built based on the main idea of using C score, which 

enable to estimate the pathogenicity potential of a variant, the rest of irrelevant data was 

sorted out. The threshold was set to 20, meaning these are predicted to be the 20% most 

deleterious variants.   

 

4.5 BEDTools 

BEDTools is a tool which allows to users easily to work with genomics analysis tasks. In the 

thesis the following BEDTools functions were used: intersect, slop and getfasta (“bedtools: a 

powerful toolset for genome arithmetic,” n.d.).  

 bedtools INTERSECT  –a  <file>  –b  <file1>  –wo 
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The intersect function allows to check overlapped areas of provided genome with reference 

genome collected from the Genome Reference Consortium (“Genome Reference 

Consortium,” n.d.). The ‘–wo’ symbol is responsible for the output data, which retrieves only 

overlapped region of provided sequence.  

bedtools SLOP –i  <BED> –g  <GENOME>  –b  25 

The slop function allows to increase a size of an object by a required number of bp. In case of 

this work it was extended from both sides by 25 bp.      

bedtools GETFASTA  –fi  <FASTA>  –bed   <BED>  –f  <output FASTA> 

The getfasta function converts data into FASTA format. The information holds in the output 

file was chromosomal position, start and end coordinates of sequence.  

 

4.6 JASPAR and UNIPROBE Databases 

JASPAR and Universal PBM Resource for Oligonucleotide-Binding Evaluation 

(UNIPROBE) databases were used as the repositories of information for the PWMs. The 

JASPAR CORE is an open access database, which provides information about TF for 

eukaryotes found experimentally (Mathelier et al., 2014). The UniPROBE database was used 

as the resource which contains information of PWM (Hume, Barrera, Gisselbrecht, & Bulyk, 

2015). 

 

4.7 KEGG 

Kyoto Encyclopedia of Genes and Genomes (KEGG) is database resource which contains 

information about genomes, biological pathways, diseases, drugs and chemical substances. In 

the thesis work the KEGG database was used as pathway mapping tool in order to find 

possible associations of genes to disease (“KEGG: Kyoto Encyclopedia of Genes and 

Genomes,” n.d.).  
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5 Methods and Approaches 

5.1 Computational Analysis Overflow 

 

Figure 5.1 C computational analysis main steps 

 

Figure 5.1 gives a full overview of the data processing during the computational part. 

Moreover, there were several main concepts, used for implementing this part: C score, PWMs 

score and p value concept. The final data was evaluated.   
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5.2 The PWM Concept 

 

 

Figure 5.2  The main idea of PWMs utilization  

 

Figure 5.2 describes the main idea, which was used in computational part for implementing 

the PWM concept.  Based on this idea the script was written with the use of Python 

programming language.  Step I illustrates the fragment of the DNA sequence and matrix with 

the size 4*4. The first nucleotide of the sequence is A, the corresponding score in the matrix 

to the letter A is 0.1; next is again A with a score 0.4 and etc. All collected scores have to be 

multiplied together, consequently a total value of the step I is 0.0024. Matrix shifts to the next 

nucleotide (Step II) and repeats the same procedure. After all scores have been collected the 

greatest score has to be selected as the best position for TF binding. In this example, step II 

gives the highest score, meaning that TF has the highest likelihood of binding to the part of 

sequence starting from the second base of this sequence.   

 

5.3 P value Concept  

In the thesis work the p value concept, the concept of result significance was used. The null 

hypothesis (H0) of this work was that TF-match score is likely to occur by chance. Then the 

alternative hypothesis (H) stated that TF-match score doesn’t occur by chance. Hence, a null 

hypothesis was tested against an alternative. The p value was computed and sorted based on 

established significant level (α=0.01).  The provided data was described with to controversial 

statements:  

• H0, variant data hasn’t pathogenic properties  

• H, variant data has pathogenic properties  
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• P value < α, shows strong evidence against the null hypothesis, meaning all the 

data that fulfil this condition is actually pathogenic. 

• Table 10.1 and Table 10.2 show final results which have deleterious properties. 

 
 

6 Overall Procedure 

 

Figure 6.1 Schematic presentation of the computational part workflow   

 

Figure 6.1 shows the flow of the computational part, which starts from extracting, required 

samples from blood and adjacent tissues. These data is stored and supplied as a file for 

computational analysis. The computational part was divided into four main parts: data pre-

processing, data   processing, generating final data and evaluation of results. The detailed 

description of each step will be described below.  
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6.1 TCGA Data Source 

The data which was provided for the computational part of this thesis derived from patients, 

as the total amount of 309 samples. There were 234 samples derived from the white blood 

cells as the source of human DNA information. The rest 75 were extracted from an adjacent 

normal tissue. These data was functionally annotated with ANNOVAR software.  There are 

1887215 rows and 41 columns in the ANNOVAR annotated file. Table 6.1 represents the first 

eight columns and seven rows of this file as an example of the provided information.  

Table 6.1 A part of the file with data annotated by ANNOVAR  

Chr Start End Ref Alt Func.refGene Gene.refGene GeneDetail.refGene 

1 10109 10109 A T intergenic NONE,DDX11L1 dist=NONE;dist=1765 

1 10177 10177 A C intergenic NONE,DDX11L1 dist=NONE;dist=1697 

1 10180 10180 T C intergenic NONE,DDX11L1 dist=NONE;dist=1694 

1 10234 10234 C T intergenic NONE,DDX11L1 dist=NONE;dist=1640 

1 10235 10235 T A intergenic NONE,DDX11L1 dist=NONE;dist=1639 

1 10248 10248 A T intergenic NONE,DDX11L1 dist=NONE;dist=1626 

1 10250 10250 A C intergenic NONE,DDX11L1 dist=NONE;dist=1624 

 

Additionally to the information described above the file with PWMs was provided. The 

information of corresponding PWMs was retrieved from JASPAR and UniPROBE 

repositories. The file contains the name of the TF at own row and matrix represented as single 

nucleotide probabilities of size 4 x L, where L is the length of a matrix. The length of matrices 

varies from 6 to 30 across the file.  
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Table 6.2 A part of the file which contains PWMs  

 YY1 6      

0.352941 0.01 0.01 1 0.01 0.176471  

0.058824 0.941176 1 0.01 0.01 0.470588  

0.411765 0.01 0.01 0.01 0.01 0.176471  

0.176471 0.058824 0.01 0.01 1 0.176471  

IRF1 2      

0.066667 0.001 0.001 0.733333 0.001 0.001 0.001 

0.001 0.066667 1 0.001 0.533333 0.001 0.001 

0.001 0.001 0.001 0.001 0.266667 0.001 0.001 

0.933333 0.933333 0.001 0.266667 0.2 1 1 

GATA2 4   0 00 0 

0.245283 0.01 0.981132 0.01 0 0 0 

0.245283 0.09434 0.01 0.01 0 0 0 

0.339623 0.90566 0.018868 0.01 0 0 0 

0.169811 0.01 0.01 1 0 0 0 

 

