

Impact of Evaluation Methods on Decision Tree Accuracy

Batuhan Baykara

University of Tampere

School of Information Sciences

Computer Science

M.Sc. thesis

Supervisor: Prof. Martti Juhola

April 2015

i

University of Tampere

School of Information Sciences

Computer Science

Batuhan Baykara: Impact of Evaluation Methods on Decision Tree Accuracy

M.Sc. thesis, 72 pages, 6 index pages

April 2015

Decision trees are one of the most powerful and commonly used supervised learning

algorithms in the field of data mining. It is important that a decision tree performs

accurately when employed on unseen data; therefore, evaluation methods are used to

measure the predictive performance of a decision tree classifier. However, the

predictive accuracy of a decision tree is also dependant on the evaluation method

chosen since training and testing sets of decision tree models are selected according to

the evaluation methods.

The aim of this thesis was to study and understand how using different evaluation

methods might have an impact on decision tree accuracies when they are applied to

different decision tree algorithms. Consequently, comprehensive research was made on

decision trees and evaluation methods. Additionally, an experiment was conducted

using ten different datasets, five decision tree algorithms and five different evaluation

methods in order to study the relationship between evaluation methods and decision tree

accuracies.

The decision tree inducers were tested with Leave-one-out, 5-Fold Cross Validation,

10-Fold Cross Validation, Holdout 50 split and Holdout 66 split evaluation methods.

According to the results, cross validation methods were superior to holdout methods in

overall. Moreover, Holdout 50 split has performed the poorest in most of the datasets.

The possible reasons behind these results have also been discussed in the thesis.

Key words and terms: Data Mining, Machine Learning, Decision Tree, Accuracy,

Evaluation Methods.

ii

Acknowledgements

I wish to express my sincere gratitude to my supervisor Professor Martti Juhola who

have guided and encouraged me throughout this thesis. Additionally, I would like to

thank Kati Iltanen for her support and valuable comments.

I would also like to thank my parents and my little sister for their continued support and

motivation throughout my life.

March 2015, Tampere

Batuhan Baykara

iii

Table of Contents

1. Introduction .. 1

1.1. Research Questions ... 2

1.2. Structure of the Thesis ... 2

2. Knowledge Discovery in Databases (KDD) .. 3

2.1. Data Mining ... 5

2.2. Machine Learning .. 7

2.2.1. Supervised Learning ... 8

2.2.2. Unsupervised Learning ... 9

2.2.3. Semi-Supervised Learning .. 9

2.2.4. Reinforcement Learning ... 10

2.3. What is the difference between KDD, Data Mining and Machine Learning? 10

3. Decision Trees ... 12

3.1. Univariate Decision Trees .. 14

3.1.1. Attribute Selection Criteria... 17

3.1.1.1. Information Gain .. 18

3.1.1.2. Gain Ratio .. 19

3.1.1.3. Gini Index ... 20

3.1.1.4. Twoing Criterion ... 21

3.1.1.5. Chi-squared Criterion ... 21

3.1.1.6. Continuous Attribute Split .. 22

3.1.2. Pruning Methods ... 22

3.1.2.1. Cost Complexity Pruning .. 25

3.1.2.2. Reduced Error Pruning ... 25

3.1.2.3. Pessimistic Pruning ... 26

3.1.2.4. Minimum Error Pruning .. 26

3.1.2.5. Error Based Pruning.. 27

3.1.3. Decision Tree Induction.. 28

3.1.3.1. ID3 ... 29

3.1.3.2. C4.5 .. 30

3.1.3.3. C5.0 .. 31

3.1.3.4. CART .. 31

3.1.3.5. CHAID... 32

3.1.4. Rule sets .. 32

iv

3.1.5. Advantages and Disadvantages of Decision Trees ... 34

3.2. Multivariate decision trees .. 36

4. Evaluation of Decision Trees .. 37

4.1. Performance Evaluation Metrics and Measures ... 37

4.2. Accuracy Estimating Methodologies .. 40

4.2.1. Holdout Method .. 41

4.2.2. K-Fold Cross Validation .. 42

4.2.3. Leave-one-out Method .. 43

4.2.4. Bootstrapping .. 44

5. Research Method .. 46

5.1. Motivation and Purpose of the Experiment.. 46

5.2. Datasets .. 47

5.2.1. Detailed Dataset Explanations .. 48

5.2.2. Preprocessing the Datasets .. 51

5.3. Algorithms and Evaluation Methods Chosen .. 54

5.4. Tools Used ... 55

5.4.1. WEKA ... 55

5.4.2. IBM SPSS Modeler.. 55

5.4.3. C5.0/See5 .. 56

5.4.4. RapidMiner .. 56

5.4.5. Other Tools .. 57

6. Results .. 58

6.1. Result Evaluation ... 63

7. Discussion and Conclusion ... 67

References .. 69

v

List of Figures

Figure 2.1. KDD process .. 4

Figure 2.2. Machine learning process .. 8

Figure 3.1. PlayTennis example. ... 13

Figure 3.2. Branching types... 15

Figure 3.3. Post-pruning example .. 23

Figure 3.4. TDIDT family .. 28

Figure 3.5. Example tree. .. 34

Figure 4.1. Confusion matrix examples. .. 38

Figure 4.2. Detailed confusion matrix ... 39

Figure 4.3. Holdout method... 41

Figure 4.4. K-Fold cross validation. .. 42

file:///C:\Users\Batuhan\Desktop\Masters%20Thesis\Batuhan%20Baykara%20Master's%20Thesis%20Final%20Edited.docx%23_Toc413102344

vi

List of Tables

Table 5.1. Dataset summary. ... 48

Table 5.2. Arrhythmia missing values. .. 52

Table 5.3. Audiology missing values. .. 53

Table 5.4. Breast cancer missing values... 53

Table 5.5. Hepatitis missing values. .. 53

Table 6.1. Arrhythmia test results. ... 59

Table 6.2. Audiology test results. .. 59

Table 6.3. Balance scale test results. .. 60

Table 6.4. Breast cancer test results. .. 60

Table 6.5. Glass test results. .. 61

Table 6.6. Hepatitis test results. ... 61

Table 6.7. Ionosphere test results. .. 62

Table 6.8. Iris test results. ... 62

Table 6.9. Musk1 test results. .. 62

Table 6.10. Zoo test results.. 63

Table 6.11. Combined test results. ... 65

1

1. Introduction

For the past 20-30 years, the amount of data that has been digitalized or has been

gathered through digital environments such as the web has been in significant amounts.

It has been estimated that the amount of stored information doubles every 20 months

[Rokach and Maimon, 2014]. As a result, it has become impossible to digest the

gathered data manually by people and the need for other solutions that would enable

mankind to process the gathered data easier has arisen. Therefore, different data analysis

techniques have recently had vital importance in various areas: public health and

healthcare, science and research, law enforcement, financial business areas and

customer targeted commercial areas. Especially with the recent advancement in social

media services, immense amount of user data are being gathered and processed on daily

basis [Mosley Jr, 2012].

Receiving large amount of data has given companies, governments and private

people an opportunity to use these raw data and turn them into valuable information.

For instance, companies have started improving their businesses by the help of data.

Business intelligence (BI) and business analytics (BA) are two examples of business

enhancement techniques which are applied to existing large amount of data the

companies have gathered. Then the findings are used for future planning and decision

making in order to increase company’s profit margin. In order to make use of large

amount of data, some processes and techniques need to be applied. Data mining (DM),

machine learning (ML) and knowledge discovery in databases (KDD) are the processes

that enable turning data into useful knowledge. Application of these processes has

become more common for the past years and is becoming even more frequent.

Data mining is one of the mostly applied processes to make use of large amount of

data. There are different types of data mining objectives but the two most commonly

used are predictive modeling and descriptive modeling. Predictive modeling is essential

because through this task one can make predictions about the future by learning from

the previous data. This can be considered as a frequently applied task within the concept

of data mining. The predictive modeling objective is accomplished by making use of

various machine learning or data mining algorithms such as decision tree induction

algorithms. As it can be understood from the objective’s title, there needs to be a model

that could be used to make predictions from the learned data. Therefore, a model is built

from existing data by the help an algorithm where decision tree induction algorithms

can be considered as a good example. Later on, this model is used to make predictions

on the new unseen data.

Decision tree performances are evaluated according to the level of accuracy

obtained from the predictions that are made. Hence, accuracy is one of the most

important evaluation measures for decision trees. In order to make good and stable

predictions from the model, accuracy obtained from the decision tree model needs to be

high. However, there are various reasons that might affect the accuracy of decision tree

2

models negatively as well as positively. One of the possible reasons that might affect

accuracy is the evaluation method that is chosen for the decision tree induction. The

portions of the data to be used when the model is being built are decided according to

the choice of the evaluation method. Thus, the resulting accuracy of a decision tree is

dependent on the evaluation method that is chosen in the beginning of the induction

process.

Even though decision trees are widely and frequently applied in data mining and

machine learning context, there are not many studies that have made comparisons of

different decision tree algorithms when evaluated by different methods in terms of

performance. Therefore, the aim of this thesis is to study and understand how using

different evaluation methods might have an impact on decision tree accuracies when

they are applied to different decision tree algorithms.

1.1. Research Questions

As stated earlier in the introduction, the resulting accuracy of a decision tree on unseen

cases is dependent on the evaluation method. However, the degree of dependency and

the best overall evaluation method is unknown. Therefore, the main aim of this thesis is

to study the effects of evaluation methods on decision tree predictive performance

measures. Accordingly, the research questions that are going to be answered in this

thesis are given below;

1) How much does the evaluation method chosen affect the predictive

performance of decision trees?

2) Which evaluation method is superior to others in most cases?

1.2. Structure of the Thesis

The thesis is structured in the following way. After the introduction, background

information about the research field is given. Data mining, machine learning and

knowledge discovery are explained in detail and the differences between them are also

discussed. After the second part of the thesis, decision tree topic is explained in a

comprehensive manner so that the all literature knowledge needed in the experimental

part of the thesis is covered thoroughly. Decision tree structure is explained first and

then univariate decision trees are discussed in detail. Univariate topic includes the

subtopics of: attribute selection criteria, pruning methods, decision tree induction,

rulesets and advantages and disadvantages of decision trees. Afterwards, various state of

the art evaluation methods are explained. When all the literature regarding the thesis is

given, research methodology is explained. All the necessary background information

about the experimental part of the thesis are discussed in the research methodology part.

Lastly, the results are explained which finally lead to a brief discussion and conclusion

part.

3

2. Knowledge Discovery in Databases (KDD)

The terms data mining and knowledge discovery in databases have been very popular

for fields of research, industry and media attention especially since the 1990's. There is

not a conventional or universally used term that can summarize the objective of

obtaining valuable knowledge from some data. However, the mostly agreed term that

generalizes the process is; knowledge discovery in databases. “There is an urgent need

for a new generation of computational theories and tools to assist humans in extracting

useful information (knowledge) from the rapidly growing volumes of digital data. These

theories and tools are the subject of the emerging field of knowledge discovery in

databases (KDD) [Fayyad et al., 1996].”

KDD is vital because its application areas are very wide. Besides research, the main

business KDD application areas include marketing, finance, fraud detection,

manufacturing, telecommunications, and internet agents [Fayyad et al., 1996]. Of

course the area keeps expanding as days go by and now with the emerge of social

media, the application areas have started to shift towards processing raw data that are

being gathered from social sites to give leverage to a company or an organization. This

is mainly because the digital data that has been gathered through social sites and the

internet increased in large amounts. A recent and interesting example is the prediction

of flu trends [Han and Kamber, 2006]. Google, which is a world leading technology

firm and a search engine in the core, is receiving hundreds of millions of queries every

day. After processing those queries, Google has actually found out that a relation

between the number of people who have searched for flu related information exists with

the number of people who actually have flu symptoms. By the help of such analytics,

flu trends and activities can be estimated 2 weeks earlier than the traditional systems

can. This is just one example why KDD can be very important when it comes to

turning great amount of data to knowledge that might have great importance.

KDD cannot be seen as a single process; it is a process which has sub processes

within each other. Thus, it combines various different research fields according to the

objective of KDD process and the data that is going to be used. Some fields that are

considered part of KDD are; machine learning, data mining, pattern recognition,

databases, database management systems, statistics, artificial intelligence (AI),

knowledge acquisition for expert systems, data visualization and high performance

computing [Fayyad et al., 1996]. All these are combined to make one large process of

KDD which is generalized in 9 steps. A scheme for KDD is below in Figure 2.1.

4

Figure 2.1. KDD process [Fayyad et al., 1996].

1. The first step of KDD is about understanding the requirements. It is probably

one of the most important steps since the application domain and the objective

of this KDD process is decided according to customer’s point of view. The

goal or the objective must be clear to continue with the next steps.

Additionally, relevant prior knowledge needs to be understood and studied.

2. The second step is basically choosing or deciding on a target dataset that is

relevant to the objectives. The data set is important since the remaining process

will be based on the chosen dataset.

3. The third step is data cleaning and preprocessing. In this step, the data that has

chosen earlier is processed so that all the probable noise is cleared and

additional actions are taken against missing data attribute or attribute values.

This step is important because the quality of the outcome relies on the quality

of the data set.

4. The fourth step consists of data reduction and projection. The useful features,

attributes in the data are found. Later on, the number of variables is reduced so

that the attributes which are not highly relevant to the process are eliminated.

This step saves time and increases efficiency and the accuracy in most cases.

5. The fifth step is a sub process of data mining. In this first step of data mining,

the objective of the KDD process is compared with the most suitable data

mining methods and one of them is chosen. These data mining methods

contain; summarization, classification, regression, clustering and some others.

6. The sixth step of KDD process is the second step of data mining. First, the

methods that are going to be used when searching for patterns in the data are

selected. Then, the models and parameters that are going to be used are

5

selected according to the data mining method chosen and the overall KDD

process objectives.

7. The seventh step is the last step of data mining process. In this step, the

methods and models that are chosen are applied to the dataset. Patterns that

might be interesting are searched for by being represented as classification

rules or trees, regression and clustering.

8. The eight step is the evaluation of the data mining results. The patterns that are

found or the data that has been summarized are examined in order to find

something useful. If not, the earlier steps can be repeated until something that

is relevant or useful is found.

9. The ninth, last step is consolidation of the found knowledge. The knowledge

that has been found is presented to the user in a clear and easily understandable

fashion.

This is the generalization of the KDD process and its steps. Some of these steps can

be skipped or combined according to the needs of users. As mentioned earlier, the steps

can be seen as iteration points or loops; therefore, some steps can be repeated to gain

better results.

2.1. Data Mining

“Data mining is the analysis of (often large) observational data sets to find unsuspected

relationships and to summarize the data in novel ways that are both understandable and

useful to the data owner [Hand et al., 2001].” To put it shortly, it is the process of

discovering interesting patterns and knowledge from large amount of data. Data mining

is formed in the intersection of various different fields such as: artificial intelligence,

machine learning, statistics and database systems. Machine learning is an important

field for data mining because most of the algorithms that are used in data mining

methods belong to algorithms that exist in machine learning field. In the beginning, data

mining term was mostly used by statisticians, database researchers and business

communities; however, nowadays it seems such a term is used by everyone to refer to

the whole KDD process [Jackson, 2002].

Data mining has its own purposes or tasks;

 Exploratory Data Analysis: The task is to find a useful or rational connection

between variables through exploring the data. However, the main issue is there

are not any prior objectives or ideas when going through the exploration. It is

in random fashion and is based on interactive and visual techniques. The data

scientist try to spot an interesting pattern of information by visually analyzing

the obtained charts. Such a method can be very effective at times, mostly with

small datasets that have less number of variables; the human perspective can

analyze and spot some interesting patterns that machine and algorithms might

6

not. Some plots that are used to support the visual analysis process can be

scatter plots, box plots, pie charts and so on. Additionally, as dimensionality

increases it becomes harder to visualize the data thus leading to inefficient data

exploration results [Hand et al., 2001].

 Descriptive Modeling: As it can be understood from the title, the task is to

describe the data. Some descriptive methods or models are; overall probability

distribution (density estimation), cluster analysis and dependency modeling

[Hand et al., 2001]. For example in cluster analysis the data is divided into

groups so that the data instances that are more related and close to each other

fall into the same groups. It is considered to be one of the most powerful

methodologies in descriptive modeling and in data mining.

 Predictive Modeling: The main task is to make predictions and estimates on

new instances based on the models that have been built by examining the

already existing data instances [Hand et al., 2001]. It has two subcategories;

classification and regression. The difference between them is the target

attribute of classification models are categorical where as regression models are

numerical or quantitative. There have been many developments and

breakthroughs in predictive modeling thank to fields of machine learning and

statistics. One of those developments is decision trees and it is in the group of

predictive modeling. Decision trees are one of the most powerful and widely

used methods in the field.

 Discovering patterns and rules: This task is different from the previously

mentioned ones since it does not require model building [Hand et al., 2001].

The main objective is to find interesting patterns in the existing data using

pattern detection or recognition methods. The most important example is

market database transactions. The aim is to find items that are bought

frequently and in accordingly with other items so that a frequent item set is

found. Then these frequent itemsets are used to assess and find relevant

patterns in the data. Such kind of pattern finding is called association rule

mining.

 Retrieval by content: This task is also related with pattern finding and matching

instead of model building. The aim is to find patterns in the data that are

defined earlier or desired. Retrieval by content is used for image or text based

datasets mostly [Hand et al., 2001]. Similarity is the key measure in this task.

For example, image data are processed so that a sample image, sketch or

description is given beforehand to retrieve relevant image from the data. In text

based datasets, keywords can be the key similarity measure and such keyword

can be searched for in text based documents such as Word files, PDF files or

even Web pages.

7

The process of data mining has tried to be standardized throughout the years, which

eventually lead to two mostly used standards; CRISP-DM and SEMMA [Jackson,

2002]. Cross Industry Standard Process for Data Mining (CRISP-DM) is one of the

leading process methodologies for data mining that is used. The basic steps and

principle are almost identical to KDD process. It consists of the following steps:

business understanding, data understanding, data preparation, modeling, evaluation and

deployment. SEMMA is another process which actually is an acronym for its steps;

sample, explore, modify, model and assess. CRISP-DM is more widely used than

SEMMA.

