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Decision trees are one of the most powerful and commonly used supervised learning 

algorithms in the field of data mining. It is important that a decision tree performs 

accurately when employed on unseen data; therefore, evaluation methods are used to 

measure the predictive performance of a decision tree classifier. However, the 

predictive accuracy of a decision tree is also dependant on the evaluation method 

chosen since training and testing sets of decision tree models are selected according to 

the evaluation methods.  

The aim of this thesis was to study and understand how using different evaluation 

methods might have an impact on decision tree accuracies when they are applied to 

different decision tree algorithms. Consequently, comprehensive research was made on 

decision trees and evaluation methods. Additionally, an experiment was conducted 

using ten different datasets, five decision tree algorithms and five different evaluation 

methods in order to study the relationship between evaluation methods and decision tree 

accuracies.  

The decision tree inducers were tested with Leave-one-out, 5-Fold Cross Validation, 

10-Fold Cross Validation, Holdout 50 split and Holdout 66 split evaluation methods. 

According to the results, cross validation methods were superior to holdout methods in 

overall. Moreover, Holdout 50 split has performed the poorest in most of the datasets. 

The possible reasons behind these results have also been discussed in the thesis.  

 

 

Key words and terms: Data Mining, Machine Learning, Decision Tree, Accuracy, 

Evaluation Methods.  
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1.  Introduction 

For the past 20-30 years, the amount of data that has been digitalized or has been 

gathered through digital environments such as the web has been in significant amounts. 

It has been estimated that the amount of stored information doubles every 20 months 

[Rokach and Maimon, 2014]. As a result, it has become impossible to digest the 

gathered data manually by people and the need for other solutions that would enable 

mankind to process the gathered data easier has arisen. Therefore, different data analysis 

techniques have recently had vital importance in various areas: public health and 

healthcare, science and research, law enforcement, financial business areas and 

customer targeted commercial areas. Especially with the recent advancement in social 

media services, immense amount of user data are being gathered and processed on daily 

basis [Mosley Jr, 2012].  

Receiving large amount of data has given companies, governments and private 

people an opportunity to use these raw data and turn them into valuable information. 

For instance, companies have started improving their businesses by the help of data. 

Business intelligence (BI) and business analytics (BA) are two examples of business 

enhancement techniques which are applied to existing large amount of data the 

companies have gathered. Then the findings are used for future planning and decision 

making in order to increase company’s profit margin. In order to make use of large 

amount of data, some processes and techniques need to be applied. Data mining (DM), 

machine learning (ML) and knowledge discovery in databases (KDD) are the processes 

that enable turning data into useful knowledge. Application of these processes has 

become more common for the past years and is becoming even more frequent.   

Data mining is one of the mostly applied processes to make use of large amount of 

data.  There are different types of data mining objectives but the two most commonly 

used are predictive modeling and descriptive modeling. Predictive modeling is essential 

because through this task one can make predictions about the future by learning from 

the previous data. This can be considered as a frequently applied task within the concept 

of data mining. The predictive modeling objective is accomplished by making use of 

various machine learning or data mining algorithms such as decision tree induction 

algorithms.  As it can be understood from the objective’s title, there needs to be a model 

that could be used to make predictions from the learned data. Therefore, a model is built 

from existing data by the help an algorithm where decision tree induction algorithms 

can be considered as a good example. Later on, this model is used to make predictions 

on the new unseen data.  

Decision tree performances are evaluated according to the level of accuracy 

obtained from the predictions that are made. Hence, accuracy is one of the most 

important evaluation measures for decision trees. In order to make good and stable 

predictions from the model, accuracy obtained from the decision tree model needs to be 

high. However, there are various reasons that might affect the accuracy of decision tree 
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models negatively as well as positively.  One of the possible reasons that might affect 

accuracy is the evaluation method that is chosen for the decision tree induction. The 

portions of the data to be used when the model is being built are decided according to 

the choice of the evaluation method. Thus, the resulting accuracy of a decision tree is 

dependent on the evaluation method that is chosen in the beginning of the induction 

process.   

Even though decision trees are widely and frequently applied in data mining and 

machine learning context, there are not many studies that have made comparisons of 

different decision tree algorithms when evaluated by different methods in terms of 

performance. Therefore, the aim of this thesis is to study and understand how using 

different evaluation methods might have an impact on decision tree accuracies when 

they are applied to different decision tree algorithms. 

 

1.1. Research Questions 

As stated earlier in the introduction, the resulting accuracy of a decision tree on unseen 

cases is dependent on the evaluation method. However, the degree of dependency and 

the best overall evaluation method is unknown. Therefore, the main aim of this thesis is 

to study the effects of evaluation methods on decision tree predictive performance 

measures. Accordingly, the research questions that are going to be answered in this 

thesis are given below; 

1) How much does the evaluation method chosen affect the predictive 

performance of decision trees? 

2) Which evaluation method is superior to others in most cases? 

 

1.2. Structure of the Thesis 

The thesis is structured in the following way. After the introduction, background 

information about the research field is given. Data mining, machine learning and 

knowledge discovery are explained in detail and the differences between them are also 

discussed. After the second part of the thesis, decision tree topic is explained in a 

comprehensive manner so that the all literature knowledge needed in the experimental 

part of the thesis is covered thoroughly. Decision tree structure is explained first and 

then univariate decision trees are discussed in detail. Univariate topic includes the 

subtopics of: attribute selection criteria, pruning methods, decision tree induction, 

rulesets and advantages and disadvantages of decision trees. Afterwards, various state of 

the art evaluation methods are explained. When all the literature regarding the thesis is 

given, research methodology is explained. All the necessary background information 

about the experimental part of the thesis are discussed in the research methodology part. 

Lastly, the results are explained which finally lead to a brief discussion and conclusion 

part.  
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2. Knowledge Discovery in Databases (KDD) 

The terms data mining and knowledge discovery in databases have been very popular 

for fields of research, industry and media attention especially since the 1990's. There is 

not a conventional or universally used term that can summarize the objective of 

obtaining valuable knowledge from some data. However, the mostly agreed term that 

generalizes the process is; knowledge discovery in databases. “There is an urgent need 

for a new generation of computational theories and tools to assist humans in extracting 

useful information (knowledge) from the rapidly growing volumes of digital data. These 

theories and tools are the subject of the emerging field of knowledge discovery in 

databases (KDD) [Fayyad et al., 1996].” 

KDD is vital because its application areas are very wide. Besides research, the main 

business KDD application areas include marketing, finance, fraud detection, 

manufacturing, telecommunications, and internet agents [Fayyad et al., 1996]. Of 

course the area keeps expanding as days go by and now with the emerge of social 

media, the application areas have started to shift towards processing raw data that are 

being gathered from social sites to give leverage to a company or an organization. This 

is mainly because the digital data that has been gathered through social sites and the 

internet increased in large amounts. A recent and interesting example is the prediction 

of flu trends [Han and Kamber, 2006]. Google, which is a world leading technology 

firm and a search engine in the core, is receiving hundreds of millions of queries every 

day. After processing those queries, Google has actually found out that a relation 

between the number of people who have searched for flu related information exists with 

the number of people who actually have flu symptoms. By the help of such analytics, 

flu trends and activities can be estimated 2 weeks earlier than the traditional systems 

can.  This is just one example why KDD can be very important when it comes to 

turning great amount of data to knowledge that might have great importance.  

KDD cannot be seen as a single process; it is a process which has sub processes 

within each other. Thus, it combines various different research fields according to the 

objective of KDD process and the data that is going to be used. Some fields that are 

considered part of KDD are; machine learning, data mining, pattern recognition, 

databases, database management systems, statistics, artificial intelligence (AI), 

knowledge acquisition for expert systems, data visualization and high performance 

computing [Fayyad et al., 1996].  All these are combined to make one large process of 

KDD which is generalized in 9 steps. A scheme for KDD is below in Figure 2.1. 
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Figure 2.1. KDD process [Fayyad et al., 1996]. 

1. The first step of KDD is about understanding the requirements. It is probably 

one of the most important steps since the application domain and the objective 

of this KDD process is decided according to customer’s point of view.  The 

goal or the objective must be clear to continue with the next steps. 

Additionally, relevant prior knowledge needs to be understood and studied.  

2. The second step is basically choosing or deciding on a target dataset that is 

relevant to the objectives. The data set is important since the remaining process 

will be based on the chosen dataset. 

3. The third step is data cleaning and preprocessing. In this step, the data that has 

chosen earlier is processed so that all the probable noise is cleared and 

additional actions are taken against missing data attribute or attribute values. 

This step is important because the quality of the outcome relies on the quality 

of the data set.  

4. The fourth step consists of data reduction and projection. The useful features, 

attributes in the data are found. Later on, the number of variables is reduced so 

that the attributes which are not highly relevant to the process are eliminated. 

This step saves time and increases efficiency and the accuracy in most cases.   

5. The fifth step is a sub process of data mining. In this first step of data mining, 

the objective of the KDD process is compared with the most suitable data 

mining methods and one of them is chosen. These data mining methods 

contain; summarization, classification, regression, clustering and some others. 

6. The sixth step of KDD process is the second step of data mining. First, the 

methods that are going to be used when searching for patterns in the data are 

selected. Then, the models and parameters that are going to be used are 
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selected according to the data mining method chosen and the overall KDD 

process objectives. 

7. The seventh step is the last step of data mining process. In this step, the 

methods and models that are chosen are applied to the dataset. Patterns that 

might be interesting are searched for by being represented as classification 

rules or trees, regression and clustering.  

8. The eight step is the evaluation of the data mining results. The patterns that are 

found or the data that has been summarized are examined in order to find 

something useful. If not, the earlier steps can be repeated until something that 

is relevant or useful is found.  

9. The ninth, last step is consolidation of the found knowledge. The knowledge 

that has been found is presented to the user in a clear and easily understandable 

fashion.  

This is the generalization of the KDD process and its steps. Some of these steps can 

be skipped or combined according to the needs of users. As mentioned earlier, the steps 

can be seen as iteration points or loops; therefore, some steps can be repeated to gain 

better results.  

 

2.1. Data Mining 

“Data mining is the analysis of (often large) observational data sets to find unsuspected 

relationships and to summarize the data in novel ways that are both understandable and 

useful to the data owner [Hand et al., 2001].” To put it shortly, it is the process of 

discovering interesting patterns and knowledge from large amount of data. Data mining 

is formed in the intersection of various different fields such as: artificial intelligence, 

machine learning, statistics and database systems. Machine learning is an important 

field for data mining because most of the algorithms that are used in data mining 

methods belong to algorithms that exist in machine learning field. In the beginning, data 

mining term was mostly used by statisticians, database researchers and business 

communities; however, nowadays it seems such a term is used by everyone to refer to 

the whole KDD process [Jackson, 2002].    

Data mining has its own purposes or tasks; 

 Exploratory Data Analysis: The task is to find a useful or rational connection 

between variables through exploring the data. However, the main issue is there 

are not any prior objectives or ideas when going through the exploration. It is 

in random fashion and is based on interactive and visual techniques. The data 

scientist try to spot an interesting pattern of information by visually analyzing 

the obtained charts. Such a method can be very effective at times, mostly with 

small datasets that have less number of variables; the human perspective can 

analyze and spot some interesting patterns that machine and algorithms might 
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not. Some plots that are used to support the visual analysis process can be 

scatter plots, box plots, pie charts and so on. Additionally, as dimensionality 

increases it becomes harder to visualize the data thus leading to inefficient data 

exploration results [Hand et al., 2001].  

 Descriptive Modeling: As it can be understood from the title, the task is to 

describe the data. Some descriptive methods or models are; overall probability 

distribution (density estimation), cluster analysis and dependency modeling 

[Hand et al., 2001]. For example in cluster analysis the data is divided into 

groups so that the data instances that are more related and close to each other 

fall into the same groups. It is considered to be one of the most powerful 

methodologies in descriptive modeling and in data mining. 

 Predictive Modeling: The main task is to make predictions and estimates on 

new instances based on the models that have been built by examining the 

already existing data instances [Hand et al., 2001]. It has two subcategories; 

classification and regression. The difference between them is the target 

attribute of classification models are categorical where as regression models are 

numerical or quantitative. There have been many developments and 

breakthroughs in predictive modeling thank to fields of machine learning and 

statistics. One of those developments is decision trees and it is in the group of 

predictive modeling. Decision trees are one of the most powerful and widely 

used methods in the field.  

 Discovering patterns and rules: This task is different from the previously 

mentioned ones since it does not require model building [Hand et al., 2001]. 

The main objective is to find interesting patterns in the existing data using 

pattern detection or recognition methods. The most important example is 

market database transactions. The aim is to find items that are bought 

frequently and in accordingly with other items so that a frequent item set is 

found. Then these frequent itemsets are used to assess and find relevant 

patterns in the data. Such kind of pattern finding is called association rule 

mining.   

 Retrieval by content: This task is also related with pattern finding and matching 

instead of model building. The aim is to find patterns in the data that are 

defined earlier or desired. Retrieval by content is used for image or text based 

datasets mostly [Hand et al., 2001]. Similarity is the key measure in this task. 

For example, image data are processed so that a sample image, sketch or 

description is given beforehand to retrieve relevant image from the data. In text 

based datasets, keywords can be the key similarity measure and such keyword 

can be searched for in text based documents such as Word files, PDF files or 

even Web pages.  
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The process of data mining has tried to be standardized throughout the years, which 

eventually lead to two mostly used standards; CRISP-DM and SEMMA [Jackson, 

2002]. Cross Industry Standard Process for Data Mining (CRISP-DM) is one of the 

leading process methodologies for data mining that is used. The basic steps and 

principle are almost identical to KDD process. It consists of the following steps: 

business understanding, data understanding, data preparation, modeling, evaluation and 

deployment. SEMMA is another process which actually is an acronym for its steps; 

sample, explore, modify, model and assess. CRISP-DM is more widely used than 

SEMMA.  

 

2.2. Machine Learning 

Machine learning (ML) is a field that was born from the field of artificial intelligence 

(AI). Although being a computer science field, it is closely related with statistics and 

many other fields such as philosophy, information theory, biology, cognitive science, 

computational complexity and control theory. The main question that lead to the birth of 

machine learning was: Can a machine be thought to think like human beings and learn? 

This question was mainly raised after Alan Touring’s paper: “Computing Machinery 

and Intelligence” and his research question: “Can machines think?” [Turing, 1950]. 

There were concentrated researches on ML and some important discoveries were made 

such as perceptrons and neural networks. However, later on machine learning was left 

outside the field of AI due to ML’s emphasis on logical and knowledge based approach. 

Hence, both fields were separated and afterwards machine learning flourished in the 

1990s as a separate field and started improving and expanding rapidly.  

A clear definition that was given by Tom Mitchell declares machine learning as: "A 

computer program is said to learn from experience E with respect to some class of tasks 

T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E [Mitchell, 1997].” Therefore, machine learning is the 

science of teaching the machines to learn by itself with the use of existing data and 

algorithms. The learning process is usually done through a model that is learned from 

the existing data and this model is used for future predictions and acts. The model is 

updated constantly or to put it in different words, the model learns at it sees new data. 

The figure 2.2 below illustrates the machine learning process in a very clear and 

detailed way. 
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Figure 2.2. Machine learning  process [Lai et al., 2007]. 

 In the first step of the process, data that is going to be used for the machine learning 

purpose is gathered and transformed into a proper form. Then this data is divided into 

three parts; training, testing and validation data. However, the data is usually divided 

into two parts training and testing. Validation data is mostly used in neural networks 

since its hidden nodes require another step of validating the hidden nodes. Afterwards 

the training data is used in training phase of the process to learn the data and build a 

model. Then, the acquired models are tested with the separate testing data to correct or 

evaluate the models. The best model is chosen amongst the models at the testing phase. 

If it is a specific algorithm that requires one more level of validation like neural 

networks, the evaluation of models is made at validation level. If none of the models are 

at satisfactory level, then the process is repeated until a specified quality is reached or 

the process is quit. After the model is chosen, it means the model chosen is ready for 

practical applications and is able to make predictions, learn and evolve with the system.  

There are lots of machine learning algorithms and all of them have different type of 

methodologies or structures; however, the algorithms can be differentiated from each 

other in some level and be grouped according to some characteristics of their own. 

Consequently, there are four different kinds of learning groups in which the algorithms 

are grouped in; supervised learning, unsupervised learning, semi-supervised learning 

and reinforcement learning.  

 

2.2.1. Supervised Learning 

In supervised learning, the data must have labeled attributes for inputs and most 

importantly an attribute labeled for the desired output value [Alpaydin, 2014].  Each 

data instance should have one variable that designates the desired output value 

according to its input values or variables. The input variables should be important 

factors in determining the output value, and should be kept at a reasonable and effective 
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amount. The output value can either be a categorical (for classification tasks) or 

continuous (for regression tasks). These two types of tasks are used in decision tree 

learning, which is a supervised algorithm, and will be explained in detail in the further 

chapters.  

The goal of supervised learning is to build a model that represents the training data 

correctly and in a simple manner. The model is assessed before it is chosen amongst 

other models according to its accuracy, precision or recall rate [Lai et al., 2007]. 

Additionally, it might be assessed and improved after it is being used in practical 

solutions as well. Most commonly used algorithms in supervised learning besides 

decision trees are; artificial neural networks, kernel estimators, naïve Bayes classifiers, 

nearest neighbor algorithms, support vector machines and random forests (decision trees 

with ensemble methods).  Supervised learning algorithms’ application areas include; 

bioinformatics, database marketing, information retrieval and more commonly pattern 

recognition areas (image, voice and speech recognition).  