Table 6.2 gives a visual example of the provided file which contains PWMs. There are three 

examples of matrices; fist row shows TFs name, and the next four rows represent the matrix’s 

row. For example, YY1_6 is TF with 4*6 size matrix; the second is the TF  IRF1_2 with 4*7 

size matrix; and the last matrix contains the TF  GATA2_4 with 4*4 size matrix.  
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6.2 Data Preparation  

6.2.1 Filtering Based on ‘exonic’ and C Score  

Script 1: C-Script.py 

script FilterExonicAndCScore (inputfile) return outputfile 

 input: inputfile, a file with a table (e.g. coordinates, chromosome) , where each   

        row contains values. Data annotated by ANNO VAR  

 output: outputfile, a file that contains the variant data with the columns           

         and rows filtered by exonic and C Score 

  

 table = READ-DATA-FROM-FILE ( inputfile) 

 tmp-table = SELECT-FROM-TABLE-COLUMNS-WITH-VALUES (table, “Func.refGene”,   
    “exonic” ) 

 tmp-table = SELECT-FROM-TABLE-COLUMNS-WITH-VALUES (table, “cadd_phred”, values      
    ≥ 20) 

 WRITE FILE ( tmp-table) 

Description: The input file contains various variant features  annotated by ANNOVAR tool.  The output file 
contains a table with the columns chr, start, end, ref, alt, func.refgene, gene.refgene, genedetail, refgene, 
exonicfunc.refgene, change.refgene, snp138, cadd. 

 

6.2.2 Subtract One  

Script 2: One-Script.py 

script SubtractOneFromStartCoordinate  ( inputfile) return outputfile 

 input: inputfile, a file with a table , where values are sorted based on C score     

        ≥ 20 and exonic annotation  

 output: outputfile, a file that contains variant data where start coo rdinate   

         has value minus one 

 

 table = READ-DATA-FROM-FILE ( inputfile) 

 tmp-table=SELECT-FROM-TABLE-COLUMN-WITH-VALUES (table, “Start”, * )  

 tmp-table=SUBTRACT-FROM-COLUMN-A-VALUE (table, “Start” , -1) 

 WRITE FILE ( tmp-table) 

Description:  The input file contains a table with the columns chr, start, end, ref, alt, func.refgene, gene.refgene, 
genedetail, refgene, exonicfunc.refgene, change.refgene, snp138, cadd. The output file contains a table, where 
from values of the column ‘start’ one is subtracted. 
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6.2.3 BEDTools Functions 

BEDTools 

BEDTools ( coordinstart_value_minus_one, tf_sites-encode, genome_inform  )  
        return outputfile   

 input: coordinstart_value_minus_one, a file that contains the variant data where  
        start coordinated has value minus one ; 

        tf_sites_encode, a file with TF sites from ENCODE database ; 

        genome_info, a file which contains a sequence information in FAS TA format  

 output: outputfile, a FASTA file  

 

bedtools INTERSECT  –a  coordinstart_value_minus_one  –b tf_sites_encode   –wo     
    > tf_sites-encode 

bedtools SLOP –i  coordinstart_value_minus_one  –g  genome_info  –b  25 >   

    file_seq_extension 

bedtools GETFASTA  –fi  genome_info  –bed file_seq_extension –f > outputfile   

Description:  There are three input files: 1) coordinstart_value_minus_one that contains various  variant 
information  in BED format, but the main features are chromosome,  start coordinated has value minus one, 
reference and altered nucleotides, TF; 2) tf_sites-encode (BED format) contains information about TF sites 
length from ENCODE database ; 3) genome_inform a file in FASTA format with sequence information for 
homo sapiens. The output file is in FASTA format, contains the information about original sequence, 
chromosome, start and end coordinates 

 

6.2.4 Generate Variant Sequence 

Script 3: VariantSequence.py 

script GenerateVariantSequence  ( file_seq_extension, file_orig_seq) return  

       outputfile 

 input: file_seq_extension, a file that contains sequence extension information;  

        file_orig_seq, a file that contains variant sequence information  

 output: outputfile, a file that contains variant sequence 

  

 list_of_orig_seq = READ-DATA-FROM-FILE ( file_orig_seq) 

 list_of_alt_nucl = READ-DATA-FROM-FILE ( file_seq_extension) 

 list_of_variant_seq = []  

 FOR x IN list_of_orig_seq   

   replace_nucl = GET-ALTER-NUCLEOTIDES ( list_of_alt_nucl[x]) 

   chromosome = GET-CHROMOSOME (list_of_orig_seq[x]) 

   APPEND-TO-LIST ( list_of_variant_seq, chromosome) 

   new_seq = REPLACE-STRING-WITH-CHAR-AT-POSITION ( list_of_orig_seq[x],     
   replacementchar, 26) 

   APPEND_TO_LIST ( list_of_variant_seq, new_seq) 

 WRITE_FILE ( list_of_variant_seq) 
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Description:  The input file file_seq_extension (BED format) contains a table with the columns chromosome, 
start and end coordinates, reference and altered nucleotides, TF. The input file file_orig_seq is FASTA format 
file, contains chromosomal information, start and end coordinates, and original sequence. The output file 
contains a variant sequence, chromosome, start and end coordinates.   
GET-ALTER-NUCLEOTIDES : get the information from the column with altered nucleotides 
GET-CHROMOSOME : get the information from the “chr” column about chromosomal position 
REPLACE-STRING-WITH-CHAR-AT-POSITION: substitute 26th position of a sequence string by altered 
nucleotide 

 

6.3 Data Processing 

6.3.1 Calculating Scores with PWMs 

Script 4: ComputeScoresWithPWMforOriginalAndVarinatSequences.py 

Functions and Declarations of the Script 

Note: NumPy package was uploaded for this script. Utilize of this package allows to convert matrix  
             into an array 

function PWM_San (input: sequence, output: scores)  

Description:  PWMs moves by a single nucleotide along a sequence, a binding score is collected at each    
                       position of a nucleotide. When matrix reaches the end of a sequence recorded scores at each             
                       nucleotide are multiplied. After matrix scans   complete sequence the max score is selected as the  
                       best binding score.  