2.2. Machine Learning

Machine learning (ML) is a field that was born from the field of artificial intelligence

(AI). Although being a computer science field, it is closely related with statistics and

many other fields such as philosophy, information theory, biology, cognitive science,

computational complexity and control theory. The main question that lead to the birth of

machine learning was: Can a machine be thought to think like human beings and learn?

This question was mainly raised after Alan Touring’s paper: “Computing Machinery

and Intelligence” and his research question: “Can machines think?” [Turing, 1950].

There were concentrated researches on ML and some important discoveries were made

such as perceptrons and neural networks. However, later on machine learning was left

outside the field of AI due to ML’s emphasis on logical and knowledge based approach.

Hence, both fields were separated and afterwards machine learning flourished in the

1990s as a separate field and started improving and expanding rapidly.

A clear definition that was given by Tom Mitchell declares machine learning as: "A

computer program is said to learn from experience E with respect to some class of tasks

T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E [Mitchell, 1997].” Therefore, machine learning is the

science of teaching the machines to learn by itself with the use of existing data and

algorithms. The learning process is usually done through a model that is learned from

the existing data and this model is used for future predictions and acts. The model is

updated constantly or to put it in different words, the model learns at it sees new data.

The figure 2.2 below illustrates the machine learning process in a very clear and

detailed way.

8

Figure 2.2. Machine learning process [Lai et al., 2007].

 In the first step of the process, data that is going to be used for the machine learning

purpose is gathered and transformed into a proper form. Then this data is divided into

three parts; training, testing and validation data. However, the data is usually divided

into two parts training and testing. Validation data is mostly used in neural networks

since its hidden nodes require another step of validating the hidden nodes. Afterwards

the training data is used in training phase of the process to learn the data and build a

model. Then, the acquired models are tested with the separate testing data to correct or

evaluate the models. The best model is chosen amongst the models at the testing phase.

If it is a specific algorithm that requires one more level of validation like neural

networks, the evaluation of models is made at validation level. If none of the models are

at satisfactory level, then the process is repeated until a specified quality is reached or

the process is quit. After the model is chosen, it means the model chosen is ready for

practical applications and is able to make predictions, learn and evolve with the system.

There are lots of machine learning algorithms and all of them have different type of

methodologies or structures; however, the algorithms can be differentiated from each

other in some level and be grouped according to some characteristics of their own.

Consequently, there are four different kinds of learning groups in which the algorithms

are grouped in; supervised learning, unsupervised learning, semi-supervised learning

and reinforcement learning.

2.2.1. Supervised Learning

In supervised learning, the data must have labeled attributes for inputs and most

importantly an attribute labeled for the desired output value [Alpaydin, 2014]. Each

data instance should have one variable that designates the desired output value

according to its input values or variables. The input variables should be important

factors in determining the output value, and should be kept at a reasonable and effective

9

amount. The output value can either be a categorical (for classification tasks) or

continuous (for regression tasks). These two types of tasks are used in decision tree

learning, which is a supervised algorithm, and will be explained in detail in the further

chapters.

The goal of supervised learning is to build a model that represents the training data

correctly and in a simple manner. The model is assessed before it is chosen amongst

other models according to its accuracy, precision or recall rate [Lai et al., 2007].

Additionally, it might be assessed and improved after it is being used in practical

solutions as well. Most commonly used algorithms in supervised learning besides

decision trees are; artificial neural networks, kernel estimators, naïve Bayes classifiers,

nearest neighbor algorithms, support vector machines and random forests (decision trees

with ensemble methods). Supervised learning algorithms’ application areas include;

bioinformatics, database marketing, information retrieval and more commonly pattern

recognition areas (image, voice and speech recognition).

2.2.2. Unsupervised Learning

Unlike supervised learning, the data does not have any prior output label. Therefore, the

algorithms’ main purpose is to learn the data by itself since the data is unlabeled.

Regularities, patterns or any kind of commonalities between the data samples are

investigated and tried to be grouped so that the data that are related to each other are in

the same group [Lai et al., 2007]. It is closely related with density estimation in

statistics [Alpaydin, 2014]. Three of the important unsupervised learning algorithms are

clustering, principal component analysis and EM algorithm. Clustering algorithm also

has its own various methodologies to group the data; k-means algorithm, mixture

models, hierarchical clustering and some other methodologies. However, the main goal

is to group the data instances in a way that the instances in the same group are called

clusters and the instances within the clusters are more similar to each other than in any

other instances that belong to different clusters. In other words, intracluster similarity is

high and intercluster similarity is low. Principal component analysis (PCA) is used for

reduction of the number of variables or dimensions in the data so that for example the

performance of learning can be maximized. Other important unsupervised method, the

expectation-maximization (EM) algorithm tries to maximize the likelihood of

parameters in the model acquired from the data in cases where equations in the learning

process cannot be solved directly.

2.2.3. Semi-Supervised Learning

As it can be understood from the title, semi-supervised learning is a group of supervised

learning algorithms and tasks that also make use of unsupervised learning or in other

words unlabelled data. The data used in semi-supervised learning mostly consists of

10

unlabelled data and a small amount of labeled data. The main reason to combine both

learning methods is to increase overall accuracy of the learning process. It has proven to

be better than the other supervised methods under some circumstances [Lai et al.,

2007]. A downside of semi-supervision exists; the labeled data needs to be generated by

highly skilled human beings thus making the whole process more expensive.

Semi-supervised learning can also be referred to as transductive learning or

inductive learning. It makes use of supervised and unsupervised learning algorithms and

combines the strengths from both sides to generate a semi-supervised algorithm. Some

semi-supervised methods are; self-training, mixture models, co-training and multiview

learning, graph based methods and semi-supervised support vector machines.

2.2.4. Reinforcement Learning

“Reinforcement learning (RL) is an approach to machine intelligence that combines the

fields of dynamic programming and supervised learning to yield powerful machine

learning systems [Lai et al., 2007].” A decision making agent, assume a robot, is given

a goal and the robot tries to reach that goal through learning by itself and acting back

and forth with an environment. Therefore, some key rules needs to be satisfied for a

basic RL model and these include;

1. A set of environment states.

2. A set of actions.

3. A set of rules for transitioning between states.

4. A set of rules for determining the rewards that are given at the end of

transitions.

5. A set of rules that describe what the agent or the robot observes.

Some of the best applications of reinforcement learning are game playing activities.

Since the games require a vast amount of state space, reinforcement methods come in

handy and learn from the human opponents while playing. Instead of the traditional

game AIs which require brute force search amongst the state space, RL can achieve

better results faster than the traditional methods.

2.3. What is the difference between KDD, Data Mining and Machine Learning?

After discussing the three topics, KDD, data mining and machine learning, all these

areas seem very similar and overlapped with each other. This would raise the question:

How are all these areas different than each other? There are different opinions on such a

question because to some people, the definitions of KDD and data mining differ.

However, according to the majority there is a connection between all these subjects, a

linkage.

11

As mentioned earlier, KDD is a process to turn digital data into knowledge and if

we were to make a connection between KDD and data mining, data mining is

considered as a sub process of KDD. KDD focuses on the whole process rather than just

the analysis part; therefore, it can be considered as a multidisciplinary activity which

encapsulates data mining as the core data analysis part to its own process. Now that the

difference between KDD and data mining is clear, what about machine learning and

how is it different than data mining? This is probably a more difficult question than the

first one since the line between both subjects is very thin. Machine learning and data

mining tries to solve the similar type of problems and the reason behind it is simple;

data mining makes use of machine learning algorithms in its own process. Data mining

itself also has some processes and the core of all data mining processes depends on the

algorithms used in it. These algorithms belong to machine learning field. Consequently,

machine learning is the study and development of algorithms that enable computers to

learn without being explicitly programmed where as data mining concentrates on a

bigger process which utilizes those algorithms and tries to find interesting patterns and

structures in the data. To sum up, machine learning is the field which aids data mining

in its process by providing algorithms. Moreover, data mining is the sub process of

KDD where the data is processed and analyzed in order to turn the raw data into

knowledge.

12

3. Decision Trees

Decision trees are in the group of supervised learning methods within the concept of

data mining and machine learning. Decision trees create solutions to classification

problems on various different fields such as engineering, science, medical fields and

other related fields. Thus, decision trees are considered to be one of the most powerful

tools that can accomplish classification and prediction tasks [Kantardzic, 2011].

Decision trees can be considered as a non-parametric method since no assumption is

made for the class densities and the tree structure or the model is not known before the

tree growing process [Alpaydin, 2014]. As mentioned earlier, decision trees are used for

predictive analysis in which the model is trained based on some dataset and then used

for predictive purposes. In order to learn from a dataset, decision tree models need to be

trained on that dataset. Later on, these models are tested on other data of the same kind,

which means it can either belong to the same dataset (the data would have been split in

to training and testing) or a testing data from another source, and are validated

afterwards. This means that the decision tree model is now capable of predicting new or

unseen data that would estimate which class the unseen data might belong to.

Decision trees are important in data mining for various reasons but one of the most

important reasons is that they provide accurate results overall. Additionally, the tree

concept is easily understandable compared to other classification methods and can also

be used by other scientific field researchers than computer science [Karabadji et al.,

2014].

Decision Tree Structure

Before discussing the details of the decision tree topic, it would be better to explain

decision trees in general. Decision trees have a root node, internal nodes and leaf

(terminal) nodes just like any other tree concepts [Tan et al., 2006].

 Root node: This can be considered as the starting point of the tree where there

are no incoming edges but zero or more outgoing edges. The outgoing edges

lead to either an internal node or a leaf node. The root node is usually an

attribute of the decision tree model.

 Internal node: Appears after a root node or an internal node and is followed by

either internal nodes or leaf nodes. It has only one incoming edge and at least

two outgoing edges. Internal nodes are always attributes of the decision tree

model.

 Leaf node: These are the bottommost elements of the tree and normally

represent classes of the decision tree model. Depending on the situation, a leaf

node might not always represent a class label because in some cases a decision

cannot be made for some leaves. In that case, those leaves can be marked with

signs such as a question mark. However, if it can be classified, each leaf node

13

can have only one class label or sometimes a class distribution. Leaf nodes

have one incoming edge and no outgoing edges.

For example, Figure 3.1 is a well-known example of a decision tree and it represents

a model for the concept PlayTennis [Quinlan, 1993] where a decision of playing tennis

(Yes or No) is made according to the weather characteristics. The root node is Outlook

and it has three outgoing edges. These outgoing edges denote the values of attribute

Outlook which are Sunny, Overcast and Rain. After the root node, there are two internal

nodes and a leaf node. The leaf node of Outlook attribute is decided as Yes when

Outlook is Overcast. Other internal nodes represent the new attributes of PlayTennis

data, which are Humidity and Wind respectively. The same process is again applied to

both attributes which are the internal nodes of the tree, and according to Humidity

attribute the outcome of the decision tree will be No if the Humidity is High and Yes if

the Humidity is Normal. Then the same top down approach is applied to the other

variable named Wind which gives the outcome No if Wind is Strong and Yes if Wind is

Weak.

It can easily be seen that the given example only has categorical attributes; however,

there could have been other types of attributes in the decision tree such as numeric or

continuous attributes. This issue will be discussed further on in the next sections.

Moreover, decision trees have some characteristics of their own and these

characteristics are parallel to supervised learning methods. Some requirements

determine the characteristics of decision trees;

 Attribute-value pairs: A data instance that is going to be analyzed needs to be

in an attribute format, where each attribute has its own values. These values

Outlook

Humidity

No

Yes

Wind

Yes

Yes

No

Sunny Rain

Overcast

Strong Weak Normal High

Figure 3.1. PlayTennis example.

14

can either be categorical or numeric. The same attribute cannot have different

values types in different data instances [Kantardzic, 2011].

 Predefined output expectations: Every data instance that is going to be learned

from or that is going to be tested should be assigned a classification label or a

numeric output value.

 Erroneous values: The training data might contain erroneous examples, but

decision trees can tolerate these errors. The error might be in attribute values or

in classification labels or continuous output values [Mitchell, 1997].

 Missing values: The training data might contain missing data instance values,

but decision trees can tolerate these missing values as well. Similarly attribute

values, classification labels or continuous output values might be missing.

 Sufficient data: A decision tree needs data like any other data mining method.

The number of training instances should be sufficient so that an effective and

robust tree construction could be done. The amount of test instances is also

very important in order to validate the accuracy of the decision tree

[Kantardzic, 2011]. Additionally, each class should have sufficient number of

instances to represent that class properly.

3.1. Univariate Decision Trees

Univariate by definition means involving one variate or variable quantity. Based on this

definition, it can be seen that choosing one attribute at a time to branch a tree node is

basically called univariate splitting. Continuing univariate branching while growing the

tree produces a univariate decision tree. Almost all of the commonly used decision tree

inducers and their splitting methods are constructed on the idea of univariate based tree

construction. The example in Figure 3.1 which was given to introduce the basic

structure of a decision tree was also in univariate form. The root node which was

Outlook had to make a three-way split since it had three attribute values, and the other

internal nodes also made splits in similar fashion. Additionally, constructing a decision

tree is usually a greedy method and is normally performed in a top down manner.

It would also be beneficial to explain branching types and the kind of attributes that

could be used when building a decision tree. There are basically three different

branching types [Han and Kamber, 2006];

1) Discrete-valued: The chosen attribute in the decision tree induction is branched

so that all its categorical values (either ordinal or nominal) are used in their

own outgoing edges of the newly created node so that there is exactly one

branch for each attribute value. Basically, the node makes an n-way split

depending on the values of the node’s attribute where n denotes the number of

values the attribute has.

15

2) Continuous valued: The chosen node is of the numeric type and has continuous

values. The node is always branched with two outgoing edges. The outgoing

edges are split so that it divides the chosen node’s numeric value into two

intervals (greater or less than equal to the predetermined value). A rarely used

alternative is a three-way split where the values are distributed as less than or

equal to, and greater than a specified number [Witten et al., 2011].

3) Binary Discrete valued: The chosen node is split into two branches so that the

split is considered to be a binary split. The split branches has values such as

Yes-No or 0-1.

4) Attribute Value Grouping: There is also one more specialized branching method

called the attribute value grouping [Quinlan, 1993]. The attribute values are

merged in one branch to get simpler and more accurate decision trees. Such a

method also eliminates the problem of having small amount of instances in the

descendent nodes.

Figure 3.2. Branching types.

The Figure 3.2 above gives an example for the branching types of decision trees.

Income can be used as a discrete value, where it is divided into three categories; low,

medium and high. Income can also be used as a continuous or as a binary attribute,

where people can be categorized by having a regular income or not. Lastly it can also be

grouped into two categories so that instances which have values low and medium are in

the same branch and high in another branch.

Decision trees are also considered as classification trees. Although this is a correct

statement, it is not a complete one. There are also regression trees under the category of

decision trees, hence; decision trees are considered in two different categories:

classification and regression. When the decision tree is used for classification tasks, it is

16

called a classification tree and when it is used for regression tasks, it is referred to as a

regression tree [Rokach and Maimon, 2014].

Classification trees are designed for data which have finite number of class values.

The attributes can take numerical or categorical values. The main purpose of such kind

of trees is to classify the data to classification labels or classes by using classification

algorithms [Loh, 2011]. Splits of the tree or the goodness of the attributes are tested and

decided according to impurity measures. The attribute with the highest (or lowest

impurity) purity is chosen as the node to branch on. The main point for a purity measure

is to divide the attribute’s values into pure distributions of the classes. One of the mostly

used impurity measures is the entropy value [Quinlan, 1986] which will be discussed

later on.

The main idea behind the construction of a classification tree is fairly logical and

straightforward. It uses a top-down strategy and recursively splits starting from the root

node, where each node is branched according to the lowest impurity measure produced

amongst all other attributes. When there are no more splits available, the construction

stops.

One of the earliest classification trees was the concept learning system (CLS) [Hunt

et al., 1966]. Almost all of the other algorithms followed its approach including the ID3

algorithm which was found by Quinlan in 1979 [Quinlan, 1986]. The main idea of the

CLS was to begin with an empty decision tree and iteratively build the tree by adding

nodes until the tree classified all the training instances correctly. A pseudocode of the

CLS is given below [Hunt et al., 1966];

1. If all examples in the training instances in "C" are positive then create a node

called YES

If all examples in the training instances in "C" are negative then create a node

called NO

Otherwise, select and attribute A with values 𝑉1 ,𝑉2 , . . .𝑉𝑛 and create a

decision node

2. Partition the training examples in "C" into subsets 𝐶1,𝐶2, . . .𝐶𝑛 according to

the values of V.

3. Apply the algorithm to each of the sets in 𝐶𝑖 recursively.

Algorithm 1

The most popular and widely known inducers, for instance the C4.5 [Quinlan, 1993]

and CART [Breiman et al., 1984], they all use the same approach and even the most

recent inducers continue from the same path such as the C5.0 [Quinlan, 2004].

Regression trees are almost identical to classification trees; however, a regression

model has to be fitted to the algorithm. This means the aim of the tree is not

17

classification anymore, but it is regression. There are no more class labels or

classifications to make, instead the resulting leaf nodes of the tree are continuous values

which are used for prediction as well. Furthermore, entropy or similar measures cannot

be used as an impurity measure; mean squared error is used instead. Regression tree is

very similar to the classification trees and thus the same algorithm can be used by just

replacing the entropy measurements with mean squared errors calculations, and class

labels with averages [Alpaydin, 2014].

The only difference in the construction of a regression tree is the generation of leaf

nodes. These are generated by taking an average over the distributed target values of the

path that is taken after all the branching is done until that leaf node. Additionally, the

resulting tree is binary because the nodes are always branched into two partitions; some

value greater than or equal to, and a value less than the specified value. The algorithm

for constructing a regression tree is given below [Shalizi, 2009];

1. Start with single node containing all point values. Calculate the sum of squared

errors and prediction for leaves

2. If all the points in the node have the same value for all the input variables,

stop. Otherwise, search over all binary splits of all variables for the one which

will reduce sum of square errors (SSE) as much as possible. If the largest

decrease SSE would be less than some threshold or one of the resulting nodes

would contain less than some amount of points, stop. Otherwise, take that split,

creating two new nodes.

Algorithm 2

The first ever built regression tree is AID and it was built a couple of years before

THAID [Loh, 2011]. Both AID and CART follow a similar approach as Algorithm 2

which is a modified version of Algorithm 1.

