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Abstract 

This thesis focuses on biometric verification of subjects based on saccadic eye 

movements. Verification corresponds to two-class classification to recognize an 

authenticated user and to classify other subjects as impostors. Compared with other 

biometric signals or data, the possible advantages of eye movements can be as follows: 

harder to imitate, easier processing and faster computation. The thesis describes a 

procedure to use variables of saccade eye movements recorded. It analyses the 

variabilities between electro-oculography (EOG) and video-oculography (VOG) 

signals: i.e. eye movements were recorded with skin electrodes or with two special 

video cameras. When a signal was recorded with a low-frequency video camera 

device simulating a web camera, the sampling frequency of signals was enhanced 

using interpolation. The techniques of signal processing and statistics were also 

applied to analysis. In order to evaluate biometric accuracy, the test procedures for 

true positive rate (TPR) and true negative rate (TNR) were designed separately. Many 

classification methods were explored for verification performance, including both 

modified simple methods such as k-nearest neighbour searching and advanced 

methods such as neural networks and support vector machines. Approaches and other 

details in the verification procedure were improved through multiple tests and 

comparisons of the verification accuracies. Optimal parameters and settings of the 

classification methods used were found. With more and more saccades and subjects 

collected into training sets, a high TNR accuracy was gained, which was close to 95% 

at its best. It showed that, using saccade eye movements, it was possible to distinguish 

between an authenticated user and impostors. On the other hand, after multiple 

recordings of subjects, the high accuracy of TPR – close to 90% – also confirmed that 

an authenticated user can be recognized notwithstanding the variability of variable 

values of saccades between different sessions. Finally, better results given by signals 

with a relatively high sampling frequency of 250 Hz were obtained, and this could 

allow user verification based on eye movements to be applied in practice, along with 

the development of eye movement video cameras in future. 

 

Keywords: Biometric verification, eye movements, saccade, signal analysis, 

classification, machine learning, data mining 
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Chapter 1 

Introduction 

Identification and verification based on biometric information [1,2,3,4] has been 

researched and developed for the past 20 years. Some of relevant methods are widely 

and deeply applied in many fields in society. Fingerprints [5,6,7,8], face images 

[9,10,11,12] and signatures [13] are well known by the public. For example, 

fingerprints are used for criminal identification and instead of passwords in many 

areas. Face images have also been used in access control systems. Handwritten 

signatures as an authentication method have been used for more than a thousand years 

of human history. Retina [14], iris [15,16,17] and palm print scanning [18], as well as 

voice [19] and electrocardiography (ECG) signals [20,21,22,23] are also increasingly 

being studied. 

Biometrics can be divided up in various ways. According to character [24,25,26], 

they could be separated into physiological biometrics (fingerprints, face or iris images) 

and behavioural biometrics (voice or signatures). They could also be categorized by 

signal complexity as one-dimensional (1-D) or 2-D. 

Identification [10,26,27,28] is a kind of classification that allows recognition of a 

given person from among a large group of members. Compared with identification of 

n-class classification, verification can be considered a simpler situation: it is only 

two-class classification in that, for example, the correct user of a computer has to be 

recognized and other possible subjects are simply determined as non-users or 

impostors (more discussion in Section 3.1). 

With technological advances, the biometric identification and verification of a 

subject has become more and more reliable and convenient, but some drawbacks and 

disadvantages must still be noted. The first one is artificial imitation. A face image can 

be replaced by a photo; there are also many devices that can surreptitiously record a 

person’s voice. It is not difficult to steal the fingerprints of a person, which could be 

left anywhere. A large data set of signals, such as images, is another problem for 

biometric identification and verification. For example, a complex image often 

contains a great number of features, which make for a huge data set, complicated 

computation and time-consuming processing. Moreover, measurement conditions 

should be considered as well. The iris and retina need an advanced and complicated 

device to be measured. Face images [28] are sensitive to changing factors such as 

illumination, glasses and hairstyle. A voice may be easy to obtain, but such a 

recording needs a background without noise and may also be affected by other 

circumstance factors. Therefore, one possible option is to try to find a novel signal. It 

should include less data for which the corresponding procedure of verification and 

computation should become simpler and faster. One-dimensional signals, 
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electroencephalography (EEG) [29,30] and ECG have been researched for biometrics, 

but the number of publications is clearly far smaller than that for image data. 

Eye movements [31,32,33,34,35,36,37] are an interesting and potential 

behavioural biometric objective for the purpose of classifying subjects. Just like EEG 

and ECG, eye movements are one-dimensional biometric signals. Their data amount 

is smaller than those of images, but they can contain enough information for the 

verification of subjects. For example, the latency of saccades is such a feature type of 

eye movements [38,39,40,41,42] (Figure 1.1). It represents the time that person needs 

to respond to a stimulation. Researchers investigated infants between four and eight 

months old to reveal the latency values of their saccades and attempted to find out 

how they became shorter just during these four months [43]. Moreover, as 

behavioural biometrics, eye movements are more difficult to copy or steal than such 

images as fingerprints. Since human beings cannot control some bodily responses 

consciously [44], it is also difficult to imitate the eye movements of other subjects. 

Although eye movements have to be measured by video cameras of high quality at 

present, with the technology developing, such video cameras will probably become 

cheaper and measurements will be simpler in future. 

 

Figure 1.1. Several saccades of a 30 Hz signal. 

 

Eye movements have been researched and investigated for decades in many 

different fields such as medicine, psychology, and other related areas. For example, 

latency values were used to distinguish between children and adults, and the results 

showed how latencies of children were longer than those of adults [45]. Some 

variables of eye movements in time domain are used to detect patients from the 

healthy. Over the past several years, they have also been studied for use in a 

human-computer interface [46,47]. A human can make a simple command to a 

computer or device by eye movements, for example to choose an icon on the screen. 

Although eye movements are infrequently researched for the verification of 

subjects, some achievements have been made in using them for identification 

purposes. The following are a few first cases. In one study [44], researchers measured 

the blind spot on a subject’s retina and, combined with latency, classified a user for 
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authentication. After the calibration of data and finding the subject’s blind spot, a 

target was displayed at a random position on the authentication screen which could be 

within or outside the blind spot. After the user followed the target displayed, saccades 

were produced and the system measured their latencies. A user was authenticated if 

the saccades occurred at 100 to 500 ms when the target displayed outside his/her blind 

spot or saccades were not induced when target was within the blind spot. It was 

supposed that subjects’ blind spots are located at different places on their retinas. 

In other research [48,49], a mathematical model of the oculomotor system based 

on oculomotor plant characteristics was used for biometric authentication. The model 

simulated the six muscles rotating the eyeball when it moves, and parameters of the 

model were used as input to classify the subjects. Researchers tested the false 

acceptance rate (FAR: the probability that a biometric system will incorrectly grant a 

non-user or impostor access) and false rejection rates (FRR, the probability that the 

biometric system will wrongly reject an access attempt by an authenticated user) with 

nearest-neighbour searching and C4.5 decision trees, and the results [49] were better 

than those of their previous work [48]. Moreover, at an early stage of eye movement 

classification [50,51], variables were extracted from a series of signals measurements, 

each measurement consisting of six integer values: stimulation position (sx, sy) and 

what left and right eye looked at (lx, ly, rx, ry). They were then studied by computing 

cepstrum signals, and the subjects were classified using naïve Bayes decision, 

nearest-neighbour searching, decision trees and support vector machines. Finally, 

pupil size, gaze velocity and the distance between a subject’s eyes were also used in 

user recognition [52]. When measuring the signals, fast Fourier transform and 

principal component analysis were utilized for preprocessing. Nearest-neighbour 

searching was used for the classification between subjects. However, the distances 

between the eyes of subjects based on image analysis was the only input that was 

efficient in this study, and other variables of eye movements were applied in a minor 

role. In addition, graph matching based on eye movement was also used for 

verification [53]. However, these techniques are not real verification based on eye 

movements. 

There are several types of eye movements [54], e.g. saccade, smooth pursuit 

movements and nystagmus. Saccades are the most popular and easiest for biometric 

verification or identification of subjects because their waveforms are the simplest of 

all, they are easy to stimulate and they are the fastest eye movements: in other words, 

obviously shorter signals can be used. Based on various measurement ways used here, 

eye movement signals can be classified as electro-oculographical (EOG) [38,39,55] 

and video-oculographical (VOG) [34]. The two signals look similar, but the difference 

is the recording approach. The former uses skin electrodes attached to the corners of 

the eyes of a subject to record signals on the basis of potential difference between the 

retina and cornea of an eye. The latter uses two small video cameras to obtain eye 

movements. Compared with an EOG signal, a VOG measurement is much simpler 

and faster to make. Due to the equipment limitation, the frequency of VOG is not 

often as high as that of EOG, but the less noisy and more practical VOG method has 

become the main method of measuring eye movements at present. Due to the regular 
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development of electrical devices, high-frequency cameras have already been 

obtained, but they are still expensive. For these two reasons, this thesis mainly 

includes research on and considers how to make a biometric verification of a user on 

the basis of VOG saccade eye movements. The verification of subjects using EOG 

signals plays a secondary role as a comparison with VOG signals. 

The research questions and hypothesis are as follows. The thesis will attempt to 

explain and test them in the following chapters. 

 Can an individual be separated from others by saccade eye movements based 

on single recordings? 

 Can an authenticated or right user be distinguished from others by saccade 

eye movements based on multiple recordings? 

 As to saccade eye movements, is the verification effect better when it is 

based on EOG or VOG? 

 How is it possible to process signals measured with a low-frequency device, 

corresponding to a normal web camera. 

 Which classification methods, parameters and models suit verification and 

how are their results evaluated? 

 The hypothesis was that problems associated with the above questions are 

possible to solve and the verification task given can successfully be 

performed. 

The outline of this thesis consists of the following parts: Chapter 2 provides 

general information on the eye movement signals used, which include EOG and VOG 

figures, saccade structure and variables (features). How to make eye movement 

measurements, signal processing, selecting variables and computation of variable 

values are also given. Chapter 3 describes the statistical information, relevant 

application and classification procedure. Results of individual publications are 

surveyed in Chapter 4, and development and progress of the research as a whole is 

also presented. Chapter 5 concentrates on discussion and a conclusion. 
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Chapter 2 

Signal processing and analysis 

2.1 Recording of eye movements 

2.1.1 EOG and VOG recordings 

Two types of eye movement data sources were used: EOG and VOG. The data set of 

EOG signals was from earlier research [34,56], and its sampling frequency was as 

high as 400 Hz. It was old and quite noisy [39,40,42], but the higher sampling 

frequency compared to VOG signals was interesting in obtaining enough information 

about eye movements. As new data sets, VOG signals were more important and 

practical, and thus more relevant in user verification, but their disadvantage was the 

low measurement frequency: for example, the main type of VOG signals in this thesis 

consisted of only 30 Hz. On the other hand, this was not merely a poor detail, since 

the use of this low sampling frequency could be understood to simulate the situation 

of moderate eye movement video cameras that may appear in computers and other 

devices in the near future. For example, in a smart phone like the Samsung® SIII, the 

front camera is used to check whether its user is looking at the screen and, if so, its 

screen saver is not switched on. 

 In fact, few studies utilized both horizontal and vertical eye movements to select 

different verification or identification variables [36,57]. It can bring more variables, 

indeed, compared to the use of horizontal eye movements only, but the procedure of 

extracting variable values is slightly more complicated. In addition, because 

recordings should be as short as possible to make a verification test fast, this means 

shortage of data, and whether this would be a weakness or not for verification using 

several variables was not studied in [36,57]. Therefore, to make measurements and 

variable selection as simple and practical as possible, only horizontal eye movements 

were measured in this research, instead of two directions. On the other hand, vertical 

eye movements are sensitive to eye blinks in EOG, and wide vertical angles cannot be 

recorded as exactly as wide horizontal eye movements, so horizontal eye movements 

are more suitable for EOG measurement than vertical. 

