

0

TRACEABILTY IN MODEL-BASED TESTING
M.SC. THESIS

AHMED DAWOUD

UNIVERSITY OF TAMPERE

SCHOOL OF INFORMATION SCIENCES

COMPUTER SCIENCE / INT. TECHNOLOGY

M.SC. THESIS

SUPERVISOR: ELENI BERKI

JUNE 2014

JUNE 1, 2014

1

TABLE OF CONTENTS

ABSTRACT 8

1. INTRODUCTION 9

2. BACKGROUND 11

2.1. SOFTWARE TESTING 11

2.2. REQUIREMENTS 13

2.3. REQUIREMENTS TRACEABILITY AND SOFTWARE TESTING 15

3. MODEL- BASED TESTING 18

3.1. TAXONOMY OF MBT PROCESS MODELLING 18

3.2. MODELLING 19

3.2.1. FINITE STATE MACHINES 20

3.2.2 MARKOV CHAINS 21

3.2.3. STATECHARTS 22

3.2.4 UML STATE CHARTS 23

3.2.5. GRAMMAR-BASED SPECIFICATION LANGUAGES 24

3.3. TEST GENERATION 25

3.3.1 MODEL STRUCTURE COVERAGE CRITERIA 25

3.3.2. DATA CRITERIA 26

3.4. TRANSFORMATION 27

3.5. TEST EXECUTION 27

3.6. RESULTS ANALYSIS AND REPORTING 28

3.7. MBT METRICS 28

3.7.1. STATE COVERAGE METRICS 28

3.7.2. REQUIREMENTS COVERAGE METRICS 29

4. REQUIREMENTS TRACEABILITY IN MODEL-BASED TESTING 32

4.1. TRACEABILITY MODEL IN MODEL-BASED TESTING 32

4.2. TRACEABILITY IMPLEMENTATIONS IN MBT TOOLS 33

4.2.1. CONFORMIQ QTRONIC 34

4.2.2. SPEC EXPLORER 35

4.2.3. SIMULINK 36

4.2.4. LEIRIOS 36

4.3. A HEURISTIC METHOD TO TRACE REQUIREMENTS 36

4.3.1. REQUIREMENTS TAGGING 37

4.3.2. REQUIREMENTS AS TEST GENERATION CRITERIA 39

4 .3.3. REQUIREMENTS AS COVERAGE CRITERIA 39

4.3.4. REQUIREMENTS COVERAGE RATIO 40

4.3.5. REQUIREMENTS TRACEABILITY MATRIX 40

2

5. CASE STUDY- APUZZLE GAME FOR ANDROID 41

5.1. SYSTEM UNDER TEST 41

5.2. TESTING TOOLS 41

5.3. TESTING PROCEDURES 42

5.3.1. MODELLING AND TAGGING 42

5.3.2. TEST SUIT GENERATION 43

5.3.3. TEST HARNESS 44

5.3.4. TEST EXECUTION 45

5.3.5. REQUIREMENTS ANALYSIS 45

5.4. CASE DISCUSSION 48

6. CONCLUSIONS AND FUTURE WORK 49

6.1. LIMITATIONS 49

6.2. CONCLUSIONS 50

6.3. FUTURE WORK 51

REFERENCES 52

APPENDIX 56

3

LIST OF FIGURES AND TABLES

FIGURE 1. MODEL BASED TESTING PROCESS 19

FIGURE 2. LIGHT FSM GRAPH AND TABLE 21

FIGURE 3. MARKOV CHAIN EXAMPLE 22

FIGURE 4. UML STATEMCHINE FOR LIGHT SWITCH 23

FIGURE 5. STATE-BASED STRUCTURE 26

FIGURE 6. FULFILLING TESTS BY TRAVERSING STATES 29

FIGURE 7. TRACEABILITY MODEL IN MBT 33

TABLE 1. MBT TOOLS SUPPORTING REQUIREMENTS 33

FIGURE 8. TAGGING REQUIREMENTS IN QTRONIC 34

FIGURE 9. TAGGING REQUIREMENTS IN A TRANSITION BASED MODEL 38

FIGURE 10. STATISTICS FOR COVERAGE RATIO 40

FIGURE 11. NUMBER GRID PUZZLE MODEL 43

FIGURE 12. TEST OUTPUT COVERING 46

FIGURE13. TEST OUTPUT FOR REQ0 47

4

CODE Fragments

CODE FRAGMENT 1. B MODEL FOR A COFFEE MACHINE 24

CODE FRAGMENT 2. CONDITIONS IN Z MODEL. 25

CODE FRAGMENT 3. TAGGING REQUIREMENT IN SPEC# 35

CODE FRAGMENT 4. TAGGING REQUIREMENTS IN B METHOD CODE. 36

CODE FRAGMENT 5. TAGGING REQUIREMENT 4 IN LEIRIOS 39

CODE FRAGMENT 6. ADAPTING TEST CASES. 44

5

This page intended to be plain

6

Acknowledgement

This thesis would not have been conceivable without the help, backing and patience of my

supervisor Eleni Berki. I would like to express my sincere gratitude to her. Likewise, I

wish to express my grateful and thankfulness to my father.

7

University of Tampere

School of Information Sciences

Computer Science

Ahmed Dawoud: Traceability in model-based testing

M.Sc. thesis, 47 pages, 20 index and appendix pages

June 2014

Traceability is a substantial attribute of software quality assurance. Traceability ensures

the precise translation of requirements throughout the software development life cycle.

The prevailing techniques employed to trace requirements are manual as yet. The model-

based testing is an entirely automated test generation approach; test suit is generated

from models that describe system’s behavior. This thesis analyses and discusses the

automation of requirements to test cases tractability by means of model-based approach.

A heuristic method is inferred to achieve traceability automation through model-based

testing. Moreover, an application and evaluation of the method is conducted to define

opportunities and deficiencies.

 Keywords

Quality Assurance, Requirements, Software Testing, Black-Box Testing, Model-

Based Testing, Automatic Test Generation, Modelling, and Traceability.

8

1. Introduction

Software project success depends crucially on fulfilling customer’s needs and

requirements. During the development process, the requirements are translated

into various artifacts depending on the current development phase, for instance,

requirements are translated into design models in the design phase, while those

requirements are transformed into classes and methods in the implementation

phase. There is a necessity to trace requirements during the software lifecycle to

ensure the customer’s needs are covered correctly, completely and precisely.

The goal of software engineering is to produce high quality software. IEEE

standard glossary defines software quality as the degree to which a system,

component, or process meets specified requirements and customer or user needs

and expectations [IEEE Glossary, 1990]. The Validation and Verification (V&V) is

a software development activity to provide confidence in the quality by detecting

defects [Pezzè and Young, 2007].

In order to maintain quality attributes, e.g., correctness and testability; tests

should be traceable to customer requirements. Requirements-to- test case

traceability links requirements with test cases used to verify that the requirement

is probably implemented. Currently, linking test cases to requirements is a

manual process.

The current traceability techniques are manual approaches, for example, the

linkage is done manually and managed by tools like DOORS. This thesis focuses

on inferring a heuristic method to automate the traceability process between

requirements and test suite. Since, Model-Based Testing is automation of

specifications based approaches, I will discuss the potentiality to automate the

requirements-to-tests tracing process. Moreover, I will apply the proposed

method to a real world case study.

 The thesis tackles the following question

RQ1: How to exploit the model-based testing to attain the requirements-test cases traceability

automation?

The preceding question itself reveals sub-questions to inspect

9

RQ1.1: What are the various aspects of requirements’ modulation in the model-based testing?

RQ1.2: What is the traceability model dominating model-based testing theoretically and

practically?

RQ1.3: What are the opportunities and deficiencies in the recommended approach?

The scope of this thesis is to examine and analyze the automation of tracing

requirements to test cases through model-based testing approach, to ensure that

each requirement is at least covered by a test case, thus the client’s confidentiality

in product quality is asserted.

The research will cover requirements to test suit; the MBT cannot link

requirements to the entire development process artifacts; for instance MBT

provides no ability to trace requirements to design models, classes, methods and

system units.

A systematic literature study on traceability and model based testing will be

undertaken in Chapters 2 and 3 respectively; in order to obtain solid background

knowledge for development of the model based testing.

 The thesis will examine the requirements as an essential element of the software

development life cycle. The second element to study is the software testing

process, and different testing approaches. The research elaborates and

emphasizes the relationship between software testing and requirements. The

thesis forward to present an inclusive review for the model-based testing process.

The second phase in the thesis is an analysis and examination of traceability

concept in model-based testing. Thereafter, in Chapter 4 the thesis proceeds a

survey of current traceability implementations in various software tools. The

tools selection was systematically comprehensive based on a previous study.

Subsequently, a heuristic procedure and required steps to automate the

traceability will be defined. That framework formulates a systematic approach to

achieve the automation of requirements-test cases traceability.

The proposed procedure is applied practically to a case study in Chapter 5. The

case study is an Android game developed as a project at school of information

science. Ultimately, in Chapter 6 a qualitative evaluation of the suggest

framework will be conducted to specify utilities and deficiencies of the suggested

approach.

10

Chapter 2
Background

2.1. Software Testing

A notorious incident of software failure is the rocket Ariane 5. Only after 40

seconds, the flight veered off its path and exploded. After investigations

engineers had claimed that the reason was an unhandled floating point exception

[Arian5, 1996].

Validation and Verification (V&V) are software development activities

concerned with building the right product and build it in the right way [Boehm,

1979]. There are two approaches to conduct the V& V which are static and

dynamic. Static approach analyzes and inspects software representations such as

requirements specifications and system models, while the dynamic approach

executes the system implementation with actual data and evaluates the results.