3.1.1. Attribute Selection Criteria

Attribute selection is one of the fundamental properties of building a decision tree. The

selection of the attribute affects the entire decision tree since it will have an impact on

the efficiency and even the accuracy of the built tree. The aim is to generate a tree that

will efficiently and accurately classify the training data. The resulting model should be

as simple as possible which is also known as the Occam’s razor principle [Mitchell,

1997].

The main idea is based on purity and impurity in most of the cases. This means the

node that will be tested should be split into leaf or internal nodes (which are the values

of the tested attribute) that would be as pure as possible. The aim of purity is to partition

the data instances in training data so that the partitioned group (a leaf node or internal

18

node that a branch leads to from the tested node) would either have all or most of the

data instances in the same class category so that the entropy measure will be low [Han

and Kamber, 2006].

Additionally, commonly used decision trees are built as univariate decision trees;

therefore, the splitting criteria used in such trees are designed on top of univariate

factor. The following heuristic attribute selection methods are specifically used in

univariate trees: Information Gain, Gain Ratio, Gini Index, Twoing Criterion and Chi-

Squared criterion.

3.1.1.1. Information Gain

Information gain is one of the earliest and most commonly used decision tree attribute

selection criteria ever founded. Quinlan, who was the founder of the ID3 (Iterative

Dichotomiser 3) was also the first one who ever used information gain selection

criterion in a decision tree induction algorithm. However, without the concept of

entropy found by Claude E. Shannon [Shannon, 1951], information gain would not have

existed.

The criterion is based on top of information theory where the entropy measure plays

a key role. Entropy is the measure which tries to calculate the average amount of

information contained in each message received [Han et al., 2011]. In machine learning

terms, entropy tries to find the most valuable attribute that would be beneficial for a

model to be learnt.

Let us assume that attributes are being tested so that the attribute with the most

information gain will be chosen and will be tested in a node of a decision tree. The

entropy or information needed to classify a random data instance where the data

instances held in the node is denoted with D.

𝐻 𝐷 = − p𝑖 (log2 p𝑖)

𝑚

𝑖=1

Equation 3.1

Entropy function is named after Boltzmann’s H-theorem and that is why it is

defined with H which is a Greek letter Eta. Additionally, the logarithmic function is in

base two, because the information is encoded in bits [Han et al., 2011]. In equation 3.1,

m is the number of classes in the data and 𝑝𝑖 is the probability where a data instance

belongs to some class 𝐶𝑖 . The number of data instances in the node that belong to class

𝐶𝑖 divided by all the data instances in that node (D) gives 𝑝𝑖 . In the formula, 𝑝𝑖 is

calculated for all the classes in the data. During the calculation, if 𝑝𝑖 is equal to 0 then

 𝑝𝑖 (𝑙𝑜𝑔2 𝑝𝑖) calculation for that i is accepted as 0.

After such calculations, if all the data instances of the node belong to the same

class, meaning that the overall entropy is calculated to be 0, then it points out that the

19

node is totally pure and a leaf node can be formed. However, this is usually not the case,

so the calculations continue since the node is impure.

Now, if D is partitioned on an attribute A which can have categorical or numeric

values, it will either have n outcomes (attribute A’s values) or two outcomes if attribute

A is numeric. Let’s assume A is categorical; thus, the attribute A can split the existing D

into n partitions. Then, the expected information needed to classify a random data

instance when the attribute A is considered as root is calculated.

𝐻 𝐷|𝐴 = p(Aj)H(D|Aj

n

𝑗=1

 Equation 3.2

The probability 𝑝(𝐴𝑗) is the relative frequency of the cases having 𝐴𝑗 over D. After

such a calculation, the overall entropy branching on the attribute A is found. The last

step is to calculate information gain for branching on the attribute A which is basically

subtracting the overall entropy of the attribute A from the original entropy calculation H

(D).

I(D|A) = H(D) − H(D|A)

Equation 3.3

Information gain in Equation 3.3 gives the gain that will be obtained after branching

on the attribute A. Therefore, information gain is calculated every time for every

possible attribute that can be branched on the test node to find the attribute which gives

the maximum information gain amongst the other attributes. The attribute with the

highest gain is branched on and the process continues until the classification is

completed.

3.1.1.2. Gain Ratio

Information Gain and Gini Index both favor attributes with many different values when

the attributes are tested because usually these attributes tend to have better entropy

calculations. This is because the more an attribute has values; it will have more chance

of turning its branches into a leaf node.

Quinlan uses the Gain Ratio attribute selection criterion in the C4.5 algorithm as an

update from ID3’s Information Gain method [Quinlan, 1993]. The only difference

between two attribute selection criteria is that Gain Ratio introduces a new

methodology; calculating the information on splitting attribute. By this normalization

method, the biased behavior is mostly eliminated.

𝐻 𝐴 = − p(Aj) log2 p(Aj)

n

𝑗=1

Equation 3.4

20

The calculation of split information on the splitting attribute is in fact an entropy

calculation. If the example given in Information Gain calculation is recalled, attribute A

was chosen as the test node and keeping that in mind, H(A) is denoted as the splitting

information of the attribute A in Equation 3.3. The probability of the value 𝐴𝑗 is simply

the relative frequency of that value.

GR D A =
𝐼(𝐷|𝐴)

H(A)

Equation 3.5

When the Information Gain is calculated (which is exactly the same as in Equations

3.1-3.3), the information of that attribute is calculated next. Afterwards Information

Gain of the attribute is divided by the splitting information of the same attribute,

resulting in Gain Ratio. The attribute that has the highest Gain Ratio is chosen over the

rest of the tested attributes.

3.1.1.3. Gini Index

Gini Index is another criterion which is used in the CART inducer [Breiman et al.,

1984]. As mentioned earlier, Gini Index also has a bias which favors attributes that have

more outcome values during attribute selection. Unlike the earlier mentioned criteria,

Gini Index tries to split the attribute into two branches regardless of the attribute type.

Even if the attribute is categorical, all its subset values are found and discrete binary

splits of those combinations are calculated in order to find the best split.

G D = 1 − pi
2

m

i=1

Equation 3.6

Gini Index is also based on impurity calculations; therefore, impurity of the training

data is measured. The training data is denoted as D where m is the number of classes the

training dataset has and 𝑝𝑖 is the probability that the data instance belongs to class 𝐶𝑖 .

Each split that is made with Gini Index criterion has to be binary; therefore, it is not

a problem if the attribute is numeric or continuous. However, if the attribute is

categorical or discrete valued, it might cause extra calculations. If the discrete valued

variable has more than two values, all of its value subsets are calculated where the

power set and the empty set are excluded.

Assuming there is an attribute A which will be split into two partitions from training

instances, the Gini Index is calculated for both partitions using the Equation 3.6 and

then each partition’s Gini Index is multiplied by its own relative frequency.

G D|A = A1G D A1 + A2G(D|A2)

Equation 3.7

21

The attribute which maximizes the difference between the initial Gini and the Gini

resulting after the split is chosen.

∆G D|A = G D − G(D|A)

Equation 3.8

3.1.1.4. Twoing Criterion

As in the case with Information Gain criterion, favoring test attributes which has wide

range of values is also an issue with Gini Index. Thus, the Twoing criterion is used in

the CART algorithm to overcome this bias [Rokach and Maimon, 2014].

T D A =
P1P2

4
[|p A1,i − p A2,i |

m

i=1

]2

Equation 3.9

Assuming there is an attribute A which will be split into two partitions from training

instances D, P1 and P2 are the probabilities to get left or right nodes (binary nodes, first

node and second node). 𝑝 𝐴1,𝑖 and 𝑝 𝐴2,𝑖 are the probabilities of test node A’s first

and second partitions respectively where i is the given class. Gini Index and Twoing

work exactly the same when the target attribute is binary but when the target attribute is

multi valued, then Twoing criterion chooses attributes with evenly divided splits

[Rokach and Maimon, 2014]. This means Twoing criterion becomes biased as well

when the target attribute has more than two values. Lastly, Twoing criterion works

slower than the Gini Index resulting in efficiency loss [Kantardzic, 2011].

3.1.1.5. Chi-squared Criterion

Chi-squared criterion is used in CHAID inducer [Kass, 1980]. This criterion is used for

measuring the correlation between two attributes.

𝑋2 =
(𝑥𝑗𝑖 − 𝐸𝑗𝑖)2

𝐸𝑗𝑖

𝑚

𝑖

𝑛

𝑗

Equation 3.10

In Chi-squared criterion, split variables are decided based on the calculated p-values

[IBM, 2011]. If the attribute is categorical then Pearson Chi-square test is done

(Equation 3.10), if the attribute is continuous then an F test is made. The attribute with

smallest p-value is chosen amongst the ones that are computed and if it is greater than

the predetermined threshold, no further split is done along that branch and becomes a

leaf node. If the p-value is less than or equal to that predetermined threshold, the node is

split using the selected attribute. In the formula, 𝑥𝑗𝑖 is the frequency of the observed data

instances of attribute value j where the class that they belong is i. The expected

22

frequency of the data instances of attribute value j is denoted as 𝐸𝑗𝑖 where the class that

they belong is i. Equation 3.10 is for calculating the unadjusted p-value for categorical

attributes. Once the p-value is calculated, it can be adjusted by using the Bonferroni

adjustments. As a result, this criterion is based on observed and expected values where

frequency of the data instances classified in categories is essential.

3.1.1.6. Continuous Attribute Split

For numeric or continuous attributes, splitting is more or less the same as splitting a

categorical attribute. Information measure that will decide the goodness of the attribute

is obtained by the use of measures like; Information Gain, Gain Ratio, Gini Index.

However, the attribute values or possible split points are calculated differently since

continuous attributes do not have any predefined split values.

The commonly used technique is to find the middle point of each sorted adjacent

values in the dataset. This will result in (n-1) possible thresholds when there are n many

training instances [Maimon and Rokach, 2005]. Then these middle points become the

possible thresholds for a split. An information measure is calculated on every single

threshold that is found. Then, a threshold is selected amongst all according to the

calculated information measure. The split is made based on this threshold resulting in a

binary split.

The criteria that were introduced are used in commonly applied inducers both for

academic and business related purposes. The use and purpose of these univariate

splitting criteria are the same; however, all of them have different efficiency and

accuracy ratings on different kind of data sets. It is very hard to discuss which one has

better results by means of accuracy and efficiency since all these criteria are used in

different inducers and on different data sets most of the time. There are some researches

that have been made to find out which criterion results better in classifying a dataset in

terms of accuracy and Badulescu's article is one of them [Badulescu, 2007]. In the study

various attribute selection criteria (including Information Gain Ratio, Gini index, Chi-

squared criteria) have been tested. The error rates for Information gain ratio, Gini index

and Chi-squared criterion were respectively 13.41, 14.76 and 14.68. Therefore, it could

be considered that the findings have pointed out there is not much difference in terms of

accuracy between the commonly used attribute selection criteria. However, Information

Gain Ratio has outperformed the other criterion during these tests which were made by

using 29 different attribute selection measures [Badulescu, 2007].

3.1.2. Pruning Methods

One of the most important factors that are directly related with decision tree

accuracy is pruning. Pruning by definition is basically eliminating the subtrees and

replacing them with leaf nodes so that the performance of the tree can improve in terms

23

of accuracy and efficiency on unseen cases. One main reason why pruning is essential

lies behind the rule of Occam’s razor; “Among competing hypotheses, the one with the

fewest assumptions should be selected [Blumer et al., 1987].” This notion is very

accurate when the tree is overfitted. When the tree is overfitted, it becomes a tree model

with too much bias on the training data since it is purely grown out of the training data.

Hence, test data is needed to measure accuracy of the tree on new unseen cases and

prune the tree accordingly [Kantardzic, 2011]. The scientific studies have shown that

pruning can have crucial effect on decision tree accuracy [Mingers, 1989]. According to

another study, it has been shown that pruning can affect the accuracy up to 50% within

considerable confidence intervals [Frank, 2000].

Figure 3.3. Post-pruning example [Han et al., 2011].

An example of pruning is given above in Figure 3.3. As mentioned, pruning is

eliminating subtrees (𝐴3) and turning them into leaf nodes (class B). This shows the

significance of pruning even though the tree size is small. Now, if the tree becomes

larger than this (in which almost all of the data mining practices the tree size is much

larger than the tree in the figure), the significance of pruning becomes even more

important. It is because as the tree grows bigger, it becomes more complex and harder

to handle which also affects the accuracy because of overfitting. The accuracy is

affected because when the tree is too large or too complex the noisy or exceptional

cases can be included in the model and this action would lead to misclassification errors

[Tan et al., 2006]. Additionally, as the tree grows larger the subtrees grow larger with

the tree, producing more paths that lead to more and different classifications which can

lead to misclassification results in the end.

There are two different pruning approaches; prepruning and postpruning. In

prepruning, a decision tree is halted while growing so that it won’t get too complex.

24

However, in postpruning the tree is grown till its fullest and then pruned following a

bottom up or a top down strategy.

The tree that has been grown fully or, in other words, that have overfitted might not

be successful in classifying test cases. On the other hand, a tree that is not grown

adequately might not be enough to be a sufficient decision tree model and this would

result in unsuccessful classifications on the test data. Therefore, trying to find a

common solution that knows where and when to stop growing the tree is very hard and

is known as the horizon effect [Frank, 2000].

Prepruning is considered as a more interesting method because it would save time

since no time would be wasted growing subtrees that will be eliminated further on

[Witten et al., 2011]. Actually trees are not pruned in prepruning algorithms; instead

the algorithms are halted due to some stopping criterion. This criterion is usually based

on goodness of the split. As discussed earlier, decision trees need splitting criterion such

as Information Gain, Gini Index, Gain Ratio and so on to determine which attribute to

branch on. If the information measured at a test node is under some threshold that is

defined earlier, then the branching is halted on that path. Another prepruning strategy is

limiting the tree size and the instances in an internal node to some user-specific

threshold. Lastly, if a class distribution of instances is independent of the available

feature, the tree growing is halted. Thus, it can easily be concluded that prepruning is

based on restrictive conditions which are controlled by some threshold values.

Postpruning on the other hand is not restricted by thresholds. The tree is grown

entirely until it cannot grow anymore and then trimmed so that it gives better accuracy

on the test data. There are two major operations in postpruning; subtree replacement and

subtree raising [Witten et al., 2011]. Subtree replacement is the basic element of

pruning where the subtree is replaced with a leaf node. This operation might lower the

accuracy in the training data; however, it will increase the accuracy in the test data. The

other operation is subtree raising which is more complicated than subtree replacement

and is used in C4.5 inducer. The subtree on a path of the tree is pruned but replaced by

another subtree which has different leaf nodes and gives better accuracy. The new

subtree which replaces the old one is grown which means that subtree raising requires a

lot of time and it is a complex operation. One last important point of postpruning is

when the subtree is pruned and replaced with a leaf node, the criteria of labeling is the

frequency of instances in that subtree; the most frequent class is labeled as the leaf node

class after pruning [Han et al., 2011].

If pre and postpruning are compared, prepruning gives better efficiency since it halts

the tree growing which means producing trees faster; however, postpruning gives better

accuracy in overall according to most of the studies [Alpaydin, 2014]. One of the

reasons for postpruning giving better accuracy is the so called interaction effect; in

prepruning each attribute is evaluated individually before being pruned which means

neglecting the reactions between those attributes which might be important by terms of

25

accuracy [Frank, 2000]. Postpruning solves this issue since all possible attribute paths

and interactions are seen clearly in the fully grown tree. Therefore, postpruning is the

most widely used technique in pruning and some most important postpruning

algorithms are; cost-complexity pruning, minimum-error pruning, reduced error

pruning, pessimistic pruning and error based pruning.

3.1.2.1. Cost Complexity Pruning

Cost complexity pruning which is also referred to as the weakest link pruning is used in

CART [Breiman et al., 1993] inducer and it consists of two parts. In the first part, a

sequence of trees is built by training data. Each tree in the sequence is built so that the

succeeding tree is obtained by pruning one or more subtrees in the preceding tree where

the first tree of the sequence is the unpruned tree and the last of the sequence is the same

tree with only the root remaining. Subtrees are pruned according to their sizes in which

relatively have the smallest increases in their error rate on the training data. An error

rate 𝛼 is calculated by subtracting the error rate of the pruned tree from the initial tree

and then dividing it by the number of leaf difference between the initial and pruned

trees.

In the second part of the algorithm, one optimal tree is chosen from the sequence of

trees. In order to choose the optimal tree, generalization error of each and every pruned

tree is calculated so that the tree with the least generalization error is chosen. The

generalization error is estimated either by employing holdout method or cross validation

method.

Cost complexity pruning usually performs well in terms of accuracy; however, the

same statement cannot be made for its efficiency. The algorithm performs in quadratic

time since a sequence of pruned decision trees are being obtained and checked for

generalization errors which requires heavy time complexity [Frank, 2000]. Furthermore,

there were several issues with cost complexity pruning according to Quinlan [Quinlan,

1987]. The first problem was that it was unclear why cost complexity pruning method

was “superior to other possible models such as the product of error rate and number of

leaves.” Additionally, “it seems anomalous that the cost-complexity model used to

generate the sequence of subtrees is abandoned when the best tree is selected.”

Therefore, he would later on find new pruning algorithms; reduced error pruning and

pessimistic pruning which would aim to solve these problems and eventually lead to

another algorithm called error based pruning.

3.1.2.2. Reduced Error Pruning

This pruning algorithm suggested by Quinlan is a rather straightforward and simple

method [Quinlan, 1987]. The method follows a bottom up strategy where a fully grown

tree is pruned starting from the bottom-most non-leaf nodes. Then the algorithm checks

26

each internal node and replaces the node with the most popular classification category

(class label). The node to be replaced is chosen according to the number of errors it

produces when the subtree is kept as it is and when it is replaced with the most

frequently occurring class. The number of errors are calculated by using a separate test

set. If the number of errors increases when the subtree is pruned, then the subtree is

kept, otherwise pruned. The node with the most gain is pruned amongst all the other

internal nodes. The algorithm continues its recursion until the error calculated on the

nodes to be pruned makes no difference or does not improve tree accuracy.

3.1.2.3. Pessimistic Pruning

Pessimistic pruning is the other pruning algorithm suggested by Quinlan. The most

interesting point of this method is it does not need a separate pruning or test data to

employ the pruning algorithm [Quinlan, 1987]. It aims to improve the error rate

calculated when unseen data are classified. The key idea in the algorithm is to make an

assumption that ½ of an instance in leaf nodes of the trained subtree is going to be

classified incorrectly in addition to the already misclassified number of instances on that

subtree when unseen cases are encountered. This constant is obtained by using the

“continuity correction” for the binomial distribution [Quinlan, 1987].