 

2.2.2. Unsupervised Learning 

Unlike supervised learning, the data does not have any prior output label. Therefore, the 

algorithms’ main purpose is to learn the data by itself since the data is unlabeled. 

Regularities, patterns or any kind of commonalities between the data samples are 

investigated and tried to be grouped so that the data that are related to each other are in 

the same group [Lai et al., 2007]. It is closely related with density estimation in 

statistics [Alpaydin, 2014]. Three of the important unsupervised learning algorithms are 

clustering, principal component analysis and EM algorithm. Clustering algorithm also 

has its own various methodologies to group the data; k-means algorithm, mixture 

models, hierarchical clustering and some other methodologies. However, the main goal 

is to group the data instances in a way that the instances in the same group are called 

clusters and the instances within the clusters are more similar to each other than in any 

other instances that belong to different clusters. In other words, intracluster similarity is 

high and intercluster similarity is low. Principal component analysis (PCA) is used for 

reduction of the number of variables or dimensions in the data so that for example the 

performance of learning can be maximized. Other important unsupervised method, the 

expectation-maximization (EM) algorithm tries to maximize the likelihood of 

parameters in the model acquired from the data in cases where equations in the learning 

process cannot be solved directly.  

 

2.2.3. Semi-Supervised Learning 

As it can be understood from the title, semi-supervised learning is a group of supervised 

learning algorithms and tasks that also make use of unsupervised learning or in other 

words unlabelled data. The data used in semi-supervised learning mostly consists of 
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unlabelled data and a small amount of labeled data. The main reason to combine both 

learning methods is to increase overall accuracy of the learning process. It has proven to 

be better than the other supervised methods under some circumstances [Lai et al., 

2007]. A downside of semi-supervision exists; the labeled data needs to be generated by 

highly skilled human beings thus making the whole process more expensive.  

Semi-supervised learning can also be referred to as transductive learning or 

inductive learning. It makes use of supervised and unsupervised learning algorithms and 

combines the strengths from both sides to generate a semi-supervised algorithm. Some 

semi-supervised methods are; self-training, mixture models, co-training and multiview 

learning, graph based methods and semi-supervised support vector machines. 

 

2.2.4. Reinforcement Learning 

“Reinforcement learning (RL) is an approach to machine intelligence that combines the 

fields of dynamic programming and supervised learning to yield powerful machine 

learning systems [Lai et al., 2007].” A decision making agent, assume a robot, is given 

a goal and the robot tries to reach that goal through learning by itself and acting back 

and forth with an environment. Therefore, some key rules needs to be satisfied for a 

basic RL model and these include;  

1. A set of environment states. 

2. A set of actions. 

3. A set of rules for transitioning between states. 

4. A set of rules for determining the rewards that are given at the end of 

transitions. 

5. A set of rules that describe what the agent or the robot observes. 

Some of the best applications of reinforcement learning are game playing activities. 

Since the games require a vast amount of state space, reinforcement methods come in 

handy and learn from the human opponents while playing. Instead of the traditional 

game AIs which require brute force search amongst the state space, RL can achieve 

better results faster than the traditional methods. 

 

2.3. What is the difference between KDD, Data Mining and Machine Learning? 

After discussing the three topics, KDD, data mining and machine learning, all these 

areas seem very similar and overlapped with each other. This would raise the question: 

How are all these areas different than each other? There are different opinions on such a 

question because to some people, the definitions of KDD and data mining differ. 

However, according to the majority there is a connection between all these subjects, a 

linkage.   
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As mentioned earlier, KDD is a process to turn digital data into knowledge and if 

we were to make a connection between KDD and data mining, data mining is 

considered as a sub process of KDD. KDD focuses on the whole process rather than just 

the analysis part; therefore, it can be considered as a multidisciplinary activity which 

encapsulates data mining as the core data analysis part to its own process. Now that the 

difference between KDD and data mining is clear, what about machine learning and 

how is it different than data mining? This is probably a more difficult question than the 

first one since the line between both subjects is very thin. Machine learning and data 

mining tries to solve the similar type of problems and the reason behind it is simple; 

data mining makes use of machine learning algorithms in its own process. Data mining 

itself also has some processes and the core of all data mining processes depends on the 

algorithms used in it. These algorithms belong to machine learning field. Consequently, 

machine learning is the study and development of algorithms that enable computers to 

learn without being explicitly programmed where as data mining concentrates on a 

bigger process which utilizes those algorithms and tries to find interesting patterns and 

structures in the data.  To sum up, machine learning is the field which aids data mining 

in its process by providing algorithms. Moreover, data mining is the sub process of 

KDD where the data is processed and analyzed in order to turn the raw data into 

knowledge.  
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3. Decision Trees 

Decision trees are in the group of supervised learning methods within the concept of 

data mining and machine learning. Decision trees create solutions to classification 

problems on various different fields such as engineering, science, medical fields and 

other related fields. Thus, decision trees are considered to be one of the most powerful 

tools that can accomplish classification and prediction tasks [Kantardzic, 2011]. 

Decision trees can be considered as a non-parametric method since no assumption is 

made for the class densities and the tree structure or the model is not known before the 

tree growing process [Alpaydin, 2014]. As mentioned earlier, decision trees are used for 

predictive analysis in which the model is trained based on some dataset and then used 

for predictive purposes. In order to learn from a dataset, decision tree models need to be 

trained on that dataset. Later on, these models are tested on other data of the same kind, 

which means it can either belong to the same dataset (the data would have been split in 

to training and testing) or a testing data from another source, and are validated 

afterwards. This means that the decision tree model is now capable of predicting new or 

unseen data that would estimate which class the unseen data might belong to.  

Decision trees are important in data mining for various reasons but one of the most 

important reasons is that they provide accurate results overall. Additionally, the tree 

concept is easily understandable compared to other classification methods and can also 

be used by other scientific field researchers than computer science [Karabadji et al., 

2014]. 

 

Decision Tree Structure 

Before discussing the details of the decision tree topic, it would be better to explain 

decision trees in general. Decision trees have a root node, internal nodes and leaf 

(terminal) nodes just like any other tree concepts [Tan et al., 2006].  

 Root node: This can be considered as the starting point of the tree where there 

are no incoming edges but zero or more outgoing edges. The outgoing edges 

lead to either an internal node or a leaf node. The root node is usually an 

attribute of the decision tree model.  

 Internal node: Appears after a root node or an internal node and is followed by 

either internal nodes or leaf nodes. It has only one incoming edge and at least 

two outgoing edges. Internal nodes are always attributes of the decision tree 

model.  

 Leaf node: These are the bottommost elements of the tree and normally 

represent classes of the decision tree model. Depending on the situation, a leaf 

node might not always represent a class label because in some cases a decision 

cannot be made for some leaves. In that case, those leaves can be marked with 

signs such as a question mark. However, if it can be classified, each leaf node 
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can have only one class label or sometimes a class distribution. Leaf nodes 

have one incoming edge and no outgoing edges.  

For example, Figure 3.1 is a well-known example of a decision tree and it represents 

a model for the concept PlayTennis [Quinlan, 1993] where a decision of playing tennis 

(Yes or No) is made according to the weather characteristics. The root node is Outlook 

and it has three outgoing edges. These outgoing edges denote the values of attribute 

Outlook which are Sunny, Overcast and Rain. After the root node, there are two internal 

nodes and a leaf node. The leaf node of Outlook attribute is decided as Yes when 

Outlook is Overcast. Other internal nodes represent the new attributes of PlayTennis 

data, which are Humidity and Wind respectively. The same process is again applied to 

both attributes which are the internal nodes of the tree, and according to Humidity 

attribute the outcome of the decision tree will be No if the Humidity is High and Yes if 

the Humidity is Normal. Then the same top down approach is applied to the other 

variable named Wind which gives the outcome No if Wind is Strong and Yes if Wind is 

Weak. 

 

 

 

 

It can easily be seen that the given example only has categorical attributes; however, 

there could have been other types of attributes in the decision tree such as numeric or 

continuous attributes. This issue will be discussed further on in the next sections. 

Moreover, decision trees have some characteristics of their own and these 

characteristics are parallel to supervised learning methods. Some requirements 

determine the characteristics of decision trees; 

  Attribute-value pairs: A data instance that is going to be analyzed needs to be 

in an attribute format, where each attribute has its own values. These values 

Outlook 

Humidity 

 

No 

Yes 

Wind 

Yes 

 

Yes 

 

No 

 

Sunny Rain 

Overcast 

Strong Weak Normal High 

Figure 3.1. PlayTennis example. 
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can either be categorical or numeric. The same attribute cannot have different 

values types in different data instances [Kantardzic, 2011].  

 Predefined output expectations: Every data instance that is going to be learned 

from or that is going to be tested should be assigned a classification label or a 

numeric output value.  

 Erroneous values: The training data might contain erroneous examples, but 

decision trees can tolerate these errors. The error might be in attribute values or 

in classification labels or continuous output values [Mitchell, 1997]. 

 Missing values: The training data might contain missing data instance values, 

but decision trees can tolerate these missing values as well. Similarly attribute 

values, classification labels or continuous output values might be missing. 

 Sufficient data: A decision tree needs data like any other data mining method. 

The number of training instances should be sufficient so that an effective and 

robust tree construction could be done. The amount of test instances is also 

very important in order to validate the accuracy of the decision tree 

[Kantardzic, 2011]. Additionally, each class should have sufficient number of 

instances to represent that class properly.  

 

3.1. Univariate Decision Trees 

Univariate by definition means involving one variate or variable quantity. Based on this 

definition, it can be seen that choosing one attribute at a time to branch a tree node is 

basically called univariate splitting. Continuing univariate branching while growing the 

tree produces a univariate decision tree. Almost all of the commonly used decision tree 

inducers and their splitting methods are constructed on the idea of univariate based tree 

construction. The example in Figure 3.1 which was given to introduce the basic 

structure of a decision tree was also in univariate form. The root node which was 

Outlook had to make a three-way split since it had three attribute values, and the other 

internal nodes also made splits in similar fashion. Additionally, constructing a decision 

tree is usually a greedy method and is normally performed in a top down manner. 

It would also be beneficial to explain branching types and the kind of attributes that 

could be used when building a decision tree. There are basically three different 

branching types [Han and Kamber, 2006]; 

1) Discrete-valued: The chosen attribute in the decision tree induction is branched 

so that all its categorical values (either ordinal or nominal) are used in their 

own outgoing edges of the newly created node so that there is exactly one 

branch for each attribute value. Basically, the node makes an n-way split 

depending on the values of the node’s attribute where n denotes the number of 

values the attribute has.  
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2) Continuous valued: The chosen node is of the numeric type and has continuous 

values. The node is always branched with two outgoing edges. The outgoing 

edges are split so that it divides the chosen node’s numeric value into two 

intervals (greater or less than equal to the predetermined value). A rarely used 

alternative is a three-way split where the values are distributed as less than or 

equal to, and greater than a specified number [Witten et al., 2011].  

3) Binary Discrete valued: The chosen node is split into two branches so that the 

split is considered to be a binary split. The split branches has values such as 

Yes-No or 0-1.  

4) Attribute Value Grouping: There is also one more specialized branching method 

called the attribute value grouping [Quinlan, 1993]. The attribute values are 

merged in one branch to get simpler and more accurate decision trees. Such a 

method also eliminates the problem of having small amount of instances in the 

descendent nodes. 

 

 
Figure 3.2. Branching types. 

The Figure 3.2 above gives an example for the branching types of decision trees. 

Income can be used as a discrete value, where it is divided into three categories; low, 

medium and high. Income can also be used as a continuous or as a binary attribute, 

where people can be categorized by having a regular income or not. Lastly it can also be 

grouped into two categories so that instances which have values low and medium are in 

the same branch and high in another branch. 

Decision trees are also considered as classification trees. Although this is a correct 

statement, it is not a complete one. There are also regression trees under the category of 

decision trees, hence; decision trees are considered in two different categories: 

classification and regression. When the decision tree is used for classification tasks, it is 
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called a classification tree and when it is used for regression tasks, it is referred to as a 

regression tree [Rokach and Maimon, 2014].  

Classification trees are designed for data which have finite number of class values. 

The attributes can take numerical or categorical values. The main purpose of such kind 

of trees is to classify the data to classification labels or classes by using classification 

algorithms [Loh, 2011]. Splits of the tree or the goodness of the attributes are tested and 

decided according to impurity measures. The attribute with the highest (or lowest 

impurity) purity is chosen as the node to branch on. The main point for a purity measure 

is to divide the attribute’s values into pure distributions of the classes. One of the mostly 

used impurity measures is the entropy value [Quinlan, 1986] which will be discussed 

later on.  

The main idea behind the construction of a classification tree is fairly logical and 

straightforward. It uses a top-down strategy and recursively splits starting from the root 

node, where each node is branched according to the lowest impurity measure produced 

amongst all other attributes. When there are no more splits available, the construction 

stops. 

One of the earliest classification trees was the concept learning system (CLS) [Hunt 

et al., 1966]. Almost all of the other algorithms followed its approach including the ID3 

algorithm which was found by Quinlan in 1979 [Quinlan, 1986]. The main idea of the 

CLS was to begin with an empty decision tree and iteratively build the tree by adding 

nodes until the tree classified all the training instances correctly. A pseudocode of the 

CLS is given below [Hunt et al., 1966]; 

 

1. If all examples in the training instances in "C" are positive then create a node 

called YES 

If all examples in the training instances in "C" are negative then create a node 

called NO 

Otherwise, select and attribute A with values 𝑉1 ,𝑉2 , . . .𝑉𝑛  and create a 

decision node 

2. Partition the training examples in "C" into subsets 𝐶1,𝐶2, . . .𝐶𝑛  according to 

the values of V. 

3. Apply the algorithm to each of the sets in 𝐶𝑖  recursively. 

Algorithm 1 

 

The most popular and widely known inducers, for instance the C4.5 [Quinlan, 1993] 

and CART [Breiman et al., 1984], they all use the same approach and even the most 

recent inducers continue from the same path such as the C5.0 [Quinlan, 2004].  

Regression trees are almost identical to classification trees; however, a regression 

model has to be fitted to the algorithm. This means the aim of the tree is not 
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classification anymore, but it is regression. There are no more class labels or 

classifications to make, instead the resulting leaf nodes of the tree are continuous values 

which are used for prediction as well. Furthermore, entropy or similar measures cannot 

be used as an impurity measure; mean squared error is used instead. Regression tree is 

very similar to the classification trees and thus the same algorithm can be used by just 

replacing the entropy measurements with mean squared errors calculations, and class 

labels with averages [Alpaydin, 2014].  

The only difference in the construction of a regression tree is the generation of leaf 

nodes. These are generated by taking an average over the distributed target values of the 

path that is taken after all the branching is done until that leaf node. Additionally, the 

resulting tree is binary because the nodes are always branched into two partitions; some 

value greater than or equal to, and a value less than the specified value. The algorithm 

for constructing a regression tree is given below [Shalizi, 2009]; 

 

1. Start with single node containing all point values. Calculate the sum of squared 

errors and prediction for leaves 

2. If all the points in the node have the same value for all the input variables, 

stop. Otherwise, search over all binary splits of all variables for the one which 

will reduce sum of square errors (SSE) as much as possible. If the largest 

decrease SSE would be less than some threshold or one of the resulting nodes 

would contain less than some amount of points, stop. Otherwise, take that split, 

creating two new nodes.  

Algorithm 2 

 

The first ever built regression tree is AID and it was built a couple of years before 

THAID [Loh, 2011].  Both AID and CART follow a similar approach as Algorithm 2 

which is a modified version of Algorithm 1.   

 

3.1.1. Attribute Selection Criteria 

Attribute selection is one of the fundamental properties of building a decision tree. The 

selection of the attribute affects the entire decision tree since it will have an impact on 

the efficiency and even the accuracy of the built tree. The aim is to generate a tree that 

will efficiently and accurately classify the training data. The resulting model should be 

as simple as possible which is also known as the Occam’s razor principle [Mitchell, 

1997].  

The main idea is based on purity and impurity in most of the cases. This means the 

node that will be tested should be split into leaf or internal nodes (which are the values 

of the tested attribute) that would be as pure as possible. The aim of purity is to partition 

the data instances in training data so that the partitioned group (a leaf node or internal 
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node that a branch leads to from the tested node) would either have all or most of the 

data instances in the same class category so that the entropy measure will be low [Han 

and Kamber, 2006].  

Additionally, commonly used decision trees are built as univariate decision trees; 

therefore, the splitting criteria used in such trees are designed on top of univariate 

factor. The following heuristic attribute selection methods are specifically used in 

univariate trees: Information Gain, Gain Ratio, Gini Index, Twoing Criterion and Chi-

Squared criterion.  

 

3.1.1.1. Information Gain 

Information gain is one of the earliest and most commonly used decision tree attribute 

selection criteria ever founded. Quinlan, who was the founder of the ID3 (Iterative 

Dichotomiser 3) was also the first one who ever used information gain selection 

criterion in a decision tree induction algorithm. However, without the concept of 

entropy found by Claude E. Shannon [Shannon, 1951], information gain would not have 

existed. 

