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Abstract

Background and Aims

Carbonic anhydrases comprise a large enzyme family that catalyzes the reversible conversion
of carbon dioxide to bicarbonate for controlling the acid-base balance in blood and other
types of tissues in almost all types of living bodies. Conservation study is an indispensable
approach to identify the functional elements in proteins. This can help with invention of
inhibitors of diseases, determination of the structure, protein-protein interfaces etc. The goal
of this research is to trace the conserved residues that are shared among all alpha carbonic
anhydrase isoforms in vertebrates, most notably those CAs containing Histidines in the active
center. The study of sequence conservation of all a-CA isozymes is important to do
comparative analysis among different isozymes and define their functional significance.
There are a few other conserved residues that have been recorded in previous literature, but
the conservation profiles have not been studied exhaustively.

Methods

To facilitate the study a Python-based pipeline was used that can automatically retrieve a
maximal number of orthologous sequences from the Ensembl database, do quality checks,
and quantify conservation at each residue based on the Ki/Ks approach of an automatically
generated codon-based alignments. A comparison made for the conservation profiles of
individual isozyme results from previous output, and also comparing these results to
conservation profiles of two largest groups that is conservation in all cytoplasmic and
extracellular isozymes.



Results

I have produced a complete and definitive list of absolutely and highly conserved residues in
the alpha CAs of tetrapods. Ninety percent of the conserved residues were shown to be buried
in the protein core. Structural and functional roles of the individual residues were identified
by literature review and inspection of structures, and high-quality visualizations were
produced in the human CA-Il 3D crystallographic structure. Complete list of residues
conserved exclusively in cytoplasmic and extracellular CAs were made and compared to
reveal that the cytoplasmic isozymes might share common binding sites on the surface for
interacting with other molecules whereas the extracellular isoforms have unique surfaces.
Finally, N-linked glycosylated sites of CA-VI, IX, XII, and XIV were studied. It was seen
that these extracellular isoforms did not share any precise glycosylated positions. However,
many glycosylation sites were observed positioned at the entrance of the active cavity, which
may facilitate the protein not to interact with other proteins that might block the active site.

Conclusions

This thesis constitutes the most extensive structural interpretation of the roles of conserved
residues in alpha CAs thus far. | have discovered previously undocumented structural
features and interpretations for several universally conserved residues (Trp-16, GIn-28, Pro-
30, Asn-61, Leu-44, Ser-105, His-122, Ala-134, Ala-142, Pro-186, Tyr-194, Ser-197, Pro-
201, GIn-222, Asn-244, Arg-246, and Arg-254). The comparison for the conservation profile
of cytoplasmic and extracellular isozymes revealed a possible common protein-binding
interface in the cytoplasmic isoforms. Finally, it was speculated from the visual comparison
of conserved N-glycosylation sites that the glycosylation sites around the passage of the
catalytic cavity may inhibit interactions with other proteins, and keep a clear passage to the
active site.
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Amino Acid Codes

Ala A Alanine
Cys C Cysteine
Asp D Aspartic acid
Glu E Glutamic acid
Phe F Phenylalanine
Gly G Glycine
His H Histidine
lle I Isoleucine
Lys K Lysine
Leu L Leucine
Met M Methionine
Asn N Asparagine
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GlIn Q Glutamine
Arg R Arginine
Ser S Serine
Thr T Threonine
Val \/ Valine
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Tyr Y Tyrosine

X Unspecified or unknown
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1 Introduction

Carbonic anhydrases (CA, EC 4.2.1.1) form a large protein group consisting of a number of
distinct families: a, B, y, 6 and {. They are often called metalloenzymes as they bind a metal
ion, mostly zinc, at the active center that is an essential component for the catalytic reaction.
Carbonic anhydrases actively participate in the catalysis of a CO2 (de)hydration reaction, that
is crucial for the maintenance of various physiological and biochemical processes in almost
all the living bodies (Dodgson 1991). They mostly control the respiration and acid-base
balance in blood and other tissues throughout the rapid interconversion of carbon dioxide and
bicarbonate as the carbon dioxide molecules react with waters to form bicarbonates and

protons:
CO; + H;0 = HCO3 + H*
To date the a-CA family is the most studied consisting of 16 different isozymes contributing

in a wide variety of cellular functions (Esbaugh 2006).

The a-CA family is further divided into the following distinguished subfamilies according to
their subcellular locations: cytosolic isozymes (CA-I, Il, I, VII and XIII), mitochondrial
(CA-V), transmembrane (CA-IX, XII, and X1V), secreted (CA-V1) and the GPI-linked (CA-
IV and XV, XVII) (Leggat 2005) (Esbaugh 2006) (Tolvanen 2012). There is also another
distinct subfamily called carbonic anhydrase related proteins (CARPSs) that consists of CA-
VIII, X and XI. Despite lacking important Histidines (the key catalytic elements) in the active
site, CARPs are included in the a-CA family due to their highly conserved motifs across the
a-CAs (Lovejoy 1998). The role of CA-VIII has already been discovered in the regulation of
the calcium channel in the endoplasmic reticulum (ITPR1) and in the interaction with the IP3
receptor (Aspatwar 2012) (Hirota 2003) but the specific roles of CA-X and XI are still

unknown.

Study of the conservation profile of amino acids in proteins is an essential tool for identifying
the structural and functional properties. Conserved areas can be considered to be the



important functional elements of the proteins. The regions that are conserved in a 3D or
tertiary protein structure provide insights to determine protein-protein or protein-ligand
interaction sites, area of the dimer interfaces, and most importantly potential inhibitor binding
sites. Apart from that, conservation analysis is a powerful approach to explore the

phylogenetic relationship among species, their habitat, function and evolution.

This thesis work particularly concerns conservation analysis and identification of the most
important common functional elements across the a-CA family, focusing on non-ray-finned-
fish jawed vertebrates. To date, there are various highly conserved residues identified that
are shared between all alpha carbonic anhydrases, most notably the Histidines in the active
center. There are a few other important residues that have been recorded in the literature, but
the conservation profile study has not been performed thoroughly. This prompted me to study
the conservation profile of the most important species group, vertebrates, and make a
complete list of highly conserved residues that are functionally active. Secondly, a
manual/visual comparison was made to study the conservation profiles of individual amino
acids in a crystallographic structure, and define their specific structural and functional roles.
For the analysis, human carbonic anhydrase Il was considered as a standard reference
sequence and structure due to its high catalytic rate up to Keat = 1.4*108 s or a million times
a second (Berg 2010), availability of high quality crystallographic structures, and as it is the
most well studied CA isozyme to date. Thirdly, a comparison of these results to conservation
profiles of two largest groups, cytoplasmic and extracellular isozymes, were done to
understand their structural and functional importance in the individual sub groups. Finally,
an application of the conservation profile study was applied to predict functional and non-
functional N-linked glycosylation sites in the extracellular domain of four isoforms, CA-VI,
IX, XII, and XIV.



2 Literature Review

2.1 The Structure of Alpha Carbonic Anhydrases

The catalytically active alpha carbonic anhydrases are similar in structure with their
conserved motifs of the active site cavity. To date, the crystallographic structure of human
CA-L 1L 1L IV, VI VI VI, X, X, X, and XTIV have been determined and are available
in the protein data bank (www.PDB.org). All the alpha CAs have similar tertiary structure
and centrally bind a divalent metal ion, most often a zinc (Zn?*), held as a prosthetic group.
The zinc ion is coordinated with three imidazole rings of histidine residues and a water
molecule forming a distorted tetrahedral geometry at the cone shaped active cavity (Liljas
1972). This geometric figure is essential for accelerating the rapid reaction of CO; hydration
(Silverman 1988). There were several studies done to understand whether all divalent metals
show the same coordination geometry or not. The Zn(l1) was replaced by the divalent Co(ll),
Ni(11), Mn(11) and Cu(ll) and the result revealed that only zinc and cobalt show the tetrahedral
coordination geometry at about pH-8 (Liljas 1994).

The dominating structure of the protein core is composed of ten-twisted beta sheets, where
two of them are parallel and rest are antiparallel. There are seven right-handed alpha helices
positioned on the surface of the molecule that are connected through some short length coils
including hairpin-bends and type-1 and type-I1 reverse turns distributed in the different points
of the structure (Venkatachalam 1968) (Crawford 1973).

The active cavity of the structure is cone shaped and strictly separated into two distinct parts,
one of which contains hydrophobic residues and other one contains hydrophilic residues
(Chegwidden 2000). The conserved hydrophilic part contains His-94, His-96, His-119, Tyr-
7, His-102, Asn-62, His-64, Asn-67, Thr-199, and Thr-200, and the hydrophobic part consists
of Val-121, Val-143, Leu-198, Val-207, and Trp-209. To be mentioned, all the amino acid
positions in this paragraph are according to the human carbonic anhydrase 11 crystallographic
structure PDB: 3KS3.



The key feature of the catalytic cavity is that, a number of ordered water molecules are
positioned connecting themselves through hydrogen bonds and form a water chain or
network. A water called the “deep water”, or DW, molecule is placed in the deepest end of
the cavity forming hydrogen bond with zinc bound water (ZW) which is further connected
to the Oyl of Thr-199 (Figure 1) (Liljas 1994) (Fisher 2010). Another water molecule, W1
is oriented to the ZW and Glu-106 by forming two hydrogen bonds separately. It was
assumed that another water molecule W2 connects the third coordination site of the W1
molecule, which in turn form a cascade of waters (W2, W3a, W3b). It was also assumed that
W3a forms hydrogen bond with Tyr-7 and W3b forms hydrogen bond with Asn-62 and Asn-
67. The H atom of W2 is oriented towards the carbonyl oxygen of His-64 to trigger the shuttle
of protons by His-64 side chain, which is in a continuous transformation to the inward and
outward conformation. Several studies found that the imidazole side chain of the His-64
predominantly oriented in the inward position (Figure 1). (Fisher 2010) (Merz 1990) (Nair
1991) (Fisher 2005)

Figure 1 Active site of hCA-11 (PDB: 2VVB), showing the hydrophobic part in blue color spheres, the
hydrophilic residues are in green, bicarbonate ion is in pink, red dots are representing the active site waters and the
blue dot is the zinc ion. The figure was created in Chimera (Pettersen 2004) to show the typical active site composition
of human CAs. The idea of the water chain and water numbering was adapted from Fisher, 2010.



2.2 Catalytic Mechanism

The most important usage of the catalytic reaction performed by the carbonic anhydrase is
maintenance of pH balance of the blood, and other tissues, during aerobic metabolism. There
have been several reaction mechanisms proposed. The general catalytic mechanism that was
proposed by Le Chatelier is described as follows:

The reaction starts at the position of the zinc bound water molecule, where the zinc held as a
metal cofactor and polarizes the water molecule. The zinc releases a proton from the bound
water to create a hydroxyl ion and the reaction moves towards a de-protonation state while
the pKa of the water changes from its usual value of 15.7 to 7. It has been proved by several
studies that the released protons are accepted by the His-64 (Tu 1989). The zinc bound
hydroxide (ZnOH") donates the H to the nearby Oyl atom of Thr-199 forming a hydrogen
bond and simultaneously one of the lone pairs of the zinc bound O is ready to accept a CO-
molecule. The Hydroxyl ion conducts a nucleophilic attack on the positively charged carbon
to convert it to the reaction intermediate bicarbonate ion (HCO3’). At the same time, the O
in HCOs™ forms an intermediate van der Waals interaction with the Zn. At this stage, the
HCOs" and the proton of His-64 is released and subsequently the enzyme repeats the reaction
(Figure 2).
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Figure 3 The proton shuttle mechanism by His-64 (Domsic 2008)

The following two different mechanisms (Figure 4) for the rapid interconversion of CO, and
HCOs™ have been proposed by Lipscomb (Liang 1987) and Lindskog (Lindskog 1983).
According to Lipscomb, the Zn in the Zn-HCOz3™ intermediate is in monodentate form where
the proton is influxed by the original Zn-OH" ion. On the other hand, Lindskog proposed that
the reaction intermediate forms a bidentate ion Zn-Zn-HCOs" that receives the O™ from the
original CO2 molecule and directly interact with zinc. The former mechanism creates a
tetrahedral geometry in contrast to the later one forming trigonal bi-pyramidal geometry at

the zinc binding site (Figure 4).
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Figure 4 The (de)hydration mechanism of hCA-I11 proposed by Lipscomb (Liang 1987) (a) and Lindskog
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2.3 Theories of the Most Essential Methods Used for Conservation Analysis

2.3.1 Ka/KsRatio

The ratio of the number of non-synonymous substitutions per non-synonymous site (Kaz) and

the number of synonymous substitutions per synonymous site (Ks) is called the Ka/Ks ratio.


http://en.wikipedia.org/wiki/Nonsynonymous_substitution
http://en.wikipedia.org/wiki/Synonymous_substitution

(Miyata 1980) (Ina 1995) (Comeron 1995). This substitution rate is used to calculate the

evolutionary pressure on protein coding sequences.