 

function  ConvStrToFloat (input: strings, output: float values)  

Description:  the function converts strings into float numbers 

 

function  ConvStrToInteg (input: strings, output: integers)  

Description: the function converts strings into float integers 

Description of the Script 

script ComputeScoreWithPWMconcept  ( file_orig_seq, file_pwm) return outputfile 

 input: file_orig_seq, contains an original sequence; 

        file_pwm, contains Position Weight Matrices (PWMs)  

 output: outputfile, a file that contains scores information for the o riginal  

         sequence 

 

 list_of_original_seq = READ-DATA-FROM-FILE ( file_orig_seq) 

 list_pwm = READ-DATA-FROM-FILE ( file_pwm) 

 list_of_convert_orig_seq = CONVERT-SEQCHAR-INTO-DIGITS ( list_of_original_seq) 

 list_of_tfs = COLLECT-TF-NAMES-FROM-LIST ( list_pwm) 

 array_matrices = CONVERT-MATRICES-INTO-ARRAY ( list_pwm) 

 list_tf_matrix = ZIP-DATA-OF-LISTS (list_of_tfs, array_matrices) 
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 dictin_tf_matr = GET-KEY-TF-VALUE-ARRAY (list_tf_matrix)   

 orig_seq_scores_dictionary = {} 

 FOR x IN list_of_convert_orig_seq 

    one_nucleotide = ConvStrToFloat (GET-SEQUENCE( x ) ) 

    FOR key, value IN dictin_tf_matr 

           score = PWM_San (one_nucleotide, key, value) 

           WRITE FILE ( score) 

Description:  The input file file_orig_seq contains a table with the columns original sequence, chromosome, 
start and end coordinates, reference and altered nucleotides, gene name. The input file file_pwm contains 
information about TFs and matrices. The output file contains a table with original sequence, TF name, score, 
start and end binding sites. 
CONVERT-SEQCHAR-INTO-DIGITS: a sequence is representation of nucleotides, which are converted into 
digits A-1,C-2,G-3,T-4   
COLLECT-TF-NAMES-FROM-LIST:  takes a list as input, and collects TF names  
CONVERT-MATRICES-INTO-ARRAY: takes matrices from a file and converts them into array  
GET-KEY-TF-VALUE-ARRAY: takes a dictionary as input and assigns TF as key, and array representation of 
matrix as value 
FOR x IN: takes a string of sequence and converts each character into float number 
FOR key, value IN: scans sequence with PWM_Scan function  
*The same process runs for variant sequences 

 

6.3.2 Removing Similar Scores 

Script 5: RemoveSimilarScore.py 

script RemoveSimilarScoresBetweenOriginalAndVariantSeq ( orig_seq_scores,    
       variant_seq_scores) return outputfile 

 input: orig_seq_scores, contains original sequence scores; 

        variant_seq_scores, contains variant sequence scores  

 output: outputfile, a file that contains unique scores for both origi nal and   

         variant sequences 

 

 line_orig_seq = READ-DATA-FROM-FILE ( orig_seq_scores) 

 diff_orig_seq_scores = GET-ORIGSEQ-SCORES ( line_orig_seq) 

 line_variant_seq = READ-DATA-FROM-FILE ( variant_seq_scores) 

 IF TF-IS-NOT-EQUAL(line_orig_seq, line_variant_seq) AND SCORE-IS-NOT-EQUAL   
   (line_orig_seq, line_variant_seq)  

     score_diff = FIND-DIFFERENCE-BETWEEN-SCORES (line_orig_seq, line_variant_seq) 

     normalize_score = score_diff / diff_orig_seq_scores 

     WRITE-FILE (score_diff, normalize_score) 

Description:  The input file orig_seq_scores contains an original sequence, TF name, score, start and end 
binding sites. The file variant_seq_scores contains variant sequence, TF name, score, start and end binding 
sites. The output file contains original and variant sequences with unique scores, chromosome, start and end 
coordinates.  
FIND-DIFFERENCES-BETWEEN-SCORES: score from original sequence – score from variant sequence 
normalize_score: score difference divided by original sequence score 
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6.3.3 Finding the Most Minimum and the Most Maximum  Scores 

Script 6: FindMaxMinScore.py 

script FindTheMostMaxAndMinScores ( unique_orig_variant_seq_scores) return  

       outputfile 

 input: unique_orig_variant_seq_scores, contains unique scores for original  

        sequence and variant sequence  

 output: outputfile, a file that contains the most maximum and minimum  scores for   

         original sequence and variant sequence  

   

  orig_var_data_row = READ-DATA-FROM-FILE ( unique_orig_variant_seq_scores) 

  first_sequence = GET-SEQUENCE-FROM-ROW-FROM-TABLE (orig_var_data_in_one_row, 0) 

  current_pos = 0 

  WHILE  current_pos <= LEN ( orig_var_data_row) 

   min_score = 1000 

   max_score = 0 

   current_sequence = GET-SEQUENCE-FROM-ROW-FROM-TABLE (orig_var_data_row,   
    current_pos)   

   WHILE ( first_sequence == current_sequence) 

     IF GET-SCORE ( current_sequence) < min_score  

             THEN min_score = GET-SCORE (first_sequence) 

     IF GET-SCORE ( current_sequence) > max_score  

             THEN max_score = GET-SCORE (first_sequence) 

     current_pos = current_pos + 1 

     IF current_pos <= LEN ( orig_var_data_row) 

        current_sequence = GET-SEQUENCE-ON-POSITION-FROM-TABLE    
        ( orig_var_data_row, current_pos) 

      ELSE 

        WRITE-FILE ( first_sequence, mins_score, max_score) 

        EXIT 

   WRITE-FILE ( first_sequence, mins_score, max_score) 

   first_sequence = current_sequence   

Description:  The input file unique_orig_variant_seq_scores contains an original sequence, TF name, original 
sequence score, start and end binding sites, differences in scores between original and variant sequences, 
normalization score, variant sequence, TF name, variant sequence score, start and end binding sites. The output 
file contains original sequence, TF name, maximum value of original sequence score, start and end binding 
sites, differences in scores between original and variant sequences, normalization score, variant sequence, TF 
name, maximum value of variant sequence score, start and end binding sites AND original sequence, TF name, 
minimum value of original sequence score, start and end binding sites, differences in scores between original 
and variant sequences, normalization score, variant sequence, TF name, minimum value of variant sequence 
score, start and end binding sites. 
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6.4 Generating a Final File 

6.4.1 Generating Artificial Sequences, Computing Sc ores with PWMs, 

Computing P Value 

Script 7: GenerateArtificialSequenceComputScoresPvalue.py 

Functions and Declarations of the Script 

functions  ConvStrToFloat(input: strings, output: float values)  

Description: the function converts strings into float numbers 

script GenerateArtificialSeqComputeScoreWithPWMconceptAnd Pvalue    
       ( diff_max_score_criteria, file_pwm) return outputfile 

 input: max_score_criteria, contains the most maximum scores for original and   

        variant sequences; 
        file_pwm, contains PWMs information 

 output: outputfile, a file that contains p values 

   

 list_of_tfs = COLLECT-TF-FROM-FILE ( file_pwm)  

 len_matrices = COLLECT-MATRICES-FROM-FILE ( file_pwm) 

 initial_number_of_artific_seq = 888 

 list_of_scores = [] 

 artif_seq_score = CREATE-ARTIFSEQ-WITH-LENGTH-EQUALS-LENGTH-OF-MATRICES-AND-   
  COMPUTE-SCORE (len_matrices) 