The methodology is closely related with reduced error pruning such that it also tries

to replace subtrees with the most frequent classification in the data. It starts by

performing a top down traversal over the tree instead of a bottom up approach. All the

internal nodes are traversed recursively and pruned if the number of errors

(misclassified cases in the node) + ½ is within one standard error of the earlier

estimated number of errors in the subtree. If the internal node is pruned, its subtrees are

not checked for pruning.

According to Quinlan, this method has two advantages. Firstly, it is much faster

than cost complexity pruning and reduced error pruning since a sequence of trees is not

produced where almost all the same subtrees are traversed each time. Instead, only one

tree is taken into consideration and each subtree is examined at most once. The second

advantage is there is no need for a separate testing data to employ the pruning

algorithm; only training data is enough.

3.1.2.4. Minimum Error Pruning

Minimum error pruning was first introduced by Niblett and Bratko in 1986 [Niblett and

Bratko, 1987]. Its main objective is to prune the tree by the help of most frequent class

label.

The algorithm's aim is to find an expected error rate when it is predicted that all the

future examples will be in class c. The predicted or expected error rate is given in

Equation 3.11 where n is the total number of training instances, 𝑛𝑐 is the number of

27

instances in the most frequent class and k is the number of classes in the data [Mingers,

1989]. Algorithm first calculates the expected error rate at each internal node if that

subtree is pruned. Then calculates the expected error rate if the node is not pruned,

combined with weighting according to the proportion of observations along each

branch. If pruning the node gives a higher expected error rate, then the subtree is kept

otherwise pruned. These calculations continue recursively until the tree is totally pruned

according to the stopping criteria.

𝐸𝑘 =
(𝑛 − 𝑛𝑐 − 𝑘 − 1)

𝑛 + 𝑘

Equation 3.11

It is also very similar to reduced error pruning because it also follows a bottom up

approach and prunes the tree if the error rate is more than the unpruned version of it.

The algorithm assumes that all classes are equally likely which is actually a

disadvantage, because in practice the classes are not equally likely so the results

obtained on practice becomes worse than expected.

3.1.2.5. Error Based Pruning

Error based pruning is basically a more complicated version of pessimistic pruning with

some important updates. It is used in the well known decision tree inducer C4.5. Both

error based pruning and C4.5 were introduced by Quinlan [Quinlan, 1993]. Like

pessimistic pruning, it does not require a separate pruning data to prune the tree.

However, unlike pessimistic pruning but similar to reduced error pruning, a bottom up

traversal is employed in the algorithm. The other important aspect of the algorithm is

that it provides subtree raising methodology in addition to subtree replacement and

combines them in one algorithm.

It estimates the errors as if the errors are binomially distributed like in pessimistic

pruning. Instead of having a standard error rule, it introduces a confidence interval on

the error counts which is 25% by default. The leaves’ error rates are calculated by

taking the confidence interval’s upper bound.

The algorithm works from bottom to up and estimates errors for 3 different cases

[Rokach and Maimon, 2014];

1) The overall error rate of the tree when node N does not prune its subtree

2) The overall error rate of the tree when node N prunes its subtree

3) The overall error rate of the tree when the node N’s subtree is pruned by

replacing the whole subtree with its most frequently used child node.

According to the error rate obtained, the option that has the lowest value is chosen

which means either the subtree is replaced with a leaf node or not. The last option is

28

growing a subtree which would replace the subtree that is pruned with the most

frequently occurring branch in that pruned subtree.

3.1.3. Decision Tree Induction

To be able to infer new predictions from the existing datasets, decision tree induction is

used. It can be considered as the algorithm for a decision tree which makes use of the

basic tree concepts like creating a node, branching and combines these concepts with

methods like attribute selection and pruning to build a tree model. Decision tree

induction is one of the mostly used inference techniques in the world of data mining

[Varpa et al., 2008]. It is generically based on Hunt’s Concept Learning System (CLS)

which was later on enhanced by Quinlan with his ID3 [Quinlan, 1986]. Below, there is

the family tree of top down induction of decision trees (TDIDT).

Figure 3.4. TDIDT family [Quinlan, 1986].

The TDIDT family is based on a top down induction. This means the algorithms

start to create the tree by forming the root node and then recursively selecting the

internal nodes of the tree according to the attribute selection criterion they use. The

training instances are consequently distributed according to their attribute values as the

algorithm applies recursion along the nodes until its way down. This way of forming the

decision tree is considered to be a greedy approach. The tree growth ends when the

nodes become pure according to some threshold value. The pruning can either be at the

time of growing the tree which is called prepruning (e.g. implemented in CHAID

inducer), or after the tree is fully grown which is called postpruning and is implemented

more commonly in the inducers such as CART, C4.5, C5.0 and so on.

The basic tree growing algorithm is similar for TDIDT inducers. The only

difference is, every inducer has its own attribute selection criteria and pruning method.

29

The pseudocode for a generic decision tree inducer is given below where training data is

E and attribute set is F [Tan et al., 2006];

TreeGrowth(E,F)

if stopping_cond(E,F) = true then

leaf = createNode()

leaf.label = Classify(E)

return leaf

else

root = createNode()

root.test_cond = find_best_split(E, F)

let V = {v|v is a possible outcome of root.test_cond }

for each v ∈ V do

𝐸𝑣 = {e | root.test cond(e) = v and e ∈ E}

child = TreeGrowth(𝐸𝑣 , F)

add child as descendent of root and label the edge (root → child) as v

end for

end if

return root

Algorithm 3

As mentioned earlier, find_best_split(E,F) is implemented differently in every tree

inducer as well as the pruning algorithm which is not included in the above pseudocode.

Inducers can also follow different approaches regarding noise and missing values

[Varpa et al., 2008]. The most commonly implemented decision tree inducers are ID3,

C4.5, C5.0, CART and CHAID. Therefore those inducers will be explained according to

which splitting criterion and pruning method they employ and what kind of advantages

and disadvantages they have in comparison to other inducers.

3.1.3.1. ID3

Iterative Dichotomiser (ID3) decision tree inducer was developed by Ross Quinlan and

it is based directly on Hunt’s algorithm [Quinlan, 1986]. It is considered as the simplest

inducer since it does not employ any pruning algorithm which can lead to overfitting of

the training data. Information Gain is used as the splitting criterion and the inducer

cannot handle any missing or numeric data. There is only one stopping condition for the

original ID3; every training instance belongs to the same class, so there is no need for

further division.

There are several disadvantages of the inducer, for example all the training data is

kept in the memory at runtime which can be devastating when dealing with big data.

ID3 does not guarantee an optimal solution since it can get stuck in local optimums

30

because it uses greedy strategy [Rokach and Maimon, 2014]. As mentioned earlier it

can overfit the data since it does not employ any pruning algorithm on its own.

Additionally, numeric or continuous data cannot be used directly in this inducer; it

should be converted into a categorical attribute before being used. Lastly, Information

Gain criteria can be biased on multiple valued attributes so it may not choose the best

greedy path on all times.

3.1.3.2. C4.5

C4.5 is considered as an evolved ID3. Quinlan targeted ID3’s weaknesses and made a

better inducer which is more efficient and accurate [Quinlan, 1993]. Gain Ratio is used

to overcome the bias of the earlier Information Gain criterion. It performs postpruning

by the help of error based pruning algorithm. Continuous and numeric data can be used

in C4.5 and it can also handle missing values. The growing algorithm stops when;

 Every training instance belongs to the same class.

 None of the remaining attributes provide better Information Gain.

 There are no training instances in a node.

There are some very important enhancements on the existing ID3 algorithm. One of

them is attribute value grouping; attributes values are also tested as a group and

compared with all the other possible combinations of existing attribute values so that it

gives better Gain Ratio in order to be selected. As mentioned earlier, C4.5 can handle

missing values. The inducer accomplishes such a task by giving the option to mark the

missing values with “?” so that those missing values are handled in a probabilistic way

in decision tree construction. Another important enhancement is pruning. Error based

pruning gives a more pessimistic approach than pessimistic pruning which enables C4.5

to increase its accuracy and become more robust against noise. Additionally, subtree

raising feature is also implemented so that C4.5 not only prunes a branch from the tree

but it can also grow one that replaces the pruned branch. Error based pruning gives a

well overall accuracy and avoids the constructed tree from overfitting the training data

unlike ID3. The other important improvement is that the inducer can now use the

continuous attributes without converting them into categorical attributes. Instead it

marks each middle point of existing ordered or sorted attribute values as a possible

interval threshold and tests those intervals according to their Gain Ratio. The interval

with the highest Gain Ratio is then branched using a binary split. One downfall that

seems to be unresolved is the memory usage; the inducer keeps all the training data in

the runtime memory which results in poor efficiency.

31

3.1.3.3. C5.0

C5.0 in UNIX or See5 in Windows operating system is the successor of C4.5 [Quinlan,

2004]. It is a commercially used inducer; however, the single threaded version of the

inducer has been made public for personal or research related use only. C5.0 is much

more efficient than the predecessor C4.5 by means of computational power and memory

management [Rokach and Maimon, 2014]. A classification task that is completed in one

and a half hour with C4.5 can be completed in three and a half seconds with C5.0

inducer [Rokach and Maimon, 2014].

The tree is constructed again in a top down recursive and greedy manner. It is still

using postpruning methodology to avoid overfitting. An enhanced version of error

based pruning is implemented where again the confidence interval can be defined. Gain

Ratio and Information Gain are still the attribute selection criteria used in the inducer.

Nonetheless, there are some improvements over the C4.5 inducer [Quinlan, 2004];

 A variant of boosting is implemented which increases the prediction accuracy

dramatically.

 New data types such as dates, time, timestamps, “not applicable” values,

attribute misclassification costs and some attribute prefiltering functions.

 The generated decision trees are smaller, more appropriate for Occam’s razor.

 Speed and memory usage as mentioned earlier.

 Each case instance can be weighted; giving it more importance over other

cases.

 Generates less number of rules.

 Can cope with dimensionality by winnowing.

3.1.3.4. CART

Classification and regression trees (CART) is another inducer found by [Breiman et al.,

1984]. The inducer algorithm also follows a top down greedy approach which

recursively grows the tree. It is different from the earlier mentioned inducers such that

it splits the attributes in binary no matter how many values the attribute has. This seems

like an advantage at first since there will not be the negative consequences of multi way

splits; however, the same attribute can be branched on different values of its own at the

proceeding levels of the tree which may produce a less interpretable and unnecessarily

long tree. The first version of the algorithm uses Gini Index for attribute selection

criteria but it is later on replaced by Twoing criteria since Gini Index tends to favor

attributes with more values. The reason Gini Index was chosen in the first place was

because it was thought that Gini Index gave better performance by terms of speed than

the Information Gain when it came to attribute selection [Kantardzic, 2011].

32

The pruning method chosen for the CART inducer is cost complexity pruning.

Hence, the pruning is supported by cross validation method where other inducers are

not such as C5.0 where a single-pass algorithm is derived from binomial confidence

limits [Hssina et al., 2014]. Another important difference that separates it from the other

inducers is that it looks for a possible solution that approximates the results when the

attribute has an unknown value. Lastly, CART inducer supports regression based

induction which is important since at the time it was introduced it was one of the most

accurate inducers which can employ regression by using least-squared error

methodology.

3.1.3.5. CHAID

Chi-squared automatic interaction detection (CHAID) is also another important inducer

that differently follows the THAID which is another classification tree algorithm. It is

mostly used for research purposes and in the industry for direct marketing because it is

fast and supports both classification and regression. It is one of the first successful

decision trees introduced by Gordon Kass in 1980 [Kass, 1980]. It was first used for

classifying nominal values only but later on it was adapted for other kind of attributes as

well. It uses F test for the continuous attributes, Pearson chi-square test for nominal and

likelihood ratio test for the ordinal attributes [Rokach and Maimon, 2014].

The inducer does not have a pruning algorithm. An interesting aspect of the

algorithm is that it treats the missing values as instances of the same category. CHAID

makes a multiway split for the tested attributes and needs large training data to work

effectively. During the splits each attribute is branched so that the children have

homogeneous values of the selected attributes. Additionally, the splits are made based

on a predefined threshold such that if the threshold is not met, the inducer will not

branch and it will stop. Some other stopping conditions are as follows;

 Predefined tree depth is reached.

 A threshold for being a parent node is reached in terms of instances the node

has.

 A threshold for being child node is reached in terms of instances the node has.

3.1.4. Rule sets

Rules in general are very good ways to express knowledge or represent information

acquired from a plain or mined data set. In association rule mining, inferences are made

from data and expressed as rule sets. Nonetheless, another use for rules exists in

decision trees.

One of the reasons decision trees are preferred is because of their simplicity in

interpreting the results of the processed dataset. However, in most real world cases

33

decision trees can grow into very big and complex structures which make them hard to

interpret even though they might have been pruned [Han et al., 2011]. Therefore, rules

come in handy in such cases where the trees are simplified into IF-THEN rules which

are referred to as decision rules.

An IF-THEN rule is an expression in the form; IF condition THEN conclusion. The

“IF” part or the left hand side of a rule is called the rule antecedent or precondition. The

“THEN” part or the right hand side of a rule is called the rule consequent. The

consequent of the rule withholds the classification label or the prediction of that rule

[Han and Kamber, 2006]. Extracting rules from a grown decision tree is very

straightforward. Each extracted rule is basically the path from the root to a leaf node. To

extract rules, each split attribute is “ANDed” to the “IF” part of the rule according to its

value until the leaf node is reached which forms the consequent or the “THEN” part of

the rule.

The rules that are extracted are mutually exclusive and exhaustive since they are

directly extracted from the tree. There is a disjunction or “OR” implication between the

rules that are extracted which supports the idea of mutually exclusiveness. This also

means the rules cannot overlap or conflict with each other since the extracted rules

match the leaves of the tree in a one on one relationship. Exhaustive term means that

there is a rule for each training case (for each attribute-value combination occurring in

the tree) .

A rule set or decision rules can be pruned like a decision tree as well. Sometimes

the rules or parts of them can be useless or do not have proper decision tree accuracy

since the rules might have been extracted from an unpruned tree. In this case, the rules

are pruned according to some pruning algorithm. For example, C4.5 algorithm has a

feature where it produces decision rules as well as a decision tree and prunes the rules

using error based pruning. A consequence of rule pruning might be losing mutually

exclusiveness property since after pruning, there will not be any guarantee that each

possible path will go to a separate leaf node. However, this conflict can be handled just

like Quinlan has done in C4.5 by adapting a class-based ordering scheme [Han et al.,

2011]. It groups rules for a single class together and then determines a ranking of these

class rule sets.

34

Figure 3.5. Example tree.

The decision tree in Figure 3.5 has three classes and four attributes; A, B, C and D.

If the tree were to be converted into decision rules, there would be six rules since there

are that many leaf nodes in the tree. To demonstrate, the decision tree is converted into

decision rules below;

R1: IF A==White AND B==Yes AND D==Square THEN classification=Class 3

R2: IF A==White AND B==Yes AND D==Round THEN classification=Class 1

R3: IF A==White AND B==No THEN classification=Class 2

R4: IF A==Blue THEN classification=Class 1

R5: IF A==Black AND C==0 THEN classification=Class 2

R6: IF A==Black AND C==1 THEN classification=Class 3

3.1.5. Advantages and Disadvantages of Decision Trees

In order to sum up the decision tree topic, pointing out its advantages and disadvantages

would be beneficial since it would give an overview of the topic. The advantages of

decision trees are as follows;

 Probably the most important advantage is decision trees being self explanatory

and easy in terms of readability. Anyone who is not familiar with data mining

before can interpret a decision tree if it is of small size. Moreover, if the tree is

big and complex, decision rules can come in handy as discussed earlier.

 Both categorical and numerical or continuous attributes can be handled.

 The data may contain missing attribute values and decision trees will still

handle it.

35

 The data might have error and decision trees will still handle it. They are robust

to noise.

 It follows a nonparametric approach; therefore, it does not require any prior

assumptions regarding the type of distributions satisfied by the class and other

attributes [Tan et al., 2006].

 Constructing decision trees are computationally inexpensive and fast which

enables constructing models that require large sized training datasets to be

easier, computationally inexpensive (in comparison with other machine

learning algorithms) and faster [Maimon and Rokach, 2005].

 Decision tree representation is rich enough to represent any discrete values

classifier [Rokach and Maimon, 2014].

 Decision trees can handle high dimensional data [Iltanen, 2014].

 Decision trees can handle heterogeneous data [Iltanen, 2014].

Some of the disadvantages of decision trees are as follows;

 Big majority of the inducers require the target value of the data instances to be

discrete valued only.

 A subtree can be replicated many times in a decision tree because tree is

constructed in a divide and conquer manner (each subtree constructed is

independent) [Tan et al., 2006]. A decision tree cannot represent the same

subtrees as one so it will replicate the trees since every path is mutually

exclusive [Rokach and Maimon, 2014].

 Since decision trees are greedy, they sometimes become overly sensitive and

tend to choose a split due to a noise or an irrelevant attribute. This would cause

all the subtrees of that split to change which would result in a wrong split and

affect the accuracy poorly.

 Decision trees are greedy and recursive which results in decreasing the number

of instances and scattering them among nodes as the tree grows downwards.

When the leaf nodes are reached, sometimes the number of data instances that

is remaining for the leaf node might be very small. This would mean that the

remaining instances are not sufficient to make a statistically significant

decision for the class representation of the nodes [Tan et al., 2006]. This is also

known as the data fragmentation problem.

 It is true that decision trees can handle missing values but this also has a

disadvantage. Handling the missing data require a lot of computation which is a

drawback by means of computational time [Rokach and Maimon, 2014].

36

 A decision tree inducer mostly follows a univariate approach; therefore, these

inducers check one attribute at a time. This strategy divides the attribute space

into regions. The borders between two neighboring regions that belong to

different classes are called decision boundaries and these boundaries are

rectangular. Hence, this fact limits the expressiveness of the tree and withdraws

it from modeling complex relationships among continuous attributes. There are

some techniques such as oblique decision tree method and constructive

induction method but these methods are proven to be time consuming and

expensive by means of computation [Tan et al., 2006].