In conservation analysis, the Ka/Ks ratio method is a very effective way for determining the
conserved residues within a group of homologous protein sequences. While the typical
multiple sequence alignment method for a group of homologous protein only can show the
conserved residues, the Ki/Ks ratio analysis of the codon aligned nucleotide sequences is a
more sophisticated way to detect which residues are under evolutionary conservation
pressure. The output of the Ka/Ks analysis are numeric values assigned for each amino acid,
where the higher value, Ko/Ks>1 indicates less conserved or positive selection occurred as

opposed to the Ka/Ks<1, which means highly conserved (Stern 2007).

2.3.2 BioPython

Python is an open source programming language (python.org) widely used in several
application domains. The scripts that were used to analyze the conservation profile were
written in Python 2.7 version. Biopython (biopython.org) is an open source python tool
specially made for computational biology and bioinformatics analysis. The downloadable
version of the software is compatible for LINUX, WINDOWS and MAC operating systems,
available for both 32 GB and 64 GB machine. The Biopython tutorial and cookbook is
available online and freely accessible by the users.

2.3.3 DSSP

DSSP (Define Secondary Structure of Proteins) is a dictionary where secondary structure
information for each of the protein residues of a given protein structure is kept (Kabsch
1983). The dictionary was created by Wolfgang Kabsch and Cristian Sander in 1983. The
algorithm that is used in DSSP for assigning protein secondary structure for each amino acid
is based on the atomic coordinate data obtained from each of the X-ray crystallographic
structures. The main function of the DSSP algorithm is to analyze the hydrogen-bonding
pattern and related geometric features to identify secondary structure information. The DSSP

program (http://swift.cmbi.ru.nl/gv/dssp/) takes PDB files as an input and automatically



creates the output DSSP formatted files. DSSP also can determine the solvent exposure

values of the protein residues from a given protein structure.

2.3.4 PAL2NAL

PAL2NAL is a program used to compare protein sequence alignment with corresponding
coding DNA sequence (CDS) (Suyama 2006). The program takes amino acid and CDS
sequence alignment files as input, then matches the corresponding codon and finally produces
their respective CDS alignment file. This codon alignment is required for the proper
computation of Ki/Ks values for identifying conserved residues. PAL2NAL is available as

both web server (http://www.bork.embl.de/pal2nal) and downloadable version.

2.3.5 Selecton

The Selecton (Stern 2007) is a freely available web based tool located at
(http://selecton.tau.ac.il/). The tool is also available as a downloadable version. This tool
identifies conserved amino acids in the 3D structure of a protein. The program takes codon
aligned CDS sequences as an input, performs Ka/Ks analysis, categorizes the result as
numeric values from 1-7 (where 1 means the least conserved and 7 stands for most conserved)
and marks them according to pre-specified color grid for each numeric value in the 3D

structure.

2.3.6 Chimera

Chimera is a molecular visualization software for visualizing and interactive analysis of 3D
molecular structures, and their properties such as: electron density, molecular self-assembly,
conformational changes, sequence-structure alignment, investigating molecular docking
results etc. (Pettersen 2004). The program was developed by Resource for Biocomputing,
Visualization, and Informatics at the University of California, San Francisco (UCSF) and is
freely available as a downloadable version located at (https://www.cgl.ucsf.edu/chimera/).
The software has both command line and manual operation interfaces. Chimera has interfaces
for MODELLER (for comparative modeling of the 3D structure), protein BLAST, POV-Ray


http://selecton.tau.ac.il/

and Amber tools. In this thesis chimera version 1.9 for Windows was used for structural
analysis.

2.4 Physicochemical Properties Used to Investigate and Define the Role of
Universally Conserved Residues

2.4.1 Hydrogen Bonds

A hydrogen bond is formed between two polar molecules (one donor and one acceptor) when
an electromagnetic attraction occurs between them. The hydrogen bond can be both
intramolecular and intermolecular. The hydrogen bonds in protein are mainly intramolecular
which stabilizes the secondary and tertiary structure of the proteins. The amino acids in the
proteins are interconnected by the hydrogen bonds and form specific secondary or tertiary
shapes of the proteins. There are mainly three types of hydrogen bonds which occur in
proteins. The first type is a hydrogen bond between the side chains of two separate amino
acids; second type is formed between the backbone of beta sheets and third type is formed
between the turns of alpha helices. A hydrogen bond is formed by one of the lone pair of
electrons in oxygen attaching to an electronegative atom (such as a nitrogen atom) (Figure
5). The oxygen in -OH (as in Ser, Thr, and Tyr) or HOH, and the nitrogen in -NHs" (as in
Lys and Arg) or -NH- (as in the main chain peptide bond, Trp, His, Arg, and nucleotide
bases), are typical donors. In 1997, Jeffrey categorized distances of H bond 2.2-2.5 A as
“strong, mostly covalent”, 2.5-3.2 A as “moderate, mostly electrostatic”, 3.2-4.0 A as “weak,
electrostatic” (Jeffrey 1997). The hydrogen bonds that are found in proteins are mostly in the
moderate category. Proper hydrogen bonding patterns are exceptionally important for

stabilizing the protein folding followed by protein structures.

10
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include Glutamine, Asp

aragine,

2.4.2 Polarity and Hydrophilicity

Histidine, Serine,

11

Threonine,

Each of the 20 amino acids fall in either the hydrophilic category, having hydrophilic side
chains or the hydrophobic category, having hydrophobic side chains. Polar amino acids

Tyrosine,

Methionine and Tryptophan; hydrophobic amino acids are Alanine, Isoleucine, Leucine,
Phenylalanine, Valine, Proline and Glycine (Figure 7). Glycines are yet to be considered as

hydrophilic as they have functional groups (-NHz and -COOH) that can form hydrogen bond

Cysteine,



with solvents. Polar amino acids are more prone to form hydrogen bonds in tertiary
structures. Some amino acids, that are called amphipathic, show both hydrophilic and
hydrophobic properties due to the presence of both polar and non-polar groups in the side
chains. Threonine, Lysine, Tyrosine, Methionine and Tryptophan are amino acids that fall
into this category (Creighton 1992). If the amphipathic amino acids are located in the protein
surface, they predominantly interact with other protein molecules (Creighton 1992).
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Figure 7 Classification of the amino acids based on their chemical properties. Modified image from
Livingstone & Barton, 1993 (Livingstone 1993). Image courtesy of Jukka Lehtiniemi.

2.4.3 Aromaticity

Aromaticity is a chemical property of a compound with a conjugated ring of unsaturated
bonds. This property arises due to the delocalization of the electrons in such conjugated
systems. (Holfmann 1855). Among 20 amino acids, only Phe, Pro, His, Tyr, Trp have the
aromatic side chains. Like other type of interactions, aromatic side chains also show some
specific interactions between them (Burley 1986). In the tertiary structure of proteins, such
interaction is seen as non-covalent n-m stacking interaction where two closely positioned
aromatic systems form a weak electrostatic interaction between them to stabilize the
structure. Such 7-7 stacking interactions are named: sandwich, parallel displaced, and T-
shaped (or edge-to-face configuration) (McGaughey 1998) (Figure 8). These interactions are

important in protein folding as well as stabilizing the protein structure. The most important
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property of such interaction is that they can form a stable interaction at a distance larger than
the average van der Waals radius (McGaughey 1998).

Sandwich  T-shaped Parallel-displaced

Figure 8 Different types m-m stacking interactions between benzene rings. Image source
http://en.wikipedia.org/wiki/Stacking_%028chemistry%629

2.4.4 Relative Solvent Accessibility

The RSA, or relative solvent accessibility value determines the solvent exposure level of an
amino acid residue in a given protein structure. Amino acids that are located on a protein
surface are more prone to react with solvents whereas the buried residues participate in
stabilizing the structure by forming hydrogen bonds or other non-covalent interactions. A
cutoff value of the RSA scores is determined to distinguish between buried and surfaced
residues. The solvent accessibility (SA) values can be determined by the DSSP server
(Kabsch 1983). The equation that is used to determine the SA values was described by

Kabsch and Sander, is as follows:

W = Area/Volume(water molecule)?3

Where, W = number of water molecules interacting with the surface of the residue
Area = Total surface area of the amino acid
Volume = The total volume of the amino acid residue

If the solvent exposure value is divided by the total surface area of the single amino acid
residue, it returns the RSA value of the specific residue (Miller 1987). A RSA value around
0.25 can be considered as the boundary line for the exposed versus buried residues
(Adamczak 2005) where any value lower than 0.25 is buried and greater than 0.25 will be

exposed.
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2.4.5 Hydrophobic Interaction

Amino acids having hydrophobic side chains can interact with each other. The interaction
takes place when two or more hydrophobic molecules are present in a water medium. An
American chemist Walter Kauzmann described this interaction, as the hydrophobic
molecules form a clump in the water medium aggregating themselves in a cluster because in
such a way they can be in a minimal contact with the solvent molecules. These properties are
often seen in protein tertiary structures, where amino acid residues with hydrophobic side

chains interact and are buried in the protein core, away from the solvent exposure.

2.5 N-glycosylation Site

Glycosylation is a process in which a carbohydrate molecule or glycan (glycosyl donor) is
attached to a protein, lipid or other organic molecule (glycosyl acceptor) to form a glycosydic
bond (one kind of covalent bond). In proteins, glycosylation occurs during the co-
translational and post-translational stage in protein biosynthesis. These Kkinds of
modifications are essential for protein folding, which give stability, and participate in
different types of cellular functions (Freeze 2009). There are different types of glycosylation,
such as N-linked glycosylation, O-linked glycosylation, phospho-serine glycosylation, C-
mannosylation, and glypiation (GPI anchors). Among them N-linked glycosylation is the
most common type of modification that occurred in the proteins and the sites are easy to trace
from the proteins primary structures. In N-linked glycosylation, glycans are attached to the
N atom of Asparagine (Asn) side chains. The pattern of the N-linked glycosylation sites
includes consensus amino acid residues, Asn-Xaa-Ser or Thr, where Xaa can be any other
protein except proline, as the side-chain of proline can hinder/impair the N-glycosylation
process (Schwarz 2011) (Gavel 1990). The Asn-X-Cys motif is also found to be glycosylated,
however it is very rare. The N-linked glycosylation sites can be determined by the
“NetNGlyc” (Gupta 2004), a freely accessible tool for predicting N-glycosylation sites,
located at (http://www.cbs.dtu.dk/services/NetNGlyc/).
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3 Aim of the Study

The main aim of this study is to construct a perfect list of important conserved residues in
alpha carbonic anhydrases, with a focus on vertebrates, and define their roles in 3D protein
structure, as well as for catalysis. Additionally, the conservation study was done for the two
largest a-CA subfamilies, cytoplasmic and extracellular. At the end, the conservation profile
study was made on the analysis of the N-glycosylated sites in the extracellular domains of
the CA-VI, IX, XII, and XIV. The whole process was divided in the following steps:

1. Select the appropriate number of species and isozymes for each group (Universal,
Cytoplasmic and Extracellular) and retrieve best quality sequences from Ensembl.

2. Use an automated method for Ka/Ks scoring to rank the conserved residues.

3. Produce multiple sequence alignment using Clustal Omega software.

4. Manual alignment of the Ka/Ks derived top ranked conserved residues with MSA
derived 100%-conserved residues.

5. Make a complete list of important conserved residues from the manual alignment.

6. Define the role of the conserved residues by investigating 3D structure based on
physicochemical properties and literature survey.

7. Following the same Ka/Ks based approach, make a list of unique residues for the
bigger subgroups (cytoplasmic and extracellular), comparing them with universally
conserved group and visualizing in the 3D structures.

8. Finally, a separate conservation study for mapping the conserved N-linked
glycosylated sites in the 3D protein structures for the extracellular isozymes (CA-VI,
IX, XII, and XIV) and structural visualization.

To date, several studies have sought to identify the functional and structural importance of
conserved residues in a-CAs. However, no through study has been completed for each of the
highly conserved amino acid residues, for instance, the recent study done by Aggarwal
(Aggarwal 2013). This analysis created a list of the most important conserved a-CA residues,
reviewed previous literature on their functions, and made intelligent guesses for each of the
highly conserved residues. The procedure that was used to identify conserved residues can
be applied for any group of the homologous species.
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4 Material and Methods

4.1 Conservation Analysis for Universal, Cytoplasmic and Extracellular Group

4.1.1 Species and Isoform Selection

Species selection is the most crucial part in case of conservation analysis for a specific gene
family. Here, non-ray-finned-fish jawed vertebrates (tetrapods plus the lobe-finned fish
Latimeria) were considered for the analysis of the conservation profile since ray-finned fishes
have a different set of cytoplasmic CAs (Esbaugh 2006). For the “universal group”, human,
mouse and chicken (or turkey if chicken was unavailable) were chosen for the analysis. The
selection was made due to the diversity and high coverage genome sequences (at least 6X)
available in genomic databases. Although, a more diverged choice would have been human,
frog, and chicken but the choice of mouse was justified by the most certain sequences
available for all of the isozymes. For the cytoplasmic and extracellular group, frog (or lizard
if frog was unavailable) and giant panda were added to the previous selection for the universal
group. The number of species was increased for keeping the consistency with the decreased
number of isozymes in each sub group. Further, the choice of panda was based on availability
of good-quality genome and the evolutionary distance of panda from human and mouse. All
active a-CA isozymes except CA-XVII, which is a novel isozyme and restricted to non-
mammalian species, were chosen for the analysis. The cytoplasmic isozymes CA-I, 11, 1lI,
VII, and XI1I were included in the cytoplasmic group and extracellular isozymes CA-VI, IX,
XIl, and XIV were included the extracellular group. CA-V was excluded from the
cytoplasmic group as it is located in the mitochondria and serves different purposes than the
other cytoplasmic isozymes and CA-VI was included in the extracellular group as being

secreted its ultimate location is extracellular.