 APPEND-TO-LIST artif_seq_scores ( list_of_scores)  

 dictin_tf_matr = KEY-TF-VALUE-SCORES ( list_of_tfs, array_matrices)  

 values = GET-VALUES-FROM-DICT dictin_tf_matr [] 

 FOR x IN ( max_score_criteria)  

   new_seq = REPLACE-DIGITS-WITH-CHAR ( x ) 

   p_value = HOW-MANY-TIMES ( diff_max_score_criteria < values)/ initial_number_seq 

   WRITE FILE ( p_value, new_seq) 

Description:  The input file diff_max_score_criteria contains a table with the columns original sequence, TF 
name, the most  maximum value of original sequence score, start and end binding sites, differences in scores 
between original and variant sequences, normalization score, variant sequence, TF name, the most maximum 
value of variant sequence score, start and end binding sites. The input file file_pwm contains information about 
TFs and matrices. The output file contains a table with original sequence, start and end binding sites, TF name, p 
value, variant sequence, start and end binding sites. 
CREATE-ARTIFSEQ-WITH-LENGTH-EQUALS-LENGTH-OF-MATRICES-AND-COMPUTE- SCORE: 
generate one artificial sequence with the length equals to the length of taken matrix and calculate the score at the 
same time. As length of artificial sequence is equal to the length of the matrix, for each character of the 
sequence the relevant score is found from the matrix, consequently these scores are multiplied. 
KEY-TF-VALUE-SCORES : create an dictionary, where TF names represented as key, and value as computed 
with PWMs concept artificial scores (the amount of score equals to amount of generated artificial sequences, 
888 )     
REPLACE_DIGITS_WITH_CHAR : nucleotide sequence was converted into digits, not the task is to converted 
back into nucleotides 1-A, 2-C, 3-G, 4-T   
p_value: calculate the total amount of difference maximum scores  that are less than scores of artificially 
generates sequences divided by amount of generated sequences (888)   
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6.4.2 Sorting Based on Cut-Off Value 

Script 8: SortBasedOnCuttOff.py 

script SortBasedOnCutOff  ( p_value_file) return outputfile 

 input: p_value_file, contains the p value found with selected criteria ( maximum or   

        minimum difference); 
 output: outputfile, a file that contains scores less than p value 0.0 01 

  

 table = READ-DATA-FROM-FILE ( p_value_file)  

 tmp-table = SELECT-COLUMN-WITH-PVALUES-FROM-TABLE (table, “p values”) 

 threshold = 0.001 

 sorted_table = SORT-PVALUE-COLUMN-BASED-ON-THRESHOLD (tmp-table, threshold)  

 WRITE FILE (sorted_table) 

Description:  The input file p_value_file contains original sequence, start and end binding sites coordinates, TF 
name, p value, variant sequence, start and end binding sites. The output file contains the same values as input 
file but the p values scores are less than 0.001. 

 

6.4.3 Generating a Final File 

Script 9: GeneratingFinalFile.py 

script GenerateresultingFile  ( threshold_sorted_p_value_file, reference_sequence,   

       Cscore_greater20 ) return outputfile 

 input: p_value_file, contains the p value found based on max criteria ( or    

        minimum); 
 output: outputfile, resulting file  

  

 list_orig_seq = READ-DATA-FROM-FILE ( reference_sequence) 

 list_orig_seq_info = READ-DATA-FROM-FILE ( threshold_sorted_p_value_file) 

 matched_info = [] 

 FOR x IN ( list_orig_seq_info) 

    FOR y IN ( list_orig_seq) 

        IF   list_orig_seq_info[x]  == list_orig_seq [y]  

            char_seq = CONVERT-DIGITS-TO-CHAR ( list_orig_seq_info [x])  

            APPEND-TO-LIST ( y) 

 c_score = ADD-CSCORE ( Cscore_greater20) 

 WRITE FILE ( matched_info, char_seq, c_score) 

Description:  The input file p_value_file contains original sequence, start and end binding sites coordinates, TF 
name, p value, variant sequence, start and end binding sites. The output file contains resulting information about 
original sequence, chromosome, start coordinate, reference and altered nucleotides, gene name, TF name, p 
value, C score and criteria that used to find this information (either maximum or minimum score difference) 
reference_sequence is a file outputfile created in the beginning of computational part Script 3: BEDTools  
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6.5 Data Evaluation  

A final file was generated and contained information of original sequence, chromosome, start 

coordinates, reference nucleotide and altered nucleotide, gene name, TF, p value, C score and 

maximum difference. As it was mentioned maximum and minimum difference criteria were 

used in parallel that gave the opportunity to compare final results. The gene data was selected 

and uploaded into free available KEGG database and the resulting pathways were evaluated.   

• select genes from the final file  

• submit to the KEGG database 

• evaluate the results  

 

7 Results and Discussion 

The main goal of the thesis was to estimate pathogenicity of human genetic variants by 

comparing the results produced by the CADD tool and statistical approaches. First of all, the 

CADD tool would produce variants annotated by C score. As the second main step, the sorted 

out data based on C score was processed with statistical approaches to reduce amount of false 

positive results.  Eventually the output of both techniques was compared.  

The computational part of the thesis was run based on two criteria: the maximum and 

minimum difference score criteria in parallel to see the differences or similarities in final 

results. The difference between scores was found by subtracting a score found with PWM of 

original sequence from a score found with PWM of variant sequence. The resulting files are 

different in data size such that the data computed based on minimum difference score 

produces wider range of genes (16873 genes) than based on maximum difference score (6752 

genes).  

Majority of different processes in our body are derived, controlled and regulated by proteins 

that are manufactured by genes. Accordingly, pathways allocations of the resulting genes 

were not surprising. The majority genes were involved into the metabolic pathways, the 

process that enables a cell to keep living, growing and dividing due to the set of chemical 

reactions. The second place was related to the cancer pathways and the last to neuroactive 

ligand-receptor interaction.  



48 
 

 

Hence, 6752 genes were submitted to the KEGG pathway search tool from the resulting file 

based on maximum difference scores criteria. Consequently, 156 genes represent metabolic 

pathways, 62 genes characterize pathways in cancer, and 52 in neuroactive ligand-receptor 

interaction. There were eight genes such as, CREB3, EGF, ERBB2, FGFR1, FOXO1, 

IKBKG, LEF1, RB1  indicated  under prostate cancer pathway by KEGG database. 