3.2. Multivariate decision trees

As mentioned earlier, univariate by definition means involving one variate or variable

quantity. On the other hand, multivariate means using multiple or more than one variate

or variable quantity at the same time. Therefore, multivariate decision trees can use use

all attributes at one node when branching [Alpaydin, 2014].

Hyperplanes with an arbitrary orientation are used [Kantardzic, 2011] in

multivariate trees. It means that there can be 2𝑑
𝑁
𝑑
 possible Hyperplanes (where d is

the number of dimensions and N is the number of possible thresholds for the split

points) which makes exhaustive search inefficient and impractical. Consequently, a

more practical way to follow is using linear multivariate node that takes weights for

each attribute and sums them up [Alpaydin, 2014]. Moreover, linear multivariate

decision trees choose the most important attributes amongst all so that the process

would become more efficient and practical.

Several decision tree inducers have been proposed according to multivariate

approach. One of the earliest examples was the CART algorithm. It would decrease the

dimensionality in the data preprocessing session to reduce the complexity at each node.

After the preprocessing, the inducer used multivariate approach by adjusting the

weights of the attributes one by one.

As a result, it can be said that multivariate decision trees are used to do a better

classification and approximation by the help of hyperplanes. However, this process is

very complex and time consuming which also requires more data than univariate trees

to bring optimal results.

37

4. Evaluation of Decision Trees

At the time a model is built for a decision tree, the first question that comes into mind is

how accurate or reliable the model is on unseen cases. This is the reason why evaluation

of decision trees is essential because one should be certain that the resulting decision

tree will be reliable and efficient. In some cases, there might be more than one decision

tree model for a specific machine learning problem and one of them must be preferred

over the others. In such cases, the only option to overcome such a problem is to take

some precautionary steps. This is achieved by using measures and metrics that will

estimate the overall performance of the inducer’s model for future use.

In this section, the most common and efficient metrics that are necessary for

decision trees are going to be discussed and some important questions will be answered.

What are some common metrics for estimating decision tree performance? What is

accuracy? What are other measures for decision tree evaluation? After discussing such

questions, widely used accuracy estimation methodologies will be discussed.

4.1. Performance Evaluation Metrics and Measures

Before discussing what kind of measures there are, the type of metrics that are used for

performance evaluation need to be explained. A metric for decision tree performance

can have various different meanings. In some cases, the performance is measured by

speed, sometimes by the size of the grown tree and in most cases it is measured by

accuracy. Below are some metrics that have been considered viable and their

definitions. [Han et al., 2011]

 Accuracy Based: These are various measures that show the performance of

classifiers on rating systems or percentages. Accuracy based metrics have

dominated the evaluation methods and techniques since they give the most

realistic and easily calculable results. Some of them are accuracy (recognition

rate), error rate, recall, specificity and precision.

 Speed: It is usually referred as the computational costs that are encountered

during building the model and using it afterwards.

 Robustness: This is how reliable or correct predictions a classifier makes when

it encounters noisy data or data with missing values.

 Scalability: This can be considered as an aspect to evaluate when the classifier

is given large amounts of data. It measures how well the classifier operates

given the large amount of data and is usually evaluated by classifying data of

increasing size.

 Interpretability: The amount or extent where the results of the classifier can

be interpreted. This is a measurement where it can be very hard to assess

different classifiers based on it since it is subjective. As mentioned earlier,

interpretability of decision trees can be easy until some point; however, it is

38

inevitable that it might become very hard to interpret if the tree becomes

complex.

Now that the important metrics have been identified, measures which are in the

category of accuracy based measures can be explained. Only the accuracy based

measures are going to be explained since these are the measures that are going to be

used in this research and in the validation techniques that are going to be explained in

the next sections.

Accuracy based measurements are formed on top of the confusion matrix (a.k.a

coincidence matrix or classification matrix or contingency matrix). Below, there are

examples of simple confusion matrixes which are 2 by 2 and 3 by 3.

Figure 4.1. Confusion matrix examples.

The confusion matrix is a table m by m where each column and row shows how

many instances of some class were labeled as another class. These labeled classes can

be the same class as itself or another one. The numbers along the diagonal from upper-

left corner to the lower-right represent the correctly classified number of instances

(highlighted cells in Figure 4.1). The number m is directly proportional to the number of

classes there are in the dataset. Below the model classification statistics, there are three

more rows which show sum, probability and accuracy of the instances that belong to

those classes in the dataset. Sum is the total number of instances there exists in a

specific class and is calculated by adding the number of instances in the rows of some

column such as Class 1 (In three class valued confusion matrix in Figure 4.1); actual

number of instances in Class 1 are added which sums up to thirty. Probability is the

relative frequency of a specific class among all the classes in the dataset. For instance,

39

in the example above, all the classes have the same probability since they maintain the

same amount of instances. Accuracy, which will be explained further on is calculated by

dividing the number of correctly classified instances in a class by the number of

instances in that specific class. As mentioned earlier, the highlighted cells indicate the

number of correctly instances in a class and in the case of Class 1 (In three class valued

confusion matrix in Figure 4.1), there are twenty-two instances that are classified

correctly over a total of thirty instances. Of course these measures can be different, but

in this example sum, probability and accuracy were selected as the measures. All the

accuracy based measures are based on this matrix and derived from it. To derive such

measures, some terms which are derived from two-class labeled (positive and negative)

data are important [Han et al., 2011];

 True positives count (TP): These refer to the positive instances that were

correctly labeled as positives by the classifier.

 True negative count (TN): These refer to the negative instances that were

correctly labeled as negatives by the classifier.

 False positive count (FP): These are the negative instances that were

incorrectly labeled as positive by the classifier.

 False negative count (FN): These are the positive instances that were

mislabeled as negative by the classifier.

Figure 4.2. Detailed confusion matrix [Olson and Delen, 2008].

By the help of Figure 4.2 above, the following measures are derived.

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Equation 4.1

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

Equation 4.2

40

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

Equation 4.3

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Equation 4.4

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

 Equation 4.5

The true positive rate (also known as hit rate or recall) is a very simple measure and

is calculated by dividing the number of correctly classified positives by the number of

all the positive instances. The false positive rate (as known as the false alarm) is

calculated by dividing the number of incorrectly classified negative instance by the

number of all the negative instances. Then, the most important measure accuracy is

estimated by dividing all the correctly classified instances by the total number of

instances. The rest of the measures such as precision and F-Measure are also important

measures.

4.2. Accuracy Estimating Methodologies

Previously, metrics and measurements that are required in accuracy estimating

methodologies are discussed in order to build a clear connection between the two

concepts. As mentioned earlier, accuracy is the most suitable measure for performance

evaluation of decision trees. Consequently, all the estimating methodologies that are

going to be discussed are based on accuracy metrics, hit rates, error rates and so on.

Estimating accuracy is important for several reasons. Firstly, it is needed to verify if

a model is reliable for future predictions. Secondly, when there is more than one model,

there needs to be some kind of measurement or a metric that can separate the best

among multiple models and this is where an accuracy estimation method comes in.

Lastly, it can be used in order to assign confidence intervals to multiple inducers so that

the outcome of a combining inducer can be optimized [Olson and Delen, 2008] .

In this thesis, several methodologies such as the holdout, k-fold cross validation,

leave-one-out and bootstrapping are discussed. Another important and widely used

method, receiver operating characteristic or as known as the ROC Curves, is not going

to be discussed since it will not be a part of the research. Nonetheless, the area under the

ROC curves, which is also based on the coincidence matrix is also an important

technique for visualizing, organizing and especially selecting classifiers based on their

performances.

41

4.2.1. Holdout Method

The holdout method is also referred to as the simple split or test sample estimation. This

method is probably the simplest and most commonly used practice among the

evaluation methods. The data is split randomly into two independent subsets: training

and testing. The split ratio that is preferred generally is; selecting the training set from

2/3 of the data and testing data from the remaining 1/3 [Olson and Delen, 2008]. After

the data is split into training and testing, a classification model is built by the inducer

using the training data.

 Later on, this model is used to calculate the misclassification rate or the

performance of the built model. Predictions are made based on the classification model

by using the testing data as it can be seen from Figure 4.3.

Figure 4.3. Holdout method.

The holdout method is used when there is enough data that can be used for both

training and testing, separately. This is the reason why this method is used commonly

for big datasets.

As mentioned earlier, the key point of the method is to divide the existing data into

two parts; however, this might cause some problems since it assumes the data in two

subsets are of the same kind. The reason is simple; the testing dataset might not fully

represent the training dataset. Hence, the model built by training data cannot be

sufficient since it does not recognize the instances that represent different classes. In

other words, only a portion of the data is used to derive the model which leads to

pessimistic estimations of accuracy [Witten et al., 2011].

To eliminate such a problem, some precautions should be considered. For example,

the holdout method is based on random sampling which is not sufficient to build a

healthy model but a safety method like stratification can be taken to build a better

model. Stratification is used to gain a fairly distributed amount of classes in both data

subsets. A proportion (1/3 for testing and 2/3 for training as discussed earlier) is taken

from each class instances for each of those subsets so that classes are distributed

similarly in the subsets. However, stratification is just an optimistic safety method

which does not fully eliminate the issue. Instead, holdout subsampling is used to handle

42

this issue in a better manner. The holdout method is repeated k times and then the

overall accuracy is taken as the average of the accuracies obtained from each iteration

[Han et al., 2011].

4.2.2. K-Fold Cross Validation

When the data is limited and it is too risky to split into two subsets, other methods need

to be considered. One of these methods is called k-fold cross validation, also known as

the rotation estimation. It is a very important method within the validation techniques

since it aims to minimize the bias associated with random sampling of the training and

holdout method [Olson and Delen, 2008]. In order to minimize the bias, it makes full

use of the data.

In cross validation a fixed number k is decided as the number of folds that is going

to be used. According to the fold number that is selected, the data is portioned into k

mutually exclusive subsets which are of approximately equal size. Let us say we have

split the data D into k subsets {𝐷1,𝐷2 ,… ,𝐷𝑘}, each of these subsets is referred to as a

fold as stated earlier. Now the procedure is as follows; all the folds except the first fold

{𝐷2,𝐷3,… ,𝐷𝑘}, become the training subset where a model is trained and is tested on the

first fold {𝐷1}. Then, on the next iteration, the second fold {𝐷2} becomes the testing

subset, where another tree model is trained on the rest of the subsets {𝐷1,𝐷3 ,… ,𝐷𝑘}.

This procedure is repeated k times since every fold is going to act as a testing subset for

once (Figure 4.4).

Figure 4.4. k-fold cross validation.

When all the iterations are completed, the accuracy rates that are calculated at the

end of each iteration using the testing subset are summed, and then divided by the

number of folds to find the average classification rate. Cross validation accuracy (CVA)

is calculated as follows;

43

𝐶𝑉𝐴 =
1

𝑘
 𝐴𝑖

𝑘

𝑖=1

Equation 4.6

where k is the number of folds and 𝐴𝑖 is the accuracy measure that belongs to a specific

fold.

The accuracy of cross validation would depend on the distribution of the folds;

therefore, the stratified method is used in k-fold cross validation just like in the holdout

method. The data is divided into k subsets which approximately have the same

proportions from each class in the dataset. Such a technique tries to overcome the bias

in training just like it is aimed in the holdout method or random subsampling.

How is the number k usually selected? According to studies that have been made

with numerous different datasets and with different learning techniques, it has been

found that the 10-fold cross validation has better results in overall and outperforms the

other cross validations that are made with different number of folds. This finding is also

backed up with theoretical explanations [Witten et al., 2011]. Nonetheless, it does not

mean that such a theory is completely valid for every circumstance; it is just a

generalization, made on the common findings. Other folds such as 5, 20 or 30 have been

found to be good choices as well. Therefore, such an issue is also going to be

investigated further on in the experimental part of this thesis.

There are two problems with k-fold cross validation. Firstly, if the k value chosen is

great, the training instances will increase whereas the testing instances will decrease in

numbers [Alpaydin, 2014]. This enables us to get more robust training models;

however, the testing set will be small and not very diverse in terms of data

characteristics and therefore won’t point out a valuable accuracy average. Secondly, the

training sets overlap noticeably every other iteration which means that the training

model is usually built using the same training sets; any two training sets share k-2 parts

[Alpaydin, 2014].

4.2.3. Leave-one-out Method

The leave-one-out method is considered as a variation or a special case of k-fold cross

validation. This methodology is the same in principle, but the only difference with

leave-one-out method is that the k value is set to the number of instances in the dataset.

Assume the dataset has N number of instances, then the leave-one-out methodology is

k-fold cross validation where k is equal to N. Every instance in the dataset is left out

once to become the test sample and the rest of the data (N-1) is used to train the

classification model. The process can only be applied once since every single data

instance is going to be used once for testing during building the model. Just like in cross

validation technique, the average of all the accuracies yields the classification accuracy

44

of the leave-one-out method (Equation 4.6). Additionally, stratification cannot be used

since there is only one instance in the testing subset.

There are some reasons why such a methodology might be preferred over the others.

Firstly, a vast majority of the data is used for training at every iteration; therefore, the

model that is built by the classifier can be considered as robust and accurate [Witten et

al., 2011]. Secondly, there is no need for methods like stratification and so on since

there is no bias during training the model because almost all of the data is used. For that

reason, leave-one-out is considered to be a deterministic method [Witten et al., 2011].

Repeating the model building process will yield the same results by means of accuracy

and model every time.

On the other hand, there are some disadvantages in this methodology. Firstly, the

same process is repeated for every instance in the data set. This means building a model

and measuring the accuracy N times. Such computation could be time-consuming as

well as expensive; especially for extensive datasets. Secondly, each test set contains

only one instance which leads to a high amount of variance of the estimated

performance metric [Tan et al., 2006].

4.2.4. Bootstrapping

The bootstrapping method or as referred to as the bootstrap, uses random sampling with

replacement. For the previous evaluation methodologies discussed in this thesis,

replacement was not an option. All the other methodologies use the data instances for

once; either in training or in testing subset. However, bootstrap method can make use of

the same instance multiple of times. An instance can be used again during training the

model.

There are several bootstrap techniques but the most widely used is 0.632 bootstrap.

It might seem as an odd name but there is a perfectly simple reason and an explanation

for it. Let’s assume a dataset has N instances and these instances are sampled N times

but with replacement. This process will result in another dataset of N instances. Now, it

is clear that some instances will be picked up multiple times since those instances are

being replaced in the dataset while sampling. Additionally, it is clear that some

instances are never going to be picked, so these will form the testing dataset. After

explaining some key points, the computation of the number 0.632 can be explained as

follows. There is a probability of 1/N that a particular instance can be picked up from

the sampling set and a 1 − 1/𝑁 probability of not being picked up. To calculate the

probability of one particular instance never being picked up, 1 − 1/𝑁 is multiplied N

times by itself if the sampling is done N times [Witten et al., 2011]. Such computation

reveals a probability 0.368 (Equation 4.8).

 1 −
1

𝑁

𝑁

→ 𝑒−1 ≈ 0.368

Equation 4.7

45

Now, if this computation is applied to a large dataset, it means that 36.8% of the

instances will probably never be picked up and will be used in testing subset. However,

the remaining 63.2% will probably be used at least once in training the model multiple

times. Thus, total of N instances will be used in building the model from training set.

This is the main explanation behind the 0.632 bootstrap method.

Bootstrapping method can be repeated as many times as it is necessary; there are not

any limitations like in leave-one out method. The final accuracy of bootstrap method is

calculated after all the repetitions are complete. After k times of repetition of bootstrap,

accuracy is calculated as summation of accuracies which are distributed in testing and

training subsets. The equation for the model, M, built by using bootstrap is below [Han

et al., 2011].

𝐴 𝑀 =
1

𝑘
 0.632 𝑥 𝐴(𝑀𝑖)𝑡𝑒𝑠𝑡𝑖𝑛 𝑔𝑠𝑒𝑡

𝑘

𝑖=1

+ 0.368 𝑥 𝐴(𝑀𝑖)𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 _𝑠𝑒𝑡

Equation 4.8

As mentioned earlier, the process can be repeated k many times and at each process,

63.2% form the training and 36.8% form the testing set. Combined accuracy of the

model that is generated at each iteration is calculated and then an average of all the

model accuracies is calculated that gives the overall accuracy of the model.

46

5. Research Method

Two different research methodologies have been used in this thesis. Literature review

has been the first methodology in the sense that the background information on decision

trees has been formed solidly. Then, literature was searched so that any information that

could be related with decision tree accuracy and its evaluation methods were understood

comprehensibly. These sorts of literature were also used to guide and manage the

experimental process in order to understand and interpret the results in a more

comprehensible fashion.

The second research methodology used is the experimental research strategy. In the

experimental part, tests were implemented in order to find patterns and understand the

relationship within decision tree accuracies that were evaluated by various different

evaluation methods.

In this part, the research methodologies that have been followed are going to be

discussed and explained in detail. The motivation behind these research methodologies,

validity of the methods, tools and techniques used in such methodologies are also stated.

Additionally, the data that has been used in the experiment is explained as well.

5.1. Motivation and Purpose of the Experiment

Decision trees are one of the most widely used machine learning algorithms as stated

earlier in the thesis. Decision trees create solutions to classification problems on various

different fields such as engineering, science, medical fields, and economical analytics.

For this reason, decision trees are considered to be one of the most powerful tools that

can accomplish such tasks [Kantardzic, 2011]. The possibility of being able to apply

decision trees in almost any classification and prediction field of data mining makes

decision trees essential. Therefore, accuracy of decision trees plays a key role especially

when there is more than one algorithm and evaluation model to choose from. Each

algorithm has its own methodology of building a model and the evaluation models also

play a big role in the process of building that specific model. The portions of the data to

be used are decided when building the decision tree model according to the choice of

the evaluation method. For example, when 50% holdout split is chosen, the model is

built using half of the available data. Another example would be when using the 10-fold

cross validation, the data is split into 10 partitions and a model is built using 9 partitions

and tested on the remaining one where this process is repeated 10 times. All these

choices of evaluation methods might have a great impact on the resulting accuracy and

decision tree model that is built accordingly with the evaluation method. Thus, finding

the correct evaluation method that would help build a better model and predict the

accuracy of the decision tree inducer is very important since it is the accuracy in the end

of an analysis that matters the most and that will lead to a good prediction in overall.