For EOG measurements, skin electrodes were used to record potential differences 

when eye movements are induced. The signals had been recorded monocularly at the 

same time from both eyes, with one skin electrode close to each outer eye corner and 

a ground electrode on the forehead. The sampling frequency of signals was 400 Hz, 

which was amplified to the scale of ±10 V, converted with a 13-bit analogue-digital 

converter and filtered digitally with a low-pass filter with a 70 Hz cutoff. The 

measurement system applied the constant amplitude stimulations of 60º at the 
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beginning and end of each signal to adjust the calibration.  

In a VOG test, there is one video camera for each eye recording eye movements 

when the position of a pupil changes. There is a built-in image processing system in 

the VOG system to find the pupil of an eye in order to compute eye movements on the 

basis of the position of the pupil. The sampling frequency was 30 Hz, but in the most 

recent paper also 250 Hz was used. In fact, the former VOG system required no 

separate calibration [58] (except when the system was installed for the very first time) 

as long as the pupil of each eye could be caught in images. Since in VOG there were 

two video cameras, one for each eye, two horizontal signals were recorded at every 

measurement. The one with higher quality, which contained less possible noise or 

artefacts such as eye blinks, was selected from among two. The amplitude accuracy of 

both measuring techniques was better than 1º. 

Generally speaking, EOG is often noisier than VOG, because the former can 

contain abundant noise, such as that arising from facial muscles due to talking, 

smiling, frowning or gasping. Therefore, a subject was not allowed to do these things 

during measurements. VOG measurements are much more ‘user-friendly’ in these 

aspects, since they do not involve these problems, and a subject only needs to keep his 

or her eyes open, be alert and be responsive to stimulations shown. However, 

intensive facial expression can also cause trouble with these measurements. Thus, 

subjects were asked to concentrate on the measurement under relaxed conditions. 

Moreover, in order to avoid the light reflection of the camera in calibration (with the 

device of 250 Hz sampling frequency) and to help the subjects concentrate on a 

measurement, the recording laboratory room at the cellar level equipped with 

high-quality shields against electrical distortion, noise and tremble was utilized for all 

VOG measurements. 

 

 
Figure 2.1. A subject was making a measurement of eye movements with the VOG 

system (Visual Eyes®, Micromedical Technologies, UK) with an image resolution of 

320×240 and a sampling frequency (frames per second) of 30 Hz. 
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Figure 2.1 shows the procedure for measuring VOG eye movements. With the 

gaze, the subject followed a red dot (Light Emitting Diodes, or LEDs) in the black bar 

in front of him. When the measurement started, one LED was turned on and, after a 

short interval, it was switched off and another switched on immediately. This 

stimulation series was continued till the end of a measurement that was exactly the 

same for all subjects. It looked like the red dot ‘jumped’ from one location to another 

on the horizontal axis. The locations of the black bar and chair were fixed and the 

distance between the eyes and bar was also kept constant, which means the angle 

from an eye to two sides of the bar was fixed and available for calculating. Actually, 

the distance of an eye to the bar cannot be exactly the same for every individual in a 

practical measurement, but the negative influence of a slight alteration is minor, 

because alteration in visual angles between dots would change very little. To avoid a 

situation that subjects would attempt to predict the next stimulation movement of the 

light dot (LED), the directions of the light dot ‘jumping’ (to left or right) were 

designed to be random from the viewpoint of a spectator. Although intervals between 

switching on and off were about two seconds, they were still unexpected for a 

spectator, for the sake of the irregular variability. On the other hand, in order to obtain 

more data, one measurement series had to be repeated by each subject several times. 

Thus, a stimulation movement also had to be varying so that a subject could not learn 

or remember it. However, the same stimulation series (with fixed amplitudes and 

intervals) was shown to each subject so that their responses could be compared to 

each other. It was also important that any valid saccades would be reliable responses 

for the stimulation movements arranged. This type of saccade stimulation has been 

used in medical investigations for decades as a standard-like convention [32,38,59]. 

Furthermore, it was important that each subject showed several responses to similar 

stimulations in data analysis to collect sufficient data for classification decisions. This 

was important because machine learning algorithms were then able to learn variable 

values of individuals from the data. 

The type of stimulation movement employed was as simple as possible to 

guarantee that it was easy to follow and did not cause fatigue, even if it was repeated 

consecutively many times for a subject. Additionally, to distinguish a subject, as 

simple stimulation as possible is a reasonable approach. Otherwise more repetitions of 

data collecting after complicated stimulations would be needed. A test base of a 

complicated stimulation would be easier at risk of failing, but this simple one 

normally yielded no failure. 

Utilization of the above-described stimulation (red light dot) stems from the idea 

that subjects could use eye movements to log in to their computer, private system, 

account, webpage etc. Without any password, the computer or system could recognize 

its legal user or reject impostors. The idea was also that there would be a light dot on 

the screen: the user would stare at it and then follow the dot jumping horizontally 

after short intervals. The whole procedure is quite similar to the measurement 

procedure described above. Both stimulation amplitude (lengths of the light dot jumps) 

and intervals between jumps were varied. In addition, most stimulation amplitudes 

should be large enough, such as 40-60°, because the large amplitudes would probably 
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guarantee that variability occurred in saccade features between subjects [34,60]. Large 

amplitudes of saccades were necessary for verification, but smaller ones could be 

interspersed with the large ones in the series of stimulation movements so that the 

angle and direction (left or right) changed unexpectedly to make it random-like for a 

spectator. 

 

 

Figure 2.2. A 20-second EOG signal sampled at 400 Hz. The smooth step signal is its 

stimulation signal recorded at the same time. 

 

Figure 2.3. A 20-second VOG signal sampled at 30 Hz with its stimulation signal. 

 

Figures 2.2 and 2.3 show the segments of an EOG and VOG signal and the 

corresponding stimulation signals (blue for eye movements and green for stimulation 

in colours). Since the sampling frequencies of the EOG and VOG signals were 

400 Hz and 30 Hz, the corresponding numbers of the 20-second samples were 8000 

and 600. The vertical axis is amplitude (angle) in the figures, where value 0 means the 

position is in the middle of the bar. The right side is defined as positive and left as 
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negative. For EOG signals, a measurement lasted for 80 seconds and included 12 or 

more large saccades. However, for the VOG signals, there were only four large 

saccades in one measurement 64 seconds in duration. Thus, subjects had to repeat the 

tests a few times. Since the frequency of VOG signals was so low, only 30 Hz, it was 

‘artificially’ increased with interpolation (to be presented in Section 2.2) before data 

analysis and calculation of variable values. 

The EOG signals were recorded at a university hospital, and a physician checked 

all voluntary subjects for the ability to do the test without impediment. The distance 

between the target of a computer-controlled light dot and a subject was fixed at 

1.40 m. Since subjects had to wear a ‘mask’ with the video camera system, spectacles 

could not be used in the VOG measurements. Whether a subject was able to see the 

light dot accurately enough was checked in advance in order to avoid potential 

problems such as severe myopia. In addition, the constant distance between the target 

of the LED bar and a subject was 0.74 m, shorter than for EOG. 

2.1.2 Higher sampling frequency for VOG recordings 

Since verification results when using VOG (30 Hz, but interpolated before 

classification) were worse than those with EOG in the first and second studies of the 

thesis and the low sampling frequency was considered as the main reason for the 

worse result, another recording system of VOG eye movements was also used in the 

latter part of this thesis.  

 

 

Figure 2.4. A subject performing calibration in the VOG system called EyeLink® 

(SMI, Berlin, Germany), the sampling frequency of which is 250 Hz; the maximum 

angle is ±30º in the horizontal direction and accuracy is 0.1º for pupil locations. 

 

For the other VOG system (Figure 2.4), the technique of eye movement cameras 

(based on pupil measurements and computing differences in pupil positions in 

successive video images), the way to use the video cameras (attached to the headband 

and one camera for each eye) and the measurement procedure (light dot and following 
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its seemingly random jumping) are quite similar to the preceding VOG system. 

However, there were certain differences: 

1. The 250 Hz sampling frequency was still not as high as that of EOG signals, but it 

was found to be enough for user verification and, finally, interpolation was then 

found to be unnecessary. 

2. The purpose of the stimulation series employed and subject verification with 

saccade eye movements in this thesis was to simulate whether this technique could 

be used in PC computers in future. However, the width of the LED bar in the 

preceding system is too wide to display the same stimulation on a computer screen. 

In order to induce large enough angles, the distance of a subject’s eyes to the 

screen of the computer was a constant 45 cm, closer than before.  

3. Before starting measurements, every subject performed a calibration by alternately 

looking at eight points on the computer screen (the centre, the middle of each of 

the four sides, and each of the four corners) to calibrate fixations. 

4. The duration of a measurement series was still about 60 seconds, but the average 

intervals of stimulations was reduced from approximately 2 seconds to 1 second, 

which means that the number of stimulation movements (and saccades) increased 

from 30 to 54. After excluding small stimulation angles used, clearly less than 51º, 

30 stimulations remained for the verification task. Although the efficiency of data 

collecting improved a great deal, the measurement series was still repeated a few 

times for each subject. When larger data sets of each subject were now obtained 

compared to the preceding arrangement, more reliable and convincing accuracy 

results were expected. 

 

 

Figure 2.5. A 24-second segment of 250 Hz VOG stimulation and saccades. 

 

The only difference (in addition to the data) between Figure 2.5 and Figure 2.3 is 

the values on the vertical axis, because the initial left point on the screen was set to be 
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0 in this system. No negative influence for variable computation was observed, since 

all variables related to amplitudes were calculated based on difference values, not 

absolute values. 

2.2 Signal processing 

An eye movement signal is a simple biometric one-dimensional time series, and only 

large-angle saccades were used for user verification so that all methods of signal 

processing were only applied in time domain. This was needed since the saccade 

variables applied were dependent on time and thus, in a way, functions of time. 

Furthermore, small differences between individuals’ saccades might not appear 

between them if such as power spectra of saccades computed with fast Fourier 

transform were compared. However, this could be an opportunity for study in future. 

The use of time domain variables was, however, supported by the fact that, in 

medicine and psychology, these time domain variables are known to be affected by 

disease and age and vary slightly between individuals. 

In a way, it was difficult to compute reliable variable values from the VOG 

signals from the first studies, because the sampling frequency was 30 Hz and there 

were only six-seven samples in one large-amplitude saccade. Therefore, the low 

sampling frequency had to be increased in an artificial way. Interpolation [61] is a 

method of constructing new data points within a range of a discrete set of known data 

points. The simplest interpolation technique is nearest-neighbour interpolation, but it 

would ‘destroy’ the saccade (eliminating features in Figure 2.6) and make it look like 

a stimulation movement. Thus, it could not be used for eye movement signals. Linear 

interpolation was another simple choice, but it was too straightforward and was not 

well-suited for non-linear signals. For the curvature of saccades, it was best to also 

test the other alternatives, which were a cubic spline curve and piecewise cubic 

Hermite interpolating polynomial (PCHIP) [62]. 

 
Figure 2.6. Nearest-neighbour interpolation corrupts a simulated eye movement 

signal. 
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Figure 2.7. Comparison of spline and PCHIP interpolations used in a simulated eye 

movement. 

 

The waveforms of spline and PCHIP are quite similar, since spline interpolation 

produced almost the same results as PCHIP did. However, spline chose the slopes 

differently and the second derivative of the interpolating function is continuous (that 

of PCHIP is probably not). Therefore, spline produced a smoother result and, if the 

data consisted of values of a smooth function, spline might bring a more accurate 

result. On the other hand, PCHIP had no overshoots and less oscillation if the data 

were not smooth. Figure 2.7 and one experiment in a publication (Chapter 4) show 

that the spline interpolation effect is close to that of PCHIP.  