In a like manner, the same outcome pathways derived from the file based on minimum 

difference scores criteria. However, the amount of genes three times exceeded comparing to 

the previous file. There were 272 genes that represent metabolic pathways, 116 genes 

characterized pathways in cancer, and 102 in neuroactive ligand-receptor 

interaction pathways. The KEGG database indicated 21 genes under prostate cancer pathway, 

such as ARAF, CASP9, CCND1, CDKN1B, CREB3, CREB5, E2F2, EGF, EP300, ERBB2, 

FGFR1, FOXO1, IGF1R, IKBKB, IKBKG, LEF1, PDGFB, PDGFRA, PDGFRB, RB1, 

TCF7.  

In the beginning of the computational part before using the statistical approaches the provided 

file was cleaned out for the data with C score greater than 20.  Table 9.2 illustrates the 

pathogenic variants; where the data was sorted out based on C score greater than 20. The table 

represents the chromosomal position, start coordinate, reference and alternate nucleotide, the 

genome region, gene, type of mutation, dbSNP rs identifiers and C score. The result of this 

table will be compared to the final result after statistical calculations.     

Figure 7.1 illustrates the most frequent genes with C score greater than 20.  The set of these 

genes with predicted harmful properties was eventually submitted into KEGG database and 

related pathways were extracted.  

 

Figure 7.1 Most frequent genes with C score greater than 20 
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The CADD tool predicted only 0,88 % of variants from provided data as deleterious, the same 

result was achieved by using statistical approach. Consequently only 0.88% from the given 

data represents deleterious variants.  

The CADD tool represents in one score (the C score) all various characteristics that associated 

with pathogenic variants. That was one of the main interest to check if a set of genes with C 

score greater than 20 matched the set of genes in the resulting file. Surprisingly, the KEGG 

database shown 21 genes that lead to the prostate cancer such as ARAF, CASP9, CCND1, 

CDKN1B, CREB3, CREB5, E2F2, EGF, EP300, ERBB2, FGFR1, FOXO1, IGF1R, IKBKB, 

IKBKG, LEF1, PDGFB, PDGFRA, PDGFRB, RB1, TCF7 with 100 % match. Consequently, 

these results confirm that CADD tool revealed correctly genes that lead to the prostate cancer 

comparing to the results which were elaborated with statistical methods to exclude false 

positive rates. As it was discussed in the section 4.4 the CADD tool combines a lot of 

different features (63 distinct annotations) related to identification of deleteriousness in one 

score, and this makes the output extremely accurate. On the other hand the provided data was 

relatively small in size, compared to the resulting variant-by-annotation matrix contained 29.4 

million variants (half observed, half simulated).   

There is 100% match between genes that were accomplished by three different criteria. For 

further analysis the wider range of information was taken: sequence, chromosomal, start, gene 

name, TF, p value, C score and minimum difference score information were extracted (Table 

9.1 Linked data from the final file with minimum criteria and ANNOVAR file Table 9.2 

Filtered data based on C score greater than 20). The C score column of the table was sorted in 

descending way, and as the result three the most deleterious (according to the C score) genes, 

such as  PDGFRA, CREB5, FGFR1 were selected (Table 7.1).  

The C score indicates the pathogenic properties of a variant, higher C score more harmful 

variant is predicted to be.  Due to the specificity of computational techniques the p value is 

equal to zero than in reality it is just a score that is very close to the zero. The higher value of 

C score was correlated to the zero value of the p value; there was no strong correlation to the 

minimum difference score, however it was still relatively small in range of -0.001 to -0.04.   
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Table 7.1 Top three resulting genes with the highest C score 

Original Sequence 
Chr/ 

Start-End 
Ref Alt Gene TF P Cadd 

Min  

Diff Score 

AGAGACTGAGC
GCTGACAGTGG
CTACATCATTCC
TCTGCCTGACAT
TGACC 

chr4: 

55156627-

55156678 

C A PDGFRA CREB1_5 0 43 -0.045464496 

ACAATACAGCC
ACCCCAGCCCA
CAGGGGGGCGC
CGGCGAAGGGT
GGTAGAC 

chr7: 

28848839-

28848890 

G C CREB5 USF2_1 0 36 -0.01507 

AGGTCTGACAA
GTCTTTCTCTGT
TGCGTCCGCTTT
AAAGAACACGT
TGAGA 

8chr8: 

38274903-

38274954 

C T FGFR1 RFX1 0 36 -0.0017136 

 

One of the top three genes was the PDGFA gene with identified TF CREB1. PDGFA is a 

subunit of a typical cancer gene platelet-derived growth factor (PDGF) (“GeneCards - Human 

Genes | Gene Database | Gene Search,” n.d.). The PDGF and its isoforms PDGFA, PDGFB 

heterodimer (all three present in the final result) are responsible for cell proliferation, cellular 

differentiation, cell growth, development (Heldin, 2013). The resulting data showed the non-

synonymous single nucleotide variation. Overexpression or mutation events of this gene 

might lead to the tumour cell growth (Heldin, 2013). Below Figure 7.2 shows transcription 

starting site of PDGFA, and four possible binding sites of TF CREB1 (“Sample to Insight - 

QIAGEN,” n.d.).  

 

Figure 7.2 Transcription starting site of the PDGFA gene and possible binding 
sites of the TF CREB1 (“Sample to Insight - QIAGEN,” n.d.) 



51 
 

 

The transcriptional factor CREB1 belongs to the leucine zipper family of DNA binding 

proteins. Its function is to bind to certain DNA sequences such as cyclic adenosine 

monophosphate (cAMP) response elements, as a result it regulates a gene expression (a 

transcription of the downstream genes is increased or decreased) (“GeneCards - Human 

Genes | Gene Database | Gene Search,” n.d.). Overall, the properties of TF CREB1 that 

impact on the gene expression, might be altered due to mutation events in the gene PDGF or 

its isoforms, consequently leading to the over activity of PDGFA and eventually tumour cells’ 

growth. Moreover, it was proved by microarray analyses that PDGFRβ mRNA expression 

relapse prostate cancer (Heldin, 2013).  

The second in the range was gene CREB5 and TF USF2. The CREB5 is a protein-coding 

gene that belongs to cyclic AMP-responsive element-binding family, activates transcription 

(“GeneCards - Human Genes | Gene Database | Gene Search,” n.d.). Figure 7.3 shows four 

possible transcription starting sites and only one binding site of TF USF2 (“Sample to Insight 

- QIAGEN,” n.d.).  

 

Figure 7.3 Transcription starting site of the gene CREB5 and binding site of the 
TF USF2 (“Sample to Insight - QIAGEN,” n.d.) 