IEEE software engineering glossary defines Software Testing as,” a concurrent

lifecycle process of engineering, using and maintaining test-ware in order to

measure and improve the quality of the software being tested. Software testing

consists of the dynamic verification of the behavior of a program on a finite set of

test cases, suitably selected from the usually infinite executions domain, against

the expected behavior” [IEEE, 1990]. The fundamental goal of the testing process

is achieving quality. In the context of software development, quality means the

conformance to client requirements. There is a proportional relationship between

quality and requirements conformance. Testing improves product quality by

identifying defects and problems. Nevertheless, testing shows the presence of faults,

it cannot reveal their absence [Dijkstra et. al., 1972].

Software testing definition had been profoundly changed over the last four

decades. The changes have been caused by the increase in software complexity

and the rapid changes in technology.

In 1979, Glenford Myers defined testing as, "the process of executing a program

or system with the intent of finding errors," such a definition reflects the

simplicity of testing process at that time of the first edition of [Myers et al., 2011].

In contrast to the current test definition, Myers’s definition lacks for accuracy. In

addition, testing prevents errors, and guarantees the system under test to satisfy

11

requirements specifications. Myers states in the third edition of his classic book

the test process had a dramatic shift.

Meanwhile, the complexity of software have escalated, and the importance and

vitality of testing have increased in parallel. The proportional relationship

between testing and complexity of software systems imposed a change in the

software development process models.

When software process was simple and streamline enough the Water-fall model

was satisfactory because of its concurrency. Craig and Jaskiel [2002] claimed that

“The Waterfall model is particularly difficult to use successfully from the testing

viewpoint”.

 Furthermore, they suggested the STEP as test oriented development model.

However, at the first glance the reader cannot ignore the correspondence of the

STEP and the standard V-model. The V-model is a software development model

which can be presumed to be the modification of the waterfall model. Instead of

falling down in a linear way as in the waterfall model, the process of the V-model

is bent upwards after the coding phase, to form a letter V shape. The V-Model

demonstrates the relationships between each phase of the development life cycle

and its associated phase of testing; each phase relies on verification from the

preceding phase. Thus, the main focus of the V-model is testing after each phase

[Mathur and Malik, 2010]. The V-model defines four testing levels, .i.e., unit,

integration system, and acceptance testing. Unit testing works on the smallest

components of the targeted the system under test. Substantially, components

refer to implementation’s items, .e.g., methods, classes, modules and interfaces.

At this level, the test cases are written by the programmers, aiming to verify their

code. Software system is comprised of subsystems, which, in turn, consist of

integrated modules and units. As consequences of units’ integration, faults and

errors may arise. Integration test is essential to ensure the quality of interface and

interactions between components and modules. System testing assures the

system under test meets its functional and business requirements. Acceptance

testing is the highest level, done by real system users. Also known as ‘beta

testing’, ‘application testing’ or ‘end user testing’.

Huang [2009] categories testing approaches into two approaches code-based and

specifications based. It is common to refer to the two terms as white-box and

black-box terms respectively. White-Box testing is also known as ‘structure-based

testing’. Therefore, it focuses on internal states of the system under test; it

requires internal knowledge of the components. The white-box approaches

12

inspect the structure of the small units; hence the code is the target. Code

structure consists of statements, loops, paths and branches. White-box tests the

core elements of the unit’s structure.

Black-box testing is recognized as functional testing or specifications-based

testing. The different names point out that the principal concern is system

functionality, based on customer requirements. Black-box tests software against

the specification of its external behavior without the knowledge of internal

implementation details. It ignores the internal structure of the system under test

[Agarwal et al., 2010]. There are three elements in the testing process, namely

inputs, systems under test and outputs. The test oracle verdict the actual test

cases output against the expected output. The test cases are derived from system

requirements specifications.

The two types of testing are complementary; there is a need to check the code as

much as we need to verify system functionalities.

2.2. Requirements

The ISO, IEC and IEEE defines software quality with six characteristics [ISO,

2010]:

1. The degree to which a system, component or process meets specified requirements

2. The ability of a product, service, system, component or process to meet customer or

user needs, expectations or requirements

3. The totality of characteristics of an entity that bears on its ability to satisfy stated and

implied requirements

4. Conformity to user expectations, conformity to user requirements, customer

satisfaction, reliability and level of defects present

5. The degree to which a set of inherent characteristics fulfils requirements

6. The degree to which a system, component or process meets customer or user needs or

expectations.

Evidently, requirements are closely coupled with the quality as noticed in the

previous standard definition. Requirement is “a software capability needed by

the user to solve a problem to achieve the objective and a software capability that

must be met or possessed by a system or system component to satisfy a contract,

13

standard, specification, or other formally imposed documentation [Wiegers,

2003]. A requirement is a condition or capability needed by the user or constraint

imposed by a contract, standard or specification.

Requirements are classified into two categories [Sommerville, 2010]. Firstly,

functional requirements are statements of services the system should provide,

how the system should react to particular inputs and how the system should

behave under a particular situation. Those requirements can be modeled with

use cases, and analyzed by sequence diagrams, state chart or other forms.

Moreover, functional requirements are traceable. Secondly, non-functional

requirements (NFR) are constraints on the services or functions offered by the

system. They include timing constraints, constraints on the development process

and standards. NFRs often apply to the system as a whole, and they cannot be

implemented as a program module.

The activities of requirements engineering are elicitation, analysis, specifications,

validation, and management.

Requirements elicitation is the process of acquiring requirements through

interaction with stakeholders, organizational documents, and domain

knowledge. Requirements elicitation is “a synthetic process consisting of social

communication and information mining [Zhang, 2007].” Requirements are

discovered through consultation with stakeholders, from system documents,

domain knowledge and market studies. At this stage, the main goal is to

understand that the system being developed and its constraints. Different

techniques are used in the elicitation process: interviews, brainstorming, Joint

Application Design (JAD), observation and ethnography, requirements reuse,

and prototyping.

Requirements analysis classifies the information received from users to

functional requirements, nonfunctional requirements, business rules, suggested

solutions, and extraneous information. The foremost goal of the analysis process

is to resolve conflicts among requirements through negotiation. At this stage, the

collected requirements are analyzed to specify incompleteness, and

inconsistency. Furthermore, requirements prioritization takes place to balance

the benefits and costs of such requirements.

The requirements are documented and precisely described. All of the essential

requirements of the software and the external interfaces are documented. The

documentation defines functions, performance, design constraint, and quality

attributes. Each requirement is identified in such way that, its achievement is

14

capable of being objectively verified by a prescribed method; for example

inspection, demonstration, analysis, or test.

Requirements validation is the process of checking the requirements for

validation. Quality criteria are used to ensure the validity of the requirements

specification. Requirements are validated according to the question “did we get

the requirements right?” Requirements’ quality attributes include correctness,

completeness, unambiguity, traceability, priorities, consistency, and verification

[Lutowski, 2005].

Finally, requirements management is to keep the integrity and accuracy of

requirements. It consists of the subsequent phases: change control, version

control, requirements tracing, and requirements status tracking.

2.3. Requirements traceability and software testing

Gotel and Finkelstein [1994] define traceability as the ability to describe and

follow the life of a requirement in a forwards and backwards direction.

Traceability links bidirectional requirements to design, implementation and

testing. Each requirement is uniquely identified. Traceability is used to manage

the change in requirements. Constantly, change in stakeholders’ needs lead to

change in requirements, and this change has a domino effect through the

development life cycle. If the requirements are traced this eases the change

management process. Traceability is a powerful technique to validate

requirements, by mapping test cases to uniquely identified requirements.

Traceability is categorized into two classes: pre-traceability and post-traceability,

both of them are bidirectional. Pre-traceability from requirements origins to

requirements specification; tractability origins may be stakeholders, domain

requirements and standards. Post-traceability from requirements to the

development life cycle, here the requirements mapped to use cases for

implementation and test cases for validation and verification.

During requirements development process, there are four abstraction levels of

requirements: stakeholder’s requirements, system requirements, subsystems

requirements and components requirements. Requirements’ details increase as

we move from one level to the lower.

Stakeholder’s requirements describe services expected from the system;

constraints imposed, and the way in which the system provides relevant services.

At this level, requirements are supposed to be written in understandable and

15

clear form for non-technical persons. As consequences of the requirements

informality, ambiguity and non-clarity are critical problems. Moreover, the

presentation of requirements is inconsistent and incomplete.

System requirements are the basic guidelines for the system being designed. They

are detailed level for user requirements. Analysis is conducted to determine what

is exactly to be implemented and the describe the system intended to be

produced

Subsystem requirements components’ requirements define the facts for the

implementation of functions. Software requirements define goals that are

necessary for the implementation of the intended features on a specific hardware

component. Software level scenarios describe the desired system, internal

behavior and interaction.

Requirements tractability used to assure the high level requirements are

translated accurately into the lower level. Requirements traceability refers to "The

degree to which a relationship can be established between two or more products

of the development process, especially products having a predecessor-successor

or master-subordinate relationship to one another; for example, the degree to

which the requirements and design of a given software component match." [IEEE

610]. Requirements tractability is bidirectional activity. Forward tractability

flows from customer need to system’s implementation, where backward is the

opposite direction from the final product to customer needs.

According to, Bender RBT Inc [2009]:., the requirements-based testing process

addresses 2 issues

 Validating that the requirements are correct, complete, unambiguous, and

logically consistent.

 Designing a necessary and sufficient set of test cases from those

requirements to ensure that the design and code fully meet those requirements.

The two objectives mentioned above are the Holy Grail for software quality.

However, there are issues originate when dealing with requirements.

Requirements are not computable; in effect requirements in the specification

document are still in natural language. Model-based testing approach induces

towards requirements for processing by redefine requirements in formal format

that can be automatically manipulated.

16

MBT generates test cases from a model; that model is derived from system

requirements specifications. This process implies the transformation of informal

or semi-formal requirements into a formal representation. Requirements at this

stage can be processed by a test engine.