Interpolation also benefits signal recordings, however. In recording 250 Hz VOG 

signals, some rare missing samples and erroneous samples (about 0.05% of all) 

occurred in saccades. Interpolation to estimate new samples from the two sides’ 

samples of a beginning and end was used to insert them or to replace erroneous 

samples. 

Interpolation is a good way to increase frequency and benefits the computation of 

variables, but it also brings some negative effect. For example, it would enhance the 

velocity values and then increase the maximum velocity [39,63]. The maximum 

velocity of a VOG saccade from a healthy person is approximately 700-800º/s for 

large amplitudes above 50º, but it might reach 1000º/s after interpolation used. The 

more the frequency of interpolation is increased, the higher the velocity expected. 

Fortunately, the problem was not very serious for subject verification, because the key 

point of this is whether variability between subjects is obvious enough to distinguish 

them, but not whether the values of variables are accurate enough in some medical 

field and not to assess possible disease. 

Besides interpolation, a median filter [42] was used in signal processing: it 

dampened some high-frequency noise before interpolation and made saccades 

smoother.  
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2.3 Saccades and analysis of their variables  

2.3.1 Saccade structure and variables 

 
Figure 2.8. A schema for a stimulation angle and corresponding saccade, including the 

variables used: amplitude, accuracy, latency, maximum angular velocity, maximum 

angular acceleration, maximum angular deceleration and duration. 

 

From each complete saccade (Figure 2.8), the following variables were selected 

for the verification task: 

 Latency is the time it takes for a subject to react to a stimulation. In other words, 

it is the temporal difference between the beginning of a stimulation and the 

saccade. However, in principle, subjects might move their eyes prior to a 

stimulation, or a latency value might be smaller than a minimum reaction time of 

a human caused by lack of concentration, fatigue, carelessness or other factors. A 

latency limit of 0.12s, being physiologically reasonable, was set for saccades to 

be rejected. In addition, the threshold of a saccade beginning was set to be 10º/s 

at first and 50º/s later. Latency might be one of the most important variables in 

eye movement verification. Some studies even only used it as the main feature to 

classify subjects [44]. It also plays a significant role in this thesis. 

 Amplitude is the angle that the eye moves. It is a simple variable, but sometimes 

a saccade is followed by another saccade or even two small partial saccades 

called corrective saccades because the brain is correcting the direction of gaze, 

since some subjects occasionally cannot catch the stimulation, particularly those 

with large amplitudes, in one step. Corrective saccades are rather infrequent 

occurrences, and the largest (first) saccade or angle would be selected to 
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determine an amplitude value in such a case. 

 Maximum or peak velocity in a saccade velocity curve is physiologically 

interesting, since there may be clear differences between, for example, healthy 

people and patients with vertiginous diseases [34,56]. The velocity curve is equal 

to the first derivative of the corresponding saccade. (Of course, it is approximate 

since digital signals are discrete.) Increasing the sampling frequency of a saccade 

signal, e.g. with interpolation, would increase the maximum velocity somewhat; 

it also would be affected by other methodological factors such as recording 

methods and devices, analogue and digital filters, and especially their cut-off 

frequencies and sampling frequencies. 

 Accuracy is the difference of the angles between the ends of a stimulation 

movement and its response, the saccade. Its computation is not simply a matter of 

using the absolute values of the differences of two angles. Depending on the 

directions of stimulation and eye movements, an accuracy value was defined to 

be positive if a saccade amplitude exceeded the angle of its stimulation; otherwise, 

it was negative. Negative values occurred more frequently than positive in 

practice. 

 Maximum acceleration and deceleration are the greatest changes in velocity 

increasing and decreasing. Thus, these are given from the second derivative of a 

saccade in a signal segment. For most saccades, the absolute value of the 

maximum acceleration is somewhat larger than that of the maximum deceleration, 

which means the velocity goes up rapidly and drops slightly less rapidly again. 

Therefore, the velocity threshold of saccade ends was set to be 30º/s, smaller than 

that of 50º/s mostly used for beginnings. 

 Duration means how long it takes to complete a saccade. In other words, it is the 

difference between a saccade’s beginning and end in terms of time. Since the 

classification effect of duration did not seem to be very good on the basis of 

variable analysis and statistics, duration was only used in a few publications (in 

Chapter 4) in this research. 

 Besides the above variables, others could be selected for verification in future, 

especially with eye movement camera systems of higher sampling frequencies. 

For example, mean velocity during a saccade and the time of maximum velocity 

from the beginning of a saccade are worth studying. However, mean velocity 

comes from the ratio of amplitude to duration, so it would be unnecessary if 

amplitude and duration are used at same time. 

 

Since a saccade is a one-dimensional signal, all computation of variables was 

based on difference values of positions of samples. Basically, all other variables 

depended more or less on amplitude, for example, the greater the amplitude, the 

greater maximum velocity. Variable values of EOG saccades were obtained from 

earlier research [34,56], but this thesis only presents how to calculate variable values 

for VOG signals. The first method used to compute velocity (approximation of the 

first derivative) was the formula for a two-point central difference differentiator 

[39,40,63]:  
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v(𝑙) =
𝑥(𝑙 + 𝑚) − 𝑥(𝑙 − 𝑚)

2𝑇𝑚
, 𝑙 = 𝑚 + 1,… ,𝑁 − 𝑚 

 

where x is an eye movement signal, v is a velocity signal to be computed, 2m is a 

window length, time interval T is equal to 1/f (f is sampling frequency) and N is the 

number of signal samples. 

The other method used for velocity computation was the slope of linear 

regression [41]: 

 

𝐲 = 𝐗𝛃 + 𝛆 

 

where y, X, ß and ε are the corresponding matrix or vectors of response, regressor, 

slope and error. 

Ordinary least squares (OLS) or linear least squares [64] is a simple and common 

method of estimating the unknown parameter, ß in this case. 

 

𝛃̂ = (𝐗𝑇𝐗)−1𝐗𝑇𝐲 

 

The two-point central difference differentiator and linear regression look like a 

low-pass filter. The longer the window length is, the stronger the effect of frequency 

cutoff or the lower the cutoff frequency. Since the maximum velocity (and the 

velocity of one sample) is influenced by computational methods [40], their values are 

not exactly the same. Based on classification results, the former method was applied 

more frequently than the latter. Nevertheless, differences between their results were 

slight. 

In addition, the variable values of a subject varied depending on measurements of 

different recording devices [65].  

2.3.2 Analysis of variable values 

In order to predict the separation capability of six variables (features), a ratio of 

inter-individual to intra-individual variability was used for evaluating the usefulness 

of variables. The formula [66] was based on the calculation of mean and standard 

deviations 

 

𝑟𝑗 =

√1
𝑛

∑ (𝑢̅𝑖𝑗 − 𝑎̅𝑗)
2𝑛

𝑖=1

1
𝑛

∑ √
1
𝑝𝑖

∑ (𝑢𝑘𝑗 − 𝑢̅𝑖𝑗)
2𝑝𝑖

𝑘=1
𝑛
𝑖=1

 

 

where j denotes a variable, n is equal to the number of subjects, ūij is equal to the 

mean of variable j of subject i, āj is the mean of variable j for all subjects, ukj the value 

of variable j of saccade k for subject i and pi is the number of the saccades for subject 
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i. 

In this formula, the word inter-individual means the difference between saccades 

of individual subjects. Thus, a relatively high value would be good for verification of 

subjects. On the contrary, intra-individual means the variability within one subject and 

a relatively lower value is expected. Therefore, a ratio higher than 1 of a variable may 

indicate that it is capable of distinguishing subjects.  

At a later stage of this thesis, the formula was modified as follows: 

 

𝑟𝑗 =

√
1

∑ 𝑝𝑖
𝑛
𝑖=1

∑ ∑ (𝑢𝑘𝑗 − 𝑎̅𝑗)
2𝑝𝑖

𝑘=1
𝑛
𝑖=1

1
𝑛

∑ √
1
𝑝𝑖

∑ (𝑢𝑘𝑗 − 𝑢̅𝑖𝑗)
2𝑝𝑖

𝑘=1
𝑛
𝑖=1

 

 

The difference was in inter-individual computation, which was calculated with the 

standard deviation of means of subjects in the former and with the standard deviation 

of all saccades in the latter. The latter method was seen to be more reasonable of use 

standard deviation. 

2.4 Data reduction and visualization 

In biometric verification, many variables are usually extracted: for example 15 

distances and 6 amplitude variables in one ECG study [67]. However, some variables 

are relational or dependent on each other, which means that no one variable could 

provide independent information for verification. Moreover, increasing the number of 

variables (data dimensions) would perhaps improve verification efficiency, although 

some problems are also caused such as more complicated analysis and slower 

computation. However, above a certain point of accuracy, additional variables do not 

improve the result any more or even have a negative influence on verification. 

Therefore, one approach to resolving the problem is to reduce the excessive 

dimensionality by combining variables. For this, Principal Component Analysis (PCA) 

[68] and Multiple Discriminant Analysis (MDA) [68] are well known methods which 

project high dimensional data onto a lower dimensional space. 

2.4.1 Principal component analysis 

Principal component analysis (PCA) finds a projection which can best represent data 

according to the least-square error. Firstly, in a set of n d-dimensional samples, it is 

not difficult to prove that the minimum squared error criterion function can be 

resolved by the mean m of samples. However, the mean is too simple to represent the 

data. A more interesting approach is to use a one-dimensional representation by 

projecting the data onto a line. The line can be written as 
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x=m+ae 

 

where e is the direction of the line and a corresponds to the distance of any sample x 

from the mean m.  

 

Sample xk can be represented by m+ake and minimum J can be found by the optimal 

set of coefficients ak 

 

𝑱(𝑎1, 𝑎2, … , 𝑎𝑛, 𝐞) = ∑‖(𝐦 + 𝑎𝑘𝐞) − 𝐱𝑘‖
2

𝑛

𝑘=1

= ∑ 𝑎𝑘
2‖𝐞‖2

𝑛

𝑘=1

− 2 ∑ 𝑎𝑘𝐞
𝑡(𝐱𝑘 − 𝐦)

𝑛

𝑘=1

+ ∑‖𝐱𝑘 − 𝐦‖2

𝑛

𝑘=1

 

 

Since (Euclidean norm) ‖𝐞‖ = 1, setting the derivative equal to zero to obtain the 

minimum, we obtain 

 

𝑎𝑘 = 𝐞𝑡(𝐱𝑘 − 𝐦) 

 

That is to say, the minimum solution can be obtained geometrically as long as one 

projects xk onto the line of direction e (equals ak), which passes the mean of the 

samples (Figure 2.9). 

 

 
Figure 2.9. The samples (red circles) are projected onto the optimal line which best 

represents them. 

 

In order to find the optimal direction e of the projected line, a scatter matrix S 

should be defined as 
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𝐒 = ∑(𝐱𝑘 − 𝐦)(𝐱𝑘 − 𝐦)𝑡

𝑛

𝑘=1

 

 

The squared error criterion function could be written using ak 

 

𝑱(𝐞) = − ∑ 𝐞𝑡(𝐱𝑘 − 𝐦)(𝐱𝑘 − 𝐦)𝑡𝐞

𝑛

𝑘=1

+ ∑‖𝐱𝑘 − 𝐦‖2

𝑛

𝑘=1

= −𝐞𝑡𝐒𝐞 + ∑‖𝐱𝑘 − 𝐦‖2

𝑛

𝑘=1

 

 

It is clear that the maximum of 𝐞𝑡𝐒𝐞 would lead to the minimum J. Using the 

method of Lagrange multipliers [69] to maximize 𝐞𝑡𝐒𝐞 (λ as a multiplier) and 

derivative of e to make the gradient equal to zero, we can see that e must be an 

eigenvector of scatter matrix S. 