The criterion is based on top of information theory where the entropy measure plays 

a key role. Entropy is the measure which tries to calculate the average amount of 

information contained in each message received [Han et al., 2011]. In machine learning 

terms, entropy tries to find the most valuable attribute that would be beneficial for a 

model to be learnt.  

Let us assume that attributes are being tested so that the attribute with the most 

information gain will be chosen and will be tested in a node of a decision tree. The 

entropy or information needed to classify a random data instance where the data 

instances held in the node is denoted with D. 

 

 
𝐻 𝐷 = −  p𝑖 (log2 p𝑖) 

𝑚

𝑖=1

 
 

Equation 3.1 

 

Entropy function is named after Boltzmann’s H-theorem and that is why it is 

defined with H which is a Greek letter Eta. Additionally, the logarithmic function is in 

base two, because the information is encoded in bits [Han et al., 2011]. In equation 3.1, 

m is the number of classes in the data and 𝑝𝑖  is the probability where a data instance 

belongs to some class 𝐶𝑖 . The number of data instances in the node that belong to class 

𝐶𝑖  divided by all the data instances in that node (D) gives 𝑝𝑖 . In the formula, 𝑝𝑖  is 

calculated for all the classes in the data. During the calculation, if 𝑝𝑖  is equal to 0 then 

 𝑝𝑖 (𝑙𝑜𝑔2 𝑝𝑖)  calculation for that i is accepted as 0.  

After such calculations, if all the data instances of the node belong to the same 

class, meaning that the overall entropy is calculated to be 0, then it points out that the 
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node is totally pure and a leaf node can be formed. However, this is usually not the case, 

so the calculations continue since the node is impure. 

Now, if D is partitioned on an attribute A which can have categorical or numeric 

values, it will either have n outcomes (attribute A’s values) or two outcomes if attribute 

A is numeric. Let’s assume A is categorical; thus, the attribute A can split the existing D 

into n partitions. Then, the expected information needed to classify a random data 

instance when the attribute A is considered as root is calculated.  

 

 
𝐻 𝐷|𝐴 =   p(Aj)H(D|Aj 

n

𝑗=1

 
 

                 Equation 3.2 

 

The probability 𝑝(𝐴𝑗 ) is the relative frequency of the cases having 𝐴𝑗  over D. After 

such a calculation, the overall entropy branching on the attribute A is found. The last 

step is to calculate information gain for branching on the attribute A which is basically 

subtracting the overall entropy of the attribute A from the original entropy calculation H 

(D).  

  

I(D|A) = H(D) − H(D|A) 

 

Equation 3.3 

 

Information gain in Equation 3.3 gives the gain that will be obtained after branching 

on the attribute A. Therefore, information gain is calculated every time for every 

possible attribute that can be branched on the test node to find the attribute which gives 

the maximum information gain amongst the other attributes. The attribute with the 

highest gain is branched on and the process continues until the classification is 

completed. 

 

3.1.1.2. Gain Ratio 

Information Gain and Gini Index both favor attributes with many different values when 

the attributes are tested because usually these attributes tend to have better entropy 

calculations. This is because the more an attribute has values; it will have more chance 

of turning its branches into a leaf node.  

Quinlan uses the Gain Ratio attribute selection criterion in the C4.5 algorithm as an 

update from ID3’s Information Gain method [Quinlan, 1993]. The only difference 

between two attribute selection criteria is that Gain Ratio introduces a new 

methodology; calculating the information on splitting attribute. By this normalization 

method, the biased behavior is mostly eliminated.  

 

 
𝐻 𝐴 = −  p(Aj) log2 p(Aj) 

n

𝑗=1

 
 

Equation 3.4 
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The calculation of split information on the splitting attribute is in fact an entropy 

calculation. If the example given in Information Gain calculation is recalled, attribute A 

was chosen as the test node and keeping that in mind, H(A) is denoted as the splitting 

information of the attribute A in Equation 3.3. The probability of the value 𝐴𝑗  is simply 

the relative frequency of that value.   

  

GR D A =
𝐼(𝐷|𝐴)

H(A)
 

 

Equation 3.5 

 

When the Information Gain is calculated (which is exactly the same as in Equations 

3.1-3.3), the information of that attribute is calculated next. Afterwards Information 

Gain of the attribute is divided by the splitting information of the same attribute, 

resulting in Gain Ratio. The attribute that has the highest Gain Ratio is chosen over the 

rest of the tested attributes.  

 

3.1.1.3. Gini Index 

Gini Index is another criterion which is used in the CART inducer [Breiman et al., 

1984]. As mentioned earlier, Gini Index also has a bias which favors attributes that have 

more outcome values during attribute selection. Unlike the earlier mentioned criteria, 

Gini Index tries to split the attribute into two branches regardless of the attribute type. 

Even if the attribute is categorical, all its subset values are found and discrete binary 

splits of those combinations are calculated in order to find the best split.  

  

G D = 1 − pi
2

m

i=1

 

 

 

Equation 3.6 

 

Gini Index is also based on impurity calculations; therefore, impurity of the training 

data is measured. The training data is denoted as D where m is the number of classes the 

training dataset has and 𝑝𝑖  is the probability that the data instance belongs to class 𝐶𝑖 . 

Each split that is made with Gini Index criterion has to be binary; therefore, it is not 

a problem if the attribute is numeric or continuous. However, if the attribute is 

categorical or discrete valued, it might cause extra calculations. If the discrete valued 

variable has more than two values, all of its value subsets are calculated where the 

power set and the empty set are excluded.  

Assuming there is an attribute A which will be split into two partitions from training 

instances, the Gini Index is calculated for both partitions using the Equation 3.6 and 

then each partition’s Gini Index is multiplied by its own relative frequency. 

  

G D|A = A1G D A1 + A2G(D|A2) 

 

Equation 3.7 
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The attribute which maximizes the difference between the initial Gini and the Gini 

resulting after the split is chosen. 

 

 

 

 

∆G D|A = G D − G(D|A) 

 

Equation 3.8 

3.1.1.4. Twoing Criterion 

As in the case with Information Gain criterion, favoring test attributes which has wide 

range of values is also an issue with Gini Index. Thus, the Twoing criterion is used in 

the  CART algorithm to overcome this bias [Rokach and Maimon, 2014].  

  

T D A =
P1P2

4
[ |p A1,i − p A2,i |

m

i=1

]2 

 

 

Equation 3.9 

 

Assuming there is an attribute A which will be split into two partitions from training 

instances D, P1  and P2 are the probabilities to get left or right nodes (binary nodes, first 

node and second node). 𝑝 𝐴1,𝑖  and 𝑝 𝐴2,𝑖  are the probabilities of test node A’s first 

and second partitions respectively where i is the given class. Gini Index and Twoing 

work exactly the same when the target attribute is binary but when the target attribute is 

multi valued, then Twoing criterion chooses attributes with evenly divided splits 

[Rokach and Maimon, 2014]. This means Twoing criterion becomes biased as well 

when the target attribute has more than two values. Lastly, Twoing criterion works 

slower than the Gini Index resulting in efficiency loss [Kantardzic, 2011].  

 

3.1.1.5. Chi-squared Criterion 

Chi-squared criterion is used in CHAID inducer [Kass, 1980]. This criterion is used for 

measuring the correlation between two attributes. 

  

𝑋2 =   
(𝑥𝑗𝑖 − 𝐸𝑗𝑖 )2

𝐸𝑗𝑖

𝑚

𝑖

𝑛

𝑗
 

 

Equation 3.10 

 

In Chi-squared criterion, split variables are decided based on the calculated p-values 

[IBM, 2011]. If the attribute is categorical then Pearson Chi-square test is done 

(Equation 3.10), if the attribute is continuous then an F test is made. The attribute with 

smallest p-value is chosen amongst the ones that are computed and if it is greater than 

the predetermined threshold, no further split is done along that branch and becomes a 

leaf node. If the p-value is less than or equal to that predetermined threshold, the node is 

split using the selected attribute. In the formula, 𝑥𝑗𝑖  is the frequency of the observed data 

instances of attribute value j where the class that they belong is i. The expected 
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frequency of the data instances of attribute value j is denoted as 𝐸𝑗𝑖  where the class that 

they belong is i. Equation 3.10 is for calculating the unadjusted p-value for categorical 

attributes. Once the p-value is calculated, it can be adjusted by using the Bonferroni 

adjustments. As a result, this criterion is based on observed and expected values where 

frequency of the data instances classified in categories is essential.  

 

3.1.1.6. Continuous Attribute Split 

For numeric or continuous attributes, splitting is more or less the same as splitting a 

categorical attribute. Information measure that will decide the goodness of the attribute 

is obtained by the use of measures like; Information Gain, Gain Ratio, Gini Index. 

However, the attribute values or possible split points are calculated differently since 

continuous attributes do not have any predefined split values.  

The commonly used technique is to find the middle point of each sorted adjacent 

values in the dataset. This will result in (n-1) possible thresholds when there are n many 

training instances [Maimon and Rokach, 2005]. Then these middle points become the 

possible thresholds for a split. An information measure is calculated on every single 

threshold that is found. Then, a threshold is selected amongst all according to the 

calculated information measure. The split is made based on this threshold resulting in a 

binary split. 

The criteria that were introduced are used in commonly applied inducers both for 

academic and business related purposes. The use and purpose of these univariate 

splitting criteria are the same; however, all of them have different efficiency and 

accuracy ratings on different kind of data sets. It is very hard to discuss which one has 

better results by means of accuracy and efficiency since all these criteria are used in 

different inducers and on different data sets most of the time. There are some researches 

that have been made to find out which criterion results better in classifying a dataset in 

terms of accuracy and Badulescu's article is one of them [Badulescu, 2007]. In the study 

various attribute selection criteria (including Information Gain Ratio, Gini index, Chi-

squared criteria) have been tested. The error rates for Information gain ratio, Gini index 

and Chi-squared criterion were respectively 13.41, 14.76 and 14.68. Therefore, it could 

be considered that the findings have pointed out there is not much difference in terms of 

accuracy between the commonly used attribute selection criteria. However, Information 

Gain Ratio has outperformed the other criterion during these tests which were made by 

using 29 different attribute selection measures [Badulescu, 2007].  

 

3.1.2. Pruning Methods 

One of the most important factors that are directly related with decision tree 

accuracy is pruning. Pruning by definition is basically eliminating the subtrees and 

replacing them with leaf nodes so that the performance of the tree can improve in terms 
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of accuracy and efficiency on unseen cases. One main reason why pruning is essential 

lies behind the rule of Occam’s razor; “Among competing hypotheses, the one with the 

fewest assumptions should be selected [Blumer et al., 1987].” This notion is very 

accurate when the tree is overfitted. When the tree is overfitted, it becomes a tree model 

with too much bias on the training data since it is purely grown out of the training data. 

Hence, test data is needed to measure accuracy of the tree on new unseen cases and 

prune the tree accordingly [Kantardzic, 2011]. The scientific studies have shown that 

pruning can have crucial effect on decision tree accuracy [Mingers, 1989]. According to 

another study, it has been shown that pruning can affect the accuracy up to 50% within 

considerable confidence intervals [Frank, 2000].  

  

 
 

Figure 3.3. Post-pruning example [Han et al., 2011]. 

An example of pruning is given above in Figure 3.3. As mentioned, pruning is 

eliminating subtrees (𝐴3) and turning them into leaf nodes (class B). This shows the 

significance of pruning even though the tree size is small. Now, if the tree becomes 

larger than this (in which almost all of the data mining practices the tree size is much 

larger than the tree in the figure), the significance of pruning becomes even more 

important. It is because as the tree grows bigger, it becomes more complex and harder 

to handle which also affects the accuracy because of overfitting. The accuracy is 

affected because when the tree is too large or too complex the noisy or exceptional 

cases can be included in the model and this action would lead to misclassification errors 

[Tan et al., 2006]. Additionally, as the tree grows larger the subtrees grow larger with 

the tree, producing more paths that lead to more and different classifications which can 

lead to misclassification results in the end. 

There are two different pruning approaches; prepruning and postpruning. In 

prepruning, a decision tree is halted while growing so that it won’t get too complex. 
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However, in postpruning the tree is grown till its fullest and then pruned following a 

bottom up or a top down strategy.  

The tree that has been grown fully or, in other words, that have overfitted might not 

be successful in classifying test cases. On the other hand, a tree that is not grown 

adequately might not be enough to be a sufficient decision tree model and this would 

result in unsuccessful classifications on the test data. Therefore, trying to find a 

common solution that knows where and when to stop growing the tree is very hard and 

is known as the horizon effect  [Frank, 2000]. 

Prepruning is considered as a more interesting method because it would save time 

since no time would be wasted growing subtrees that will be eliminated further on  

[Witten et al., 2011].  Actually trees are not pruned in prepruning algorithms; instead 

the algorithms are halted due to some stopping criterion. This criterion is usually based 

on goodness of the split. As discussed earlier, decision trees need splitting criterion such 

as Information Gain, Gini Index, Gain Ratio and so on to determine which attribute to 

branch on. If the information measured at a test node is under some threshold that is 

defined earlier, then the branching is halted on that path. Another prepruning strategy is 

limiting the tree size and the instances in an internal node to some user-specific 

threshold. Lastly, if a class distribution of instances is independent of the available 

feature, the tree growing is halted. Thus, it can easily be concluded that prepruning is 

based on restrictive conditions which are controlled by some threshold values.  

Postpruning on the other hand is not restricted by thresholds. The tree is grown 

entirely until it cannot grow anymore and then trimmed so that it gives better accuracy 

on the test data. There are two major operations in postpruning; subtree replacement and 

subtree raising [Witten et al., 2011]. Subtree replacement is the basic element of 

pruning where the subtree is replaced with a leaf node. This operation might lower the 

accuracy in the training data; however, it will increase the accuracy in the test data. The 

other operation is subtree raising which is more complicated than subtree replacement 

and is used in C4.5 inducer. The subtree on a path of the tree is pruned but replaced by 

another subtree which has different leaf nodes and gives better accuracy. The new 

subtree which replaces the old one is grown which means that subtree raising requires a 

lot of time and it is a complex operation. One last important point of postpruning is 

when the subtree is pruned and replaced with a leaf node, the criteria of labeling is the 

frequency of instances in that subtree; the most frequent class is labeled as the leaf node 

class after pruning [Han et al., 2011].  

If pre and postpruning are compared, prepruning gives better efficiency since it halts 

the tree growing which means producing trees faster; however, postpruning gives better 

accuracy in overall according to most of the studies [Alpaydin, 2014]. One of the 

reasons for postpruning giving better accuracy is the so called interaction effect; in 

prepruning each attribute is evaluated individually before being pruned which means 

neglecting the reactions between those attributes which might be important by terms of 
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accuracy [Frank, 2000]. Postpruning solves this issue since all possible attribute paths 

and interactions are seen clearly in the fully grown tree. Therefore, postpruning is the 

most widely used technique in pruning and some most important postpruning 

algorithms are; cost-complexity pruning, minimum-error pruning, reduced error 

pruning, pessimistic pruning and error based pruning.  

 

3.1.2.1. Cost Complexity Pruning 

Cost complexity pruning which is also referred to as the weakest link pruning is used in 

CART [Breiman et al., 1993] inducer and it consists of two parts. In the first part, a 

sequence of trees is built by training data. Each tree in the sequence is built so that the 

succeeding tree is obtained by pruning one or more subtrees in the preceding tree where 

the first tree of the sequence is the unpruned tree and the last of the sequence is the same 

tree with only the root remaining. Subtrees are pruned according to their sizes in which 

relatively have the smallest increases in their error rate on the training data.  An error 

rate 𝛼 is calculated by subtracting the error rate of the pruned tree from the initial tree 

and then dividing it by the number of leaf difference between the initial and pruned 

trees. 

In the second part of the algorithm, one optimal tree is chosen from the sequence of 

trees. In order to choose the optimal tree, generalization error of each and every pruned 

tree is calculated so that the tree with the least generalization error is chosen. The 

generalization error is estimated either by employing holdout method or cross validation 

method.  

Cost complexity pruning usually performs well in terms of accuracy; however, the 

same statement cannot be made for its efficiency. The algorithm performs in quadratic 

time since a sequence of pruned decision trees are being obtained and checked for 

generalization errors which requires heavy time complexity [Frank, 2000]. Furthermore, 

there were several issues with cost complexity pruning according to Quinlan [Quinlan, 

1987]. The first problem was that it was unclear why cost complexity pruning method 

was “superior to other possible models such as the product of error rate and number of 

leaves.” Additionally, “it seems anomalous that the cost-complexity model used to 

generate the sequence of subtrees is abandoned when the best tree is selected.”  

Therefore, he would later on find new pruning algorithms; reduced error pruning and 

pessimistic pruning which would aim to solve these problems and eventually lead to 

another algorithm called error based pruning.  

 

3.1.2.2. Reduced Error Pruning 

This pruning algorithm suggested by Quinlan is a rather straightforward and simple 

method [Quinlan, 1987]. The method follows a bottom up strategy where a fully grown 

tree is pruned starting from the bottom-most non-leaf nodes. Then the algorithm checks 



  

26 
 

each internal node and replaces the node with the most popular classification category 

(class label). The node to be replaced is chosen according to the number of errors it 

produces when the subtree is kept as it is and when it is replaced with the most 

frequently occurring class. The number of errors are calculated by using a separate test 

set. If the number of errors increases when the subtree is pruned, then the subtree is 

kept, otherwise pruned. The node with the most gain is pruned amongst all the other 

internal nodes. The algorithm continues its recursion until the error calculated on the 

nodes to be pruned makes no difference or does not improve tree accuracy.  