 

The USF2 is transcriptional factor that binds to a symmetrical DNA-sequence. The USF2 

gene provides instructions for making a protein called USF2, it impacts on cellular growth 

and proliferation. It involved in the series of events of transferring genetic information from 

DNA to mRNA by DNA-directed RNA polymerase. One of its functions is to act as cellular 

TF.  

N Chen and others studied the role of USF2 in prostate tumorigenesis. It was found that one 

possible way of developing cancer by USF2 is to regulate many cancer- and proliferation-
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associated genes (Cox-2, BRCA2, p53 and etc). This happens due to the correlation of its 

function to transcriptional activity (Chen et al., 2006).  

Finally, the third gene FGFR1 and TF RFX1 were identified as genes related to the cancer 

pathway. The FGFR1, is also called fibroblast growth factor receptor 1 is involved into cell 

division, growth, maturation formation of blood vessels.  

According to Yang F FGFR1 gene expressed in prostate carcinoma cells is not specific for 

this type of genes, mostly it is not expressed in epithelial cells. Even though the role and 

mechanism of this gene is not completely understood, Yang and the team suggest that FGFR1 

signalling is a key regulator of prostate cancer proliferation, histopathological phenotype, and 

cancer progression to metastasis (Yang et al., 2013).  

TF RFX1 is a member of the regulatory factor X (RFX) gene family. It has wide range of 

functions starting from response of DNA damage ending in ciliary gene regulation (Min et al., 

2014). 

In addition the final data was linked to the initial results that were extracted from 

ANNOVAR. The ANNOVAR tool provides information about the functional consequences 

of the variants by annotating them. The resulting data is shown in the Appendix (Table 9.1 

and Table 9.2). The fourth column shows type of mutation characterization for a variant. 

There is a vast amount of data represented mostly as stopgain in the beginning of the table 

with the highest C score. Stopgain defines by ANNOVAR as non-synonymous SNV or 

frameshift insertion/deletion mutations that lead to termination of translation (stop codon). 

When the C score turns to the smaller values variants are defined mostly as non-synonymous 

SNV. In this thesis only single nucleotide substitution was observed. Since the core role of the 

stopgain is to terminate translation, this fact makes it obvious that a final protein would be 

synthesized incorrectly.    

There is a huge amount of genes present in a human organism, which have various duties. All 

these genes can be grouped into three groups regarding their contribution to cancer.  

The main group is tumour suppression genes, where they regulate cells growth, by monitoring 

the speed of division, repairing mismatched DNA and controlling a cell live time. Mutations 

in these genes will affect this process dramatically turning the process from positive into 

tumour growing. The typical member of this group is BRCA1 and BRCA2, which are also 

observed in the final data Table 7.2.  
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Table 7.2 BRCA2 and BRCA1 from resulting file with minimum criteria  

Chr Start Gene Mutations TF P value C score Min Diff 

13 32972626 BRCA2 Stopgain EN1_EN2_1 0 51 -0.033382742 

17 41234556 BRCA1 stopgain NFIC_1 0 37 -0.040655136 

13 32954181 BRCA2 nonsynonymous SNV ZNF354C_1 0 36 -0.005737616 

13 32953550 BRCA2 nonsynonymous SNV HNF4A_5 0 24.9 -0.011436927 

17 41203095 BRCA1 nonsynonymous SNV NFYA_2 0 22.5 -0.13351328 

13 32972525 BRCA2 nonsynonymous SNV UBP1::TFCP2_1 0 21.9 -0.037197775 

17 41219631 BRCA1 nonsynonymous SNV HLX_2 0 20.9 -0.009312052 

17 41249297 BRCA1 nonsynonymous SNV HSF1_HSF2_1 0 20.3 -0.999 

 

Two top genes BRCA2 and BRCA1 with the highest C score 51 and 37 respectively are 

considered as deleterious and they are also defined by ANNOVAR tool as stopgain, meaning 

the mutations in these genes disrupted the production of a correct protein by stop codon 

process.  The rest of these two genes are defined as non-synonymous SNV that is clearly the 

process of nucleotide substitution that is not considered as harmful.   

The other category of genes that contributes to cancer is oncogenes that turn healthy cells into 

cancerous cell. One of the typical genes associated with this group is WNT. Table 7.3 

represents 19 genes that belong to WNT gene family. There are two genes WNT5A and 

WNT11 that have the highest C score. Mutations in these genes lead to uncontrolled cells 

growth.  

Table 7.3 WNT family genes from resulting file with minimum criteria 

Chr Start Gene Mutations TF P value C score Min Diff 

3 55508479 WNT5A stopgain RUNX1_1 0 38 -0.001646881 

11 75902750 WNT11 stopgain DEAF1_4 0 38 -0.038779263 

7 120978983 WNT16 nonsynonymous SNV GABPA_1 0 36 -0.059504176 

1 113058989 WNT2B stopgain EVX1_EVX2_2 0 35 -0.011559067 

2 219736411 WNT6 nonsynonymous SNV MZF1_3 0 35 -0.028536945 

2 219754966 WNT10A nonsynonymous SNV E2F1_ 0 34 -0.4809375 

2 219747090 WNT10A stopgain NR3C1_3 0 33 -0.018505368 
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22 46318765 WNT7B nonsynonymous SNV MTF1_3 0 33 -0.012622572 

12 49363980 WNT10B nonsynonymous SNV HNF4A_6 0 32 -0.009207 

17 44847372 WNT3 nonsynonymous SNV WT1_1 0 29.7 -0.026367188 

2 219755011 WNT10A nonsynonymous SNV IRF8_2 0 29.4 -0.034280205 

1 113059840 WNT2B nonsynonymous SNV E2F1_ 0 24.1 -0.187125 

3 13896262 WNT7A nonsynonymous SNV E2F1_ 0 24 -0.002209947 

1 22446566 WNT4 nonsynonymous SNV ZNF354C_1 0 23.3 -0.001610957 

17 44952508 WNT9B nonsynonymous SNV E2F1::TFDP1_1 0 22.8 -0.1875 

12 49374437 WNT1 nonsynonymous SNV GABPA_1 0 22.7 -0.004284668 

 

The last group is DNA repair genes that correct mistakes during process of cells division. 

Obviously mutations in these genes can lead to the lack of repair. There are different types of 

DNA repair where various genes are participating. BRCA1 and WNT are one example of 

typical for this process gene. 

It is important to be aware of certain limitations that can bias the results produced by selected 

tools. The quality of the experimental data affects weights, used in the PWMs. Moreover, the 

sensitivity and specificity of the PWMs are at the low level (Gershenzon et al., 2005). The 

CADD tool also has limitations, for example the accuracy of the C score might be affected by 

the local mutation rate, background selection, and biased gene conversion parameters. There 

is a need of the 'gold standard' data, which can help in annotating variants better (Kircher et 

al., 2014).  