 

Se=λe 

 

Since 𝐞𝑡𝐒𝐞 = 𝜆𝐞𝑡𝐞 = 𝜆, the conclusion is that the eigenvector corresponding to the 

greatest eigenvalue of the scatter matrix is the best direction of the line whose 

projection has the best least-square error.  

According to the result, the formulas can be extended from the one-dimensional 

projection to d’-dimensional (d’<d) projection by original d-dimensional data. 

 

𝐱 = 𝐦 + ∑𝑎𝑖𝐞𝑖

𝑑′

𝑖=1

 

 

𝑱 = ∑ ‖(𝐦 + ∑𝑎𝑘𝑖𝐞𝑖

𝑑′

𝑖=1

) − 𝐱𝑘‖

2
𝑛

𝑘=1

 

 

The minimum criterion function can be obtained when the vectors e1,…,ed’ are the d’ 

eigenvectors corresponding to the greatest eigenvalues of the scatter matrix. 

2.4.2 Fisher linear discriminant and multiple discriminant analysis 

PCA is a good approach to finding the components to represent data, but it might have 

no effect on classification discriminant. In other words, PCA finds a direction to 

represent data and the projecting line of best distinguishing data is, in another 

direction, used in discriminant analysis (Figure 2.10). 
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Figure 2.10. The same data set of two classes projects two lines in different directions 

w. The projected samples are mixed in the figure on the left and well separated in the 

figure on the right. 

 

Let suppose that there are a set of n d-dimensional samples x1,…,xn that belong to 

two classes, C1 and C2, and these samples are projected onto the line as 

 

y=w
t
x 

 

where w is the direction of the line. 

It is simple to obtain the mean 𝑚⃗⃗ 𝑖 of projection data from class i  

 

𝐦𝑖 =
1

𝑛𝑖
∑ 𝐱

𝐱∈𝐶𝑖

 

 

𝑚⃗⃗ 𝑖 =
1

𝑛𝑖
∑ 𝑦

𝑦∈𝐶𝑖

=
1

𝑛𝑖
∑ 𝐰𝑡𝐱

𝐱∈𝐶𝑖

= 𝐰𝑡𝐦𝑖 

 

where ni and mi are the number and mean of original data corresponding to the class.  

The distance between the means of the projected samples of two classes is  

 

|𝑚⃗⃗ 1 − 𝑚⃗⃗ 2| = |𝐰𝑡(𝐦1 − 𝐦2)| 

 

Besides between-class scatter, for a good efficiency in distinguishing classes, the 

within-class scatter based on standard deviation should also be calculated: 

 

𝑠 𝑖
2 = ∑(𝑦 − 𝑚⃗⃗ 𝑖)

2

𝑦∈𝐶𝑖

 

 

where 𝑠 1
2 + 𝑠 2

2 is within-class scatter. 

The criterion function J of the Fisher linear discriminant [70] is  

 

 

W 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 W 



 

20 
 

𝑱 =
|𝑚⃗⃗ 1 − 𝑚⃗⃗ 2|

2

𝑠 1
2 + 𝑠 2

2 =
|𝐰𝑡(𝐦1 − 𝐦2)|

2

𝑠 1
2 + 𝑠 2

2  

 

Here w which maximizes J is the best direction that separates the two projected 

classes. 

Similarly to PCA, scatter matrix Si is given as 

 

𝐒𝑖 = ∑(𝐱 − 𝐦𝑖)

𝐱∈𝐶𝑖

(𝐱 − 𝐦𝑖)
𝑡 

 

Thus, the above equations can be rewritten as  

 

𝑠 𝑖
2 = ∑(𝐰𝑡𝐱 − 𝐰𝑡𝐦𝑖)

2 = 𝐰𝑡𝐒𝑖𝐰

𝐱∈𝐶𝑖

 

 

𝑠 1
2 + 𝑠 2

2 = 𝐰𝑡𝐒𝑊𝐰 

 

where SW=S1+S2. 

 

|𝑚⃗⃗ 1 − 𝑚⃗⃗ 2|
2 = |𝐰𝑡(𝐦1 − 𝐦2)|

2 = 𝐰𝑡𝐒𝐵𝐰 

 

where 𝐒𝐵 = (𝐦1 − 𝐦2)(𝐦1 − 𝐦2)
𝑡 . Therefore, the criterion function J can be 

rewritten as 

 

𝑱 =
𝐰𝑡𝐒𝐵𝐰

𝐰𝑡𝐒𝑊𝐰
 

 

It is well known that maximum J satisfies 

 

𝐒𝑊
−1𝐒𝐵𝐰 = 𝜆𝐰 

 

So w equals the eigenvector of 𝐒𝑊
−1𝐒𝐵.  

However, since 𝐒𝐵𝒘 is always in the direction of 𝐦1 − 𝐦2, it is not necessary 

to compute the eigenvalue and eigenvector. Thus, it can be shown that the maximum J 

occurs when  

 

𝐰 = 𝐒𝑊
−1(𝐦1 − 𝐦2) 

 

In fact, when the samples from two classes are satisfied as normally distributed 

with the equal covariance, the best solution is written as  
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𝐰 = 𝚺−1(𝛍1 − 𝛍2) 

 

where μ and Σ are the mean and covariance of the samples and the equation is also 

equivalent to linear discriminant analysis (LDA) [71]. 

Multiple discriminant analysis (MDA) extends from projecting data of two 

classes onto one-dimensional space to projecting c class data onto at most 

(c-1)-dimensional space, which applies the same theory as discriminant analysis. (The 

details are not presented in this thesis.) The columns of the optimal W (the matrix of 

wi, d by (c-1)) maximizing the criterion function are still the eigenvectors of 𝐒𝑊
−1𝐒𝐵 

corresponding to the largest eigenvalues 

 

𝐒𝑊
−1𝐒𝐵𝐰𝑖 = 𝜆𝑖𝐰𝑖 

 

Neither PCA nor MDA are classification methods and merely benefit the 

separation efficiency by reducing or combining excessive variables at the 

pre-processing stage. However, since at most seven variables only were extracted in 

this thesis, the main purpose of applying them was data analysis and visualization (in 

Section 3.2.4). 
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Chapter 3 

Verification procedure and methods 

3.1 Identification and verification 

In biometric classification field, there are two types of tasks: identification and 

verification. The former is defined as distinguishing a particular individual from 

among a group of subjects. The latter is a simpler task, which is defined as 

recognition of a real subject and determining that other possible subjects are non-users 

or impostors. If identification is like the question of ‘What’s your name?’, verification 

is the question ‘Are you XXX?’ whose answer is ‘Yes’ or ‘No’. In other words, 

identification is n-class classification and verification is binary or two-class 

classification.  

Identification is certainly more complicated than verification. It has been used in 

many areas in society such as criminal identification and access control systems 

(multi-user). However, an advanced method almost always means more complicated 

and more time-consuming computation. Actually, identification is not necessary for 

the situation of only one authenticated user in daily life: for example, a private 

computer or other devices. Moreover, when people log in to any account or system 

(online or offline), the password is a kind of verification after inputting one’s 

username. Compared with identification, verification is a simpler, obviously faster 

and easier computational task. The use of these terms sometimes varies. Some 

biometric research into what was called identification was actually verification 

[36,53]. The classification task of the present thesis is verification.  

 

Table 3.1. Classification accuracy for identification and verification in case of n 

subjects. 

Accuracy Identification Verification 

95% Excellent Excellent 

50% Fair (if n is large) No effect (random guess) 

5% Poor The same as 95% if its opposite 

option is taken 

 

The meaning of classification accuracy is different in identification and 

verification (Table 3.1). In identification, the higher the accuracy value, the better 

efficiency in classification. However, if an accuracy value is close to 50% (no matter 

whether it is higher or lower) in verification, the classification is poorer. On the other 

hand, if the value is closer to 100%, the result is much better. Since verification is like 

two-class classification, choosing the opposite class could have the same effect as 
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what is subtracted from 100%: if the accuracy is less than 50%, for example 5%, then 

it equals 95%. That is why it is impossible for the average or whole accuracy of 

verification to be lower than 50% and all points in a receiver operating characteristic 

(ROC) curve are above the 50% line (Section 3.2). 

3.2 Statistic information and its application in biometric 

verification 

3.2.1 Errors of two types 

In statistics theory, there are two error types [72]: Type I errors and Type II errors. The 

former is the incorrect rejection of a true null hypothesis, and the latter is the failure to 

reject a false null hypothesis (Table 3.2). For example, if the null hypothesis is 

pregnant, a pregnant lady classified as non-pregnant is a Type I error. In contrast, 

testing a non-pregnant lady as pregnant is a Type II error. 

 

Table 3.2. Type I and II errors. 

 Null hypothesis is true Null hypothesis is false 

Reject null hypothesis Type I error Correct 

Fail to reject null hypothesis Correct  Type II error 

 

Type I errors are also called false positives (FPs) or false acceptances and the 

corresponding correct outcomes are true negatives (TNs). Another name for a Type II 

error is a false negative (FN) or false rejection, and the corresponding opposite is a 

true positive (TP). However, the variability of the above terms is merely in their 

names, not their inherent meaning, connection or computation. The corresponding 

meanings in the eye movement verification of the present thesis are in Table 3.3. 

 

Table 3.3. FP, TN, FN and TP meanings. 

 
Tested saccade comes from 

An authenticated user An impostor 

Classified 

as 

Authenticated 

user 
True positive False positive 

Impostor False negative True negative 

 

Some relative accuracy rates can also be calculated as follows. 

True positive rate (TPR):  

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
× 100% =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100% 

True negative rate (TNR): 

𝑇𝑁𝑅 =
𝑇𝑁

𝑁
× 100% =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
× 100% 
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False positive rate (FPR): 

𝐹𝑃𝑅 =
𝐹𝑃

𝑁
× 100% = 100% − 𝑇𝑁𝑅 

False negative rate (FNR): 

𝐹𝑁𝑅 =
𝐹𝑁

𝑃
× 100% = 100% − 𝑇𝑃𝑅 

Total accuracy (ACC): 

𝐴𝐶𝐶 =
𝑇𝑃 + 𝑇𝑁

𝑃 + 𝑁
× 100% 

where P, N, TP, FN, TN and FP are the corresponding numbers of positive (number 

of saccades of an authenticated subject), negative (number of saccades of impostors), 

true positive, false negative, true negative and false positive cases. 

In fact, the above terms are variously named within biometrics, machine learning, 

statistics or other fields, but they are the same ones indeed. For example, in the 

publications of this thesis, the term ‘accuracy’ was used to mean correctly classified 

subjects either being the authenticated user or being impostors. These test options 

were designated Conditions 1 and 2, which were used because the two tests were run 

separately, not as usual, because of the small data sets at the beginning of the research. 

This approach enabled the use of the scarce data more extensively for tests than the 

conventional way of running them at the same time. They could also have been called 

true positive or true negative rates, or the terms in the following section could have 

been used. Notwithstanding the terms used, the aim of binary classification is always 

the same as in verification: to recognize who is the authenticated user of a device or 

authenticated subject in general and who is not. 'Accuracy' was preferred in the thesis, 

since the interest was not only aimed at using saccades for biometric purposes, but 

also how to perform the classification task needed as efficiently as possible. 

3.2.2 Equal error rate 

In binary classification, a group value of the false positive rate – which could also be 

called the false acceptance rate (FAR) – and false negative rate or the false rejection 

rate (FRR) can be obtained according to a specific threshold. With this threshold 

changed, the group values also vary. Usually speaking, when one error rate increases, 

the other comes down (Figure 3.1 [26]): more specifically, if FRR(t) is an increasing 

function and FAR(t) is a decreasing function with t growing. Threshold t can have a 

wide scale, which can be presented in many ways. One error rate only cannot 

represent good accuracy, because the other rate might be high. When the error rates 

are equal, i.e. in that specific situation, the common value is referred to as the equal 

error rate (EER). The value indicates that the proportion of false acceptances is equal 

to the proportion of false rejections. The lower the equal error rate value, the higher 

the accuracy of the classification system.  
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Figure 3.1. EER denotes the system error when FRR=FAR. ZeroFAR denotes FRR 

when FAR=0,f and ZeroFRR denotes FAR when FRR=0. 