 

3.1.2.3. Pessimistic Pruning 

Pessimistic pruning is the other pruning algorithm suggested by Quinlan. The most 

interesting point of this method is it does not need a separate pruning or test data to 

employ the pruning algorithm [Quinlan, 1987]. It aims to improve the error rate 

calculated when unseen data are classified. The key idea in the algorithm is to make an 

assumption that ½ of an instance in leaf nodes of the trained subtree is going to be 

classified incorrectly in addition to the already misclassified number of instances on that 

subtree when unseen cases are encountered. This constant is obtained by using the 

“continuity correction” for the binomial distribution [Quinlan, 1987].  

The methodology is closely related with reduced error pruning such that it also tries 

to replace subtrees with the most frequent classification in the data. It starts by 

performing a top down traversal over the tree instead of a bottom up approach.  All the 

internal nodes are traversed recursively and pruned if the number of errors 

(misclassified cases in the node) + ½ is within one standard error of the earlier 

estimated number of errors in the subtree. If the internal node is pruned, its subtrees are 

not checked for pruning.  

According to Quinlan, this method has two advantages. Firstly, it is much faster 

than cost complexity pruning and reduced error pruning since a sequence of trees is not 

produced where almost all the same subtrees are traversed each time. Instead, only one 

tree is taken into consideration and each subtree is examined at most once.  The second 

advantage is there is no need for a separate testing data to employ the pruning 

algorithm; only training data is enough. 

 

3.1.2.4. Minimum Error Pruning 

Minimum error pruning was first introduced by Niblett and Bratko in 1986 [Niblett and 

Bratko, 1987]. Its main objective is to prune the tree by the help of most frequent class 

label. 

The algorithm's aim is to find an expected error rate when it is predicted that all the 

future examples will be in class c. The predicted or expected error rate is given in 

Equation 3.11 where n is the total number of training instances, 𝑛𝑐  is the number of 
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instances in the most frequent class and k is the number of classes in the data [Mingers, 

1989]. Algorithm first calculates the expected error rate at each internal node if that 

subtree is pruned. Then calculates the expected error rate if the node is not pruned, 

combined with weighting according to the proportion of observations along each 

branch. If pruning the node gives a higher expected error rate, then the subtree is kept 

otherwise pruned. These calculations continue recursively until the tree is totally pruned 

according to the stopping criteria. 

 

  

𝐸𝑘 =
(𝑛 − 𝑛𝑐 − 𝑘 − 1)

𝑛 + 𝑘
 

 

Equation 3.11 

 

It is also very similar to reduced error pruning because it also follows a bottom up 

approach and prunes the tree if the error rate is more than the unpruned version of it.  

The algorithm assumes that all classes are equally likely which is actually a 

disadvantage, because in practice the classes are not equally likely so the results 

obtained on practice becomes worse than expected. 

 

3.1.2.5. Error Based Pruning 

Error based pruning is basically a more complicated version of pessimistic pruning with 

some important updates. It is used in the well known decision tree inducer C4.5. Both 

error based pruning and C4.5 were introduced by Quinlan [Quinlan, 1993]. Like 

pessimistic pruning, it does not require a separate pruning data to prune the tree. 

However, unlike pessimistic pruning but similar to reduced error pruning, a bottom up 

traversal is employed in the algorithm. The other important aspect of the algorithm is 

that it provides subtree raising methodology in addition to subtree replacement and 

combines them in one algorithm.  

It estimates the errors as if the errors are binomially distributed like in pessimistic 

pruning. Instead of having a standard error rule, it introduces a confidence interval on 

the error counts which is 25% by default. The leaves’ error rates are calculated by 

taking the confidence interval’s upper bound. 

The algorithm works from bottom to up and estimates errors for 3 different cases 

[Rokach and Maimon, 2014]; 

1) The overall error rate of the tree when node N does not prune its subtree  

2) The overall error rate of the tree when node N prunes its subtree 

3) The overall error rate of the tree when the node N’s subtree is pruned by 

replacing the whole subtree with its most frequently used child node. 

According to the error rate obtained, the option that has the lowest value is chosen 

which means either the subtree is replaced with a leaf node or not. The last option is 
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growing a subtree which would replace the subtree that is pruned with the most 

frequently occurring branch in that pruned subtree.  

 

3.1.3. Decision Tree Induction 

To be able to infer new predictions from the existing datasets, decision tree induction is 

used. It can be considered as the algorithm for a decision tree which makes use of the 

basic tree concepts like creating a node, branching and combines these concepts with 

methods like attribute selection and pruning to build a tree model. Decision tree 

induction is one of the mostly used inference techniques in the world of data mining 

[Varpa et al., 2008]. It is generically based on Hunt’s Concept Learning System (CLS) 

which was later on enhanced by Quinlan with his ID3 [Quinlan, 1986]. Below, there is 

the family tree of top down induction of decision trees (TDIDT).  

 
Figure 3.4. TDIDT family [Quinlan, 1986]. 

The TDIDT family is based on a top down induction. This means the algorithms 

start to create the tree by forming the root node and then recursively selecting the 

internal nodes of the tree according to the attribute selection criterion they use. The 

training instances are consequently distributed according to their attribute values as the 

algorithm applies recursion along the nodes until its way down. This way of forming the 

decision tree is considered to be a greedy approach. The tree growth ends when the 

nodes become pure according to some threshold value. The pruning can either be at the 

time of growing the tree which is called prepruning (e.g. implemented in CHAID 

inducer), or after the tree is fully grown which is called postpruning and is implemented 

more commonly in the inducers such as CART, C4.5, C5.0 and so on.  

The basic tree growing algorithm is similar for TDIDT inducers. The only 

difference is, every inducer has its own attribute selection criteria and pruning method. 
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The pseudocode for a generic decision tree inducer is given below where training data is 

E and attribute set is F  [Tan et al., 2006]; 

 

TreeGrowth(E,F) 

if stopping_cond(E,F) = true then 

leaf = createNode() 

leaf.label = Classify(E) 

return leaf 

else 

root = createNode() 

root.test_cond = find_best_split(E, F) 

let V = {v|v is a possible outcome of root.test_cond } 

for each v ∈ V do 

𝐸𝑣  = {e | root.test cond(e) = v and e ∈ E} 

child = TreeGrowth(𝐸𝑣 , F) 

add child as descendent of root and label the edge (root → child) as v 

end for 

end if 

return root 

Algorithm 3 

 

As mentioned earlier, find_best_split(E,F) is implemented differently in every tree 

inducer as well as the pruning algorithm which is not included in the above pseudocode. 

Inducers can also follow different approaches regarding noise and missing values 

[Varpa et al., 2008]. The most commonly implemented decision tree inducers are ID3, 

C4.5, C5.0, CART and CHAID. Therefore those inducers will be explained according to 

which splitting criterion and pruning method they employ and what kind of advantages 

and disadvantages they have in comparison to other inducers. 

  

3.1.3.1. ID3 

Iterative Dichotomiser (ID3) decision tree inducer was developed by Ross Quinlan and 

it is based directly on Hunt’s algorithm [Quinlan, 1986]. It is considered as the simplest 

inducer since it does not employ any pruning algorithm which can lead to overfitting of 

the training data. Information Gain is used as the splitting criterion and the inducer 

cannot handle any missing or numeric data. There is only one stopping condition for the 

original ID3; every training instance belongs to the same class, so there is no need for 

further division. 

There are several disadvantages of the inducer, for example all the training data is 

kept in the memory at runtime which can be devastating when dealing with big data. 

ID3 does not guarantee an optimal solution since it can get stuck in local optimums 
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because it uses greedy strategy [Rokach and Maimon, 2014].  As mentioned earlier it 

can overfit the data since it does not employ any pruning algorithm on its own. 

Additionally, numeric or continuous data cannot be used directly in this inducer; it 

should be converted into a categorical attribute before being used. Lastly, Information 

Gain criteria can be biased on multiple valued attributes so it may not choose the best 

greedy path on all times.  

 

3.1.3.2. C4.5 

C4.5 is considered as an evolved ID3. Quinlan targeted ID3’s weaknesses and made a 

better inducer which is more efficient and accurate [Quinlan, 1993]. Gain Ratio is used 

to overcome the bias of the earlier Information Gain criterion. It performs postpruning 

by the help of error based pruning algorithm.  Continuous and numeric data can be used 

in C4.5 and it can also handle missing values. The growing algorithm stops when; 

 Every training instance belongs to the same class. 

 None of the remaining attributes provide better Information Gain. 

 There are no training instances in a node. 

There are some very important enhancements on the existing ID3 algorithm. One of 

them is attribute value grouping; attributes values are also tested as a group and 

compared with all the other possible combinations of existing attribute values so that it 

gives better Gain Ratio in order to be selected. As mentioned earlier, C4.5 can handle 

missing values. The inducer accomplishes such a task by giving the option to mark the 

missing values with “?” so that those missing values are handled in a probabilistic way 

in decision tree construction. Another important enhancement is pruning. Error based 

pruning gives a more pessimistic approach than pessimistic pruning which enables C4.5 

to increase its accuracy and become more robust against noise. Additionally, subtree 

raising feature is also implemented so that C4.5 not only prunes a branch from the tree 

but it can also grow one that replaces the pruned branch. Error based pruning gives a 

well overall accuracy and avoids the constructed tree from overfitting the training data 

unlike ID3. The other important improvement is that the inducer can now use the 

continuous attributes without converting them into categorical attributes. Instead it 

marks each middle point of existing ordered or sorted attribute values as a possible 

interval threshold and tests those intervals according to their Gain Ratio. The interval 

with the highest Gain Ratio is then branched using a binary split. One downfall that 

seems to be unresolved is the memory usage; the inducer keeps all the training data in 

the runtime memory which results in poor efficiency.  
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3.1.3.3. C5.0 

C5.0 in UNIX or See5 in Windows operating system is the successor of C4.5 [Quinlan, 

2004]. It is a commercially used inducer; however, the single threaded version of the 

inducer has been made public for personal or research related use only. C5.0 is much 

more efficient than the predecessor C4.5 by means of computational power and memory 

management [Rokach and Maimon, 2014]. A classification task that is completed in one 

and a half hour with C4.5 can be completed in three and a half seconds with C5.0 

inducer [Rokach and Maimon, 2014].  

The tree is constructed again in a top down recursive and greedy manner. It is still 

using postpruning methodology to avoid overfitting. An enhanced version of error 

based pruning is implemented where again the confidence interval can be defined. Gain 

Ratio and Information Gain are still the attribute selection criteria used in the inducer. 

Nonetheless, there are some improvements over the C4.5 inducer [Quinlan, 2004]; 

 A variant of boosting is implemented which increases the prediction accuracy 

dramatically. 

 New data types such as dates, time, timestamps, “not applicable” values, 

attribute misclassification costs and some attribute prefiltering functions. 

 The generated decision trees are smaller, more appropriate for Occam’s razor. 

 Speed and memory usage as mentioned earlier. 

 Each case instance can be weighted; giving it more importance over other 

cases. 

 Generates less number of rules. 

 Can cope with dimensionality by winnowing. 

 

3.1.3.4. CART 

Classification and regression trees (CART) is another inducer found by [Breiman et al., 

1984]. The inducer algorithm also follows a top down greedy approach which 

recursively grows the tree.  It is different from the earlier mentioned inducers such that 

it splits the attributes in binary no matter how many values the attribute has. This seems 

like an advantage at first since there will not be the negative consequences of multi way 

splits; however, the same attribute can be branched on different values of its own at the 

proceeding levels of the tree which may produce a less interpretable and unnecessarily 

long tree. The first version of the algorithm uses Gini Index for attribute selection 

criteria but it is later on replaced by Twoing criteria since Gini Index tends to favor 

attributes with more values. The reason Gini Index was chosen in the first place was 

because it was thought that Gini Index gave better performance by terms of speed than 

the Information Gain when it came to attribute selection [Kantardzic, 2011].  
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The pruning method chosen for the CART inducer is cost complexity pruning. 

Hence, the pruning is supported by cross validation method where other inducers are 

not such as C5.0 where a single-pass algorithm is derived from binomial confidence 

limits [Hssina et al., 2014]. Another important difference that separates it from the other 

inducers is that it looks for a possible solution that approximates the results when the 

attribute has an unknown value. Lastly, CART inducer supports regression based 

induction which is important since at the time it was introduced it was one of the most 

accurate inducers which can employ regression by using least-squared error 

methodology.  

 

3.1.3.5. CHAID 

Chi-squared automatic interaction detection (CHAID) is also another important inducer 

that differently follows the THAID which is another classification tree algorithm. It is 

mostly used for research purposes and in the industry for direct marketing because it is 

fast and supports both classification and regression. It is one of the first successful 

decision trees introduced by Gordon Kass in 1980 [Kass, 1980]. It was first used for 

classifying nominal values only but later on it was adapted for other kind of attributes as 

well. It uses F test for the continuous attributes, Pearson chi-square test for nominal and 

likelihood ratio test for the ordinal attributes [Rokach and Maimon, 2014]. 

The inducer does not have a pruning algorithm. An interesting aspect of the 

algorithm is that it treats the missing values as instances of the same category. CHAID 

makes a multiway split for the tested attributes and needs large training data to work 

effectively. During the splits each attribute is branched so that the children have 

homogeneous values of the selected attributes. Additionally, the splits are made based 

on a predefined threshold such that if the threshold is not met, the inducer will not 

branch and it will stop. Some other stopping conditions are as follows; 

 Predefined tree depth is reached. 

 A threshold for being a parent node is reached in terms of instances the node 

has.  

 A threshold for being child node is reached in terms of instances the node has. 

 

3.1.4. Rule sets 

Rules in general are very good ways to express knowledge or represent information 

acquired from a plain or mined data set. In association rule mining, inferences are made 

from data and expressed as rule sets. Nonetheless, another use for rules exists in 

decision trees.  

One of the reasons decision trees are preferred is because of their simplicity in 

interpreting the results of the processed dataset. However, in most real world cases 
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decision trees can grow into very big and complex structures which make them hard to 

interpret even though they might have been pruned [Han et al., 2011]. Therefore, rules 

come in handy in such cases where the trees are simplified into IF-THEN rules which 

are referred to as decision rules.  

An IF-THEN rule is an expression in the form; IF condition THEN conclusion. The 

“IF” part or the left hand side of a rule is called the rule antecedent or precondition. The 

“THEN” part or the right hand side of a rule is called the rule consequent. The 

consequent of the rule withholds the classification label or the prediction of that rule 

[Han and Kamber, 2006]. Extracting rules from a grown decision tree is very 

straightforward. Each extracted rule is basically the path from the root to a leaf node. To 

extract rules, each split attribute is “ANDed” to the “IF” part of the rule according to its 

value until the leaf node is reached which forms the consequent or the “THEN” part of 

the rule.  

The rules that are extracted are mutually exclusive and exhaustive since they are 

directly extracted from the tree. There is a disjunction or “OR” implication between the 

rules that are extracted which supports the idea of mutually exclusiveness. This also 

means the rules cannot overlap or conflict with each other since the extracted rules 

match the leaves of the tree in a one on one relationship. Exhaustive term means that 

there is a rule for each training case (for each attribute-value combination occurring in 

the tree) .  

A rule set or decision rules can be pruned like a decision tree as well. Sometimes 

the rules or parts of them can be useless or do not have proper decision tree accuracy 

since the rules might have been extracted from an unpruned tree. In this case, the rules 

are pruned according to some pruning algorithm. For example, C4.5 algorithm has a 

feature where it produces decision rules as well as a decision tree and prunes the rules 

using error based pruning. A consequence of rule pruning might be losing mutually 

exclusiveness property since after pruning, there will not be any guarantee that each 

possible path will go to a separate leaf node. However, this conflict can be handled just 

like Quinlan has done in C4.5 by adapting a class-based ordering scheme [Han et al., 

2011]. It groups rules for a single class together and then determines a ranking of these 

class rule sets.  
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Figure 3.5. Example tree. 

The decision tree in Figure 3.5 has three classes and four attributes; A, B, C and D. 

If the tree were to be converted into decision rules, there would be six rules since there 

are that many leaf nodes in the tree. To demonstrate, the decision tree is converted into 

decision rules below; 

R1: IF A==White AND B==Yes AND D==Square      THEN classification=Class 3 

R2: IF A==White AND B==Yes AND D==Round       THEN classification=Class 1 

R3: IF A==White AND B==No              THEN classification=Class 2 

R4: IF A==Blue                THEN classification=Class 1 

R5: IF A==Black AND C==0              THEN classification=Class 2 

R6: IF A==Black AND C==1              THEN classification=Class 3 

 

3.1.5. Advantages and Disadvantages of Decision Trees 

In order to sum up the decision tree topic, pointing out its advantages and disadvantages 

would be beneficial since it would give an overview of the topic. The advantages of 

decision trees are as follows; 

 Probably the most important advantage is decision trees being self explanatory 

and easy in terms of readability. Anyone who is not familiar with data mining 

before can interpret a decision tree if it is of small size. Moreover, if the tree is 

big and complex, decision rules can come in handy as discussed earlier.  

 Both categorical and numerical or continuous attributes can be handled. 

 The data may contain missing attribute values and decision trees will still 

handle it. 
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 The data might have error and decision trees will still handle it. They are robust 

to noise. 