Utting and Legeard [2006] allege that “Finding requirements issues is a

substantial benefit of model-based testing because requirements problems are the

principal sources of system problems. Requirements’ faults found decrease the

faults propagation to subsequent design and implementation phases. In addition,

discovering faults early reduce the maintenance cost. This may be the area where

model-based testing will have the largest impact on software development

practices. It encourages early modeling, and this early modeling finds

requirements and design”.

Nevertheless, finding requirements inconsistency and incompleteness is

essential early in the modelling phase. The MBT capabilities are revealed at the

phase of the test case generation. The test suit is adapted according to test plan.

Meanwhile, MBT is a requirement based testing approach, there is a primary trait

that distinguishes MBT from traditional requirements based testing approach; it

is the automation.

17

Chapter 3

Model- Based Testing

Model-based testing is a black box testing approach, whereas the test cases are

entirely generated from a model partially or fully represents the aspects and of

the system under test. The remarkable feature of the MBT is to stimulate the

testing process towards automation. In contrast with the traditional testing

approaches, e.g., manual testing, script-based testing and capture and play

testing, MBT process is fully automated testing approach. Automation leads to

less cost, less time, and increased number in available test cases. The test cases

are originated from a model, which is a behavioral description. System’s behavior

is inputs, actions, restrictions, and output of the system.

3.1. Taxonomy of MBT processes

To automatically verify system functionalities, the starting point is requirements.

Since, requirements are not computable, and they are in a form of natural

language or descriptive models like use cases; the MBT initiates to transform

requirements into a computable form. The naive view of MBT is a set of test cases

generated from specifications; thereafter, apply those test cases to the system

under test. However, technically there are issues to manipulate for instance, how

to adapt the abstract test cases to the SUT, there should be a transformation phase.

Utting [2005] suggested two different workflows for MBT; the first model consists

of four phases which are

 building an abstract model of the system under test

 validating the model

 generating abstract tests from the model

 refining those abstract tests into concrete executable tests.

The second workflow composed of five steps are shown in Figure 1: Modeling,

Test generation, Transformation, Execution, and Analysis.

The first model neglects test execution and test analysis phases, in addition the

first two steps can be combined in a single step. This thesis adopts the second

workflow, as it is more detailed and comprehensive. Subsequent sections

manipulate the process in details.

18

Figure 1. Model based Testing Process

3.2. Modelling

A model is an abstract view of a system that neglects system’s details.

Complementary system models are developed to demonstrate the system’s

context, interactions, structure, and behavior [Somerville, 2009]. Modeling is a

translation of informal requirements document in a precise formal specifications.

MBT targets system functionalities, for this purpose MBT uses a model that

represents behavioral aspects of the SUT. Behavior model describes the internal

logic of the SUT, behavior model ignores the internal implementation and

structure of the SUT. In MBT, a model is likely designed to cover some aspects of

the system rather than the comprehensive SUT behavior; this depends on the

required abstraction level, the characteristics of the SUT, and the test’s targets. A

wide range of formal notations are available. El-Far and Whittaker [2001] lists the

modelling notations as: finite state machines, state-chart, Markov chains, unified

modelling language, and grammars notations. However, some of those notations

can be synthesized in consistent groups, since they have the same characteristics.

There are two groups of modelling notations:

o transitions based, e.g. finite state machines and ULM statemachines

o grammar based like Z, B and VDM.

Requirements

Modelling Test Generation Transformation Test Execution Analysis

Coverage

Algorithms

SUT

Test Cases

19

The selection of appropriate notation depends on two factors. Firstly, the type of

the targeted system under test; whether it is a data-oriented or a control-oriented

system. For the data oriented there is a need to flexible representation of data

variable; notations like B or Z will be an appropriate selection. In control-oriented

systems the main concerns are the systems’ states and transitions between them;

in this case finite state notations is the right option. The second element in

selecting the right modelling notation is to decide what is the test target? For

example, if the safety is the goal, a transition based notations will be a good

selection, while a model written in VDM or B notation is suitable for usability

targeted testing as wider range of system input variables can be tested.

3.2.1. Finite state machines

 Input /output behavior is specified from the viewpoint of describing the system

states. Possible transitions to other states and the actions that trigger them are

described for each state. A typical instance of state-based model notations are

finite state machines. Finite state machine notation is a representation or

modelling of the system elements described below:

o Input or trigger, is an event that is generated internally or externally and

might cause a state transition.

o State is a behavior description, the information stored in system at one

point in time, simply it is an object in object oriented programming. States may

produce actions.

o Action or transition is a movement from a state to another, it triggered by

stimulus.

FSM is described as M = (S, i, T, Σ, δ).

Where S is a finite, non-empty set of states; i is the initial state (i ∈ S); T is the

finite set of terminal states (T ⊆ S); Σ is a finite alphabet of symbols or events used

to mark transitions between states; and δ is a transition function that describes

the next state of the FSM given the current state and a symbol from the alphabet

[Laplante and Ovaska, 2012].

20

Figure 2. FSM light graph and table

FSM is represented as graphs or tables. Figure 2 shows the states and possible

transitions for a simple light switch. A switch states are {ON, OFF}, those states

are changed by switching light {Switch up, witch down}. State and transitions

concepts are essential in all behavior modelling notations.

However, Harel [1987] argues that FSMs are not suitable to model complex

systems. Because of unmanageable flat states structure. In addition, Laplante and

Ovaska [2012] state two more defects in FSM modelling notations

 The internal aspects of the modules cannot be depicted.

 Inter-task communication between multiple FSMs is difficult to depict.

FSMs are suitable to represent reactive systems, but, its description capabilities

are limited as there is no conditioning notations. Extended FSMs version of FSMs,

e.g., state-charts and UML state-machines are developed to improve modelling

capabilities.

3.2.2. Markov Chains

Markov chains are stochastic models, which can also be used to software

modelling [Prowell, 2005]. Markov chains are probabilistic state machines,

meaning that the transitions of the machine are augmented with probabilities,

which are used to select which transition to choose whenever leaving a state. For

example, figure 3 shows the probability of the transition from S1 to S3 is 0.05.

A stochastic process { Xn } is called a Markov chain if

off

on

switch on

switch on

switch off

switch off

input
events

outputs
current
state

next
state

on

off

on

off

-

click

click

-

on Switch on

Switch on

Switch off

Switch off

on

off

off

21

Pr{ Xn+1 = j | X0 = k0, . . . , Xn-1 = kn-1, Xn = i }

 = Pr{ Xn+1 = j | Xn = i } transition probability for every i, j, k0, . . . , kn-1

and for every n.

Figure 3. Markov Chain example

They can be easily used to measure, e.g., software’s reliability and average time

of failure. Markov chains still have the same deficiencies as FSM. The growth of

the number of states and transitions impacts in the readability.

3.2.3. Statecharts

Statecharts were originally developed by Harel [1987] to overcome the

complexity of systems modeling. Statecharts are visual extension of finite state

machines that specifically addresses modeling of complex or real-time systems

[El-Far and Whittaker, 2001]. Substantially, statecharts are finite state machines

extended with hierarchy, concurrency and communication [Liuying, et al., 1999]:

Statechart = FSM+ Hierarchy + Concurrency + Communication.

Statecharts introduced state hierarchies by grouping states in super state using

conjunction and disjunction operators AND & OR respectively. Furthermore,

time, concurrency and synchronization were introduced. The depth is the aspect

of hierarchy, it means an alternative states of an object, and this results in an OR

states. An OR state is a super-state of its sub-states. Concurrency is an AND-

decomposition of a state. If state S is to be in all of its components, then S is an

AND state.

0.2

0.3

0.5

0.05

0.95

0.2

0.8

1

22

This offers the possibility for expanding states into lower-level state machines to

model complex or real-time systems. Furthermore, conditions and triggers can

be imposed on transitions. Statecharts model represents system states as nodes

and events as arcs between these nodes. When an event occurs, the system shifts

from one state to another.

 Modelling capabilities introduced by statecharts over the primitive finite state

machine are significant. However, it does not conform to object oriented

approaches. An adjusted notation was introduced by combining UML and

statecharts.

3.2.4. UML Statecharts

Unified Modelling Language (UML) is general purpose language to specify,

visualize, construct and document the artifacts of a software system. A

behavioral object oriented model can be constructed by using statecharts notation

in combination with UML. Figure 4 is a UML states chart modelling of a light

lamp previously modelled with FSM.

.

Figure 4. UML state machine for light switch

Sommerville [2009] suggests two methods to describe behavior aspects assigned

to UML by specified declaratively using the object constraint language (OCL) or

expressed using UML’s action language. The action language is a very high-level

programming language where you can refer to objects and their attributes and

specify actions to be carried out.

Light
CurrentState=on

On(){CurrentState=on}

Off(){CurrentState=off}

23

3.2.5. Grammar-based specification languages

Specify admissible system states or value) at some arbitrary snapshot, using

mathematical entities like sets, relations, first order predicate logic (pre-

condition/post conditions, invariants). The specification is expressed as a system

state model. This state model is constructed using well understood mathematical

entities such as sets, relations, sequences and functions. System’s behavior is

specified by defining how they affect the state of the system model. Operations

are also described by the predicates given in terms of pre and post conditions

[Utting, 2006]. The most widely used notations for developing model based

languages are Vienna Development Method (VDM), Zed (Z) and B. Each method

has its own mathematical model, identification of input/output and its structure.

For example, code fragment1 models a coffee machine, represented as B schema

structure. B-Method is a formal method for the development of program code

from a specification in the abstract machine notation.

MACHINE Coffee The name of the machine is Coffee

VARIABLES coins We need a variable coins

INVARIANT coins : NAT coins is a natural number

INITIALISATION coins := 0 We will start with coins set to 0

OPERATIONS Now we have the operations

addcoins(amount)= We need an operation addcoins

PRE amount : NAT Amount is a natural number

THEN coins := coins + amount We set coins

 coins + amount

END;

Code fragment 1. B model for a simple coffee machine

24

3.3. Test generation

Generating targeted test cases suit is the second phase in the MBT process. Test

cases are obtained from the appropriate SUT model. A model can generate an

enormous number of test cases, manipulating a huge number of test cases is

expensive and time exhaustive. Test generation criteria are appointed to direct

test cases to meet test strategy and targets according to test plan. Coverage

criteria measure the conformance of test case suite to the model to assure the

quality of test cases; coverage criteria also known as stopping criteria. Utting

[2006] categorized test generation criteria as structural, data, random, mutation

and requirements coverage.

