
Proactive security measures in coding

Ville Valkonen

University of Tampere
School of Information Sciences/CS
Master’s Thesis
Supervisor: Heikki Hyyrö
7.12.2014

University of Tampere
School of Information Sciences/CS
Ville Valkonen: Proactive security measures in coding
Master’s Thesis, 52 pages; Appendices, 19 pages
December 2014

Abstract
There are several ways to mitigate security breaches proactively. This thesis
introduces portable security methods that can be adapted in any Unix-like oper-
ating system. These methods can help to mitigate the harm done by a malicious
attacker who has already gained a partial access into the system. The main focus
in the thesis is to give an idea how attacks can be pursued and how to protect
against them.
The first research question is: What proactive steps can be done to reduce errors
and vulnerabilities in code before it is released? What methods can be adapted
to harden the code and make it less penetrable? I examine a few design principles
which are known to be good against malicious activities.
The second research question is: What is the state of the static analyzers in
modern compilers, when compared to dedicated static analyzers? This a part
of the thesis introduces automatic ways to check code against unsafe API or
system call usages. Static code analysis has been around for awhile and performed
heuristics of modern analyzers are highly sophisticated. Freely available open
source analyzers are tested against example flaws and the results are reviewed.
In the last section, analyzers are tested against a real world program which are
used widely.
As a conclusion, many of the shown proactive security measures will help to
mitigate against malicious activity, as proven by the real world code analysis.

Keywords and terms: software security, static code analysis, design patterns,
code review, proactive security.

Table of contents
1 Introduction . 1
2 Research questions . 2
3 Preliminares . 3

3.1 Memory . 4
3.2 Input validation problem 6
3.3 Buffer overflow . 7
3.4 SQL injections . 8

4 Proactive methods . 10
4.1 Design principles . 10
4.2 Compiler and language based safety methods 12
4.3 Protecting the memory . 16
4.4 Access control methods . 18

5 Static code analysis . 20
5.1 Types of checks . 20
5.2 Annotations . 22
5.3 Control flow and data flow analysis 23
5.4 Survey of analyzers . 23

6 Test environment setup . 29
6.1 Operating system . 29
6.2 Compilers setup . 30
6.3 Predefined flaws . 32

7 Analyzing predefined flaws results 37
7.1 Compilers (Clang and GCC) 37
7.2 Cppcheck . 37
7.3 Flawfinder . 38
7.4 Scan-build . 38
7.5 Splint . 41
7.6 Conclusion of predefined analyzing results 41

8 A real world example . 44
8.1 Compilers (Clang and GCC) 45
8.2 Cppcheck . 46
8.3 Flawfinder . 46
8.4 Scan-build . 46
8.5 Splint . 47
8.6 Manual code review . 48

8.7 Conclusion of the real world example 49
9 Conclusion and future studies . 51
References . 53
Appendix A Java JDBC Stack trace 59
Appendix B example_flaws.c . 60
Appendix C Makefile . 67
Appendix D codechecks.log . 69
Appendix E Makefile of tvheadend (patch) 76
Appendix F splint.sh . 78

ii

1

1 Introduction
This thesis examines different proactive security methods that can be integrated
into programming development processes in order to reduce the damage made by
various malicious activities. Some of the methods are easier to adopt in general
programming guidelines, while others are more dependent on the environment.
The main focus of this thesis is on Unix-like operating systems.

The difference between highly secure systems and non-secure systems can be
described in the following way: non-secure systems concentrate on implementing
certain functionality, while secure system’s main goal is to achieve functionality
in a safe manner. Designing a secure system is an arduous process and difficult
to get correct. Basically, a system should fail safely, should run the least privilege
and should not be too complicated to understand (Keep It Simple Stupid, KISS
[The Free Dictionary, 2012]). The thesis will walk-through how design patterns
and ideologies harden the program and make them more robust.

The thesis will also examine techniques that static code analyzers use, explains
the theory behind them, and presents through examples how analyzers can reveal
bugs in software. Analyzers can be integrated to be a part of the designing
process, and triggered automatically after every successful build or release. If the
result is being examined thoroughly, it will inevitably eliminate easy programming
errors and security fiascos from the final product. Aforementioned topics are
discussed in greater detail below.

When studying and implementing secure systems, one should member what
Erik Poll [Poll E., 2011a] has stated: The attacker only has to get lucky once, the
defender has to get it right all the time.

2

2 Research questions
My first research question is: What proactive steps can be done to reduce errors
and vulnerabilities in code before it is released? Simple bugs can cause financial
loss, power outage to an entire city or even death. Even if precautions would have
been carefully done, there is no guarantee of absolute bug free software. Someone
could ask “why bother to use extra checks if there is no guarantee that it would
prevent failures? Extra checks take time from coding and costs money!”

I can start answering that question through a simple well known case. Ariane
5 rocket was launched on its maiden cruise and less than five minutes from the
launch the space shuttle went to a self destruction mode and exploded. What
happened? A computer program tried to fit a 64 bit number into a 16 bit space
[Gleick J., 2010], causing an integer overflow. Could it have been avoided by
using static code analysis? It is easy to speculate retrospectively. How about
other bugs, such as a web daemon that leaks an anonymous user a super user
rights, when CGI-script execution fails?

My second research question is: Are modern compiler integrated checks suffi-
cient for day to day use and how do they perform, when compared against static
analyzers?

I am participating in a few open source projects and also write code on my
free time. I have used static code analysis as a part of my coding procedures
for awhile and found it useful to catch obvious bugs before the software release
and even afterwards. By doing comparisons between different analyzers I hope
to gain more understanding of each tool’s strengths and weaknessess and learn
to use the most suitable tool for a specific task.

The thesis tries to answer the research questions by explaining simply the
theories that are widely acknowledged and approved by the security field, and
testing some of the theories in practice.

3

3 Preliminares
This section focuses on different technologies and methods that are widely adopted
by many known security environments, programs and security focused operating
systems. Hence, systems that lack an exhaustive testing process or are in a
prototype state are excluded from this thesis. The thesis starts with the basics
that must be known before one can proceed. This section also presents short-
comings that current approaches might have. This thesis tries to give a general
understanding of how vulnerabilities can be pursued but does not try to cover
all possible fields or methods. There are fields regarding concurrent processing,
networking and input/output processing that are omitted in this thesis, though
some of them might be mentioned briefly.

I start by defining a software flaw and what proactive actions can be done
to prevent or reduce the damage. The software flaw is an unexpected operation
of a program. It can expose the system to a great danger, leak confidential
information or crash the whole system. On some cases, especially in network
related environments, the software flaw can expose a huge number of computers
to a danger. If it is possible to gain more information from the system than it
is designed to offer, or when the system is set up to work in a way it was not
intended, the system can be seen as vulnerable.

There are several different types of vulnerabilities. One can measure vulner-
abilities according to their severity, e.g., by measuring their level of criticality.
Security companies rank vulnerabilities in a different way but certain parts of the
rankings are the same. One of the unarguable ranking categories is the type of
domain, a local exploit and a remote exploit. A local exploit demands that an
attacker must have local access into the system. The local access can be physical
or non-physical (a user account in the machine). Instead, the remote exploit does
not have this demand, and it can therefore be seen as more dangerous. Also, re-
mote exploits are considered more risky, since there is no need to have an account
in the machine. Hence, vulnerabilities can be exploited via Internet.

Communication in the Internet is based on packet data. Thus, a client has to
negotiate a connection to a server. Usually the client connects to the server, but
this can be vice versa. Negotiating the connection defines a common language for
both parties. This is better known as a communication protocol or simply as a
protocol. Usually, reporting user agent information is a part of the communication
process. The user agent information includes the name and the version number
of a program.

4

This information defines whether the server and the client can communicate
together, i.e., the client has an apt version of a program. By examining the
communication information, a malicious user can gain enough information to
pursue a functional attack against the service.

Evans and Larochelle [2002, pp. 8 - 9] demonstrated the use of the splint
[Splint, 2013] tool against wu-ftpd [Wu-FTP, 2011] daemon [Nagpal, 2009, p. 105].
1. At the time their paper was published wu-ftpd was a widely used ftp daemon.
In Unix, daemon is a background process that does not directly interact with a
client. Splint is a statistical code analyzer that detects certain types of weaknesses
from the program by analyzing its source code. Detecting a basic buffer overflow
and misuse of functions is a part of splint’s repertoire. By examining the tool’s
results Evans and Larochelle found new bugs, as well as bugs that were already
known by the vendor. Furthermore, as the analyzed program was interacting
with other computers, it was possible to use the extracted information to craft
an exploit against the other daemons in the Internet.

Anybody can review open source software and review the code, use tools
like splint to analyze the code and to generate an exploit. This can be seen as a
shortcoming, as people can read the code and spot flaws more easily. On the other
hand it is an advantage, since code gets more code reviews and bugs will likely
get fixed. This certainly needs interaction with the community. Unless explicitly
mentioned, all examples in this thesis are related to a Unix based operating system
and C code.

3.1 Memory

Different kinds of attack methods that can be pursued via computer memory are
reviewed in this section. Moreover, this helps to gain better understanding of
how protection methods act.

It is easier to understand a process memory layout by having a concrete real life
example. Figure 3.1 and Code fragment 3.1 show an example given by Wilander
and Kamkar [2000, p. 3].

By examining the source code in Code fragment 3.1, it can be concluded that
arguments, constants and variables are stored in different places in the stack
(see Figure 3.2). For instance, statically declared integer variables are stored in
the Block Started by Symbol (BSS) segment (Figure 3.1). Machine code is the

1 A daemon process refers to a process that does not directly interact with a user. Daemons
are also referred as servers.

5

High address Stack ↓

Heap ↑
BSS Segment
Data segments

Low address Text segment

[Wilander and Kamkar, 2000, p. 2]

Figure 3.1 Memory layout of the Unix process.

divergent in the memory layout that cannot be observed from the source code
example. Machine code is stored in the text segment.

1 static int GLOBAL_CONST = 1; // Data segment
2 static int global_var; // BSS segment
3

4 // argc & argv on stack, local
5 int
6 main(int argc, char ∗argv[])
7 {
8 int local_dynamic_var; // Stack
9 static int local_static_var; // BSS segment

10 int ∗buf_ptr=(int ∗)malloc(32); // Heap
11 }

Code fragment 3.1: Memory layout elements in code.

Depending on the chosen application binary interface (ABI), stack grows up
or grows down. Every time a function call occurs, the stack grows by one (func-
tion call will be the top element in this implementation). Each of these calls
includes local variables, old base pointer, return address and arguments. In these
examples, stack frame growing from high to low.

Various attack methods concentrate on altering the stack frame in such a
way that the attacker can execute arbitrary code and potentially gain higher
privileges. Usually, an attack is performed by altering the return address in the
stack in a way that it points to a wanted memory location. In this way, malicious
attacker can choose an arbitrary C standard library function to be called.

6

Low address
Local variables
Old base pointer
Return address
Data segments

High address Arguments
Figure 3.2 A stack frame.

3.2 Input validation problem

Almost all programs need some sort of an input to work. Afterwards input
is handled and modified by the program. For example, in calculators input is
numbers and operands. It is important to note that input does not necessarily
involve keyboard activity. Sanitizing input from unintended activities is far more
complicated than one could expect [Stuttard, D. and Pinto, M., 2008, pp. 19 -
20]. By altering the input an attacker may be able to set the application in a
indeterministic state and perform operations that can be harmful for the system,
its users or the stored data.

What makes input validation remarkably difficult is the selection of validation
methods. For reading the date of birth, one can set the input to accept digits
only, for example. Another input that reads digits must handle negative values
correctly, and therefore it should read dashes too. A closer look into date and
time parsing reveals how complicated task input validation can be. If the given
input format is ISO 8601, more precisely in YYYY-MM-DD form [ISO 8601,
2013], inputs such as 2012-24-2 and 2012.2.24 would be illegitimate. Although
the date would be syntactically right, a leap year check must be still performed.
Moreover, Stuttard and Pinto note [2008, p. 20] that in addresses there can be
dots, punctuation marks and other special characters that cannot be omitted,
when the input is read.

What happens if the attacker is able to inject 20 characters in a field that
has length limit of eight digits? There are many different routes where this could
lead. If C language is assumed it can allow arbitrary code execution through a
buffer overflow. Or if the attacker uses different encoding in the input and the
sanitizer is not able to parse the input correctly? This could cause missing a
null character and hereby many string functions would read memory until null
occurs. That can and would likely be outside of the buffer and cause malfunction

7

of the program. More detailed explanation about buffer overflow on page Buffer
overflow.

Applications use API calls for certain operations, for instance opening files
with fopen and open. Many of these calls lack certain security measures and
are prone for input validation attacks. Commands execvp and system are used
to run binary files with an input as parameters. A foolhardy programmer could
use execvp(ls argv[1]) through a common gateway interface (CGI) to list directory
contents. By injecting the command ; rm -rf / in the input, it becomes genuinely
harmful. If the command is run by a super user it is even more malicious. It will
first list the directory contents and then execute rm -rf / which will remove all the
files from the system. Alternatively, attacker could launch a more sophisticated
attack that alters firewall rules, installs a trojan horse or joins the computer as a
part of a botnet, for exapmle. Botnet is a collection of slave computers that are
controlled by a malicious instance.

3.3 Buffer overflow

Over decades buffer overflow attacks have been populating the software security
flaw top-lists [CWE-120, 2013]. Buffer overflow occurs when a process writes to a
memory address out of an allocated area. Buffer overflow enables code injection
exploitation through the current process. This is known as an arbitrary code
execution. A determined attacker can gain himself or herself at least the same
privileges that the process has.

Stack smashing is similar to buffer overflow but it alters stack in a way that
function’s real return address gets overwritten by a random return address [Er-
icksson J., 2003, pp. 23 - 24]. With a careful planning a malicious attacker can
choose an arbitrary return address which points to a wanted function call (i.e.
system()).

1 char mymsg[2] = "hi";
2 strcpy(mymsg, "hello world!");
3 printf("\%s\n", mymsg);

Code fragment 3.2: Simple buffer overflow example in C language. Only the
relevant parts are shown.

8

In Code fragment 3.2, line 1 contains the first flaw: length of the mymsg
string is 2 but strings should be terminated by the null-terminating character \0.
null-termination is crucial, since many functions in C depend on that. Without
the termination character functions do not know where to stop. Function return
happens when a memory address contains the null-termination character. The
character can be further in the stack, outside of the process’ allocated memory
area.

In line 2, the strcpy function is used for copying the string “hello world!” into
mymsg. Since the reserved size of the mymsg buffer is smaller than the copied
string “hello world!”, buffer overflow occurs. This makes the program indetermin-
istic.

Although one certain type of overflow was examined in Code fragment 3.2,
several variations of buffer overflow exist. De Raadt [2011] lists the following
variations: stack overflows, data segment overflows, Global Offset Table (GOT) /
Procedure Linkage Table (PLT) overwrite, jumping to data that an attacker can
execute, four byte modification possibilities and four byte read possibilities.

3.4 SQL injections

SQL is a language for relational databases. A relational database is a collection
of data structures and algorithms that stores information efficiently and provides
a powerful way to search and join this information together. Databases can store
information of age, username, password or computer’s IP address, for example.
Databases are used widely in web development. [Wilton and Colby, 2005, pp. 11
- 14]

One of the commonly used attack techniques is an SQL injection attack [SQL
Injection - OWASP, 2013]. Crafting SQL injection attack does not need any
special skills or familiarization with the system, and is therefore easy to deploy.
Nevertheless, it can be very effective since an attacker can obtain passwords,
credit card numbers and other sensitive data fairly easily. Naturally with user-
name and password combination the attacker is able to sign in into the system
and gain more information from the running system and its environment.

As mentioned earlier, web development utilizes databases in large-scale. In
web development form fields, for example, are often connected directly or indi-
rectly to a database, hereby play a role of being the input for the program. These
fields are parsed and passed to an SQL server which processes them later on. In a
wider aspect, this is a problem that has been already investigated in the previous

9

section, input validation problem.
Code fragment 3.3 shows a simple SQL authentication query [Poll E., 2011c,

p. 11] that is used to check whether the user has sufficient credentials to sign in
into a system.

1 $result = mysql_query(
2 "SELECT ∗ FROM users
3 WHERE user_id = ’$name’
4 AND password = ’$passwd’;");
5 if (mysql_num_rows($result) > 0)
6 $login = true;
7 /∗ Parsed SQL ∗/
8 SELECT ∗ FROM users WHERE user_id = ’johndoe’ AND password = ’password123’;

Code fragment 3.3: A simple code snippet demonstrates an SQL authentication
query.

The parsed SQL code can be seen in the Code fragment 3.3, line 8. Now,
however, if one intends to act malevolently against the system the task is fairly
trivial. Since username and password fields work as the input, malicious code
can be injected via these fields.

1 /∗ SQL Injection through username ∗/
2 username = ’ OR 1 = 1; /∗’
3 /∗ Parsed SQL ∗/
4 SELECT ∗ FROM users WHERE user_id = ’’ OR 1 = 1; /∗’ AND password = ’’
5 /∗ Effective SQL ∗/
6 SELECT ∗ FROM users WHERE user_id = ’’ OR 1 = 1;

Code fragment 3.4: Infected version of the simple SQL authentication query.
Dialect of SQL is MySQL.

By injecting code ’ OR 1 = 1; /* in the username field malicious attacker
can get access without entering a correct password. Code fragment 3.4, line 4,
illustrates how system parses the query. The effective query is seen in the line 6.
This is the one that the system will finally run. [Poll E., 2011c, pp. 14 - 15]

After the malicious user has gained access into the system it is possible to
alter billing information, medical records or whatever information the database
holds.

10

4 Proactive methods

This section educates what can be done generally to prevent bugs proactively.
Utilizing design principles does not require support from the language, operating
system or development environment, and can be therefore applied to any plat-
form. In some principles, some of the system calls might be missing in certain
environments, but usually these can be circumvented somewhat easily. This is a
real advantage when compared to security frameworks that are usually designed
to work in the specific environments only.

4.1 Design principles

Several design principles that are known to improve error handling, increase the
safety and the controlling abilities should be used in security oriented program-
ming. Obeying these principles does not guarantee flawless programs but helps
to cope with the problem. These principles should be usually applied at the
beginning of the design process, since it is easier to design functionality around
them. It is viable to adopt the methods later on but usually it means significant
changes into the code.

4.1.1 KISS

KISS is an acronym for Keep It Simple, Stupid! [The Free Dictionary, 2012]. The
principle encourages simplicity over perfection. According to the principle, more
lines of code implies more obscure structures and therefore makes it abstruse.
Updating the code becomes more complicated and implementing new function-
ality can be challenging. In general, the more lines of code, the more bugs and
(security) flaws. Moreover, program functionality becomes less deterministic and
ambiguous at many levels. The original Unix was designed to adhere to the KISS
principle, and therefore one tool is designed to accomplish one operation.

4.1.2 Whitelists

Whitelist is the opposite of blacklist. Instead of denying forbidden functionality
whitelist allows certain functionality or operation. If a user or a program does
not meet the requirements, it is denied by default.

An excellent usage of whitelisting is presented in the program TCP wrappers
[TCP Wrappers, 2011]. TCP wrapper is used for limiting hosts to access services.

11

As mentioned in the input validation problem section, one should never trust
any user input [Stuttard, D. and Pinto, M., 2008, p. 19].

4.1.3 Least privilege

When running a process, it should not use higher privileges than is needed. If
possible, process should drop all extra privileges. For example, HTTP daemon
should not run as root once the socket port binding and possible chroot has been
completed successfully.

Example 4.1.3.1 HTTP daemon needs to bind to port 80 (HTTP traffic) in
order to be able to serve web pages for web browsers. Ports that are equal to or
lower than 1023 are called low ports. In order to bind a socket to these ports,
super user privilege 1 is required to accomplish the task. After completion the
port binding daemon should drop all extra privileges that are no longer needed.

However, as Provos et al. [2003, p. 2] state, this does not guarantee safeness.
Certain type of flaws in a daemon process can still leak higher privileges to a ma-
licious attacker. As a countermeasure, Provos et al. propose privilege separation
as an addition to the least privilege. More details about privilege separation can
be found below.

4.1.4 Fail securely

When a malfunction happens it must be taken care in an appropriate manner. If
one level of security fails there should be another level to mitigate malfunctioning
(defence in depth). For instance, a computer that is linked to the Internet should
not solely rely on a firewall [Poll E., 2011a, p. 9]. It is even more crucial when
the computer runs services.

Code fragment 4.1 leaks several pieces of important information to an attacker.
By knowing the database and table names it is possible to try database related
attacks like SQL-injection to gain access into the system. The path name reveals
the running operating system, which in this case is likely Windows. Here call
stack trace (see Appendix A) reveals the used programs and platforms, MySQL
and ColdFusion. The previous information might be enough for the malicious
attacker to penetrate into the system or crash the site.

The previous case happened to the author in a particular site. After reporting
misconfiguration to the site administrator it had no effect nor the administrator

1 Root user has the highest privilege. Also, ID number 0 refers to root.

12

replied to an email. This is a good example how security is seen as a low priority
task by some administrators. An appropriate way to handle debug and system
messages is to write errors to a log file instead of showing them to users [Poll E.,
2011a, pp. 35 - 41].

In this paragraph, services refer to daemon processes. These processes could
be web servers, dns servers or proxy server, to name a few. Previously mentioned
processes are usually responsible for important functionality such as running e-
commerce or relaying traffic between networks. Since these daemons should be
always running it is crucial to minimize their downtime. There are several moni-
toring software to perform certain actions when the daemon process goes down.
This type of monitoring software is called process supervision. Monit [2013] and
Supervisor [2013] represent such daemons. Although the idea is somewhat good,
there are certain flaws. What happens if the server malfunctions and process
supervision daemon starts it again continuously? Or it ends up forking new zom-
bie processes and finally the computer is rendered unusable because of resource
exhaustion? Although these programs can be used to handle malfunctions, there
is a high probability that they cause malfunctions rather than provide fixes. The
correct approach would be to fix the root cause instead of masquerading it.

4.2 Compiler and language based safety methods

Machine language is numerical code, which computer’s central processing unit
(CPU) executes directly. It is hard to read and understand for humans, since it
neither obeys the structure of a human language, nor has similar lexical or syn-
tactical expressions. A symbolic machine language remedies this shortage. For
example, by using a certain symbolic machine language multiplication operating
is expressed as MUL [Tremplay J-P and Sorenson, 2008, pp. 1 - 2]. Syntacti-
cally it is closer to natural language, though it differs a lot lexically. Computer
languages can be split into two different categories, low level languages and high
level languages.

Both machine and symbolic machine language are a part of the low level lan-
guage category. These languages have strict grammars. Vice versa, languages
that human use for communication are more subtle, ambiguous, loosely defined
and might vary a lot syntactically. As low level languages have a simple instruc-
tion set, it is hard to accomplish highly abstract tasks like implementing a B-Tree
data structure. For this purpose there are higher level languages that are more
subtle as compared to their predecessors, low level languages.

13

You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near ’

and afdeling.provincie in (0,3) order by afdeling.sort’ at line 3

The error occurred in D:\websites\kicker\content\Uitslagen\index.cfm: line 32

30 : select distinct(afdeling.afdelingid) as afdelingid, afdeling.afdeling
as afdeling

31 : from reeks left join afdeling on (reeks.afdeling =
afdeling.afdelingid)

32 : where seizoen = #qGetseizoen.maxseizoen# and afdeling.provincie in
(0,#regio#) order by afdeling.sort;

33 : </cfquery>
34 : <cfoutput>

SQLSTATE 42000
SQL select distinct(afdeling.afdelingid) as afdelingid,

afdeling.afdeling as afdeling from reeks left join afdeling on
(reeks.afdeling = afdeling.afdelingid) where seizoen = and
afdeling.provincie in (0,3) order by afdeling.sort;

VENDORERRORCODE 1064
DATASOURCE kickersql

Code fragment 4.1: An example of an inappropriate way to handle errors.

In a design process, one should carefully choose the implementation language.
The language that guarantees type safeness [Poll E., 2011b, p. 20], integrated
sandboxing and is pointer free, should be always preferred. By using a language
that implements type safeness it is impossible to mix strings and integers on the
following way: 2 + ”#”.

Misuse possibility exists if the language offers memory operations via pointers
[Poll E., 2011b, p. 21]. Therefore pointer free (memory safe) languages should be
preferred. Occasionally a program has to be implemented in a language that does
not fulfill these security needs. In these cases, functions that are boundary-aware
should be preferred and function return values should be verified in the case of
errors. Also, function return values should always be checked against errors if the
language does not implement exception handling itself.

14

In low level languages, an attacker can craft an exploit that is highly dependent
on machine architecture instructions and bypass higher level language limits and
safety methods. Albeit this is an interesting topic, the main focus of this study
is in the higher level languages.

Majority of the open source operating systems are implemented in C language
because it has support for a symbolic low level language. It is possible to write
hardware drivers and make certain functions faster with lower level implementa-
tions. C language’s main strength is its speed and simplicity. The language has
many functions that gain speed by omitting boundary checks and by accessing
memory directly via pointers. Omitting boundary checks and offering bad APIs
can be seen as a curse of C security-wise, though fortunately there are safe and
clean versions available. Although the speed assumption is true in general cases,
Miller and de Raadt [1996, p. 2] implemented safe functions without a critical
speed regression.

One of the functions that lacks boundary checking is strcat. This function
is used for string concatenation. Boundary-aware, portable and widely adapted
version of strcat exist, strncat. A manual page for strncat regarding the Open
Group Base Specification strncat is seen in Code fragment 4.2. Prototype of strn-
cat takes exactly three arguments: s1 (destination), s2 (source) and n (size). If a
source buffer size is greater than or equal to a destination buffer, null-terminating
string is omitted. To use strncat safely, Miller and de Raadt [1996, pp. 1-2] en-
courage to always copy size of n− 1 and null-terminate string by hand, although
in some rare cases the previous operation is exaggerated.

Miller and de Raadt also disclose the misuse of strcnat. Particularly the size
parameter is often thought to be the size of the destination buffer. Miller and de
Raadt use the following formalization to clear this misconception:

Most importantly, this is not the size of the destination string itself,
rather it is the amount of space available.

As their last concern [1996, p. 3] pointed out that the performance regression
made by the boundary check is minor. During the time the paper was pub-
lished (1996), computers had significantly lower performance. Today when CPUs
have more than tripled their computing performance and can do more than one
operation in a single instruction, this claim is considered outdated.

15

SYNOPSIS
#include <string.h>

char ∗strncat(char ∗restrict s1, const char ∗restrict s2, size_t n);

DESCRIPTION
The strncat() function shall append not more than n bytes (a null byte and
bytes that follow it are not appended) from the array pointed to by s2 to
the end of the string pointed to by s1. The initial byte of s2 overwrites
the null byte at the end of s1. A terminating null byte is always appended
to the result. If copying takes place between objects that overlap, the
behavior is undefined.

Code fragment 4.2: Unix manual page of strncat (only the relevant parts are
included).

4.2.1 Automatic memory management

There are two types of variables: local and global variables. A local variable has
visibility in a function block. A global variable can be accessed anywhere from
the same file. Many languages have adopted a syntax where scope is defined as
an area between the curly brackets, { }. Code fragment 4.3 depicts the previous
situation.

1 variable A // Global variable
2

3 function()
4 {
5 variable B // Local variable
6 }
7

8 main()
9 {

10 print(A) // Since A is global, this works
11 print(B) // Does not work, since B is local under function()
12 }

Code fragment 4.3: Local and global variables.

When a program returns from a function any of the locally reserved vari-
ables cannot be accessed anymore (excluding global variables). The lifetime of a

16

variable is consequently as long as the program execution stays in the scope.
Exceptions exist depending on the chosen programming language. For ex-

ample in C language, allocated resources are retained after function call returns
– if resources are not explicitly freed. Apart from the previous exception, all
dynamically allocated memory should be freed before leaving the function.

However, the previous approach has certain drawbacks. If one forgets to
release the dynamically allocated memory before returning from the function,
memory stays allocated and reference to it is lost. In case the allocated informa-
tion is confidential, there is a possibility to leak this information. A determined
attacker is able to read unwanted parts of the memory, and therefore one should
pay attention how memory is aligned and zeroed when confidential information
is stored.

In certain languages that do not provide automatic memory handling, memory
can be allocated without first zeroing the area. C is one of these languages and
to be specific, its function malloc can be used for the purpose. With certain
knowledge the attacker can alter the previously used memory block and read
confidential information. One possible defence against these kind of attacks is
to patch malloc to force erase allocated memory blocks. Such functionality is
provided viamalloc.conf (J and Z switches) at least in FreeBSD [FreeBSD malloc,
2014] and OpenBSD [OpenBSD malloc, 2013]. An other approach would be to
switch to a memory safe language.

Automatic garbage collection takes care that all dynamically loaded chunks
are freed afterwards and the previously mentioned leak cannot happen. Without
automatic garbage collection every dynamically allocated memory block must be
released by the user. Omitting the deallocation operation makes it possible to
have a memory leak.

4.3 Protecting the memory

There are several ways to protect memory from leaks and buffer overflows. In this
section, the main focus is the ProPolice memory protection method. It prevents
buffer overflow and stack smashing attacs moderately well as proven by Wilander
and Kamkar [2000, pp. 13 - 14]. These will be discussed in greater detail under
Predefined flaws section.

Figure 4.1 shows an enhanced process memory layout that resides in a com-
puter memory. The technique is known as ProPolice [IBM Research, 2001] and it
protects against the stack smashing attacks, also known as stack overflow attacks.

17

Figure 4.1 Structure of a computer memory stack and an enhanced memory
stack.

Protection works by inserting an extra information, canary (sometimes called as
a cookie), into the stack. Canary is basically a random value. The canary is in-
serted into each function call at compile time [Advances in OpenBSD, 2013, pp.
10-12]. If the canary changes during the execution time, the program terminates.

Furthermore, ProPolice reorders the stack in a way that the flags and the
pointers are placed lower in the stack. If overflow occurs, it likely first overwrites
the canary. It makes harder to overwrite flags and pointers since the canary
changes are noticed. ProPolice has moderately low regression to performance
since it is only about 1.3%.

Even if the compiler would use canaries to protect against stack smashing,
there are still possibilities to pursue an attack. To make buffer overflow attacks
even harder to gain any benefit, the OpenBSD [OpenBSD, 2013] operating system
[Advances in OpenBSD, 2013, p. 16] introduces randomizing ld.so (run-time link-
editor) memory load locations, as well as randomizing mmap and malloc calls.

Another widely used approach against buffer overflow attacks is to use an NX-
bit. NX-bit stands for Non-Execute Bit. It works by denying write right (w) and
execute right (x) existing for a memory stack at the same time. Its importance
have been seen so crucial that modern processor manufacturers has implemented
it on a hardware level. Although it is widely used and works in general cases, it
can be circumvented. A proof of concept attack was introduced by Mastropaolo
[Mastropaolo M., 2005].

18

4.4 Access control methods

Many different access control methods exist and it can be tedious to find an ap-
propriate application for each method. It should be clear for what purpose access
control is going to be used. Some environments work perfectly with discretionary
access control (DAC), whereas other environments demand more fine-grained ap-
proach and control of information flow. Discretionary access control is a basic
access control and is shipped with most operating systems. Object can have only
one user and one group set at time. It is also easy to implement for different sys-
tems. If the information flow is important, then role based access control (RBAC)
methods like mandatory access control (MAC) should be considered.

Some of the methods are too complicated to be used consistently. Access
Control List (ACL) is a good example of ambiguous functionality where capability
setting is not straightforward. For instance, file or directory can have read and
write access for user John, execute and read access access for user Jess and read
for the other users. Files that have many distinct rules will become quickly
unmaintainable.

Another example is from the Windows and the Macintosh OS X world where
MAC restrictions (on by default) displease many regular users by not letting
them complete their tasks. After downloading a file from the Internet a dialog
asks whether the program should be executed. More similar pop ups will follow
and the screen is filled up with questions − just to complete a simple task. Piece
by piece users turn off the MAC based access control and are again vulnerable to
exploits.

4.4.1 Sandboxes and chroot

Sandboxing is an important factor when isolating running services or processes.
Well designed sandbox implementation mitigates compromising the complete sys-
tem in the case of a malfunction of a program.

The chroot (change root) function call changes the visibility of a given direc-
tory. If a directory /home/user1 is influenced by chroot, it is seen as /, the root
directory. Chroot is implemented in all modern operating systems and does not
need any extra framework to be installed in order to gain a simple and working
file system sandbox.

There are few drawbacks when chrooting a process. All the needed runtime
dependencies must be copied inside the chrooted directory. Since /home/user1
is now seen as /, the file system hierarchy must be imitated inside the chrooted

19

environment. References to an object that resides outside the chroot do not work.
For instance, soft links pointing out of the chroot are superfluous. If the process
must run with root privileges, chroot is rendered useless [Provos et al, 2010], since
root can always escape from the chroot environment.

Example 4.4.1.1 Keeping a compilable program updated in a chrooted envi-
ronment can be tiresome. If the operating system updates its libc, one might
have to update libraries in the chrooted environment too, or otherwise programs
can malfunction. The program ldd (list dynamic object dependencies) is a helpful
tool when replicating programs into the chroot environment. Copying the needed
libraries can be eased with scripting which omits manual intervention.

4.4.2 Privilege separation

In a basic non-secure environment, clients interact directly with a privileged pro-
cess. This exposes the system to a danger, since a malfunction can leak higher
privileges or grant access to confidential information. Since it is not always pos-
sible to drop higher privileges, Provos et al. [2003] implemented privilege sep-
aration. They propose isolation between the interacting clients and the server
processes. By this way clients interact with non-privileged processes that have
been forked from the privileged parent process. The privileged parent process can
be needed for crucial tasks, like binding the listening address to low ports. Low
ports are smaller than 1024. Splitting the processes makes the program more
resilient against attacks since a malfunction only affects the forked children. An
outline in Figure 4.2, shows how communication is made when a client from the
Internet requests an HTTP page.

Figure 4.2 Communication negotiation between an Internet client and a service
where privileges have been separated.

20

5 Static code analysis
Expressing errors clearly is becoming more important since the complexity of
programs is growing. Bug hunting in such systems is tedious and difficult. Auto-
mated checkers and analyzers exist for different purposes, for example scanning
vulnerabilities or measuring the complexity of the code. Static code analyzer is
a compiler-kind program that performs lexical analysis of source code and com-
putes a variety of measures. Hereby, bugs and vulnerabilities can be exposed
without running a program binary [Cauldwell P., 2008, p. 135].

Since analyzing code by hand is a vastly time consuming and error prone
task, static analyzers can outperform humans. However, that does not remove
the human factor from the analyzing loop since not all the issues mean real errors
or vulnerabilities. These false alarms are called false positives. Besides that,
there are many cases where humans are able to find errors when analyzers detect
nothing aberrant. Patrick Cauldwell [Cauldwell P., 2008, p. 135] encapsulates
usage of static code analysis as follows:

That knowledge comes at a cost, however. It is easy to gather more
information than you know what to do with using such tools. To make
the best use of static analysis tools takes time and study – time to get
to know how to use the tools properly.

Results can easily be misinterpreted if you aren’t familiar enough
with what they mean. There is also a danger of “coding to the num-
bers,” or changing your code to make metrics look more favorable with-
out adding any real value.

5.1 Types of checks

To give an idea of what kind of flaws and vulnerabilities a bare static analysis
is able to detect, one can have a look at Coverity’s free online scanner issue list
[Coverity, 2013]:

• Resources leaks
File or socket handles that are not freed after use. [Resource Leak - OWASP,
2013]

• Dereferences of null pointers
Trying to use a memory location through a null pointer. [Null Deference -
OWASP, 2013]

21

• Incorrect usage of APIs
One could use chroot without calling chdir afterwards. Syntactically this is
right, but chdir call must be made, since otherwise an attacker can escape
from the restricted environment. Mitre [CWE-227, 2013] explains that in
the following way “An API is a contract between a caller and a callee. The
most common forms of API misuse occurs when the caller does not honor
its end of this contract.”

• Use of uninitialized data
C language does not initialize its stack variables by default and hereby unini-
tialized variables mostly contain garbage with the stack memory references.
It is possible an attacker may alter this data. [CWE-457, 2013]

• Control flow issues
A program does something that was not intended by the programmer, such
as a logic error. Mitre [CWE-670, 2013] mentions an example where a multi
line if condition is not enclosed in brackets.

• Error handling issues
There are several improper ways to handle errors. The worst of all is to
omit error handling completely. In C, this means omitting checking function
return values and an external variable (errno) which is set by system calls.
[CWE-388, 2013] [CWE-391, 2013]

• Incorrect expressions
A programming clause is syntactically correct but logically incorrect. Mitre
has a list [CWE-569, 2013] of cases that are related to incorrect expres-
sions. One of the shown incorrect expressions is ID 481: Assigning in-
stead of Comparing. A simple example of erroneous comparison: if(a =

b){dosomething}. Another equality mark is needed to perform the correct
comparison.

• Concurrency issues
A common concurrency problem is time of check, time of use (TOCTOU).
Since multicore hardware platforms are more common nowadays, it is rea-
sonable to utilize all cores and processors simultaneously. This means
that many problems can be divided into smaller parts and run in paral-
lel, threaded. Threads can communicate together by sharing memory but
there are also certain drawbacks in this method. When multiple threads
access the same resource without correct locking or implementing atomic-

22

ity operations [CWE-622, 2013] a race condition may happen. Afterwards
when another thread reads the value, it may be something that was not
indented by the programmer.

• Insecure data handling
Better known as input validation problem. When the user input data is not
handled properly it might trigger unwanted commands. In demonstrative
examples, Mitre mentions [CWE-20, 2013] that if prices are not checked
against negative values, a user can alter the total sum.

• Unsafe use of signed values
C has several variable types. There are, for example, signed int and unsigned
int. Since unsigned cannot be negative, there can be logical errors when
operating with two different types of signedness. [CWE-570, 2013]

Although the list is rather short it only covers some cases that Coverity scan
is able to detect. Plain C related vulnerabilities list [CWE-658, 2014] is quite
comprehensive. The list does not include vulnerabilities which are common for
all languages or platforms, because the list would be enormous. Checking the list
manually would be cumbersome and error prone assignment.

It is worth to note that dynamic analysis [Hass A. M. J., 2008, p. 381]
is contrary of static analysis. The main idea of these tools is the same: detect
misuse, although the functionality differs. The biggest difference is that programs
are analyzed during execution time. These tools detect anomalies in memory
usage by analyzing allocation and deallocation events. Valgrind [Valgrind, 2013]
is a such tool that is able to detect these kind of bugs but also thread related
problems and race conditions. Advanced memory inspection includes pedantic
analysis of pointers and memory, and it can predict memory exhaustion before it
occurs.

5.2 Annotations

An analyzer that supports for annotations, has finer finer granularity to track
content and perform more precise checks. In some analyzers, annotations are
enclosed within the comments whereas other analyzers use macros. Annotations
are added into the source code and the analyzer is able to provide stricter control
flow checks against the given variable or object. It is possible to indicate that a
certain parameter in a function is read-only, therefore writing into the parameter

23

cannot be done in this function. Code fragment 5.1 has an example showing how
annotations can be used.

1 int
2 myfunc(_IN_(mystring) char ∗mystring, size_t len)
3 {
4 mystring = "test"; /∗ Causes failure ∗/
5 }

Code fragment 5.1: Code with annotations.

Syntax of the annotations will vary regarding the used analyzer. Here in Code
fragment 5.1, _IN_ means that the function can read from the buffer mystring
but writing will cause an issue for the analyzer.

5.3 Control flow and data flow analysis

Some of the analyzers perform control flow analysis and data flow analysis. Data
flow analysis tracks down variable usage at different points in a program execution
[Cooper K. D. et al., 2013].

Code fragment 5.2 demonstrates how control flow analysis works in practice.
In general, control flow analysis has only two outcomes, true or false. When
function call returns before all dynamically allocated resources are freed, control
flow analysis results false. If there is an possibility for alternative return before
calling free, the result is false and a possible memory leak exist. It depends on
the analyzer’s implementation how well it catches the leaks. Some analyzers use
more fine-grained heuristics which produces better results, namely reduces false
positives.

Demonstration of data flow analysis is depicted in Code fragment 5.3 [Poll E.,
2011d].

5.4 Survey of analyzers

This section familiarizes with different tools that are freely available for every-
day use. Some of the commercial brands offer analyzers free for individual use.
Anne Hass [Hass A. M. J., 2008, p. 223] mentions in her book that some stan-
dard development tools, such as compilers or linkers, are able to perform limited

24

1 void
2 dosomething(int multiplier)
3 {
4 char ∗myarr = NULL;
5

6 if ((myarr = calloc(BUFSIZE, sizeof(char))) == NULL)
7 err(1, NULL);
8 if (multiplier < 10)
9 return; /∗ returning without freeing myarr ∗/

10 /∗ ... do something in here ... ∗/
11 if (myarr)
12 free(myarr);
13 }

Code fragment 5.2: An example of control flow analysis depicting a possible
memory leak. Variable myarr is not freed in some circumstances.

1 /∗ Case 1 ∗/
2 int d = 5;
3 c = d; /∗ Variable c is initialized ∗/
4

5 /∗ Case 2 ∗/
6 int c;
7 c = d;
8 d = 5; /∗ Variable c is not initialized, thus containing random data from the memory ∗/

Code fragment 5.3: Data flow analysis.

static analysis. The book was written in 2008 and nowadays many compilers and
compiler suites have more advanced static code analyzers than in 2008.

An analyzer can be driven moderately easily by utilizingMakefile, for example.
If there is no Makefile support it can be an exhausting process trying to keep
includes, libraries and other related functionality in order. If the analyzer needs
tremendous work to operate and to keep it up to date with the changing code base
it will become harder to integrate it into the development cycle. Cumbersome
setup will likely kill the motivation to use the analyzer.

When analyzing a result, too many false positives will hide the real problems
and the results are rendered unreadable and non-functional. Consequently it is
crucial to have an easily integrable analyzer that gives helpful notifications of how
to reduce the bug count. Pointing a possible bug is certainly good but giving a

25

hint how to fix it is even better.
The used tools are shown in Figure 5.1. More detailed description of each

analyzer and the options used in the tests.

Analyzer Version Annotations License

Clang, LLVM 3.5 Yes
University of Illinois/
NCSA Open Source License

cppcheck 1.67 No GPLv3
GCC 4.8.2 Yes GPL3+
Flawfinder 1.27 No GPLv2
Splint 3.1.2 Yes GPL

Figure 5.1 List of tested static code analyzers.

5.4.1 Clang and Scan-build

Clang [Clang Analyzer, 2013] is a C language front end of the LLVM compiler
suite [LLVM, 2013] which is sometimes called Low Level Virtual Machine. The
name is misleading since it has little to do with traditional virtual machines.
LLVM is a collection of modular and reusable compiler and toolchain technologies.
Due the modular nature of Clang it is possible to implement a decent static code
analyzer for it.

Clang ships with a separate static analyzer called scan-build [Clang Analyzer,
2013]. Several separate analyzer modules exists for different uses. Most of the
modules solve a single issue, such as checking stack overflows or following malloc()
and free() usages. Both LLVM and scan-build have support for annotations.
Output of scan-build is HTML.

5.4.2 Cppcheck

Although the name cppcheck [cppcheck, 2013] refers to the C++ language, it is
capable to parse the C language. Cppcheck has support for the following features:
Out of bounds checking, check the code for each class, checking exception safety,
memory leaks checking, warn if obsolete functions are used, check for invalid
usage of Standard Template Library (STL), check for uninitialized variables and
unused functions. False positives can be suppressed with comment annotations.

Cppcheck also includes additional checks against style, performance and porta-
bility. Portability concerns checking against certain platform related conventions.

26

There is an option for XML output which makes integration to other tools, such
as continuous integration systems easier. During the development process same
piece of code is often edited by different developers. At times when a user A and
a user B combine their code changes together a merge conflict occurs. When the
conflict occurs it must be resolved by the code committer. Continuous integration
automates testing on these situations by ensuring the code works as it should.
HTML output is available via plugins.

5.4.3 Flawfinder

Flawfinder [Flawfinder, 2013] is a somewhat crude analyzing tool written in
Python to clean up at least some potential security problems. It tries to be a
small as well as easy to install and use analyzer.

Flawfinder has a database of security wise poorly designed functions. Its
documentation [Flawfinder, 2013, How Does Flawfinder Work?] mentions the
following functions as an example: Buffer overflow: strcpy, strcat, gets, sprintf,
and the scanf family. Format string problems: [v][f]printf, [v]snprintf and syslog.
Race conditions: access, chown, chgrp, chmod, tmpfile, tmpnam, tempnam, and
mktemp. Potential shell metacharacter dangers: exec family, system, popen), and
poor random number acquisition (such as random).

Later on the source code is matched against these flaky functions and sorted
against the severity of vulnerability. Then the riskiest flaws are set on the top of
the results. The risk level is shown in square brackets from 0 to 5, where 0 stands
for very small risk and 5 stands for great risk. Besides functions, their parameters
are considered in the ranking. A function with constant parameters does not have
that high impact for the ranking as mutable parameters, for instance. Flawfinder
is not aware of function parameter data types and cannot determine whether the
function is called correctly. There is no support for data flow analysis. By default
output is textual but HTML output can be enabled with a run time switch.

5.4.4 GCC

GCC stands for Gnu Compiler Collection [GCC, 2013]. For a long time GCC
has been the de facto compiler in the open source compiler scene. Nowadays
GCC has gotten a worthy competitor from Clang. GCC has support for variety
of languages and hardware platforms. GCC was chosen for the comparison as a
control analyzer. Although it supports checks that are common to static analyzers
the main functionality lies on compiling and linking.

27

An article in LWN.net [Corbet J., 2012], explains the porting efforts of static
analyzer to GCC. Earlier versions of GCC had more vague error messages and
they were not as readable as depicted in the Figure 5.4. Albeit the warning is
somewhat easy to spot in here it can be indicated better as will be seen soon.
Modern versions have this ambiguous behaviour remedied and somewhat copied
the outcome from Clang. LWN’s article mentions

Some developers at Google have been working on just such a project
for some time, but they have just relocated the project from GCC to
the LLVM Clang compiler, saying that GCC is not suited to the work
they want to do. The result has been a sort of wake-up call for GCC
developers.

One interpretation could be a risen need of a better static analyzer, as a part of
the compiler tool chain. Now, even the compiler tool chains must do some basic
checks that are comparable to analyzers. Modular compiler makes it possible to
write more advanced analyzers.

1 unsigned long a = 10;
2 signed long b = −10;
3

4 if (a > b) /∗ line 25 ∗/
5

6 /∗ GCC output below ∗/
7 example_flaws.c:25: warning: comparison between signed and unsigned

Code fragment 5.4: GCC 4.2.1 error output.

5.4.5 Splint

Splint [Evans D. and Larochelle D., 2002] is a successor of the lint tool. Splint
does many of the traditional lint checks [Splint manual, 2013] including unused
declarations, type inconsistencies, use before definition, unreachable code, ig-
nored return values, execution paths with no return, likely infinite loops, and fall
through cases. More powerful checks are possible by using source code annota-
tions. In splint, annotations are stylized comments that document assumptions
about functions, variables, parameters and types.

28

Splint performs checks againts the following issues: dereferencing a possi-
bly null pointer, using possibly undefined storage or returning storage that is
not properly defined, type mismatches with greater precision and flexibility than
provided by C compilers, violations of information hiding, memory management
errors including uses of dangling references and memory leaks, dangerous aliasing,
modifications and global variable uses that are inconsistent with specified inter-
faces, problematic control flow such as likely infinite loops, fall through cases or
incomplete switches, suspicious statements, buffer overflow vulnerabilities, dan-
gerous macro implementations or invocations and violations of customized naming
conventions.

29

6 Test environment setup

This section describes the test setup and processes that were used to complete
the tests. First I will concentrate on operating system specific adjustments and
then familiarize with compilers related setups. Information regarding the static
analyzer setups will follow. In the last section I define a variety of predefined
flaws and propose fixes for them.

There is also a review for each tool regarding the difficulty of setting it up for
use. For the complete list of used switches please refer to Appendix C.

The analyzers are reviewed by their usability, false positive ratio, given mitiga-
tion technique in case a bug is found and how well it integrates in the development
cycle.

Probably the trickiest part was to set switches for the compilers. Simple
search over GCC manual page revealed over 200 switches. For the other tools the
setups were more or less straightforward.

Ranking of the analyzers would be cumbersome as it would need real world
application tests and to get most of the tools, adding annotations in code. Also,
each of the found issues should be reviewed with care. With a project of several
thousands of lines of code it takes more time and more work to analyze results
thoroughly. More pondering regarding this is in the conclusion and future studies
section.

Keeping these facts in mind, it is important to remember that this review is
only cursory.

6.1 Operating system

Primary tests were performed under an Openbsd operating system running amd64
1 platform and with a current release, here 5.5-beta. Secondary tests performed
under Linux Mint 16 Mate running 64 bit platform. Makefile needs adjustments
if running on Linux. This is covered in Makefile. With small tweaks the tests
should be repeatable on any Unix operating system.

Some of the vulnerabilities depend on operating system internals such as ap-
plied security additions and compiler switches. Buffer overflow mitigation can
be integrated to the compiler and consequently entire userland can gain the ad-
vantage of this. Userland refers to programs that run outside of the operating

1 Generally amd64 is an alias for 64 bit hardware platform.

30

system’s kernel memory space. One of these methods is ProPolice, which was
discussed earlier.

6.2 Compilers setup

Compilers contain a colossal amount of code and a bare Unix manual of GCC
contains text worth of a small book. Understanding all the runtime switches and
their combined effects in a larger context is almost impossible. Using different
compiler switches generates varying machine language, and hereby the resulting
output code can be hard to predict. This makes debugging harder and may lead to
cases where code works deterministically only on certain hardware architectures.
When compilers term is used in this section, it refers to Clang and GCC.

Compilers have built-in optimizers that can be enabled with switches. Au-
tomatic optimization tries to tune machine code to work more efficiently but in
some situations the end result is reduced efficiency. It is possible that compiler
will generate incorrect optimizations. For instance, some of the memory struc-
tures might get misaligned and this causes performance degeneration. It is also
possible that optimizations can alter functionality in a way programmer did not
intend to. GCC’s Bugzilla (bug tracking system) has an example [GCC Bugzilla,
2007] where optimization removes a null pointer check when -02 optimization is
used. Spotting the optimization errors demands verbatim reading of assembly
code and in big projects this is not a realistic requirement.

Benefit gained by micro optimizations is often moderate. Combining all this
information together with varying hardware platforms, userlands, kernel APIs
and other variables, makes it significantly harder to have deterministic code and
functionality.

Some of the chosen switches are not directly related to security scanning, for
instance -Wsystem-headers shows constructs and messages that are found from
the system headers and are overlapping in user’s code. Afterwards this is a great
aid when debugging the program since it produces less obfuscated output. All
automatic optimization related switches are omitted, also omitting style related
options such as -Wparentheses. It is worth to note, and also mentioned in the
GCC’s manual page that not all static analysis related switches give value for
hardening the programs.

There were some serious problems setting up the Clang’s scan-build. Errors
were vague and searching up the Internet did not come up with a clear answer.
The error was related to the CC variable in Makefile. If CC is set to something

31

else than gcc the end result is vague error and scan-build does not provide any
output. This is nowadays covered by scan-build’s website [Clang Scanbuild, 2014]
under the section Gotcha: using the right compiler.

Switches that are typical to certain dialects of C are also omitted. C89 & C90
alias ansi and C99, are examples of C dialects. The chosen switches follow C99
dialect.

6.2.1 Clang’s scan-build

List of available checks can be viewed with the scan-build –help command. By
default a decent list of checks were enabled, but nevertheless all C related extra
checks were included. ArrayBound checking has two versions and the newer one
was used. Certain checks had alpha prefixes in their names that could be a hint
of their development state. The documentation did not reveal if this assumption
is right. Not all the enabled test cases are covered by the example_flaws.c but
were enabled for genericity.

Overall the setup was easy, although obscurity occurs when a variable CC
is defined in a Makefile. The result was zero flaws in the analysing report. It
was time-consuming process to track down the culprit since it did not clearly
state any error. It is easy to assume analyzer did not find any flaws and that
analyzed source code is sound. Such errors and therefore false assumptions of
sound analyzing results, are hazardous.

6.2.2 Flawfinder

In Flawfinder, there is no possibility to control which checks are enabled. The
only way to affect results is to adjust the level of ranking, more precisely what
is the minimum trigger level. The rest of the switches are either controlling the
output or easing an IDE or editor integration. While testing the correct setup,
output becomes easily unreadable by being too verbose. As a workaround, −S
switch (single line comments) can be used.

In general, there are not that many switches to affect the end result. This
makes setup simple and swift. On the other hand extra functionality would be
good to have since the analyzing is a bit harsh and terse now.

6.2.3 Cppcheck

Cppcheck setup is fairly simple. Its Unix manual page and quick start guide were
clear and simple. It needed a path for the system headers, choosing the C dialect

32

and turning on a verbose mode. Extra checks seemed to find errors from system
headers so those were disabled as it garbled the results. In overall, the setup is
straightforward and fast since it ships with sane defaults.

6.2.4 Splint

Splint has a clean and simple Unix manual page that is well constructed. The
manual page also gives a hint that more info can be retrieved by running splint
-help in the command line. Running splint -help modes reveals that not all the
switches are documented in the manual page and there are many switches that
are not enabled by default. This mode includes a comparison chart that explains
clearly which tests are included in the each mode. After few test runs standard
mode was chosen. This is the default mode if no modes are selected. Any stricter
mode renders results practically superfluous.

The initial setup can be done quickly and manual page is helpful source when
choosing the right switches.

6.3 Predefined flaws

By using predefined vulnerabilities, it is known where the vulnerabilities lie and
how those should be handled appropriately. It can also reveal if the operating
system has taken extra steps to proactively plug certain leaks, i.e. using mitiga-
tion techniques against buffer overflow vulnerabilities. This gives us a controlled
environment where statical analyzers are easier to test. By obeying this conven-
tion it should be moderately easy to spot which flaws or even vulnerabilities the
analyzer omits.

Rationale of the chosen tests were their ranking in the Mitre’s TOP 25 list
[CWE Top 25, 2011] and hand picking a few personally seen flaws from the
Weaknesses in Software Written in C [CWE-658, 2014] list.

To control false positives, there are also proper implementations of the flawed
functions. The fixed functions have _fixed suffix in their name. Not all the
examples are vulnerabilities by default but when combined with recursion, data
structures and other complicated structures a competent cracker can gain more
power than originally intended.

Test functions and their explanations are given below. In each item, the last
section proposes a correct fix or fixes for the problem.

33

• example_signedness(void)
Comparing against signed and unsigned values. This might cause logical
errors since signed numbers can be negative but unsigned cannot.

To fix the problem, change both to signed or unsigned or at least use an
explicit cast when comparing to let compiler aware that the issues is noted
and intended. When doing explicit casts be sure the numbers will not
overflow. Also, take into account that unsigned numbers will not store
negative numbers.

• example_integeroverflow1(void)
Causes an integer overflow which means that a given number cannot fit
in the given space. Here a hexadecimal number 0xbadbadbad (in decimal
50159344557) cannot fit into an integer which is usually 32 bits, although
the size can vary as it depends on the used hardware, compiler and operating
system implementation. This becomes more fatal if a user input is stored
to the variable and appropriate checks are not used. According to the C99
standard integer overflow causes undefined behaviour [C99 standard, 2007,
p. 4].

Changing unsigned int to long remedies the problem. The better fix would
be to use u_int64_t or equivalent type definition that guarantees the vari-
able to be unsigned 64 bit number even if the hardware platform changes.

• example_integeroverflow2(void)
Uses the function atoi to convert characters to a number. The error in here
is that atoi does not perform any additional checks, which makes number
overflow viable.

With a careful use of strtol and strtoul functions one could prevent over-
flows. These functions use the ernno global variable to indicate errors.
For more detailed info of occurred error can be viewed by using the strerr
function and errno as parameter. A better solution would be to use the
strtonum function that reliably converts chars to (long long) integer.

• example_compare(void)
Compare whether float numbers are equal. Computer does not handle float
numbers as humans, hereby computer does not see if 0.001 is equivalent
to 0.001. Representing a real number is always an approximation, and
therefore, representation of 0.001 can be 0.0009999, for example.

34

Comparison must be done by using certain error level where the numbers
can be seen equal. Let us call the accepted error level as delta δ, and the
tolerance 0.0001, hereby δ = 1.0E-4. One possibility to fix the problem
could be if (fabs(a - b) < 1.0E-4). Java for example, uses the similar
approach that was presented here.

• example_bufferoverflow(void)
A classical off by one error. Misusage of strncpy function. It is far bet-
ter than strcpy since it performs boundary checks but does not check if
the source can fit into the destination buffer. Consequently the length of
mystring is greater than size of myarr. This can cause buffer and stack
overflow.

1 char myarr[3];
2 len = strlen(mystring) − 1;
3 len = (len > 2) ? 2 : len;
4 strncpy(myarr, mystring, len);
5 myarr[2] = ’\0’;

Code fragment 6.1: Fix for example_bufferoverflow(void).

A check seen in Code fragment 6.1 or even better, replacing strncpy with a
safe implementation like strlcpy fixes the vulnerability.

• example_stacksmashing(void)
Similar vulnerability as in example_bufferoverflow(void). This vulnerabil-
ity was inspired by Veracode’s blog [Elliot M., 2013] and Ted Unangst’s
reply [Unangst T., 2013]. Code snippet is borrowed from Veracode’s blog.
Even being an experienced programmer and having the code reviewed by
many, Ted had to learn the hard way that not the all the security measures
work as expected between different hardware platforms. The operating sys-
tem’s built-in stack smashing protection was working correctly on Intel 386
platforms but did not work on AMD 64. Different alignment rules on AMD
64 hardware architecture caused the canary to lie further in the stack, and
therefore permitted overflows. This is a good example of how hard it is to
write secure code that works as intended on different platforms.

The code includes an off by one error and the buffer overflow vulnerability.
Scanf function sets the same size as in myarr initialization, hereby 32. Since
the code uses char manipulator functions, one should be sure the last cell

35

(index of 31) is set to null, otherwise stack smashing can happen. Even
better, functions that handle erroneous input correctly should be preferred,
such as sscanf, snprintf or fgets depending on the parseable data.

• example_nullcheck(void)
This function tries to open a file and print its contents to the screen. The
user does not bother to check the return value of fopen and the program
crashes.

The function fopen returns a file descriptor for the opened file if it suc-
ceeds, null otherwise. Inserting if (fp == NULL) err(1, NULL) checks
fixes the problem. In addition, fgets function does not guarantee null ter-
mination and hereby that must be taken care off by using sizeof func-
tion. An alternative way could be strchr function as shown in exam-
ple_stacksmashing_fixed example.

• void example_chrootandprivdrop()
In Freebsd, Netbsd and Openbsd chroot is implemented in a vfs_syscall.c
file. All operating systems have implemented it differently. Examining
userland usage of chroot reveals that there are also differences in calling the
function. In history, there have been many known chroot vulnerabilities.
Chroot’s protective effect is dependent on operating system’s implementa-
tion details. In short, not all chroot vulnerabilities work on all operating
systems. Postfix [Postfix, 2013] was one of the first programs to utilize
chroot and privilege separation to promote stronger security. Because of
different implementations and for the portability, it is a good convention to
call chdir("/") after a successful chroot call. Also, it is important to drop
privileges after successful chdir execution. Otherwise user might be able to
break out of the chroot.

The problem in this example function is omitting the chdir call that can
lead to an escape from chroot jail. Likewise omitting dropping the privileges
may lead to the chroot escalation. Also, chroot should run with an UID
(user ID) that is not used by any other daemon. This prevents debuggers
from altering the outside processes. To fix the vulnerabilities, one should
use chdir after a successful chroot call and setuid or similar call to drop the
privileges.

36

• void example_omiterrno()
Many functions use the errno variable to store data of erroneous function-
ality. This function changes a global errno value.

The fix is simple. Introduce a local variable, for instance, int savederrno
= errno at the beginning of the function. At the end of the function the
global variable is updated: errno = savederrno.

• void example_inputvalidation()
This function has an inappropriate input validation problem. With an
ampersand in input user can set the intended command (first argument in
here is dot) on the background process and run an arbitrary extra command
on the latter argument (here grep root /dev/passwd). Grep root will fetch
essential user account information regarding the root user, such as used
shell, user ID and path of the home directory.

Using functions execv, execve or execl helps to cope against the arbitrary
command execution vulnerability since these functions implements input
validation, at least on some level. In exec family functions, executable and
parameters are given separately which makes malicious command injection
harder.

37

7 Analyzing predefined flaws results
In this section, I will analyze the test flaw scan results and see how well the
flaws were found. I will also pay attention to how errors are presented and if the
analyzer gives a hint how to fix them. The complete transcript of the found flaws
can be seen in Appendix D.

7.1 Compilers (Clang and GCC)

In many cases, output lines are indicating the same error, but express it differ-
ently. Both compilers detects basic issues fairly well. Issues are easy to parse due
to consistent color usage and errors are pointed out from the context with a caret
symbol. Redirecting ANSI colors causes garbled output if the receiver side does
not support ANSI, hence colors are not shown in Appendix D. Issue description
is terse but explains usually quite well what is wrong with the current code.

Both compilers give hints how the problem should be solved but does not
necessarily expose the correct solution. In general, this is a useful since it helps
unexperienced coders to spot the errors from code, although it may lead to a
incorrect resolution because of a wrongly interpreted hint. For example, one can
explicitly cast an int to an unsigned int to silence the warnings, although the
variable should be able to store negative values too. Wrong casts are harder to
debug since compilers will not yield warnings on them anymore. Almost all found
issues were sane.

Clang yields a summary which indicates how many issues were found.
In general, both compilers help to catch easy flaws but do not perform further

checks like control flow or data flow analysis. Neither of the two warns if insecure
APIs are used.

7.2 Cppcheck

The result of cppcheck is extremely terse. It only found issues on example_bufferoverflow
and example_nullcheck functions. Both issues are errors and should be fixed.

Cppcheck is the only one to provide fixing hints. The terse result suggested
that the scan might not work properly. Fiddling with the switches and searching
more information about extra checks did not change the output result to better.

Since both found flaws are real errors, it might be that cppcheck is concen-
trating on providing results that include real issues only, and uncertain issues are
omitted. It is an ambitious goal, but almost impossible to achieve. With larger

38

projects this can be favourable, since that pays attention to fix the real problems,
but at the same time it ignores other valuable flaws.

In comparison to the other results, the harsh approach seems to be pernicious.
Too much optimization is bad for the results.

7.3 Flawfinder

The first impression is that flawfinder is rather verbose by default. It found errors
from about half of the functions, including some of the fixed functions.

Flawfinder makes a good job explaining what the possible vulnerability is
and how it could be exploited. It also gave useful porting hint that the snprintf
function has flaky implementations on older systems. It was the only analyzer
in addition to scan-build to note misuse of chroot function, although it failed to
detect the proper use, exactly like scan-build. Announcing insecure APIs does
not add any value for the result if the information is known beforehand and only
makes the output more garbled. In addition, it lists every known insecure function
but does not do any appropriate checks, like control flow or data analysis if the
functions have been used correctly.

This indicates really poor functionality as it gives high false positive ratio and
hides real flaws. Somewhat opposite what cppcheck does. Almost the same result
can be achieved by using Unix’s grep command against insecure functions and
examining the output.

7.4 Scan-build

Scan-build found five issues. Two of them are for chroot. The latter one points to
a fixed version and for some reason it cannot observe the existing chdir call. This
led to perform some extra tests, where chdir call was set right after the chroot
call. However, this did not remove the chroot false positives from the result. As
mentioned in scan-build’s introduction the manual page refers to certain tests
with alpha prefix notation. It is unclear if alpha indicates its development state.
This could explain the feeble chroot check results.

In Code fragment 7.1 line 10, scan-build reports unused variable, but that is
a false positive because function strtonum assigns the value to errstr. Hereby
the analyzer is not able to detect that. The remaining four issues are real and
should be fixed. Scan-build’s control flow analysis was the only one to spot the
unreachable code, as seen in the Code fragment 7.2, line 11.

39

1 void
2 example_integeroverflow2_fixed(void)
3 {
4 long long int i = 0;
5 const char ∗errstr = NULL;
6

7 printf("example_integeroverflow2_fixed\n");
8

9 i = strtonum("1111111111111111", 0, UINT_MAX, &errstr);
10 if (errstr)
11 errx(1, "number 1111111111111111 too big: %s", errstr);
12 printf("i = %llu\n", i);
13 }

Code fragment 7.1: Predefined flaw: example_integeroverflow2_fixed function.

By conversion rules, unsigned long int will be converted to an signed long int
form, since -1 cannot be represented as an unsigned int. Per C standard, it will
be converted to UINT_MAX. In the end, UINT_MAX is always bigger than 10
and else is never reached.

1 void
2 example_signedness(void)
3 {
4 unsigned long int a = −10;
5 signed long int b = 10;
6

7 printf("example_signedness\n");
8

9 printf("a = %lu\n", a);
10 printf("b = %ld\n", b);
11 if (a > b)
12 printf("a is bigger\n");
13 else
14 printf("b is bigger or equal\n");
15 }

Code fragment 7.2: Predefined flaw: example_signedness_fixed function.

40

Figure 7.1 shows the result page of the successful scanning and Figure 7.2
depicts how flaws are indicated in the detailed view.

Figure 7.1 Scan-build results page.

Figure 7.2 Scan-build indicating buffer overflow flaw.

41

7.5 Splint

Splint’s result is colossal, example_flaws.c is 299 lines of code, while splint’s result
has 129 lines, yielding 40 issues. The results also include detailed information of
why the error message was given and gives a hint how it could be fixed.

Splint makes a good work parsing the function return types and notices if a
settable variable has a different type. As seen in Code fragment 7.3, splint warns
about differing return value.

1 example_flaws.c:131:27: Function strncpy expects arg 3 to be size_t gets int: len

Code fragment 7.3: Check of the function return value.

Checks seem not to be content aware and this explains a part of the false posi-
tives. Functions example_nullcheck and example_nullcheck_fixed deal with the
file pointer fp and splint shows a possible issue in the example_nullcheck_fixed
although it performs the null checks correctly. The return value of the fclose
function can be ignored if it returns a non-zero result, since the control to the
stream is already lost at this point. Like many other checkers, splint fails to check
appropriate chroot usage.

There is also a hint how certain checks can be disabled when the issue appears
for the first time. This would be better to be disabled by default since it makes
the results harder to parse.

Splint reports the line number where the issue occurred, hence the function
name does not add value into the results, although when integrated into an editor
or IDE it may come handy.

7.6 Conclusion of predefined analyzing results

Analyzers can be divided into two discrete groups: the ones that add value to de-
velopment process, and the others that report false issues and hence complicating
the development process.

The best results regarding these test were given by Clang and scan-build
combination. Splint produced a somewhat good result too, though there were
many false positives. Using the rest of the analyzers can be discouraging due to
their high false positive ratios.

Figure 7.3 has the overall results of the analyzers. In few cases, there are
issues that trigger a warning in certain analyzers. Some of these are harmless but

42

still not false positives. In some situations, these could be counted as real bugs.
Clang gives a warning when an int type variable is used as a parameter in strncpy
function, for example. In this thesis, only absolute false positives are counted as
false positives.

43

Test name clang + scan-build cppcheck flawfinder gcc481 splint
example_signedness 2 2 2
example_signedness_fixed
example_integeroverflow1 2 1
example_integeroverflow1_fixed
example_integeroverflow2 1 1 1 1
example_integeroverflow2_fixed 4*
example_compare 1 1 1
example_compare_fixed
example_bufferoverflow 3 3 2 2
example_bufferoverflow_fixed 1* 1*
example_stacksmashing 1 1 2 1 3
example_stacksmashing_fixed 1* 1* 1* 3*
example_nullcheck 1 1 2 4
example_nullcheck_fixed 2* 4*
example_chrootandprivdrop 1 1
example_chrootandprivdrop_fixed 1* 1* 2*
example_omiterrno 1
example_omiterrno_fixed
example_inputvalidation 3 2
example_inputvalidation_fixed 1* 3*
Total (falsepos/total) 2 / 9+5 1 / 3 6 / 18 8 / 0 17 / 42

Figure 7.3 Analyzers and found issues in predefined vulnerabilities. Issues are counted per function. Found issues are marked
with numbers and false positives are marked with * character. Issues found from functions with _fixed postfix are counted
as false positives. Empty cell means no issues found.

44

8 A real world example
This section examines a real world example of a Tvheadend [Tvhead, 2014] pro-
gram which is a multimedia streaming server for Linux, supporting different kinds
of DVB (Digital Video Broadcasting) technologies as input sources. Popularity in
numbers on Github are: number of forks 286 at the time, starred 517 at the time
and watch count 146. Forks indicates how many people have forked the repos-
itory to implement a certain functionality or create their own version from the
program, for instance. Watched shows notifications in user’s newsfeed (project’s
issues, comments and pull requests, etc.) Starring is similar to watch but it will
not show notifications in newsfeed.

Running sloccount [Sloccount, 2014] in the src directory yields a result of
70951 source lines of code (SLOC). Analyzes were executed against e9a22d9 com-
mit hash.

The tests were completed only in Linux environment since the software was
initially designed for Linux and utilizes Linux specific APIs, Video for Linux
(V4L) for example.

The choice of the real world example program was somewhat arbitrary, though
some things were considered:

• It must be written purely in C

• Somewhat popular, though not from the top lists

• Cross-platform code, though this can be tolerated if otherwise applicable

• No static code analysis or annotation macros in source code since that
means the code has been already reviewed

Github was chosen as a source, since it is one of the most popular open source
sites on the Web. A common trend among newest server software seems to be
that they are written in higher level languages. On the other hand, it can be a
perception distortion: programs written in trending programming language get
more attention in the media. The reason behind that could be for the higher level
of abstraction, automatic memory handling and weak typing. Limiting search
language to C reduced the top list results drastically. Nevertheless, there were
still good candidates available. Cross-platform code would have been preferred
though it was not mandatory.

I have read source code of some multimedia projects and remember excessive
usage of bad APIs and unsafe functions. Attention was put on multimedia related

45

projects, preferable multimedia daemons in this regard. Multimedia related code
needs to be optimized (e.g. codecs) and are usually feature rich due to support
for different kind of file formats, streaming options, GUI customizations and so
forth. The initial plan was to examine a music server software that I use daily,
but unfortunately that was written in C++, and consequently not applicable.

The one intention was to use software that is not yet widely reviewed and
hereby giving a higher understanding what kind of flaws statical analyzers can
catch in the wild. With a few checked projects there were static code analysis
related macros in the code and hereby superseded. On the other hand, it would
have been interesting to see what kind of new flaws analyzers had found from the
already analyzed code.

All issues cannot be commented on due to the complicated structure of tv-
headend which would need familiarization. Some of the analyzers gave a list of
many thousands issues, and analyzing each issue thoroughly is impossible in one
thesis. Each tool’s results are analyzed generally.

In order to explore the function calls more fluently, a tool named cscope
[Cscope, 2012] and exuberant ctags [Exuberant Ctags, 2009] were used. These
tools were immense helpful during the examination process.

Outputs could not be included in the appendix due to their excessive length.

8.1 Compilers (Clang and GCC)

The switches from the predefined vulnerabilities were used with minor tweaks,
see Appendix E for detailed info. Some switches were removed from the Makefile
since those dodged some important checks.

The most notable observation was that both compilers found lots of errors
and signedness comparison issues. Clang performs slightly better than GCC. It
is hard to estimate false positive ratio since the issues list was long.

The code has been written for Linux and it includes many GNU compiler
specific extensions. With a pedantic switch enabled these issues are shown. There
are no convincing reasons to use certain compiler specific annotations in code,
since it makes code harder to read, harder to parse for analyzers and in some
cases impossible to compile in different platforms.

It is hard to distinct how GCC’s errors differ from Clang’s errors with this
much data. Regarding the summary, Clang outputs count of total errors whereas
GCC does not. In total, Clang reports 7821 warnings. The original tvheadend
Makefile also had a few Clang specific switches that were appended to a CFLAGS

46

variable during the compile time, mainly to disable certain checks. Some of the
tvheadend’s Makefile checks were probably disabled because functions are not
implemented yet. It is hard to come with good reasons why the checks were
disabled, especially when the code base was full of ignorance towards security.
Clang related switches were enabled in this regard.

8.2 Cppcheck

The setup was really easy, though as a drawback the program was one of the
slowest. On one file cppcheck could not perform parsing correctly. Seeing the file
and the line number it is likely because of its macro parsing capabilities. Macro
parsing capabilities were also a weak point for scan-build, which will be reviewed
shortly.

The result was terse and the total number of issues found was 13. Nonetheless
the result was easy to read and prudent. Cppcheck was the only one to find realloc
issues in hstmsg.c file.

Moreover, many of the reported issues were real, hereby false positive ratio is
good but still, to emphasize, terse. Total 13 issues out of over 70 000 SLOC can
give a wrong impression about the code quality.

8.3 Flawfinder

The only difference to the example code review is that Flawfinder output was
set to HTML so the result could be reviewed in a browser. However, the result
was still hard to parse for the human eye. In some other code base, Flawfinder
would not be as successful as it was now. Wrong API (strcpy for example) usage
is easy to spot with “buffer” tagged lines, though not every buffer tagged line is a
vulnerability. Hereby, it is good for catching unsafe APIs but otherwise does not
give that much value as an analyzer.

8.4 Scan-build

Scan-build found 317 issues, albeit there were parsing errors during the analysis
process. Enabled checks were same to the predefined flaws section, excluding the
chroot check since that was proven to be non-functional. The issues count by
category is shown in Figure 8.1.

Closer examination of a few randomly chosen issues shows that in file intl-
conv.c line 156, alloca reserved resource is freed, although it should not. That

47

Bug type Quantity
API 2
Dead code 36
Dead store 6
Logic error 183
Memory error 37
Security 38
Unix API 9
Unix Stream API error 6
Total 317

Figure 8.1 Scan-build analysis results of tvheadend.

causes undefined behaviour and at worst, triggers a stack smashing overflow. In
addition, to the scan-build report, manual page of GNU Linux reminds not to
free alloca reserved resources. In imagecache.c file, a resource leak happens in im-
agecache_image_fetch function because FILE *fp variable is never closed before
the function returns.

Overall all the extra checks tend to be vain or in beta phase. Opposite to
cppcheck, scan-build is excessively verbose with all the checks enabled. False
positive ratio is high, though using default settings the situation normalizes.
With default settings scan-build yields 89 issues and the count of false positives
is reduced.

8.5 Splint

Preparing of Splint started by editing the Makefile of tvheadend, see Appendices
E and F for a detailed information. Splint could not find appropriate header files
and refused to continue. A workaround is to iterate every C file and execute Splint
for each. This can be achieved with a simple shell script shown in Appendix F.
When a project gets bigger and uses many programming languages the script
maintenance becomes impractical.

Analyzing the result files reveals that preprocessing errors were still around.
The total number of files that could not be parsed was 299 out of 358. The
manual page of Splint did not mention debug or verbose modes, and that makes
it is hard to find why files could not be parsed.

Overall, it was really hard to parse real errors from the results since it was filled

48

with missing header errors. It is not meaningful to measure speed performance
nor false positive ratio since so many files were skipped.

It is tedious and awkward process to integrate Splint into a project, not to
mention it failed to parse over 80% of the files.

8.6 Manual code review

Performing a manual code review on realloc function calls reveals that realloc was
used incorrectly overall. In one file, htsbuf.c, realloc was used corretly. Comments
have references to glibc library which could explain the exception.

Code fragment 8.1 is taken from a file httpc.c. If the realloc function call
fails it can leak memory and cause indeterministic behaviour. Code fragment 8.2
addresses these problems.

1 if (ssl−>rbio_pos + len > ssl−>rbio_size) {
2 ssl−>rbio_buf = realloc(ssl−>rbio_buf, ssl−>rbio_pos + len);
3 ssl−>rbio_size += len;
4 }

Code fragment 8.1: Using realloc incorrectly.

1 unsigned char ∗buf;
2

3 if (ssl−>rbio_pos + len > ssl−>rbio_size) {
4 /∗ If realloc returns NULL, ssl−>rbio_buf is still allocated ∗/
5 if ((buf = realloc(ssl−>rbio_buf, ssl−>rbio_pos + len)) == NULL) {
6 free(ssl−>rbio_buf); /∗ Without these leak(s) can happen ∗/
7 ssl−>rbio_buf = NULL; /∗ Without these leak(s) can happen ∗/
8 ssl−>rbio_size = 0; /∗ Without these leak(s) can happen ∗/
9 return NULL;

10 }
11 ssl−>rbio_buf = buf;
12 memcpy(ssl−>rbio_buf + ssl−>rbio_pos, rbuf + (len − r), len);
13 ssl−>rbio_size += len;
14 }

Code fragment 8.2: More eligible way to use realloc.

49

Another quick check for malloc and calloc function calls reveals that those
return values are not checked either. In addition, all memory allocation function’s
size values should be checked for underflows and overflows.

This would be a good starting point for the tvheadend team to practice manual
peer code reviews and get some security oriented developers in the team.

8.7 Conclusion of the real world example

Unsafe functions are used all over in the code. Using unsafe APIs and function
calls, strcpy for example, tells something about the code base. There are barely
return value checks. For instance, the Code fragment 8.1 depicts the realloc
misuse by omitting a null check (return value). Searching usage of strcpy and
strcat in the source directory yields 34 results. Using a semantic patcing tool
like Coccinelle [Coccinelle, 2014] automates the conversion workload. Most of
the found issues are quick and easy to fix and there is no real excuse to omit the
amendments.

Learning and writing the C language without ever hearing a precaution about
buffer overflow vulnerabilities sounds a bit unlikely. Especially when the buffer
overflow vulnerabilities have been in the CWE/SANS Top 25 list for decades
[CWE Top 25, 2011] and covered by the most of the learning materials.

It would have been interesting to analyze tvheadend code base with commer-
cial analyzers such as Coverity, Klokwork and Fortify even though the initial
idea was to use freely available open source tools. One factor could have been to
compare whether the commercial ones are worth of money.

If the intention is to write secure code one should adopt the above introduced
design principles as a part of the coding process. Using privilege separation with
chroot helps to mitigate whole server compromise. Favoring design principles
helps to cope with badly designed APIs, reduces the attack surface and primarily
makes code easier to understand. Chrooting the tvheadend to a distinct directory,
running it as a dedicated user, dropping extra privileges and separating client
access from the server would make it way more safe to use.

Nevertheless, even if good design principles would have been adopted it is
important to use safe APIs. Unsafe system calls can dilute the advantage gained
by good design principles. It is important to analyze code one or more analyzers
before the release to catch at least the most obvious unsafe system calls and API
usages.

As shown by the examples, static code analyzers are able to catch bugs but

50

it always needs user’s intervention. Unsafe API usage and omitted error checks
gives an impression that tvheadend developers have barely taken any security
measures into account during the development.

51

9 Conclusion and future studies

Completely secure systems do not exist. Humans are and will always be the
weakest link what comes to the computer security. Humans write the software,
develop the hardware and use the computers − appropriately or inappropriately.
Well designed security environment does not guarantee protection against all
plausible flaws that exist but makes system penetration and exploitation harder.
Even the safest systems cannot be left without updates after the initial setup has
been completed in a safe manner. Security is a race against time where the only
hope is incompetence of a malicious attacker. Many of the introduced methods
offer a safer way to execute programs, hide classified information, sustain integrity
or make service fail on a safe manner.

As a conclusion to the language based security, several badly written APIs
exist and are used daily. Also as proven by the thesis, many of them are am-
biguous and hard to use consistently. A leap in the development of security is
to substitute all unsafe functions with boundary-aware functions and use APIs
that have consistent interface. Rather than implementing programs to tighten up
application’s security, one should consider how the original program was written,
refactor if needed and adapt secure principles shown in this thesis. Using the
design patterns and well known security measures will help to port programs to
different platforms. Since it takes only a few extra steps and a little more pon-
dering to make programs considerably harder to exploit, there is no excuse to
take a shortcut. Advantages are be obvious and also answers to the first research
question.

Nevertheless, even the good design principles can be diluted by using unsafe
APIs. Luckily static code analysis is able to point out obvious flaws before they
are being exploited in the wild. Nowadays static code analyzers are getting more
intelligent and context awareness is getting better. Still, not all the issues are
necessarily flaws as can be seen by the examples. Every scan result needs a thor-
ough investigation before doing the fixes. This also answers the second research
question. A plain compiler makes a good job of catching bugs, however it does
not remove the need for static code analysis and manual reviews.

If the security is the main concern, performance overhead is inevitable, since
values must be checked against the different safety limits. In a modern computer,
regression is almost indistinguishable so it is not a valid excuse to omit checks.
Good security is multilayered which does not rely on one security measurement.

Using annotations in static code analysis would be interesting for the future

52

studies. This would give more sophisticated results for many analyzers. That
would also mean more work since there is no common syntax among the analyzers.

It is not a rare thing in open source projects that code is not analyzed or
reviewed by a third party even if it is enjoying large popularity. Way too many
expect someone else to do the job. On commercial side the problem is even worse,
since the programs are usually distributed as a precompiled binary that cannot
be debugged or analyzed easily. Vendor’s word is the only promise about the code
quality. Can the vendor be trusted and is analysis review done by the competent
developer? These questions should be asked when choosing secure software.

53

References
[Advances in OpenBSD, 2013] Advances in OpenBSD. <http://www.openbsd.

org/papers/csw03/index.html> (accessed: 19.12.2011).

[C99 standard, 2007] Final version of the C99 standard. <http:
//www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf> (accessed
27.01.2014).

[Cauldwell P., 2008] Cauldwell P. Using people, tools, and processes to build suc-
cessful software Wiley, Indianapolis, Indiana, 2008.

[Clang Analyzer, 2013] Clang Static Analyzer. <http://clang-analyzer.
llvm.org> (accessed 10.10.2013).

[Clang Scanbuild, 2014] Clang Analyzer - scan-build: running the analyzer from
the command line. <http://clang-analyzer.llvm.org/scan-build.html>
(accessed 25.01.2014).

[Coccinelle, 2014] Coccinelle: A Program Matching and Transformation Tool for
Systems Code. http://coccinelle.lip6.fr/ (accessed 13.08.2014).

[Cooper K. D. et al., 2013] Cooper K. D. et al. Iterative Data-flow Analysis,
Revisited Rise University Houston, Texas, USA. <http://www.cs.rice.
edu/~harv/my_papers/worklist.pdf> (accessed 26.10.2013).

[Corbet J., 2012] Corbet J. LWN.net. <http://lwn.net/Articles/493599/>
(accessed 01.12.2013).

[Coverity, 2013] Coverity Scan - Static Analysis. <https://scan.coverity.
com/faq#what-types-of-issues-tool-find> (accessed 25.09.2013).

[cppcheck, 2013] cppcheck. <http://cppcheck.wiki.sourceforge.net/> (ac-
cessed 12.10.2013).

[Cscope, 2012] Cscope. Cscope Home Page. <http://cscope.sourceforge.
net/> (accessed 02.06.2014).

[CWE-20, 2013] CWE-20: Improper Input Validation. <http://cwe.mitre.
org/data/definitions/20.html> (accessed 31.11.2013).

54

[CWE-120, 2013] CWE-120: Buffer Copy without Checking Size of Input (’Clas-
sic Buffer Overflow’). <http://cwe.mitre.org/data/definitions/120.
html> (accessed 30.11.2013).

[CWE-227, 2013] CWE-227: Improper Fulfillment of API Contract (’API
Abuse’). <http://cwe.mitre.org/data/definitions/227.html> (accessed
30.11.2013).

[CWE-388, 2013] CWE-388: Error Handling. <http://cwe.mitre.org/data/
definitions/388.html> (accessed 30.11.2013).

[CWE-391, 2013] CWE-391: Unchecked Error Condition. <http://cwe.mitre.
org/data/definitions/391.html> (accessed 30.11.2013).

[CWE-457, 2013] CWE-457: Use of Uninitialized Variable. <http://cwe.
mitre.org/data/definitions/457.html> (accessed 30.11.2013).

[CWE-569, 2013] CWE-569: Expression Issues. <http://cwe.mitre.org/
data/definitions/569.html> (accessed 30.11.2013).

[CWE-570, 2013] CWE-570: Expression is Always False. <http://cwe.mitre.
org/data/definitions/570.html> (accessed 31.11.2013).

[CWE-622, 2013] CWE-662: Improper Synchronization. <http://cwe.mitre.
org/data/definitions/622.html> (accessed 31.11.2013).

[CWE-658, 2014] CWE-658: Weaknesses in Software Written in C. <http://
cwe.mitre.org/data/lists/658.html> (accessed 23.01.2014).

[CWE-670, 2013] CWE-670: Always-Incorrect Control Flow Implementa-
tion. <http://cwe.mitre.org/data/definitions/670.html> (accessed
30.11.2013).

[CWE Top 25, 2011] CWE/SANS Top 25 Most Dangerous Software Errors.
<http://cwe.mitre.org/top25/#Listing> (accessed 30.11.2013).

[de Raadt, 2011] de Raadt T., Discussion on buffer overflow prevention
issues. <http://openbsd.org/papers/csw03/mgp00015.html> (accessed
12.12.2011).

55

[Elliot M., 2013] Elliot M. A tale of two compilers - Veracode security blog.
<http://www.veracode.com/blog/2013/11/a-tale-of-two-compilers/>
(accessed: 30.12.2011).

[Ericksson J., 2003] Erickson J. Hacking: The Art of Exploitation, No Starch
Press Inc., San Francisco, CA, 2003.

[Evans D. and Larochelle D., 2002] Evans D. and Larochelle D., Improving Secu-
rity Using Extensible Lightweight Static Analysis, IEEE Software, 19 (2002),
42-51.

[Exuberant Ctags, 2009] Exuberant Ctags. <http://ctags.sourceforge.
net/> (accessed 02.06.2014).

[Flawfinder, 2013] Flawfinder. <http://www.dwheeler.com/flawfinder> (ac-
cessed 08.02.2013).

[FreeBSD malloc, 2014] malloc, calloc, realloc, free, reallocf, malloc_usable_size
– general purpose memory allocation functions <http://www.freebsd.
org/cgi/man.cgi?query=malloc.conf&apropos=0&sektion=0&manpath=
FreeBSD+9.2-RELEASE&arch=default&format=html> (accessed 20.01.2014).

[GCC, 2013] GCC. The GNU Compiler Collection. <http://gcc.gnu.org/>
(accessed 26.09.2013).

[GCC Bugzilla, 2007] GCC Bugzilla. Bug 30785 - Test to null pointer optimised
away at -O2. <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=30785>
(accessed 23.03.2014).

[Gleick J., 2010] Gleick J. A bug and a crash - Sometimes a bug is more than a
nuisance. <http://www.around.com/ariane.html> (accessed: 02.10.2013).

[IBM Research, 2001] IBM Research. 2001. GCC extension for protecting appli-
cations from stack-smashing attacks. <http://www.trl.ibm.com/projects/
security/ssp/> (accessed 10.11.2011).

[ISO 8601, 2013] International Organization for Standardization. Date and
time format - ISO 8601. <http://www.iso.org/iso/iso8601> (accessed
12.09.2013).

56

[Hass A. M. J., 2008] Hass A. M. J., Guide to Advanced Software Testing, Artech
House, Norwood, Massachusetts, 2008.

[Lévy J-J, 2010] Lévy J-J. 2010. Un petit bogue, un grand boum! Inria
Microsoft research. <http://moscova.inria.fr/~levy/talks/10enslongo/
enslongo.pdf> (accessed: 02.10.2013).

[LLVM, 2013] The LLVM compiler infrastructure. <http://www.llvm.org/>
(accessed 10.10.2013).

[Mastropaolo M., 2005] Mastropaolo M., Buffer overflow attacks bypassing DEP
(NX/XD bits) - part 2 : Code injection. <http://www.mastropaolo.
com/2005/06/05/buffer-overflow-attacks-bypassing-dep-
nxxd-bits-part-2-code-injection/> (accessed 14.12.2011).

[Miller T. C. and de Raadt T., 1996] Miller T. C. and de Raadt T. Strlcpy and
strlcat - Consistent, Safe, String Copy and Concatenation. In: USENIX
Conference -99. Monterey, California. <http://openbsd.org/papers/
strlcpy-paper.pdf> (accessed 02.10.2011).

[Monit, 2013] Monit. M/Monit <http://mmonit.com/> (accessed 19.09.2013).

[Nagpal, 2009] Nagpal N. Unix and Shell Programming, Global Media, Lucknow,
India, 2009.

[Null Deference - OWASP, 2013] Null deference - OWASP. <https://www.
owasp.org/index.php/Null_Dereference> (accessed 30.10.2013).

[OpenBSD, 2013] OpenBSD operating system. <http://www.openbsd.org>
(accessed: 04.09.2013).

[OpenBSD malloc, 2013] Malloc, calloc, realloc, free, cfree - memory allo-
cation and deallocation. <http://www.openbsd.org/cgi-bin/man.cgi?
query=malloc&apropos=0&sektion=0&manpath=OpenBSD+Current&arch=
i386&format=html> (accessed 22.08.2013).

[Poll E., 2011a] Poll E. 2011a. Software security lecture notes. Lecture of design
principles. The Kerckhoffs institute, Radboud. Nijmegen. <http://www.cs.
ru.nl/E.Poll/ss/> (accessed 17.02.2012).

57

[Poll E., 2011b] Poll E. 2011b. Software security lecture notes. Lecture of lan-
guage based security 1. The Kerckhoffs institute. Radboud. Nijmegen. <http:
//www.cs.ru.nl/E.Poll/ss/> (accessed 17.02.2012).

[Poll E., 2011c] Poll E. 2011c. Software security lecture notes. Lecture of input
validation. The Kerckhoffs institute. Radboud. Nijmegen. <http://www.cs.
ru.nl/E.Poll/ss/> (accessed 17.02.2012).

[Poll E., 2011d] Poll E. 2011d. Software security lecture notes. Lecture of pro-
gram analysis with PREfast & SAL. The Kerckhoffs institute. Radboud. Ni-
jmegen. <http://www.cs.ru.nl/E.Poll/ss/> (accessed 17.02.2012).

[Provos et al, 2003] Provos N., Fiedl M., Honeyman P. Preventing Privilege Esca-
lation. In: Proceedings of the 12th USENIX Security Symposium. Washington,
DC, 2003.

[Postfix, 2013] The Postfix Home Page. <http://www.postfix.org> (accessed
14.12.2013).

[Provos et al, 2010] Puffy at work - Code right and secure, The OpenBDS
way. <http://quigon.bsws.de/papers/2010/bsdcan/mgp00046.html> (ac-
cessed 14.11.2011).

[Resource Leak - OWASP, 2013] Resource Leak - OWASP. <https://www.
owasp.org/index.php/Unreleased_Resource> (accessed 30.10.2013).

[Sloccount, 2014] SLOCCount. <http://www.dwheeler.com/sloccount/>
(accessed 02.06.2014).

[Splint, 2013] Splint. <http://www.splint.org> (accessed 08.02.2013).

[Splint manual, 2013] Splint manual. <http://www.splint.org/manual/
manual.html> (accessed 27.10.2013).

[SQL Injection - OWASP, 2013] SQL Injection - OWASP. <https://www.
owasp.org/index.php/SQL_Injection> (accessed 18.07.2013).

[Stuttard, D. and Pinto, M., 2008] Stuttard, D. and Pinto, M. Web Application
Hackers Handbook: Discovering and Exploiting Security Flaws, Wiley, New
Jersey, 2008.

58

[Supervisor, 2013] Supervisor: A Process Control System. <http:
//supervisord.org/>, (accessed 19.09.2013).

[TCP Wrappers, 2011] TCP Wrappers. <http://www.softpanorama.org/Net/
Network_security/TCP_wrappers/index.shtml> (accessed 18.10.2011).

[The Free Dictionary, 2012] The Free Dictionary. <http://encyclopedia2.
thefreedictionary.com/Keep+It+Simple%2c+Stupid>, (accessed
20.12.2012).

[The Open Group, 2011] The open group base specifications issue 6. <http://
pubs.opengroup.org/onlinepubs/009604599/functions/strncat.html>
(accessed: 11.12.2011).

[Tremplay J-P and Sorenson, 2008] Tremblay J.-P. and Sorenson P. G., Theory
and Practice of Compiler Writing, Global Media, Hyderabad, India, 2008.

[Tvhead, 2014] Tvhead. Tvheadend is a TV streaming server for Linux supporting
DVB-S, DVB-S2, DVB-C, DVB-T, ATSC, IPTV, and Analog video (V4L) as
input sources. <https://tvheadend.org/> (accessed 02.06.2014).

[Unangst T., 2013] Unangst T. is your stack protector working? <http://www.
tedunangst.com/flak/post/my-stack-protector-wasnt-working> (ac-
cessed 22.12.2013).

[Valgrind, 2013] Valgrind. About Valgrind <http://www.valgrind.org/info/
about.html> (accessed 26.09.2013).

[Wilander and Kamkar, 2000] Wilander J. and Kamkar M., A Comparison of
Publicly Available Tools for Dynamic Buffer Overflow Prevention, Linköpings
universitet.

[Wilton and Colby, 2005] Wilton P. and Colby, J. Beginning SQL, Wiley, New
Jersey, 2005.

[Wu-FTP, 2011] WU-FTPD Development Group. <http://wu-ftpd.
therockgarden.ca> (accessed: 02.12.2011).

59

A Java JDBC Stack trace
com.mysql.jdbc.exceptions.MySQLSyntaxErrorException: You have an error in your
SQL syntax; check the manual that corresponds to your MySQL server version for
the right syntax to use near ’and afdeling.provincie in (0,3) order by
afdeling.sort’ at line 3

at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:936)
at com.mysql.jdbc.MysqlIO.checkErrorPacket(MysqlIO.java:2941)
at com.mysql.jdbc.MysqlIO.sendCommand(MysqlIO.java:1623)
at com.mysql.jdbc.MysqlIO.sqlQueryDirect(MysqlIO.java:1715)
at com.mysql.jdbc.Connection.execSQL(Connection.java:3243)
at com.mysql.jdbc.Connection.execSQL(Connection.java:3172)
at com.mysql.jdbc.Statement.execute(Statement.java:706)
at com.mysql.jdbc.Statement.execute(Statement.java:783)
at coldfusion.server.j2ee.sql.JRunStatement.execute(JRunStatement.java:348)
at coldfusion.sql.Executive.executeQuery(Executive.java:1210)
at coldfusion.sql.Executive.executeQuery(Executive.java:1008)
at coldfusion.sql.Executive.executeQuery(Executive.java:939)
at coldfusion.sql.SqlImpl.execute(SqlImpl.java:325)
at coldfusion.tagext.sql.QueryTag.executeQuery(QueryTag.java:831)
at coldfusion.tagext.sql.QueryTag.doEndTag(QueryTag.java:521)
at cfindex2ecfm893406114.runPage(D:\websites\kicker\content\Uitslagen\index.cfm:32)
at coldfusion.runtime.CfJspPage.invoke(CfJspPage.java:192)
at coldfusion.tagext.lang.IncludeTag.doStartTag(IncludeTag.java:366)
at coldfusion.filter.CfincludeFilter.invoke(CfincludeFilter.java:65)
at coldfusion.filter.ApplicationFilter.invoke(ApplicationFilter.java:279)
at coldfusion.filter.RequestMonitorFilter.invoke(RequestMonitorFilter.java:48)
at coldfusion.filter.MonitoringFilter.invoke(MonitoringFilter.java:40)
at coldfusion.filter.PathFilter.invoke(PathFilter.java:86)
at coldfusion.filter.ExceptionFilter.invoke(ExceptionFilter.java:70)
at coldfusion.filter.ClientScopePersistenceFilter.invoke(ClientScopePersistenceFilter.java:28)
at coldfusion.filter.BrowserFilter.invoke(BrowserFilter.java:38)
at coldfusion.filter.NoCacheFilter.invoke(NoCacheFilter.java:46)
at coldfusion.filter.GlobalsFilter.invoke(GlobalsFilter.java:38)
at coldfusion.filter.DatasourceFilter.invoke(DatasourceFilter.java:22)
at coldfusion.CfmServlet.service(CfmServlet.java:175)
at coldfusion.bootstrap.BootstrapServlet.service(BootstrapServlet.java:89)
at jrun.servlet.FilterChain.doFilter(FilterChain.java:86)
at coldfusion.monitor.event.MonitoringServletFilter.doFilter(MonitoringServletFilter.java:42)
at coldfusion.bootstrap.BootstrapFilter.doFilter(BootstrapFilter.java:46)
at jrun.servlet.FilterChain.doFilter(FilterChain.java:94)
at jrun.servlet.FilterChain.service(FilterChain.java:101)
at jrun.servlet.ServletInvoker.invoke(ServletInvoker.java:106)
at jrun.servlet.JRunInvokerChain.invokeNext(JRunInvokerChain.java:42)
at jrun.servlet.JRunRequestDispatcher.invoke(JRunRequestDispatcher.java:284)
at jrun.servlet.ServletEngineService.dispatch(ServletEngineService.java:543)
at jrun.servlet.jrpp.JRunProxyService.invokeRunnable(JRunProxyService.java:203)
at jrunx.scheduler.ThreadPool$DownstreamMetrics.invokeRunnable(ThreadPool.java:320)
at jrunx.scheduler.ThreadPool$ThreadThrottle.invokeRunnable(ThreadPool.java:428)
at jrunx.scheduler.ThreadPool$UpstreamMetrics.invokeRunnable(ThreadPool.java:266)
at jrunx.scheduler.WorkerThread.run(WorkerThread.java:66)

60

B example_flaws.c

1 #include <err.h>
2 #include <errno.h>
3 #include <math.h>
4 #include <signal.h>
5 #include <stdio.h>
6 #include <stdlib.h>
7 #include <string.h>
8 #include <unistd.h>
9

10 #if defined __linux__
11 #include <sys/types.h>
12 #include <limits.h>
13 #endif
14

15 void
16 example_signedness(void)
17 {
18 unsigned long int a = −10;
19 signed long int b = 10;
20

21 printf("example_signedness\n");
22

23 printf("a = %lu\n", a);
24 printf("b = %ld\n", b);
25 if (a > b)
26 printf("a is bigger\n");
27 else
28 printf("b is bigger or equal\n");
29 }
30

31 void
32 example_signedness_fixed(signed long b)
33 {
34 signed long int a = −10;
35

36 printf("example_signedness_fixed\n");
37

38 printf("a = %ld\n", a);
39 printf("b = %ld\n", b);
40 if (a > b)
41 printf("a is bigger\n");
42 else

61

43 printf("b is bigger or equal\n");
44 }
45

46 void
47 example_integeroverflow1(void)
48 {
49 signed int i = 0xbadbadbad;
50

51 printf("example_integeroverflow1\n");
52

53 printf("i = %d\n", i);
54 }
55

56 void
57 example_integeroverflow1_fixed(void)
58 {
59 unsigned long int i = 0xbadbadbad;
60

61 printf("example_integeroverflow1_fixed\n");
62

63 printf("i = %lu\n", i);
64 }
65

66 void
67 example_integeroverflow2(void)
68 {
69 int i = 0;
70

71 printf("example_integeroverflow2\n");
72

73 i = atol("1111111111111111");
74 printf("i = %d\n", i);
75 }
76

77 void
78 example_integeroverflow2_fixed(void)
79 {
80 long long int i = 0;
81 const char ∗errstr = NULL;
82

83 printf("example_integeroverflow2_fixed\n");
84

85 i = strtonum("1111111111111111", 0, UINT_MAX, &errstr);
86 if (errstr)

62

87 errx(1, "number 1111111111111111 too big: %s", errstr);
88 printf("i = %llu\n", i);
89 }
90

91 void
92 example_compare(void)
93 {
94 double a = 0.00000001;
95 double b = 0.00000002;
96

97 printf("\nexample_compare\n");
98

99 printf("a = %f\n", a);
100 printf("b = %f\n", b);
101

102 if (a == b)
103 printf("a and b are equal\n");
104 else
105 printf("a and b not equal\n");
106 }
107

108 void
109 example_compare_fixed(void)
110 {
111 double a = 0.00000001;
112 double b = 0.00000002;
113

114 printf("\nexample_compare_fixed\n");
115

116 printf("a = %f\n", a);
117 printf("b = %f\n", b);
118

119 if (fabs(a − b) < 1.0E−4)
120 printf("a and b are equal\n");
121 else
122 printf("a and b not equal\n");
123 }
124

125 void
126 example_bufferoverflow(void)
127 {
128 char ∗mystring = "test";
129 char myarr[3];
130 int len = 0;

63

131

132 printf("\nexample_bufferoverflow\n");
133 len = strlen(mystring);
134 strncpy(myarr, mystring, len);
135 }
136

137 void
138 example_bufferoverflow_fixed(void)
139 {
140 char ∗mystring = "test";
141 char myarr[3];
142

143 printf("\nexample_bufferoverflow_fixed\n");
144 strlcpy(myarr, mystring, sizeof(myarr));
145 }
146

147 // Borrowed from Veracode’s blog, written by Elliot M.
148 void
149 example_stacksmashing(void)
150 {
151 int i = 0xabad1dea;
152 char myarr[32];
153

154 printf("\nexample_stackoverflow\n");
155 scanf("%32s", myarr);
156 printf("%s 0x%x\n", myarr, i);
157 }
158

159 void
160 example_stacksmashing_fixed(void)
161 {
162 unsigned int i = 0xabad1dea;
163 char myarr[32];
164 char ∗p = NULL;
165

166 printf("\nexample_stackoverflow_fixed\n");
167 if (fgets(myarr, sizeof(myarr), stdin) != NULL) {
168 if ((p = strchr(myarr, ’\n’)) == NULL)
169 err(1, "line too long?, aborting");
170 }
171 ∗p = ’\0’;
172 printf("%s 0x%x\n", myarr, i);
173 }
174

64

175 void
176 example_nullcheck(void)
177 {
178 FILE ∗fp;
179 char linebuf[256];
180

181 printf("\nexample_nullcheck\n");
182 fp = fopen("nonexistent", "r");
183 fgets(linebuf, sizeof(linebuf), fp);
184 printf("linebuf: %s\n", linebuf);
185 }
186

187 void
188 example_nullcheck_fixed(void)
189 {
190 FILE ∗fp;
191 char linebuf[256];
192

193 printf("\nexample_nullcheck_fixed\n");
194 if ((fp = fopen("nonexistent", "r")) == NULL)
195 err(1, NULL);
196 if (fgets(linebuf, sizeof(linebuf), fp) == NULL)
197 goto error;
198 linebuf[sizeof(linebuf) − 1] = ’\0’;
199 printf("linebuf: %s\n", linebuf);
200

201 error:
202 if (fp)
203 fclose(fp);
204 }
205

206 void
207 example_chrootandprivdrop(void)
208 {
209 printf("\nexample_chroot_as_user\n");
210 /∗ In a real application we must exit if the chroot fails. Here we use
211 ∗ warn() function just for the indication. ∗/
212 if (chroot("/tmp") == −1)
213 warn("cannot chroot to /tmp");
214 }
215

216 void
217 example_chrootandprivdrop_fixed(void)
218 {

65

219 gid_t newgid = 1000;
220

221 printf("\nexample_chroot_as_user_fixed\n");
222 if (chroot("/tmp") != 0 || chdir("/") != 0)
223 err(1, "%s", "/tmp");
224 /∗ Important to drop extra privileges since otherwise user could
225 ∗ escape the restricted environment. ∗/
226 if (setgroups(1, &newgid) ||
227 setresgid(newgid, newgid, newgid) ||
228 setresuid(newgid, newgid, newgid))
229 err(1, "cannot drop privileges");
230 }
231

232 void
233 example_omiterrno(int signal)
234 {
235 switch (signal) {
236 case SIGPIPE:
237 printf("broken pipe\n");
238 break;
239 default:
240 return;
241 }
242 }
243

244 void
245 example_omiterrno_fixed(int signal)
246 {
247 int olderrno;
248

249 olderrno = errno;
250

251 switch (signal) {
252 case SIGPIPE:
253 if (unlink("non_existant_file") == −1)
254 fprintf(stderr, "error: %s\n", strerror(errno));
255 printf("broken pipe\n");
256 break;
257 default:
258 return;
259 }
260

261 errno = olderrno;
262 }

66

263

264 void
265 example_inputvalidation(void)
266 {
267 char cmd[1024];
268 char ∗userinput = ". & grep root /etc/passwd";
269

270 snprintf(cmd, sizeof(cmd), "ls %s", userinput);
271 system(cmd);
272 }
273

274 void
275 example_inputvalidation_fixed(void)
276 {
277 char ∗userinput = ". & grep root /etc/passwd";
278 char ∗cmd[] = {"ls", userinput, NULL};
279 pid_t pid;
280

281 if ((pid = fork()) < 0)
282 err(1, "fork failed");
283 else if (pid == 0) {
284 execv("/bin/ls", cmd);
285 _exit(127);
286 }
287 }
288

289 int
290 main(void)
291 {
292 signal(SIGPIPE, example_omiterrno);
293 example_signedness();
294 example_integeroverflow1();
295 example_integeroverflow2();
296 example_compare();
297 example_stacksmashing();
298 example_bufferoverflow();
299 example_nullcheck();
300 example_chrootandprivdrop();
301 example_inputvalidation();
302

303 return 0;
304 }

67

C Makefile

1 CFLAGS = −std=c99 −pedantic −Wall −fsyntax−only
2 CFLAGS += −Wformat=2 −Wunused−parameter −Wsystem−headers \
3 −Wfloat−equal −Wshadow −Wpointer−arith −Wtype−limits \
4 −Wcast−qual −Wcast−align −Wconversion −Wempty−body \
5 −Wenum−compare −Wsign−compare −Wsizeof−pointer−memaccess

\
6 −Waddress −Wredundant−decls −Wpointer−sign \
7 −Wstack−protector −fstack−protector −Woverlength−strings
8 OUTPUT = codechecks.log
9 OUTPUT_HTML = codechecks_html

10

11 .PHONY: all clean
12

13 all: clean scanbuild cppcheck flawfinder gcc482 splint
14

15 cppcheck:
16 @echo "\n### $$(cppcheck −−version) ###" >> ${OUTPUT} 2>&1
17 @echo "###" >> ${OUTPUT}
18 cppcheck −v −−std=c99 example_flaws.c >> ${OUTPUT} 2>&1
19 flawfinder:
20 @echo "\n### flawdinfer $$(flawfinder −−version) ###" >> ${OUTPUT}

2>&1
21 @echo "###" >> ${OUTPUT}
22 flawfinder −n −S example_flaws.c >> ${OUTPUT} 2>&1
23 gcc482:
24 @echo "\n### $$(egcc −−version |head −1) ###" >> ${OUTPUT} 2>&1
25 @echo "###" >> ${OUTPUT}
26 egcc $(CFLAGS) example_flaws.c >> ${OUTPUT} 2>&1
27 scanbuild:
28 @echo "### $$(clang −v 2>&1 |head −1) and scan−build ###" >> ${

OUTPUT} 2>&1
29 @echo "###" >> ${OUTPUT}
30 clang $(CFLAGS) example_flaws.c >> ${OUTPUT} 2>&1
31 @echo "HTML scan result is under directory: ${OUTPUT_HTML}"
32 scan−build −v −o ${OUTPUT_HTML} \
33 −enable−checker alpha.core.BoolAssignment \
34 −enable−checker alpha.core.CastSize \
35 −enable−checker alpha.core.CastToStruct \
36 −enable−checker alpha.core.FixedAddr \
37 −enable−checker alpha.core.PointerArithm \
38 −enable−checker alpha.core.PointerSub \
39 −enable−checker alpha.core.SizeofPtr \

68

40 −enable−checker alpha.deadcode.IdempotentOperations \
41 −enable−checker alpha.deadcode.UnreachableCode \
42 −enable−checker alpha.security.ArrayBoundV2 \
43 −enable−checker alpha.security.MallocOverflow \
44 −enable−checker alpha.security.ReturnPtrRange \
45 −enable−checker alpha.unix.Chroot \
46 −enable−checker alpha.unix.MallocWithAnnotations \
47 −enable−checker alpha.unix.SimpleStream \
48 −enable−checker alpha.unix.Stream \
49 −enable−checker alpha.unix.cstring.BufferOverlap \
50 −enable−checker alpha.unix.cstring.NotNullTerminated \
51 −enable−checker alpha.unix.cstring.OutOfBounds \
52 −enable−checker security.FloatLoopCounter \
53 −enable−checker security.insecureAPI.rand \
54 −enable−checker security.insecureAPI.strcpy \
55 egcc −c example_flaws.c >> ${OUTPUT} 2>&1 # Replace egcc with

gcc in Linux
56 splint:
57 @echo "\n### $$(splint version 2>&1 |head −1) ###" >> ${OUTPUT} 2>&1
58 @echo "###" >> ${OUTPUT}
59 # ignore erroneous return value with ’−’
60 −splint example_flaws.c >> ${OUTPUT} 2>&1
61 clean:
62 rm −rf ∗.o ∗.core codechecks.log ${OUTPUT_HTML}

69

D codechecks.log

1 ### clang version 3.5 (trunk) and scan−build ###
2 ###
3 In file included from example_flaws.c:5:
4 /usr/include/stdio.h:396:23: warning: implicit conversion loses integer precision: ’int’ to ’

unsigned char’ [−Wconversion]
5 return (∗_p−>_p++ = _c);
6 ~ ^~
7 example_flaws.c:18:24: warning: implicit conversion changes signedness: ’int’ to ’unsigned

long’ [−Wsign−conversion]
8 unsigned long int a = −10;
9 ~ ^~~

10 example_flaws.c:25:8: warning: comparison of integers of different signs: ’unsigned long’ and
’long’ [−Wsign−compare]

11 if (a > b)
12 ~ ^ ~
13 example_flaws.c:49:17: warning: implicit conversion from ’long’ to ’int’ changes value from

50159344557 to −1380262995 [−Wconstant−conversion]
14 signed int i = 0xbadbadbad;
15 ~ ^~~~~~~~~~~
16 example_flaws.c:73:6: warning: implicit conversion loses integer precision: ’long’ to ’int’ [−

Wshorten−64−to−32]
17 i = atol("1111111111111111");
18 ~ ^~~~~~~~~~~~~~~~~~~~~~~~
19 example_flaws.c:102:8: warning: comparing floating point with == or != is unsafe [−Wfloat

−equal]
20 if (a == b)
21 ~ ^ ~
22 example_flaws.c:134:27: warning: implicit conversion changes signedness: ’int’ to ’unsigned

long’ [−Wsign−conversion]
23 strncpy(myarr, mystring, len);
24 ~~~~~~~ ^~~
25 example_flaws.c:133:8: warning: implicit conversion loses integer precision: ’unsigned long’ to

’int’ [−Wshorten−64−to−32]
26 len = strlen(mystring);
27 ~ ^~~~~~~~~~~~~~~~
28 example_flaws.c:151:11: warning: implicit conversion changes signedness: ’unsigned int’ to ’

int’ [−Wsign−conversion]
29 int i = 0xabad1dea;
30 ~ ^~~~~~~~~~
31 9 warnings generated.
32

33 ### Cppcheck 1.67 ###

70

34 ###
35 Checking example_flaws.c...
36 [example_flaws.c:155]: (error) Width 32 given in format string (no. 1) is larger than

destination buffer ’myarr[32]’, use %31s to prevent overflowing it.
37 [example_flaws.c:171]: (error) Possible null pointer dereference: p
38 [example_flaws.c:185]: (error) Resource leak: fp
39 Checking example_flaws.c: __linux__...
40

41 ### flawdinfer 1.27 ###
42 ###
43 Flawfinder version 1.27, (C) 2001−2004 David A. Wheeler.
44 Number of dangerous functions in C/C++ ruleset: 160
45 Examining example_flaws.c
46 example_flaws.c:271: [4] (shell) system: This causes a new program to execute and is

difficult to use safely. try using a library call that implements the same functionality if
available.

47 example_flaws.c:284: [4] (shell) execv: This causes a new program to execute and is difficult
to use safely. try using a library call that implements the same functionality if available.

48 example_flaws.c:212: [3] (misc) chroot: chroot can be very helpful, but is hard to use
correctly. Make sure the program immediately chdir("/"), closes file descriptors, and
drops root privileges, and that all necessary files (and no more!) are in the new root.

49 example_flaws.c:222: [3] (misc) chroot: chroot can be very helpful, but is hard to use
correctly. Make sure the program immediately chdir("/"), closes file descriptors, and
drops root privileges, and that all necessary files (and no more!) are in the new root.

50 example_flaws.c:73: [2] (integer) atol: Unless checked, the resulting number can exceed the
expected range. If source untrusted, check both minimum and maximum, even if the
input had no minus sign (large numbers can roll over into negative number; consider
saving to an unsigned value if that is intended).

51 example_flaws.c:129: [2] (buffer) char: Statically−sized arrays can be overflowed. Perform
bounds checking, use functions that limit length, or ensure that the size is larger than
the maximum possible length.

52 example_flaws.c:141: [2] (buffer) char: Statically−sized arrays can be overflowed. Perform
bounds checking, use functions that limit length, or ensure that the size is larger than
the maximum possible length.

53 example_flaws.c:152: [2] (buffer) char: Statically−sized arrays can be overflowed. Perform
bounds checking, use functions that limit length, or ensure that the size is larger than
the maximum possible length.

54 example_flaws.c:163: [2] (buffer) char: Statically−sized arrays can be overflowed. Perform
bounds checking, use functions that limit length, or ensure that the size is larger than
the maximum possible length.

55 example_flaws.c:179: [2] (buffer) char: Statically−sized arrays can be overflowed. Perform
bounds checking, use functions that limit length, or ensure that the size is larger than
the maximum possible length.

71

56 example_flaws.c:182: [2] (misc) fopen: Check when opening files − can an attacker redirect
it (via symlinks), force the opening of special file type (e.g., device files), move things
around to create a race condition, control its ancestors, or change its contents?.

57 example_flaws.c:191: [2] (buffer) char: Statically−sized arrays can be overflowed. Perform
bounds checking, use functions that limit length, or ensure that the size is larger than
the maximum possible length.

58 example_flaws.c:194: [2] (misc) fopen: Check when opening files − can an attacker redirect
it (via symlinks), force the opening of special file type (e.g., device files), move things
around to create a race condition, control its ancestors, or change its contents?.

59 example_flaws.c:267: [2] (buffer) char: Statically−sized arrays can be overflowed. Perform
bounds checking, use functions that limit length, or ensure that the size is larger than
the maximum possible length.

60 example_flaws.c:133: [1] (buffer) strlen: Does not handle strings that are not \0−terminated
(it could cause a crash if unprotected).

61 example_flaws.c:134: [1] (buffer) strncpy: Easily used incorrectly; doesn’t always \0−
terminate or check for invalid pointers.

62 example_flaws.c:155: [1] (buffer) scanf: it’s unclear if the %s limit in the format string is
small enough. Check that the limit is sufficiently small, or use a different input function.

63 example_flaws.c:270: [1] (port) snprintf: On some very old systems, snprintf is incorrectly
implemented and permits buffer overflows; there are also incompatible standard
definitions of it. Check it during installation, or use something else.

64

65 Hits = 18
66 Lines analyzed = 305 in 0.54 seconds (6809 lines/second)
67 Physical Source Lines of Code (SLOC) = 245
68 Hits@level = [0] 0 [1] 4 [2] 10 [3] 2 [4] 2 [5] 0
69 Hits@level+ = [0+] 18 [1+] 18 [2+] 14 [3+] 4 [4+] 2 [5+] 0
70 Hits/KSLOC@level+ = [0+] 73.4694 [1+] 73.4694 [2+] 57.1429 [3+] 16.3265 [4+] 8.16327

[5+] 0
71 Minimum risk level = 1
72 Not every hit is necessarily a security vulnerability.
73 There may be other security vulnerabilities; review your code!
74

75 ### egcc (GCC) 4.8.3 ###
76 ###
77 example_flaws.c: In function ’example_signedness’:
78 example_flaws.c:18:2: warning: negative integer implicitly converted to unsigned type [−

Wsign−conversion]
79 unsigned long int a = −10;
80 ^
81 example_flaws.c:25:8: warning: comparison between signed and unsigned integer

expressions [−Wsign−compare]
82 if (a > b)
83 ^

72

84 example_flaws.c: In function ’example_integeroverflow1’:
85 example_flaws.c:49:2: warning: overflow in implicit constant conversion [−Woverflow]
86 signed int i = 0xbadbadbad;
87 ^
88 example_flaws.c: In function ’example_integeroverflow2’:
89 example_flaws.c:73:10: warning: conversion to ’int’ from ’long int’ may alter its value [−

Wconversion]
90 i = atol("1111111111111111");
91 ^
92 example_flaws.c: In function ’example_compare’:
93 example_flaws.c:102:8: warning: comparing floating point with == or != is unsafe [−Wfloat

−equal]
94 if (a == b)
95 ^
96 example_flaws.c: In function ’example_bufferoverflow’:
97 example_flaws.c:133:14: warning: conversion to ’int’ from ’size_t’ may alter its value [−

Wconversion]
98 len = strlen(mystring);
99 ^

100 example_flaws.c:134:2: warning: conversion to ’size_t’ from ’int’ may change the sign of the
result [−Wsign−conversion]

101 strncpy(myarr, mystring, len);
102 ^
103 example_flaws.c: In function ’example_stacksmashing’:
104 example_flaws.c:151:2: warning: conversion of unsigned constant value to negative integer

[−Wsign−conversion]
105 int i = 0xabad1dea;
106 ^
107

108 ### Splint 3.1.2 −−− 21 Nov 2014 ###
109 ###
110 Splint 3.1.2 −−− 21 Nov 2014
111

112 example_flaws.c:7: Include file <unistd.h> matches the name of a POSIX library,
113 but the POSIX library is not being used. Consider using +posixlib or
114 +posixstrictlib to select the POSIX library, or −warnposix to suppress this
115 message.
116 Header name matches a POSIX header, but the POSIX library is not selected.
117 (Use −warnposixheaders to inhibit warning)
118 example_flaws.c: (in function example_signedness)
119 example_flaws.c:18:24: Variable a initialized to type int, expects unsigned
120 long int: −10
121 To ignore signs in type comparisons use +ignoresigns
122 example_flaws.c:25:6: Operands of > have incompatible types (unsigned long int,

73

123 long int): a > b
124 example_flaws.c: (in function example_integeroverflow2)
125 example_flaws.c:73:2: Assignment of long int to int:
126 i = atol("1111111111111111")
127 To ignore type qualifiers in type comparisons use +ignorequals.
128 example_flaws.c: (in function example_integeroverflow2_fixed)
129 example_flaws.c:85:6: Unrecognized identifier: strtonum
130 Identifier used in code has not been declared. (Use −unrecog to inhibit
131 warning)
132 example_flaws.c:88:25: Duplicate long qualifier on non−int
133 Duplicate type qualifiers not supported by ISO standard. (Use −duplicatequals
134 to inhibit warning)
135 example_flaws.c:88:23: Format argument 1 to printf (%llu) expects unsigned int
136 gets long long: i
137 example_flaws.c:88:17: Corresponding format code
138 example_flaws.c: (in function example_compare)
139 example_flaws.c:102:6: Dangerous equality comparison involving double types:
140 a == b
141 Two real (float, double, or long double) values are compared directly using
142 == or != primitive. This may produce unexpected results since floating point
143 representations are inexact. Instead, compare the difference to FLT_EPSILON
144 or DBL_EPSILON. (Use −realcompare to inhibit warning)
145 example_flaws.c: (in function example_bufferoverflow)
146 example_flaws.c:133:2: Assignment of size_t to int: len = strlen(mystring)
147 To allow arbitrary integral types to match any integral type, use
148 +matchanyintegral.
149 example_flaws.c:134:27: Function strncpy expects arg 3 to be size_t gets int:
150 len
151 example_flaws.c: (in function example_bufferoverflow_fixed)
152 example_flaws.c:144:2: Unrecognized identifier: strlcpy
153 example_flaws.c: (in function example_stacksmashing)
154 example_flaws.c:155:2: Return value (type int) ignored: scanf("%32s", myarr)
155 Result returned by function call is not used. If this is intended, can cast
156 result to (void) to eliminate message. (Use −retvalint to inhibit warning)
157 example_flaws.c:156:29: Format argument 2 to printf (%x) expects unsigned int
158 gets int: i
159 example_flaws.c:156:16: Corresponding format code
160 example_flaws.c: (in function example_stacksmashing_fixed)
161 example_flaws.c:167:25: Function fgets expects arg 2 to be int gets size_t:
162 sizeof((myarr))
163 example_flaws.c:171:3: Dereference of possibly null pointer p: ∗p
164 A possibly null pointer is dereferenced. Value is either the result of a
165 function which may return null (in which case, code should check it is not
166 null), or a global, parameter or structure field declared with the null

74

167 qualifier. (Use −nullderef to inhibit warning)
168 example_flaws.c:164:14: Storage p may become null
169 example_flaws.c:172:22: Possibly null storage myarr passed as non−null param:
170 printf (..., myarr)
171 A possibly null pointer is passed as a parameter corresponding to a formal
172 parameter with no /∗@null@∗/ annotation. If NULL may be used for this
173 parameter, add a /∗@null@∗/ annotation to the function parameter declaration.
174 (Use −nullpass to inhibit warning)
175 example_flaws.c: (in function example_nullcheck)
176 example_flaws.c:183:23: Function fgets expects arg 2 to be int gets size_t:
177 sizeof((linebuf))
178 example_flaws.c:183:34: Possibly null storage fp passed as non−null param:
179 fgets (..., fp)
180 example_flaws.c:182:7: Storage fp may become null
181 example_flaws.c:183:2: Return value (type char ∗) ignored: fgets(linebuf, s...
182 Result returned by function call is not used. If this is intended, can cast
183 result to (void) to eliminate message. (Use −retvalother to inhibit warning)
184 example_flaws.c: (in function example_nullcheck_fixed)
185 example_flaws.c:195:10: Null storage passed as non−null param: err (..., NULL)
186 example_flaws.c:196:27: Function fgets expects arg 2 to be int gets size_t:
187 sizeof((linebuf))
188 example_flaws.c:196:38: Possibly null storage fp passed as non−null param:
189 fgets (..., fp)
190 example_flaws.c:194:12: Storage fp may become null
191 example_flaws.c:203:3: Return value (type int) ignored: fclose(fp)
192 example_flaws.c: (in function example_chrootandprivdrop_fixed)
193 example_flaws.c:226:6: Operands of || are non−boolean (int):
194 setgroups(1, &newgid) || setresgid(newgid, newgid, newgid)
195 The operand of a boolean operator is not a boolean. Use +ptrnegate to allow !
196 to be used on pointers. (Use −boolops to inhibit warning)
197 example_flaws.c:228:6: Right operand of || is non−boolean (int):
198 setgroups(1, &newgid) || setresgid(newgid, newgid, newgid) ||
199 setresuid(newgid, newgid, newgid)
200 example_flaws.c: (in function example_omiterrno)
201 example_flaws.c:236:7: Unrecognized identifier: SIGPIPE
202 example_flaws.c: (in function example_inputvalidation)
203 example_flaws.c:270:2: Return value (type int) ignored: snprintf(cmd, si...
204 example_flaws.c:271:2: Return value (type int) ignored: system(cmd)
205 example_flaws.c: (in function example_inputvalidation_fixed)
206 example_flaws.c:278:24: Observer storage userinput used as initial value for
207 unqualified storage: cmd[1] = userinput
208 Observer storage is transferred to a non−observer reference. (Use
209 −observertrans to inhibit warning)
210 example_flaws.c:278:35: Local cmd[2] initialized to null value: cmd[2] = NULL

75

211 A reference with no null annotation is assigned or initialized to NULL. Use
212 /∗@null@∗/ to declare the reference as a possibly null pointer. (Use
213 −nullassign to inhibit warning)
214 example_flaws.c:284:3: Return value (type int) ignored: execv("/bin/ls",...
215 example_flaws.c: (in function main)
216 example_flaws.c:292:2: Return value (type [function (int) returns void])
217 ignored: signal(SIGPIPE, ...
218 example_flaws.c:16:1: Function exported but not used outside example_flaws:
219 example_signedness
220 A declaration is exported, but not used outside this module. Declaration can
221 use static qualifier. (Use −exportlocal to inhibit warning)
222 example_flaws.c:29:1: Definition of example_signedness
223 example_flaws.c:47:1: Function exported but not used outside example_flaws:
224 example_integeroverflow1
225 example_flaws.c:54:1: Definition of example_integeroverflow1
226 example_flaws.c:67:1: Function exported but not used outside example_flaws:
227 example_integeroverflow2
228 example_flaws.c:75:1: Definition of example_integeroverflow2
229 example_flaws.c:92:1: Function exported but not used outside example_flaws:
230 example_compare
231 example_flaws.c:106:1: Definition of example_compare
232 example_flaws.c:126:1: Function exported but not used outside example_flaws:
233 example_bufferoverflow
234 example_flaws.c:135:1: Definition of example_bufferoverflow
235 example_flaws.c:149:1: Function exported but not used outside example_flaws:
236 example_stacksmashing
237 example_flaws.c:157:1: Definition of example_stacksmashing
238 example_flaws.c:176:1: Function exported but not used outside example_flaws:
239 example_nullcheck
240 example_flaws.c:185:1: Definition of example_nullcheck
241 example_flaws.c:207:1: Function exported but not used outside example_flaws:
242 example_chrootandprivdrop
243 example_flaws.c:214:1: Definition of example_chrootandprivdrop
244 example_flaws.c:233:1: Function exported but not used outside example_flaws:
245 example_omiterrno
246 example_flaws.c:242:1: Definition of example_omiterrno
247 example_flaws.c:265:1: Function exported but not used outside example_flaws:
248 example_inputvalidation
249 example_flaws.c:272:1: Definition of example_inputvalidation
250

251 Finished checking −−− 42 code warnings

76

E Makefile of tvheadend (patch)

1 diff −−git a/Makefile b/Makefile
2 index adfaa40..48c27f5 100644
3 −−− a/Makefile
4 +++ b/Makefile
5 @@ −27,11 +27,23 @@ PROG := $(BUILDDIR)/tvheadend
6 # Common compiler flags
7 #
8

9 −CFLAGS += −Wall −Werror −Wwrite−strings −Wno−deprecated−declarations
10 +CC = clang
11 +CFLAGS += −Wall −Wwrite−strings
12 CFLAGS += −Wmissing−prototypes −fms−extensions
13 CFLAGS += −g −funsigned−char −O2
14 CFLAGS += −D_FILE_OFFSET_BITS=64
15 +
16 +# <Own additions start>
17 +#CFLAGS += −pedantic
18 +#CFLAGS += −Wformat=2 −Wunused−parameter −Wsystem−headers \
19 +# −Wfloat−equal −Wshadow −Wpointer−arith −Wtype−limits \
20 +# −Wcast−qual −Wcast−align −Wconversion −Wempty−body \
21 +# −Wenum−compare −Wsign−compare −Wsizeof−pointer−memaccess \
22 +# −Waddress −Wredundant−decls −Wpointer−sign \
23 +# −Wstack−protector −fstack−protector −Woverlength−strings
24 +# </Own additions end>
25 CFLAGS += −I${BUILDDIR} −I${ROOTDIR}/src −I${ROOTDIR}
26 +
27 LDFLAGS += −ldl −lpthread −lm
28 ifeq ($(CONFIG_LIBICONV),yes)
29 LDFLAGS += −liconv
30 @@ −40,10 +52,12 @@ ifneq ($(PLATFORM), darwin)
31 LDFLAGS += −lrt
32 endif
33

34 +
35 ifeq ($(COMPILER), clang)
36 −CFLAGS += −Wno−microsoft −Qunused−arguments −Wno−unused−function
37 −CFLAGS += −Wno−unused−value −Wno−tautological−constant−out−of−range−

compare
38 −CFLAGS += −Wno−parentheses−equality −Wno−incompatible−pointer−types
39 +CFLAGS += −Wno−microsoft
40 +#CFLAGS += −Wno−microsoft −Qunused−arguments −Wno−unused−function

77

41 +#CFLAGS += −Wno−unused−value −Wno−tautological−constant−out−of−range−
compare

42 +#CFLAGS += −Wno−parentheses−equality −Wno−incompatible−pointer−types
43 endif
44

45 vpath %.c $(ROOTDIR)
46 @@ −351,6 +365,16 @@ distclean: clean
47 rm −rf ${ROOTDIR}/build.∗
48 rm −f ${ROOTDIR}/.config.mk
49

50 +cppcheck:
51 + cppcheck −q −f −I${BUILDDIR} −I${ROOTDIR}/src −I${ROOTDIR} src >cppcheck.

txt 2>&1
52 +
53 +flawfinder:
54 + flawfinder −−html −−context src/ >flawfinder.html
55 +
56 +splint:
57 + rm −f splintoutput.txt
58 + ./splint.sh
59 +
60 # Create version
61 $(BUILDDIR)/src/version.o: $(ROOTDIR)/src/version.c
62 $(ROOTDIR)/src/version.c: FORCE

78

F splint.sh

1 #!/bin/sh
2

3 for line in $(find src/ −type f −iname "∗.c"); do
4 splint −warnposix "$line" >> splintoutput.txt 2>&1
5 done