 It follows a nonparametric approach; therefore, it does not require any prior 

assumptions regarding the type of distributions satisfied by the class and other 

attributes [Tan et al., 2006]. 

 Constructing decision trees are computationally inexpensive and fast which 

enables constructing models that require large sized training datasets to be 

easier, computationally inexpensive (in comparison with other machine 

learning algorithms) and faster [Maimon and Rokach, 2005]. 

 Decision tree representation is rich enough to represent any discrete values 

classifier [Rokach and Maimon, 2014].  

 Decision trees can handle high dimensional data [Iltanen, 2014]. 

 Decision trees can handle heterogeneous data [Iltanen, 2014]. 

 

Some of the disadvantages of decision trees are as follows; 

 Big majority of the inducers require the target value of the data instances to be 

discrete valued only. 

 A subtree can be replicated many times in a decision tree because tree is 

constructed in a divide and conquer manner (each subtree constructed is 

independent) [Tan et al., 2006]. A decision tree cannot represent the same 

subtrees as one so it will replicate the trees since every path is mutually 

exclusive [Rokach and Maimon, 2014]. 

 Since decision trees are greedy, they sometimes become overly sensitive and 

tend to choose a split due to a noise or an irrelevant attribute. This would cause 

all the subtrees of that split to change which would result in a wrong split and 

affect the accuracy poorly. 

  Decision trees are greedy and recursive which results in decreasing the number 

of instances and scattering them among nodes as the tree grows downwards. 

When the leaf nodes are reached, sometimes the number of data instances that 

is remaining for the leaf node might be very small. This would mean that the 

remaining instances are not sufficient to make a statistically significant 

decision for the class representation of the nodes [Tan et al., 2006]. This is also 

known as the data fragmentation problem.  

  It is true that decision trees can handle missing values but this also has a 

disadvantage. Handling the missing data require a lot of computation which is a 

drawback by means of computational time [Rokach and Maimon, 2014]. 
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 A decision tree inducer mostly follows a univariate approach; therefore, these 

inducers check one attribute at a time. This strategy divides the attribute space 

into regions. The borders between two neighboring regions that belong to 

different classes are called decision boundaries and these boundaries are 

rectangular. Hence, this fact limits the expressiveness of the tree and withdraws 

it from modeling complex relationships among continuous attributes. There are 

some techniques such as oblique decision tree method and constructive 

induction method but these methods are proven to be time consuming and 

expensive by means of computation [Tan et al., 2006].  

 

3.2. Multivariate decision trees 

As mentioned earlier, univariate by definition means involving one variate or variable 

quantity. On the other hand, multivariate means using multiple or more than one variate 

or variable quantity at the same time. Therefore, multivariate decision trees can use use 

all attributes at one node when branching [Alpaydin, 2014].   

Hyperplanes with an arbitrary orientation are used [Kantardzic, 2011] in 

multivariate trees. It means that there can be  2𝑑  
𝑁
𝑑
  possible Hyperplanes (where d is 

the number of dimensions and N is the number of possible thresholds for the split 

points) which makes exhaustive search inefficient and impractical. Consequently, a 

more practical way to follow is using linear multivariate node that takes weights for 

each attribute and sums them up [Alpaydin, 2014]. Moreover, linear multivariate 

decision trees choose the most important attributes amongst all so that the process 

would become more efficient and practical.  

Several decision tree inducers have been proposed according to multivariate 

approach. One of the earliest examples was the CART algorithm. It would decrease the 

dimensionality in the data preprocessing session to reduce the complexity at each node. 

After the preprocessing, the inducer used multivariate approach by adjusting the 

weights of the attributes one by one.  

As a result, it can be said that multivariate decision trees are used to do a better 

classification and approximation by the help of hyperplanes. However, this process is 

very complex and time consuming which also requires more data than univariate trees 

to bring optimal results.  
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4. Evaluation of Decision Trees 

At the time a model is built for a decision tree, the first question that comes into mind is 

how accurate or reliable the model is on unseen cases. This is the reason why evaluation 

of decision trees is essential because one should be certain that the resulting decision 

tree will be reliable and efficient. In some cases, there might be more than one decision 

tree model for a specific machine learning problem and one of them must be preferred 

over the others. In such cases, the only option to overcome such a problem is to take 

some precautionary steps. This is achieved by using measures and metrics that will 

estimate the overall performance of the inducer’s model for future use.  

In this section, the most common and efficient metrics that are necessary for 

decision trees are going to be discussed and some important questions will be answered. 

What are some common metrics for estimating decision tree performance? What is 

accuracy? What are other measures for decision tree evaluation? After discussing such 

questions, widely used accuracy estimation methodologies will be discussed.   

4.1. Performance Evaluation Metrics and Measures 

Before discussing what kind of measures there are, the type of metrics that are used for 

performance evaluation need to be explained. A metric for decision tree performance 

can have various different meanings. In some cases, the performance is measured by 

speed, sometimes by the size of the grown tree and in most cases it is measured by 

accuracy. Below are some metrics that have been considered viable and their 

definitions. [Han et al., 2011]  

 Accuracy Based: These are various measures that show the performance of 

classifiers on rating systems or percentages. Accuracy based metrics have 

dominated the evaluation methods and techniques since they give the most 

realistic and easily calculable results. Some of them are accuracy (recognition 

rate), error rate, recall, specificity and precision.  

 Speed: It is usually referred as the computational costs that are encountered 

during building the model and using it afterwards. 

 Robustness: This is how reliable or correct predictions a classifier makes when 

it encounters noisy data or data with missing values.  

 Scalability: This can be considered as an aspect to evaluate when the classifier 

is given large amounts of data. It measures how well the classifier operates 

given the large amount of data and is usually evaluated by classifying data of 

increasing size.  

 Interpretability: The amount or extent where the results of the classifier can 

be interpreted. This is a measurement where it can be very hard to assess 

different classifiers based on it since it is subjective. As mentioned earlier, 

interpretability of decision trees can be easy until some point; however, it is 
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inevitable that it might become very hard to interpret if the tree becomes 

complex.  

Now that the important metrics have been identified, measures which are in the 

category of accuracy based measures can be explained. Only the accuracy based 

measures are going to be explained since these are the measures that are going to be 

used in this research and in the validation techniques that are going to be explained in 

the next sections.  

Accuracy based measurements are formed on top of the confusion matrix (a.k.a 

coincidence matrix or classification matrix or contingency matrix). Below, there are 

examples of simple confusion matrixes which are 2 by 2 and 3 by 3.  

 

 
Figure 4.1. Confusion matrix examples. 

The confusion matrix is a table m by m where each column and row shows how 

many instances of some class were labeled as another class. These labeled classes can 

be the same class as itself or another one. The numbers along the diagonal from upper-

left corner to the lower-right represent the correctly classified number of instances 

(highlighted cells in Figure 4.1). The number m is directly proportional to the number of 

classes there are in the dataset. Below the model classification statistics, there are three 

more rows which show sum, probability and accuracy of the instances that belong to 

those classes in the dataset. Sum is the total number of instances there exists in a 

specific class and is calculated by adding the number of instances in the rows of some 

column such as Class 1 (In three class valued confusion matrix in Figure 4.1); actual 

number of instances in Class 1 are added which sums up to thirty. Probability is the 

relative frequency of a specific class among all the classes in the dataset. For instance, 
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in the example above, all the classes have the same probability since they maintain the 

same amount of instances. Accuracy, which will be explained further on is calculated by 

dividing the number of correctly classified instances in a class by the number of 

instances in that specific class. As mentioned earlier, the highlighted cells indicate the 

number of correctly instances in a class and in the case of Class 1 (In three class valued 

confusion matrix in Figure 4.1), there are twenty-two instances that are classified 

correctly over a total of thirty instances. Of course these measures can be different, but 

in this example sum, probability and accuracy were selected as the measures. All the 

accuracy based measures are based on this matrix and derived from it. To derive such 

measures, some terms which are derived from two-class labeled (positive and negative) 

data are important [Han et al., 2011]; 

 True positives count (TP): These refer to the positive instances that were 

correctly labeled as positives by the classifier.  

 True negative count (TN): These refer to the negative instances that were 

correctly labeled as negatives by the classifier. 

 False positive count (FP): These are the negative instances that were 

incorrectly labeled as positive by the classifier. 

 False negative count (FN): These are the positive instances that were 

mislabeled as negative by the classifier. 

 

 
Figure 4.2. Detailed confusion matrix [Olson and Delen, 2008]. 

By the help of Figure 4.2 above, the following measures are derived.  

 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝑅𝑒𝑐𝑎𝑙𝑙) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Equation 4.1 

 

𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

Equation 4.2 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

Equation 4.3 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Equation 4.4 

 

𝐹 𝑀𝑒𝑎𝑠𝑢𝑟𝑒 =
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

 Equation 4.5 

 
 

 

The true positive rate (also known as hit rate or recall) is a very simple measure and 

is calculated by dividing the number of correctly classified positives by the number of 

all the positive instances. The false positive rate (as known as the false alarm) is 

calculated by dividing the number of incorrectly classified negative instance by the 

number of all the negative instances. Then, the most important measure accuracy is 

estimated by dividing all the correctly classified instances by the total number of 

instances. The rest of the measures such as precision and F-Measure are also important 

measures.  

 

4.2. Accuracy Estimating Methodologies 

Previously, metrics and measurements that are required in accuracy estimating 

methodologies are discussed in order to build a clear connection between the two 

concepts. As mentioned earlier, accuracy is the most suitable measure for performance 

evaluation of decision trees. Consequently, all the estimating methodologies that are 

going to be discussed are based on accuracy metrics, hit rates, error rates and so on.   

Estimating accuracy is important for several reasons. Firstly, it is needed to verify if 

a model is reliable for future predictions. Secondly, when there is more than one model, 

there needs to be some kind of measurement or a metric that can separate the best 

among multiple models and this is where an accuracy estimation method comes in. 

Lastly, it can be used in order to assign confidence intervals to multiple inducers so that 

the outcome of a combining inducer can be optimized [Olson and Delen, 2008] .  

In this thesis, several methodologies such as the holdout, k-fold cross validation, 

leave-one-out and bootstrapping are discussed. Another important and widely used 

method, receiver operating characteristic or as known as the ROC Curves, is not going 

to be discussed since it will not be a part of the research. Nonetheless, the area under the 

ROC curves, which is also based on the coincidence matrix is also an important 

technique for visualizing, organizing and especially selecting classifiers based on their 

performances. 
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4.2.1. Holdout Method 

The holdout method is also referred to as the simple split or test sample estimation. This 

method is probably the simplest and most commonly used practice among the 

evaluation methods. The data is split randomly into two independent subsets: training 

and testing. The split ratio that is preferred generally is; selecting the training set from 

2/3 of the data and testing data from the remaining 1/3 [Olson and Delen, 2008]. After 

the data is split into training and testing, a classification model is built by the inducer 

using the training data. 

 Later on, this model is used to calculate the misclassification rate or the 

performance of the built model. Predictions are made based on the classification model 

by using the testing data as it can be seen from Figure 4.3.  

 
Figure 4.3. Holdout method. 

The holdout method is used when there is enough data that can be used for both 

training and testing, separately. This is the reason why this method is used commonly 

for big datasets.  

As mentioned earlier, the key point of the method is to divide the existing data into 

two parts; however, this might cause some problems since it assumes the data in two 

subsets are of the same kind. The reason is simple; the testing dataset might not fully 

represent the training dataset. Hence, the model built by training data cannot be 

sufficient since it does not recognize the instances that represent different classes. In 

other words, only a portion of the data is used to derive the model which leads to 

pessimistic estimations of accuracy [Witten et al., 2011].  

To eliminate such a problem, some precautions should be considered. For example, 

the holdout method is based on random sampling which is not sufficient to build a 

healthy model but a safety method like stratification can be taken to build a better 

model. Stratification is used to gain a fairly distributed amount of classes in both data 

subsets. A proportion (1/3 for testing and 2/3 for training as discussed earlier) is taken 

from each class instances for each of those subsets so that classes are distributed 

similarly in the subsets. However, stratification is just an optimistic safety method 

which does not fully eliminate the issue. Instead, holdout subsampling is used to handle 
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this issue in a better manner. The holdout method is repeated k times and then the 

overall accuracy is taken as the average of the accuracies obtained from each iteration 

[Han et al., 2011]. 

 

4.2.2. K-Fold Cross Validation 

When the data is limited and it is too risky to split into two subsets, other methods need 

to be considered. One of these methods is called k-fold cross validation, also known as 

the rotation estimation. It is a very important method within the validation techniques 

since it aims to minimize the bias associated with random sampling of the training and 

holdout method [Olson and Delen, 2008]. In order to minimize the bias, it makes full 

use of the data.  

In cross validation a fixed number k is decided as the number of folds that is going 

to be used. According to the fold number that is selected, the data is portioned into k 

mutually exclusive subsets which are of approximately equal size. Let us say we have 

split the data D into k subsets {𝐷1,𝐷2 ,… ,𝐷𝑘}, each of these subsets is referred to as a 

fold as stated earlier. Now the procedure is as follows; all the folds except the first fold 

{𝐷2,𝐷3,… ,𝐷𝑘}, become the training subset where a model is trained and is tested on the 

first fold {𝐷1}. Then, on the next iteration, the second fold {𝐷2} becomes the testing 

subset, where another tree model is trained on the rest of the subsets {𝐷1,𝐷3 ,… ,𝐷𝑘}. 

This procedure is repeated k times since every fold is going to act as a testing subset for 

once (Figure 4.4).  

 

 
Figure 4.4. k-fold cross validation. 

When all the iterations are completed, the accuracy rates that are calculated at the 

end of each iteration using the testing subset are summed, and then divided by the 

number of folds to find the average classification rate. Cross validation accuracy (CVA) 

is calculated as follows; 
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𝐶𝑉𝐴 =
1

𝑘
 𝐴𝑖

𝑘

𝑖=1

 

 

 

Equation 4.6 

where k is the number of folds and 𝐴𝑖  is the accuracy measure that belongs to a specific 

fold.  

The accuracy of cross validation would depend on the distribution of the folds; 

therefore, the stratified method is used in k-fold cross validation just like in the holdout 

method. The data is divided into k subsets which approximately have the same 

proportions from each class in the dataset. Such a technique tries to overcome the bias 

in training just like it is aimed in the holdout method or random subsampling.  

How is the number k usually selected? According to studies that have been made 

with numerous different datasets and with different learning techniques, it has been 

found that the 10-fold cross validation has better results in overall and outperforms the 

other cross validations that are made with different number of folds. This finding is also 

backed up with theoretical explanations [Witten et al., 2011]. Nonetheless, it does not 

mean that such a theory is completely valid for every circumstance; it is just a 

generalization, made on the common findings. Other folds such as 5, 20 or 30 have been 

found to be good choices as well. Therefore, such an issue is also going to be 

investigated further on in the experimental part of this thesis.  

There are two problems with k-fold cross validation. Firstly, if the k value chosen is 

great, the training instances will increase whereas the testing instances will decrease in 

numbers [Alpaydin, 2014]. This enables us to get more robust training models; 

however, the testing set will be small and not very diverse in terms of data 

characteristics and therefore won’t point out a valuable accuracy average. Secondly, the 

training sets overlap noticeably every other iteration which means that the training 

model is usually built using the same training sets; any two training sets share k-2 parts 

[Alpaydin, 2014].  

 

4.2.3. Leave-one-out Method 

The leave-one-out method is considered as a variation or a special case of k-fold cross 

validation. This methodology is the same in principle, but the only difference with 

leave-one-out method is that the k value is set to the number of instances in the dataset. 

Assume the dataset has N number of instances, then the leave-one-out methodology is 

k-fold cross validation where k is equal to N. Every instance in the dataset is left out 

once to become the test sample and the rest of the data (N-1) is used to train the 

classification model. The process can only be applied once since every single data 

instance is going to be used once for testing during building the model. Just like in cross 

validation technique, the average of all the accuracies yields the classification accuracy 
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of the leave-one-out method (Equation 4.6). Additionally, stratification cannot be used 

since there is only one instance in the testing subset.  

There are some reasons why such a methodology might be preferred over the others. 

Firstly, a vast majority of the data is used for training at every iteration; therefore, the 

model that is built by the classifier can be considered as robust and accurate [Witten et 

al., 2011]. Secondly, there is no need for methods like stratification and so on since 

there is no bias during training the model because almost all of the data is used. For that 

reason, leave-one-out is considered to be a deterministic method [Witten et al., 2011]. 

Repeating the model building process will yield the same results by means of accuracy 

and model every time.  

On the other hand, there are some disadvantages in this methodology. Firstly, the 

same process is repeated for every instance in the data set. This means building a model 

and measuring the accuracy N times. Such computation could be time-consuming as 

well as expensive; especially for extensive datasets. Secondly, each test set contains 

only one instance which leads to a high amount of variance of the estimated 

performance metric [Tan et al., 2006].  

 

4.2.4. Bootstrapping 

The bootstrapping method or as referred to as the bootstrap, uses random sampling with 

replacement. For the previous evaluation methodologies discussed in this thesis, 

replacement was not an option. All the other methodologies use the data instances for 

once; either in training or in testing subset. However, bootstrap method can make use of 

the same instance multiple of times.  An instance can be used again during training the 

model.  

There are several bootstrap techniques but the most widely used is 0.632 bootstrap. 