3.3.1. Model structure coverage criteria

Structure criteria depend on the modelling notation. In case of grammar-based

specifications languages, for instance Z or B notations, model structure relies on

conditions and data sets. For example, code fragment 2 shows Z model,

ReadMaster(a,p) will be executed only if the condition r is ok true.

procedure Access(a : ADDR; var p : PAGE);

var r : REPORT;

begin

GetChange(a; p; r);

if r= ok then

ReadMaster (a; p)

end;

Code fragment 2. Conditions in Z model

The model structure in this case is similar to code-based structures, analogous

techniques to cover the model are used. In the case of using transition-based

models, the model structure consists of two elements states and transitions.

25

Figure 5. State-based structure

Figure 5 demonstrates a simple transition machine, algorithms like shortest path

or A* can be used to traverse the graphs. The Chinese Postman algorithm is the

most efficient way to traverse each link in the model. In the case of Markov chains

graphs. Robinson [1999] uses The Most Likely Paths First algorithm which

manipulates the probabilities assigned with each transitions. In transitions based

models the coverage criteria are all states, all transitions, all transitions pair, or

all paths.

 3.3.2. Data criteria

Data values are partitioned into deferent sets. At least one representative from

each set is used for a test case, for example using boundaries value testing.

The random criteria are suitable for environmental models. The environment

model represents the behavior of the environment of the SUT. Test cases are

generated using probabilistic models. In other words, test cases are generated

based on the probabilities that are assigned to the transitions.

Monkey testing is a software testing technique in which the testing is performed

on the system under test randomly. Input data that are used to test is also

generated randomly and keyed into the system. There are two types of monkeys

which are the dumb and smart monkeys; relying on the level of knowledge. In

26

case of dumb monkeys there is no knowledge of the properties of SUT, while the

smart monkeys have basic knowledge of the SUT. [Nyman, 2001]

In fault based criteria this coverage, pre-specified faults are tested for the absence.

The model is mutated. Then tests are generated to distinguish between the

original and mutated model.

Fault-based testing is also known as ‘Mutation-based testing’, it is techniques is

to generate test cases that can detect the injected errors. This means that a

generated test case shall fail if it is executed on a system-under-test that

implements the faulty model. The power of this testing approach is that it can

guarantee the absence of certain faults. In the case of unit testing the mutant could

be a change in a statement, a condition, or a variable. While in MBT the mutant

can be changed in a state, a guard or a transition. The effectiveness of mutant-

based testing depends on the selection of mutant and fault scenarios [Pezzè and

Young, 2007].

 In requirements based criteria, the requirements act as test targets coverage

criteria, when the elements of a model are associated with the requirements.

3.4. Transformation

Transformation is a translation process from abstract tests in tests suite to an

executable scripts, also recognized as adaption phase. Utting suggests three

methods to adapt the abstract test cases. Firstly, adaptors are written to engage

the gap between SUT and the test cases .Secondly, test scripts are explicitly

written from test pool. Lastly, a hybrid approach is adopted to make test cases

more conform to SUT and write scripts for execution tests cases.

3.5. Tests execution

They are two modes to execute test cases:

 In online MBT test cases are directly executed on-the-fly. This mode of

execution is quite random and the test strategy is to achieve maximum

coverage. Online MBT strategy is effective and suitable for non-

deterministic systems.

 In offline MBT the test suit generated and the execution is postponed. This

mode helps in testing specific functions of the systems; for instance, testing

27

critical states of the system that depends crucially on timing or to assure

system’s security functions.

3.6. Results analysis and reporting

The final phase in the MBT process is analysis, where the actual results are

compared to the expected results. Tracing test suit to requirements is one

essential method at this phase. During MBT life cycle, there are three levels of

traceability. Firstly, the conversion of informal requirements to formal notation,

this occurs at modelling phase. Secondly, from model to test cases, where test suit

is generated by requirements coverage criteria. Thirdly, from test cases to

requirements, a traceability matrix reports any deficiencies in requirements.

Thesis analyses and discuss different approaches to achieve functional

requirements traceability in MBT.

3.7. MBT metrics

Metrics are used to evaluate the generated test suit. In rigorous words, measure

the conformance of the test cases to the test plan. Furthermore, metrics are

exploited as stop conditions to fulfill the test. The available metrics are discussed

in this section.

3.7.1. State coverage metrics

Measuring traversed states against all model states is an effective tool to measure

the test suit. The test cases generated from a model supposedly tremendous;

hence, the tester should have his own condition to fulfil the testing. The condition

is a percentage of states or transitions of paths that the test engine must traverse.

For instance, in Figure 5 the test terminated if the engine traversed 70 percent of

states. This is straightforward in that model but in case the model has a huge

number of states, with hundreds of states it is worth defining exit states or a

coverage percentage if there are no critical states like states that adhere security

or safety.

28

Figure 6. Fulfilling tests by approaching pre-defined traversed states

Moreover, the test suit conformance is measured by traversing a specific state or

set of them, for example; the test suit is conforming to test targets if it visited the

purchasing state in figure 6.

3.7.2. Requirements coverage metrics

Requirements coverage metrics are explicitly measuring the percentage of requirements

covered in the test suit. This relationship can be expressed as a traceability matrix. In

addition, a single requirement or a set of them are used to measure the conformance.

29

3.8. MBT benefits

MBT has a significant trend in software testing technologies. Interest in MBT not

only limited to academia. Likewise, considerable software companies had

applied the MBT in several projects, for example, Microsoft implemented its own

version of MBT Spec Explorer. In 2003, 35 Microsoft product teams engaged in

model-based testing with 600 of Microsoft testers involved in some form

[Robinson, 2003]

The main advantage of MBT is the automation of test suit generation. The

automation of the testing process reduces testing time, less time translated to less

effort and less cost. MBT reveals undetected errors and defects that cannot be

detected by traditional testing approaches, for example a study of applying MBT

to NASA’s system [Gudmundsson et al., 2013].

The MBT is a requirements-based approach; modelling requirements exposes

contradiction incompleteness, inconsistency and deficiencies in the informal

requirements. Detecting errors in requirements is a fundamental concern in the

entire system development. Formalization of requirements eases the

communication between teams and individuals in using a model of user behavior

that can serve as point of reference to all, as the concepts are evident and clearly

defined [Utting, 2006]. In addition, there is a flexibility in requirements changing.

3.9. Limitations of model based testing

The deployment of model based testing into an organization requires significant

efforts and investments. Robinson [2003] and Utting and Legeard [2006] deduced

a set of obstacles which intercept the expansion of model based testing. These

include the following:

o MBT is functional oriented approach. There exists a difficulty in testing

non-functional requirements, like security, usability, and performance

o Testers should dominate high skills. They need to be familiar with the

modeling, which means knowledge of diverse forms formal specification

notations. In addition, expertise in tools and scripting language is required.

o MBT proved productivity in real time systems, where there is a relative

small number of states and transitions. However, when it comes to the enterprise

information systems there is a huge number of states, which not consistently

supported by recent modeling notations.

o A large initial effort in terms of man-hours are required. The type of the

model has to be carefully selected. Different parts of software have to be divided

30

so that the modelling is easier because of the smaller areas and the actual model

has to be built.

o Models themselves have also some drawbacks. The biggest one of those is

the explosion of state-space needed. Even a simple application can contain so

many states that the maintenance of the model becomes difficult and tedious task.

31

Chapter 4

Requirements Traceability in

Model-Based Testing

Chapters 2 and 3 emphasized the relationship between MBT and the

requirements. Accordingly, the relationship between MBT and requirements

traceability is distinct. Thus, there are remarkable questions to tackle when

manipulating the traceability in MBT:

 What is the traceability model in MBT?

 How to automate the traceability, and exploit the automation

characteristics of MBT, where the requirements are implicitly included in the

model?

 What are the current implementations and limitations?

4.1 Traceability model of MBT

In traditional testing, the test suit generated manually or partially automated and

then linked manually to requirements directly. While, in MBT the relationship is

further complicated. Traceability features in MBT are

 A ternary nexus connects the requirements, model and the test suit.

 Traceability is restricted to test cases, we cannot trace other system’s

artifacts for example we cannot trace requirements to classes or design models

(design models are distinguished from MBT testing models).

 Traceability is bidirectional activity

32

Forward Traceability in MBT

Backward Traceability in MBT

Figure 7. Traceability model in MBT

4.2. Traceability implementations in MBT tools

A model based testing tools survey was conducted by Shafique and Labiche

[2010]. The survey was predicated on a four criteria one of them was

requirements coverage. Table 1 compares 9 MBT tools from requirements

implementations perspective.

Tool Model Type Category Requirements

Coverage

GOTCHA-TCBean FSM IBM Internal Not Implemented

Mbt (replaced by

graphwalker)

FSM/EFSM Open Source Supported

MOTES EFSM Research Not implemented

TestOptimal FSM Commercial Not Implemented

AGEDIS UML/AML Research Not Implemented

ParTeG UML Research Not Implemented

Conformiq Qtronic UML Commercial Supported

Test Designer UML Commercial Supported

Spec Explorer FSM/ASM Commercial Supported

Table 1. MBT tools that supporting requirements [Shafique and Labiche, 2010]

In consonance with the study result, the thesis will discuss two tools, which

support requirements, Conformiq Qtronic, Spec Explorer will covered

subsequently. In addition, the thesis discusses a suggested implementation of

Simulink. Furthermore, the tools are from a single group of modeling notations.

To be coherent and comprehensive, the thesis will also demonstrate LEIRIOS

tool that falls in grammar based modeling group.