47

Although decision trees are widely and frequently applied in data mining and

machine learning context, there are not many studies that have made comparisons of

different decision tree algorithms regarding their performance when evaluated by

different methods. There are just some logical assumptions on which evaluation method

would perform better than the other according to some characteristics of the datasets

such the dataset size or number of attributes. Nonetheless, there is not a notion that has

been proven.

As a result, the aim of this thesis is to study how using different evaluation methods

might have effect on decision tree accuracies when they are applied to different decision

tree algorithms. Thus, five different decision tree algorithms were tested using five

different evaluation methods on ten different datasets. The results were analyzed

according to the accuracy measure and its standard deviation and standard error of

misclassification rate as evaluation measures.

5.2. Datasets

Choosing the datasets is essential in the experiment because the data that is chosen

needs to be reliable and applicable. Applicable means the data needs to be in the correct

format and ready for classification purposes. Additionally, not all types of data are

suitable for decision tree learning or classification to be specific. Therefore, the datasets

need to be chosen carefully and then should be preprocessed if it is not already.

For the experimental part of the thesis, all the datasets have been acquired from the

UCI machine learning repository [Bache and Lichman, 2015]. It is a very reliable

source of data where almost all the datasets are preprocessed or at least they are in

tabular format. This repository is mostly used for academic purposes because of the fact

that it is a reliable source of data. Hence, it is possible to confirm the validity and the

credibility of the all datasets that were used in the experiment.

Approximately twenty datasets were examined before the experiment; however,

only ten datasets were chosen due to some criteria. The chosen datasets are related with

various different fields including medical areas. Table 5.1 summarizes the details of the

datasets that are chosen according to numerous fields including; total number of

instances (cases), total number of classes, total number of attributes, missing values and

if the dataset is uniformly distributed or not.

48

Dataset No.

cases

No.

classes

No.

attributes

Continuous Categorical Missing

values

Uniform

distribution

Arrhythmia 452 16 279 207 72 Yes No

Audiology 226 24 69 0 69 Yes No
Balance Scale 625 3 4 4 0 None No

Breast Cancer 286 2 9 0 9 Yes No

Glass 214 7 9 9 0 None No

Hepatitis 155 2 19 6 13 Yes No
Ionosphere 351 2 34 34 0 None No

Iris 150 3 4 4 0 None Yes

Musk1 476 2 167 166 1 None Appx
Zoo 101 6 18 1 17 None No

Table 5.1. Dataset summary.

All the necessary information is already given in the table but it would be beneficial

to explain the datasets and their context in more detail. For this reason, the datasets are

explained based on their context in the following part.

5.2.1. Detailed Dataset Explanations

Arrhythmia

Arrhythmia dataset is donated to the UCI repository in 1998 by Altay Guvenir from

Bilkent University. The data consists of 452 instances and 16 classes in total. There are

279 attributes in which are either continuous (207) or categorical (72). The dataset

contains some missing values and the classes of the data are not distributed uniformly.

The aim is to separate the different type of cardiac arrhythmia cases and to classify them

into one of 16 groups or classes in this case in order to distinguish the cases which have

arrhythmia or not. All the information regarding the attributes and classes cannot be

explained in detail in this thesis since there are a lot of different attributes and classes

involved in the dataset; however, those specific information could be accessed from the

repository [Guvenir et al., 1998].

Audiology

Standardized version of the audiology dataset is donated to the UCI repository in 1992

by Ross Quinlan but the primary donor was Professor Jergen from the Baylor College

of Medicine. The data consists of 226 instances and 24 classes in total. There are 69

attributes which all of them are categorical. The dataset contains some missing values

and the classes of the data are not distributed uniformly. The aim is to separate the

different type of audiology disorder causes and to classify them into one of 24 groups or

classes in order to distinguish the cases according to audiological disorder causes. All

the information regarding the attributes and classes cannot be explained in detail, but

those specific information could be accessed from the repository [Jergen, 1992].

49

Balance Scale

The dataset is donated to UCI repository in 1994 by Tim Hume from Carnegie-Mellon

University. It is an interesting and extraordinary dataset. The dataset has 625 instances,

3 classes and 4 attributes which are all continuous. It does not have any missing values

and the classes are not distributed uniformly. The best explanation and the aim of the

dataset is given by Hume himself; “This data set was generated to model psychological

experimental results. Each example is classified as having the balance scale tip to the

right, tip to the left, or be balanced. The attributes are the left weight, the left distance,

the right weight, and the right distance. The correct way to find the class is the greater

of (left-distance * left-weight) and (right-distance * right-weight). If they are equal, it is

balanced [Hume, 1994].”

Breast Cancer

Breast cancer dataset is donated to UCI repository in 1988 by Ming Tan and Jeff

Schlimmer who work in Carnegie-Mellon University. However, the original source of

the data is Matjaz Zwitter and Milan Soklic who are physicians in the oncology

department of University Medical center in Ljubljana, former Yugoslavia. The dataset

has 286 instances, 2 classes and 9 attributes which all of them are categorical. It only

has 8 missing attribute values in the dataset and the class values are not distributed

uniformly. The aim of the dataset is to try and find out if breast cancer will occur again

or not; therefore, all the attributes are related with breast cancer. For instance the

attributes include; age, menopause, tumor size, inv-nodes (the number of auxiliary

lymph nodes that contain metastatic breast cancer visible in histological examination),

node caps, degree of malignancy, breast (left, right), breast quadrant and irradiation.

More detailed information about the dataset can be accessed in the repository [Zwitter

and Soklic, 1988].

Glass Identification

Glass identification dataset is also another interesting dataset which was donated by

Vina Spiehler but the original owner of the data is B. German from Central Research

Establishment Reading, England. The dataset has 214 instances, 7 classes and 9

attributes which all of them are continuous. It does not have any missing values and its

class values are not distributed uniformly. The aim of the dataset is to classify glasses

into seven certain types of groups with the help of nine chemical elements. Therefore,

the attributes used to classify the glasses are; refractive index, sodium (Na), magnesium

(Mg), aluminum (Al), silicon (Si), potassium (K), calcium (Ca), barium (Ba) and iron

(Fe). The types of glasses that are trying to be classified are; building windows float

processed, building windows non float processed, vehicle windows float processed,

vehicle windows non float processed, containers, tableware and headlamps. More

50

detailed information on the dataset and other researches related to it can be found in the

repository [German, 1987].

Hepatitis

Hepatitis is also another important dataset that has been used in many researches. It

belongs to Gail Gong from Carnegie-Mellon University and has been donated in 1988.

The dataset has 155 instances, 19 attributes where 6 of them are continuous and 13 of

them are categorical. It has missing values and the attributes are not distributed

uniformly including the class attribute. The aim of the dataset is to classify hepatitis

cases according to previous patient mortality; the patient lived or died. All the

information regarding the attributes cannot be explained in detail in this thesis since

there are a lot of different attributes involved in the dataset; however, those specific

information could be accessed from the repository [Gong, 1988].

Ionosphere

Ionosphere dataset is donated to the UCI repository in 1989 by Vince Sigillito from

Space Physics Group. The data consists of 351 instances, 2 classes, 34 attributes and all

of the attributes are continuous. The dataset does not have any missing values and is

not distributed uniformly. The content and the aim of the data are best explained by

Sigillito himself “This radar data was collected by a system in Goose Bay, Labrador.

This system consists of a phased array of 16 high-frequency antennas with a total

transmitted power on the order of 6.4 kilowatts. The targets were free electrons in the

ionosphere. "Good" radar returns are those showing evidence of some type of structure

in the ionosphere. "Bad" returns are those that do not; their signals pass through the

ionosphere. Received signals were processed using an autocorrelation function whose

arguments are the time of a pulse and the pulse number. There were 17 pulse numbers

for the Goose Bay system. Instances in this database are described by 2 attributes per

pulse number, corresponding to the complex values returned by the function resulting

from the complex electromagnetic signal [Sigillito, 1989].”

Iris

Iris data is a very important dataset that has been used widely in the field of machine

learning and in some cases it is even used as an example dataset. It contains 150

instances, 3 classes, 4 attributes and all of the attributes are continuous. The data does

not have any missing values and is uniformly distributed. Iris dataset’s history dates

back to 1932 and it was collected to quantify the morphologic variation of Iris flowers

of the three related species; Iris-setosa, Iris-versicolor and Iris-virginica. The attributes

reveal information related to the plant’s morphological structure; sepal length, sepal

width, petal length and petal width. As understood from the dataset features, its aim is

51

to classify data instances into 3 different iris plant types. More detailed information

about the data itself can be found in the repository [Fisher, 1988].

Musk1

Musk1 data is donated to UCI repository by Tom Dietterich from Oregon State

University in 1994. The data contains 476 instances, 167 attributes where 166 are

continuous and 1 is categorical. There are no missing values in the dataset and the data

is approximately distributed uniformly. The aim and the content of the data is as follows

“This dataset describes a set of 92 molecules of which 47 are judged by human experts

to be musks and the remaining 45 molecules are judged to be non-musks. The goal is to

learn to predict whether new molecules will be musks or non-musks. However, the 166

features that describe these molecules depend upon the exact shape, or conformation, of

the molecule… When learning a classifier for this data, the classifier should classify a

molecule as "musk" if ANY of its conformations is classified as a musk. A molecule

should be classified as "non-musk" if NONE of its conformations is classified as a musk

[Dietterich, 1994].” More detailed information about the dataset can be found in the

repository.

Zoo

Zoo dataset is the smallest dataset that has been used in this thesis. The dataset belongs

to Richard Forsyth and is donated by him to the UCI repository in 1990. It consists of

101 instances, 6 classes, 18 attributes where 17 of them are categorical and 1 of them is

continuous. The dataset does not have any missing values and it is not distributed

uniformly. The aim of the data is to classify a wide range of animals into 7 classes by

the help of attributes that are related to animal characteristics such as: toothed, aquatic,

number of legs. All the information regarding the attributes cannot be explained in

detail in this thesis since there are a lot of different attributes involved in the dataset, but

those specific information could be accessed from the repository [Forsyth, 1990].

5.2.2. Preprocessing the Datasets

Some of the datasets that were chosen had to be preprocessed although their formats

were correct. The preprocessing that was applied to the datasets include discretization,

removing useless attributes with a lot of missing values and also changing the format of

missing values.

Firstly, all of the datasets were analyzed one by one to check if any attribute in the

datasets had any missing values and if they were relevant to the dataset or not. There

were four datasets that had missing attribute values, and these datasets had the highest

probability of having meaningless attributes. The reason behind this notion is simply

because of the amount of missing values might have great impact on the attributes and

make those attributes irrelevant to the datasets.

52

All of the datasets were examined and the datasets without missing values did not

require any preprocessing. However, the four datasets with missing values needed more

analysis so all the attributes that had the majority of their values missing were analyzed

one by one for each dataset. The attributes were dropped from the dataset and were

tested if they had any impact on predictive and descriptive accuracy using different

evaluation methods including the holdout 66 split, 10-fold cross validation and leave-

one-out method. The same splits were used in the tests and the data instances were

identical in each test (for attribute dropped version and the original versions). If were

any impact on the results, the attributes were kept and otherwise dropped.

The first dataset that had missing values was the Arrhythmia dataset. There were 5

attributes with missing values; T, P, QRST, J and heart rate where the amount of

missing values were 8, 22, 1, 376 and 1 respectively (Table 5.2). The only attribute that

had a major effect was J which had 83% of its values missing. If the attribute was taken

out there was a 5-10 percent change in accuracy, so it was decided not to remove the

attribute from the dataset. As a result, 98.21% of the attribute values in total were valid

and none of the attributes were removed.

Attributes Missing values (Amount) Missing values (Percentage)

T 8 1.8 %

P 22 4.85 %

QRST 1 0.2 %

J 376 83.2 %

Heart rate 1 0.2 %

Table 5.2. Arrhythmia missing values.

The second dataset that had missing values was the Audiology dataset (Table 5.3).

There were 7 attributes with missing values; ar_c, ar_u, bone, bser, o_ar_c, o_ar_u and

speech where the amount of missing values were 4(1.8%), 3(1.3%), 75(33.2%),

222(98%), 5(2.2%), 2(0.8%), 6(2.65%). Bser attribute had the majority of its values

missing so it was taken out and tested if anything by means of accuracy would change

and at each test the accuracy did not have any effect. Consequently, bser attribute was

removed from the dataset and after the removal dataset had 91.3% valid values.

53

Attributes Missing values (Amount) Missing values (Percentage)

ar_c 4 1.8 %

ar_u 3 1.3 %

bone 75 33.2 %

bser 222 98 %

o_ar_c 5 2.2 %

o_ar_u 2 0.8 %

speech 6 2.65 %

Table 5.3. Audiology missing values.

The third dataset that had missing values was the Breast Cancer dataset (Table 5.4),

but there were only two attributes that had missing values: node-caps and breast-quad

where the amounts of missing values were only 8 (2.8%) and 1 (0.35%) respectively.

Hence, none of the attributes were eliminated and the dataset had 96.85% valid values.

Attributes Missing values (Amount) Missing values (Percentage)

node-caps 8 2.8 %

breast-quad 1 0.35 %

Table 5.4. Breast cancer missing values.

The fourth dataset that had missing values was Hepatitis dataset. There were 15

attributes with missing values which can be seen in Table 5.5. The only variable that

had a major amount of missing values was protime and removing the attribute had a

major effect on the results; therefore, protime was kept with all of the remaining

attributes.

Attributes Missing

values

(Amount)

Missing values

(Percentage)

Attributes Missing

values

(Amount)

Missing values

(Percentage)

Steroid 1 0.65 % Ascites 5 3.3 %

Fatigue 1 0.65 % Varices 5 3.3 %

Malaise 1 0.65 % Bilirubin 6 3.9 %

Anorexia 1 0.65 % Alk

phosphate

29 18.8 %

Liver_big 10 6.5 % Sgot 4 2.6 %

Liver_firm 11 7.1 % Albumin 16 10.4 %

Spleen_Palp

able

5 3.3 % Protime 67 43.3 %

Spiders 5 3.3 %

Table 5.5. Hepatitis missing values.

54

After the attributes with missing values were checked and the necessary removals

were made, the datasets were almost ready. All the algorithms except CHAID were

compatible with continuous attributes; therefore, the datasets that contained continuous

attributes needed to be discretized in order run tests on the RapidMiner tool. Hence,

discretization was applied to all of the datasets except Audiology and Breast Cancer.

The discretization was performed by the equal frequency binning and the thresholds of

the bins were selected so that all bins contain the same number of numerical values.

Equal frequency binning was chosen due to lack of choices provided by the RapidMiner

tool. Numerical values were assigned to the bin representing the range segment

covering the numerical values. In the discretization process, the number of bins varied

according to the characteristics of the data and its attribute values; the number of bins

which were chosen was either two or three. The ideal number of bins was determined

experimentally and the number of bins which performed optimal were chosen. In this

process, histograms were used to examine the data and different intervals were tried

accordingly. During the experimentation a wide range of bins were tested. The

discretized versions of the datasets were only used in the CHAID algorithm analysis and

for the rest of the algorithms the non-discretized versions of the datasets were used.

Lastly, RapidMiner and IBM SPSS Modeler did not recognize the missing values

automatically since “?” was used to represent missing values. Consequently, all of the

datasets’ missing values were replaced with null values instead of “?”, which is the

missing value format of WEKA and C5.0 tools. All of the datasets’ missing values were

adjusted accordingly before the tests that were made on RapidMiner and IBM SPSS

Modeler.

5.3. Algorithms and Evaluation Methods Chosen

There is a great range of different decision tree algorithms available but not all of them

are available in data mining tools and again not all of them are worth exploring. In this

thesis, four different decision tree algorithms were chosen according to their well

known performance in both private sectors and academic researches. Hence, the chosen

algorithms are the ones that have been discussed in the thesis; the well known C4.5,

C5.0, CART and CHAID. Additionally, boosting option of C5.0 has also been tested

since it would be interesting to compare the results with other algorithms in such

context. Consequently, there were five different algorithms including the boosted C5.0

algorithm.

The most widely used evaluation methods have been chosen to assess the selected

five decision tree algorithms. These evaluation methods include leave-one-out method,

5-fold cross validation, 10-fold cross validation, holdout method with 50 percent split

ratio and holdout method with 66 percent split ratio.

55

5.4. Tools Used

In order to accomplish good academic research and experiments on decision trees, tools

are vital. Choosing the correct tools for the job plays an important part in the academic

research and also in private businesses as well. Not all the tools have all the machine

learning and data mining algorithms built in; therefore, tools were chosen based on the

methods and algorithms that were going to be employed. In this case, four decision tree

algorithms were chosen to be tested on various evaluation methods; C4.5, C5.0, CART

and CHAID. These were chosen since they are the most widely used decision tree

algorithms in business and academic areas.

After the selection of algorithms were made, tools had to be selected based on

which algorithms were implemented in which tools. In the end, CART and C4.5 were

correctly implemented in the tool WEKA, CHAID was implemented in IBM SPSS

Modeler and C5.0 had its own tool which could be used under GNU license as

noncommercial purposes.

5.4.1. WEKA

Waikato Environment for Knowledge Analysis (WEKA) is a tool specifically made for

machine learning purposes by the University of Waikato. It is a collection of machine

learning algorithms and data preprocessing tools for researchers and practitioners of

machine learning and data mining [Hall et al., 2009]. The collection includes algorithms

for classification, regression, clustering and association rule mining. Additionally,

graphical user interfaces and visualization options can be used for data exploration and

algorithm evaluation. Data preprocessing is also another capability where different file

formats are supported such as ARFF (which is the native file format of WEKA), CSV,

Matlab ASCII files and so on [Bouckaert et al., 2010]. The current version of WEKA is

implemented by using JAVA programming language; therefore, it can run on any

machine and operating system. It is a very easy to use and efficient program.

The reason why WEKA is chosen for the experiments is that the decision tree

algorithms CART and especially C4.5 are almost identically implemented when

compared with the original algorithms. These implementations exist under the

classification and regression capabilities of the tool.

5.4.2. IBM SPSS Modeler

IBM Statistical Package for the Social Sciences Modeler (SPSS Modeler) is a data

mining and text analytics based tool that has been implemented by SPSS Inc. for

predictive and analytical analysis purposes. The company SPSS Inc. has been acquired

by IBM in 2009.