It might seem as an odd name but there is a perfectly simple reason and an explanation 

for it. Let’s assume a dataset has N instances and these instances are sampled N times 

but with replacement. This process will result in another dataset of N instances. Now, it 

is clear that some instances will be picked up multiple times since those instances are 

being replaced in the dataset while sampling. Additionally, it is clear that some 

instances are never going to be picked, so these will form the testing dataset. After 

explaining some key points, the computation of the number 0.632 can be explained as 

follows. There is a probability of 1/N that a particular instance can be picked up from 

the sampling set and a 1 − 1/𝑁 probability of not being picked up. To calculate the 

probability of one particular instance never being picked up, 1 − 1/𝑁 is multiplied N 

times by itself if the sampling is done N times [Witten et al., 2011]. Such computation 

reveals a probability 0.368 (Equation 4.8). 

  

 1 −
1

𝑁
 
𝑁

→ 𝑒−1 ≈ 0.368 

 

Equation 4.7 
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Now, if this computation is applied to a large dataset, it means that 36.8% of the 

instances will probably never be picked up and will be used in testing subset. However, 

the remaining 63.2% will probably be used at least once in training the model multiple 

times. Thus, total of N instances will be used in building the model from training set. 

This is the main explanation behind the 0.632 bootstrap method.  

Bootstrapping method can be repeated as many times as it is necessary; there are not 

any limitations like in leave-one out method. The final accuracy of bootstrap method is 

calculated after all the repetitions are complete. After k times of repetition of bootstrap, 

accuracy is calculated as summation of accuracies which are distributed in testing and 

training subsets. The equation for the model, M, built by using bootstrap is below [Han 

et al., 2011]. 

  

𝐴 𝑀 =
1

𝑘
  0.632 𝑥 𝐴(𝑀𝑖)𝑡𝑒𝑠𝑡𝑖𝑛 𝑔𝑠𝑒𝑡

𝑘

𝑖=1

+ 0.368 𝑥 𝐴(𝑀𝑖)𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 _𝑠𝑒𝑡   

 

 

 

Equation 4.8 

As mentioned earlier, the process can be repeated k many times and at each process, 

63.2% form the training and 36.8% form the testing set. Combined accuracy of the 

model that is generated at each iteration is calculated and then an average of all the 

model accuracies is calculated that gives the overall accuracy of the model.  
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5. Research Method 

Two different research methodologies have been used in this thesis. Literature review 

has been the first methodology in the sense that the background information on decision 

trees has been formed solidly. Then, literature was searched so that any information that 

could be related with decision tree accuracy and its evaluation methods were understood 

comprehensibly. These sorts of literature were also used to guide and manage the 

experimental process in order to understand and interpret the results in a more 

comprehensible fashion.  

The second research methodology used is the experimental research strategy. In the 

experimental part, tests were implemented in order to find patterns and understand the 

relationship within decision tree accuracies that were evaluated by various different 

evaluation methods.   

In this part, the research methodologies that have been followed are going to be 

discussed and explained in detail. The motivation behind these research methodologies, 

validity of the methods, tools and techniques used in such methodologies are also stated. 

Additionally, the data that has been used in the experiment is explained as well. 

 

5.1. Motivation and Purpose of the Experiment 

Decision trees are one of the most widely used machine learning algorithms as stated 

earlier in the thesis. Decision trees create solutions to classification problems on various 

different fields such as engineering, science, medical fields, and economical analytics. 

For this reason, decision trees are considered to be one of the most powerful tools that 

can accomplish such tasks [Kantardzic, 2011]. The possibility of being able to apply 

decision trees in almost any classification and prediction field of data mining makes 

decision trees essential. Therefore, accuracy of decision trees plays a key role especially 

when there is more than one algorithm and evaluation model to choose from. Each 

algorithm has its own methodology of building a model and the evaluation models also 

play a big role in the process of building that specific model. The portions of the data to 

be used are decided when building the decision tree model according to the choice of 

the evaluation method. For example, when 50% holdout split is chosen, the model is 

built using half of the available data. Another example would be when using the 10-fold 

cross validation, the data is split into 10 partitions and a model is built using 9 partitions 

and tested on the remaining one where this process is repeated 10 times. All these 

choices of evaluation methods might have a great impact on the resulting accuracy and 

decision tree model that is built accordingly with the evaluation method. Thus, finding 

the correct evaluation method that would help build a better model and predict the 

accuracy of the decision tree inducer is very important since it is the accuracy in the end 

of an analysis that matters the most and that will lead to a good prediction in overall.  
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Although decision trees are widely and frequently applied in data mining and 

machine learning context, there are not many studies that have made comparisons of 

different decision tree algorithms regarding their performance when evaluated by 

different methods. There are just some logical assumptions on which evaluation method 

would perform better than the other according to some characteristics of the datasets 

such the dataset size or number of attributes. Nonetheless, there is not a notion that has 

been proven.  

As a result, the aim of this thesis is to study how using different evaluation methods 

might have effect on decision tree accuracies when they are applied to different decision 

tree algorithms. Thus, five different decision tree algorithms were tested using five 

different evaluation methods on ten different datasets. The results were analyzed 

according to the accuracy measure and its standard deviation and standard error of 

misclassification rate as evaluation measures.  

 

5.2. Datasets 

Choosing the datasets is essential in the experiment because the data that is chosen 

needs to be reliable and applicable. Applicable means the data needs to be in the correct 

format and ready for classification purposes. Additionally, not all types of data are 

suitable for decision tree learning or classification to be specific. Therefore, the datasets 

need to be chosen carefully and then should be preprocessed if it is not already.  

For the experimental part of the thesis, all the datasets have been acquired from the 

UCI machine learning repository [Bache and Lichman, 2015]. It is a very reliable 

source of data where almost all the datasets are preprocessed or at least they are in 

tabular format. This repository is mostly used for academic purposes because of the fact 

that it is a reliable source of data. Hence, it is possible to confirm the validity and the 

credibility of the all datasets that were used in the experiment.  

Approximately twenty datasets were examined before the experiment; however, 

only ten datasets were chosen due to some criteria. The chosen datasets are related with 

various different fields including medical areas. Table 5.1 summarizes the details of the 

datasets that are chosen according to numerous fields including; total number of 

instances (cases), total number of classes, total number of attributes, missing values and 

if the dataset is uniformly distributed or not.  
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Dataset No. 

cases 

No. 

classes 

No. 

attributes 

Continuous Categorical Missing  

values 

Uniform  

distribution 

Arrhythmia 452 16 279 207 72 Yes No 

Audiology 226 24 69 0 69 Yes No 
Balance Scale 625 3 4 4 0 None No 

Breast Cancer 286 2 9 0 9 Yes No 

Glass 214 7 9 9 0 None No 

Hepatitis 155 2 19 6 13 Yes No 
Ionosphere 351 2 34 34 0 None No 

Iris 150 3 4 4 0 None Yes 

Musk1 476 2 167 166 1 None Appx 
Zoo 101 6 18 1 17 None No 

Table 5.1. Dataset summary. 

All the necessary information is already given in the table but it would be beneficial 

to explain the datasets and their context in more detail. For this reason, the datasets are 

explained based on their context in the following part. 

 

5.2.1. Detailed Dataset Explanations 

Arrhythmia 

Arrhythmia dataset is donated to the UCI repository in 1998 by Altay Guvenir from 

Bilkent University. The data consists of 452 instances and 16 classes in total. There are 

279 attributes in which are either continuous (207) or categorical (72). The dataset 

contains some missing values and the classes of the data are not distributed uniformly. 

The aim is to separate the different type of cardiac arrhythmia cases and to classify them 

into one of 16 groups or classes in this case in order to distinguish the cases which have 

arrhythmia or not.  All the information regarding the attributes and classes cannot be 

explained in detail in this thesis since there are a lot of different attributes and classes 

involved in the dataset; however, those specific information could be accessed from the 

repository [Guvenir et al., 1998].  

 

Audiology 

Standardized version of the audiology dataset is donated to the UCI repository in 1992 

by Ross Quinlan but the primary donor was Professor Jergen from the Baylor College 

of Medicine. The data consists of 226 instances and 24 classes in total. There are 69 

attributes which all of them are categorical. The dataset contains some missing values 

and the classes of the data are not distributed uniformly. The aim is to separate the 

different type of audiology disorder causes and to classify them into one of 24 groups or 

classes in order to distinguish the cases according to audiological disorder causes.  All 

the information regarding the attributes and classes cannot be explained in detail, but 

those specific information could be accessed from the repository [Jergen, 1992].  

 

 



  

49 
 

Balance Scale 

The dataset is donated to UCI repository in 1994 by Tim Hume from Carnegie-Mellon 

University. It is an interesting and extraordinary dataset. The dataset has 625 instances, 

3 classes and 4 attributes which are all continuous. It does not have any missing values 

and the classes are not distributed uniformly. The best explanation and the aim of the 

dataset is given by Hume himself; “This data set was generated to model psychological 

experimental results. Each example is classified as having the balance scale tip to the 

right, tip to the left, or be balanced. The attributes are the left weight, the left distance, 

the right weight, and the right distance. The correct way to find the class is the greater 

of (left-distance * left-weight) and (right-distance * right-weight). If they are equal, it is 

balanced [Hume, 1994].”   

 

Breast Cancer 

Breast cancer dataset is donated to UCI repository in 1988 by Ming Tan and Jeff 

Schlimmer who work in Carnegie-Mellon University. However, the original source of 

the data is Matjaz Zwitter and Milan Soklic who are physicians in the oncology 

department of University Medical center in Ljubljana, former Yugoslavia. The dataset 

has 286 instances, 2 classes and 9 attributes which all of them are categorical. It only 

has 8 missing attribute values in the dataset and the class values are not distributed 

uniformly. The aim of the dataset is to try and find out if breast cancer will occur again 

or not; therefore, all the attributes are related with breast cancer. For instance the 

attributes include; age, menopause, tumor size, inv-nodes (the number of auxiliary 

lymph nodes that contain metastatic breast cancer visible in histological examination), 

node caps, degree of malignancy, breast (left, right),  breast quadrant and irradiation. 

More detailed information about the dataset can be accessed in the repository [Zwitter 

and Soklic, 1988].  

 

Glass Identification 

Glass identification dataset is also another interesting dataset which was donated by 

Vina Spiehler but the original owner of the data is B. German from Central Research 

Establishment Reading, England. The dataset has 214 instances, 7 classes and 9 

attributes which all of them are continuous. It does not have any missing values and its 

class values are not distributed uniformly. The aim of the dataset is to classify glasses 

into seven certain types of groups with the help of nine chemical elements. Therefore, 

the attributes used to classify the glasses are; refractive index, sodium (Na), magnesium 

(Mg), aluminum (Al), silicon (Si), potassium (K), calcium (Ca), barium (Ba) and iron 

(Fe). The types of glasses that are trying to be classified are; building windows float 

processed, building windows non float processed, vehicle windows float processed, 

vehicle windows non float processed, containers, tableware and headlamps. More 
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detailed information on the dataset and other researches related to it can be found in the 

repository [German, 1987].  

 

Hepatitis 

Hepatitis is also another important dataset that has been used in many researches. It 

belongs to Gail Gong from Carnegie-Mellon University and has been donated in 1988. 

The dataset has 155 instances, 19 attributes where 6 of them are continuous and 13 of 

them are categorical. It has missing values and the attributes are not distributed 

uniformly including the class attribute. The aim of the dataset is to classify hepatitis 

cases according to previous patient mortality; the patient lived or died. All the 

information regarding the attributes cannot be explained in detail in this thesis since 

there are a lot of different attributes involved in the dataset; however, those specific 

information could be accessed from the repository [Gong, 1988].  

 

Ionosphere 

Ionosphere dataset is donated to the UCI repository in 1989 by Vince Sigillito from 

Space Physics Group. The data consists of 351 instances, 2 classes, 34 attributes and all 

of the attributes are continuous.  The dataset does not have any missing values and is 

not distributed uniformly. The content and the aim of the data are best explained by 

Sigillito himself “This radar data was collected by a system in Goose Bay, Labrador. 

This system consists of a phased array of 16 high-frequency antennas with a total 

transmitted power on the order of 6.4 kilowatts. The targets were free electrons in the 

ionosphere. "Good" radar returns are those showing evidence of some type of structure 

in the ionosphere. "Bad" returns are those that do not; their signals pass through the 

ionosphere. Received signals were processed using an autocorrelation function whose 

arguments are the time of a pulse and the pulse number. There were 17 pulse numbers 

for the Goose Bay system. Instances in this database are described by 2 attributes per 

pulse number, corresponding to the complex values returned by the function resulting 

from the complex electromagnetic signal [Sigillito, 1989].” 

 

Iris 

Iris data is a very important dataset that has been used widely in the field of machine 

learning and in some cases it is even used as an example dataset. It contains 150 

instances, 3 classes, 4 attributes and all of the attributes are continuous. The data does 

not have any missing values and is uniformly distributed. Iris dataset’s history dates 

back to 1932 and it was collected to quantify the morphologic variation of Iris flowers 

of the three related species; Iris-setosa, Iris-versicolor and Iris-virginica. The attributes 

reveal information related to the plant’s morphological structure; sepal length, sepal 

width, petal length and petal width. As understood from the dataset features, its aim is 
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to classify data instances into 3 different iris plant types. More detailed information 

about the data itself can be found in the repository [Fisher, 1988].  

 

Musk1 

Musk1 data is donated to UCI repository by Tom Dietterich from Oregon State 

University in 1994. The data contains 476 instances, 167 attributes where 166 are 

continuous and 1 is categorical. There are no missing values in the dataset and the data 

is approximately distributed uniformly. The aim and the content of the data is as follows 

“This dataset describes a set of 92 molecules of which 47 are judged by human experts 

to be musks and the remaining 45 molecules are judged to be non-musks. The goal is to 

learn to predict whether new molecules will be musks or non-musks. However, the 166 

features that describe these molecules depend upon the exact shape, or conformation, of 

the molecule…  When learning a classifier for this data, the classifier should classify a 

molecule as "musk" if ANY of its conformations is classified as a musk. A molecule 

should be classified as "non-musk" if NONE of its conformations is classified as a musk 

[Dietterich, 1994].” More detailed information about the dataset can be found in the 

repository. 

 

Zoo 

Zoo dataset is the smallest dataset that has been used in this thesis. The dataset belongs 

to Richard Forsyth and is donated by him to the UCI repository in 1990. It consists of 

101 instances, 6 classes, 18 attributes where 17 of them are categorical and 1 of them is 

continuous. The dataset does not have any missing values and it is not distributed 

uniformly. The aim of the data is to classify a wide range of animals into 7 classes by 

the help of attributes that are related to animal characteristics such as: toothed, aquatic, 

number of legs. All the information regarding the attributes cannot be explained in 

detail in this thesis since there are a lot of different attributes involved in the dataset, but 

those specific information could be accessed from the repository [Forsyth, 1990].  

 

5.2.2. Preprocessing the Datasets 

Some of the datasets that were chosen had to be preprocessed although their formats 

were correct. The preprocessing that was applied to the datasets include discretization, 

removing useless attributes with a lot of missing values and also changing the format of 

missing values.  

Firstly, all of the datasets were analyzed one by one to check if any attribute in the 

datasets had any missing values and if they were relevant to the dataset or not. There 

were four datasets that had missing attribute values, and these datasets had the highest 

probability of having meaningless attributes. The reason behind this notion is simply 

because of the amount of missing values might have great impact on the attributes and 

make those attributes irrelevant to the datasets.  
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All of the datasets were examined and the datasets without missing values did not 

require any preprocessing. However, the four datasets with missing values needed more 

analysis so all the attributes that had the majority of their values missing were analyzed 

one by one for each dataset. The attributes were dropped from the dataset and were 

tested if they had any impact on predictive and descriptive accuracy using different 

evaluation methods including the holdout 66 split, 10-fold cross validation and leave-

one-out method. The same splits were used in the tests and the data instances were 

identical in each test (for attribute dropped version and the original versions). If were 

any impact on the results, the attributes were kept and otherwise dropped.  

The first dataset that had missing values was the Arrhythmia dataset. There were 5 

attributes with missing values; T, P, QRST, J and heart rate where the amount of 

missing values were 8, 22, 1, 376 and 1 respectively (Table 5.2). The only attribute that 

had a major effect was J which had 83% of its values missing. If the attribute was taken 

out there was a 5-10 percent change in accuracy, so it was decided not to remove the 

attribute from the dataset. As a result, 98.21% of the attribute values in total were valid 

and none of the attributes were removed. 

 

Attributes Missing values (Amount) Missing values (Percentage) 

T 8 1.8 % 

P 22 4.85 % 

QRST 1 0.2 % 

J 376 83.2 % 

Heart rate 1 0.2 % 

Table 5.2. Arrhythmia missing values. 

The second dataset that had missing values was the Audiology dataset (Table 5.3). 

There were 7 attributes with missing values; ar_c, ar_u, bone, bser, o_ar_c, o_ar_u and 

speech where the amount of missing values were 4(1.8%), 3(1.3%), 75(33.2%), 

222(98%), 5(2.2%), 2(0.8%), 6(2.65%). Bser attribute had the majority of its values 

missing so it was taken out and tested if anything by means of accuracy would change 

and at each test the accuracy did not have any effect. Consequently, bser attribute was 

removed from the dataset and after the removal dataset had 91.3% valid values.  
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Attributes Missing values (Amount) Missing values (Percentage) 

ar_c 4 1.8 % 

ar_u 3 1.3 % 

bone 75 33.2 % 

bser 222 98 % 

o_ar_c 5 2.2 % 

o_ar_u 2 0.8 % 

speech 6 2.65 % 

Table 5.3. Audiology missing values. 