 

Generally, FPR and FNR depend on the threshold t. The most common t is the 

ratio of samples from the authenticated subject and non-user subjects in a training set. 

If the ratio of authenticated samples is higher, a tested sample is easily classified as 

authenticated user. It is certain that FPR is high and FNR is low. The threshold t can 

be defined ‘large’ in that case. In the opposite case, if there are more samples of 

non-user subjects in a training set, it is highly possible to judge the tested sample to be 

that of an impostor. Low FPR and high FNR are the result when the threshold is small. 

In addition, other factors also can explain and represent threshold t, such as 

classification method parameters, risk indexes and threshold in judgment.  

In biometric verification research, equal error rate is often calculated for 

convincing accuracy. However, an error of one type is frequently more serious than an 

error of the other in practice or for an application. For example, most people may 

believe that the error of authenticated user rejection (FNR) is more tolerable than 

accepting an impostor (FPR) in an access control system. That is to say, the threshold 

setting is increased to make access more difficult for impostors, although some 

authorized people may find it is also more difficult to gain access. Authenticated users 

can try to access again if they are rejected, but it could cause danger or losses if an 

impostor enters. Therefore, they would prefer System 1 to System 2 (Table 3.4), 

whose EERs are both 15%. It is certain that few people have the opposite opinion 

(that authenticated user rejection is worse than an impostor granted access). In any 

case, the key point is setting the threshold to various desired security levels depending 

on different situations. 

 

Table 3.4. Comparison of two access control systems. 

 System 1 System 2 

FPR 10% 20% 

FNR 20% 10% 

EER 15% 
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3.2.3 Receiver operating characteristic  

A receiver operating characteristic (ROC) curve [73] is another way to present the 

accuracy of biometric classification based on two types of errors.  

 

 
Figure 3.2. Exemplar ROC curves concerning classification of support vector machine 

(SVM) with four kernel functions (RBF for radial basis function). The horizontal axis 

of the ROC corresponds to FPR and vertical to TPR. The terms ‘sensitivity’ and 

‘specificity’ (true negative rate) are sometimes also used. The line of (0,0) to (100,100) 

is the 50% line and (0,100) to (100,0) is the EER line.  

 

Each ROC curve in Figure 3.2 represents an individual classification method or 

individual parameter of a method which consists of some points. Each point is the 

accuracy (a group of two errors) of the corresponding methods or parameters based on 

one threshold value. The closer the point is to the top left, the higher the accuracy is. 

In contrast, the accuracy is low if the point is near the 50% line. The intersection point 

of each curve and the EER line is the corresponding EER point. Although the EER 

point might not be the point closest to the top left of the curve, it is still considered the 

best accuracy for the corresponding method or parameter. 

There is another way to calculate accuracy: the area under the curve (AUC). The 

larger the AUC, the better the accuracy. Compared with the EER from an individual 

threshold or situation, it is a kind of average accuracy of a classification method or 

parameter and presents efficiency from a macroscopic viewpoint. 

3.2.4 Two test conditions 

According to the theory of two types of errors, two test conditions were designed in 

the user verification based on saccades. The purpose of Condition 1 is checking 
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whether the system can recognize an authenticated or right user. In other words, 

Condition 1 calculated the true positive rate (if succeeded) and false negative rate (if 

failed).  

 

 

Figure 3.3. Condition 1 as presented after data dimension reduction. The original 

six-dimensional data (latency, amplitude, accuracy, maximum velocity, maximum 

acceleration and deceleration) was reduced to two dimensions by MDA. It shows how 

the majority of the saccades of the authenticated user were separated from those of 

non-user subjects (blue cross). Thus it is probable that, in this two-dimensional space, 

most saccades of the authenticated user here would be classified as coming from the 

authenticated subject (red circle).  

 

 

Figure 3.4. For Condition 2, the impostor saccade (green star) was far away from the 

saccades of the authenticated user and succeeded in being classified as a non-user 

subject. The method of dimension reduction was the same as for Condition 1 by MDA 

in the preceding figure. 

 

By contrast, there are three types of subjects in a set in Condition 2: authenticated 

users, non-users and impostors. An impostor’s saccade should be rejected after 

comparing it with those of the authenticated subject and classified as a non-user 
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subject, although it comes from the third subject. It is usually probable that it 

resembles more saccades of non-user subjects than those of the authenticated when 

the former are more dispersed in the space, because they originate from several 

non-user subjects. Condition 2 computes the true negative rate and false positive rate.  

 Note that verification is not based on a single saccade but on a set of test saccades. 

As a result, even though a few of them resulted in false classifications, if a majority 

correspondingly resulted in correct decisions, this would be promising for 

classification. 

3.3 Verification procedure 

Firstly, two statistics terms used in machine learning are presented: k-fold 

cross-validation [74] and leave-one-out [74]. In k-fold cross-validation, the original 

data set is randomly partitioned into k subsets of equal size or as equal as possible. Of 

the k subsets, a single subset is retained as the validation data to test a model, and the 

remaining (k−1) subsets are used as training data. The cross-validation process is then 

repeated k times (the folds), with each of the k subsets used exactly once as validation 

data. The k results from the folds can then be averaged (or otherwise combined) to 

produce a single estimate. The advantage of this method over repeated random 

sub-sampling is that all subsets are used for both training and validation, and each 

sample (or case or instance) is used for validation exactly once. Ten-fold 

cross-validation is commonly used, but in general k>1 remains an unfixed integer 

parameter. 

Leave-one-out is a special case of k-fold cross-validation which makes k equal to 

the number of samples in all the data, i.e. only a single sample from the data is used 

for testing and the remaining n-1 for training. The procedure is repeated n times so 

that each sample is used once as the validation data. The size of each training set is 

maximized, which makes, in a way, the best starting point for training a model. 
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Figure 3.5. The schema of the biometric verification procedure. 

 

For Step 1, choose a subject to be the authenticated one. 

For Step 2, take the rest n-1 subjects as non-user subjects in a test of Condition 1; 

take a part of the remaining subjects as non-users and the others as impostors in a test 

of Condition 2. The ratio of the numbers of non-user subjects and impostors in 

Condition 2 depended on the number of all subjects and some other factors. It was 

usually subjects randomly selected half-and-half. 

For Step 3, select some saccades of the authenticated user and non-user subjects 

for a training set. The selection of saccades of the authenticated subject or user 

depended on various cases: for example, one saccade was taken to be tested and the 

rest were picked for a training set (leave-one-out) if the number of saccades of each 

subject was small, or selected by various measurements series or sessions (k-fold 

cross-validation) when the number of saccades was large. For example, saccades from 

one series or session of measurements were put into a test set and the rest of the 

sessions into the corresponding training set. The ratio of the saccades of the 

authenticated user to those of non-user subjects in a training set was also different 

depending on various situations. The saccades of non-user subjects were randomly 

taken and on average from every non-user subject, so it also affected how subjects 

were divided into non-user and impostor subjects in Condition 2. In fact, in order to 

 

 

 

Step1: Choose an authenticated subject 

Start 

Step2: Take non-users and impostors 

 

Step3: Select saccades for training set 

 

Step4: Select test saccades 

 

Step5: Classify test saccades 

 

Step6: Judge whether it is a correct 

verification 

Step7: Until each subject has been the 

authenticated subject. 

Step8: Repeat N times 

 

Step9: Calculate accuracies 
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keep the same ratio and above distribution in selection, sometimes only part of the 

subjects were used as non-users and impostors and a few others were abandoned. 

For Step 4, select the rest of the saccades of the authenticated user for the test set 

in Condition 1, and pick some saccades of impostors for the test set in Condition 2. 

The selection of the saccades of impostors also depended on various cases: sometimes 

one impostor was chosen randomly and sometimes it was an average picked from all 

the impostors. 

For Step 5, classify all test saccades using a classification method. 

For Step 6, sum up the numbers of correct and incorrect test results and judge 

whether it is a correct verification or not. If a tested saccade was classified as being 

from the authenticated user, it was a correct result. Otherwise, it was incorrect for 

Condition 1. By contrast, the test was correct if it was classified as an impostor for 

Condition 2. The judgment of correct verification was obtained if the number of 

correct test results was larger than or equal to 50% of all tests. However, the threshold 

of 50% was not used in all situations. For example, the points on the curve in 

Figure 3.2 came from different thresholds, or the k-nearest-neighbour classification 

(in Publication 1 of Chapter 4) used a different approach.  

For Step 7, the authenticated subject was selected one by one from the group of 

all subjects in a data set until each subject in the data set was selected once to be the 

authenticated subject. 

For Step 8, since the non-user subjects, impostors and saccades from both were 

selected randomly, N iterations instead of 1 only made the accuracy more reliable and 

convincing. 

For Step 9, according to the numbers of subjects and iterations, the number of all 

verification tests could be acquired. TPR and TNR were the numbers of correct 

verification results for Conditions 1 and 2 divided by the total. 

In fact, the above procedure was just a basic or general template. As my thesis 

research developed, more and more saccades and subjects were measured, so the 

specific verification procedures at different stages varied slightly. For example, 

training sets of Conditions 1 and 2 are not the same in this template, since subjects 

were scarce in the early publications. When the number of subjects increased, the 

training sets for the two conditions became equal. 
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Chapter 4 

Publications, their themes and 

results 

This chapter consists of six articles presenting the development and progress of the 

research, such as data sets from small to large; the classification methods applied, 

from simple to complicated; the classification procedure of two test conditions, from 

the two various at the beginning to the unified form at the end; and the computation of 

saccade variables. 

Publication I included large-amplitude saccades of VOG signals sampled at 

30 Hz. In addition, EOG signals sampled at 400 Hz from 30 subjects were obtained, 

each subject with 12 saccades. The former were measured at the beginning of the 

present research, but the latter had been measured earlier in connection with other 

studies. However, their horizontal stimulations and other details were well 

comparable to those of the new VOG signals. Estimated signals at 1000 Hz from 30 

subjects of the VOG signals, each of which also included 12 saccades, were computed 

by increasing from 30 Hz by interpolation. Verification of subjects based on saccades 

was explored, and the results of EOG and VOG signals were compared. 

In Publication II, the data sets of both EOG and VOG signals were extended to 

include 40 subjects, but still 12 large amplitude saccades from each subject. In the 

case of the EOG signals, 19 subjects were healthy young people, and 21 were mostly 

middle-aged, otoneurological patients (with vertigo and balance problems) from the 

Ear, Nose and Throat Clinic at the Helsinki University Central Hospital. The various 

methods of calculating variables were compared. Depending on the ratio of 

inter-individual to intra-individual variability, variables were evaluated to distinguish 

individual subjects or separate the healthy from the patients. Verification was studied 

partly with different methods from those in Publication I. 

Publication III abandoned the old EOG signals and only focused on VOG signals. 

It dealt with the effect of a priori probability for verification, and the optimal ratio of 

saccades of the authenticated subject to those of non-users was found. A so-called 

balance ratio by copying cases of the minority class to reach approximately equal 

sizes between two classes was used to pursue the EER. LogDA was also applied in 

this publication. 

Publication IV described how to apply advanced classification methods for eye 

movement verification. It compared the verification performance of multilayer 

perceptron and radial basis function neural networks and that of support vector 

machines with various parameter values. Finally, the number of the subjects measured 

with the VOG system reached 132. 

Publication V concentrated on multiple measurement sessions for each of the 
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subjects: in other words, repeated measurement sessions. It was studied whether an 

authenticated user could be verified by saccades between different sessions. Data sets 

from two groups were tested. One group of 22 subjects was recorded five times in 

over two months. The accuracy results obtained were relatively good, but results from 

the other group with the small data set measured with a very long interval of 

approximately 16 months were not satisfactory as expected. 