It provides various complex and advanced data mining algorithms, methods and

techniques. These algorithms, methods and techniques are applied as models, so one can

56

build models for many different analysis purposes. Such an option makes the process

visual and easily understandable for the majority of users. It also fastens the analysis

process due to simpler user experience. The tool is widely used in different industrial

fields such as customer analytics and customer relationship management (CRM), fraud

detection and prevention, forecasting demands and sales, healthcare quality

improvement, academic researches, telecommunications and many other [IBM, 2014a].

The tool provides algorithms from machine learning and data mining. Some of the

algorithms included are: decision trees, support vector machines, naïve bayes,

generalized linear mixed model, K-nearest neighbor algorithm and so on [IBM, 2014b].

The main reason IBM SPSS Modeler was chosen in this thesis is because it contains

implementations of the CHAID and C5.0 algorithms. Other decision tree

implementation in SPSS are; Exhaustive CHAID, CART and QUEST.

5.4.3. C5.0/See5

As discussed earlier in the thesis, C5.0 is an algorithm that has followed the earlier C4.5

decision tree algorithm. The computer program See5 is also implemented by Ross

Quinlan [Quinlan, 2004]. It has two versions; one is a single threaded version which is

open source and under GNU General Public License. It has dataset size limitations and

can be used for academicals purposes easily. The other version is the multithreaded

version which is commercially used in some products such as the IBM SPSS Modeller.

Besides being used commercially, it is also integrated into some open source

applications. For instance, another important statistical analysis tool R has a separate

package that utilizes the open source C5.0 algorithm implementation.

See5 can produce rulesets and decision trees. Additionally, it has a boosting option

built in which enables the algorithm to give better results under extensive datasets. This

tool is chosen because it gives a very simple and easy to use implementation of C5.0.

5.4.4. RapidMiner

RapidMiner is also another important and widely used tool that has a similar approach

as the IBM SPSS Modeler. The tool also uses models to build the process which again

makes the process visual, easily understandable and fastens the process of building an

analytical model and applying it. It provides an environment for machine learning, data

mining, text mining, predictive analytics and business analytics. It is used in business

and industrial applications and for academic researches. The tool provides usage for

research, education, training, rapid prototyping, application development and all steps

of data mining from visualization to validation and optimization [Hofmann and

Klinkenberg, 2013].

57

The tool is chosen since it provides many algorithms in data mining and machine

learning including decision trees such as CHAID, exhaustive CHAID and also provides

all the types of evaluation methods with the algorithms.

5.4.5. Other Tools

During the experimental part, 8-10 different data mining tools were analyzed and tested

in order to find the ones that are going to work with all the evaluation methods and also

would give stable and trustable results. Besides the tools explained above which have

been used in the experiments, there have also been some other tools that would have

been chosen if they had all possible evaluation methods that could be applied to the

algorithms. Some of the notable tools are R, StatSoft Statistica, Orange, IBM SPSS

Statistics and similar tools.

58

6. Results

In the experimental part of the thesis, tests were performed in order to measure the

possible differences between evaluation methods in terms of accuracy when the datasets

were induced using several different algorithms and various evaluation methods. In

order to complete such tests, different tools had to be used for each algorithm since not

all the algorithms were implemented completely in one data mining tool. As mentioned

earlier, only the tools that supported all the chosen evaluation methods in this thesis

were selected to run the tests. In this case, the C4.5 and CART algorithms were tested

by using the WEKA tool. The C5.0 algorithm on the other hand had to be tested in two

different tools because of the limitation the See5 tool had; datasets that had more than

400 instances were not allowed for testing. Thus, IBM SPSS Modeler was also used to

test datasets with C5.0 algorithm for the datasets that had more than 400 instances. The

results that were obtained from both tools (See5 and IBM SPSS Modeler) were very

similar; therefore, it is certain that both programs perform almost identically and the

results obtained from both programs are valid. Additionally, it is stated in the See5

tool’s website that the same algorithm is implemented in IBM SPSS Modeler as well, so

there is no doubt that the two programs perform similarly when it comes to the C5.0

algorithm [Quinlan, 2004]. Lastly, RapidMiner tool was used to obtain results for the

CHAID algorithm.

Before explaining the obtained results for the experiment, there is some basic

information that needs to be stated regarding the testing procedure. The testing had to be

reliable; therefore, all of the results (in terms of accuracy, standard deviation of

accuracy, standard error of misclassification rate) obtained were averaged over hundred

iterations. However, datasets had to be tested manually with the C5.0 algorithm, hence;

all the results that are obtained with the C5.0 algorithm could only be averaged over ten

iterations. As a result, all the tests that are made in this experiment are averaged over

100 iterations except the ones that are made with C5.0 algorithms. Additionally, the

C5.0 algorithm that is implemented in both See5 and IBM SPSS Modeler did not give

the results in terms of standard deviation but in terms of standard error. For this reason,

the results for the C5.0 algorithm in the tables 6.1-6.10 are in terms of standard error

instead of standard deviation and are marked with “†”.

The test results are explained in detail and are supported by the information given in

the corresponding tables. Some abbreviations had to be used in tables; Accuracy (Accy),

standard deviation (STD), standard error (SE) and cross validation (CV). Additionally,

“C5.0*” represents the boosted version of the C5.0 algorithm. For these tests, C5.0

algorithm was boosted for ten trials. Moreover, the C5.0 and the boosted C5.0 algorithm

did not provide standard deviations in the results but instead it provided standard error

as a measure. Thus, the mark “†” represents standard error in the results and the results

without the mark are standard deviations. Therefore, some values which were not

provided are missing in the dataset results. Lastly, stratified sampling was used at each

59

test so that there was a balance between the distribution of the chosen instances in both

training and testing data. The best result for each algorithm in the dataset results was

written in bold face for each of the following tables.

Arrhythmia Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 66.37 - 65.74 3.98 65.83 5.86 64.57 3.18 65.53 3.19
CART 73.23 - 70.49 3.84 71.40 5.44 67.22 2.97 69.05 3.15
C5.0 69.00 2.20† 66.74 1.79† 67.42 1.97† 65.30 - 67.07 -
C5.0 * 71.90 2.10† 72.00 1.91† 72.16 1.48† 71.28 - 71.31 -
CHAID 53.10 - 48.47 6.24 54.09 1.82 51.68 14.76 45.19 17.09

Table 6.1. Arrhythmia test results.

Arrhythmia dataset was tested and the results are displayed in Table 6.1. According

to the results, leave-one-out method has been the best evaluation method for this dataset

since three out of five highest measured accuracies of the algorithms belong to the

leave-one-out method. In most of the cases, there is a 0.5-2 percent difference in terms

of accuracy when compared with the second best method which is 10-Fold CV. 5-Fold

CV is the third best after 10-Fold CV; however, there is a slight difference between both

so it could be counted as a draw between them. The fourth best is Holdout 66 split

followed by the Holdout 50 split which is the poorest in terms of accuracy. Again there

is not much difference between the two holdout splits. The most unexpected

performance belonged to the CHAID algorithm since it had very poor results when

compared with other algorithms. Lastly, the best algorithm overall was the boosted C5.0

in terms of accuracy.

Audiology Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 77.88 - 77.38 4.55 77.35 7.39 75.55 3.43 77.40 3.30
CART 75.66 - 74.34 5.43 74.93 7.83 69.60 4.03 73.20 4.74
C5.0 77.90 2.80† 77.69 1.87† 77.52 2.42† 71.51 - 74.21 -
C5.0 * 84.10 2.40† 84.16 2.06† 84.70 2.04† 77.79 - 79.72 -
CHAID 30.53 - 37.28 4.79 37.17 1.63 47.26 13.92 45.36 15.62

Table 6.2. Audiology test results.

The results in Table 6.2 belong to the Audiology dataset. Leave-one-out is the best

evaluation method in terms of accuracy when compared with the other methods but the

difference between the accuracies are very small. The second best is 5-Fold CV but

again the accuracy difference between 10-Fold CV which is the third best, is very small

so that both methodologies basically performed identically. Then the Holdout 66 split is

the fourth best followed by the Holdout 50 split. Holdout 66 split is visibly better than

Holdout 50 in all of the algorithms except CHAID which performed very poorly and

way unstable since the STDs of the holdout methods were very high when compared

with other algorithms’ STDs. Additionally, the algorithm that performed best is boosted

60

C5.0 in most cases with 2-6 percent difference in terms of accuracy when compared

with other algorithms.

Balance Scale Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 77.76 - 78.27 2.96 77.93 4.09 78.08 1.88 78.28 2.22
CART 79.36 - 78.46 2.93 79.15 4.09 77.88 1.80 78.52 2.00
C5.0 77.80 1.70† 78.66 1.12† 77.85 1.30† 77.49 - 78.79 -
C5.0 * 81.10 1.60† 83.47 1.15† 82.74 1.09† 83.58 - 84.52 -
CHAID 74.56 - 76.93 0.79 76.48 0.52 74.87 2.27 76.44 2.40

Table 6.3. Balance scale test results.

Holdout 66 split was the best evaluation method for the Balance Scale dataset

according to the results in Table 6.3. However, 5-Fold CV has performed almost

identically to Holdout 66 split with only 0-0.5 percent differences when compared. 10-

Fold CV was the third best evaluation method after the 5-Fold CV. The two worst

methods are Holdout 50 split and leave-one-out method. The dataset results could be

considered stable since the standard deviations are low even when compared with other

dataset results in general. The best algorithm in terms of accuracy is the boosted C5.0

for this dataset as well.

Breast Cancer Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 75.52 - 72.77 4.09 73.93 5.65 71.19 2.62 71.37 3.51
CART 72.03 - 70.01 3.85 70.71 5.34 69.55 2.73 69.95 2.84
C5.0 75.50 2.50† 71.71 1.82† 73.30 2.12† 73.95 - 69.36 -
C5.0 * 75.50 2.50† 71.18 2.11† 73.84 2.00† 71.58 - 70.81 -
CHAID 64.49 - 64.36 2.29 64.33 1.87 64.53 3.78 64.82 4.96

Table 6.4. Breast cancer test results.

Breast cancer results are given in Table 6.4 and according to those results, leave-

one-out is the best evaluation method for the dataset. It gave 1.5-2 percent better

performance in terms of accuracy when compared with the second best method which is

the 10-Fold CV. Then it is 5-Fold CV which is the third best by the accuracy measure.

Lastly, both holdout methods have very close results; however, it could be stated that

Holdout 66 is better since it performed slightly better than Holdout 50 except for the

C5.0 algorithms. Furthermore, C5.0 and the boosted C5.0 algorithm performed almost

identically in every evaluation method. Additionally, the dataset has relatively stable

results when compared with other datasets since the STDs do not vary much. For this

dataset, C4.5 performed slightly better than other algorithms in general. This is

interesting since the boosted C5.0 had been performing very well on the other datasets.

61

Glass Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 66.82 - 67.30 6.38 67.88 9.12 65.56 4.08 66.69 5.08
CART 72.90 - 70.24 6.16 70.49 8.48 65.33 4.88 68.55 5.57
C5.0 65.90 3.20† 69.00 3.29† 70.36 2.95† 66.60 - 65.27 -
C5.0 * 76.20 2.90† 73.69 2.61† 77.06 2.55† 70.28 - 73.29 -
CHAID 62.62 - 61.68 2.10 62.60 1.65 57.85 4.89 60.71 4.93

Table 6.5. Glass test results.

Table 6.5 shows the results for the Glass dataset. It could be argued from the results

that 10-Fold CV is the best method when compared with the rest. Then, leave-one-out

method is the second best followed by the 5-Fold CV. The worst methods are again the

holdout splits in terms of accuracy. However, Holdout 66 is better in most cases with

0.5-3.00 percent better accuracies. The dataset is slightly unstable since the STDs of the

holdout methods reach higher intervals; 4-5 percent. The best algorithm overall is again

the boosted C5.0 with clear differences in terms of accuracy.

Hepatitis Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 80.00 - 79.03 5.81 79.26 8.72 78.81 3.86 78.68 4.69
CART 71.61 - 78.82 4.75 77.48 6.82 79.49 2.84 79.32 3.34
C5.0 78.70 3.30† 79.62 2.78† 78.75 2.83† 81.57 - 79.05 -
C5.0 * 83.20 3.00† 83.35 3.03† 84.42 2.62† 80.89 - 81.69 -
CHAID 79.35 - 78.80 2.34 80.21 2.32 77.99 3.88 78.32 4.70

Table 6.6. Hepatitis test results.

The results in Table 6.6 show the results for the Hepatitis dataset. Firstly, all the

results in the dataset are very close to each other apart from some exceptions. If one had

to decide the best evaluation method for this dataset, it would be 10-Fold cross

validation although it is tied up with Holdout 50 split. However, when the Holdout 50 is

compared with the 10-Fold CV, 10-Fold CV is slightly better. Strangely, when each

algorithm is compared one by one, 5-Fold is second best followed by the leave-one-out

method. Once again the two worst methods are considered to be the holdout splits.

Nevertheless, it should be stated that it is not a very reliable dataset since it has a

significant amount of missing values and the STDs are relatively higher. Additionally,

there is one more fact that has not changed once again; the algorithm that performed

best overall is the boosted C5.0.

62

Ionosphere Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 87.46 - 89.44 3.45 89.94 4.98 88.20 2.37 88.72 2.99
CART 89.17 - 89.09 3.16 88.86 4.83 88.48 2.35 88.72 2.39
C5.0 91.70 3.50† 90.30 1.43† 90.48 1.44† 87.88 - 90.67 -
C5.0 * 94.30 1.20† 93.84 1.24† 93.93 1.30† 93.77 - 94.79 -
CHAID 83.19 - 82.89 1.60 83.11 1.29 81.92 3.20 82.63 3.18

Table 6.7. Ionosphere test results.

Table 6.7 concludes the results for the Ionosphere dataset. It is clear that leave-one-

out method has performed the best for this dataset even though the results are very close

to each other. It is also very clear that the Holdout 50 split has performed the worst

amongst all methods, but again it is important to state that all the results are neck and

neck. If one were to arrange the methods according to their overall performances, 10-

Fold CV would be the second best followed by the 5-Fold CV with a difference of 0.1-

0.5 percent in terms of accuracies. Then the fourth best would be Holdout 66 with a

better 0.3-1.1 accuracy percentage over Holdout 50. The dataset itself could be

considered very stable and reliable since there are no missing values and the STDs in

overall are not high. Additionally, the algorithm that has performed best in overall is the

boosted C5.0 followed by the default C5.0 algorithm.

Iris Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 95.33 - 94.43 3.90 94.91 5.43 93.37 2.62 94.25 3.12
CART 95.33 - 94.19 3.98 94.21 5.22 93.83 3.33 94.49 2.82
C5.0 95.30 1.70† 92.95 1.98† 94.26 1.88† 93.67 - 92.75 -
C5.0 * 94.70 1.80† 94.09 1.78† 94.54 1.72† 92.78 - 94.70 -
CHAID 96.67 - 96.93 0.86 96.85 0.68 95.64 2.60 97.22 2.22

Table 6.8. Iris test results.

The results in Table 6.8 belong to the well known dataset Iris. According to the

results, the leave-one-out method is the best in terms of accuracy for most of the

algorithms by a difference of 0.25-1 percent. The second best evaluation method is 10-

Fold CV which is slightly better than the Holdout 66 method. Holdout 66 split is the

third best and in average 0.50 percent worse than the 10-Fold CV. The fourth best is 5-

Fold CV where as the last best evaluation method by terms of accuracy is the Holdout

50 split. The best algorithm in overall is CHAID algorithm this time. Lastly, the dataset

is stable and reliable since the STDs are not high.

Musk1 Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 100 - 98.25 2.86 99.18 2.07 89.85 10.17 95.90 4.82
CART 100 - 98.99 1.50 99.54 1.43 95.48 2.05 97.82 1.81
C5.0 100 0.00† 98.23 0.98† 98.88 0.67† 78.07 - 96.53 -
C5.0 * 100 0.00† 97.95 1.08† 99.31 0.46† 85.10 - 97.58 -
CHAID 94.54 - 72.33 2.38 73.32 1.66 68.58 3.40 71.04 3.42

Table 6.9. Musk1 test results.

63

Table 6.9 concludes the results for the Musk1 dataset. It can be clearly seen from

the dataset results that the leave-one-out method gave the best results as an evaluation

method by 1-22 percent difference when compared with the second best evaluation

method 10-Fold CV. The third best is 5-Fold CV and it is also a clear outcome since

there is 0.5-1.3 steady difference between the 10-Fold CV. The Holdout 66 and Holdout

50 are the poorest evaluation methods. These two methods are respectively the fourth

best and the last best evaluation methods in this dataset. Moreover, the dataset results

are stable since STDs do not vary much. Lastly, the best algorithm that performed well

in overall is CART.

Zoo Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34

 Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE Accy. STD|SE

C4.5 92.08 - 93.02 4.18 92.52 6.88 93.07 2.77 92.84 3.11
CART 40.59 - 40.59 1.73 40.58 2.50 40.67 0.85 40.60 1.47
C5.0 94.10 2.40† 92.46 2.64† 93.55 2.28† 90.80 - 91.48 -
C5.0 * 96.00 2.00† 95.03 2.09† 95.76 1.75† 88.20 - 94.71 -
CHAID 93.07 - 92.32 1.33 92.83 0.88 92.30 2.67 92.09 3.13

Table 6.10. Zoo test results.

The last dataset Zoo’s results are shown in Table 6.10. According to the table, the

leave-one-out method is the best in overall but the results are very close to each other

especially the cross validation methods and the leave-one-out method. Second best

algorithm is hard to tell because of the closeness in accuracies but 10 Fold-CV is

slightly better than 5-Fold; therefore, 10-Fold is the second best where as 5-Fold is the

third best evaluation method for the dataset. Then, the fourth best and last ones are

respectively Holdout 66 and Holdout 50 split. The dataset is interesting because the

STDs vary much from algorithm to algorithm, so the results could be considered as

slightly unstable for this dataset. Additionally, CART algorithm has performed

exceptionally poor for this dataset even though the STDs were not very high. Lastly, the

algorithm that performed the best in overall is the boosted C5.0.

6.1. Result Evaluation

The results of the datasets have been explained one by one in the previous section. In

this section, all the results have been combined in order to make some logical

inferences. Moreover, comments are also made based on the combined results.