Model
Test-Suit

Reqs

Model Test-Suit Reqs

33

4.2.1. Conformiq Qtronic

Conformiq is a commercial tool implemented in Eclipse. Modeling notation is

UML State Machines in Qtronic Modeling Language (QML) [Conformiq, 2009].

Tests are exported to test management tools or TTCN-3. The keyword

requirement is added to a model. Moreover, it is included in the design

configurations. This implies the user can define a requirement as test generation

criteria. Figure 8 shows requirements attached to transitions. A Conformiq

requirement management tool connector provides features to check requirement

catalogs from management tools like DOORS and HP QualityCenter against

QML requirement statements specified in the model. A traceability matrix is

generated for test suit analysis.

Figure 8. Tagging requirements in Qtronic

34

4.2.2. Spec Explorer

Spec Explorer is Microsoft implementation of the MBT. It extends Visual Studio

to model systems’ behavior and generates test cases automatically. Spec# is the

modelling notation.

Spec Explorer declaratively supports associating requirements to preconditions

and updates by calling specific library methods in C# code. Requirements are

covered in each step (and in the path leading to each state) are recorded as part

of the exploration results and transferred to generate test suit. The method

Capture() in class Requirement in package Microsoft. Modeling points to a

requirement. When Spec Explorer encounters a capture method through the

exploration, it adds the requirement to the set of the captured requirements

[Spec#, 2005].

Requirement.Capture (RequirementId.Make("Req1", 01, "Descreption"))

Code fragment 3. Tagging requirement in Spec#

Code fragment 3 shows The [Rule] keyword represents a transition in FSM, the

Requirement.Capture() is assigning a requirement to the transition.

[Rule]

static bool AddJob(int jobId, string jobName)

{

 // Requirement 1: Job identifiers MUST be greater than zero.

 // Requirement 2: Active jobs MUST have a unique identifier.

 // Requirement 3: Job identifier MUST be encrypted with SHA-01.

 Condition.IsTrue(jobId > 0, "req-01");

 bool success = !activeJobIds.Contains(jobId);

 if (success)

 {

 activeJobIds.Add(jobId);

 Requirement.Capture("req-02");

 }

 // This requirement can be only validated by the adapter.

 Requirement.AssumeCaptured("req-03");

 return success;

}

35

4.2.3. Simulink and DOORS

 Blackburn et al. [2005] suggested their own traceability implementation through

linking DOORS and Simulink. The suggested mode adds requirements module

from DOORS to Simulink molder TTM, the linkage between the DOORS and

TTM done over requirements IDs (the concept is analogous to the primary keys

in rational database concept).

4.2.4. LEIRIOS Test Generator

Bouquet et al. present traceability in MBT via LTG [[Bouquet et al., 2005]].

LEIRIOS utilizes B modeling notation. In Chapter 3, B was grouped in the

grammar based notations. In code fragment 4 the requirements are tagged in the

model as /*@REQ: DISABLE3 @*/. For instance, in case the first IF predicate is

applicable then the requirements disabled3 is proofed. The test engine tracks and

manipulates the requirements tags for analysis and traceability matrix

generation.

PRE

code_cc : CODE

THEN

IF (blocked_chv1_status = blocked) THEN

sw := 9840 /*@REQ: DISABLE3 @*/

ELSE

IF (enabled_chv1_status = disabled) THEN

sw := 9808 /*@REQ: DISABLE2 @*/

Code fragment 4. Tagging requirements in B method code.

4.3. A heuristic method for requirements tracing in MBT

Driven from the MBT characteristics and the preceding analysis of requirements

traceability in MBT tools, requirements tracing procedure is recapitulated as:

 Requirements tagging

 Requirements as test generation Criteria

 Requirements analysis

 Requirements coverage criteria

 Requirements traceability matrix.

36

4.3.1. Requirements tags

The first phase in MBT is to formalize requirements to attain a model; that model

represents functional aspects of the SUT. The model is a logical form of

requirements, but there is no explicit mention for requirements themselves, the

requirements are implicitly included. Requirements tagging techniques are used

to explicitly link requirements to the model. Requirement identifier is uniquely

refers to a requirement record; consecutively, the identifier is annotated in the

model. Tagging achieves two goals, firstly, requirements document review

against the model, and this guarantees every requirement is mentioned.

Secondly, requirements explicitly processed, for example, requirements can be

targeted for testing. Tagging annotation depends on the modelling notation.

The vending machine requirements were elaborated in textual form. There are 6

requirements for describing the machine behavior from the point of view of the

user. They are:

R1. Pushing a start button shall activate drinks available list.

R2.The customer selects a drink from the list then the price is displayed

R3.The customer inserts coins, only one and two euros are accepted

R4. The customer is able to dispense the drink if his coins balance is equal to or

greater than the price.

R5.If the customer balance is greater than the price; the machine shall return the

change.

R6.The client is able to cancel the transaction and get back his money.

37

Figure 9. Tagging requirements in a transition based model.

Figure 9 is an extended FSM for drinks vending machine requirements.

Requirements Ids are explicitly annotated to in states and transitions. For

instance, R2 assigned with vertex (state) v_pricedisplay; R2 refers to requirements

specification R2 is “The customer selects a drink from the list then the price is

display”. In early modelling phases it is easier to define requirements deficiencies

and incompleteness by directly mapping requirements ids and the mode.

Requirements tagging is relying on modelling notation that had been adopted. In

the previous example they are connected to EFSM states and transitions. Code

38

fragment 5 is LEIRIOS Test Generator (LTG/B) tag notation within the B machines

for R4.

/*@BEGIN_REQ: R4 @*/

IF (Balance >Price) ||

dispencse (drink) ||

/*@END_REQ: R4 @*/

Code fragment 5. Tagging requirement 4 in LEIRIOS

4.3.2. Requirements as test generation criteria

The test suite is generated based on requirements. There are two approaches to

obtain test cases from requirements. Firstly, design test to target a specific

requirement. Secondly, test generation based on requirements coverage ratio.

4.3.3. Test for Requirements

 Test for requirements approach targets testing for a specific requirement or a

collection of requirements. In the case that the existence of specific features are

essential, this approach can generate test cases to assure the quality and

persistence of them. In Figure 9 if the test objective is to ensure the machine

allows the cancellation and money return, then the test objective is R6. Consider

the following line of code:

RandomPathGenerator (new ReachedRequirement("R6")

This line of code is targeting testing R6 in DVM example. The test generator is

randomly running till the stopping condition is fulfilled; the stopping condition

is to ensure that the requirement R6 is passed. In this example, the generator

neglects other requirements, states and transitions, this means it may or may not

tests other requirements. The test statistics are shown below

39

Coverage Edges: 15/27 => 55%

Coverage Vertices: 7/9 => 77%

Unvisited Edges: 12

Unvisited Vertices: 2

Test sequence length: 23

 [R3, R4, R2, R1, R6]

PASSED

Figure 10. Testing output statistics coverage ratio generated by GraphWalker

The statistics in figure 10, shows that the test generator only covered 55 percent

of edges, and only visited seven out of nine states and test sequence generated

was 23.The remarkable point is that the requirements statistics here requirements

R3,4,2, are passed and when the test reached R6 the targeted requirement the

generator stopped.

4.3.4. Requirements coverage ratio

The test is fulfilled if requirements targeted coverage percentage is reached. For

example, the tester may target 5 out of 6 requirements to be verified. This

approach is applicable if the tester is testing for requirements with low priority.

Requirements priorities are calculated according to the following formula by

Wiegers [2003]:

Priority = value %

(cost % * cost weight) + (risk % * risk weight)

4.3.5. Requirements traceability matrix

Traceability matrix links requirements to test cases. In MBT, test cases are

generated automatically from the model. Meanwhile, the model includes

requirements identifiers which links informal requirements to the model.

Practically, MBT traceability matrix maps requirements identifiers to test cases.

40

Chapter 5

A Case Study- Puzzle Game for

Android

5.1. System under test

The SUT is to an Android game with puzzles related to computer science, logical

reasoning and/ or mathematics. The game consists of four puzzles types. The game

is supposed to introduce the player to the world of computer science in an interesting

and playful manner. The entire game is undergone to MBT, unless the testing of two

puzzles was adapted to the suggested method.

5.2. Testing framework tools

 GraphWalker

GraphWalker is an open source tool for generating offline and online test

sequences from FSM/EFSM models [Graphwalker.org]. GraphWalker proved

efficiency in real-world projects. GraphWalker utilizes yEd to deliver FSM

models.

 Android ChimpChat

An android library provides device accessibility. It is used as adaption library between

abstract test cases and the SUT. ChimpChat is a host-side library that provides an

API for communication with an instance of an android device. The

communication is performed over and android debug bridge ADB.

 TestNG

It is an open source testing framework, originally adopted from JUnite 3, with

new features. It is used in test execution phase, to direct and manage the test

cases.

41

5.3. Testing procedures

Testing method is MBT five phases, together with the proposed modifications

suggested in the prior chapter.

5.3.1. Modelling

The first phase in the process is to formalize the requirements. The requirements

for a number grid puzzle are:

Because the number of the requirements above is limited, for clarification and

demonstration, I will assume, an entering of a number in each grid is a separate

requirement, so the number of requirements will increase.

The GraphWalker utilizes yEd for modeling the requirements into FSM/EFSM

format. The states are named vertices, while transitions called edges. The edges

assigned-when EFSM mode is enabled - with guards and statements.

GraphWalker is a transition based tool. The prior chapter illustrated the

transitions-based tools uses keywords to tag requirements on transitions and

states. GraphWalker is not an exception. GraphWalker’s keyword REQTAG used

to explicitly mention requirements in the model. Figure 11 represents a FSM

model for number grid puzzle requirements.

There are two types of requirements tags, i.e., static and variable requirements.