Publication VI started using VOG signals with a relatively high sampling 

frequency (250 Hz) and another eye movement recording system. The efficiency of 

biometric verification results of these saccade recordings was improved, and each 

subject produced 120 saccades per session. Condition 1 and Condition 2 used the 

same training set. The verification accuracy with each method increased, obviously 

due to the higher sampling frequency than the 30 Hz used in the earlier VOG 

recordings. 

4.1 Publication I: The first tests and comparison of EOG 

and VOG data verification 

This is the first article of the thesis that mainly considers whether saccades could be 

used for subject or user verification and compares the performance between EOG and 

VOG signals. Since it is the beginning stage of the research, only eye movements of 

30 subjects were recorded as VOG signals, and 30 subjects with EOG signals came 

from an earlier study. In these data sets, every subject with EOG or VOG data had 12 

saccades of large amplitudes used for verification tests.  

Based on how many subjects were used, the classification was divided into two 

parts. In Part I, data from 19 subjects was used. In addition to one subject as an 

authenticated user, 18 subjects were selected randomly from a remaining population 

as non-user subjects for tests of Condition 1. For tests of Condition 2, 18 subjects 

were also taken randomly and divided into half non-users and half impostors. Part II 

was simpler: all 30 subjects were used, and the ratio of subjects from the subject 

categories (2 or 3) was 1:29 for tests of Condition 1 and 1:15:14 for tests of 

Condition 2. It should be noted that the training set arrangements in Conditions 1 and 

2 were different regardless of which part, since the number of subjects was so small 

concerning machine learning techniques in general. In addition, there were only 12 

saccades from each subject. Thus, leave-one-out cross-validation was used in training 

and in tests of Conditions 1 and 2 since it is appropriate for small data sets. 

The classification methods applied in this publication were linear discriminant 

analysis, quadratic discriminant analysis, naïve Bayesian rule, k-nearest-neighbour 

searching (KNN) and k-means clustering. The judgment of three previous methods 

(Step 7 in the classification procedure) was usually a majority vote: if the sum of 

correct test results was larger than that of incorrect test results, a classification 

decision was correct; otherwise, it was incorrect. However, Step 7 of two last methods 

was slightly complicated. 

KNN [68] might be the simplest approach in the classification field:  
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 Calculate the distance between a test sample and all examples in the training set. 

 Select k examples closest to the test sample. 

 Assign the test sample to the most frequent class among its k nearest neighbours. 

 

However, it was very sensitive to the ratio of samples of each class in a training set 

(the ratio effect will be discussed more in Section 4.3). That is to say, the TPR was 

quite low and the TNR is extremely high in this case. Therefore, instead of majority 

votes, the KNN judgments were modified to 

 

𝑥

𝑘𝑎
>

𝑎 − 1

𝑎 − 1 + 𝑏𝑐
 

 

where x is the sum of correctly classified saccades of the correct or authenticated 

subject in all tests, a is the number saccades of the authenticated subject (12 in this 

case), b is the number of selected saccades from incorrect or non-user subjects, c is 

the number of non-users (9 and 15 in Parts I and II) and k is the number nearest 

neighbours searched for. In other words, for tests of Condition 1, there is a correct 

verification if the ratio of correct neighbour and all neighbours is larger than the ratio 

of the samples of the saccades of the authenticated subject or user to all samples in a 

training set. Otherwise, it is incorrect. It is clear that the opposite applies to tests of 

Condition 2. 

The k-means clustering method [68] is usually used in unsupervised classification, 

and the label of a tested sample cannot then be obtained directly. The judgment of 

verification was modified in this case as whether or not the number of saccades of the 

authenticated user is the majority in the cluster (or clusters) in which tested saccades 

were gathered. If it is, the verification is correct for Condition 1 or incorrect for 

Condition 2. 

Because KNN and k-means clustering are methods based on distance calculation, 

normalization [75], which transforms the values measured from different scales into a 

common scale (here [0,1] as usual or [0,100]), was also used: 

 

y =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 

 

where x is an original variable value, y is the scaled value, and xmax and xmin are the 

maximum and minimum of a variable on an original scale. 

Moreover, the methods of calculating distance also affect results, so performances 

of four distance calculation methods – Euclidean, city block, cosine and correlation 

[76] – in k-means clustering were compared. 

Besides verification tests with the EOG data, there were two alternatives for the 

variables applied to the VOG data. One, V4, also used the EOG data variables: 

amplitude, accuracy, latency and maximum velocity. In addition to the V4 variables, 

the other alternative, V7, included duration, maximum acceleration and maximum 

deceleration. 
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The results obtained showed: 

1. Many groups with high average accuracies of tests of Conditions 1 and 2 (for 

example, 97% for EOG with k-means clustering and 92% for EOG with naïve 

Bayesian) indicated that saccades can be used in subject verification. 

2. Although interpolation increases the sampling frequency by estimating, the 

general performance based on the low frequency of the VOG data was still worse 

than that produced by the high frequency of the EOG data. For example, the 

average accuracy in Part II was 94% for EOG by linear discriminant, but 84% for 

V4 and 83% for V7. 

3. Applying normalization with KNN and k-means clustering is reasonable, but the 

effect was minor. 

4. The differences between distance measures for k-means clustering were not 

obvious. 

5. The additional three variables of V7 compared to V4 benefited verification only 

slightly. 

4.2 Publication II: Computation and comparison of 

variables 

It is known that a classification result may depend greatly on the variables used and 

their values. Different variable values may be obtained with different techniques to 

compute them. Thus, methods for selecting variables and computing their values are 

rather important in signal processing and machine learning. In Chapter 2, two 

methods (two-point central difference differentiator and slope of linear regression) 

were described fro approximating derivation of signals. They also acted like low-pass 

filters. Still, the maximum velocity values of the two-point central differentiator were 

rather similar to those of the slope of linear regression. 

The ratio of inter-individual to intra-individual variability (introduced in 

Chapter 2 above) is an elementary approach to examining the separation ability of a 

variable. The result showed that, with the increasing window length of each method, 

the separating performance (ratio value) of some variables improved, but then 

decreased. These ratios were smaller than 1.0, but the classification results presented 

were good for the VOG data. This means that, for these ratios, it is difficult to give 

some lower bound to predict how they may affect separating performance between 

classes in classification. The differences between the results from the two methods 

were slight (Table 4.1). Since the results of two-point central difference differentiator 

were a little better for the amplitude variable than the slope of linear regression results, 

the former were used in all later tests in this and later publications. 
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Table 4.1. Ratio of inter-individual to intra-individual variability for the variables of 

amplitude and accuracy for the VOG signal saccades of 40 subjects. Signal 

differentiation (computing velocity and acceleration/deceleration) had been computed 

using two-point central difference differentiator or slope of linear regression. 

Window length 

(samples) 

Amplitude Accuracy 

Two-point Slope Two-point slope 

3 0.71 0.71 0.62 0.62 

5 0.77 0.73 0.64 0.64 

7 0.77 0.73 0.64 0.64 

9 0.67 0.71 0.65 0.65 

 

In addition, data from more subjects with EOG and VOG data were used in this 

publication than in Publication I. There were 40 subjects for each of the two types. 

For the EOG signals, the subjects were separated into two groups: 19 healthy subjects 

and 21 patients. It was difficult to separate a patient out using accuracy and amplitude 

values of saccades, which was also denoted by the corresponding ratio values (0.49 

and 0.45). On the other hand, patients usually reacted to the stimulation slower than 

the healthy subjects, so the ratio value of latency was relatively large (1.44). That is to 

say, latency was a significant variable in separating the healthy subjects from the 

patients. This was the only publication of the thesis in which patient data was used. 

The motive behind using patient data was to see whether verification was possible 

with somewhat different EOG signals compared to the EOG signals of the healthy 

subjects. Since the best classification results of the EOG data reached 90%, this 

patient material obviously did not worsen them. Perhaps it might even indicate that 

patients suffering from vertigo and other otoneurological symptoms [34] could, after 

all, perform user verification tests with their saccades. 

4.3 Publication III: A priori probability 

A priori probability [77] is the proportion of each class in a training set (hereby it is 

the ratio of samples [saccades] of the authenticated user to those of non-users in a 

training set), which plays a significant role in classification. It always affects or may 

even directly decide a classification result. The principle can be presented with the 

following formula for some methods, for example the Bayesian rule:  

 

𝑃(𝑤𝑗|𝐱) =
𝑃(𝐱|𝑤𝑗)𝑃(𝑤𝑗)

𝑃(𝐱)
 

 

where P(wj) is the a priori probability of class wj, P(x|wj) is the conditional probability 

of x with condition wj, P(x) is the evidence and P(wj|x) is the a posterior probability. A 

sample to be tested is determined to be or classified as wi if P(wi|x) > P(wj|x), 

otherwise wj. 

From the formula, it is easy to see that a higher a priori probability leads to a 
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higher posterior probability. That is to say, the tested samples are, with a high 

probability, classified according to the class label that corresponds to the higher a 

priori probability.  

Although some other methods affected by a priori probability are hardly derived 

from the formula, a classification result can also be presented corresponding to such 

methods. See the results of logistic discriminant analysis (or logistic regression, 

LogDA) in Table 4.2.  

 

Table 4.2. Means and standard deviations of LogDA accuracy of 68 VOG subjects for 

five different ratios of saccades of the authenticated user to those of non-users in a 

training set. The accuracies of Condition 1 and Condition 2 became lower and higher, 

respectively, step by step as the number of non-users’ saccades (the latter number of 

ratios) increased in a training set. 

Accuracy 

(%) 

Ratio 

19:20 19:40 19:60 19:120 19:180 

Condition 1 98.2±1.8 32.8±3.4 10.3±2.1 0.2±0.5 0± 

Condition 2 86±3 100± 100± 100± 100± 

 

One problem is how to find an optimal a priori probability to get the best 

accuracy for both Conditions 1 and 2 at the same time. If only pursuing the EER, it 

can simply obtain the answer: an a priori probability of 50% or a ratio of m:m, where 

m is equal to the number of samples (saccades) in a class in a training set. However, 

another problem was that each subject did not have enough saccades (12 or 20 at that 

time) since large-amplitude saccades were scarce. If the a priori probability of the 

authenticated user was 50%, only a few subjects could be taken to a training set from 

non-users. This situation can easily bring good or bad with it randomly, possibly 

causing the standard deviation in tests repeated several times to be quite high and the 

classification accuracy to be unconvincing.  

Balancing the ratio of two classes in a training set was a good solution which 

increased the saccades of the authenticated user in a training set by repeatedly 

extracting saccades of the authenticated user to make the ratio of saccades from the 

authenticated user and from non-users to reach or be close to m:m. This way, more 

subjects could be taken into a training set while making the final classification 

accuracy correspond more closely to the EER. 

 

Table 4.3. Means and standard deviations of LogDA classification accuracy of 68 

VOG subjects for five different ratios after using the balanced ratio. 

Accuracy 

(%) 

Ratio 

19:20 38:40 57:60 114:120 171:180 

Condition 1 98.2±1.8 98.5±1.8 97.9±1.2 98.4±1.8 97.9±1.2 

Condition 2 86±3 90.4±3.7 92.8±3.4 96.2±2.8 96.3±2.2 

 

In addition to LogDA (Table 4.3), the effect of a balanced ratio was also great for 

some other methods which are sensitive to a priori probability. For example, for the 
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naïve Bayesian method, accuracy was improved from 21% in Condition 1 and 100% 

in Condition 2 (a ratio of 19:180) to 88% in Condition 1 and 76% in Condition 2 

(ratio of 171:180). However, it did not resolve the problem for all the methods, e.g. 

decision trees, whose accuracy was only enhanced by 0.3% (1.3% to 1.6%) in 

Condition 1 and with no effect in Condition 2 compared with the ratio of 19:180. 