 

8 Conclusion 

This section compiles the key-results of the thesis work. The main result of the thesis is the 

following basic conclusions:  

• The set of putative genes was produced as the final file;  

• The computational implementation of the PWMs work allowed to compute TFs 

binding scores, which are essential in predicting the TFBSs;  
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The first research question, “Q1: Which variants from provided input data have potential for 

“dual codon usage?” led to the set of variants that have potential for ‘dual codon usage’ and 

was represented in the final file. It was important to extract and record those variants from 

provided data that could have potential for ‘duons’. Moreover, three types of genes PDGFA, 

CREB5, FGFR1 with TFs as CREB1, USF2, and RFX1 respectfully were analysed in the 

section ‘Results and Discussion’. Mutations in a gene structure could lead to the production of 

the same amino acids as they can be encoded by a multiple combination of nucleotides. 

However, the TF that binds to such region receives a wrong pattern and obviously wrong 

instructions are given to the expression of a gene. Table 7.1 illustrates that the PDGFRA gene 

has alteration of nucleotide C into A, where TF CREB1_5 binds to the altered sequence thus 

represents pathogenic properties.  

 

The second research question, ‘Q2: How TFBSs can be predicted by applying quantitative 

PWMs framework?’ indicates the quantitative approach called PWMs, which is used for 

computing TFs binding scores and predicting the best binding site. It is essential to know TF 

binding sites as this process reflects on a gene regulation process.  

 

The third research question ‘Q3: What kind of tools can be applied for implementing 

theoretical concepts to lead the research to the final result?’ was answered that CADD and 

PWMs were the main sources used to achieve final results. The CADD tool was used as the 

most significant tool for detecting deleterious variants from provided data. As the major 

feature of this tool is combination of different characteristics used by other recourses into one 

score, that makes evaluation of an output significantly easy. This thesis work proved that the 

computational outcome by CADD tool is very accurate and time efficient, and indeed can be 

used as the trustful resource for scoring and labelling variants. The comparison of statistical 

analysis and CADD results of this project proved that C score produced by CADD tool 

determines the data correctly as pathogenic. On the other hand the perfect match of CADD 

tool might be explained by a relatively small amount of examined data and possibly perfect 

match to the variants that were already detected as deleterious by many other resources. The 

concept of computing TF binding scores was based on PWMs, which was implemented by 

Python scripting language.  

 

Overall analysis indicates that exome regions carry a disease causing amount of data, which 

requires thorough investigation and cataloguing. Creation of variants catalogues can help 
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bioscience in further investigations. It makes the job easier in comparing results to already 

existing variants catalogues and eliminating irrelevant data. It has also been seen that dual 

work of codons might lead to the distraction of the instructions that TFs provide than bind to 

the mutated sequence.  

 

Only 0.88% variants from entire provided data were identified as deleterious. These genes 

from the resulting data were analysed for capability to develop prostate cancer. The KEGG 

pathway database supports the view that the potential of these genes can progress into prostate 

cancer. 
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9 APPENDIX A 

Table 9.1 Linked data from the final file with minimum criteria and ANNOVAR file 

Chr Start  Gene ExonicFunc.refGene TF P value C score Min Diff 

19 9033237 MUC16 stopgain NKX3-2_1 0 61 -0.009682629 

2 179463948 TTN stopgain DEAF1_5 0 60 -0.10699776 

2 179473091 TTN stopgain LEF1_1 0 60 -0.0082875 

7 100389677 ZAN unknown NFIC_1 0 59 -0.023013089 

7 100392843 ZAN unknown CREB1_5 0 59 -0.431372216 

1 89729430 GBP5 stopgain ETS1_6 0 57 -0.002495556 

19 7964978 LRRC8E nonsynonymous SNV DEAF1_5 0 56 -0.004070077 

4 1389433 CRIPAK stopgain MYC_1 0 55 -0.196483597 

16 67318742 PLEKHG4 stopgain GABPA_1 0 55 -0.004420431 

4 1388436 CRIPAK stopgain MTF1_3 0 54 -0.329175 

4 1389215 CRIPAK stopgain AHR_ARNT_HIF1A_1 0 54 -0.80919 

6 38998103 DNAH8 stopgain HSF1_HSF2_2 0 54 -0.168066747 

14 64560092 SYNE2 stopgain TEAD1_1 0 53 -0.000197554 

16 20946773 DNAH3 stopgain BRCA1_1 0 53 -0.006708936 

2 152474966 NEB stopgain YY1_6 0 52 -0.0143856 

16 20944746 DNAH3 stopgain BRCA1_1 0 52 -0.002148221 
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Table 9.2 Filtered data based on C score greater than 20 
Chr Start Ref Alt Func.refGene Gene ExonicFunc.refGene Snp138 C score Min Diff 

19 9033237 G T exonic MUC16 stopgain NA 61 -0.009682629 

2 179463948 G A exonic TTN stopgain NA 60 -0.10699776 

2 179473091 C A exonic TTN stopgain rs79432997 60 -0.0082875 

7 100389677 C T exonic ZAN unknown rs149104440 59 -0.023013089 

7 100392843 T A exonic ZAN unknown NA 59 -0.431372216 

1 89729430 T A exonic GBP5 stopgain NA 57 -0.002495556 

19 7964978 G A exonic LRRC8E non-synonymous SNV rs370440409 56 -0.004070077 

4 1389433 C A exonic CRIPAK stopgain rs145208075 55 -0.196483597 

16 67318742 C T exonic PLEKHG4 stopgain rs142861229 55 -0.004420431 

4 1388436 C G exonic CRIPAK stopgain rs367925864 54 -0.329175 

4 1389215 C T exonic CRIPAK stopgain rs112507956 54 -0.80919 

6 38998103 C T exonic DNAH8 stopgain rs146551804 54 -0.168066747 

14 64560092 G A exonic SYNE2 stopgain rs2781377 53 -0.000197554 

16 20946773 C T exonic DNAH3 stopgain rs144426187 53 -0.006708936 

2 152474966 C T exonic NEB stopgain NA 52 -0.0143856 

16 20944746 C T exonic DNAH3 stopgain rs377349475 52 -0.002148221 
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10 APPENDIX B 

 

Table 10.1 Final result, based on max difference criteria  

 

Original Sequence Chr Start Ref Alt Gene TF P value C score Max Diff 
CCATATTTATTCTGGGCCATGATT 