The static requirements are simply a string representing an Id for a requirement;

if it is reachable by the test engine then it is validated as passed otherwise it could

not be covered with a test cases. For instance REQTAG = req1, req2.

Variable requirements are variables that can carry different values for the parsed

requirements. It is a simple processing of requirements Ids. For example,

(${reqtag1} can be assigned unique Ids depending on the test generator.

R1: The sum of numbers in every row must be equal to 15, the sum of numbers in

every column must be equal to 15, and the sum of numbers in two diagonals must be

equal to 15

R2: When you fill in all fields with numbers, push the button Check. If your solution

is correct, you will be switched to the map to choose the next puzzle to solve; if your

solution is not correct, all fields will be cleared.

42

Figure 11. Number grid puzzle model

5.3.2. Test suit generation

GraphWalker supports various test generation criteria. Since the models are in

FSM or EFSM format, the test generation criteria are concerned with traversing

through states and transitions. For instance, A* algorithm is used to traverse the

43

graph. The generators have stop conditions, for example, the generator stop

when it reaches a specific vertex or an edge.

 A remarkable stop condition for the fall in the scope of the thesis is requirements

as a stop condition. They are two conditions concerning requirements as test

generation criteria. First explicitly defines specific requirements as test target, the

test stop when it reaches these requirements. This condition is effective in

validating critical requirements. The second condition is requirements’ coverage

as test generation criteria, Requirement coverage must be between 0 and 100; it

is efficient to target a specific percentage of requirements to be covered by the

testing process, this may strengthen the acceptance testing or smoke testing. But

the tester should be careful when using this condition in critical systems testing,

since if the generator reaches the defined percentage, it will stop. This implicitly

means there is a possibility not to cover all requirements.

In the number grid puzzle, the new ReachedRequirement("req0") is targeting a

specific requirement req0.

 The generator RequirementCoverage (1) targets 100 percent coverage for the

requirements. This means the test only stops when all requirements are covered.

5.3.3 Test harness

This phase is converting the abstract test cases to an executable tests. An android

library chimpchat implements interaction between the SUT and the test cases.

1. device.shell("am start -n com.sis.uta.puzzleGame/.MainActivity") ;

2. public void e_enterNumberG2() {

3. device.touch(444,167 , TouchPressType.DOWN_AND_UP) ;

4. device.touch(760,406 , TouchPressType.DOWN_AND_UP) ;
5. device.type(getRanNum());

6. device.press(PhysicalButton.BACK, TouchPressType.DOWN_AND_UP);
7. System.out.println("Enter A Number In Grid 2");

8. }

Code fraction 6. Adapting the abstract test cases.

44

In code fraction 6, the first line load the SUT, the lines from 2 to the end are an

implementation for an edge -transition- in the model, it uses the absolute

resolution for the interaction.

As test cases are generated they promptly executed. The online testing mode is

employed.

5.3.4 Test analysis

If the test is targeting a specific requirement, then the generator will ensure that

the requirement must be covered by a test case. In code fragment 7, the test covers

50 percent of the requirements, in the model.

ts =new TestSucess(file, true , new RandomPathGenerator(new

RequirementCoverage(.5)), false);

Code fraction 7. Covering 50 percent of requirements

 This test generator a coverage rate of 50 percent used to generate a test

suit. The number puzzle grid model has 11 requirements, the generator

randomly selects 6 out of 11 requirements. Through using the same

technique, we can cover all requirements. Figure 10 shows the testing

output statistics for the code fraction 7, where the test covered half of

the requirements.

45

In case the testing target is a specific requirement for example, in code fragment

8 the test target is req0, if the target fulfilled by reaching the req0, then the test

stops, whatever requirements have been tested.

ts =new TestSucess(file, true, new RandomPathGenerator(new ReachedRequirement("req0")),

false);

Code fragment 8. Targeting req0

Figure 13 shows the test output for the code fragment 8. The last requirement

covered was req0, thereafter, the generator exits.

NO of Requirements 11
Requirementes Covered

Requirements req6 Passed
Requirements req5 Passed
Requirements req4 Passed
Requirements req3 Passed
Requirements req2 Passed
Requirements req1 Passed
Statistics for multiple models
Statistics for NumbersGridPuzzle:
Coverage Edges: 11/28 => 39%
Coverage Vertices: 8/14 => 57%
Unvisited Edges: 17
Unvisited Vertices: 6
Test sequence length: 14
Coverage Edges: 11/28 => 39%
Coverage Vertices: 8/14 => 57%
Unvisited Edges: 17
Unvisited Vertices: 6
Test sequence length: 14
Sucess Model Done
PASSED: testForSuccess

===
 Default test

 Tests run: 1, Failures: 0, Skips: 0

Figure 12. Test output covering 50 percent of the requirements

46

The outcomes of the testing process are:

 TestNG report

 Log File for each test case the log file shows the test sequences (scenario)

 Test models statistics

O of Requirements 11
Requirementes Covered

Requirements reqButton Passed
Requirements req9 Passed
Requirements req8 Passed
Requirements req7 Passed
Requirements req6 Passed
Requirements req5 Passed
Requirements req4 Passed
Requirements req3 Passed
Requirements req2 Passed
Requirements req1 Passed
Requirements req0 Passed
Statistics for multiple models

Statistics for NumbersGridPuzzle:
Coverage Edges: 21/28 => 75%
Coverage Vertices: 14/14 => 100%
Unvisited Edges: 7
Unvisited Vertices: 0
Test sequence length: 31
Coverage Edges: 21/28 => 75%
Coverage Vertices: 14/14 => 100%
Unvisited Edges: 7
Unvisited Vertices: 0
Test sequence length: 31
Sucess Model Done

PASSED: testForSuccess

Figure 13. Test output for requirement req0

47

5.4. Case discussion

The number of test cases generated from the models is huge, this ensures the

stability of the product, but still to the testing approach prone Dijkstra law, it

does not prove the absence of errors but discover them. The test cases, which are

applied proved that, the product covered the customer’s requirements. However,

the testing approach, could not discover deficiencies as GUI bugs.

On the technical level, there were difficulties with the adoption of the MBT. For

example, in the adaption phase it is not quite efficient to use the absolute

resolution to access the SUT. There are libraries that can access the SUT graphical

interface directly like Robotium or Espresso. However, the game was developed

using LIBGDX library that is not compatible with such libraries.

48

Chapter 6

Conclusions, and Future work

6.1. Limitations

Traceability in MBT encounters drawbacks and limitations originated from MBT

characteristics.

MBT is designed for testing functional requirements. The models are

representing the behavioral aspects of the SUT. Non-functional requirements

cannot be traced to any specific code module. Thus, NFR cannot be traced to test

cases.

The suggested traceability method in MBT is restricted to requirements-test suit

only. Several software development artifacts are not covered in the MBT

traceability model. For instance, design models and coding modules are not

involved in the process. Even, if a Model Driven Development (MDD) approach

is used, still the models used in testing are different from ones used in design and

then implementations, two separate. However, a key point in MBT traceability if

specific requirement is tested in the SUT, this means it is implemented and

designed already, because the testing is the last phase in the process, but still

there is no linkage between different artifacts in the development process.

In practice, there are difficulties in adopting MBT [Robbinson, 2003]. The

connection between requirements tools and MBT generators is essential to fully

automate and link the requirements to the models. There are few trials for

example, Simulink and Conformiq in general.

.

49

6.2. Conclusions

MBT is a trend in software testing automation. It is ideally investing

requirements specifications to automatically generate test suit. Since, MBT is an

automation of specification based testing approach, it is a breakthrough to

automatically trace requirements to test suit. To achieve a transparent method to

trace requirements to test suit, the thesis deduces the following heuristic

1. Modelling

i. Requirements tagging

2. Test suit generation

i. Requirements as test generation criteria (partially or fully

target requirements)

3. Adaption

4. Execution

5. Analysis

i. Requirements Coverage ratio

ii. Requirements Traceability matrix

The proposed method is an adaption of general MBT process, to explicitly

manipulate requirements in testing process. The requirements are annotated in

the model as tags and linked to requirements specifications documents.

Thereafter, the test generation criteria basically requirements, either targeting

specific requirements or randomly target the entire requirements pool. In the last

phase, the testing statistics concentrate on the requirements coverage.

Despite the method proved efficiency in handling the case study, still there a

necessity to combine it with other testing approaches like code-based, to cover

the entire development life cycle.

One major obstacle in adopting MBT to trace requirements is its limitations to

handle nonfunctional requirements. This limitation originates from the nature of

MBT that targeting functional requirements which are prone to modelling.

50

6.3. Future work

The thesis handled traceability in MBT from straightforward procedural

perspective. There is a necessity to manipulate other aspects like effectiveness of

the concept within the exhaustive information systems rather than the real time

or critical systems, in other words, how far the traceability can be achieved in

complex systems etc. enterprise applications.

MBT itself still have open questions, regarding the nature of the approach, like

dealing with non-functional requirements and complexity of the modelling

phase that requires special skills and training.

MBT requires additional support on tools’ level. Despite the existence of a

commercially successful tools like Qtronic, still there is a lack of a tool that cover

the entire process of requirements and MBT.

51

References

[Abbors et al., 2009] Abbors, F., Truscan, D., and Lilius, J., Tracing Requirements

in a Model-Based Testing Approach, In: Proc. of the First International Conference

on Advances in System Testing and Validation Lifecycle, 2009. VALID '09. 123-128.

[Agarwal et al., 2010] Agarwal, B.B., S.P. Tayal and M. Gupta, Software

Engineering and Testing: An Introduction, 1 ed., Hingham, Jones and Bartlett

Learning, 2010.

[Arian5, 1996] ARIANE 5 Flight 501 Failure, Report by the Inquiry

Board, http://sspg1.bnsc.rl.ac.uk/Share/ISTP/ariane5r.htm , Paris, 1996 July.

[Bender, 2009] Bender RBT Inc., “Requirements Based Testing

Process Overview”, 2009.