Obviously, with decision trees, one cannot take advantage of ‘copying’ existent 

samples in a training set. 

On the other hand, for the methods which were heavily influenced by a priori 

probability, the performance of the balanced ratio was not apparent, but it still more or 

less benefited accuracy. For example, after the balancing ratio, the accuracy of 

Condition 1 increased 8% and Condition 2 decreased 3% for linear discriminant 

analysis originally with the ratio of 19:120. Therefore, balanced ratio was used for all 

methods in later research. 

4.4 Publication IV: Applying advanced classification 

methods 

With the verification performance achieved in the preceding research, saccades were 

found to be valid for the verification of subjects. However, with saccades from more 

subjects and more saccades recorded from each of them, the classification accuracy of 

some simple methods began to decrease: for example, the average accuracies of 

Conditions 1 and 2 for LogDA (the best method in the preceding study) declined to 82% 

(132 subjects) from 97% (68 subjects). Therefore, it was necessary to apply some 

advanced and complicated classification methods to test biometric verification using 

saccadic eye movements. Neural networks [78,79] and support vector machines 

[68,80] were used, which are often effective and practical methods in classification. 

Since the purpose of this thesis is not algorithmic theory research and the two 

above-mentioned methods are mature and complicated, the main parts of the methods 

are merely generally presented. 

4.4.1 Support vector machine 

To simplify, when a training data set cannot be linearly separated in an original 

variable space, a support vector machine projects the data into a higher dimensional 

space and then finds an optimal hyperplane to separate the classes. This method is 

well suited to binary classification problems. 
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Figure 4.1. An example of an optimal hyperplane and margin linearly separated in a 

two-dimensional space, where the margin comes from distances of subjects to the 

hyperplane. 

 

A hyperplane can be defined as 

 

g(𝐱) = 〈𝐰, 𝐱〉 + 𝑏 

 

where w is a weight vector, b is a bias and the symbols 〈∙,∙〉 denote the inner product 

of two vectors. 

When g(xi)>0, xi belongs to Class 1; otherwise it belongs to Class 2. The value or 

label (y) of a class can then be defined as 1 or -1. Thus, the samples satisfy inequality  

 

𝑦𝑖(〈𝐰, 𝐱𝑖〉 + 𝑏) > 0 

 

According to the Figure 4.1, the margin is 
2

‖𝐰‖
 [81]. It is easy to conclude that a 

larger margin leads to a smaller error rate. Thus, the task is to find the largest margin 

of the hyperplane, in other words, to minimize‖𝐰‖ [82]. Simultaneously, w and b are 

rescaled so that the samples closest to the hyperplane (the points on lines H1 and H2) 

satisfy  

 

|𝑦𝑖(〈𝐰, 𝐱𝑖〉 + 𝑏)| = 1 

 

So all samples also satisfy 

 

𝑦𝑖(〈𝐰, 𝐱𝑖〉 + 𝑏) ≥ 1 𝑜𝑟 𝑦𝑖(〈𝐰, 𝐱𝑖〉 + 𝑏) − 1 ≥ 0 

 

Thus, the equation of the problem can be modified as 

 

H1 

H2 
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min      {
1

2
 ‖𝐰‖2} 

subject to 𝑦𝑖(〈𝐰, 𝐱𝑖〉 + 𝑏) − 1 ≥ 0      𝑖 = 1,… , 𝑛 

 

where n is the number of training samples and, in order to simplify the computation, 

 
1

2
 ‖w‖2 replaces ‖w‖. 

To find the solution of w, Lagrangian formulation [83] must be used and is 

constructed as 

 

𝑱(𝐰, 𝑏, 𝛼) =
‖𝐰‖2

2
− ∑𝛼𝑖

𝑛

𝑖=1

[𝑦𝑖(〈𝐰, 𝐱𝑖〉 + 𝑏) − 1] 

 

where αi is the Lagrange multiplier of the corresponding sample. 

Let us minimize J() with respect to the weight vector w and maximize it with 

respect to the undetermined multipliers 𝛼𝑖 ≥ 0. When using Kuhn-Tucker [83,84] 

construction, the optimization can be reformulated as maximizing 

 

𝑸(α) = ∑𝛼𝑖 −
1

2

𝑛

𝑖=1

∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗〈𝐱𝑖, 𝐱𝑗〉

𝑛

𝑗=1

𝑛

𝑖=1

 

 

subject to  ∑ 𝛼𝑖𝑦𝑖 = 0 𝑎𝑛𝑑 𝛼𝑖 ≥ 0,𝑛
𝑖=1  𝑖 = 1,… , 𝑛. 

The solution to w is 

𝐰 = ∑𝛼𝑖𝑦𝑖𝐱𝑖

𝑛

𝑖=1

 

In fact, only the multipliers which are larger than zero (the corresponding samples are 

on the lines H1 and H2) affect the weight vector w and they are called ‘support 

vectors’. The hyperplane is 

 

g(𝐱) = ∑𝛼𝑖𝑦𝑖〈𝐱𝑖, 𝐱〉 + 𝑏

𝑛

𝑖=1

 

 

Now, there are still two problems: how to handle the nonlinearly separated 

samples and how to map the data to a higher dimensional space. 

Actually, the most samples can be linearly separated, but a few cannot in some 

cases. If a hyperplane is always modified according to these samples, the procedure 

becomes slower and more complicated. Two parameters are needed [85]. One is slack 

variables ei measuring deviation of an example from the ideal condition of example 

separability. Hence, training samples can be presented as 
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𝑦𝑖(〈𝐰, 𝐱𝑖〉 + 𝑏) > 1 − 𝑒𝑖  𝑜𝑟  𝑦𝑖(〈𝐰, 𝐱𝑖〉 + 𝑏) − 1 + 𝑒𝑖 > 0 

 

Another parameter is the cost factor, C, a positive value showing how serious an 

incorrectly classified sample is. If C is too small, the error rate might increase. On the 

other hand, if C is larger, generalization of a model will be weak. A suitable C is 

necessary for a model. Cost calculation is typically 

C∑𝑒𝑖

𝑛

𝑖=1

 

The Least Squares Support Vector Machine (LS-SVM) [86], which was used here, 

computes Cost as follows 

𝐶

2
∑𝑒𝑖

2

𝑛

𝑖=1

 

Also, C is not a constant under various conditions: for example, some special samples 

are crucial and cannot be separated incorrectly and other samples are tolerable. Also, 

differences between a priori probabilities of each class may be too large. 

Secondly, it is known that computation in a high-dimensional space is more 

complex than that in a low-dimensional space (inner product, for example). Therefore, 

it needs a function, K, to simplify it:  

 

𝐾(𝐚, 𝐛) = 〈𝜑(𝐚), 𝜑(𝐛)〉 

 

where a,b∈X, 𝜑 is the projection from the input space X to space Y (lower to 

higher), and K is called a kernel function [81]. 

Moreover, the kernel function is valid only if it satisfies the condition of Mercer’s 

theorem [81,84]. The kinds of kernel functions used in this thesis were 

 

 Polynomial: 𝐾(𝐱,𝐰) = (〈𝐱,𝐰〉 + 1)𝑑, where d is the order of the kernel function, 

and it is linear and quadratic when d is 1 and 2. 

 Radial basis or Gaussian function: 𝐾(𝐱,𝐰) = 𝑒
−

‖𝐱−𝐰‖2

2𝛿2 , where the δ is the 

standard deviation of x. 

The optimization problem is as follows: 

min     {
1

2
 ‖𝐰‖2 +

𝐶

2
∑ 𝑒𝑖

2𝑛
𝑖=1 } 

subject to  

∑ 𝛼𝑖𝑦𝑖𝐾(𝐱𝑖 , 𝐱𝑗)
𝑛
𝑖=1 + 𝑏 − 1 + 𝑒𝑖 ≥ 0 

 

Using the same calculation procedure as mentioned above, a hyperplane can be 

obtained: 

g(𝐱) = ∑𝛼𝑖𝑦𝑖𝐾(𝐱𝑖, 𝐱) + 𝑏

𝑛

𝑖=1
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SVM was one of the methods with the best accuracies for verification, especially 

with the kernel of radial basis function (84% for Condition 1 and 92% for Condition 2 

for 132 subjects), and the computation was also faster than that of neural networks. 

4.4.2 Neural networks 

A neural network (NN, or sometimes called an artificial neural network, ANN) is a 

mathematical model inspired by biological neural networks. NN is a ‘star’ level 

method in machine learning, which can be used for pattern classification, predictive 

modelling, adaptive control, etc., since it is systematic and complex. Only two types 

of NN were used: multilayer perceptron (MLP) and radial basis function (RBF) [78].  

       

Figure 4.2. On the left, an example of a simple neural network consisting of input, 

hidden and output layers. On the right, an example of a simple neuron consisting of 

input x=(x1,x2,x3), output y, weight vector w=(w1,w2,w3) and activation function ϕ. 

 

Compared with a single layer perceptron, MLP consists of multiple layers of 

nodes. Each node that is not on the input layer is a node (neuron) with a nonlinear 

activation function, which is usually a logistic function such as 

 

𝑓(𝑥) =
1

1 + 𝑒𝑥𝑝 (−𝑎𝑥)
 

 

where a is the slope of the function. 

Nonlinearity is very important. Otherwise, the relation of input to output can be 

obtained with a single layer perceptron. Moreover, MLP uses a supervised learning 

technique (for example) called back-propagation (BP) [87] to train a network. As the 

key part of MLP, BP can be divided into two steps: 

 Step 1: Use the forward and backward propagation to get the deltas of all output 

and hidden nodes, where the delta is the error of a desired response and real 

output.  

 Step 2: Calculate the gradient of the weight based on deltas and the input of the 

corresponding nodes, then update the weights of nodes (add or subtract a ratio of 

gradient). 
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The ratio called ‘learning rate’ is a significant parameter that controls the effect 

and speed of training. This thesis applied several kinds of training algorithms for MLP. 

Training procedures of most algorithms are relatively fast. Note also that the amount 

of the data used in the tests was, after all, highly restricted. However, the tests were 

repeated several times according to the leave-one-out principle. The performance of 

Levenberg-Marquardt algorithm (LMA) [79] was the best: its average accuracy was 

8%-20% higher than those of other training algorithms.  

RBF is another popular NN type that was also one of the methods to produce the 

best classification accuracies. The differences between MLP and RBF are [78]: 

 

1. RBF usually has a single hidden layer, but MLP can have more. 

2. Computation in the MLP nodes, which are located in the hidden or output layer, 

uses the same procedure (although not necessarily the same activation function). 

The RBF nodes in the hidden or output layer vary, depending on the function 

aspect and one the model used. 

3. The hidden layer of RBF is nonlinear (always transform to a higher space) and 

the output layer is linear. Compared with this, both hidden and output layers are 

nonlinear in this thesis. 

4. There are various ways to calculate an activation function of a hidden layer node. 

In RBF, a function is calculated using the Euclidean distance between the input x 

and the centre node ci, e.g. 

𝑓(𝐱) = ∑ 𝑒𝑥𝑝 (−
‖𝐱−𝐜𝑖‖

2

2𝛿2 )𝑛
𝑖=1  

whereas, in MLP, an inner product of the corresponding input and weight vectors 

is computed, e.g. 

𝑓(𝐱) = ∑ 𝜑(〈𝐰𝑖, 𝐱〉 + 𝑏𝑖)
𝑛
𝑖=1  

5. Both use a nonlinear transform from input to output, and RBF constructs local 

approximations, but MLP pursues global approximations. See some example 

results of MLP and RBF networks in Table 4.4 

 

Table 4.4. Some accuracies given by MLP and RBF networks with some appropriate 

parameter values. 