CGGAATACATATTCATGGCCTTCTAGC 2 179463948 G A TTN DEAF1_5 0 60 0.0336 

GGGCTTTTCCCCCAGGAGCTAGCT 
CGGGCAGCCACCCTGGAGAGCCTCCGG 19 7964978 G A LRRC8E DEAF1_5 0 56 0.0594 

TGGAGTGCCCGCCTGCTCACACGTG 
CCCATGTGGAGTGCCTGCCTGCTCAC 4 1389433 C A CRIPAK MYC_1 0 55 0.2673 

CCCTGACTTGCCTCCTGCCCACTTCC 
GAAAGATGTGGGCTCTGGCCACGGG 16 67318742 C T PLEKHG4 GABPA_1 0 55 0.4137 

GGAGTGCCCGCCTGCTCACACGTGCC 
GACGTGGAGTGCCCGCCTGCTCACG 4 1389215 C T CRIPAK AHR_ARNT_HIF1A_1 0.0011 54 0.0016 

GTAGTCATAAAACAGACCAATGAATG 
GGATGAAGAAATAGAAAATTTGAAA 14 64560092 G A SYNE2 TEAD1_1 0 53 0.2398 

TCGGAACCCAGCCAATGCCTTTCATC 
CATTCAAGGTCTGACTTATACAAAT 2 152474966 C T NEB YY1_6 0 52 0.0275 

GCTAAGTCAGTGGGATAGCCCAATGC 
GAGTGAAGCTGTCAATCTGGAAGCC 8 100832183 C T VPS13B ZFP161_2 0 51 0.0006 

AGGACATGAAAATTATGGCAGAAAAG 
AAGAACCAGATCATACTTATGAACC 3 130187662 G T COL6A5 SPI1_1 0 50 0.0088 

GTAGCTGCACAAAAGGGGGACAGGCC 
CACCTTTCCTGCTGTTTTAAGGACT 1 144852390 C T PDE4DIP ZNF354C_1 0 49 0.3746 

ACACCTCCCTGAGCTACTCTGGCTGGG 
GTGGCAGCAGTGGGCACGATGCCC 3 119306449 G A ADPRH CHURC1_1 0 49 0.0115 

TTTGGTTGGTCATGAGATGGAAAAAGT 
AGCCATAGCCAGCACCACACACTC 6 51752011 G T PKHD1 ZNF384_1 0 49 0.0154 

TGAATGGGTCAATGGAGGTGCCCTTCA 
GTTCCATAACTTTGTGATGGTGAA 8 110477066 C T PKHD1L1 IRF1_2 0 49 0.1702 

TGTGACAAACAGAAGTCTTGCATTTGAA 
GAAGGAAGCCAGAATACAACTAT 11 108183151 G T ATM SPI1_1 0 49 0.0184 

AAGAAAGAGGCTTTCAGATTCTAAAG 
GAAAGAATACATGCGGTGGATTTTT 13 103527930 G T 

BIVM-
ERCC5,ERCC5 

NFATC2_1 0 49 0.1514 

TTGAACTTTTGTTTCCGCCTGTTTCC 
ATAAAGTACAGATGTCTTCCAGGCC 16 70016361 C T PDXDC2P NFATC1_1 0 49 0.0974 
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Table 10.2 Final result, based on min difference criteria 

Original Sequence Chr Start Ref Alt Gene TF P value C score Min Diff 
TTCTTAAGGAGCGTCTCACCTGAGT 

GAGGCTAGTCTGCAGCCTGAATAGAG 19 9033237 G T MUC16 NKX3-2_1 0 61 -0.009683 

CCATATTTATTCTGGGCCATGATTC 
GGAATACATATTCATGGCCTTCTAGC 2 179463948 G A TTN DEAF1_5 0 60 -0.106998 

TGTGTACTGTTAACTTCACGTTTTT 
CAAGCCAGTAACCCAAAATGGGGCTT 2 179473091 C A TTN LEF1_1 0 60 -0.008288 

TCCGAATGTAGCCCGGAGCAGCTGG 
CGAGCAACAGCACCCAGGCCTGTAGG 7 100389677 C T ZAN NFIC_1 0 59 -0.023013 

AAAGCCCGTGTCTGCAGAACCCCTG 
TCAGAATGACGGGCAGTGTCGGGAGC 7 100392843 T A ZAN CREB1_5 0 59 -0.431372 

AGAACTAGGGATACCTGTATTCCTT 
TCCGAGGCTCCCGATAGTACTTTGCC 1 89729430 T A GBP5 ETS1_6 0 57 -0.002496 

GGGCTTTTCCCCCAGGAGCTAGCTC 
GGGCAGCCACCCTGGAGAGCCTCCGG 19 7964978 G A LRRC8E DEAF1_5 0 56 -0.00407 

TGGAGTGCCCGCCTGCTCACACGTG 
CCCATGTGGAGTGCCTGCCTGCTCAC 4 1389433 C A CRIPAK MYC_1 0 55 -0.196484 

CCCTGACTTGCCTCCTGCCCACTTC 
CGAAAGATGTGGGCTCTGGCCACGGG 16 67318742 C T PLEKHG4 GABPA_1 0 55 -0.00442 

TGTCGATGCGGAGTGCCCGCCTGCT 
CACACATGCCCATGTGGAGTGCCCGC 4 1388436 C G CRIPAK MTF1_3 0 54 -0.329175 

GGAGTGCCCGCCTGCTCACACGTGC 
CGACGTGGAGTGCCCGCCTGCTCACG 4 1389215 C T CRIPAK 

AHR_ARNT_ 
HIF1A_1 

0 54 -0.80919 

GACCTTCATCACTGTGGTATATTTA 
CGAACAGTGTTGTCCCCGGATCACTG 6 38998103 C T DNAH8 

HSF1_ 
HSF2_2 

0 54 -0.168067 

GTAGTCATAAAACAGACCAATGAAT 
GGGATGAAGAAATAGAAAATTTGAAA 14 64560092 G A SYNE2 TEAD1_1 0 53 -0.000198 

CTGTGTGAAGTAGAATCCAGAGATCCA 
AAATACCACAGGGGGCCCCTTGTC 16 20946773 C T DNAH3 BRCA1_1 0 53 -0.006709 

TCGGAACCCAGCCAATGCCTTTCATC 
CATTCAAGGTCTGACTTATACAAAT 2 152474966 C T NEB YY1_6 0 52 -0.014386 

CCCCAATCTGCATCGTTTTCCTGTCC 
CAACGGGCACCTTCTAAGAAGAGCC 16 20944746 C T DNAH3 BRCA1_1 0 52 -0.002148 

TGTTGGTAGGTTGAGGGCAAATGATG 
AAGTTCTCAGCTTCTTATAGATTTG 2 21228410 G T APOB GATA2_4 0 51 -0.116028 

GCTAAGTCAGTGGGATAGCCCAATGC 
GAGTGAAGCTGTCAATCTGGAAGCC 8 100832183 C T VPS13B ZFP161_2 0 51 -0.091146 

GAATTCTCCTCAGATGACTCCATTTA 
AAAAATTCAATGAAATTTCTCTTTT 13 32972626 A T BRCA2 EN1_EN2_1 0 51 -0.033383 
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