[Blackburn et al., 2005] Blackburn, M.; Busser, R., Nauman, A., and Morgan, T.,

"Life cycle integration use of model-based testing tools In: Proc. of the 24th

Digital Avionics Systems Conference, 2005. DASC 2005.

 [Boden et al., 2005] Boden, M., Busser, D., Blackburn, M., and Nauman, A.,

Extending Simulink Models With Natural Relations To Improve Automated

Model-Based Testing, In: Proc. of sew, 29th Annual Workshop on Software

Engineering, IEEE/NASA, pp.325-332, 2005

[Boehm, 1979]. Boehm, B., Guidelines for Verifying and Validating Software

Requirements and Design Specifications," Euro IFIP 79, North Holland (1979), p.

711-719

[Bouquet et al, 2005] Bouquet, F., Jaffuel, E., Legeard, B., Peureux, F., and Utting,

M., 2005. Requirements traceability in automated test generation: application to

smart card software validation. SIGSOFT Softw. Eng. Notes 30, 4 (May 2005), 1-7.

[Conformiq, 2009] Conformiq Qtronic User Manual (2009) Available:

http://www.conformiq.com/downloads/Qtronic2xManual.pdf

http://www.conformiq.com/downloads/Qtronic2xManual.pdf

52

[Craig and Jaskiel, 2002] Craig, D., Jaskiel, P., Systematic Software Testing,

Norwood, MA, USA: Artech House, May 2002.

[Dalal et al., 1999] Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J. M., Lott, C.M.,

Patton, G.C., Horowitz, B.M., "Model-based testing in practice," In: Proc. of 1999

International Conference on Software Engineering, 1999, 285-294.

 [Dijkstra et al., 1972] Dijkstra, W., Notes on structured programming. In O. J. Dahl,

E. W. Dijkstra, and C. A. R. Hoare, editors, Structured Programming. Academic

Press, London, 1972.

[El-Far and Whittaker, 2001] El-Far, K., Whittaker, A., Model-based Software

Testing, In: J.J. Marciniak (ed.), Encyclopedia of Software Engineering, Wiley,

2001.

[Gotel and Finkelstein, 1994] Gotel, O. C Z, Finkelstein, A., "An analysis of the

requirements traceability problem," In: Proc. of the First International Conference

Requirements Engineering, 1994, 94-101.

 [Gudmundsson et al., 2013] Gudmundsson, V., Schulze, C., Ganesan, D.,

Lindvall, M., and Wiegand, R., "An initial evaluation of model-based testing," In:

Proc. of Software Reliability Engineering Workshops 2013, ISSREW ’13, IEEE

International Symposium, 4-7.

[Harel, 1987] David Harel, Statecharts: A visual formalism for complex systems.

In: Science Computer Programming Vol. 8, 1987, 231-274.

[Huang, 2009] Cleland-Huang, J.; Hayes, J.H.; Domel, J. M., "Model-based

traceability," In: Proc. of Traceability in Emerging Forms of Software Engineering,

Workshop 2009. TEFSE '09, 6-10.

[Huang, 2009] J. C. Huang, Software Error Detection through Testing and Analysis,

June 2009.

[IEEE Glossary, 1990] IEEE Standard Glossary of Software Engineering

Terminology," IEEE Std. 610.12-1990, 1-84.

[ISO, 2010] International Organization for standardization. Systems and software

engineering, vocabulary ISO/IEC/IEEE 24765:2010.

 [Laplante and Ovaska, 2012] Laplante, P., Ovaska, S., Real-Time Systems Design

and Analysis: Tools for the Practitioner, 4 ed., Wiley-IEEE Press, 2012.

53

[Lutowski, 2005] Rick Lutowski, R., Software Requirements: Encapsulation, Quality,

and Reuse, 1 ed., Auerbach Publications, 2005.

[Mathur and Malik, 2010] Mathur, S., Malik, S. “Advancements in the V-

Model”. International Journal of Computer Applications 1(12), 2010, 29–34.

[Myers et al., 2011] Glenford, M., Sandler, C., and Badgett, T., The Art of Software

Testing, 3 ed., Wiley & Sons, December 2011.

[Naslavsky et al., 2007] Naslavsky, L., Ziv, H., and Richardson, J., Towards

Traceability of Model-Based Testing Artifacts. In: Proceedings of the 3rd

international workshop on Advances in model-based testing (A-MOST '07). ACM, New

York, NY, USA, 105-114.

[Nyman, 2001] Nyman, N., In Defense of Monkey Testing. Test

Automation SIG Group, 2001.

[Pezzè and Young, 2007] Pezzè, M., Young, M., Software Testing and Analysis-

Process, Principles, and Techniques, 1 ed., John Wiley & Sons, April, 2007.

[Robinson, 1999] Robinson, H., "Graph Theory Techniques in Model -

Based Testing", In: Proc. of International Conference on Testing

Computer Software , 1999.

 [Robinson, 2003] Robinson, H., “Obstacles and opportunities for model-based

testing in an industrial software environment,” In: Proc. of 1st European Conference

on Model-Driven Software Engineering (2003), Nuremberg, Germany, Dec. 2003, 118–

127.

[Shafique and Labiche, 2010] Shafique, M., Labiche, Y.A., Systematic review of

model basedtesting tools. Carleton University, Department of Systems and

Computer Engineering. Technical Report (SCE-10-04) (2010).

[Sommerville, 2010] Sommerville, I., Software engineering, 9 ed., Addison-Wesley,

March 2010.

[Spec#, 2005] Spec#tool(public release, March 2005)

http://research.microsoft.com/specsharp

[Prowell, 2005] Prowell, J., "Using Markov Chain Usage Models to Test Complex

Systems", In: Proc. of the 46th Hawaii International Conference on System Sciences,

2005, HICSS, ’05, 318.

54

[Tassey, 2002] Tassey, G., The Economic Impacts of Inadequate Infrastructure for

Software Testing, May2002.

[Utting and Legeard, 2006] Utting, M., Legeard, B., Practical Model Based-Testing,

Morgan-Kaufmann, 2006.

[Utting, 2005] Utting, M., The Role of Model-Based Testing. In Verified Software:

Theories, Tools, Experiments, Bertrand Meyer and Jim Woodcock (Eds.). Lecture

Notes In Computer Science, Vol. 4171. Springer-Verlag, Berlin, Heidelberg. 2005,

510-517.

[Veanes et al., 2008] Veanes, V., Campbell, C., Grieskamp, W., Schulte, W.,

Tillmann, N., and Nachmanson, L., Model-Based Testing of Object-Oriented

Reactive Systems with Spec Explorer, in Formal Methods and Testing, vol. 4949,

Springer Verlag, Lecture Notes in Computer Science, 2008, 39-76.

[Wiegers, 2003] Wiegers, K.W.,”Software Requirements”, 2nd, ed.Microsoft Press,

2003.

[Zhang, 2007] Zhang, Z., Effective Requirements Development - A Comparison

of Requirements Elicitation Techniques. In: Proc. of the 15th Conference on Software

Quality Management: 2007, SQM ‘07, 225–240.

55

Appendix

This is a sample code for the cade study introduced in chapter 5. The first class is

the main class responsible for handling model and specify test generation criteria.

The second class is the adaption phase where the interaction between the test

cases and the system under test takes place. The system under test was

implemented with LibGDX library that caused difficulty in using libraries like

Robotium, so the interaction was in absolute resolution.

package com.dawoud.uta;
import org.testng.Assert;
import org.testng.annotations.Test;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.OutputStream;
import java.io.PrintStream;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.net.URISyntaxException;
import java.util.Set;
import org.graphwalker.ModelBasedTesting;
import org.graphwalker.StatisticsManager;
import org.graphwalker.conditions.EdgeCoverage;
import org.graphwalker.conditions.ReachedRequirement;
import org.graphwalker.conditions.ReachedVertex;
import org.graphwalker.conditions.RequirementCoverage;
import org.graphwalker.conditions.TimeDuration;
import org.graphwalker.conditions.VertexCoverage;
import org.graphwalker.exceptions.StopConditionException;
import org.graphwalker.generators.A_StarPathGenerator;
import org.graphwalker.generators.CombinedPathGenerator;
import org.graphwalker.generators.RandomPathGenerator;
import org.graphwalker.generators.RequirementsGenerator;
import org.graphwalker.machines.FiniteStateMachine;
import org.graphwalker.multipleModels.ModelHandler;
import org.graphwalker.statistics.RequirementCoverageStatistics;

public class NewTest {

TestSucess ts;

TestNum testNum;

TestGraphColoring gc;

TextPuz txtp;

56

PicturePuz pic;

ModelHandler modelhandler = new ModelHandler();

PrintWriter testCases ;

@Test

public void testForSuccess() throws InterruptedException,
StopConditionException, URISyntaxException, FileNotFoundException {

File file = new File("Resources/NumberPuzzleSuc.graphml");

ts =new TestSucess(file, true, new RandomPathGenerator(new
ReachedVertex("v_exit")), false);

modelhandler.add("NumbersGridPuzzle",ts);

modelhandler.execute("NumbersGridPuzzle");

Assert.assertTrue(modelhandler.isAllModelsDone(), "Not all models
are done");

String actualResult = modelhandler.getStatistics();

ModelBasedTesting mbt=ts.getMbt();

mbt.passRequirement(true);

RequirementCoverageStatistics rcs= new
RequirementCoverageStatistics(mbt.getGraph());

System.out.println("NO of Requirements "+rcs.getMax());

FiniteStateMachine mch= mbt.getMachine();

mbt.populateMachineRequirementHashTable();

Set<String> reqs=mch.getCoveredRequirements();

String[] tmp = (String[]) reqs.toArray(new String[0]);

System.out.println("Requirementes Covered\n");

for (int i = 0; i < tmp.length; i++) {

System.out.println("Requirements \t "+tmp[i]+"\t
Passed ");

}

System.out.println(actualResult);

System.out.println(mbt.getStatisticsString());

System.out.println("Sucess Model Done");

}

@Test

public void testNumbersGrid() throws InterruptedException,
StopConditionException, URISyntaxException {

System.out.println("new Test >>>>>>>");

File file = new File("d://MBT/NumPuz.graphml");

System.out.println("new Test >>>>>>>File ");

57

testNum= new TestNum(file, true, new RandomPathGenerator(new
ReachedVertex("v_exit")), false);

testNum.setDevice(ts.getDevice());

ModelHandler mh =new ModelHandler();

mh.add("RandomTest", testNum);

System.out.println("ADB IS UP ");

mh.execute("RandomTest");

Assert.assertTrue(mh.isAllModelsDone(), "Not all models are done");

String actualResult = mh.getStatistics();

System.out.println(actualResult);} }

package com.dawoud.uta;

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.UnsupportedEncodingException;
import java.util.Collection;
import java.util.Iterator;
import java.util.Random;
import com.android.chimpchat.ChimpManager;
import com.android.chimpchat.adb.AdbBackend;
import com.android.chimpchat.core.IChimpDevice;
import com.android.chimpchat.core.IChimpView;
import com.android.chimpchat.core.ISelector;
import com.android.chimpchat.core.PhysicalButton;
import com.android.chimpchat.core.TouchPressType;
import com.android.chimpchat.hierarchyviewer.HierarchyViewer;
import com.android.ddmlib.AndroidDebugBridge;
import org.graphwalker.Util;
import org.graphwalker.exceptions.InvalidDataException;
import org.graphwalker.generators.PathGenerator;

public class TestSucess extends org.graphwalker.multipleModels.ModelAPI {
 AdbBackend ab ;
 IChimpDevice device ;
 PrintWriter testCases ;
 public TestSucess(File model, boolean efsm, PathGenerator generator,
boolean weight) {
 super(model, efsm, generator, weight);
 ab = new AdbBackend();
 device = ab.waitForConnection();
 try {
 testCases = new PrintWriter("Resources/TestForSucess.txt", "UTF-
8");
 } catch (FileNotFoundException | UnsupportedEncodingException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 }
 /**

58

 * This method implements the Edge 'e_check' * */
 public String getRanNum(){
 Random rand = new Random();
 int pickedNumber = rand.nextInt(10);
 String num = Integer.toString(pickedNumber) ;

 if (pickedNumber==0){
 pickedNumber = rand.nextInt(10);
 }
 else{
 num = Integer.toString(pickedNumber);

 }
 return num;
 }
 public void e_loading() {
 System.out.println("Loading >>In Sucess case ");
 testCases.println("Loading >>In Sucess case ");
device.shell("am start -n com.sis.uta.puzzleGame/.MainActivity") ;
try {
 Thread.sleep(20000);
} catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
}
device.touch(400,320 , TouchPressType.DOWN_AND_UP) ;
try {
 Thread.sleep(3000);
} catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
}
device.touch(720,340 , TouchPressType.DOWN_AND_UP) ;
try {
 Thread.sleep(3000);
} catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
}
for (int i = 0 ;i<12;i++){
device.touch(770,175 , TouchPressType.DOWN) ;
try {
 Thread.sleep(300);
} catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
}
device.touch(781,251 , TouchPressType.UP) ;
}
try {
 Thread.sleep(10000);
} catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
}

System.out.println("Loading>>>>>>>>>>>>>>>");
testCases.println("Loading");
Collection<String> idList= device.getViewIdList();
Iterator <String>idListIte =idList.iterator();

59

while (idListIte.hasNext()) {
System.out.println(idListIte.next());

}
 }
 /**
 * This method implements the Edge 'e_enter'
 *
 */
 public void e_enter() {
 testCases.println("enter E");
 }
 /**
 * This method implements the Edge 'e_enterNumberG1'
 *
 */
 public void e_enterNumberG1() {

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 device.touch(40,205 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 device.touch(33,302 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 System.out.println("Enter A Number In Grid 1");
 testCases.println("Enter A Number In Grid 1");

 }
 /**
 * This method implements the Edge 'e_enterNumberG2'
 *
 */
 public void e_enterNumberG2() {
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(130,215 , TouchPressType.DOWN_AND_UP) ;

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block

60

 e.printStackTrace();
 }
 device.touch(195,469 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 device.touch(150,469 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 System.out.println("Enter A Number In Grid 2");
 testCases.println("Enter A Number In Grid 2");
 }
 /**
 * This method implements the Edge 'e_enterNumberG3'
 *
 */
 public void e_enterNumberG3() {
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(240,215 , TouchPressType.DOWN_AND_UP) ;

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(240,355 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 System.out.println("Enter A Number In Grid 3");
 testCases.println("Enter A Number In Grid 3");
 }
 /**
 * This method implements the Edge 'e_enterNumberG4'
 *
 */
 public void e_enterNumberG4() {
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block

61

 e.printStackTrace();
 }

 device.touch(35,310 , TouchPressType.DOWN_AND_UP) ;

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(40,180 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 System.out.println("Enter A Number In Grid 4");
 testCases.println("Enter A Number In Grid 4");
 }
 /**
 * This method implements the Edge 'e_enterNumberG5'
 *
 */
 public void e_enterNumberG5() {
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(120,320 , TouchPressType.DOWN_AND_UP) ;

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(135,140 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 System.out.println("Enter A Number In Grid 5");
 testCases.println("Enter A Number In Grid 5");
 }
 /**
 * This method implements the Edge 'e_enterNumberG6'
 *
 */
 public void e_enterNumberG6() {

62

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(240,320 , TouchPressType.DOWN_AND_UP) ;

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(240,86 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();}
 System.out.println("Enter A Number In Grid 6");
 testCases.println("Enter A Number In Grid 6");
 }

 /**
 * This method implements the Edge 'e_enterNumberG7'
 *
 */
 public void e_enterNumberG7() {
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(40,400 , TouchPressType.DOWN_AND_UP) ;

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(45,266 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 System.out.println("Enter A Number In Grid 7");
 testCases.println("Enter A Number In Grid 7");
 }

63

 /**
 * This method implements the Edge 'e_enterNumberG8'
 *
 */
 public void e_enterNumberG8() {
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(150,400 , TouchPressType.DOWN_AND_UP) ;

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(135,128 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 System.out.println("Enter A Number In Grid 8");
 testCases.println("Enter A Number In Grid 8");
 }

 /**
 * This method implements the Edge 'e_enterNumberG9'
 *
 */
 public void e_enterNumberG9() {
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.touch(240,400 , TouchPressType.DOWN_AND_UP) ;

 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 device.touch(245,320 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

64

 System.out.println("Enter A Number In Grid 9");
 testCases.println("Enter A Number In Grid 9");
 }

 /**
 * This method implements the Edge 'e_pressCheck'
 *
 */
 public void e_pressCheck() {
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 device.touch(560,315 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 device.touch(400,265 , TouchPressType.DOWN_AND_UP) ;
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }
 System.out.println("Press Ckeck Button ");
 testCases.println("Press Ckeck Button ");
 }

 /**
 * This method implements the Edge 'e_win'
 *
 */
 public void e_win() {

 System.out.println("You WOn!!");
 testCases.println("You WOn!!");
 }

 /**
 * This method implements the Vertex 'v_NubmersUpdatedG1'
 *
 */
 public void v_NubmersUpdatedG1() {
 testCases.println(" v_NubmersUpdatedG1");

 }
 /**
 * This method implements the Vertex 'v_NubmersUpdatedG2'
 *
 */
 public void v_NubmersUpdatedG2() {
 testCases.println("v_NubmersUpdatedG2"); }

 /**

65

 * This method implements the Vertex 'v_NubmersUpdatedG3'
 *
 */
 public void v_NubmersUpdatedG3() {
 testCases.println("v_NubmersUpdatedG3");
 }

 /**
 * This method implements the Vertex 'v_NubmersUpdatedG4'
 *
 */
 public void v_NubmersUpdatedG4() {
 testCases.println(" v_NubmersUpdatedG4");
 }
 /**
 * This method implements the Vertex 'v_NubmersUpdatedG5'
 *
 */
 public void v_NubmersUpdatedG5() {
 testCases.println(" v_NubmersUpdatedG5");

 }

 /**
 * This method implements the Vertex 'v_NubmersUpdatedG6'
 *
 */
 public void v_NubmersUpdatedG6() {
 testCases.println(" v_NubmersUpdatedG6");

 }

 /**
 * This method implements the Vertex 'v_NubmersUpdatedG7'
 *
 */
 public void v_NubmersUpdatedG7() {
 testCases.println(" v_NubmersUpdatedG7");
 }

 /**
 * This method implements the Vertex 'v_NubmersUpdatedG8'
 *
 */
 public void v_NubmersUpdatedG8() {
 testCases.println(" v_NubmersUpdatedG8");

 }

 /**
 * This method implements the Vertex 'v_NubmersUpdatedG9'
 *
 */
 public void v_NubmersUpdatedG9() {
 testCases.println(" v_NubmersUpdatedG9");

 }

 /**
 * This method implements the Vertex 'v_checkButtonPressed'

66

 *
 */
 public void v_checkButtonPressed() {
 testCases.println(" v_NubmersUpdatedG9");

 }

 /**
 * This method implements the Vertex 'v_exit'
 *
 */
 public void v_exit() {
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 device.press(PhysicalButton.HOME, TouchPressType.DOWN_AND_UP);
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 // TODO Auto-generated catch block
 e.printStackTrace();
 }

 testCases.println(" Exit to Home ");
 testCases.close();

 }

 /**
 * This method implements the Vertex 'v_numbersPuzzle'
 *
 */
 public void v_numbersPuzzle() {
 }

 public void v_checkCurrent() {
 }

 public void e_chkView() {
 }

 public IChimpDevice getDevice(){
 return device;
 }

 public void setDevice(IChimpDevice dev){
 device=dev; }
}