The third dataset that had missing values was the Breast Cancer dataset (Table 5.4), 

but there were only two attributes that had missing values: node-caps and breast-quad 

where the amounts of missing values were only 8 (2.8%) and 1 (0.35%) respectively. 

Hence, none of the attributes were eliminated and the dataset had 96.85% valid values.  

 

Attributes Missing values (Amount) Missing values (Percentage) 

node-caps 8 2.8 % 

breast-quad 1 0.35 % 

Table 5.4. Breast cancer missing values. 

The fourth dataset that had missing values was Hepatitis dataset. There were 15 

attributes with missing values which can be seen in Table 5.5. The only variable that 

had a major amount of missing values was protime and removing the attribute had a 

major effect on the results; therefore, protime was kept with all of the remaining 

attributes.   

 

Attributes Missing 

values 

(Amount) 

Missing values 

(Percentage) 

Attributes Missing 

values 

(Amount) 

Missing values 

(Percentage) 

Steroid 1 0.65 % Ascites 5 3.3 % 

Fatigue 1 0.65 % Varices 5 3.3 % 

Malaise 1 0.65 % Bilirubin 6 3.9 % 

Anorexia 1 0.65 % Alk 

phosphate 

29 18.8 % 

Liver_big 10 6.5 % Sgot 4 2.6 % 

Liver_firm 11 7.1 % Albumin 16 10.4 % 

Spleen_Palp

able 

5 3.3 % Protime  67 43.3 % 

Spiders 5 3.3 %    

Table 5.5. Hepatitis missing values. 
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After the attributes with missing values were checked and the necessary removals 

were made, the datasets were almost ready. All the algorithms except CHAID were 

compatible with continuous attributes; therefore, the datasets that contained continuous 

attributes needed to be discretized in order run tests on the RapidMiner tool. Hence, 

discretization was applied to all of the datasets except Audiology and Breast Cancer. 

The discretization was performed by the equal frequency binning and the thresholds of 

the bins were selected so that all bins contain the same number of numerical values. 

Equal frequency binning was chosen due to lack of choices provided by the RapidMiner 

tool. Numerical values were assigned to the bin representing the range segment 

covering the numerical values. In the discretization process, the number of bins varied 

according to the characteristics of the data and its attribute values; the number of bins 

which were chosen was either two or three. The ideal number of bins was determined 

experimentally and the number of bins which performed optimal were chosen. In this 

process, histograms were used to examine the data and different intervals were tried 

accordingly. During the experimentation a wide range of bins were tested. The 

discretized versions of the datasets were only used in the CHAID algorithm analysis and 

for the rest of the algorithms the non-discretized versions of the datasets were used. 

Lastly, RapidMiner and IBM SPSS Modeler did not recognize the missing values 

automatically since “?” was used to represent missing values. Consequently, all of the 

datasets’ missing values were replaced with null values instead of “?”, which is the 

missing value format of WEKA and C5.0 tools. All of the datasets’ missing values were 

adjusted accordingly before the tests that were made on RapidMiner and IBM SPSS 

Modeler.  

 

5.3. Algorithms and Evaluation Methods Chosen 

There is a great range of different decision tree algorithms available but not all of them 

are available in data mining tools and again not all of them are worth exploring. In this 

thesis, four different decision tree algorithms were chosen according to their well 

known performance in both private sectors and academic researches. Hence, the chosen 

algorithms are the ones that have been discussed in the thesis; the well known C4.5, 

C5.0, CART and CHAID. Additionally, boosting option of C5.0 has also been tested 

since it would be interesting to compare the results with other algorithms in such 

context. Consequently, there were five different algorithms including the boosted C5.0 

algorithm. 

The most widely used evaluation methods have been chosen to assess the selected 

five decision tree algorithms. These evaluation methods include leave-one-out method, 

5-fold cross validation, 10-fold cross validation, holdout method with 50 percent split 

ratio and holdout method with 66 percent split ratio.  
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5.4. Tools Used 

In order to accomplish good academic research and experiments on decision trees, tools 

are vital. Choosing the correct tools for the job plays an important part in the academic 

research and also in private businesses as well. Not all the tools have all the machine 

learning and data mining algorithms built in; therefore, tools were chosen based on the 

methods and algorithms that were going to be employed. In this case, four decision tree 

algorithms were chosen to be tested on various evaluation methods; C4.5, C5.0, CART 

and CHAID. These were chosen since they are the most widely used decision tree 

algorithms in business and academic areas. 

After the selection of algorithms were made, tools had to be selected based on 

which algorithms were implemented in which tools. In the end, CART and C4.5 were 

correctly implemented in the tool WEKA, CHAID was implemented in IBM SPSS 

Modeler and C5.0 had its own tool which could be used under GNU license as 

noncommercial purposes.  

 

5.4.1. WEKA  

Waikato Environment for Knowledge Analysis (WEKA) is a tool specifically made for 

machine learning purposes by the University of Waikato. It is a collection of machine 

learning algorithms and data preprocessing tools for researchers and practitioners of 

machine learning and data mining [Hall et al., 2009]. The collection includes algorithms 

for classification, regression, clustering and association rule mining. Additionally, 

graphical user interfaces and visualization options can be used for data exploration and 

algorithm evaluation. Data preprocessing is also another capability where different file 

formats are supported such as ARFF (which is the native file format of WEKA), CSV, 

Matlab ASCII files and so on [Bouckaert et al., 2010]. The current version of WEKA is 

implemented by using JAVA programming language; therefore, it can run on any 

machine and operating system. It is a very easy to use and efficient program. 

The reason why WEKA is chosen for the experiments is that the decision tree 

algorithms CART and especially C4.5 are almost identically implemented when 

compared with the original algorithms. These implementations exist under the 

classification and regression capabilities of the tool.  

 

5.4.2. IBM SPSS Modeler 

IBM Statistical Package for the Social Sciences Modeler (SPSS Modeler) is a data 

mining and text analytics based tool that has been implemented by SPSS Inc. for 

predictive and analytical analysis purposes. The company SPSS Inc. has been acquired 

by IBM in 2009.  

It provides various complex and advanced data mining algorithms, methods and 

techniques. These algorithms, methods and techniques are applied as models, so one can 
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build models for many different analysis purposes. Such an option makes the process 

visual and easily understandable for the majority of users. It also fastens the analysis 

process due to simpler user experience. The tool is widely used in different industrial 

fields such as customer analytics and customer relationship management (CRM), fraud 

detection and prevention, forecasting demands and sales, healthcare quality 

improvement, academic researches, telecommunications and many other [IBM, 2014a]. 

The tool provides algorithms from machine learning and data mining. Some of the 

algorithms included are: decision trees, support vector machines, naïve bayes, 

generalized linear mixed model, K-nearest neighbor algorithm and so on [IBM, 2014b].  

The main reason IBM SPSS Modeler was chosen in this thesis is because it contains 

implementations of the CHAID and C5.0 algorithms. Other decision tree 

implementation in SPSS are; Exhaustive CHAID, CART and QUEST.   

 

5.4.3. C5.0/See5 

As discussed earlier in the thesis, C5.0 is an algorithm that has followed the earlier C4.5 

decision tree algorithm. The computer program See5 is also implemented by Ross 

Quinlan [Quinlan, 2004]. It has two versions; one is a single threaded version which is 

open source and under GNU General Public License. It has dataset size limitations and 

can be used for academicals purposes easily.  The other version is the multithreaded 

version which is commercially used in some products such as the IBM SPSS Modeller. 

Besides being used commercially, it is also integrated into some open source 

applications. For instance, another important statistical analysis tool R has a separate 

package that utilizes the open source C5.0 algorithm implementation.    

See5 can produce rulesets and decision trees. Additionally, it has a boosting option 

built in which enables the algorithm to give better results under extensive datasets. This 

tool is chosen because it gives a very simple and easy to use implementation of C5.0.  

 

5.4.4. RapidMiner 

RapidMiner is also another important and widely used tool that has a similar approach 

as the IBM SPSS Modeler. The tool also uses models to build the process which again 

makes the process visual, easily understandable and fastens the process of building an 

analytical model and applying it. It provides an environment for machine learning, data 

mining, text mining, predictive analytics and business analytics. It is used in business 

and industrial applications and for academic researches. The tool provides usage for 

research, education, training, rapid prototyping, application development and all steps 

of data mining from visualization  to validation and optimization [Hofmann and 

Klinkenberg, 2013]. 
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The tool is chosen since it provides many algorithms in data mining and machine 

learning including decision trees such as CHAID, exhaustive CHAID and also provides 

all the types of evaluation methods with the algorithms.  

 

5.4.5. Other Tools  

During the experimental part, 8-10 different data mining tools were analyzed and tested 

in order to find the ones that are going to work with all the evaluation methods and also 

would give stable and trustable results. Besides the tools explained above which have 

been used in the experiments, there have also been some other tools that would have 

been chosen if they had all possible evaluation methods that could be applied to the 

algorithms. Some of the notable tools are R, StatSoft Statistica, Orange, IBM SPSS 

Statistics and similar tools. 
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6. Results 

In the experimental part of the thesis, tests were performed in order to measure the 

possible differences between evaluation methods in terms of accuracy when the datasets 

were induced using several different algorithms and various evaluation methods. In 

order to complete such tests, different tools had to be used for each algorithm since not 

all the algorithms were implemented completely in one data mining tool. As mentioned 

earlier, only the tools that supported all the chosen evaluation methods in this thesis 

were selected to run the tests. In this case, the C4.5 and CART algorithms were tested 

by using the WEKA tool. The C5.0 algorithm on the other hand had to be tested in two 

different tools because of the limitation the See5 tool had; datasets that had more than 

400 instances were not allowed for testing.  Thus, IBM SPSS Modeler was also used to 

test datasets with C5.0 algorithm for the datasets that had more than 400 instances. The 

results that were obtained from both tools (See5 and IBM SPSS Modeler) were very 

similar; therefore, it is certain that both programs perform almost identically and the 

results obtained from both programs are valid. Additionally, it is stated in the See5 

tool’s website that the same algorithm is implemented in IBM SPSS Modeler as well, so 

there is no doubt that the two programs perform similarly when it comes to the C5.0 

algorithm [Quinlan, 2004]. Lastly, RapidMiner tool was used to obtain results for the 

CHAID algorithm.  

Before explaining the obtained results for the experiment, there is some basic 

information that needs to be stated regarding the testing procedure. The testing had to be 

reliable; therefore, all of the results (in terms of accuracy, standard deviation of 

accuracy, standard error of misclassification rate) obtained were averaged over hundred 

iterations. However, datasets had to be tested manually with the C5.0 algorithm, hence; 

all the results that are obtained with the C5.0 algorithm could only be averaged over ten 

iterations. As a result, all the tests that are made in this experiment are averaged over 

100 iterations except the ones that are made with C5.0 algorithms. Additionally, the 

C5.0 algorithm that is implemented in both See5 and IBM SPSS Modeler did not give 

the results in terms of standard deviation but in terms of standard error. For this reason, 

the results for the C5.0 algorithm in the tables 6.1-6.10 are in terms of standard error 

instead of standard deviation and are marked with “†”.  

The test results are explained in detail and are supported by the information given in 

the corresponding tables. Some abbreviations had to be used in tables; Accuracy (Accy), 

standard deviation (STD), standard error (SE) and cross validation (CV). Additionally, 

“C5.0*” represents the boosted version of the C5.0 algorithm. For these tests, C5.0 

algorithm was boosted for ten trials. Moreover, the C5.0 and the boosted C5.0 algorithm 

did not provide standard deviations in the results but instead it provided standard error 

as a measure. Thus, the mark “†” represents standard error in the results and the results 

without the mark are standard deviations. Therefore, some values which were not 

provided are missing in the dataset results. Lastly, stratified sampling was used at each 



  

59 
 

test so that there was a balance between the distribution of the chosen instances in both 

training and testing data. The best result for each algorithm in the dataset results was 

written in bold face for each of the following tables.  

 

Arrhythmia Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE  Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 66.37 - 65.74 3.98 65.83 5.86 64.57 3.18 65.53 3.19 
CART 73.23 - 70.49 3.84 71.40 5.44 67.22 2.97 69.05 3.15 
C5.0 69.00 2.20† 66.74 1.79† 67.42 1.97† 65.30 - 67.07 - 
C5.0 * 71.90 2.10† 72.00 1.91† 72.16 1.48† 71.28 - 71.31 - 
CHAID 53.10 - 48.47 6.24 54.09 1.82 51.68 14.76 45.19 17.09 

Table 6.1. Arrhythmia test results. 

Arrhythmia dataset was tested and the results are displayed in Table 6.1. According 

to the results, leave-one-out method has been the best evaluation method for this dataset 

since three out of five highest measured accuracies of the algorithms belong to the 

leave-one-out method. In most of the cases, there is a 0.5-2 percent difference in terms 

of accuracy when compared with the second best method which is 10-Fold CV. 5-Fold 

CV is the third best after 10-Fold CV; however, there is a slight difference between both 

so it could be counted as a draw between them. The fourth best is Holdout 66 split 

followed by the Holdout 50 split which is the poorest in terms of accuracy. Again there 

is not much difference between the two holdout splits. The most unexpected 

performance belonged to the CHAID algorithm since it had very poor results when 

compared with other algorithms. Lastly, the best algorithm overall was the boosted C5.0 

in terms of accuracy.  

 

Audiology Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 77.88 - 77.38 4.55 77.35 7.39 75.55 3.43 77.40 3.30 
CART 75.66 - 74.34 5.43 74.93 7.83 69.60 4.03 73.20 4.74 
C5.0 77.90 2.80† 77.69 1.87† 77.52 2.42† 71.51 - 74.21 - 
C5.0 * 84.10 2.40† 84.16 2.06† 84.70 2.04† 77.79 - 79.72 - 
CHAID 30.53 - 37.28 4.79 37.17 1.63 47.26 13.92 45.36 15.62 

Table 6.2. Audiology test results. 

The results in Table 6.2 belong to the Audiology dataset. Leave-one-out is the best 

evaluation method in terms of accuracy when compared with the other methods but the 

difference between the accuracies are very small. The second best is 5-Fold CV but 

again the accuracy difference between 10-Fold CV which is the third best, is very small 

so that both methodologies basically performed identically. Then the Holdout 66 split is 

the fourth best followed by the Holdout 50 split. Holdout 66 split is visibly better than 

Holdout 50 in all of the algorithms except CHAID which performed very poorly and 

way unstable since the STDs of the holdout methods were very high when compared 

with other algorithms’ STDs. Additionally, the algorithm that performed best is boosted 
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C5.0 in most cases with 2-6 percent difference in terms of accuracy when compared 

with other algorithms. 

 

Balance Scale Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 77.76 - 78.27 2.96 77.93 4.09 78.08 1.88 78.28 2.22 
CART 79.36 - 78.46 2.93 79.15 4.09 77.88 1.80 78.52 2.00 
C5.0 77.80 1.70† 78.66 1.12† 77.85 1.30† 77.49 - 78.79 - 
C5.0 * 81.10 1.60† 83.47 1.15† 82.74 1.09† 83.58 - 84.52 - 
CHAID 74.56 - 76.93 0.79 76.48 0.52 74.87 2.27 76.44 2.40 

Table 6.3. Balance scale test results. 

Holdout 66 split was the best evaluation method for the Balance Scale dataset 

according to the results in Table 6.3. However, 5-Fold CV has performed almost 

identically to Holdout 66 split with only 0-0.5 percent differences when compared. 10-

Fold CV was the third best evaluation method after the 5-Fold CV. The two worst 

methods are Holdout 50 split and leave-one-out method. The dataset results could be 

considered stable since the standard deviations are low even when compared with other 

dataset results in general. The best algorithm in terms of accuracy is the boosted C5.0 

for this dataset as well. 

 

Breast Cancer Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 75.52 - 72.77 4.09 73.93 5.65 71.19 2.62 71.37 3.51 
CART 72.03 - 70.01 3.85 70.71 5.34 69.55 2.73 69.95 2.84 
C5.0 75.50 2.50† 71.71 1.82† 73.30 2.12† 73.95 - 69.36 - 
C5.0 * 75.50 2.50† 71.18 2.11† 73.84 2.00† 71.58 - 70.81 - 
CHAID 64.49 - 64.36 2.29 64.33 1.87 64.53 3.78 64.82 4.96 

Table 6.4. Breast cancer test results. 

Breast cancer results are given in Table 6.4 and according to those results, leave-

one-out is the best evaluation method for the dataset. It gave 1.5-2 percent better 

performance in terms of accuracy when compared with the second best method which is 

the 10-Fold CV. Then it is 5-Fold CV which is the third best by the accuracy measure. 

Lastly, both holdout methods have very close results; however, it could be stated that 

Holdout 66 is better since it performed slightly better than Holdout 50 except for the 

C5.0 algorithms. Furthermore, C5.0 and the boosted C5.0 algorithm performed almost 

identically in every evaluation method. Additionally, the dataset has relatively stable 

results when compared with other datasets since the STDs do not vary much. For this 

dataset, C4.5 performed slightly better than other algorithms in general. This is 

interesting since the boosted C5.0 had been performing very well on the other datasets.  
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Glass Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 66.82 - 67.30 6.38 67.88 9.12 65.56 4.08 66.69 5.08 
CART 72.90 - 70.24 6.16 70.49 8.48 65.33 4.88 68.55 5.57 
C5.0 65.90 3.20† 69.00 3.29† 70.36 2.95† 66.60 - 65.27 - 
C5.0 * 76.20 2.90† 73.69 2.61† 77.06 2.55† 70.28 - 73.29 - 
CHAID 62.62 - 61.68 2.10 62.60 1.65 57.85 4.89 60.71 4.93 

Table 6.5. Glass test results. 

Table 6.5 shows the results for the Glass dataset. It could be argued from the results 

that 10-Fold CV is the best method when compared with the rest. Then, leave-one-out 

method is the second best followed by the 5-Fold CV. The worst methods are again the 

holdout splits in terms of accuracy. However, Holdout 66 is better in most cases with 

0.5-3.00 percent better accuracies. The dataset is slightly unstable since the STDs of the 

holdout methods reach higher intervals; 4-5 percent. The best algorithm overall is again 

the boosted C5.0 with clear differences in terms of accuracy.  

 

Hepatitis Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 80.00 - 79.03 5.81 79.26 8.72 78.81 3.86 78.68 4.69 
CART 71.61 - 78.82 4.75 77.48 6.82 79.49 2.84 79.32 3.34 
C5.0 78.70 3.30† 79.62 2.78† 78.75 2.83† 81.57 - 79.05 - 
C5.0 * 83.20 3.00† 83.35 3.03† 84.42 2.62† 80.89 - 81.69 - 
CHAID 79.35 - 78.80 2.34 80.21 2.32 77.99 3.88 78.32 4.70 

Table 6.6. Hepatitis test results. 

The results in Table 6.6 show the results for the Hepatitis dataset. Firstly, all the 

results in the dataset are very close to each other apart from some exceptions. If one had 

to decide the best evaluation method for this dataset, it would be 10-Fold cross 

validation although it is tied up with Holdout 50 split. However, when the Holdout 50 is 

compared with the 10-Fold CV, 10-Fold CV is slightly better. Strangely, when each 

algorithm is compared one by one, 5-Fold is second best followed by the leave-one-out 

method. Once again the two worst methods are considered to be the holdout splits. 

Nevertheless, it should be stated that it is not a very reliable dataset since it has a 

significant amount of missing values and the STDs are relatively higher. Additionally, 

there is one more fact that has not changed once again; the algorithm that performed 

best overall is the boosted C5.0.  
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Ionosphere Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 87.46 - 89.44 3.45 89.94 4.98 88.20 2.37 88.72 2.99 
CART 89.17 - 89.09 3.16 88.86 4.83 88.48 2.35 88.72 2.39 
C5.0 91.70 3.50† 90.30 1.43† 90.48 1.44† 87.88 - 90.67 - 
C5.0 * 94.30 1.20† 93.84 1.24† 93.93 1.30† 93.77 - 94.79 - 
CHAID 83.19 - 82.89 1.60 83.11 1.29 81.92 3.20 82.63 3.18 

Table 6.7. Ionosphere test results. 

Table 6.7 concludes the results for the Ionosphere dataset. It is clear that leave-one-

out method has performed the best for this dataset even though the results are very close 

to each other. It is also very clear that the Holdout 50 split has performed the worst 

amongst all methods, but again it is important to state that all the results are neck and 

neck.  If one were to arrange the methods according to their overall performances, 10-

Fold CV would be the second best followed by the 5-Fold CV with a difference of 0.1-

0.5 percent in terms of accuracies. Then the fourth best would be Holdout 66 with a 

better 0.3-1.1 accuracy percentage over Holdout 50. The dataset itself could be 

considered very stable and reliable since there are no missing values and the STDs in 

overall are not high. Additionally, the algorithm that has performed best in overall is the 

boosted C5.0 followed by the default C5.0 algorithm.  

 

Iris Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 95.33 - 94.43 3.90 94.91 5.43 93.37 2.62 94.25 3.12 
CART 95.33 - 94.19 3.98 94.21 5.22 93.83 3.33 94.49 2.82 
C5.0 95.30 1.70† 92.95 1.98† 94.26 1.88† 93.67 - 92.75 - 
C5.0 * 94.70 1.80† 94.09 1.78† 94.54 1.72† 92.78 - 94.70 - 
CHAID 96.67 - 96.93 0.86 96.85 0.68 95.64 2.60 97.22 2.22 

Table 6.8. Iris test results. 

The results in Table 6.8 belong to the well known dataset Iris. According to the 

results, the leave-one-out method is the best in terms of accuracy for most of the 

algorithms by a difference of 0.25-1 percent. The second best evaluation method is 10-

Fold CV which is slightly better than the Holdout 66 method. Holdout 66 split is the 

third best and in average 0.50 percent worse than the 10-Fold CV. The fourth best is 5-

Fold CV where as the last best evaluation method by terms of accuracy is the Holdout 

50 split.  The best algorithm in overall is CHAID algorithm this time. Lastly, the dataset 

is stable and reliable since the STDs are not high.  

 

Musk1 Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 100 - 98.25 2.86 99.18 2.07 89.85 10.17 95.90 4.82 
CART 100 - 98.99 1.50 99.54 1.43 95.48 2.05 97.82 1.81 
C5.0 100 0.00† 98.23 0.98† 98.88 0.67† 78.07 - 96.53 - 
C5.0 * 100 0.00† 97.95 1.08† 99.31 0.46† 85.10 - 97.58 - 
CHAID 94.54 - 72.33 2.38 73.32 1.66 68.58 3.40 71.04 3.42 

Table 6.9. Musk1 test results. 



  

63 
 

Table 6.9 concludes the results for the Musk1 dataset. It can be clearly seen from 

the dataset results that the leave-one-out method gave the best results as an evaluation 

method by 1-22 percent difference when compared with the second best evaluation 

method 10-Fold CV. The third best is 5-Fold CV and it is also a clear outcome since 

there is 0.5-1.3 steady difference between the 10-Fold CV. The Holdout 66 and Holdout 

50 are the poorest evaluation methods. These two methods are respectively the fourth 

best and the last best evaluation methods in this dataset. Moreover, the dataset results 

are stable since STDs do not vary much. Lastly, the best algorithm that performed well 

in overall is CART.  

 

Zoo Leave-one-out 5-Fold CV 10-Fold CV Holdout 50/50 Holdout 66/34 

 Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE Accy.     STD|SE 

C4.5 92.08 - 93.02 4.18 92.52 6.88 93.07 2.77 92.84 3.11 
CART 40.59 - 40.59 1.73 40.58 2.50 40.67 0.85 40.60 1.47 
C5.0 94.10 2.40† 92.46 2.64† 93.55 2.28† 90.80 - 91.48 - 
C5.0 * 96.00 2.00† 95.03 2.09† 95.76 1.75† 88.20 - 94.71 - 
CHAID 93.07 - 92.32 1.33 92.83 0.88 92.30 2.67 92.09 3.13 

Table 6.10. Zoo test results. 

The last dataset Zoo’s results are shown in Table 6.10. According to the table, the 

leave-one-out method is the best in overall but the results are very close to each other 

especially the cross validation methods and the leave-one-out method. Second best 

algorithm is hard to tell because of the closeness in accuracies but 10 Fold-CV is 

slightly better than 5-Fold; therefore, 10-Fold is the second best where as 5-Fold is the 

third best evaluation method for the dataset. Then, the fourth best and last ones are 

respectively Holdout 66 and Holdout 50 split. The dataset is interesting because the 

STDs vary much from algorithm to algorithm, so the results could be considered as 

slightly unstable for this dataset. Additionally, CART algorithm has performed 

exceptionally poor for this dataset even though the STDs were not very high. Lastly, the 

algorithm that performed the best in overall is the boosted C5.0.  

 

6.1. Result Evaluation 

The results of the datasets have been explained one by one in the previous section. In 

this section, all the results have been combined in order to make some logical 

inferences. Moreover, comments are also made based on the combined results. 

The results that have been gathered are interesting, but as it can be seen from the 

results, not all of the datasets have been very informative for the study’s purpose. For 

instance, the datasets that had very close results to each other when the evaluation 

methods were compared or the datasets that had very confusing results were not very 

productive for the research. However, there is not a notion that all the datasets perform 

in an expected way or give amazing results in overall. Such a thought would not be 

logical since all the datasets have their own characteristics and act in different ways.  
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There are some interesting datasets which their results need to be interpreted. For 

instance, Balance Scale dataset has been the only dataset where Holdout 66 has 

performed the best amongst all the evaluation methods. If looked at the results (Table 

6.3), it can be seen that almost all the results were very close to each other. Therefore, 

ranking the evaluation methods was very difficult and not very decisive. The same issue 

was present for the Hepatitis dataset (Table 6.6) since all the results were very close to 

each other and it was very hard to find the best ones when ranking the evaluation 

methods. Additionally, the results were very scattered and there were not any patterns 

since evaluation results even differentiated according to the algorithm used. Moreover, 

Zoo dataset (Table 6.10) had the same problems. Most of the results were very close to 

each other and there were not any patterns in the results. The most probable reason 

behind these issues for this particular dataset could be the size since it had only 101 

instances in total. The size of the dataset might have been insufficient to build a model 

that could be distinctive throughout all the evaluation methods. Apart from these three 

datasets, in most cases the results were also close to each other when the best three 

evaluation methods were considered; however, it was not as hard as these three datasets 

to find a pattern.  

There were also some datasets that performed well in overall and gave distinctive 

results such the Breast Cancer dataset and Musk1 dataset. For instance it is very clear 

that leave-one-out method has outperformed the other evaluation methods in the Breast 

Cancer dataset. Another interesting point in the dataset is C5.0 and the boosted version 

of C5.0 algorithm has almost performed identical. This is interesting because in most of 

the time boosted C5.0 outperforms all the other algorithms when the algorithms are 

ranked based on their overall performance in terms of accuracy. Musk1 dataset is also 

interesting since every evaluation method performed in the same order by means of 

performance and distinctively for each algorithm.  

After taking these into consideration, it would be easier to combine the results and 

discuss the findings over Table 6.11 below.  
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Dataset 1 2 3 4 5 

Arrhythmia Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50 

Audiology Leave-one-out 5 Fold CV 10-Fold CV Holdout 66 Holdout 50 

Balance Scale • Holdout 66 5-Fold CV 10-Fold CV Holdout 50 Leave-one-out 

Breast Cancer Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50 

Glass 10-Fold CV Leave-one-out 5-Fold CV Holdout 66 Holdout 50 

Hepatitis • 10-Fold CV 5-Fold CV Leave-one-out Holdout 66 Holdout 50 

Ionosphere Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50 

Iris Leave-one-out 10-Fold CV Holdout 66 5-Fold CV Holdout 50 

Musk1 Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50 

Zoo • Leave-one-out 10-Fold CV 5-Fold CV Holdout 66 Holdout 50 

      

Total Leave-one-out (7/10) 10-Fold CV 

(6/10) 

5-Fold CV 

(6/10) 

Holdout 66 

(8/10) 

Holdout 50 

(8/10) 

Total • Leave-one-out (6/7) 10-Fold CV 

(5/7) 

5-Fold CV 

(5/7) 

Holdout 66 

(6/7) 

Holdout 50 

(6/7) 

Table 6.11. Combined test results. 

In Table 6.11, the results have been ranked from 1-5 according to their 

performances. The ranks are for the evaluation methods where rank 1 being the best 

evaluation method for that specific dataset and 5 being the worst. Additionally, “•” 

symbolizes the datasets (Balance Scale, Hepatitis and Zoo) that have been mentioned 

earlier which have not been very informative for this experiment. At the end of the 

table, the mostly occurring evaluation methods are selected according to their 

frequencies. Lastly, Total• gives the overall results by excluding the datasets that have 

not been very informative which are also marked with a dot. 

There are some interesting results that can be seen in the combined results table. 

Firstly, it can be observed that in almost every result Holdout 50 method has performed 

the poorest by a substantial difference. This is a sensible result if decision tree growing 

criteria are taken into consideration. In order to build a tree, there must be sufficient 

data and the more the data the better trees will perform once grown. However, building 

the model with the majority of the data might also cause overfitting issues. Therefore, 

there is a thin line between obtaining a balanced, good overall performance for decision 

trees in terms of accuracy. In this case, the experiment had datasets that did not have 

many instances; the largest dataset (Balance Scale) had 625 data cases and the rest were 

ranged between 150-350 cases. This might have caused the Holdout 50 method to 

perform poorer when compared with other evaluation methods since it only used half of 

the data to train the decision tree model. 

Secondly, leave-one-out method could be considered as a cross validation method 

since it is a special case of it as mentioned earlier. Taking this notion into consideration, 
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the evaluation methods that are applied in this experiment can be grouped into two 

method categories; holdout methods and cross validation methods. If the results are 

examined, it is clear that in almost every case cross validation methods have 

outperformed the holdout methods.  

As a result, the outcomes of the experiment revealed interesting points. However, 

nothing much could be concluded about the results since the experiment does not have 

sufficient amount of datasets to be conclusive. The only important outcomes of the 

results were that cross validation methods outperformed the holdout methods and 

Holdout 50 method performed poorest. Besides the insufficient number of datasets, each 

dataset has its own characteristics and is very different in nature from another dataset. 

This fact also makes it difficult to test which evaluation method is superior to other. 

Moreover, there are other factors which contribute highly to the accuracy such as the 

attribute selection criteria, pruning method, overfitting, curse of dimensionality, missing 

and noisy data, data size, data distribution, data sampling method and the induction 

algorithm itself. Therefore, it is very difficult to come to a verdict about the evaluation 

methods in general; more detailed and comprehensive research is needed.   
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7. Discussion and Conclusion 

Decision trees play an important role in machine learning and data mining. The 

application fields of decision trees vary depending on the research field or utilization 

area; however, there is one inevitable fact that decision trees are common practices 

within the knowledge discovery process. Additionally, evaluation methods are also 

considerably important since there is a close relation between them and decision trees. 

Evaluation methods guide the process of building a decision tree model; therefore, 

decision tree models are dependent on the evaluation models which are used to form 

decision trees. Hence, the choice of evaluation method would also have an impact on 

the decision tree accuracy. Thus, main purpose of this thesis was to study the effects of 

evaluation methods on decision tree accuracies when they were applied to different 

decision tree algorithms. In order to accomplish such a task, a comprehensible literature 

review was needed. Therefore, topics that were relevant to the experiment and the 

decision trees were covered in detail. For instance, important topics within decision 

trees such as attribute selection criteria, pruning methods and induction algorithms were 

discussed since these topics were directly related to accuracy. Moreover, detailed 

background information on evaluation methods was given.  

In the experiment, five decision tree algorithms were tested by five evaluation 

methods on ten different datasets. The primary goal was to study the effects of 

evaluation methods on decision tree accuracy. There were two main findings from the 

experiment. Firstly, cross validation methods were superior to the holdout methods in 

overall. Secondly, holdout 50 split performed the poorest in almost every test.  

However, there are probable reasons behind the obtained results. For instance, it is very 

probable that the reason holdout 50 split had performed the worst is due to insufficient 

number of training instances. This is highly probable because the datasets that were 

used did not have large amounts of instances in general which meant insufficient 

number of training instances when holdout 50 method was chosen to build the model. 

Additionally, interpretation of the results were very hard because the results changed 

according to the datasets and the decision tree algorithms that were used. Consequently, 

as mentioned in the results chapter it was very hard to rank the evaluation methods and 

find the one that was superior to the others in each test. However, it is very clear that 

not only evaluation methods affect decision tree accuracy; therefore, there might be 

several reasons behind the differences in decision tree accuracies. Some of the major 

reasons that are suspected include: overfitting, curse of dimensionality, attribute 

selection criteria, pruning method, dataset size, and induction algorithm. As a result, it 

is very hard to come to a definite conclusion about the effects of evaluation method on 

decision trees. There cannot be a generalization such that an evaluation method is 

always superior to another one in all circumstances. Every dataset has its own 

characteristics and every dataset has to be treated according to its specifications. 
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Therefore, it is important to understand the data comprehensibly and chose the correct 

evaluation method accordingly before building a decision tree model.  

There were two limitations that were encountered in the thesis. First and most 

importantly, the number of datasets that were tested was not sufficient. Therefore, the 

experiment that was conducted was not very conclusive. Secondly, there were 

difficulties when testing the datasets. The tools that were available did not have all the 

necessary algorithms or the evaluation methods that were required for the experiment. 

Therefore, it was hard to combine several tools in order to conduct the experiment. 

Additionally, not all the tools available were open source. Thus, some important tools 

were discarded due to lack of financial support.  

For future work, a more comprehensible experiment with more datasets could be 

made. Additionally, there were a few topics that were going to be tested but were 

discarded in the later phases of the thesis. For instance, the total number of attributes 

might also affect the accuracy of the decision trees. There are already solid findings in 

the literature that the dimensionality affects accuracy but it would still be interesting to 

test this notion on decision trees. Moreover, the effect of having different types of 

attributes such as continuous, categorical or mixed might also affect accuracy of the 

decision tree, so this issue could also be pursued. Lastly, dataset’s size might also have 

effects on decision tree model’s accuracy. Hence, the datasets can be tested by taking 

different proportions of the data using stratified sampling and the obtained results could 

be analyzed to study the relation between the dataset size and decision tree accuracies 

when built by different evaluation methods.  
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