4.1.2 Sequence Retrieval, MSA and K,/Ks Scoring

The DNA and protein sequences were retrieved with automated methods “Orthologer” and
“SEQs2Categories” (Barker 2013), which retrieve the maximal number of orthologous
sequences (protein and CDS) from the Ensembl database (Flicek 2013), do quality checks (if
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there is any bad sequence lacking Methionine at the first position or any missing residues),
and produces separate FASTA files for each of the isozymes. The targeted protein and CDS
sequences (not to be confused with cDNA) were selected and put in two separate document
files manually for the later approaches. Then, the script “Unaligned2KaKs” (Barker 2013)
was used to produce protein alignment and quantify conservation at each residue based on
the Ko/Ks approach (of automatically generated codon-based alignments). For the execution
of the codon-based alignment, Clustal Omega (McWilliam 2013) and PAL2NAL (Suyama
2006) were called in the “Unaligned2KaKs” program. Clustal omega was used to create the
protein alignment file whereas PAL2NAL created the codon alignment file using the protein
alignment and respective unaligned CDS sequences. At this stage, the program generated two
separate alignment files (one for protein and another one for CDS sequences) and the Ka/Ks
output file, containing the Kai/Ks values for each of the amino acid in the human CA-II
sequence (see Appendix 1). The same program was run for all three groups, universal,
cytoplasmic and extracellular. Finally, Selecton was called by the program, which analyzed
the codon aligned file, created Ka/Ks score for each of the amino acids to categorized them
based on predefined parameters by Selecton and generated an output file containing most to
the least conserved residues.

During the generation of Ka/Ksvalues, human CA-Il was selected as the template sequence
for the “universal group” and the “cytoplasmic group” due to available good quality structure
in the protein data bank. For the “extracellular group” human CA-XII was used as template

sequence for the same reason.

4.1.3 Manual Alignment and Universal Conserved Group

To obtain the most important conserved residues, the Ka/Ks score table was aligned with the
MSA of protein sequences. At first, the amino acids were arranged in ascending order so that
the lower Ka/Ks scores are shown at the top of the table (lower Ka/Ks score means higher
conservation). Then the protein alignment file was investigated for 100% conserved residues
which were noted with ‘XX’ (beside the Ka/Ks score column) and named as “perfectly
conserved” (see Appendix 1) (Table 2). It was observed that Selecton detected most

conserved residues were found to be 100% conserved in the universal group. However, there
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were some highly conserved residues that are not 100% conserved. This was often due to a
mismatch at the single isozyme or single species level, and these residues had Ka/Ks scores
quite close to those of the perfectly conserved residues. For example, Val-206 has variant in
human, mouse and chicken but only in the CA-lll isozyme so it was marked as a single
exception “X”. Ala-133 has a single variant at CA-IV mouse so it was also marked as “X”.
On the other hand, Leu-163 has a variant at Chicken CA-11l1 and CA-XII so it was not
considered as highly conserved due to the occurrence of the exception at two different
isozyme positions. Thus, there were nine residues found for “highly conserved” type and
marked as “X”. Further, three other residues Thr-199, Val-142 and His-64 were also included
in the highly conserved group due to their strong conservation score that are quite close to
the highly conserved residues and most notably, all are important for the catalysis of the CO>
(de)hydration reaction and location in the active site of the enzyme (see Appendix 1). So, the
list of the “highly conserved” residues was finalized with eleven residues (Table 3). The roles
of the conserved residues, both “perfectly conserved” and “highly conserved” will be
discussed in the result section.

N.B. All the amino acid positions that were used in this paragraph are based on the protein

primary structure information.

Select target species and
homologous sequences

‘ Sequence retrieval

‘ Ka/Ks scoring

‘ Construct MSA

Manual alignment

‘ Constructing final list

Figure 9 The work flow of the conservation analysis
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4.1.4 Pool Rank

In this analysis the pool scores were used to cross check the functional importance of the
conserved residues that were listed in the “universally conserved” group. POOL stands for
Partial Order Optimal Likelihood. This is a machine learning method used to predict
proteins’ functional elements (Somarowthu 2011). The program was developed by
“Ondrechen research group” at Northeastern University, Boston, MA, USA. POOL estimates
the probability that a residue is functional according to the results achieved by the following
three programs: THEMATICS, a computational program for identifying the active sites of
the enzymes based on the electrostatic data) (Wei 2007) (Ko 2005) (Ondrechen 2001);
INTREPID, a program for identifying functional residues based on conservation and
phylogeny analysis (Sankararaman 2008); and ConCavity, a computational approach for
identifying binding cavity. Together, these programs rank the functionally important residues
in the active site of a protein 3D structure. The program takes a PDB id as input and returns
the rank of the residues present in the whole protein structure with their corresponding pool
values. The residues that obtain top positions in the pool rank are considered to be

functionally important in the structure.

4.1.5 Cytoplasmic and Extracellular Conserved Residues

The same procedure that was used to identify the absolutely conserved residues in universal
group, was applied to identify the absolutely conserved residues in the cytoplasmic and
extracellular group. The idea underlying this analysis is to create a list of conserved residues
that are unique in these subgroups. For example, the conserved residues that are not present
in the universal group but in the cytoplasmic group are likely important residues for that
group and assumed to have a specific role. Therefore, the cytoplasmic and extracellular
conserved residue lists were constructed according to the residues, those are not present in
the universal group but in the cytoplasmic group (CA-I, 11, 111, VII, and XIII) or extracellular
group (CA-VI, IX, XIllI, and XIV) respectively. The resulting two distinct conserved residue
groups were further visualized in the protein structure of human CA-Il (PDB: 3KS3) for

cytoplasmic group and human CA-XII (PDB: 4HT2) for extracellular group, and analyzed
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for understanding the significance of those residues for being conserved in their subcellular
part.

4.2 Conserved N-glycosylation Site Prediction

4.2.1 MSA and N-glycosylation Site Identification

In this section, the conservation analysis was applied to predict functional N-glycosylation
sites in the extracellular domain of CA-VI, IX, XIll, and XIV as only secretory and
transmembrane proteins have post translational modification. Though CA-VI was previously
analyzed by Patrikainen (Patrikainen 2012) but here CA-VI was analyzed again only with
good quality protein sequences and a comparison was done for the conserved N-
glycosylation site among all the extracellular isozymes. As this analysis did not concern
about a straightforward ranking of the residues according to conservation, likewise in the
universal or the subgroups study, the method was kept simple. All the good quality sequences
of the extracellular group were selected from the previously downloaded sequences from
Ensembl (Flicek 2013). The multiple sequence alignments were done using Clustal Omega
(clustalomega.org) and the alignment file was analyzed in the GeneDoc software
(http://www.psc.edu/biomed/genedoc) (Nicholas 1997). The N-Glycosylation sites were
predicted from the NetNGlyc 1.0 server (Gupta 2004). The conserved N-glycosylation
pattern (Asn-Xaa-Ser/Thr) (where Xaa is not Pro) and Asn-X-Cys (Taylor 2006), were
identified and colored in the alignment file (see Appendix 4). Four different colors were used
for four different isozyme groups.

4.2.2 Categorization of the N-glycosylated Sites

N-glycosylation sites for all the available good quality sequences of the extracellular a-CA
isozymes (CA-VI, IX, XII and XIV) were detected and manually colored in the MSA. The
conserved sites were identified and categorized according to the frequency of the sites at each
of the conserved positions (Table 1). The total number of sites that were detected in CAG,
CA9, CA12, and CA14 are 20, 22, 18, and 26 respectively. The 50% cutoff was chosen for

the highly conserved glycosylation sites. The conserved sites having frequency 50% or more
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were considered to be “conserved glycosylated” sites, in which the glycan part might be
functional. The second cutoff was chosen at 25%, so the sites that were 25% or more frequent
were considered as “frequently glycosylated” sites. Consequently, the sites having less than

25% frequency were called as “occasionally glycosylated” sites.

Table 1 Percent frequency of the glycosylated sites in each position of the individual isoforms.

Positions CA6/20 %freq CA9/22 %freq CA12/18 %freq CA14/26 %freq

posl 10 50 1 4.55 16 88.89 1 3.85
pos2 1 5 22 100 2 11.11 1 3.85
pos3 3 15 17 77.27 1 5.56 3 11.54
pos4 18 90 2 9.09 2 11.11 2 7.69
pos5 1 5 0 0 17 94.44 1 3.85
pos6 3 16.67 25 96.15
pos7 1 5.56
pos8 1 5.56
pos9 2 11.11
pos10 3 16.67
posll 10 55.56
pos12 1 5.56

4.2.3 Modelling of the Missing Part of CA12 Structure

The next step was to visualize the N-glycosylation sites on the 3D protein structure. The
structural investigation found that the first N-glycosylation site was missing in the available
crystallographic structure for CA-XII. Therefore, the N terminal part of CA-XII protein was
modelled using the “MODELLER” (Eswar 2006) program, which is also available through
chimera (http://www.cgl.ucsf.edu/chimera/). The missing region is a short segment of three
residues, “NGS” from residue number 1 to 3. The missing segment was modelled using
hCA12 and hCA13 as template. The best model was chosen according to the high structural
similarity with both of the templates and a rational guess wad made so as the part is quite
available to be glycosylated. The modelled region was then spliced and added to the original

CA-XII structure to make the structure prepared for the later analysis.
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5 Results

5.1 List of “Universally Conserved” Residues

The conservation analysis for the universal group included ten alpha CA isozymes (CA-I,
CA-I1I, CA-III, CA-IV, CA-VA, CA-VB, CA-VI, CAVII, CA-IX, CA-XII, CA-XIII, CA-
X1V, and CA-XV) for three species human, mouse and chicken. The Ki/Ks analysis was
performed with the human CA-11 sequence (Ensembl transcript id: ENST00000285379) as
the target. Along with the Ka/Ks values, an output table includes Ensembl ids and positions,
PDB ids and positions, their chemical properties, RSA values and locations based on solvent

exposure, secondary structure information and pKa values (Appendix 4).
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Table 2. List of "perfectly conserved™ residues in vertebrate CAs for universal group. Ens_Pos = Ensembl
position for human CA-II, Ens_res = Ensembl residue, PDB_pos = PDB position, PDB_res = PDB residue, RSA =
relative solvent accesibility, LOC = Location, Sec_struc = Secondary structure, Chem_prop = Chemical properties. In
secondary structure information, G =Helix-3, E = Strand, S = Bend, T = Turn, H = Alpha helix, B = Beta bridge. In
chemical properties information, NP = Non-polar, P = Polar, A = Amphipathic, L = Hydrophilic, B = Hydrophobic. pKa

values (see Appendix 4) were derived from DEPTH server (Tan 2013).

Serial  Ens_Pos  PDB_res  PDB_pos KalKs RSA Loc pKa Structure  Chem _prop
1 16 w 16 0.021 0.02 Buried - G NP/A
2 28 Q 28 0.0061  0.02 Buried - - P/L
3 29 S 29 0.0059 0 Buried - S P/L
4 30 P 30 0.0092 0 Buried - - NP/B
5 44 L 44 0.011 0.18 Buried - - NP/B
6 61 N 61 0.0055 0 Buried - E P/L
7 94 H 94 0.0061 0.12 Buried 5.1 E P/L
8 96 H 96 0.0059 0.01 Buried 291 E P/L
9 97 w 97 0.021 0 Buried - E NP/A
10 104 G 104 0.0091 0 Buried - - NP/L
11 106 E 106 0.0077  0.01 Buried 7.53 S P/L
12 107 H 107 0.006 0 Buried 1.67 S P/L
13 117 E 117 0.0076 0 Buried 8.37 E P/L
14 119 H 119 0.0062 0.02 Buried 2.6 E P/L
15 122 H 122 0.0061 0 Buried 1.67 E P/L
16 141 A 142 0.0066 0 Buried - E NP/B
16 185 P 186 0.0099  0.09 Buried - - NP/L
17 193 Y 194 0.0097  0.03 Buried - E P/A
18 195 G 196 0.0093 0 Buried - E NP/L
19 196 S 197 0.006 0 Buried - - P/L
20 198 T 199 0.0055 0.04 Buried - - P/A
21 200 P 201 0.01 0.08 Buried - S NP/L
22 208 w 209 0.021 0.02 Buried - T NP/A
23 221 Q 222 0.006 0.02 Buried - E P/L
24 245 R 246 0.0086 0.01 Buried - H P/L
25 248 Q 249 0.0061  0.21  Surface - - P/L
26 253 R 254 0.0083 0.11 Buried - - P/L
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Table 3. List of “highly conserved” residues. Ens_Pos = Ensembl position for human CA-Il, Ens_res
Ensembl residue, PDB_pos = PDB position, PDB_res = PDB residue, RSA = relative solvent accesibility, LOC
Location, Sec_struc = Secondary structure, Chem_prop = Chemical properties. In secondary structure information, G
=Helix-3, E = Strand, S = Bend, T = Turn, H = Alpha helix, B = Beta bridge. In chemical properties information, NP =
Non-polar, P = Polar, A = Amphipathic, L = Hydrophilic, B = Hydrophobic. pKa values (see Appendix 4) were derived
from DEPTH server (Tan 2013).