The results that have been gathered are interesting, but as it can be seen from the

results, not all of the datasets have been very informative for the study’s purpose. For

instance, the datasets that had very close results to each other when the evaluation

methods were compared or the datasets that had very confusing results were not very

productive for the research. However, there is not a notion that all the datasets perform

in an expected way or give amazing results in overall. Such a thought would not be

logical since all the datasets have their own characteristics and act in different ways.

64

There are some interesting datasets which their results need to be interpreted. For

instance, Balance Scale dataset has been the only dataset where Holdout 66 has

performed the best amongst all the evaluation methods. If looked at the results (Table

6.3), it can be seen that almost all the results were very close to each other. Therefore,

ranking the evaluation methods was very difficult and not very decisive. The same issue

was present for the Hepatitis dataset (Table 6.6) since all the results were very close to

each other and it was very hard to find the best ones when ranking the evaluation

methods. Additionally, the results were very scattered and there were not any patterns

since evaluation results even differentiated according to the algorithm used. Moreover,

Zoo dataset (Table 6.10) had the same problems. Most of the results were very close to

each other and there were not any patterns in the results. The most probable reason

behind these issues for this particular dataset could be the size since it had only 101

instances in total. The size of the dataset might have been insufficient to build a model

that could be distinctive throughout all the evaluation methods. Apart from these three

datasets, in most cases the results were also close to each other when the best three

evaluation methods were considered; however, it was not as hard as these three datasets

to find a pattern.

There were also some datasets that performed well in overall and gave distinctive

results such the Breast Cancer dataset and Musk1 dataset. For instance it is very clear

that leave-one-out method has outperformed the other evaluation methods in the Breast

Cancer dataset. Another interesting point in the dataset is C5.0 and the boosted version

of C5.0 algorithm has almost performed identical. This is interesting because in most of

the time boosted C5.0 outperforms all the other algorithms when the algorithms are

ranked based on their overall performance in terms of accuracy. Musk1 dataset is also

interesting since every evaluation method performed in the same order by means of

performance and distinctively for each algorithm.

After taking these into consideration, it would be easier to combine the results and

discuss the findings over Table 6.11 below.

65

Dataset 1 2 3 4 5

Arrhythmia Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50

Audiology Leave-one-out 5 Fold CV 10-Fold CV Holdout 66 Holdout 50

Balance Scale • Holdout 66 5-Fold CV 10-Fold CV Holdout 50 Leave-one-out

Breast Cancer Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50

Glass 10-Fold CV Leave-one-out 5-Fold CV Holdout 66 Holdout 50

Hepatitis • 10-Fold CV 5-Fold CV Leave-one-out Holdout 66 Holdout 50

Ionosphere Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50

Iris Leave-one-out 10-Fold CV Holdout 66 5-Fold CV Holdout 50

Musk1 Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50

Zoo • Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50

Total Leave-one-out (7/10) 10-Fold CV

(6/10)

5-Fold CV

(6/10)

Holdout 66

(8/10)

Holdout 50

(8/10)

Total • Leave-one-out (6/7) 10-Fold CV

(5/7)

5-Fold CV

(5/7)

Holdout 66

(6/7)

Holdout 50

(6/7)

Table 6.11. Combined test results.

In Table 6.11, the results have been ranked from 1-5 according to their

performances. The ranks are for the evaluation methods where rank 1 being the best

evaluation method for that specific dataset and 5 being the worst. Additionally, “•”

symbolizes the datasets (Balance Scale, Hepatitis and Zoo) that have been mentioned

earlier which have not been very informative for this experiment. At the end of the

table, the mostly occurring evaluation methods are selected according to their

frequencies. Lastly, Total• gives the overall results by excluding the datasets that have

not been very informative which are also marked with a dot.

There are some interesting results that can be seen in the combined results table.

Firstly, it can be observed that in almost every result Holdout 50 method has performed

the poorest by a substantial difference. This is a sensible result if decision tree growing

criteria are taken into consideration. In order to build a tree, there must be sufficient

data and the more the data the better trees will perform once grown. However, building

the model with the majority of the data might also cause overfitting issues. Therefore,

there is a thin line between obtaining a balanced, good overall performance for decision

trees in terms of accuracy. In this case, the experiment had datasets that did not have

many instances; the largest dataset (Balance Scale) had 625 data cases and the rest were

ranged between 150-350 cases. This might have caused the Holdout 50 method to

perform poorer when compared with other evaluation methods since it only used half of

the data to train the decision tree model.

Secondly, leave-one-out method could be considered as a cross validation method

since it is a special case of it as mentioned earlier. Taking this notion into consideration,

66

the evaluation methods that are applied in this experiment can be grouped into two

method categories; holdout methods and cross validation methods. If the results are

examined, it is clear that in almost every case cross validation methods have

outperformed the holdout methods.

As a result, the outcomes of the experiment revealed interesting points. However,

nothing much could be concluded about the results since the experiment does not have

sufficient amount of datasets to be conclusive. The only important outcomes of the

results were that cross validation methods outperformed the holdout methods and

Holdout 50 method performed poorest. Besides the insufficient number of datasets, each

dataset has its own characteristics and is very different in nature from another dataset.

This fact also makes it difficult to test which evaluation method is superior to other.

Moreover, there are other factors which contribute highly to the accuracy such as the

attribute selection criteria, pruning method, overfitting, curse of dimensionality, missing

and noisy data, data size, data distribution, data sampling method and the induction

algorithm itself. Therefore, it is very difficult to come to a verdict about the evaluation

methods in general; more detailed and comprehensive research is needed.

67

7. Discussion and Conclusion

Decision trees play an important role in machine learning and data mining. The

application fields of decision trees vary depending on the research field or utilization

area; however, there is one inevitable fact that decision trees are common practices

within the knowledge discovery process. Additionally, evaluation methods are also

considerably important since there is a close relation between them and decision trees.

Evaluation methods guide the process of building a decision tree model; therefore,

decision tree models are dependent on the evaluation models which are used to form

decision trees. Hence, the choice of evaluation method would also have an impact on

the decision tree accuracy. Thus, main purpose of this thesis was to study the effects of

evaluation methods on decision tree accuracies when they were applied to different

decision tree algorithms. In order to accomplish such a task, a comprehensible literature

review was needed. Therefore, topics that were relevant to the experiment and the

decision trees were covered in detail. For instance, important topics within decision

trees such as attribute selection criteria, pruning methods and induction algorithms were

discussed since these topics were directly related to accuracy. Moreover, detailed

background information on evaluation methods was given.

In the experiment, five decision tree algorithms were tested by five evaluation

methods on ten different datasets. The primary goal was to study the effects of

evaluation methods on decision tree accuracy. There were two main findings from the

experiment. Firstly, cross validation methods were superior to the holdout methods in

overall. Secondly, holdout 50 split performed the poorest in almost every test.

However, there are probable reasons behind the obtained results. For instance, it is very

probable that the reason holdout 50 split had performed the worst is due to insufficient

number of training instances. This is highly probable because the datasets that were

used did not have large amounts of instances in general which meant insufficient

number of training instances when holdout 50 method was chosen to build the model.

Additionally, interpretation of the results were very hard because the results changed

according to the datasets and the decision tree algorithms that were used. Consequently,

as mentioned in the results chapter it was very hard to rank the evaluation methods and

find the one that was superior to the others in each test. However, it is very clear that

not only evaluation methods affect decision tree accuracy; therefore, there might be

several reasons behind the differences in decision tree accuracies. Some of the major

reasons that are suspected include: overfitting, curse of dimensionality, attribute

selection criteria, pruning method, dataset size, and induction algorithm. As a result, it

is very hard to come to a definite conclusion about the effects of evaluation method on

decision trees. There cannot be a generalization such that an evaluation method is

always superior to another one in all circumstances. Every dataset has its own

characteristics and every dataset has to be treated according to its specifications.

68

Therefore, it is important to understand the data comprehensibly and chose the correct

evaluation method accordingly before building a decision tree model.

There were two limitations that were encountered in the thesis. First and most

importantly, the number of datasets that were tested was not sufficient. Therefore, the

experiment that was conducted was not very conclusive. Secondly, there were

difficulties when testing the datasets. The tools that were available did not have all the

necessary algorithms or the evaluation methods that were required for the experiment.

Therefore, it was hard to combine several tools in order to conduct the experiment.

Additionally, not all the tools available were open source. Thus, some important tools

were discarded due to lack of financial support.

For future work, a more comprehensible experiment with more datasets could be

made. Additionally, there were a few topics that were going to be tested but were

discarded in the later phases of the thesis. For instance, the total number of attributes

might also affect the accuracy of the decision trees. There are already solid findings in

the literature that the dimensionality affects accuracy but it would still be interesting to

test this notion on decision trees. Moreover, the effect of having different types of

attributes such as continuous, categorical or mixed might also affect accuracy of the

decision tree, so this issue could also be pursued. Lastly, dataset’s size might also have

effects on decision tree model’s accuracy. Hence, the datasets can be tested by taking

different proportions of the data using stratified sampling and the obtained results could

be analyzed to study the relation between the dataset size and decision tree accuracies

when built by different evaluation methods.

69

References

[Alpaydin, 2014] Alpaydin, E. (2014). Introduction to machine learning. MIT press.

[Bache and Lichman, 2015] Bache, K., and Lichman, M. (2015). {UCI} Machine

Learning Repository. Retrieved from http://archive.ics.uci.edu/ml

[Badulescu, 2007] Badulescu, L. A. (2007). The choice of the attribute selection

measure in Decision Tree induction. Annals of the University of Craiova-

Mathematics and Computer Science Series, 34, 88–93.

[Blumer et al., 1987] Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K.

(1987). Occam’s razor. Information Processing Letters, 24(6), 377–380.

[Bouckaert et al., 2010] Bouckaert, R. R., Frank, E., Hall, M. A., Holmes, G.,

Pfahringer, B., Reutemann, P., and Witten, I. H. (2010). WEKA---Experiences

with a Java Open-Source Project. J.Mach.Learn.Res., 11, 2533–2541.

[Breiman et al., 1993] Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.

(1993). Classification and Regression Trees, Wadsworth International Group,

Belmont, CA, 1984. Case Description Feature Subset Correct Missed FA

Misclass, 1, 1–3.

[Breiman et al., 1984] Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984).

Classification and regression trees. CRC press.

[Dietterich, 1994] Dietterich, T. (1994). Musk1 Dataset. Retrieved December 12, 2014,

from https://archive.ics.uci.edu/ml/datasets/Musk+(Version+1)

[Fayyad et al., 1996] Fayyad, U., Piatetsky-Shapiro, G., and Smyth, P. (1996). From

Data Mining to Knowledge Discovery in Databases.

[Fisher, 1988] Fisher, R. (1988). Iris Dataset. Retrieved December 12, 2014, from

https://archive.ics.uci.edu/ml/datasets/Iris

[Forsyth, 1990] Forsyth, R. (1990). Zoo Dataset. Retrieved December 12, 2014, from

https://archive.ics.uci.edu/ml/datasets/Zoo

[Frank, 2000] Frank, E. (2000). Pruning decision trees and lists. Citeseer. Retrieved

from

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.3509&rep=rep1&ty

pe=pdf

[German, 1987] German, B. (1987). Glass Identification Dataset. Retrieved December

12, 2014, from https://archive.ics.uci.edu/ml/datasets/Glass+Identification

[Gong, 1988] Gong, G. (1988). Hepatitis Dataset. Retrieved December 12, 2014, from

https://archive.ics.uci.edu/ml/datasets/Hepatitis

[Guvenir et al., 1998] Guvenir, A., Acar, B., and Muderrisoglu, H. (1998). Arrhythmia

Dataset. Retrieved December 02, 2014, from

https://archive.ics.uci.edu/ml/datasets/Arrhythmia

70

[Hall et al., 2009] Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and

Witten, I. H. (2009). The WEKA Data Mining Software: An Update. SIGKDD

Explor.Newsl., 11(1), 10–18.

[Han and Kamber, 2006] Han, J., and Kamber, M. (2006). Data Mining, Southeast Asia

Edition: Concepts and Techniques. Morgan kaufmann.

[Han et al., 2011] Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Concepts and

Techniques (3rd ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

[Hand et al., 2001] Hand, D. J., Mannila, H., and Smyth, P. (2001). Principles of data

mining. MIT press.

[Hofmann and Klinkenberg, 2013] Hofmann, M., and Klinkenberg, R. (2013).

RapidMiner: Data mining use cases and business analytics applications. CRC

Press.

[Hssina et al., 2014] Hssina, B., Merbouha, A., Ezzikouri, H., and Erritali, M. (2014). A

comparative study of decision tree ID3 and C4. 5. International Journal of

Advanced Computer Science and Applications, 4(2).

[Hume, 1994] Hume, T. (1994). Balance Scale Dataset. Retrieved December 12, 2014,

from https://archive.ics.uci.edu/ml/datasets/Balance+Scale

[Hunt et al., 1966] Hunt, E. B., Marin, J., and Stone, P. J. (1966). Experiments in

induction.

[IBM, 2011] IBM. (2011). CHAID and Exhaustive CHAID Algorithms.

[IBM, 2014a] IBM. (2014a). IBM SPSS Modeler. Retrieved November 11, 2014, from

http://www-01.ibm.com/software/analytics/spss/products/modeler/

[IBM, 2014b] IBM. (2014b). IBM SPSS Modeler 16.0 Documentation. Retrieved

November 11, 2014, from

ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/16.0/en/

AlgorithmsGuide.pdf

[Iltanen, 2014] Iltanen, K. (2014). Decision Tree Induction 2. Retrieved November 11,

2014, from http://www.sis.uta.fi/~cskavi/timus14/lectures/classification_dt/

[Jackson, 2002] Jackson, J. (2002). Data Mining; A Conceptual Overview.

Communications of the Association for Information Systems, 8(1), 19.

[Jergen, 1992] Jergen, P. (1992). Audiology (Standadized) Dataset. Retrieved December

03, 2014, from https://archive.ics.uci.edu/ml/datasets/Audiology+(Standardized)

[Kantardzic, 2011] Kantardzic, M. (2011). Data mining: concepts, models, methods,

and algorithms. John Wiley & Sons.

[Karabadji et al., 2014] Karabadji, N. E. I., Seridi, H., Khelf, I., Azizi, N., and

Boulkroune, R. (2014). Improved decision tree construction based on attribute

selection and data sampling for fault diagnosis in rotating machines. Engineering

71

Applications of Artificial Intelligence, 35(0), 71–83. Retrieved from

http://www.sciencedirect.com/science/article/pii/S0952197614001328

[Kass, 1980] Kass, G. V. (1980). An exploratory technique for investigating large

quantities of categorical data. Applied Statistics, 119–127.

[Lai et al., 2007] Lai, C.-C., Doong, S.-H., and Wu, C.-H. (2007). Machine Learning. In

Wiley Encyclopedia of Computer Science and Engineering. John Wiley & Sons,

Inc. Retrieved from http://dx.doi.org/10.1002/9780470050118.ecse228

[Loh, 2011] Loh, W.-Y. (2011). Classification and regression trees. Wiley

Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 1(1), 14–23.

Retrieved from http://dx.doi.org/10.1002/widm.8

[Maimon and Rokach, 2005] Maimon, O. Z., and Rokach, L. (2005). Data mining and

knowledge discovery handbook (Vol. 1). Springer.

[Mingers, 1989] Mingers, J. (1989). An empirical comparison of selection measures for

decision-tree induction. Machine Learning, 3(4), 319–342.

[Mitchell, 1997] Mitchell, T. (1997). Decision tree learning. Machine Learning, 414.

[Mosley Jr, 2012] Mosley Jr, R. C. (2012). Social media analytics: Data mining applied

to insurance Twitter posts. In Casualty Actuarial Society E-Forum, Winter 2012

Volume 2 (p. 1).

[Niblett and Bratko, 1987] Niblett, T., and Bratko, I. (1987). Learning decision rules in

noisy domains. In Proceedings of Expert Systems’ 86, The 6Th Annual Technical

Conference on Research and development in expert systems III (pp. 25–34).

Cambridge University Press.

[Olson and Delen, 2008] Olson, D. L., and Delen, D. (2008). Advanced data mining

techniques. Springer Science & Business Media.

[Quinlan, 1986] Quinlan, J. R. (1986). Induction of decision trees. Machine Learning,

1(1), 81–106.

[Quinlan, 1987] Quinlan, J. R. (1987). Simplifying decision trees. International Journal

of Man-Machine Studies, 27(3), 221–234.

[Quinlan, 1993] Quinlan, J. R. (1993). C4. 5: programs for machine learning (Vol. 1).

Morgan kaufmann.

[Quinlan, 2004] Quinlan, J. R. (2004). Data mining tools See5 and C5. 0.

[Rokach and Maimon, 2014] Rokach, L., and Maimon, O. (2014). Data mining with

decision trees: theory and applications. 2nd Edition (Vol. 69). World scientific.

[Shalizi, 2009] Shalizi, C. (2009). Classification and Regression Trees 36-350,

(November). Retrieved from

http://www.stat.cmu.edu/~cshalizi/350/lectures/22/lecture-22.pdf

72

[Shannon, 1951] Shannon, C. E. (1951). Prediction and entropy of printed English. Bell

System Technical Journal, 30(1), 50–64.

[Sigillito, 1989] Sigillito, V. (1989). Ionosphere Dataset. Retrieved December 12, 2014,

from https://archive.ics.uci.edu/ml/datasets/Ionosphere

[Tan et al., 2006] Tan, P.-N., Steinbach, M., and Kumar, V. (2006). Classification :

Basic Concepts , Decision Trees , and. Introduction to Data Mining, 67, 145–205.

doi:10.1016/0022-4405(81)90007-8

[Turing, 1950] Turing, A. M. (1950). Computing machinery and intelligence. Mind,

433–460.

[Varpa et al., 2008] Varpa, K., Iltanen, K., and Juhola, M. (2008). Machine learning

method for knowledge discovery experimented with otoneurological data.

Computer Methods and Programs in Biomedicine, 91(2), 154–164.

[Witten et al., 2011] Witten, I. H., Frank, E., Hall, M. a., and Mark, A. (2011). Hall

(2011)." Data Mining: Practical machine learning tools and techniques.

Complementary literature None (p. 664). Morgan Kaufmann, San Francisco.

Retrieved. Retrieved from

http://books.google.com/books?id=bDtLM8CODsQC&pgis=1

[Zwitter and Soklic, 1988] Zwitter, M., and Soklic, M. (1988). Breast Cancer Dataset.

Retrieved December 12, 2014, from

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer

