
NFC Connection Handover Protocol: An Application
Prototype

Saravanan Dhanabal

University of Tampere
School of Information Sciences
Computer Science
M.Sc. Thesis
Supervisor: Zheying Zhang
February 2015

University of Tampere
School of Information Sciences
Computer Science
Saravanan Dhanabal: NFC Connection Handover Protocol: An application proto-
type
M.Sc. Thesis, 55 pages
February 2015

Near field communication (NFC) is an radio frequency based wireless communi-
cation technology and it is widely being used in mobile devices. The NFC tech-
nology enables users to share data between devices and also supports other types
of communication such as banking, ticketing, etc. This thesis work explores the
interoperability between two NFC supported devices which are from different de-
vice vendors. NFC Forum is an non-profit industry association which promotes the
standardization of the NFC technology. Connection handover is a method used in
the NFC technology to connect the mobile and the multi-media devices quickly and
seamlessly to exchange data. The NFC Forum has released a reference application
protocol specification to ensure the interoperability between two NFC devices which
are supporting the connection handover. As part of this thesis work, a prototype
application has been implemented to test the interoperability by performing the
connection handover, based on the connection handover protocol from the NFC Fo-
rum. The results demonstrate the ability to pair devices quickly and easily using
NFC and also discuss the current situation of interoperability.

Keywords: NFC, Connection Handover protocol, Interoperability

i

Contents

1 Introduction 1

2 NFC Fundamentals 4
2.1 Introduction to NFC . 4
2.2 NFC Operating modes . 4
2.3 NFC tag types . 6
2.4 NFC standards . 7

2.4.1 Overview of NFC Forum standards 7
2.4.2 Overview of ECMA standards 12

2.5 Description of NFC protocols . 12
2.5.1 NDEF protocol . 12
2.5.2 ISO14443A protocol standard 15
2.5.3 Connection Handover Protocol 15
2.5.4 Negotiated Handover . 15
2.5.5 Static Handover . 18
2.5.6 Message composition in Connection Handover Protocol 18
2.5.7 NDEF messages in Connection Handover Protocol 19
2.5.8 Version Handling in connection handover 21

3 Means for effective application of NFC technology 22
3.1 Application scenario . 22
3.2 NFC based data transfer in Android 24

3.2.1 Android API support for NFC 24
3.3 Bluetooth application development in Android 25

3.3.1 Bluetooth stack in Android 25
3.3.2 Bluetooth API support in Android 26
3.3.3 Bluetooth permissions . 27

3.4 Wireless LAN application development in Android 28

4 Prototype design and implementation 29
4.1 Android Software Development Kit 30
4.2 Implementing an NFC and Bluetooth handover prototype 31

5 Testing and analysis of results 39
5.1 Requirements for interoperability . 39
5.2 Test environment and test cases . 40
5.3 Key assumptions and limitations . 42

ii

5.4 Issues in vendor interoperability . 42
5.5 Protocol specification level issues . 43
5.6 Operating system specific issues . 43

6 Summary and conclusion 45

References 46

Glossary 49

Acronyms 50

Appendices 51

A Source code : Initializing NFC 51

B Source code : NFC tag detection 52

C Source code : Parsing NDEF 54

iii

1 Introduction

Near Field Communication (NFC) technology [1] is a proximity based secure wireless
technology which supports the use of hand held devices to share data by by bringing
them to close proximity. This technology operates in 13.56 MHz and requires around
10cm or less distance, and supports data transfer speeds 106/212/424kbit/sec. NFC
technology is an evolution of Radio-frequency identification (RFID) [2] and it pro-
vides the possibility of two way communication between two NFC enabled devices.
RFID supports only reading un-powered contact-less cards, which are also called
tags.

Various international standards organizations including International Organiza-
tion for Standardization - International Electro technical Commission (ISO/IEC),
European Telecommunications Standards Institute (ETSI), NFC Forum [3] involve
in defining the standards which specify the protocols to be used in this technology
and physical characteristics of devices, etc.

To perform NFC based communication, the setup needs a pair of two NFC
devices such as an NFC Reader/Writer device and any NFC Tag or another NFC
Reader/Writer in close proximity. An NFC Reader/Writer or NFC tag technology
shall be integrated in hand-held devices, and nowadays many of the smart phones
provide NFC support. NFC tags contain data with read or write support and they
can be encoded and decoded. NFC Reader/Writer could be an embedded device
which supports reading and writing of NFC tags or send or receive data with another
NFC device which emulates itself as tag. Two NFC devices can also communicate
and share data using peer to peer mode.

NFC standards are defined in NFC Forum Technical Specifications [4] which also
provides compliance certifications for devices and tags. NFC Forum is a non-profit
association which was founded by Nokia, Philips and Sony in 2004.

NFC is an open platform technology and it was approved by ISO/IEC stan-
dard and also by European Computer Manufacturers Association (ECMA). The
standards from ISO/IEC and ECMA define the physical characteristics such as RF
(Radio Frequency) modulation schemes, data transfer speed and frame formats.
Along with these, NFC Forum has defined the data exchange format protocol called
NFC Data Exchange Format (NDEF) which helps to store various data types like
URLs.

NFC technology has its advantages and disadvantages over other wireless tech-
nologies like Wireless LAN and Bluetooth. In some scenarios, NFC technology might
need to be used with other technologies to create a productive user interface and
solve communication issues like data exchange speed without compromising usability

1

and speed.
NFC forum defines Connection Handover Protocol [5] which intends improve

user experience while using NFC with other technologies. The connection handover
specification by NFC Forum defines the means for two NFC capable devices to
communicate quickly with each other and negotiate about using an Alternative
Carrier which suites better to perform data exchange. The Alternative Carrier
could be Bluetooth or wireless technology. NFC technology enables the devices to
pair with each other when they are brought to close proximity. After knowing each
other, they can start using the other technology to perform data transfer. Thus,
NFC close proximity feature helps quick association and due to its limited data
transfer speed, it hands over the data exchange operation to the next carrier.

When the NFC capable devices belong to different vendors, it is necessary to
have a common standard to communicate with each other. To address this issue
and apply a standard to provide interoperability between different vendor specific
devices, NFC Forum has released a reference application protocol as Connection
Handover Protocol.

This thesis studies the NFC based connection handover which is being used in
smart phones and other NFC supported devices like Bluetooth headsets or wireless
printers. The aim is to analyze the connection handover protocol by developing an
application prototype which implements the connection handover behavior based on
the protocol to enable easy and quick pairing of Bluetooth based audio devices that
support NFC. The study also intends to analyze the functionality to be more generic
by adding support for other Wireless LAN based devices such as printers or wireless
routers which support NFC, but it was limited due the hardware availability.

Implementing an NFC based application requires understanding the different
layers of NFC at the protocol level. These protocols spread across NFC architecture
including NFC Controller hardware (includes NFC Firmware which has physical
level protocol implementations), NFC Middleware (mostly data exchange protocols),
NFC Application (reference application protocols and end user applications). As
part of this thesis work, the protocol level study has been done before implementing
the application.

The study and prototype implementation aims to discuss the interoperability
requirements in the NFC applications [6]. Interoperability is one of the subchar-
acteristics of functionality in software quality model which concerns the ability of
a software component to interact with the other components [7]. The connection
handover application implemented on a mobile device is tested with other target
device, which is from a different vendor than the mobile device. The end user can

2

expect the NFC on his mobile to work with different NFC target devices in a sim-
ilar, consistent manner. This interoperable feature is analyzed with respect to the
current state of the connection handover protocol from NFC Forum.

This thesis starts with the introduction of the NFC. The second chapter pro-
vides information about NFC basics and compares it with other similar technologies
and also the NFC tag types are explained. NFC specific standards are explained.
Chapter 3 explains the purpose of the thesis work by comparing the NFC with other
similar technologies. Application scenario for prototype development and analysis
is explained in this chapter. Overview of Bluetooth, WLAN and Android based
application development [8] are also discussed in this chapter. Chapter 4 contains
the prototype design and implementation details. The steps involved in the devel-
opment of the application prototype are explained here. Chapter 5 contains the
testing steps including specific test cases and results analysis. Chapter 6 further
discusses the interoperability issues and concludes the thesis. Appendices section
contains the source code examples from the application prototype.

3

2 NFC Fundamentals

2.1 Introduction to NFC

Near Field Communication (NFC) is a proximity based wireless connectivity tech-
nology, which is evolved from the existing Radio Frequency (RF) based contact-less
identification technology. NFC based products help the customer devices to interact
with each other in the aspect of helping to make the connectivity quickly, sharing
information and enabling secured data exchange. They enhance the user experience
specifically with the mobile devices.

NFC communication happens when two devices are brought together, within a 10
cm distance between them. A simple touch or waving can establish the connection
between the devices. NFC devices are capable of reading and writing. Depending
upon the use case, a NFC device could be restricted with either one of them or both
capabilities. Apart from RF capable, micro controller based NFC hardware, NFC
also involves control and data exchange protocols, that are regulated by standards
organizations like ISO, ETSI and ECMA. Since the transmission happens in close
proximity, NFC based communication is considered as secure by default.

NFC can be used in a variety of devices, from smartphones that enable payment
and information transfer to multimedia devices such as digital cameras and printers
where users can send a photo to print or to display in TV with just a touch. Its ap-
plications have been available in several areas [8] including smart posters, ticketing,
personal computing, payments and banking [9].

In order to standardize and regulate the NFC, a group of companies including
Nokia, Philips and Sony formed an alliance in early 2004 and created a non profit
organization called NFC Forum. The NFC forum specifies the protocols in NFC
based devices which helps to advance the use of RFID technology in consumer
applications.

The NFC forum was later joined by many companies like Visa, MasterCard,
Google, Samsung, Microsoft, etc. Currently the forum has more than 150 members
and most of them are contributing and promoting the NFC technology.

2.2 NFC Operating modes

NFC is based on integrating the existing RFID technology to mobile based con-
sumer devices. As a communication technology, NFC has its own advantages and
disadvantages.

NFC has compatibility with the existing RFID technology. RFID was mostly
used in access control and public transport ticketing, where RFID reader devices can

4

discover, read and write the target devices. For example, an RFID reader device
mounted on a bus can read and write into the Smart Cards which are being used as
tickets by passengers.

NFC can replace the RFID, since it is capable of acting either as a card or a
reader writer device. An NFC device is capable of emulating itself as an RFID tag
which can have any data like ticket or payment information, or as RFID reader or
writer which can communicate with the RFID tags and modify their memory to do
the access control or ticketing.

Apart form card emulation and reader writer mode, NFC can also include a
secure element which is basically a secure memory location that can be inside a
mobile phone or inside the NFC controller itself. This provides improved security
for critical applications like credit card information. The secure memory area can
only be accessible by the NFC controller after authentication.

NFC forum also defines another mode for data exchange, called peer to peer
mode (P2P) or NFCIP-1, defined in the ECMA-340 Standard [10]. This mode is
used to transfer data between NFC enabled devices such as mobile phones. This
is comparable to other technologies like Bluetooth and Wireless LAN, although the
transfer mechanism is different and there are other limitations as discussed earlier.
Though NFC provides similar functionality as Bluetooth or Wireless LAN, it can
also complement those technologies. NFC can quickly establish connection between
two devices and then handover data exchange operation to other technology, like
Bluetooth.

NFCIP-2 is another peer to peer mode specification from the NFC Forum which
defines how to automatically choose the correct operating mode in peer to peer
connection. This standard is called ECMA-352 [11].

In P2P mode, the device which starts the communication is called an initiator
and the other device is called a target. P2P can operate actively or passively. In an
active mode, both the initiator and target devices generate their own RF field which
is needed as a carrier to exchange data. In a passive mode, the initiator generates
the carrier field and the target does not generate the field and relies on the field
generated by the Initiator. The target uses load modulation, to communicate back
to the target.

Passive P2P communication is used when the target counter part device does not
have any capability to generate any field, such as tags which only has the memory.
This feature is also being used as a way of power saving.

NFC enabled mobile phones can also save power when they just have to respond
to another reader which wants to do data exchange or transaction such as a bank-

5

ing transaction. The NFC controller which is embedded on the mobile device can
emulate itself as a passive tag and respond to the external NFC reader using the
external RF field. It is also possible to consume minimal power and still act as a
passive device without using the external RF field.

In short, NFC can operate in three different modes, as described in Table 1.

Reader / Writer mode Allows the device to read and write data with another
active or passive device

Card emulation mode Allows the device to act as a smart card which is sup-
posed to have the confidential or other user defined data.

Peer-to-peer mode Allows two NFC devices to exchange data in link level
mode. This mode is comparable to other technologies
such as Bluetooth and Wireless LAN.

Table 1: NFC Operating modes.

2.3 NFC tag types

As mentioned above, initiation of NFC service needs two devices, i.e. a host device
and a counterpart device to work with.

If the counterpart is not an NFC controller which is actually a reader and writer
device and capable of card emulation, it could be a tag, also known as a smart card.
Smart cards are already available in consumer electronics, such as credit cards which
are mostly contact based. NFC technology is adding value to the banking industry
by supporting contactless payments.

NFC tags can be defined as contactless smart cards supporting a certain data
exchange and storage format, defined by the NFC Forum. The NFC forum defines
four different tag types as type 1, type 2, type 3 and type 4, as shown in Table 2.
Theses tag types differ in their memory size and other features [12].

Physical size of the NFC tag affects the performance, mostly due to the power
that needs to be generated from the reader writer device for operation. Choosing
the right tag type depends on the use case of an application. Also, the required
memory storage is another factor.

NFC tags can be embedded in a large range of consumer devices, inside plastic
covers, printers and bill boards. Tags do not need any line of sight for normal
operation. RF field generated by active device antenna could be affected by various

6

objects such as metal objects. So, the placement of tags in electronic devices need
to be carefully considered during product design phase.

NFC tags can support different read and write modes, such as read only, read/write
and one time programmable mode. Vendor data sheets define the physical and soft-
ware characteristics of the NFC tags.

Tag type 1 This tag type is based on the NFC forum standard ISO14443 A [13].
These tags are manufactured by Innovision and are called Topaz.
Memory capacity is around 96 bytes and these tags are preferred
for low cost product solutions.
These tags support 106kbit/s data rate.

Tag type 2 This type is also based on the NFC forum standard ISO14443 A
which are from NXP semiconductors [30], previously Philips. Many
variations are available such as Mifare classic and Mifare ultralight.
These tags usually have less memory capacity than the Type 1.
These tags support data rates such as 106/212/424kbit/s.

Tag type 3 This type supports higher memory and higher data rates, e.g. Sony
Felica tag has 1 or 2 Kbytes of memory and operates in 212kbit/s
data rate. The NFC Forum defines Felica tag type for this standard.

Tag type 4 Type 4 supports ISO14443 type A and type B standards. This
standard also supports higher data rates ranging from 106kbit/s to
848kbit/s. Type 4 tags available from NXP semiconductors and
some other manufacturers.

Table 2: NFC Tag types and characteristics.

2.4 NFC standards

NFC is an ecosystem which includes various parts of technology industry such as
telecommunications, banking and security domain. Application areas include data
sharing, secured key management, ticketing and payment. This widespread applica-
tion area requires different vendors to agree and to regulate the way NFC technology
being applied in the consumer electronic devices. The ecosystem should also pro-
vide means to privacy and security and requires the NFC technology to fulfill all the
requirements from different players in the ecosystem. This is done by various stan-
dards organizations whose role is to provide these standards to the NFC ecosystem
and maintain them by improving and updating the standards.

The standard organizations include NFC Forum, ETSI, ECMA and ISO/IEC.

2.4.1 Overview of NFC Forum standards

The NFC Forum is a non-profit organization sponsored by many companies in the
IT industry such as Nokia, Sony, Philips, etc., who also develop products using NFC.

7

The NFC Forum aims at advancing the applications of NFC in mobile devices,
consumer electronics and personal computing devices. It develops specifications
which ensure security and interoperability for the NFC supported devices.

The NFC Forum is responsible for the following activities and it defines the upper
layer protocols which are part of different NFC modes.

• Developing NFC specifications for devices that are device independent.

• Defining protocols for data exchange and service discovery.

• Providing certifications to the devices which require NFC compliance.

• Promoting NFC technology.

Figure 1 illustrates the NFC forum standards architecture. It shows the three op-
erating modes of an NFC device, mentioned as the Peer-to-peer mode, the Reader/Writer
mode and the NFC card emulation mode. It also shows the three layers, referred
as the low level RF layer, the middle level NFC protocol layer and the application
layer. The RF layer includes the RF level protocols such as ISO 18902, ISO 14443.
The RF protocols specify the protocols to exchange the data in the RF level. The
RF level data will be processed in the NFC controller, in the NFC Firmware. The
middle level NFC protocol layer specifies protocols such as Logical link control pro-
tocol (LLCP), NDEF protocol, etc. These middle level protocols specify the data
exchange format which can be used by the applications. The applications layer shall
include the NFC applications or reference application protocols. The listed protocols
are used by the the application layer of the NFC based implementation.

8

Figure 1: NFC standards architecture [14].

Figure 2 illustrates the NFC forum standards overview with respect to interoperabil-
ity. Interoperability in NFC can be defined as a feature which enables seamless and
spontaneous data sharing between different types of consumer electronics devices
which are manufactured by different vendors [15]. Any NFC enabled device which
has alternative carrier technologies could implement the connection handover in an
interoperable way, so that it works with another NFC enabled multimedia device
which could be from the same or from a different vendor.

Figure 2 shows the complete set of protocols which are used in implementing
NFC. RF Analog protocols are at the lowest layer and these are usually imple-
mented in NFC controller firmware. The layers above are usually implemented
partially or completely in the host controller and it could include protocols such as
Simple NDEF Exchange Protocol (SNEP), LLCP and Record type definition (RTD).
Application documents are reference specifications which promote interoperability.
NFC Connection handover protocol is a reference specification which belongs to the
application documents group. Bluetooth secure simple pairing (SSP) using NFC is
one such method used in connection handover.

9

Figure 2: NFC standards architecture and interoperability [14].

NFC Forum maintains several NFC specific protocol specifications. The specifi-
cations which are related to connection handover are listed in the following sections.

• NFC digital protocol technical specification
The NFC digital protocol technical specification [16] defines the digital pro-
tocol to be used for NFC enabled devices. It defines the digital interface and
the transmission protocol for the NFC forum device in its four different roles
as Initiator, Target, Reader/Writer and card emulator. The digital interface
is about RF modulation schemes, bit level coding during transmission, data
bit rates to be used and the protocol part defines about the frame formats and
command sets that needed to be used for communication.

The specification builds on top of ISO/IEC 18092 and ISO/IEC 14443 stan-
dards.

• NFC activity technical specification
The NFC activity technical specification [17] specifies how the NFC digital
specification can be used to setup communication with another NFC device
or NFC tag in terms of building blocks called activities. Activities could be
any sequence of operations to setup communication. Activities are combined
in to a profile. Each profile can have a specific parameter set to achieve a
specific use case. Example profile would be polling for another NFC device
and establish peer to peer communication or polling for an NFC tag and read
data. Both of these profiles require different configuration data.

10

• NFC controller interface technical specification
The NFC controller interface technical specification (NCI) [18] defines the in-
terface between the NFC controller and the host in which the NFC controller
could be embedded, such as smartphone which has NFC controller attached.
The smartphone host uses the NCI protocol format to interact with the NFC
controller (NFCC). This enables the device manufacturers who want to in-
tegrate NFC in their products can have common interface to communicate
with the NFCC. All the host devices such as smart phones, printers, consumer
electronics, and other appliances can use the generic interface standard. NCI
protocol provides a logical communication interface that can be used any phys-
ical transport. Currently I2C, SPI and UART are being supported as physical
transport layer. Host processor will communicate with the NFCC using NCI
through SPI/I2C/UART.

• NFC data exchange format technical specifications
NFC data exchange format technical specifications (NDEF) [19] define a com-
mon data exchange format for NFC forum complaint devices and tags

• NFC Forum tag type specifications
NFC Forum supports 4 tag types [12] to provide interoperability between NFC
tag providers and NFC controller based solution providers. NFC Forum pro-
vides separate specification for each tag type and defines the physical charac-
teristics of the tag and data formats.

Table 3 lists the base standards from which the NFC Forum derived the tag
type specifications.

Type 1 tag operation
specification

Based on ISO/IEC 1443A, read/write capable, available
memory 96 bytes, and expandable up to 2kbyte.

Type 2 tag operation
specification

Based on ISO/IEC 1443A, read/write capable, available
memory 48 bytes, and expandable up to 2 kilo bytes.

Type 3 tag operation
specification

Based on JIS X6319-4 (Japanese industrial standard),
read/write capable, memory limit is 1Mbyte, also called
as Felica (from Sony).

Table 3: NFC Tag type base standards.

• NFC connection handover specification
The NFC Connection Handover specification [5] defines the sequences of in-
teraction and data structure between two NFC devices to setup communica-
tion using other wireless technologies. Connection handover defines to achieve

11

simple, one touch setup of NFC with other wireless technologies such as Blue-
tooth or wireless which support higher data transfer rates. The developers can
choose the communication carrier for data exchange after negotiation with the
counterpart device. Configuration data required for the connection setup can
be stored and parsed using NFC data exchange format (NDEF). Static con-
nection handover is also supported in which the available carrier configuration
data will be stored in an NFC tag which will be embedded into the host device.

2.4.2 Overview of ECMA standards

• Near Field Communication Interface and Protocol (NFCIP-1) / ECMA-340
Near Field Communication Interface and Protocol specification [10] defines
the interface for NFC using inductive coupled devices operating at 13,56 MHZ
for interconnection of computer peripherals. It also defines the peer to peer
protocol, specifically active and passive modes to realize a communication
network using NFC. The standard also defines a transport protocol includ-
ing protocol activation and data exchange methods. This standard is also
approved as ISO/IEC 18092.

The above list of standards is not inclusive of all the available standards meant
for NFC. Only the major protocol standards, that are necessary for this thesis work
are highlighted. Detailed description of the protocols used in this thesis work is
explained in Section 2.5.

2.5 Description of NFC protocols
2.5.1 NDEF protocol

The NDEF protocol specification [19] defines the message encapsulation format to
exchange information between two NFC devices. An NDEF message will be in a
binary format, that can be used to encapsulate one or more application defined
payload data of arbitrary type and size in to a single message construct. Each
payload contains the actual data, size and a message identifier. The identifier could
be of any format including URIs, MIME media types, or NFC specific data types.
It can also be a name space defined by vendor for their own NFC specific purposes.

Payload size is an unsigned integer, indicating the number of octets in the pay-
load. The NDEF payload can contain single or chained data messages. Chained
messages could be indicated using message header and combined later after trans-
mission.

12

NDEF is only a message format and does not have any characteristics with
respect to actual message transmission. The NDEF specification defines rules to
construct valid messages as an ordered collection of NDEF records. The record
types are specified in an inter-operable way and detailed record types are defined in
separate specifications.

An example use case would be an NFC reader which reads the website URI data,
stored in NDEF format from another NFC device or NFC tag attached in a notice
board. Both the NFC tag and the NFC device will have the URI stored in the same
NDEF format.

A typical NDEF record format is shown in Figure 3. An NDEF message can be
a group of NDEF records and each NDEF record has a header and payload. Header
is further split into 3 bytes as identifier, length and type. Identifier represents the
NDEF message type, length represents the payload size.

Figure 3: NDEF record overview [19].

Type byte in the header is explained in Figure 4. Each bit is used to define the
NDEF message status such as first or last message, chaining status, etc.

Figure 4: NDEF header format [19]

13

Each bit in the Type byte is explained in Table 4.

MB Message Beginning, indicates whether this record is the
first one or not in the NDEF message.

ME Message End, indicates whether this record is end of the
NDEF message.

CF Indicates chained status of the NDEF message.
SR Short Record. If set, indicates that the payload length

field is single octet.
IL If set, indicates that the ID_LENGTH field is presented

as a single octet. Else, indicates that no ID_LENGTH
from header and ID field from record will not be present.

TNF Indicates the structure of the value of the type field

Table 4: NDEF Header bytes.

The NDEF full record format including the NDEF header is shown in Figure 5.
Along with the NDEF header, the full record has the payload data and its length.

Figure 5: NDEF record format [19].

14

2.5.2 ISO14443A protocol standard

NFC Forum Type 1, Type 2 and Type 4 tags belong to the ISO14443 standard
[13]. While the NFC Forum tag specifications mention how to exchange data with
tags using NDEF in a tag specific way, the ISO 14443 standard addresses various
low level characteristics such as physical, RF interface operations. The ISO1443
standard has four parts and these parts define the physical characteristics of NFC
tags or proximity integrated circuit cards (PICCs), radio frequency power and signal
balance, initialization and anticollision, transmission protocol. The transmission
protocol part is being used in NFC based application development.

2.5.3 Connection Handover Protocol

As mentioned in the above sections, the Connection Handover Specification [5] de-
fines a message structure to connect an NFC Forum device over another commu-
nication carrier. The Alternative Carrier will be chosen after negotiation and used
for various kinds of data exchange between devices such as sending a photo to a
printer or music streaming to a WLAN television or to an NFC supported wireless
headphone.

An NDEF message will be used for negotiation initiated by a Handover Re-
quester for alternative communication carrier with a Handover Selector over NFC
link. The Handover Selector will also be able to retrieve the available alternative
communication carrier(s) from the NFC tag. It remains passive until requested by
the Handover Requester device and it will not start any activity by itself.

2.5.4 Negotiated Handover

A negotiated handover use case is described in Figure 6. A Handover Requester
uses the NFC Forum Device to exchange connection handover information to select
a matching alternative carrier. The Handover Requester announces it is supported
alternative carriers to the Handover Selector and then receives the selected carrier
information.

15

Figure 6: Negotiated Handover Usecase [5].

If the Handover Selector returns more than one Alternative Carrier, the Handover
Requester will have to find the order of the supported Carrier Configuration Data
and it can choose the first preferred one. Handover Requester can also ignore the
preferred one and select carrier, as shown in Figure 7.

Figure 7: Negotiated Handover - selection of second alternative carrier [5].

In power constrained devices such as battery powered, the negotiation needs
another set of message exchange. In low powered devices, the Handover Selector
may not want to activate all available carriers. It returns the Handover Select
message with Carrier Power State set to zero in the Alternative Carrier Records
field. Handover Requester, after choosing the carrier, need to send the Handover
Request message again with select carrier information. Upon receiving the selected
carrier information, Handover Selector can activate the carrier and send back the

16

Handover Select message with chosen carrier information to complete the negotiation
sequence. Figure 8 shows the handover selection on a power constrained device.

Figure 8: Negotiated Handover - selection of alternative carrier on low power device
[5].

Thus, the complete negotiation sequence includes two steps, as shown in Figure
9.

The Handover Selector device sends the Handover Select message, and gets the
Handover Select response from Handover Selector with proposed carrier options
which may specify the power state of the carrier. If power state is not mentioned, the
sequence is already complete and the device pairing can be started using the chosen
carrier. Else, it needs another Handover Request message from Handover Requester
with chosen carrier which needs an acknowledgement from Handover Selector with
chosen carrier information in which carrier power state should be set.

Figure 9: Negotiated Handover - complete sequence [5].

17

2.5.5 Static Handover

A Static Handover use case is described in Figure 10. It is used when the counterpart
device is not an NFC Forum device but an NFC tag which only has storage, but
no host controller. The NFC tags have no capability to power themselves and only
provide storage where data could be written and read. Read only or one time
programmable tags are possible. These tags meant to be cheaper solutions with a
limited or no power capable environment. NFC tags could be embedded into the
host device with no communication means. The NFC Requester device powers on
the NFC tag using its RF field and reads the data on the tag which has the Carrier
Configuration Data in the form of NDEF message. NFC tag will not be able to
receive any Handover Request message or it can process the message to reply with
a dynamic response.

The host device of the NFC tag (Handover Selector) will not be able to activate
its alternative carrier as part of the handover process. The carriers need to be always
active or need to be activated manually by the user before the handover.

Figure 10: Static Handover usecase [5].

2.5.6 Message composition in Connection Handover Protocol

Handover message includes Handover Select Record or Handover Request Record
followed by arbitrary number of NDEF records. NFC Forum global type for Han-
dover Select Record is “Hs” and Handover Request Record is “Hr”. Handover Select
Record or Handover Request Record can include sequence of Alternative Carrier

18

Records, referred by NFC Forum local type “ac”. Alternative Carrier Records pro-
vide references to the alternative carriers and data will be included in the NDEF
records which will follow the Alternative Carrier Records.

The record references are based on the URI based Payload Identification mech-
anism as defined in the NDEF specification. Relative URIs shall be encoded with
the virtual base defined as “urn:nfc:handover:”

Figure 11 shows the general structure of connection handover message compo-
sition. It is a collection of NDEF records and a single Handover Select or Request
record.

Figure 11: Message composition [5].

2.5.7 NDEF messages in Connection Handover Protocol

Figure 12 shows the format of Handover Request message. Handover Request record
has the message beginning bit (MB) bit set and the last NDEF record has the
message end (ME) bit set.

Figure 12: Handover Request Message structure [5].

19

Figure 13 shows the format of Handover Select message. Handover Select record
has the message beginning (MB) bit set and the last NDEF record has the message
end (ME) bit set.

Figure 13: Handover Select Message [5].

Figure 14 shows the structure of a Handover Select Record. This record is a
collection of Alternative Carrier records with the carrier configuration data from
NFC target device.

Figure 14: Handover Select Record [5].

Figure 15 shows the structure of a Handover Carrier Record. The record is used
to hold a single carrier configuration data such as Bluetooth MAC address, local
name, etc.

20

Figure 15: Handover Carrier Record [5].

2.5.8 Version Handling in connection handover

The version number field in the Handover Request Message shall be equal to the
version number field in the Handover Select Message for interoperability. The mes-
sage content is decoded after checking the version number. The version number is
divided into a major version and a minor version. If the minor version is different,
the message can still be decoded and it enables backward compatibility. If major
version is different, the device should not try to decode further and the devices are
considered as incompatible. A difference in the major version indicates that there
could be difference in syntax itself and the messages can have different format and
decoding procedures due to specification changes.

If the Handover Selector receives Handover Request Message with difference only
in the minor number and if it has the higher value of minor version, it should return
the Handover Select Select Message with its own version number.

If the Handover Selector device receives a Handover Request Message with dif-
ference in the major version number and if it is higher than its own version number,
it should return an empty Handover Select Message without any alternative carrier
records.

If the Handover Selector device receives a Handover Request Message with dif-
ference in the major version and lower than its version, it can reply with empty
message or it can return the Handover Select Message with the version number it
received in Handover Request Message.

21

3 Means for effective application of NFC technol-
ogy

3.1 Application scenario

In mobile and portable devices, different technologies have been used to support
data exchange. The end users choose the technology based on various factors. The
most important ones include the amount of resources like power to be spent, the
complexity level of setting up the communication between devices, the additional re-
quirements of resources like physical communication links, etc. The most commonly
used data exchange technologies include the Wireless and the Bluetooth technolo-
gies. Both technologies are based on radio frequency. NFC has advantages and
disadvantages against both of them.

Table 5 shows the NFC characteristics, in comparison with other technologies.
Values in the table are approximate, and to provide a comparative view. NFC is
slower in terms of data transfer speed when comparing with Bluetooth and Wire-
less LAN. Normally it supports speeds like 212/424/848 kbit/s whereas Bluetooth
supports 2.1 Mbit/s and Wireless LAN supports in terms of Mbit/s based on the
band.

Operating Technology Data Rate Operating distance
NFC < 1MB (maximum 848kb/s) 10 cm

Bluetooth 24 MB 60 meters
WiFi > 100 MB 100 meters

WiMax 100 MB 10 kilometers

Table 5: NFC characteristics compared to other technologies.

If we have to transfer some data using the Bluetooth technology, before starting
the transferring session, we have to search for the devices nearby and pair them
by entering a PIN code for authorization. This requires certain amount of setup
time. In the similar way, Wireless LAN also involves setup process before starting
any data exchange. Apart from this setup delay, power consumption during data
transfer should also be considered. Always we need this setup process, if we have to
exchange data quickly with some new devices which were not paired before.

When using the NFC technology, the devices need to be in close proximity such
as within 10cm range. The devices can be paired by simply ’touching’ each other.
Power consumption is negligible for this pairing process when compared to Bluetooth
and WLAN. But the data transfer speed of NFC is very limited when comparing
against those technologies.

22

NFC could be combined with either one of those technologies to achieve both
simplicity of setup process as well as higher data transfer speed. User can simply
print a picture from digital camera by touching its NFC enabled part to the NFC
enabled printer. Another use case would be synchronizing new music files from home
media server by touching the PC with the mobile device. In the above two use cases,
when the user touches one device with another, pairing will be completed between
devices with the help of NFC, which will take less than a second. Data transfer will
be started using the next available technology, which could be either Bluetooth or
WLAN. User can move the device after touching, and the transfer will be completed
as long as user keeps the device within the range of the other technology. Bluetooth
supports operating range up to 50 meters and WLAN depends on the operating
frequency.

There are various multimedia devices available in the market which can be used
with smart phones. Typical examples are wireless printer, Bluetooth head set, NFC
based storage devices, etc. These multimedia devices and hand held devices are
from different vendors. If all the vendors are supporting the connection handover
protocol, any multimedia device could be seamlessly used with hand-held devices.

Interoperability provides the freedom to the end user to pair devices from differ-
ent vendors. But it depends on the device manufacturer to support the connection
handover protocol, which could be influenced by business reasons and security con-
siderations.

The current state of the connection handover protocol, level of support from
different device manufacturers, availability of specifications and other manuals, se-
curity considerations need to be analyzed.

Currently many smart phone operating systems include NFC software protocol
stack, but there are not many applications available to the user. Also connection
handover support across multiple smart phone operating systems is not yet available
at the moment and it is not sure whether it will be available in future from vendors
since this includes commercial aspects. This thesis work explores the possibility of
making an application prototype which can support connection handover between
devices from multiple vendors.

Security is an important aspect which should be considered during connection
handover. It might be needed that only authorized devices can make connection
handover request. Transmission of Carrier Configuration Data such as Bluetooth
device identification data needs to be secured. Connection handover specification
mentions it as due to the close proximity nature -typically 4/10 cm distance - the
Handover Requester device could be legitimate. But it does not rule out the possi-

23

bility of eavesdropping.

3.2 NFC based data transfer in Android

Android [20] is an operating system which is based on the Linux kernel, targeted to
be used in mobile devices, specifically in smartphones and tablets devices. It was
developed by a company called Android, which was later acquired by Google.

Android was announced during 2007 [21] by Google and its source code is based
on Apache license which allows device manufacturers to modify and distribute in
their devices. Most of the Android devices available today contain combination
open source and proprietary software. Google provides an application ecosystem,
with an application store, called Google Play, which allows developers to distribute
their applications commercially or for free or cost. End uses can download the
applications on their Android based smartphones. Device manufactures can also
provide their own application store.

Android is based on open source based Linux Kernel. The core of the operating
system is developed using Linux Kernel which is written in C. C++ language is also
used for development and user interface (UI) is based on Java. The Android appli-
cation ecosystem enables software developers to develop their applications based on
Android SDK using JAVA as programming language.

3.2.1 Android API support for NFC

Android Framework APIs are based on NFC Forum standard [22]. An Android
based smartphone may include an NFC controller from any vendor, such as NXP
[30] or QUALCOMM [31]. The Android software stack includes the required com-
ponents to control the NFC hardware including the Hardware Abstraction Layer,
the middleware which implements the NFC specific protocols and the APIs for ap-
plication development. The APIs are mostly based on NFC Forum standard for
NDEF.

Android based devices support mostly the following NFC operating modes.

• Reader/Write mode which allows the mobile device to read and write data
in NFC tags and stickers.

• Peer to Peer mode (P2P) which allows data exchange with another NFC
based mobile device. This mode has the application also, called Beam, which
is supported in recent versions of Android.

• Card emulation mode which allows the mobile device to emulate itself

24

NFC tag and it can be accessed by an external reader, such as a point-of-sale
terminal to do the transaction.

Table 6 lists the classes which implement the NFC functionality in Android.
These classes provide functions to control the NFC controller, exchange data, parse
the NFC data, etc.

NfcManager The top level NFC class, provides means to access the
NFC instance, throughNfcAdapter. Static helper getDe-
faultAdapter(android.content.Context) can also be used
to get the local instance.

NfcAdapter This represents the device’s NFC adapter, which is the
entry point of performing NFC operations.

NdefMessage This represents the NDEF data message, as defined in
the NDEF specification. This class uses the NdefRecord
class to create NDEF messages which will be sent to the
peer device or to the NFC tag.

NdefRecord Represents the NDEF record, as defined in the NDEF
specification and this class will be used by the NdefMes-
sage class to create complete NDEF message.

Table 6: List of NFC related APIs in Android.

In the following sections, we briefly describe the three technologies, i.e. Blue-
tooth, Wireless LAN and NFC, along with their API level support in the Android
OS SDK.

3.3 Bluetooth application development in Android

Bluetooth is a short range wireless standard for data exchange between devices
including mobile based. This technology is supported in most of the mobile devices
for data synchronization. It is defined and maintained by Special Interest Group
(SIG), a global standards organization. Bluetooth is based on IEEE specification,
IEEE 802.15.1 and it operates on 2.4 to 2.485 GHz.

3.3.1 Bluetooth stack in Android

A Bluetooth network stack is available in Android OS to exchange data over wireless.
The stack also provides public API functions to develop applications that can use
Bluetooth devices. Application developers can use the public API functions in their
applications to control and use the Bluetooth devices using the Bluetooth network
stack. The API functions provide support for the following functionalities [23].

25

• Check for available Bluetooth devices through RF scanning.

• Request the local Bluetooth adapter to provide the list of already paired de-
vices, if any.

• Establish RFCOMM (Radio frequency communication).

• Establish connection with other devices through service discovery.

• Exchange data between devices.

• Manage several device connections.

The above features are provided as ’Classic Bluetooth’. Bluetooth specification
also supports a feature called as ’Bluetooth Low Energy’ which is intended for power
saving while using Bluetooth technology on devices. Android supports Bluetooth
Low Energy (BLE) feature, and also provides API functions. The application pro-
totype to be developed in the thesis work only uses Classic Bluetooth, as BLE is
not needed for performing connection handover.

3.3.2 Bluetooth API support in Android

Bluetooth specific APIs are available at android.bluetooth package. Table 7 shows
API classes that are used for the connection handover application development [23].

26

BluetoothAdapter Represents the Bluetooth device on the system (Blue-
tooth radio hardware). This can be used to - query
the Bluetooth devices that are available nearby, query
the list of already paired devices, create an instance of
available Bluetooth device using a known MAC address
of the device, create server socket to listen communica-
tions from the other device.

BluetoothDevice Represents the instance of remote Bluetooth device.
This will be used to request connection with the re-
mote device using BluetoothSocket, or query information
about the remote device such as device name, address,
device class and pairing state.

BluetoothSocket This represents the connection point from where data
could be exchanged with the remote device, similar to a
TCP Socket, using InputStream or OutputStream.

BluetoothServerSocket This represents the server socket which listens and ac-
cepts the connection request from the remote device.
When connection is accepted withe remote device, this
returns the instance of BluetoothSocket.

BluetoothClass Represents the read-only set of properties which describe
the general characteristics of the device such as major
and minor device classes and its services.

BluetoothProfile Represents the Bluetooth profile, is a wireless interface
specification for Bluetooth based communication be-
tween devices, for example, a Bluetooth headset or Blue-
tooth health device.

BluetoothHeadset Represents support Bluetooth headset devices to be
used with mobile phones.

BluetoothA2DP Advanced audio distribution profile, which defines how
high qulity audio streaming can be done between one
device to another over Bluetooth connection.

Table 7: List of Android APIs that are used for Bluetooth connectivity [23].

The above classes are mostly used to test the NFC connection handover.

3.3.3 Bluetooth permissions

Permissions need to be obtained from the Android system, if any application wants
to use the Bluetooth hardware. The application which needs to perform any Blue-
tooth communication such as requesting and accepting connections, should declare
this in the project settings file, i.e. BLUETOOTH and BLUETOOTH_ADMIN per-
missions need be declared in the manifest file to get the needed permissions. When
the end user installs the application, dialog will be presented requesting permission
to use the Bluetooth device.

27

3.4 Wireless LAN application development in Android

Wireless Local Area Network (WLAN) is defined by IEEE 802.11 standard which is
a network protocol standard used to interconnect two devices over wireless. It also
defines the devices to move between network seamlessly.

Typical wireless network contains two different components, wireless access points
and client devices. Wireless access points are basically wireless routers which are
also called wireless base stations used to send and receive data in a pre-defined radio
frequency to enable interconnection between different client devices.

Though there are other standards exist for WLANs, IEE802.11 is the widely
used WLAN standard and the devices that support are marketed under a brand
name called WiFi.

Client devices include any mobile or normal device which need to communicate
with another device over wireless. Smart phones, personal computing devices and
several other consumer devices support the WiFi technology and can communicate
with another device using wireless access points.

WLAN can operate in two modes, namely ad hoc and infrastructure. In an
ad hoc mode, the devices will communicate with each other in peer to peer mode
without access points. In an infrastructure mode, the device exchange date through
wireless access point which acts as a bridge to transmit and receive data.

Infrastructure WLAN network can have one or more access points which can
co-exist and help devices to move between different access points. Group of wireless
stations are collectively called as Basic Service Set (BSS) and identified using BSS
ID which is normally the MAC address of the wireless router. A set of connected
BSSs called Extended Service set (ESS), extended service set which is identified by
a 32 byte character string, called as ESS ID.

Individual wireless client devices can connect to an ESS using the ESS ID and
authenticate themselves based on the policies defined on the ESS.

Android supports the low level wireless stack, which provides Wi-Fi network
access. For Developers, the APIs are in android.net.wifi package.

Authentication in wireless networks is performed by the supplicant component.
Using supplicant the user can submit the authentication information and also re-
trieve the network status such as IP address, negotiation state and link speed.

Due to availability of hardware, the prototype does not include any features to
test wireless LAN based handover, but it could be extended by adding the authenti-
cation part of WLAN association process, as the MAC address information will be
read from the embedded NFC tag for static handover.

28

4 Prototype design and implementation

The Connection Handover specification version 1.2 [5] was used as a reference for
developing the application prototype. The application prototype was built for an
Android mobile operating system with the NFC support. Implementation was done
using Eclipse IDE and tested in an Android based phone, i.e. Google Nexus S [24].
The prototype does not have a usable user interface (UI) as it needs to run as a
background activity in a real world environment to detect the tags and pair the
devices.

An Android SDK [25] provides the NFC API support for development as well as
APIs for Bluetooth and Wireless LAN protocols. The application is tested against
another NFC supported device. Nokia BH-505 [26] Bluetooth headset supports
NFC and it was used as a target multimedia device to do the Bluetooth connection
handover.

As discussed in the above chapters, NFC Connection handover specification [5]
defines two types of handover methods, Static Handover and Negotiated Handover.
The Negotiated handover supports choosing a specific carrier when more than one
is available. The application prototype will be implemented with static handover
targeted with NFC based Bluetooth multimedia device.

The Connection handover specification defines NFC Data Exchange Format
(NDEF) messages which will be exchanged between the two devices to setup pairing
and negotiate the alternative communication carrier for further data transfer. The
device which requests is a Handover Requester and the other device is a Handover
Selector. The Handover Selector device remains passive until it gets the handover
request. In physical terms, the Handover Selector device does not generate any
active RF field to look for counterpart devices.

In Negotiated Handover, during request, the Handover Selector will announce
the available technologies with priority information, and a Handover Requester will
choose one of them. A Handover Requester informs the carrier selection to the
Selector.

If the pairing could not be done using the chosen technology, the Requester
moves to the second available carrier and starts the pairing process. For example, if
the chosen one is Bluetooth and if the user has already moved out of the operating
range, Requester will try to proceed with the next one.

The NFC tag contains all the necessary information for pairing, which will be in
the form of Handover Select Record, as defined in the specification. This information
will be static and may not be suitable for all use cases, for example, providing a
dynamic IP address, in case of WLAN pairing. It could be used without any issues

29

in case of Bluetooth as it does not need any dynamic information for pairing.
The prototype application uses a Static Handover approach and implements

pairing using Bluetooth. During development, it is observed that there are security
limitations in both modes of pairing. The Handover Record which is required for
pairing, contains the network access data to be used for carrier configuration. This
might include credentials along with other sensitive information, like IP and MAC
addresses.

Current version of the connection handover protocol assumes that the devices
that can be brought to close proximity are considered as legitimate. If this is not the
case, the specification leaves open for further analysis of the operating environment
to implement the needed security. By implementing the prototype, it is aimed to
analyze the above security issues as well as the interoperability issues.

4.1 Android Software Development Kit

Android software development kit (SDK) was used for the prototype development.
The Android SDK includes a comprehensive list of software tools to develop, debug
and deploy Android applications. These applications can be submitted to the ap-
plication store for review and approval. Users can download and install once it is
available in the store.

The SDK includes compiler, debugger, software libraries, emulator, example
source code and documentation, etc. Each SDK release includes updated APIs that
applications can use to interact with the underlying Android System. Each new
revision of APIs are referred with an integer, called API level. When an application
is developed using a certain API level, it may or may not support the future API
levels, since the same API could be be changed to provide a new functionality in
the next release. This might require the application to be maintained continuously
to get it ported to the new API level.

Generally an Android framework API includes the following components.

• Core set of packages and classes which provide the required functions for the
application development.

• A set of XML elements and attributes for declaring the manifest file which
describes the application properties.

• A set of XML elements and attributes for declaring and accessing resources.

• A set of intents which provide the messaging objects that facilitate communi-
cation between components.

30

• A set of permissions that the application can request, as well as the permission
enforcements included in the system.

Open source based Eclipse is the officially supported Integrated development
environment (IDE) for application development and Google also provides its own
IDE called Android Studio, which is currently offered as preview version. Eclipse
was used for the development of Connection Handover Application. Eclipse is a
freely available open source IDE which can be used to develop software tools using
C++, JAVA, C and various other languages.

Eclipse IDE supports Android application development using Android Develop-
ment Tools (ADT) plugin in JAVA. Android core provides JAVA virtual machine
called Dalvik, which allows executing Android applications. Other than JAVA, C
and C++ are also supported for development. Native applications which can run
without the support of any virtual machine could be developed using C and C++.

Eclipse IDE supports creating Android projects that contain the source code
of Android application which needs to be developed, with the support of Android
SDK. The Android SDK includes the API libraries and developer tools which are
needed to build, test and debug applications.

To simplify the application development, Google provides ADT bundle to quickly
start developing applications. The ADT bundle which can be freely downloaded and
used, includes essential SDK components and Eclipse IDE with built-in Android
Developer Tools (ADT) plugin.

In summary, the ADT bundle includes Android SDK Tools, Android Platform
Tools, current Android Platform Image which is needed for emulator and recent
version of Eclipse IDE and ADT plugin. Table 8 shows the operating system and
development environment specific system requirements for Android based develop-
ment.

Operating systems Windows XP (32-bit), Vista/Windows 7 (32/64 bit)
Eclipse IDE Eclipse 3.7.2 (Indigo) or later with JAVA SDK version

6 or later

Table 8: System requirements for Android development.

4.2 Implementing an NFC and Bluetooth handover proto-
type

The prototype aims to implement the basic connection handover, thus exploring
the specification features such as interoperability and security. The environment

31

uses Nexus S [24] Android phone and Nokia BH-505 [26] Bluetooth NFC headset.
The hardware setup puts limitation in performing negotiated connection handover.
Since the counterpart device is a Bluetooth headset which only has a passive NFC
tag, static connection handover could only be performed. A simplified sequence of
the implemented prototype is as in Figure 16.

Figure 16: Application handover sequence.

The prototype implementation comprises the following steps: Initializing the
NFC in Reader / Writer mode and scanning the NFC devices or tag in the close
proximity. If NFC tags or NFC devices are found, a connection handover message
sequence is performed. The application initiates the static handover process, by
looking for the NFC tag in the close proximity, which will be the Nokia BH-505 [26]
headset. After detecting the tag by using NFC-A polling sequence, the NDEF data

32

needs to be retrieved and parsed. This NDEF data has the Connection Handover
Message with carrier configuration data. The carrier configuration data will be
parsed and after performing the necessary steps such as version checking and carrier
power state.

The Handover Select Message stored in an NFC Forum tag is similar to the
Handover Select Message returned by active NFC Forum device as it is in the ne-
gotiated handover. This message will have all carrier configuration data and it will
not support any dynamic data. Figure 17 shows the Bluetooth configuration data
stored in an NFC tag.

Figure 17: Bluetooth Configuration Data on a NFC tag [5].

In Figure 17, the power state is mentioned as ’active’, which indicates that the
Bluetooth should be powered on when performing this negotiation. Other power
states such as ’inactive’ or ’unknown’ will lead to undefined behavior and it needs
separate request from the Handover Requester to activate the carrier.

If the Handover Selector device will provide only one alternative carrier, a sim-
plified format of Handover Selector Record could be used. In this case the NFC

33

Forum tag contains only the Bluetooth OOB information, which only provides the
essential information needed for handover, such as Bluetooth MAC address, local
device name and class of device, as shown in Figure 18.

Figure 18: Bluetooth OOB data on a NFC tag - Simplified tag format with one
carrier [5].

The Nokia BH-505 [26] supports the simplified tag format. The Buletooth headset
has the embedded NFC tag made by Infineon Technologies [27], called my-d move
(SLE66R01P).

The characteristics of the NFC tag IC are shown in Table 9.

Standards supported ISO/IEC 14443-3 Type A, ISO/IEC 18092 and NFC
ForumTM Type 2 Tag Specification

Data rates supported 106 Kbits/s
Storage 128 byte programmable memory

Table 9: Characteristics of NFC tag in BH-505.

The code snippet in Appendix A shows how to initialize the NFC device for tag
detection. The source code in Appendix A performs the following steps in sequence.

1. Get the default instance of the NFC adapter present in the mobile device. NFC
adapter class represents the physical NFC controller present in the mobile
which has the NFC Firmware and it is controlled through the Android OS
hardware abstraction layer and device drivers. It is assumed that the NFC
adapter is enabled before retrieving the instance.

34

2. Register an intent to receive NFC related event notifications.

3. Set up intent filtering. This will filter the event whenever a new NFC tag is
brought to proximity and detected by mobile.

The code snippet in Appendix B shows how to read the NFC tag data when the
mobile device is brought close to the Bluetooth BH-505 headset. The source code
in Appendix B performs the following steps in sequence.

1. When new intent is discovered, the intent type is checked and filtered for
either one of these three events - ACTION_TECH_DISCOVERED, AC-
TION_TAG_DISCOVERED, ACTION_NDEF_DISCOVERED. These events
indicate that a new tag technology is found, new NFC tag is discovered, new
NDEF data is available respectively.

2. After getting the intent, the data is parsed and checked for the correct NFC
tag type. Android provides classes for all tag types to create or parse each
NFC tag specific data.

Following shows the parsed Handover Selector Record, which has the simplified
tag format and contains single Bluetooth carrier record from the NFC tag embedded
on the Nokia BH-505 headset:

** TagInfo scan (version 1.40) 2012-12-05 12:05:17 **
IC manufacturer:
Infineon Technologies AG
IC type:
my-d move (SLE66R01P)

NFC Forum NDEF-compliant tag:
Type 2 Tag

NFC data set information:
Current message size: 68 bytes
Maximum message size: 110 bytes
NFC data set access: Read-Only

Bluetooth Secure Simple Pairing record:
type: "application/vnd.bluetooth.ep.oob"
payload length: 33 bytes

35

payload data:
[0000] 1F 00 EE 96 29 DE 1E 00 |....)...|
[0008] 0D 09 4E 6F 6B 69 61 20 |..Nokia |
[0010] 42 48 2D 35 30 35 04 0D |BH-505..|
[0018] 04 04 20 05 03 18 11 23 |..#|
[0020] 11 |. |

Technologies supported:
ISO/IEC 14443-3 (Type A) compatible
ISO/IEC 14443-2 (Type A) compatible

Android technology information:
android.nfc.tech.Ndef
android.nfc.tech.NfcA
* Maximum transceive length: 253 bytes
* Default maximum transceive time-out: 618 ms
Tag description:
* TAG: Tech [android.nfc.tech.NfcA, android.nfc.tech.Ndef]

Detailed protocol information:
ID: 05:34:00:00:57:FA:24
ATQA: 0x4400
SAK: 0x00

The detailed contents of the above NDEF message are as in Table 10.

36

Offset
[octets]

Content Length
[octets]

Description

0 0xD2 1 NDEF Record Header: MB=1b,
ME=1b, CF=0b, SR=1b, IL=0b,
TNF=010b

1 0x20 1 Record Type Length: 32 octets
2 0x21 1 Payload size: 32 octets
3

0x61 0x70 0x70 0x6C
0x69 0x63 0x61 0x74
0x69 0x6F 0x6E 0x2F
0x76 0x6E 0x64 0x2E
0x62 0x6C 0x75 0x65
0x74 0x6F 0x6F 0x74
0x68 0x2E 0x65 0x70
0x2E 0x6F 0x6F 0x62

32 Record Type Name: applica-
tion/vnd.bluetooth.ep.oob

35 0x1F 0x00 2 OOB Optional data length: 33 octets
37 0xEE 0x96 0x29 0xDE

0x1E 0x00
6 Bluetooth MAC address : 6 octets

43 0x0D 1 EIR data length, 13 octets
44 0x09 1 EIR data type
45

4E 6F 6B 69 61 20
42 48 2D 35 30 35

12 Complete local name ’Nokia BH-505’

57 0x04 1 EIR Data Length: 4 octets
58 0x0D 1 EIR Data type: class of device
59 0x04 0x04 0x20 3 0x20 - Audio service class, 0x04 - Major

device class (audio/video), 0x04 - Mi-
nor device class (wearable headset de-
vice)

62 0x05 1 EIR Data length: 5 octets
63 0x03 1 EIR Data type: 16 bit service class

UUID
64 0x18 0x11 0x23 0x11 4 0x1118 - HPF HF, 0x1123 - A2DP pro-

file

Table 10: NDEF message contents in BH-505 NFC Tag

The carrier configuration data has the Bluetooth MAC address and the device
name which will be used for the connection handover. After having the carrier
configuration data, the handover process needs to be initiated, by scanning for the
availability of the Bluetooth device using Bluetooth MAC address. After detecting

37

the Bluetooth device, usual Bluetooth pairing has to be done.
The code snippet in Appendix C shows the NDEF data parsing of Bluetooth

MAC address and the handover part as mentioned in the following sequence.

1. Extract the Bluetooth adapter MAC address from the received NDEF record.

2. Get the instance of the Bluetooth adapter. It is assumed that the Bluetooth
adapter in the mobile device is powered on before this.

3. Start the discovery activity and try to detect the Bluetooth device using the
parsed MAC address.

4. If discovery is successful, pair the device automatically.

38

5 Testing and analysis of results

5.1 Requirements for interoperability

The main goal of interoperability is that any NFC enabled device with alternative
carrier options implements and uses connection handover in an interoperable way to
provide easy to use spontaneous data sharing between different types of NFC devices.
This can be achieved in any NFC device with the alternative carrier technologies
such as Bluetooth or WiFi by implementing Connection Handover specification even
when they are from different vendors. Connection handover application tests this
level of interoperability support in a multi-party hardware and software environment.

Connection handover application is expected to read NDEF message from the
NFC tag presented by the counter part multimedia device and verify that the NDEF
message is a Handover Select message with required Bluetooth configuration data
which contains Bluetooth device address, local device name, class of device, etc.
It should also verify that the Bluetooth connection can be established with the
counterpart device.

Interoperability test requirements for the static handover can be summarized as
shown in the following. These requirements are applicable to the Bluetooth and
NFC connection handover process.

REQ-1: The mobile device shall enable the NFC functionality and read the
carrier configuration data from the NFC tag which is embedded into the target
multimedia device, the Nokia BH-505 headset. This requirement shows that
the NFC data on the target can be retrieved from any NFC enabled mobile
device. The retrieved data shall be verified that it has a valid Handover Select
message which contains Bluetooth device address and device name.

REQ-2: The headset shall power on the alternative carrier, the Bluetooth
service. This requirement enables the mobile device to start connecting the
alternative technology after parsing and verifying the NFC data. Since the
dynamic power mode handling can only be achieved in negotiated handover,
the low powered devices which use the static handover shall remain powered on
before the read operation or shall enable power during the NFC read activity.

REQ-3: The mobile device shall be able to complete the Bluetooth pairing au-
tomatically using the carrier configuration data without any user interaction.
The prototype application can also enforce a security code based authoriza-
tion for pairing. The NFC functionality shall be disabled after connection
established over the Bluetooth.

39

REQ-4: After successful pairing, the mobile device shall be able to stream
multimedia content to the headset.

The table 11 has the list of test cases for these requirements.

5.2 Test environment and test cases

The test environment includes the Eclipse development environment with ADT plu-
gin, a Nexus S device with the application prototype installed, a Samsung Galaxy
S4 and a Nokia N9. The Nokia N9 is used to test the vendor specific behavior. This
device is officially supported by Nokia to be compatible with its BH-505 bluetooth
headset. The Samsung Galaxy S4 is used for interoperability testing with BH-505.
This device is also based on Android as Nexus S, except that it supports the most
recent version of Android which has a higher API level. The Eclipse integrated
development environment with ADT plugin has been used to debug and install the
application on the mobile device. Windows 7 and Ubuntu Linux operating systems
have been used for the prototype development.

The Table 11 has the list of test cases that have been used to check the connection
handover behavior with multiple devices. The test cases are listed along with their
steps and results. The testing does not include all possible functional and non
functional cases, since the aim was only to check the interoperable behavior.

40

Test case and steps Results
1. Read the NFC tag contents
Step 1. Bring Nexus S and Nokia BH-505
(power on state) headset to close proximity.
Step 2. Read NFC tag contents through
debug log.

The application was able to read the
Bluetooth MAC address of the BH-505
headset (0xEE 0x96 0x29 0xDE 6 0x1E
0x00).

2. Power mode handling
Step 1. Bring Nexus S and Nokia BH-505
(power off state) headset to close proximity.
Step 2. Check the power state of the Blue-
tooth headset.
Step 3. Repeat the above steps with Nokia
N9 and Samsung Galaxy S4.

The power state changes with Samsung
Galaxy S4 and Nokia N9 (Powered off
-> Powered on).
No power state change observed with
Nexus S.

3. Connection Handover
Step 1. Bring Nexus S and Nokia BH-505
(powered on state) headset to close proxim-
ity.
Step 2. Bluetooth pairing should be done
without user confirmation.
Step 3. Repeat the above steps with Nokia
N9 and Samsung Galaxy S4 (headset in pow-
ered off state).

All the three devices can perform han-
dover. Nokia N9 has vendor specific
support for Nokia headset.
Nexus S (with Android 4.1 API level
16) achieves connection handover with
the help of prototype application.
Samsung Galaxy S4 (with Android
4.4.2 API level 19) is able to connect
after user confirmation.

4. Automatic pairing
Step 1. Bring Nexus S and Nokia BH-505
(powered on state) headset to close proxim-
ity.
Step 2. Bluetooth pairing should be done
with without user confirmation.

This tests the Bluetooth pairing behav-
ior. The pairing should be done with-
out user confirmation as implemented
in the prototype.
Nexus S was able to pair with the head-
set in 2-3 seconds. Pairing the headset
using only with Bluetooth took around
1-2 minutes, including scanning the
available Bluetooth devices and pair-
ing the selected one after user confir-
mation.

5. Media streaming
Step 1. Bring Nexus S and Nokia BH-505
(powered on state) headset to close proxim-
ity.
Step 2. Bluetooth pairing should be done
with without user confirmation.
Step 2. Play some audio in the mobile and
check them with headset.

This test confirms that the prototype
was able to perform the connection
handover from NFC to Bluetooth suc-
cessfully.

Table 11: Test cases list and the results.

41

5.3 Key assumptions and limitations

It is assumed that the connection handover specification is subject to change in
future revisions. Current stable version is version 1.2 and a candidate specification
is available for version 1.3.

Connection handover protocol implementation on the software stack of various
smartphone operating systems are not clearly documented. They may be providing
only minimum APIs which may or may not support interoperability.

Also, connection handover support may not be implemented completely accord-
ing to the specification as this is not mandatory for the vendor. This support might
be needed only when they need to market devices that are NFC-Forum certified.

The support of connection handover protocol may vary between different releases
of smartphone operating systems. For example, Android version 4.4, i.e. Kitkat,
has enhanced support of this protocol than its older version 2.3, i.e. Gingerbread.

Over Bluetooth and Wireless LAN, NFC enables more user friendly touch based
communication between end user devices. Also, the time to set up the device commu-
nication is usually in terms of hundreds of milliseconds in NFC, whereas in Bluetooth
and Wireless LAN, it takes several seconds.

5.4 Issues in vendor interoperability

Connection handover between Google Nexus S with Nokia BH-505 does not happen
seamlessly. The handover needs to be forced by the connection handover applica-
tion, which does the static handover by reading the Connection Handover Record.
Bluetooth pairing could be done automatically without user permission or it could
also be forced with user permission. The limitation was observed due to lack of
protocol support in the Android stack. Nexus S is running the Icecream Sandwich
version of Android Operating system, which does not provide any NFC connection
handover APIs explicitly. Android Operating system is being constantly upgraded
and released to smartphone devices.

NFC functionality has been introduced with Android 2.3–2.3.2 Gingerbread (API
level 9). Nexus S was initially having Android 2.3–2.3.2 Gingerbread (API level
9) and further upgraded through Android 2.3.3–2.3.7 Gingerbread (API level 10),
Android 3.0 Honeycomb (API level 11), Android 3.1 Honeycomb (API level 12),
Android 3.2 Honeycomb (API level 13) and finally to Android 4.0–4.0.2 Ice Cream
Sandwich (API level 14). The prototype has been tested with Android 4.0 and
Android 4.0.2. Even though API level is same through 4.0 to 4.0.2, there were API
changes and difference in behavior has been observed. Google supported Android
upgrade until Android 4.1 Jelly Bean (API level 16) for Nexus S, but afterwards no

42

updates were released to Nexus S, due to hardware limitations.
Samsung S4 [28] has been used for testing, which has Android 4.3 Jelly Bean

(API level 18), but it did not detect the NFC tag or performed any handover au-
tomatically. It was supporting NFC Beam, a feature which provides NFC peer to
peer communication between two NFC devices.

The latest version Android 4.4 KitKat with API level 19, does not support older
hardware.

In summary, there were no public APIs available in Android Operating system,
which can be used by application developers to implement connection handover
applications. It is also observed that Nokia BH-505 performs static connection
handover automatically only with Nokia N9 [29], which was advertised as target
device for the Bluetooth NFC headset.

5.5 Protocol specification level issues

Connection Handover Specification states that transmission of carrier configuration
data to the devices that can be brought to close proximity are deemed legitimate
within the scope of the specification. It also states that security attacks like eaves-
dropping of carrier configuration data is difficult, though it is possible. This leaves
the application developers to consider extra measures to protect the carrier config-
uration data.

The NFC tag which has the carrier configuration data (Bluetooth MAC address
and other information) in BH-505 could be read by any device which has the NFC
capability. Although the tag is write protected, which secures from the tag data
from tampering, it still provides the possibility of getting connected by any NFC
device which does not belong to the legitimate owner of the device.

Due to the above issue, protecting the carrier configuration data becomes a
limitation and this provides a scope for vendor locked devices, instead of open device
which can work with other vendor’s products. This carrier configuration data could
be protected by storing the data in encrypted format which can only be able to
decrypted and read by another vendor specific device. The above use case which
has a mobile device and a headset may not pose a high security risk, but it can be
different considering the use case such as a wireless printer which has NFC support,
in which case, it allows anyone who can be close enough to the printer can print.

5.6 Operating system specific issues

The leading mobile operating systems such as Android and Windows Mobile support
NFC but they do not provide any publicly available API information that can be

43

used for connection handover. Due to this, application developers can not use a
common interface and it leads to more device specific applications. This is observed
when testing Samsung Galaxy S4 with Nokia BH-505, in which the mobile could
only read the NFC tag content and it has failed to perform connection handover
successfully.

44

6 Summary and conclusion

NFC technology is already being taken into different domains of end-user applica-
tions including banking, security, etc., where most of them are based on hand-held
devices. The prototype explores the possibility of having mobile based applications
which can recognize the NFC supported multimedia devices from different vendors
and connecting them with the mobile for further data transfer and also provide
adequate security options.

NFC support has become ubiquitous in most of the recent devices, which enables
the possibility of using the technology for other purposes than the intended ones. A
NFC enabled mobile phone could provide banking applications as well as connection
handover support with other multimedia devices, thus the feature is not restricted
to a specific application.

The idea of interoperability is being explored, thus analyzing the possibility of
using NFC enabled devices from different vendors interacting with each other to
connect and share data. A wide range of multi media devices and mobile devices
could communicate with each other irrespective of vendor specific operating system
or application.

Based on the current version of the connection handover protocol, the state of
interoperability is at the beginning level. While the vendor specific counterpart
devices are working seamlessly, interoperability between different vendor devices are
not working completely based on connection handover protocol. It is also observed
that the connection handover support is being improved in each new release of the
software stack.

Interoperability also brings the issue of security. Since many of the multimedia
devices like the Bluetooth headset do not have the option to control whether it can be
attached with another device for example with a mobile. In this situation the mobile
device automatically requests and pairs the headset without requesting permissions
from the headset. This enables the possibility of being paired with any device which
is on the proximity. This could become a security issue, if the multimedia device
holds some confidential data or provides route to access such data.

The future work could explore the possibility of a connection handover appli-
cation which can support a range of NFC based multimedia devices from different
vendors, by implementing support for static and negotiated handover in a generic
way using Bluetooth and Wireless LAN. In case of the Android, the NFC applica-
tion can take complete control of NFC activities on the device and this provides the
possibility of generic handling of the connection handover irrespective of the level
of support added in the Android NFC stack.

45

References

[1] Tom Igoe, Don Coleman and Brian Jepson, Beginning NFC.
O’Reilly Media, 2014.

[2] Bill Glover, Himanshu Bhatt, RFID Essentials. O’Reilly Media, 2006.

[3] NFC Forum. http://www.nfcforum.org/ [Accessed 2015-01-28]

[4] NFC Forum Technical Specifications. 2006, http://members.nfc-forum.org/
specs/spec_list/ [Accessed 2015-01-28]

[5] NFC Forum Connection Handover Technical Specification. Version 1.2,
NFC Forum, 2010, http://www.nfc-forum.org/specs/spec_list/#refapps
[Accessed 2015-01-28]

[6] Interoperability in Bluetooth NFC sharing. http://members.nfc-forum.org/
apps/group_public/download.php/18688/NFCForum-AD-BTSSP_1_1.pdf
[Accessed 2015-01-28]

[7] ISO/IEC 9126 Software engineering — Product quality / ISO/IEC 25010:2011.
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
[Accessed 2015-01-28]

[8] Vedat Coskun, Kerem Ok and Busra Ozdenizci, Professional NFC Application
Development for Android. Wrox, 2013.

[9] Apple Pay NFC payment system. https://www.apple.com/apple-pay/
[Accessed 2015-01-28]

[10] ECMA-340: Near Field Communication – Interface and Pro-
tocol (NFCIP-1) which is based on ISO18092, http://www.
ecma-international.org/publications/standards/Ecma-340.htm,
http://www.ecma-international.org/publications/files/ECMA-ST/
Ecma-340.pdf, 2013 [Accessed 2015-01-28]

[11] ECMA-352: Near Field Communication Interface and Protocol -2 (NFCIP-
2). http://www.ecma-international.org/publications/standards/
Ecma-352.htm, http://www.ecma-international.org/publications/
files/ECMA-ST/ECMA-352.pdf, 2013 [Accessed 2015-01-28]

[12] NFC Forum Tag Type Technical Specifications. NFC Forum, http://members.
nfc-forum.org/specs/spec_list/, 2007 Accessed 2015-01-28

46

http://www.nfcforum.org/
http://members.nfc-forum.org/specs/spec_list/
http://members.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/#refapps
http://members.nfc-forum.org/apps/group_public/download.php/18688/NFCForum-AD-BTSSP_1_1.pdf
http://members.nfc-forum.org/apps/group_public/download.php/18688/NFCForum-AD-BTSSP_1_1.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=35733
https://www.apple.com/apple-pay/
http://www.ecma-international.org/publications/standards/Ecma-340.htm
http://www.ecma-international.org/publications/standards/Ecma-340.htm
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-340.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-340.pdf
http://www.ecma-international.org/publications/standards/Ecma-352.htm
http://www.ecma-international.org/publications/standards/Ecma-352.htm
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-352.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-352.pdf
http://members.nfc-forum.org/specs/spec_list/
http://members.nfc-forum.org/specs/spec_list/

[13] ISO/IEC 14443-4:2008 - Identification cards – Contactless integrated circuit
cards – Proximity cards – Part 4: Transmission protocol. http://www.iso.org/
iso/catalogue_detail.htm?csnumber=50648, 2008 [Accessed 2015-01-28]

[14] NFC Forum Standards architecture. http://nfc-forum.org/our-work/
specifications-and-application-documents/specifications/
[Accessed 2015-01-28]

[15] Tagawa, Koichi, Bringing NFC to Market, 2010, http://members.
nfc-forum.org/resources/presentations/contactless_2010.pdf
[Accessed 2015-01-28]

[16] NFC Digital Protocol Technical Specification. Version 1.0, NFC Forum, 2010,
http://www.nfc-forum.org/specs/spec_list/ [Accessed 2015-01-28]

[17] NFC Activity Technical Specification. Version 1.1, NFC Forum, 2014, http:
//www.nfc-forum.org/specs/spec_list/ [Accessed 2015-01-28]

[18] NFC Controller Interface (NCI) Technical Specification. Version 1.1,
NFC Forum, 2014, http://www.nfc-forum.org/specs/spec_list/
[Accessed 2015-01-28]

[19] NFC Data Exchange Format (NDEF). Version 1.0, NFC Forum, 2006, http:
//www.nfc-forum.org/specs/spec_list/ [Accessed 2015-01-28]

[20] Android Mobile Operating System. http://www.android.com/
[Accessed 2015-01-28]

[21] Android Mobile Operating System version information. https://developer.
android.com/about/dashboards/index.html [Accessed 2015-01-28]

[22] NFC Developer guide in Android. https://developer.android.com/guide/
topics/connectivity/nfc/index.html [Accessed 2015-01-28]

[23] Bluetooth API support in Android. https://developer.android.com/guide/
topics/connectivity/bluetooth.html [Accessed 2015-01-28]

[24] Google Nexus. http://www.android.com/devices/detail/nexus-s
[Accessed 2015-01-28]

[25] NFC support in Android SDK. https://developer.android.com/reference/
android/nfc/package-summary.html [Accessed 2015-01-28]

47

http://www.iso.org/iso/catalogue_detail.htm?csnumber=50648
http://www.iso.org/iso/catalogue_detail.htm?csnumber=50648
http://nfc-forum.org/our-work/specifications-and-application-documents/specifications/
http://nfc-forum.org/our-work/specifications-and-application-documents/specifications/
http://members.nfc-forum.org/resources/presentations/contactless_2010.pdf
http://members.nfc-forum.org/resources/presentations/contactless_2010.pdf
http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.nfc-forum.org/specs/spec_list/
http://www.android.com/
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/guide/topics/connectivity/nfc/index.html
https://developer.android.com/guide/topics/connectivity/nfc/index.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/guide/topics/connectivity/bluetooth.html
http://www.android.com/devices/detail/nexus-s
https://developer.android.com/reference/android/nfc/package-summary.html
https://developer.android.com/reference/android/nfc/package-summary.html

[26] Nokia BH-505 NFC Bluetooth headset. http://www.nokia.com/global/
products/accessory/bh-505/ [Accessed 2015-01-28]

[27] NFC Tag from Infineon Technologies. http://www.infineon.com/
cms/en/product/smart-card-ic/transport-and-ticketing-ic/
mifare-compatible-my-d-tm-proximity-and-ticketing-products/
SLE+66R01P+my-d-tm+move/productType.html?productType=
db3a30433fcce646013fd2391aee23e1, https://developer.android.com/
reference/android/nfc/package-summary.html [Accessed 2015-01-28]

[28] NFC support in Galaxy S4 mobile. https://www.samsung.com/global/
microsite/galaxys4/ [Accessed 2015-01-28]

[29] NFC in Nokia devices. http://developer.nokia.com/community/wiki/
Category:Near_Field_Communication_%28NFC%29 [Accessed 2015-01-28]

[30] NXP Semiconductors. www.nxp.com [Accessed 2015-01-28]

[31] Qualcomm incorporated. www.qualcomm.com [Accessed 2015-01-28]

48

http://www.nokia.com/global/products/accessory/bh-505/
http://www.nokia.com/global/products/accessory/bh-505/
http://www.infineon.com/cms/en/product/smart-card-ic/transport-and-ticketing-ic/mifare-compatible-my-d-tm-proximity-and-ticketing-products/SLE+66R01P+my-d-tm+move/productType.html?productType=db3a30433fcce646013fd2391aee23e1
http://www.infineon.com/cms/en/product/smart-card-ic/transport-and-ticketing-ic/mifare-compatible-my-d-tm-proximity-and-ticketing-products/SLE+66R01P+my-d-tm+move/productType.html?productType=db3a30433fcce646013fd2391aee23e1
http://www.infineon.com/cms/en/product/smart-card-ic/transport-and-ticketing-ic/mifare-compatible-my-d-tm-proximity-and-ticketing-products/SLE+66R01P+my-d-tm+move/productType.html?productType=db3a30433fcce646013fd2391aee23e1
http://www.infineon.com/cms/en/product/smart-card-ic/transport-and-ticketing-ic/mifare-compatible-my-d-tm-proximity-and-ticketing-products/SLE+66R01P+my-d-tm+move/productType.html?productType=db3a30433fcce646013fd2391aee23e1
http://www.infineon.com/cms/en/product/smart-card-ic/transport-and-ticketing-ic/mifare-compatible-my-d-tm-proximity-and-ticketing-products/SLE+66R01P+my-d-tm+move/productType.html?productType=db3a30433fcce646013fd2391aee23e1
https://developer.android.com/reference/android/nfc/package-summary.html
https://developer.android.com/reference/android/nfc/package-summary.html
https://www.samsung.com/global/microsite/galaxys4/
https://www.samsung.com/global/microsite/galaxys4/
http://developer.nokia.com/community/wiki/Category:Near_Field_Communication_%28NFC%29
http://developer.nokia.com/community/wiki/Category:Near_Field_Communication_%28NFC%29
www.nxp.com
www.qualcomm.com

Glossary

Active Communication A communication mode in which each device generates
its own RF field to send a message to another device.

Alternative Carrier A wireless communication technology that can be used for
data transfers between a Handover Requester and a Handover Selector.

Carrier Configuration Data The information needed to connect to an alterna-
tive carrier. The exact amount of information depends on the carrier technol-
ogy.

Handover Requester An NFC Forum Device that begins the Handover Protocol
by issuing a Handover Request Message to another NFC Forum Device.

Handover Selector An NFC Forum Device that constructs and replies to a Han-
dover Select Message as a result of a previously received Handover Request
Message or an NFC Forum Tag that provides a pre-set Handover Select Mes-
sage for reading.

Negotiated Handover An exchange of NDEF messages that allows two NFC Fo-
rum Devices to agree on a (set of) alternative carrier(s) to be used for further
data exchange.

NFC Forum Device A device that supports the following Modus Operandi: Ini-
tiator, Target, and Reader/Writer. It may also support Card Emulator.

NFC Tag A contactless tag or (smart) card supporting NDEF over Passive Com-
munication..

Passive Communication A communication mode in which one device generates
an RF field and sends Commands to a second device. To respond, this second
device uses load modulation (i.e., it does not generate an RF field but it draws
more or less power from the RF field).

Static Handover Provision of an NDEF message on an NFC Forum Tag that
allows a reading NFC Forum Device to select and use alternative carriers for
further data exchange.

49

Acronyms

ECMA European Computer Manufacturers Association, www.ecma-international.org.

ETSI European Telecommunications Standards Institute [www.etsi.org].

ISO/IEC International Organization for Standardization [www.iso.org],International
Electro technical Commision [www.iec.ch].

NDEF NFC Data exchange format.

NFC Near Field communication.

RFID Radio-frequency identification.

50

Appendices
A Source code : Initializing NFC

Following code snippet shows initializing the NFC for tag detection.

// Get the instance of local NFC Adapter

mAdapter = NfcAdapter.getDefaultAdapter(this);

// Register an intent to receive the NFC related events

mPendingIntent = PendingIntent.getActivity(this, 0,
new Intent(this, getClass()).addFlags(Intent.FLAG_ACTIVITY_SINGLE_TOP), 0);

// Setup an intent filter for all MIME based dispatches
// This enables tag discovery notification given to this android
// application

IntentFilter ndef = new IntentFilter(NfcAdapter.ACTION_NDEF_DISCOVERED);
try {

ndef.addDataType("*/*");
} catch (MalformedMimeTypeException e) {

throw new RuntimeException("fail", e);
}

// Add the NDEF format as the only format to be filtered
// through intent filter

mFilters = new IntentFilter[] {ndef};

51

B Source code : NFC tag detection

Following code snippet receives the NFC tag data when the mobile device is brought close proximity of the Bluetooth BH-505 headset.

@Override
public void onNewIntent(Intent intent) {
Log.i("Connection handover", "Discovered tag with intent: " + intent);

intent.setFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
boolean handled = false;

// Parse the intent
final String action = intent.getAction();
if (NfcAdapter.ACTION_TECH_DISCOVERED.equals(action) ||
NfcAdapter.ACTION_TAG_DISCOVERED.equals(action) ||
NfcAdapter.ACTION_NDEF_DISCOVERED.equals(action)) {

// When tag is discovered, the NDEF data needs to be retrieved and parsed.
Tag nfctag = intent.getParcelableExtra(NfcAdapter.EXTRA_TAG);

if (nfctag != null) {
// Retrieve the tag contents
typeATag = NfcA.get(nfctag);
try {
typeATag.connect();
} catch (Exception e) {
Log.w("Connection handover", "Type A Connect() failed");
}
Log.i("Connection handover", "Type A tag connected");

int saK = typeATag.getSak();

try {
typeATag.close();
}catch (Exception e){
Log.w("Connection handover", "Type A Close() failed");
}

52

Log.i("Connection handover", "Type A tag disconnected");
handled = true;

}
}

if (!handled) {
Log.w("Connection handover", "Unknown intent " + intent);
finish();
return;
}

53

C Source code : Parsing NDEF

The following code snippet shows the NDEF data parsing of Bluetooth MAC address
and handover part.

// Parse NDEF message

Parcelable[] rawMsgs = intent.getParcelableArrayExtra
(NfcAdapter.EXTRA_NDEF_MESSAGES);
NdefMessage[] msgs;
if (rawMsgs != null) {
msgs = new NdefMessage[rawMsgs.length];
for (int i = 0; i < rawMsgs.length; i++) {
msgs[i] = (NdefMessage) rawMsgs[i];
Log.i("Parsed NDEF message ", "NDEF record: " + msgs[i]);
}
NdefRecord[] records_list = msgs[0].getRecords();
Log.i("Parsed NDEF record ", "First record: " + records_list[0]);
byte[] payload = records_list[0].getPayload();

//for (int i=0; i< payload.length; i++) {
//Log.i("Parsed NDEF record ", "payload data : " + i + " " + payload[i]);
//}

try {
byte[] bMacAddress = new byte [6];
//EE9629DE1E00

bMacAddress[0] = (byte)paylod[37];
bMacAddress[1] = (byte)paylod[38];
bMacAddress[2] = (byte)paylod[39];
bMacAddress[3] = (byte)paylod[40];
bMacAddress[4] = (byte)paylod[41];
bMacAddress[5] = (byte)paylod[42];

mBluetoothAdapter.enable();
//mBluetoothAdapter.startDiscovery();
BluetoothDevice bDev =

54

mBluetoothAdapter.getRemoteDevice(bMacAddress);

//ParcelUuid[] pUIid = bDev.getUuids();
//Log.e("Bluetooth test", "remote UUID " + pUIid[0]);
//mmServerSocket =
mBluetoothAdapter.listenUsingInsecureRfcommWithServiceRecord(
// NAME_INSECURE, MY_UUID_INSECURE);
//mmServerSocket.accept();

BluetoothSocket tmp = null;
tmp = bDev.createInsecureRfcommSocketToServiceRecord(MY_UUID_INSECURE);

mBluetoothAdapter.cancelDiscovery();
tmp.connect();

try {
Method m = bDev.getClass()
.getMethod("createBond", (Class[]) null);
m.invoke(bDev, (Object[]) null);
}catch (Exception ie) {
Log.e("Bluetooth error", "Pairing failed", ie);
}

tmp.connect();
Log.e("Bluetooth test", "Pairing succeeded");

} catch (IOException e) {
Log.e("Bluetooth error", "Pairing failed", e);
}

55

	Introduction
	NFC Fundamentals
	Introduction to NFC
	NFC Operating modes
	NFC tag types
	NFC standards
	Overview of NFC Forum standards
	Overview of ECMA standards

	Description of NFC protocols
	NDEF protocol
	ISO14443A protocol standard
	Connection Handover Protocol
	Negotiated Handover
	Static Handover
	Message composition in Connection Handover Protocol
	NDEF messages in Connection Handover Protocol
	Version Handling in connection handover

	Means for effective application of NFC technology
	Application scenario
	NFC based data transfer in Android
	Android API support for NFC

	Bluetooth application development in Android
	Bluetooth stack in Android
	Bluetooth API support in Android
	Bluetooth permissions

	Wireless LAN application development in Android

	Prototype design and implementation
	Android Software Development Kit
	Implementing an NFC and Bluetooth handover prototype

	Testing and analysis of results
	Requirements for interoperability
	Test environment and test cases
	Key assumptions and limitations
	Issues in vendor interoperability
	Protocol specification level issues
	Operating system specific issues

	Summary and conclusion
	References
	Glossary
	Acronyms
	Appendices
	Source code : Initializing NFC
	Source code : NFC tag detection
	Source code : Parsing NDEF