Serial  Ens_pos PDB_res PDB_pos Ks/Ks RSA Loc pKa Structure Chem_prop
1 63 G 63 0.031 0.8 Buried - S NP/L
2 64 H 64 0.046  0.28  Surface  5.76 S P/L
3 92 Q 92 0.029 0.15 Buried - - P/L
4 105 S 105 0.019 0 Buried - - P/L
5 121 \Y% 121 0.018 0.06 Buried = E NP/B
6 133 A 134 0.017 0 Buried - H NP/B
7 142 \Y% 143 0.045 0.04 Buried = = NP/B
8 197 L 198 0.03 0.18 Buried - - NP/B
9 199 T 200 0.029 021  Surface - S P/A
10 206 \Y% 207 0.016 0 Buried - E NP/B
11 243 N 244 0.027 0 Buried = = P/L

5.2 Roles of the “Universally Conserved” Residues

Different factors were considered while analyzing the role of the universally conserved
residues. Mostly, the physicochemical properties were considered for the analysis such as,
hydrogen bond, hydrophobic interaction and pKa values. For each of the hydrogen bonds the
distances were measured and checked whether the values are in their usual range or not.
Literature surveys along with structural investigations were conducted to figure out most
possible structural and functional role of those conserved residues that are discussed in the
following sections. The protein structure, PDB accession id: 3KS3 (Avvaru 2010) of human
CA2 was used due to the high-resolution (0.9A) crystallographic structure.
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5.3 Roles of Conserved Residues in the Active Site

This section describes the structural and functional roles of the active site conserved amino
acid residues of human carbonic anhydrase 11, PDB id: 3KS3 listed in Table 2 and Table 3,

which are important for catalysis. Residues, which are positioned at the active site and

directly or indirectly involved in substrate binding or proton donation, and therefore assist

the catalytic mechanism, are also discussed. The conserved residues of our concern are

colored in yellow in the figures.

5.3.1 His-94, His-96, and His-119

The invariant Histidine triad (His-94, His-96, and His-
119) forms a hydrophilic cluster that is essential for
coordinating the zinc metal ion Zn?* at the active site
of this metalloenzyme. Being polar and having an
imidazole ring, their major contribution is in binding a
metal ion at the catalytic core. They can react with
solvents and polar substrates, due to their high reactive
nature, and form a distorted tetrahedral geometry
(Liljas 1994), which is an essential coordination
geometry for the CO2 (de)hydration reaction

mechanism. Besides this specific structural property,

Figure 10 His-94, His-96 and His-
119 coordinating with zinc ion. Zinc is bound
with water (red dot) and a CO2 molecule is
interacting at the active site.

His-94, His-96, and His-119 show unusual pKa values 5.1, 2.91, and 2.6 respectively, that

are much lower than their usual pKa value of 6.5 (see Appendix 4) which indicates their

functional importance for catalysis. These three hydrophilic residues also take part in

formation of the hydrophilic half of the catalytic core (Figure 10).
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5.3.2 Thr-199, Thr-200, and Glu-106

Thr-199 plays a very important role in the catalysis of . 199
r

CO.. The catalytic cavity of CAs reaches to its deepest —_— 06

position at Thr-199, which binds a water molecule 2951A
called the “deep water” or DW. Thr-199 forms a [ 2.409A :‘ilg\

W1 J
hydrogen-bonded network with Glu-106, DW that is

18404 442R

Zn2
//- Wis Ne+

\
V1.707A

further hydrogen bonded to the zinc bound hydroxide, /
forming an optimal coordination geometry which Thr 200
w3y

(9%

facilitates the solvents for the optimal nucleophilic

attack on CO2 (Xue 1993) (Merz 1990) (Figure 11). Figure 11 Hydrogen bonded network

) . . along with active Thr-199, Thr-200 and Glu-
Due to this special phenomenon, Thr-199 is called the 106 hcA-II structure, PDB:3TMJ was used

. - ) ) for constructing the figure.
“door-keeper” residue (Liljas 1994). A previous site
specific mutation study also revealed that such a hydrogen bonding pattern stabilizes the
(de)hydration reaction transition state (E-HCO3) and the zinc-hydroxide (Zn-OH") (Krebs

1993).

Like Thr-199, Thr-200 is also a catalytically active residue and takes part in the CO>
hydration reaction (Krebs 1991). Being polar, Threonines have high affinity to water
molecules and it was found that they stabilize the W1 in the hydrogen bonded water network
at the active site (Fisher 2011) (Figure 11). A Thr-200-Ser site-specific mutation study has
also been done to understand the hydration activity, and the result was that Ser-200 stabilizes
the E-HCO3 complex two fold greater than the wild type one. So in a reverse idea it is proved
that Thr-200 stabilizes the reaction transition state even though to lesser extent (Krebs 1991).
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5.3.3 GIn-92

GIn-92 is hydrogen bonded to His-94, and their
position in the hydrophilic half of the catalytic core
clearly indicating that they have a distinct catalytic
role for the CO> hydration (Figure 12). A molecular
dynamic study revealed that GIn-92 acts as a CO:
binding site (Liang 1990). In an another study,
Turkoglu et al. performed a mutation for GIn-92 to
Ala-92 and found that the hydration activity was 30%
lower in the variant than that of the wild type
(Turkoglu 2012), which clearly demonstrates its role

for catalyzing the (de)hydration reaction.

5.3.4 Val-121, Leu-198, Val-207, and Val-143

Valines and Leucines are hydrophobic in nature due to
absence of polar side chain. Here, Val-121, Leu-198,
Val-207, and Val-143 are forming the mouth of the
hydrophobic pocket at the active site (Figure 13). The
hydrophobic environment thus possibly facilitates the
water molecules to be repulsed by the hydrophobic site
to the hydrophobic site for (de)hydration. However
Nail et al., 1991, stated that all of these residues
participate in CO hydratase activity (Nair 1991).
Further investigation found Val-143 to be highly

His 96

His 94

-

”///K/H/\émw&

Gln 92

Figure 12 GIn-92 forming hydrogen
bond with His-92

/”iﬁv N
PO T}, D
. \g C

o

Val 143 )
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n
* I _val207
0

Leu198 |\

Figure 13 Hydrophobic residues Val
121, Val-143, Val-207 and Leu-198

efficient at the position as the mutations (Val-143-lle, Val-143-Leu) caused 20-fold lower

efficiency the catalysis (West 2012).
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5.3.5 His-64

His-64 is believed to be involved in proton transfer

during catalysis as proved by several investigations His 119 /‘
(Tu 1989). The site-specific mutation (His-64-Ala) o His 94 |
study proved that the catalytic efficiency decreased His 96 Qw
20-fold in the modified enzyme, from than that of wild \

side chain of the residue tends to be in both inward and

o s His 64 7/
type (Tu 1989). It was also found that the imidazole W ‘@

outward directions (Figure 14), though several studies \

found it to be in the inward conformation as the delta

. . . . Figure 14 His-64 in inward and
nitrogen reaches the closest to the zinc in this position gyuaward conforamtion along with Trp-5,

(Maupin 2007). On the other hand, the outward and Histidine triad!at the active site

conformation was found to decrease proton shuttle activity (Zheng 2008) (Maupin 2009).
The structural investigation shows the reason His-64 tends to be in outward conformation,
despite being less favourable for the catalytic role, may be due to the tendency of forming -
7 stacking interaction with Trp-5. Further, the pKa value also proved that despite of being
basic they have obtained lower pKa value of 5.76 (see Appendix 4) from their usual value of
6.5 and stood 9" position in the pool rank (see Appendix 3). This denotes they are in
protonated form in aqueous solution. To be mentioned, His-64 is neither absolutely nor
highly conserved as isozymes CA-I11 and CA-V lack this residue for all the species (human,
mouse and chicken). This was still included in the conserved residue list due its high

specificity for proton influx mechanism.
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5.4 Roles of structurally important conserved residues

5.4.1 Trp-16

Trp-16 is located in the terminal end of the protein
structure and the side chain is positioned inwards to
the center. Further, as being closely located to the Trp-
5, Trp-16 is highly likely to form a T-shaped n-n
stacking interaction (Figure 15) therefore, stabilizes
the corresponding alpha helix. Trp-5 was left under the
conservation thresholds in the study, but is conserved
in most CA isoforms except for CA-VA and CA-VB.

5.4.2 GIn-222

Glutamines are polar in nature and usually tend to be
in the surface of the protein but here, GIn-222 is buried
and forms four hydrogen bonds with four different
neighboring residues (Figure 16). Most notably, the
hydrogen bonds are the only bonds that interconnect
two parallel alpha helices and hence, stabilize the
structure. Moreover, the fact that there are no other
conserved residues present at closer distances
highlights the importance of this specific structural

role.
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Figure 15 Trp-16 and Trp-5 n-n
stacking interaction
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Figure 16 GIn-222
corresponding hydrogen bonds.
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5.4.3 GIn-249

GIn-249 is located on the surface, so the residue is
involved in interacting with the solvents or ligands
from the outer environment (Figure 17). The study
conducted by Whittington et al. proved the need of this
highly conserved residue for the stabilization of dimer
interaction in CA-XIl. They have identified 19
hydrogen bonds in the interface of the CA-XII dimer,
where two of them were highly conserved and formed
by GIn-249 (Whittington 2001).

5.4.4 Asn-61

Asn-61 is located outside of the active site cavity but
as it is conserved, it likely has structural role. Asn-61
forms three hydrogen bonds with backbone atoms in
Gly-63 (highly conserved), and lle-167 and Asn-230.
A closer look at the surroundings of Asn-61 suggests
that the hydrogen bonds play a role for stabilizing the
nearby bends and turns, most importantly the U-turn
consisting of Asn-61 to Phe-66 and thus stabilizing the
folding pattern of the structure (Figure 18).
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Gin 249

Figure 17 GIn-249 at the surface

(

Figure 18 Asn-61 interacting with
Gly-63, lle-167 and Asn-230


http://www.pnas.org/search?author1=Douglas+A.+Whittington&sortspec=date&submit=Submit

5.4.5 Asn-244

Asn-244 forms two hydrogen bonds, one with the
backbone of Trp-97 (another perfectly conserved
residue) and the other one with the backbone of His-
64 (Figure 19). The role of His-64 has already been
described and it is highly probable that the Asn-244
provides the stability to the corresponding U-turn
located towards the active center. The tip of this U-
turn also forms part of the hydrophilic half of the

active center.

5.4.6 Ser-105

Ser-105 forms two hydrogen bonds with the backbone
of neighboring conserved residues His-107 and Tyr-
114 (Figure 20). Ser-105 was found in a bend where
three other residues His-107, Glu-106, and Gly-104
are also perfectly conserved and located in the same
lining of the bend, might mean that the bend formation
is necessary for the structural stability. The hydrogen
bonding in the bend is probably essential for its

conformational stability.
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Figure 19 Asn-244 interacting with
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Figure 20 Ser-105 interacting with
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5.4.7 Ser-29

Being small, Serines tend to be in turn or bend and due

to the presence of hydroxyl groups, they are very

reactive to the other polar residues and substrates | < >
T Ser 197

(Betts and Russell, 2003). Ser-29 forms three hydrogen S

- N Tyr 194

~. 29227

Leu 198 ”

bonds with neighboring residues Ser-197 and Tyr-194, oo

thus helping in formation of the bends Ser-29 to Pro- 5 kﬁt

30 and Leu-198 to Gly-196 (Figure 21). As both Ser- P30 //';7
197 and Tyr-194 are also perfectly conserved, it

indicates that hydrogen bonds are required. Further, a

. ‘g . Figure 21 Ser-29 forming hydrogen
site-specific mutation (Ser-29-Ala) study also revealed ponds with Tyr-194 and Ser-197

that the structure was quite unstable because necessary hydrogen bonds were lost when
replaced with Ala-29 (Martensson 1992).

5.4.8 Ser-197

The side chain of Ser-197 is connected with the main

chain of Leu-198 and Ser-29 by forming two hydrogen
bonds (Figure 22). The first hydrogen bond is formed T@

with the next residue Leu-198. The second bond is

formed with Ser-29, located in the opposite direction. Leu198 a75iA | -

It is interesting to see that both Leu-198 and Ser-29 are Ser197
located in a lineup of other conserved residues, Thr-
199, Ser-197, Pro-30 and GIn-28 and form bends.

Therefore, the conservation of Ser-197, together with

. . . L o Figure 22 Ser-197 connection with
its environment, supports the idea that it might stabilize Leu-198 and Ser-29

the bends and help in maintaining protein folding in this region devoid of regular secondary

structure.
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5.4.9 Pro-201

Being perfectly conserved but absent in the catalytic
core indicates that Pro-201 might have a specific role
for stabilizing the protein structure. “Prolines are the
only amino acid which forms a unique structural
feature where the side chain is connected to the
protein backbone twice, forming a five-membered
(Betts  2003). This

exceptional feature gives it a conformational rigidity

nitrogen-containing  ring”

to participate in formation of bend or tight turns (Betts
2003). In alpha CAs, the perfectly conserved residues

Thr 199

J Thr 200

Leu198 D h
. / \ Pro 201
Leu 2:4‘}- Pro 202

Figure 23 Pro-201 contributing in U-
turn formation

(Gly-196, Ser-197, Leu-198, Thr-199, Thr-200, Pro-201), consecutive in the U-turn, clearly

illustrate the importance for the turn in terms of structural stability (Figure 23) so the

functionally important Thr-199 and Thr-200 (see 5.3.2) are kept in their exact positions.

5.4.10 Pro-30

If a peptide linkage is in cis form, it must have a
definite structural role because most of the peptide
linkages tend to be in the trans form (Donohue 1953).
Besides that, the possibility of forming cis isomers by
Prolines is high compared to the other amino acid
residues (MacArthur 1991). The investigation done by
Stewert et al. showed that cis prolines are highly likely
to occur after serine, (Stewart 1990) and this is the case
for Ser-29 and Pro-30. Here, the cis peptide of Pro-30

forms a slight bend where its main chain carbonyl

Ser 29

Gin 249

Figure 24 Pro-30 forming hydrogen
bond with GIn-249

oxygen forms a hydrogen bond with the amide nitrogen of neighboring conserved residue

GIn-249 (Figure 24). The hydrogen bond is likely favoring the bend formation and therefore,

giving the structural stability.
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5.4.11 Pro-186

Prolines generally play special roles in protein
structures like bend formation or fixing the dihedral
angles to avoid the steric clashes (Woolfson 1990).
Prolines are often found in the end of an alpha helix
while acting as an alpha helix disruptor because their
main chain angles are unable to obtain the normal
helical conformation or formation of kinks (Barlow
1988). Pro-186 is also found in the end part of the
alpha helix consisting of Asp-180 to Leu-185 (Figure
25). Therefore, it is obvious that Pro-186 is acting as an

Figure 25 Pro-186 acting as a helix
breaker

alpha helix breaker in this structure and thus helping in the protein folding. Further, the usual

mean phi and psi angles for residues in alpha helices are -62, -41 respectively (Barlow 1988),

here the phi and psi angles in Pro-186 show, -77.2 and 177.3 respectively which also show

an unfavorable condition for continuing the helix.

5.4.12 Arg-246 and Arg-254

Arginines are mainly polar but amphipathic in
character. They naturally tend to be in the surface of
the protein molecules (Betts 2003). In case of Arg-246
and Arg-254, both are surprisingly seen to be buried,
(Table 2) indicating that they play exceptional roles for
stabilizing the protein structure. Structural inspection
revealed they form quite many hydrogen bonds
compared to the other conserved residues in this
protein molecule. Most notably Arg-254 forms six
total hydrogen bonds with Leu-25, Pro-251, Pro-195

Gly 196
Ser 29
_ ‘

Arg 246 /
/\@ f

S 2834R

=
e

/ \pgr7h _ GIn28

< = :3513“ '
1y Ala 23

/‘7 Leu 251 \‘-“I"\_ y

Figure 26 The important hydrogen
bonds formed by Arg-246 and Arg-254

and GIn-28, whereas Arg-246 forms four hydrogen bonds with Ala-23, GIn-28 and Ser-29
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(Figure 26). By attaching to the backbone of Ser-29, these two Arginines lock the C-terminal

part of the protein stably in the fold.

5.4.13 GIn-28

GIn-28 forms four hydrogen bonds where two of them
are bonded with the Arg-246 side chain (Figure 27). A
close observation of the structure found that, the
hydrogen bond with Arg-246, along with hydrogen
bond between Arg-246 and Ser-29, are crucial for the
formation of the bend composed of consecutive Arg-
27, GIn-28, Ser-29 and Pro-30.

5.4.14 His-107 and Glu-117

His-107 forms hydrogen bonds with Glu-117 and Tyr-
194 (Figure 28). These bonds are part of the conserved
hydrogen bond network in the active site that promotes
the catalytic potency (Kiefer 1995). A case study
regarding CA-I11 deficiency syndrome done by Venta
et al. also showed the importance of the invariant His-
107, and its corresponding hydrogen bonds to other
invariant residues Tyr-194 and Glu-117, for stabilizing
the protein structure. Absence of His-107 was found to
these bonds and resulted in

lack hydrogen

destabilization of the structure. (Venta 1991).
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Figure 27 GIn-28 forming hydrogen
bonds with Arg-246 and Ser-29

Figure 28 His-107 and Glu-117
participating in forming hydrogen bond
network



5.4.15 Trp-97

Trp-97 is located just after His-96. It is bound with the
main chain oxygen atom of Met-241 by forming a
hydrogen bond in the opposite direction of the active
center (Figure 29). The study done by Jennifer et al.
showed that this structural orientation stabilizes the
conformation of His-96. They have found that several
variants at the Trp-97 position affected the zinc binding
by the histidine triad, as binding affinity was several-
fold slower than in the wild type (Hunt 1997). The data
obtained from the study suggest that Trp-97 might

N

Met 241

~]

28334 |

Figure 29 Trp-97 interacting with

Met-241

anchor the beta strand in which it is located and restricts the conformational flexibility of

His-94 and His-96 to inhibit the zinc dissociation process.

5.4.16 Gly-63, Gly-197, and Gly-104

In hCA-II structure, Gly-63 is found in a tight turn
(Figure 30). Glycine is the only amino acid having no
side chain. Due to the absence of side chain, they easily
form extreme bond angles compared to the other amino
acids, therefore they are mostly found in tight turns or
U-turns (Chou 1977). Further, Tamai et al. proved that
Gly-63 ensures the rapid conformational changes by
His-64 which plays a key role for efficient proton
transfer. Moreover, a site-directed mutation (Gly-63-
GlIn) study showed 20-25% lower activity in catalysis
than the wild form of the protein (Tamai 1996). Two

'/r“\\'\.
£ Gly19s \\
//

His 64

s 4
. 4 Gy 83

s
"‘-\E\g,a‘mA \
¥

Asn 61

Figure 30 Gly-63, Gly-197 and
Gly104 positioned in the turns and bend.

other Glycines, Gly-196 and Gly-104, start slight turns in the structure and in both cases a

number of consecutive conserved residues participating in the formation of bends clearly

indicates their structural role.
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5.4.17 Tyr-194 and Trp-209

The hydrophobic interaction between Tyr-194 and
Trp-209 probably necessary for the specific folding
pattern in the protein core. Considering both are
aromatic and their position in the same geometric
plane, there is a parallel-displaced n-m stacking
interaction (Dougherty 2007) between the two
aromatic systems. Also, they form necessary hydrogen
bonds with conserved residues Ser-29, Ser-197, and
His-107 helping them fold into the protein core and
maintain the typical beta sheet pattern of the alpha

carbonic anhydrases (Figure 31).

5.4.18 Leu-44

Leucines are nonpolar hydrophobic in nature and
usually tend to be buried in the protein core. Due to
the absence of a reactive group in the side-chain, they
does not form any hydrogen bonds. Leu-44 is also
buried in the protein core and are seen to be involved
in hydrophobic packing with the nearby hydrophobic
portion of the residues- Tyr-191, Asp-41, Ala-258 and
Pro-83 (Figure 32). Although Leu-44 is positioned in
the surface but the side-chain is directed towards the

core. Moreover, corresponding main chain of the

Figure 31 Tyr-194 and Trp-209
showing z-m stacking interaction

Lys 45 “

Figure 32 Leu-44 is participating in
hydrophobic packing

residue also bending towards the core and forming a specific folding pattern. Such orientation

is clearly indicating the importance of the Leu-44 residue for hydrophobic packing as well

as for the structural stability. The contacts with the residues in the proximity are showed in

straight red line that were determined by the Chimera clash/contact tool.
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5.4.19 His-122

The position of His-122 is just after the hydrophobic
Val-121 where Val-121 is interacting with the other
hydrophobic residues and forming the hydrophobic
cluster in the active site. However, the side chain
orientation of His-122 is opposite to the hydrophobic
cluster as forming a hydrogen bond with the side chain
of Tyr-51. The side chain orientation is justified by the
fact that being hydrophilic,
hydrophobic residues- Val-121, Leu-141, lle-91, Val-
143 and Phe-131 from the active cavity. Further,

it is repulsed the

having a calculated pKa value of 1.67, which is four

N)\
val143 ORE N

O
b a8
[ o Leutst

|/ Phe 131
;‘/\\
f )
i

Val 121

Tyr 51 2.738A

Figure 33 His-122 forming hydrogen
bond with Tyr-51 positioned in the opposite
side of the hydrophobic cluster

times lower than their original pKa value 6.5 (see Appendix 4) shows that His-122 is quite

acidic and needs to be in the deprotonated state most of the time.

5.4.20 Ala-134

Alanines are tiny in size and hydrophobic in nature.
Due to the absence of a reactive atom in side-chain,
they do not form hydrogen bonds. Here, Ala-134 is
buried but few hydrophobic contacts are seen with
nearby hydrophobic residues, rather it is interacting
with some of the nearby atoms. The residues located
within 5A distance of Ala-134 are visualized and the
contacts, determined by Chimera clash/contact tool are
shown in red straight lines (Figure 34). These
interactions can be due to the act of van der Waals

forces.
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Figure 34 Ala-134 contacts with the
hydrophobic residues in the proximity



5.4.21 Ala-142

Like Ala-134, Ala-142 also forms hydrophobic é/

interactions but here the hydrophobic contacts are quite - 88 /J
Leu 84

strong, formed by seven hydrophobic residues in close

Ala 142
proximity. The residues residing within 5A distance

from Ala-142 were selected and all of them are
hydrophobic in nature, as expected for a residue buried
very deep in the structure. Therefore, Ala-142 certainly
makes hydrophobic contacts with nearby hydrophobic N, Leu 144
residues Leu-120, Leu-144, lle-210, Leu-79, Leu-84 Figure @ The hydrophobic

and the aromatic ring of Tyr-88 thus stabilizing the interactions of  Ala-142 = with  the
neighbouring hydrophobic residues

structure (Figure 35).

5.5 Statistical Analysis

The statistical computing was done for visualizing different properties of the conserved
residues in the universal group (Figure 36).

The first graph (Figure 36A) illustrates the frequency of the conserved polar residues vs. non-
polar residues. It is clear from the graph that the number of conserved polar residues greater
(by almost 15%) than the non-polar residues. The second graph (Figure 36B) shows that
conserved residues are more than twice as likely to be hydrophilic than hydrophobic at
57.89% and 26.32% respectively. However, there is also a good number of residues which
are amphipathic in character. In the third graph (Figure 36C), the proportion of buried
residues is seen to be much greater than the surface residues (92.11% are buried compared
to only 7.89% for surface). The fourth graph (Figure 36D) describes the overall distribution
of the individual residues in the universally conserved group. Histidines are present at highest
frequency, relative to the rest of the residues. The second highest position is occupied by
Glutamine and the third most frequent residues are Glycine, Proline, Serine, Valine and
Tryptophan, each seen in eight conserved positions. However, the lowest frequency residue
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IS Tyrosine. Nevertheless, amino acid

residues Cysteine,

Methionine, Isoleucine,

Phenylalanine are completely absent in the universally conserved residue list.
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Figure 36 The frequency of distribution of the amino acid in the final universally conserved residue list and
their frequency in terms of chemical properties. NP = Non-polar, P = Polar. The statistical analysis and the figures
were made in the R (version 3.1.1) (http://www.r-project.org/) environment.
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5.6 List of Residues Conserved Only in Cytoplasmic or Extracellular CA
Isozymes

Table 4 was compiled of absolutely conserved residues that are only present in the
cytoplasmic and extracellular isozymes. The most notable findings are- there are three
Aspartate residues and many amphipathic residues that are present in the cytoplasmic group
while none of them are found in the extracellular group. In addition to that, the Cysteines that
are responsible for the formation of disulphide bridge in the extracellular domain are

conserved.

Table 4 List of residues that are conserved only in cytoplasmic isozymes (CA-I, I, 111, VII and X111 ) or
extracellular isozymes (CA-VI, IX, XII and X1V) and their corresponding Ka/Ks values

Cytoplasmic residues- 3KS3 Extracellular residues- 4HT2

Serial PDB_res PDB_pos Ka/Ks PDB_res PDB_pos Ka/Ks

1 w 5 0.027 G 8 0.029

2 Y 7 0.013 C 22 0.026

3 P 21 0.012 | 30 0.027

4 A 23 0.029 H 66 0.031

5 G 25 0.02 \Y 68 0.013

6 \% 68 0.038 L 72 0.019

7 D 72 0.0095 A 87 0.03

8 G 82 0.014 G 95 0.02

9 R 89 0.0079 G 138 0.022

10 L 90 0.014 L 139 0.019

11 G 98 0.013 \% 141 0.012

12 D 110 0.039 L 142 0.019

13 w 123 0.027 N 152 0.01

14 N 124 0.0069 P 201 0.016

15 D 139 0.0098 C 202 0.02

16 G 140 0.015 T 209 0.037

17 K 170 0.0089 \% 210 0.031

18 F 176 0.014

19 D 180 0.036

20 L 184 0.014

21 w 192 0.027

22 T 193 0.026

23 P 202 0.012

24 B 205 0.039

25 R 227 0.011

26 P 250 0.012
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Universal Cytoplasmic Extracellular

Figure 37 Comparison between only cytoplasmic and only extracellular conserved residues. The left figure
shows the universally conserved residues in green color, middle figure shows unique cytoplasmic conserved
residues in red color and right figure shows unique extracellular conserved residues in blue color. Left and middle
figures were made from hCA-I1 structure (PDB: 3ks3) and right figure was made from hCA-XII structure (PDB:
4ht2)

5.7 Cytoplasmic and Extracellular Conserved Surface Visualization

The hydrophobic residues were visualized and marked in the protein structure PDB-3ks3 for
cytoplasmic and PDB-4ht2 for extracellular conserved residue analysis (Figure 38). The
figures denoting some specific information about the conserved surfaces, the conserved
surface areas are scattered throughout the whole protein molecule in the cytoplasmic
structure where in extracellular, the conserved surfaces are accumulated at the center, mostly
around the active cavity. When coloring the surfaces based on the chemical properties, in the
cytoplasmic isoforms, the quantity of the hydrophobic surfaces are less compared to the
hydrophilic and amphipathic parts. However, in the extracellular isoforms, the amount of
hydrophilic and hydrophobic surfaces are same but the amount of overall conserved surface

area is very trivial.
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Figure 38 Cytoplasmic and extracellular conserved surfaces visualization and comparison, with
hydrophobic-red, hydrophilic-blue and amphipathic-green. The first and third rows are showing straight view to
the active site, representing all the absolutely conserved and residues conserved only in each group. The second
and fourth rows, visualizing the surfaces rotating 180° vertically to the right. Protein structure PDB ids- 3ks3 for
cytoplasmic and 4ht2 for extracellular.

43



5.8 Visualization and Comparison of N-glycosylation Sites on Structures

The categorized N-linked glycosylation sites were mapped and colored for each of the
isozymes in their representative crystallographic structures. For the isozyme CA-VI, the
human CA-VI (PDB: 3FE4); for isozyme CA-1X, human CA-IX (PDB: 4M2V); for isozyme
CA-XII (PDB: 4HT2) and for isozyme CA-XIV (PDB: 4LU3) were selected from RCSB.org.
Then a missing part of CA XII at N terminal end was modelled to accommodate one
glycosylation site. The sites of different categories were colored differently from deep color
to a lighter color describing the most conserved to the least conserved, respectively (Figure
39). Based on the alignment of Appendix 5, each of these isozymes has one to three conserved
glycosylation sites (darkest colors in Figure 39), which are: Asn-256, Asn-67 (CAG); Asn-
213 (CA9); Asn-1, Asn-52, and Asn-134 (CA12); Asn-195 (CA14).

Figure 39 Comparative analyses of the N-linked glycosylation sites in CA-VI, IX, X1l and XIV. The deeper
colours denote “conserved glycosylated” sites while the lighter one shows “occasionally glycosylated” sites. First
row shows the active site facing us; second row turned 120° vertically to the right and the third row turned 120°
vertically to the left. The structures were edited in Chimera.
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6 Discussion

6.1 “Universally Conserved” Residues

The universally conserved residue list, which includes both perfectly conserved and highly
conserved residues, are predominantly participating in structural and functional activities.
Residues that are conserved were found to be forming hydrogen bonds or hydrophobic
interactions with the other conserved residues. This fact actually strengthens the logic that
the residues are conserved across species and different isozymes. The invariant hydrogen
bonds in the conserved areas mostly indicated that absence of any of the conserved residues
in the respective regions could result in loss of bonding and become unstable. The
information that was found from the literature survey specially described the evidences
regarding the mutation studies that were done in various laboratories. In all of the cases, the
mutated versions showed lower efficacy for both catalytic activity and/or structural stability.
Therefore, the physicochemical study approach that was taken for each of the conserved
universal amino acid residues was justified by the evidence from literature surveys in most
of the cases. The residues that were not mentioned in any publications were intensively
analyzed according to their chemical features and environment, and rational predictions of

their roles were made for each.

In Figure 40, some of the coinciding structural features were portrayed with different colors.
The most eye-catching figure is three conserved Histidines (94, 96, and 119) at the catalytic
site contributing in stabilizing the zinc ion as well as proton flow during the reaction
mechanism (showed in yellow). Besides that, many of the structural residues are highly likely
to contribute in stabilizing the loops/turns (Figure 40). Nevertheless, turns and loops are the
vital component of a globular protein. Figure 40 summarizes the stabilizing effects in various
loops of the alpha CA folds. The loop that is seen in blue color is composed of conserved
His-64, Gly-63 and Asn-61. Another loop containing conserved Leu-198, Thr-199, Thr-200,
and Pro-201 are colored in green. The aforementioned two loops are the most vital loop in

the alpha CA structures as they are actively participating in both catalysis and stabilizing the
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structure. Furthermore, a group of consecutive conserved residues also stabilizes two major
bends. One such bend is formed by Ser-105, Glu-106, and His-107 (red) and another one is
with GIn-28, Ser-29, and Pro-30 (cyan).

Figure 40 Two vital loops formed by Asn-61, Gly-63 and His-64 (blue), and Ser-197 to Pro-201 (green). Two
major bends formed by Ser-105 to His-107 (red) and GIn-28 to Ser-29 (cyan). The catalytic Histidines are in yellow
color.

The result of the statistical analysis showed that a vast majority of the universally conserved
residues are buried, yet surprisingly most of them are hydrophilic in nature, due to extensive
hydrogen bonding networks within the protein core. In addition to that, the Histidines are
present in highest frequency; mainly because of the catalytic center of three zinc binding
Histidines. The pKa analysis (Appendix 4) showed that Histidines are highly acidic in nature,
which indicates that they are favoring proton flow, which is one of the key functional

elements in catalysis.
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6.2 Cytoplasmic and Extracellular a-CAs

This part of study was made to investigate the differences between cytoplasmic and
extracellular conserved residues that might be worthy of attention in their respective group.
The structural comparison between cytoplasmic and extracellular conserved residues
disclosed that the areas that are conserved in both groups are unique; none of them shared
the same conserved places (Figure 37). Therefore, it is probable that the conserved “only
cytoplasmic” residues or “only extracellular” residues are functionally important for their

respective roles in their subcellular parts.

The hydrophilic surfaces of the proteins are highly likely to bind with the surrounding solvent
molecules whereas the hydrophobic surfaces are more prone to interact with ligands or other
protein molecules. However, the amphipathic surfaces are ideal for making protein-protein
interactions (Creighton 1992). Here, in the cytoplasmic isozymes, some conserved
amphipathic surface residues are located close to each other and forming an amphipathic
patch. This can be considered as a potential interaction region for other proteins. Besides,
two small conserved hydrophobic regions are seen (cytoplasmic-only in Figure 38) close to
the amphipathic patch. The conserved hydrophobic regions also possibly participate in
protein-protein interactions. On the other hand, no amphipathic or even meaningful
hydrophobic surfaces are seen conserved in the extracellular isoforms (the two hydrophobic
residues that are conserved are located near the entrance of the cavity that probably would
not participate in protein binding). This might mean that the cytoplasmic isozymes share a

common binding function whereas the extracellular isozymes interact with different proteins.

Another eye-catching feature is that in the extracellular domain, Cys-22 and Cys-202 are
conserved and forming a disulfide linkage. Because the disulfide is also quite near the
important doorkeeper residues Thr-198 and Thr-199, it stabilizes that loop and the active

center in general.
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6.3 N-glycosylation Sites

The idea of this part of the analysis was to identify functional and non-functional
glycosylation sites. The results from frequency calculation (Table 1) of the glycosylation
sites explored conserved and rare glycosylation sites. The conserved glycosylation sites,
which are found in the majority of the species, might have a functional purpose for the
presence of the oligosaccharide (glycan). Further from the structural visualization (Figure
39), it is clear that none of the conserved glycosylated sites is shared among the isozymes. It
is also seen that most of the glycosylation sites are present close to the entrance of the
catalytic pocket (1% row of Figure 39). This is logical with the fact that other protein-protein
interactions would not be likely to block the active site, whereas in the other two projections
(2" and 3" row of Figure 39) they have more extensive clear regions that might be interaction

regions with other proteins or dimerization regions.
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Conclusions

The main purpose of this work was to identify the maximal number of highly conserved
residues that are functionally important across the alpha carbonic anhydrases. The first list
of the “universally conserved” residues were filled by the absolute conserved residues
followed by the second list of “highly conserved” residues that were not perfectly conserved
due to the presence of single exception at the species or isozyme level. The characteristics of
the conserved residues showed interesting results. The statistics of the RSA values revealed
that many of these conserved residues are buried in the protein core. Further, the structural
investigation found quite distinct role for each of the conserved residues that justified their
trend to be conserved. Besides, the surface visualization of the conserved cytoplasmic and
extracellular residues gives a stronger motive about their specificity to be bound with the
protein or ligand. It can be speculated that the cytoplasmic isoforms may have common
binding modes as opposed to the extracellular isoforms that would seem to interact with
different molecules in unique modes. Finally, the N-glycosylation site visualization presents
that the densely aggregated sites are positioned at the entrance of the active site. This
arrangement of the sites might be required so that any protein-protein interaction does not
block the passage towards the active cavity.

The work procedure that was conducted to construct the universally conserved residues can
be applied for determining the highly responsible functional elements in any protein family
like beta CAs and gamma CAs or in different sub-groups like GPI-linked alpha CAs and
CARPs etc. The alpha CA comparisons will be extended to further groups of organisms, such
as invertebrates, protozoans, fungi, plants, and bacteria. Furthermore, the enigmatic, non-
catalytic CA-related proteins are a good target for comparisons with the whole rest of the
alpha family, using the conservation approach | have applied here. We expect that this would

give meaningful insights in the functions of enzymatically active and inactive alpha CAs.
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Appendix 1

The result of the Ka/Ks analysis and RSA values arranged in ascending order along with the
manual alignment showing in the right most columns. 100% or perfectly conserved residues
are noted with ‘XX’ and highly conserved residues having single exceptions are noted with

‘X’. Conserved residues having exceptional roles are noted with “***’,

ENS_res PDB_res PDB_pos RSA LOC ka/ks Alignment Exceptions/special roles
N N 61 0 Buried 0.0055 XX
T T 199 0.04 Buried 0.0055 XX
S S 29 0 Buried 0.0059 XX
H H 96 0.01 Buried 0.0059 XX
H H 107 0 Buried 0.006 XX
S S 197 0 Buried 0.006 XX
Q Q 222 0.02 Buried 0.006 XX
Q Q 28 0.02 Buried 0.0061 XX
H H 94 0.12 Buried 0.0061 XX
H H 122 0 Buried 0.0061 XX
Q Q 249 0.21 Surface 0.0061 XX
H H 119 0.02 Buried 0.0062 XX
A A 142 0 Buried 0.0066 XX
E E 117 0 Buried 0.0076 XX
E E 106 0.01 Buried 0.0077 XX
R R 254 0.11 Buried 0.0083 XX
R R 246 0.01 Buried 0.0086 XX
G G 104 0 Buried 0.0091 XX
P P 30 0 Buried 0.0092 XX
G G 196 0 Buried 0.0093 XX
Y Y 194 0.03 Buried 0.0097 XX
P P 186 0.09 Buried 0.0099 XX
P P 201 0.08 Buried 0.01 XX
L L 44 0.18 Buried 0.011 XX
V V 207 0 Buried 0.016 X CA3
A A 134 0 Buried 0.017 X CA4_mus_musculus
Vv Vv 121 0.06 Buried 0.018 X CA1_homo_sepiens
S S 105 0 Buried 0.019 X CA14_gallus_gallus
w w 16 0.02 Buried 0.021 XX
W W 97 0 Buried 0.021 XX
W W 209 0.02 Buried 0.021 XX
N N 244 0 Buried 0.027 X CA6
Q Q 92 0.15 Buried 0.029 X CA6_mus_musculus
T T 200 0.21 Surface 0.029 el Stabilize Water chain
L L 198 0.18 Buried 0.03 X CA3
G G 63 0.18 Buried 0.031 X CA4_mus_musculus
Vv Vv 143 0.04 Buried 0.045 ol Hydrophobic pocket formation
H H 64 0.28 Surface 0.046 el Proton shuttle
L L 164 0.04 Buried 0.053
G G 140 0 Buried 0.054
F F 70 0.05 Buried 0.056
G G 98 0 Buried 0.056
N N 124 0.01 Buried 0.057
L L 90 0.01 Buried 0.058
L L 203 0 Buried 0.059
W W 5 0.14 Buried 0.061
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ENS_res PDB_res PDB_pos RSA LOC ka/ks Alignment Exceptions/special roles
\% \% 31 0.01 Buried 0.063
| | 33 0 Buried 0.063
A A 23 0.07 Buried 0.066
Y Y 88 0.02 Buried 0.068
Y Y 191 0.01 Buried 0.068
K K 154 0.19 Buried 0.069
S S 259 0.22 Surface 0.069
T T 193 0.07 Buried 0.073
L L 184 0 Buried 0.074
E E 205 0.24 Surface 0.074
Vv Vv 211 0 Buried 0.075
| | 167 0 Buried 0.076
L L 185 0.19 Buried 0.077
G G 25 0.19 Buried 0.079
F F 66 0 Buried 0.079
N N 62 0.24 Surface 0.082
Y Y 7 0.15 Buried 0.086
| | 210 0 Buried 0.089
| | 256 0.08 Buried 0.089
D D 110 0.44 Surface 0.094
\% \Y 68 0 Buried 0.096
| | 59 0 Buried 0.097
D D 41 0.24 Surface 0.098
\Y% \Y% 218 0.02 Buried 0.1
G G 145 0 Buried 0.11
| | 216 0.02 Buried 0.11
L L 251 0.38 Surface 0.11
P P 13 0.19 Buried 0.12
T T 108 0.06 Buried 0.12
P P 202 0.43 Surface 0.12
L L 141 0.01 Buried 0.13
A A 65 0.02 Buried 0.14
K K 111 0.75 Surface 0.14
Y Y 128 0.25 Surface 0.14
W W 192 0.04 Buried 0.14
M M 241 0 Buried 0.14
P P 46 0.84 Surface 0.15
F F 179 0.03 Buried 0.15
R R 227 0.12 Buried 0.15
P P 21 0.73 Surface 0.16
D D 32 0.18 Buried 0.16
\Y \Y 109 0.13 Buried 0.16
A A 116 0.01 Buried 0.16
K K 170 0.43 Surface 0.16
L L 212 0 Buried 0.16
A A 77 0.06 Buried 0.17
R R 89 0.17 Buried 0.17
| | 146 0 Buried 0.17
K K 149 0.5 Surface 0.17
P P 215 0.18 Buried 0.17
F F 226 0.01 Buried 0.17
A A 258 0.06 Buried 0.17
G G 6 0.13 Buried 0.18
N N 11 0.36 Surface 0.18
T T 35 0.31 Surface 0.18
L L 84 0.07 Buried 0.18
A A 115 0.04 Buried 0.18
L L 118 0 Buried 0.18
L L 120 0 Buried 0.18
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ENS_res PDB_res PDB_pos RSA LOC ka/ks Alignment Exceptions/special roles
L L 144 0 Buried 0.18
F F 147 0 Buried 0.18
D D 180 0.39 Surface 0.18
C C 206 0 Buried 0.18
T T 208 0.18 Buried 0.18
F F 260 0.2 Buried 0.18
Vv \% 160 0 Buried 0.19
S S 219 0.08 Buried 0.19
L L 229 0.01 Buried 0.19
E E 236 0.52 Surface 0.19
P P 250 0.59 Surface 0.19
K K 252 0.44 Surface 0.19
L L 47 0.1 Buried 0.2
G G 82 0.08 Buried 0.2
F F 93 0 Buried 0.2
F F 95 0 Buried 0.2
L L 157 0 Buried 0.2
G G 171 0.69 Surface 0.2
A A 174 0.19 Buried 0.2
D D 190 0.35 Surface 0.2
W w 245 0.19 Buried 0.2
G G 12 0 Buried 0.21
H H 15 0.29 Surface 0.21
D D 75 0.55 Surface 0.21
G G 151 0.54 Surface 0.21
F F 176 0.1 Buried 0.21
P P 83 0.31 Surface 0.22
D D 139 0.33 Surface 0.22
K K 172 0.38 Surface 0.22
D D 130 0.5 Surface 0.23
Q Q 158 0.31 Surface 0.23
\Y \Y 161 0.03 Buried 0.23
P P 181 0 Buried 0.23
\Y \Y 223 0.01 Buried 0.23
D D 52 0.56 Surface 0.25
D D 162 0.58 Surface 0.25
D D 72 0.26 Surface 0.26
\Y \Y 78 0.09 Buried 0.26
G G 81 0.21 Surface 0.26
D D 243 0.26 Surface 0.26
N N 253 1.01 Surface 0.26
| | 22 0.33 Surface 0.27
T T 125 0.29 Surface 0.27
K K 133 0.53 Surface 0.27
K K 228 0.54 Surface 0.27
E E 234 0.75 Surface 0.27
H H 10 0.84 Surface 0.28
A A 38 0.16 Buried 0.28
S S 73 0.65 Surface 0.28
S S 99 0.33 Surface 0.28
L L 148 0.01 Buried 0.28
N N 230 0.03 Buried 0.28
P P 247 0.4 Surface 0.28
L L 57 0.48 Surface 0.29
K K 127 0.55 Surface 0.29
S S 166 0.46 Surface 0.29
P P 42 0.71 Surface 0.3
Vv \Y 150 0.33 Surface 0.3
H H 4 1.01 Surface 0.31
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ENS_res PDB_res PDB_pos RSA LOC ka/ks Alignment Exceptions/special roles
H H 17 0.36 Surface 0.31
K K 24 0.67 Surface 0.31
D D 34 0.41 Surface 0.31
W W 123 0.04 Buried 0.31
T T 169 0.08 Buried 0.31
E E 238 0.59 Surface 0.31
Y Y 40 0.39 Surface 0.32
K K 168 0.45 Surface 0.32
Vv Vv 242 0.21 Surface 0.32
Vv Vv 49 0.23 Surface 0.33
Y Y 51 0.01 Buried 0.33
S S 56 0.01 Buried 0.33
K K 113 0.44 Surface 0.33
K K 159 0.56 Surface 0.33
T T 177 0.57 Surface 0.33
E E 214 0.31 Surface 0.33
E E 221 0.62 Surface 0.33
S S 188 0.22 Surface 0.34
K K 213 0.34 Surface 0.34
K K 257 0.2 Surface 0.34
D D 71 0.21 Surface 0.35
N N 232 0.03 Buried 0.35
N N 67 0.15 Buried 0.36
Y Y 114 0.14 Buried 0.36
Q Q 137 0.27 Surface 0.36
\Y \Y 163 0.18 Buried 0.37
L L 189 0.37 Surface 0.37
N N 178 0.85 Surface 0.38
F F 231 0.18 Buried 0.38
A A 248 0.43 Surface 0.38
P P 138 0.6 Surface 0.39
T T 55 0.32 Surface 0.4
K K 18 0.66 Surface 0.42
F F 20 0.28 Surface 0.42
S S 43 0.69 Surface 0.42
D D 101 0.47 Surface 0.42
M - - NA NA 0.43
K K 39 0.64 Surface 0.43
G G 102 0.68 Surface 0.43
A A 153 0.51 Surface 0.43
L L 224 0.55 Surface 0.43
E E 69 0.24 Surface 0.44
K K 112 0.55 Surface 0.44
F F 131 0.33 Surface 0.44
R R 27 0.2 Buried 0.45
S - - NA NA 0.46
K K 9 0.77 Surface 0.46
D D 85 0.83 Surface 0.46
A A 54 0.23 Surface 0.47
\Y \Y 135 0.14 Buried 0.47
G G 183 0.37 Surface 0.47
H H 36 0.93 Surface 0.48
G G 156 0.32 Surface 0.48
T T 37 0.8 Surface 0.49
Q Q 136 0.67 Surface 0.49
P P 155 0.83 Surface 0.49
L L 79 0 Buried 0.5
| | 91 0.21 Surface 0.5
R R 182 0.48 Surface 0.5
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ENS_res PDB_res PDB_pos RSA LOC ka/ks Alignment Exceptions/special roles
G G 86 0.56 Surface 0.51
S S 220 0.37 Surface 0.51
G G 235 1 Surface 0.52
G G 132 0.44 Surface 0.53
E E 26 0.63 Surface 0.54
H - - NA NA 0.56
K K 225 0.4 Surface 0.56
G G 233 0.06 Buried 0.56
Q Q 53 0.64 Surface 0.58
R R 58 0.34 Surface 0.58
D D 165 0.76 Surface 0.58
S S 217 0.27 Surface 0.58
Q Q 103 0.26 Surface 0.59
G G 8 0.44 Surface 0.64
K K 45 0.66 Surface 0.65
K K 76 0.23 Surface 0.66
p p 195 0.39 Surface 0.67
P P 237 0.82 Surface 0.68
K K 261 1.09 Surface 0.69
T T 87 0.2 Surface 0.7
S S 152 0.71 Surface 0.7
S S 50 0.32 Surface 0.71
L L 60 0.2 Buried 0.72
G G 129 0.67 Surface 0.73
L L 204 0.33 Surface 0.74
E E 14 0.6 Surface 0.77
S S 48 0.31 Surface 0.78
Q Q 74 0.6 Surface 0.8
E E 239 0.57 Surface 0.8
K K 80 0.38 Surface 0.84
S S 173 0.42 Surface 0.85
Q Q 255 0.67 Surface 0.87
E E 187 0.93 Surface 0.9
D D 19 0.76 Surface 0.93
L L 100 0.65 Surface 0.95
D D 175 0.9 Surface 0.96
L L 240 0.52 Surface 0.98
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Appendix 2

MSA of the “universal group” containing human, mouse and chicken/turkey CA sequences.

CAl_homo_sapien
CA3 _homo_sapien
CA4_homo_sapien
CAS5 (A) _homo_sap
CAS (B) _homo_sap
CA6_homo_sapien
CA7_homo_sapien
CA9_homo_sapien
CAl2_homo_sapie
CA13_homo_sapie
CAl4_homo_sapie
CA2 homo_sapien
CAl_mus_musculu
CA2 mus_musculu
CA3_mus_musculu
CA4_mus_musculu
CAS5 (A) mus musc
CAS5 (B) _mus_musc
CA6 mus musculu
CA7_mus_musculu
CA9_mus_musculu
CAl2 mus muscul
CA13 mus_muscul
CAl4 mus muscul
CA15_mus_muscul
CAl_Pelodiscus_
CA2 gallus gall
CA3_gallus_gall
CA4 gallus gall
CAS_gallus_gall
CA6_gallus_gall
CA7 gallus gall
CA9_gallus_gall
CAl2 gallus gal
CA13 gallus_gal
CAl4_gallus_gal
CAl5 gallus gal

CAl_homo_sapien
CA3 homo sapien
CA4_homo_sapien
CA5(A) homo_sap
CA5 (B) _homo_sap
CA6_homo_sapien
CA7_homo_sapien
CA9_homo_sapien
CA12_homo_sapie
CA13 homo_sapie
CA14_homo_sapie
cA2_homo_sapien
CAl_mus_musculu
CA2_mus_musculu
CA3_mus_musculu
CA4_mus_musculu
CA5(R)_mus_musc
CAS5 (B) _mus_musc
CA6_mus_musculu
CA7_mus_musculu
CA9_mus_musculu
CA12_mus_muscul
CA13 mus_muscul
CAl4_mus_muscul
CA15_mus_muscul
CAl_Pelodiscus_
cA2_gallus_gall
CA3 gallus_gall
CA4_gallus_gall
CAS_gallus_gall
CA6_gallus_gall
CA7 gallus_gall
CA9_gallus_gall
CA12_gallus_gal
CA13 gallus gal
CAl4_gallus_gal
CA15_gallus_gal
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CA6 gallus gall
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CAl4 gallus gal
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Appendix 3

The POOL rank scores which denote the functionally important residues of a given protein

structure identified by a machine learning approach. The POOL server is located at

http://www.pool.neu.edu/wPOOL/. It has been seen that all the highly conserved residues

that ranked top positions in the Ka/Ks score were also found within the top 50 positions of

the POOL rank among 257 residues in the given protein structure, PDB: 3KS3

Rank
1
2
3
4
5
6
7
8

9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

POOL score

[eNeoNoNoNoNoloNoloNoNoNoNoNoNoloNeoNoNoNoNoNoNoNoNoNoNoNoNoloNeoNoNoNoNoNoNolNoNoNeoNoNoNoNoNoNoNoNoNolNe]

.006893208250403
.006618639454246
.001615040004253
.000763847958297
.000144612000440
.000073695999163
.000033696000173
.000026879999496
.000014742000531
.000013860000763
.000012149999748
.000009072000466
.000009072000466
.000006480000593
.000004752000223
.000004049999916
.000003888000265
.000002964000032
.000001890000021
.000001700999746
.000001248000103
.000001214999998
.000001200000042
.000001200000042
.000001120000093
.000000864000128
.000000864000128
.000000850000106
.000000800000066
.000000720000116
.000000480000040
.000000480000040
.000000480000040
.000000480000040
.000000480000040
.000000352000029
.000000351000011
.000000350000022
.000000270000015
.000000270000015
.000000256000050
.000000243000017
.000000224000033
.000000224000033
.000000210000010
.000000180000001
.000000161999992
.000000161999992
.000000160000013
.000000160000013

Residue Number

HIS:A 94
HIS:A 119
HIS:A 96
GLU:A 106
GLU:A 117
HIS:A 107
ARG:A 246
TYR:A 7
HIS:A 64
TYR:A 194
THR:A 199
THR:A 200
LEU:A 198
VAL:A 121
PHE:A 95
ASN:A 67
VAL:A 143
ASP:A 32
GLN:A 92
TRP:A 209
LEU:A 118
ALA:A 65
PHE:A 93
LEU:A 120
CYs:A 206
PRO:A 30
GLY:A 145
ASP:A 243
ARG:A 254
HIS:A 122
SER:A 105
PHE:A 147
LEU:A 144
ILE:A 146
ALA:A 116
ASN:A 244
TYR:A 114
TYR:A 128
TRP:A 97
TRP:A 245
ASP:A 72
HIS:A 4
TYR:A 51
ARG:A 27
GLN:A 249
VAL:A 207
GLY:A 104
ALA:A 248
TYR:A 88
SER:A 29
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Appendix 4

The pKa values were predicted from DEPTH server (Tan 2013). It calculates the pKa values
for acidic and basic amino acid residues from a given protein structure (PDB:3KS3). Each of
the vertical bars in the following graphs are showing the predicted pKa values of the residues

and the horizontal black lines are representing the standard pKa value of the residues.

pKa prediction for GLU

10 pKa prediction
W Vodel pKa

8

6

4

2

14:A 69:A N7-A 205:A 221:A 236:A 239:A
26:A 106:A 187T-A 214:A 234:A 238:A

Residue Number

pKa prediction for ASP

Il pKa prediction
H Wodel pka

19A 34:A S2:A T2:A 85A 0A 139:A 165°A 180:A 243A
32:A 41:A T1:A TSA 101:A 130:A 162:A 175:A 190:A

Residue Number

66



pKa prediction for LYS

15 M pKa prediction
M Vodel pKa
1.0
10.5
10.0
9.5
gA 24:A 45A 80:A 1MZA 12TA 149:A 159:A 170:A 213A 228A 25TA
18:A 39A T6A 1M1A 113A 133A 154A 168:A 172:A 225:A 252A 261TA
Residue Number
pHKa prediction for HIS
8 M pKa prediction
W Vodel pKa
B
4
2
0
4-A 168:A 36:A 94-A 107:-A 122:A
10:A 17:A G- A, 96:A, 1M9:A

Residue Number
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Appendix 5

The MSA of CA-VI, CA-IX, CA-XII, and CA-XIV with identified N-linked glycosylation
sites with colors, red for CA-VI, cyan for CA-1X, purple for CA-XII and green for CA-XIV.

* 20 * 40 * 60 * 80 * 100 *
CA6_monodelphis MRFWIVLLS 9
CA6_tetraodon_n LILVEVS 9
CA6_mus_musculu : MRALVSVVS 9
CA6_rattus_norv : VLVSVVS 9
CA6_echinops_te : MRAVAILLS 9
CA6_erinaceus_e : MTPLILVLS 9
CA6_mustela_put : LVALVA 9
CA6_canis famil : MRALALLLA 9
CA6_ailuropoda_ : LALLLA 9
CA6_ictidomys_t MRVVVTLVS 9
CA6_equus_cabal MOAPLTLLS 9
CA6_bos_taurus MITLLF 6
CA6 sus scrofa MTALVTLLF 9
CA6_otolemur_ga MRALVPLLS 9
CA6_gorilla_gor MRALVLLLS 9
CA6 macaca mula MRALVPLLS 9
CA6_homo_sapien MRALVLLLS 9
CA6 pongo abeli MRALVLLLS 9
CA6_pan_troglod MRALVLLLS : 9
CA6_nomascus_le MCSTMRALVLLLS : 13
CA9 monodelphis MAPPCPGR-LPLLSPARA--PICL-LLL--LLLLAPSHPYSVVGRERD-----— SSEEEGDPPGAEDGPQEEKPPGEEQLSRERETPGOGDPSREEDPPREEVPHREEDPPREEDP : 104
CA9_echinops_te : MAPQGLSPLAPLSTRTPAVPPDKLLLL---LLPLLPAHPQTLPRMQGDHPRQGDSSGEDVPPGKERDSR-EGPLTEVDLPG- -DLSEWERPPGEGQPPETENSPGEEDS : 103
CA9 mus musculu : MASLGPSPWAPLSTPAP----TAQLLLF--LLLQVSAQPQGLSGMOGEPSLGDSSSGED-ELGVDVLPSEEDAPEEADPPD- -GEDPPEVNSEDRMEES : 90
CA9_rattus_norv : MASLGLSPWVPLLTPAP----TVQLLLL--LLLLVSAHPQSLSGMQGVPSLGESSSGED-DLGVEDLPSEEDTPGEADPPG- -GEDPPEVNSKARKEDS : 90
CA9 ochotona _pr : MALVGPCPCLPRLTPGPTAAAAVLLLLLPPLPLQVCAHPQSLPQEKGDPAPGGGSSGEDDPPGEEDLPSEEDPQGQED PGG--GEPTEENS : 89
CA9ioryctolagus : MAPLCSGPWLPLLTPAPARGPTAHLLL---LLLLVPAHPQSLPQVQGESATGGGSSGEGDPVGEEDLPSEEDPPGEED: PEAETKPGEEDS : 88
CA9 ictidomys_t : MASLCPNPWLPLLIPAP----TVQLLLL--LLLLVPAHPQKLSWMQGDHSMGGGSSGEDSPLGQEDLYSEEDPPGEE DSPEITSKPEEDNS : 85
CA9 procavia ca : MAPWCPSPWLPLLTVVPVQGPTMOLLLL--LVLLVPSHPQSLPQTHGAPHMGGDSPGEDGPLGKEDLPSEEDPPGEEGLLG-—-—-—==—=—~ EEEPPGEEEPPEVETKAEEEDS : 101
CA9_loxodonta_a MAPWCPSPWLPLLTTARAQGPTTQLLLL--LVLLVPSHPQSLPWMHGAPGMGGDSSGEDDPLGEEDLPSKEDPRGEGDLPG -EQEPPGQEEPPEVETNSEEEDS : 101
CA9_canis_famil MAPLCPSPWLPLLIPAPSLGPGVQLLLI--LPLLVPVHPQSLSRIQGTPGLGGDSSGEDDQLDEENLPSEEDPHGEEDPPGEEDPPG— -EEDPPGEEDPSGMKTEPGKEDS : 107

MAPLCPSPWLPLLIPAPSQDPAVQLLLL--LLLLVPAHPOSLPRMQGTPPMGGDSSGEDDPLGEDDLPSEEDPSREED: PPGMKTEPGEEDS : 89
MAPLCPSPWLPLWIPAPSRGPAVQLLLL--LLLLVPAHPQSLPRMQGAPGLGGDSSGEDDQLDGENPPSEEDPPGEEDPPGEGDPPG DPSGMKTEPGEEDS : 100

CA9 equus cabal
CA9 felis_catus

CA9 auluropodai MAPLCPSPWLPLSIPAPSPGPALQLLLV--LLFLVPAGPQSLSRMQGTPGLGGDSSGEDDQLDEENLPSEEDPPGQEDPPGEEDP ---PGMKTEPGKEDS : 95
CA9_bos_taurus MAPLCPSPRLPLWIPAPAPGPAVQLLLL--LLLLVPAHPQKLLWMQGAPTTGGDSSGEDDPLGEEDLPSEEDIPEEEDSPE--- -EEDLPGLKTDPGEENS : 95
CA9_sus_scrofa MAPQCPSPWLPLLIPAPAPGPTVHLLLL--LLLLVPAHPQSMSWMQOGAPTTGGDSSGEDDPLE EDLPSEEDIPG EEDQPGMKTEPGEENS : 88
CA9 otolemur ga MAPLCPSPWLPLLIPAPAPGLTVQLLLS--LLLLVPVRPQSMLOMOGDPPIGGGSSGEDDPLGEEDLPSEEDPPGEEDPLGEEDPLGE--—=======~~ EDPHEVKPEPGEEDS : 101
CA9 _callithrix_ MAPLCPTLWPPLLIPAPAPGLTVQLLLS--LVLLVPAHSQRLPQIQEDAPLGRGSSKEDDPLEEEDLPSEEKLPREEGPPG- TGl LPRGEDLPEVKHK--LEGE : 99
CA9 macaca mula MAPLCPSPWLPLLIPAPAPGLTVQLLLS--LLLLVPAHAQRLPRMQEDSPLGGGSSGEDDPLHEEDLPSEEDPPREEDPPR~ --EEDLPEVKPKSEEEGS 95

CA97nomascusile MAPLCPSPCLPLLIPAPAPGLTVQLLLS--LLLLVPAHPQRLPRMQEDSPLGGGSSGEDDPLGEEDLPSEEDPPR: -EEDLPGEEDLPEVKPKSEEEGS : 95
CA9_pongo_abeli MAPLCPSPWLPLLNPAPAPGLTVQLLLS--LLLLVPAHPQRLPRMQEDSPLGGDFSGEDDPLGKEDLPSEEDSPREEDPPREEDPPGEEDLPGEEDLPGEEDLPEVKPKSEEEGS : 113
CA9 homo sapien MAPLCPSPWLPLLIPAPAPGLTVQLLLS--LLLLVPVHPORLPRMQEDSPLGGGSSGEDDPLGEEDLPSEEDSPRE EDPPGEEDLPGEEDLPGEEDLPEVKPKSEEEGS : 107

MAPLCPSPWLPLLIPAPAPGLTVQLLLS--LLLLVPVHPQRLPRMQEDSPLGGGSSGEDDPLGEEDLPSEEDSPRE

PGEEDLPEVKPKSEEEGS : 101

CA9_pan_troglod

CAl2_gallus_gal : VKS--C-NRALVTPVLI : 16
CAl2_meleagris_ : MSVKS--C-NRAIVTPVLI : 16
CAl12_monodelphi : PAQG--FGFSAAGATVLI : 17
CAl2_sarcophilu : PAQ----SFSAAGATVLI : 15
CAl2_oryctolagu : MPVG LRARAVLLL : 14

CAl2_mus_muscul 14
CAl12_rattus_nor 14
CAl2_ tursiops_t 14
CAl2_mustela_pu 14
CAl2_microcebus 14
CAl2_macaca_mul PR! LHAAAVLLL : 14
CAl2_nomascus_l 14
CAl2_pongo_. abel 14
CAl2_homo_sapie 14
CAl2_gorilla_go 14
CAl2_pan_troglo 14
CA12 equus_caba 14
CAl2_pteropus_v 14
CAl4_xiphophoru 5
CAl4_sarcophilu : MLLFLN 6
CAl4_monodelphi : LLFLN 6
CAl4_ochotona_p : MLFA 4
CAl4_oryctolagu : LELA 5
CAl4 pteropus_v : IMEEM 5
CA14_mus_muscul : MLFFA 5
CAl4_rattus_nor : LEFV 5
CAl4_bos_taurus MLFFT 5
CAl4_felis_catu LEFT 5
CAl4_ailuropoda LVET 5
CAl4_mustela_pu MLFFT 5
CAl4_otolemur_g LEFA 5
CAl4_loxodonta_ MLEFN 5
CAl4_procavia_c LEFT 5
CA14_dipodomys_ LEFT 5
CAl4_cavia_porc MLFFA 5
CAl4_ictidomys_ LEFA 5
CAl4_callithrix MLEFSA 5
CAl4_nomascus_1 LESA 5
CAl4_macaca_mul LESA 5
CAl4_pan_troglo MLEFSA 5
CAl4_homo_sapie : LESA 5
CAl4_gorilla_go : MLEFST 5
CA14_xenopus_tr : LCLS 5
CAl4_latimeria_ : FFLV 5
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LERRKSIK-K-GDNKGVIYKPATKMETEAHA-—
WLFRRKKSSKKGD-NKGVIYKPAIKTETEAHA--
LEFRRKKSSKKGDNNKGVIYKPAIKKETEAHA--

RFIVKTIRNKRKSNKVLKTVCYIKKMTTQQA--—

YCIYKQTRKVTSGAPHDKASMSPTVPTEVRSV-—
IMASFFIVRRLOLKKKKKKGQKIIVCTC-CLYFFVV-—

301
313
317
312
307
313
319
320
320
318
316
319
317
322
313
312
313
308
307
312
456
454
437
437
437
440
437
451
455
440
443
454
449
449
442
455
451
447
447
465
459
453
347
357
358
356
355
354
354
356
355
355
354
354
354
354
354
354
355
356
344
340
340
337
337
337
337
337
336
336
336
336
336
337
326
337
337
338
337
337
337
337
337
337
344
342
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