Accuracy (%) MLP RBF 

one output 

node 

two output 

nodes 

Goal=0.08 Goal=0.1 

Condition 1 78.41±2.5 79.55±2.6 83.36±2.6 88.53±1.8 

Condition 2 80.45±3.2 82.65±2.5 88.86±3.9 88.86±1.9 

 

Although NN could generate good accuracies in the test runs made, the 

computation time was a problem in principle, for example when the size of a training 

set was large or the goal of model (expected error) was set too small. Setting optimal 

parameter values can more or less resolve the problem. Besides reducing computation 

time, it also can improve the classification accuracy. However, the parameter setting 

(for example, kernel function selection in SVM, how many hidden layers and how 
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many nodes in a hidden layer in MLP, and the maximum learning step and learning 

rate) was another problem while applying these advanced methods, as it prevented a 

smart or systematic approach to find the optimal parameter values, which depend on 

different cases indeed. Therefore, multiple tests are the only solution at present. This 

computation time constraint only pertains to the training phase of a neural network. 

Thus, subject to a practical verification situation, training would be required while 

updating a model with new or extended training data. 

4.5 Publication V: Multiple recordings 

The preceding section included the two tasks of subject verification: whether subjects 

can be separated (to reject an impostor) and whether a certain subject can be 

recognized (accepted as the authenticated user). The earlier result showed that each 

subject can be distinguished with good accuracy in Condition 2. However, the 

previous high accuracy of Condition 1 was not able to completely show that each 

subject could be recognized almost perfectly. All the saccades of each subject were 

recorded in one session only, although a session included a few successive 

measurements. Thus, whether the possible variabilities of saccades of each subject 

between sessions affected results or not was unknown. 

For some types of biometric data other than eye movements, the value of a 

feature or variable is usually fixed – for example, the distance between the eyes or the 

width of nose in face recognition – no matter how many times they are measured. 

Instead, the variable values of a single subject are recorded remembering variability 

for the behavioural biometric signal, although they are within a certain range. The 

core of subject verification concerns classifying various variable values of a subject. 

In our earlier recordings, the saccades of each subject came from one session, which 

contained a series of three to five measurements and lasted for, at most, 20 minutes 

altogether. Thus, a high accuracy of Condition 1 merely verifies that, despite the 

possible variability in an authenticated subject’s saccades within one session, the 

subject can be recognized. The question arose how performance would be in multiple 

sessions. Obviously, thus far, only one earlier biometric eye movement study, in 

addition to the present research, included such temporal tests, but only some of the 

subjects were measured twice, at an interval of one week [36]. 

An early study [88] proposed that the average latency could be different over a 

random period of three days. Subjects’ physiological properties may also be affected 

by many outer factors such as fatigue, alcohol, drugs, disease and age [89]. Because 

of practical restrictions, it was not possible to research the independent effect of each 

of the above-mentioned factors for saccade variables. For example, it is difficult to 

define the degree of fatigue precisely, and investigations into the response to alcohol 

are very complex to perform and require a great deal of time and a physician to 

supervise the tests and guarantee the safety of subjects. In reality, such tests can be 

conducted with a small number of subjects only. Therefore, the present thesis had to 

ignore the influence of those factors and focus on the variability of saccadic variable 

values over a period of time. Still, in Publication II, some of the data were obtained 
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from otoneurological patients who suffered from vertigo and balance problems. 

Nevertheless, every subject taking part in a verification test was required to abstain 

from alcohol and medication for 24 hours before a measurement session. A subject not 

satisfying this requirement would normally have been excluded, but there was one 

subject on continuous medication. 

For this publication, the two following data sets were measured: 

 

Group I consisted of 22 subjects, and each subject contributed 200 saccades over five 

separate days. The intervals between the five measurement days were different: 7 days, 

26±7 days, 36±10 days and 1 day. This way, both varying and fixed intervals were 

included. Every day was comprised of two sessions: one in the morning and the other 

in the afternoon, with five hours between them. Each session included a series of five 

measurements, each with four saccades of the large amplitude. 

 

Group II consisted of 12 subjects, and each of them made 32 saccades. Of these 32, 

12 were from the first session and 20 from the second, with an interval between the 

sessions of approximately 16 months. 

 

 The objective with Group I was to study a rather long period with regard to user 

verification compared with everyday life, because, for example, computer logins are 

usually performed almost daily. Because the results in the medical literature were 

rarely obtained in the relevant area of saccades and have varied perhaps since the 

1970s, with variable values of saccades of a subject either varying or not varying 

statistically significantly over the course of time – such as between morning and 

afternoon or a longer time – it was interesting to investigate whether such possible 

variability might affect user verification results. 

Results obtained showed that a subject can be verified fairly well within periods 

of Group I. For example, RBF network gave a classification accuracy of 86% for 

Condition 1 (85% for Condition 2) for Group I or 88% for Condition 1 (86% for 

Condition 2) by using SVM, but good accuracy based on Group II could not be 

expected when the period was very long. However, the size of the data set in Group II 

was very small because it was, for practical reasons, difficult to find subjects to take 

part in both measurement sessions. Therefore, the research done with Group II only 

hints at the conclusion drawn. Deeper and more extensive research is needed. 

4.6 Publication VI: Subject verification with a relatively high 

sampling frequency of saccade signals 

The VOG signals used in the previous publications were recorded with a low 

sampling frequency of 30 Hz. Thus, the other eye movement camera system with a 

higher sampling frequency of 250 Hz was utilized to record VOG signals tested in this 

publication. According to Section 2.1, processing these signals with the higher 

sampling frequency was performed quite similarly to those previously, but more 
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saccades were collected in order to increase training sets for machine learning 

algorithms. There were 55 subjects in the data set of this publication, and each subject 

contributed a total of 120 saccades with four measurements per session. There was a 

difference in the verification procedure between this publication and the earlier ones. 

Since the size of the data set (both the number of subjects and the number of saccades 

from each subject) was larger than before, the training sets of Conditions 1 and 2 were 

the same. In other words, except for one subject as the authenticated user, the 

remaining subjects were separated into either non-users or impostors. Both 

Conditions 1 and 2 used the same training models for verification tests. On the other 

hand, with experience developing, only the classification methods which had the best 

accuracies in the previous publications of the research were included; some basic 

methods were abandoned in this publication. Moreover, how to obtain the optimal 

parameter values of some advanced methods was still being studied. 

 

Table 4.5. Comparison of the best accuracies of low and high sampling frequencies 

for VOG signal verification according to LogDA, MLP and RBF networks, and SVM.  

Accuracy (%) LogDA MLP RBF SVM 

30 Hz 

VOG 

Condition 1 86 92 88 87 

Condition 2 78 84 88 78 

250 Hz 

VOG 

Condition 1 91 95 96 96 

Condition 2 89 95 95 95 

 

From Table 4.5, it is easy to see the considerable improvement in accuracy from 

30 Hz to 250 Hz signals. Actually, on average, 96% accuracy is the best and virtually 

optimal result in the entire thesis. For the sake of the recording situations, two data 

sets varied as to the number of subjects and their saccades, but the results still 

indicated that the sampling frequency plays a significance role in user verification 

with saccades.  

In addition, interpolation was also used in this publication, but the effect was not 

as crucial as before. Sometimes it had a slightly negative influence on the verification 

results. Therefore, it can be concluded that interpolation, as an estimation approach 

here, is unnecessary for relatively high sampling frequencies, at least with the present 

250 Hz data. 
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Chapter 5 

Conclusions 

The thesis considered the biometric verification of subjects using saccadic eye 

movement signals, and it consisted of six publications which specifically presented 

the entire research procedure, including signal recording, signal processing and 

analysis, extraction and computation of variables, classification using machine 

learning methods, and evaluation of results obtained. The final aim of the research is 

attempting to use saccadic eye movements as a new form of 'password' applied to 

personal devices such as a computer or possibly even a mobile phone, just as other 

biometric signals (fingerprint, face image, iris image, etc.) are used. One of the main 

factors restricting development of this technique is the specifications of the eye 

movement video cameras currently available, but there is no doubt that the quality of 

these devices will improve and their prices will decrease in the future. In principle, 

any device and system with such a camera system could apply this new biometric 

technique.  

As the simplest eye movement with regard to their waveform structures, saccades 

were used in the research presented here. In fact, the saccades used were only 

measured in the horizontal direction. Compared with other studies in which saccade 

data were collected from two-dimensional space (vertical and horizontal), processing 

and analysis may have been slightly easier. There were two kinds of saccade signal 

types used: EOG and VOG signals. The technology for EOG signals is quite old, but 

its advantage was the relatively high sampling frequency: 400 Hz. In addition, 

recording EOG signals was not as convenient for subjects as recording VOG signals 

was, due to the use of skin electrodes, and such recordings were easily affected by 

noise. Thus, EOG signals were not the main data source: they were simply used for 

comparison with VOG signals for use in biometric verification. The results of 

Publication I indicated that the sampling frequency of signals is one of the key points 

for verification. Although EOG signals were commonly noisier than VOG signals, the 

400 Hz sampling frequency benefited the accuracy better than that of VOG signals, 

whose sampling frequency was only 30 Hz but interpolated to produce a high 

'artificial' sampling frequency. This conclusion was again verified when new VOG 

signals with the sampling frequency of 250 Hz were measured for Publication VI. 

Using the same classification methods and their same parameter settings, the 

classification accuracies for the 250 Hz VOG signals were 5%-7% higher on average 

than for the interpolated 30 Hz signals. 

Interpolation was used to increase the sampling frequency, which aids the 

accurate extraction of variable values and calculation to a certain extent in signal 

processing. However, as an estimation technique, interpolation does not essentially 

improve the signal quality, for example, it is difficult to ‘repair’ some disappeared 
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features (e.g. spike [90,91]) caused by a low sampling frequency very well. Moreover, 

interpolation was not suitable for all situations. Especially, when the sampling 

frequency was originally high enough such as 250 Hz, the influence might be even 

slightly negative on classification accuracies. Therefore, interpolation of signals over 

250 Hz was quite unnecessary. One final conclusion drawn is that in future a more 

scarce interpolation for signals of 30 Hz would be sufficient and used, e.g. up to 

250 Hz or no more than 400 Hz, based on our experience with these three sampling 

frequencies so far and earlier results that the information content of saccades of large 

amplitudes is at most 70 Hz [38,39]. Just like interpolation, good computational 

methods for variables can benefit classification accuracies, but they cannot change 

results fundamentally. On the other hand, as regards both these factors, they alter the 

original values of more or less every variable, which is not obviously reasonable for 

medical investigations, for example. However, their effects are positive in 

classification for biometric verification purposes as long as subjects can be separated 

easier and better. 

A priori probability, or the ratio of saccades of an authenticated user to those of 

non-users in a training set, is another important factor that impacts verification results. 

The tested samples were easily classified in the higher a priori probability class, 

which was discussed in Publication III. Adjusting the a priori probability of saccades 

of an authenticated user and those of other subjects (non-users) is an effective way to 

obtain the EER of results. When it is difficult to switch the a priori probability, for 

example when the number of saccades is not sufficient for a good result in machine 

learning, balancing the above-mentioned ratio is a good solution. Saccades of the 

smallest class were copied to adjust the ratio for a training set and make accuracy 

more closely to correspond to the EER. Although balancing this ratio does not fit in 

some classifiers or performing some of them is not apparent (linear discriminant 

analysis), it still improves the accuracy of some other methods considerably (LogDA). 

On the other hand, it should be noticed that sometimes the EER cannot represent the 

optimal accuracy of a method, especially in various situations. Firstly, because the 

two errors (FAR and FRR) involved in the EER do not increase or decrease linearly 

(Figure 3.1), the EER may not be the smallest average error possible. On an ROC 

curve, it might not be the closest point to the top left, either. Secondly, the accuracy of 

a method from a macroscopic point of view is not completely dependent on an EER 

point, but decided based on the area under the ROC curve (Figure 3.2). Ultimately, 

since the one error is frequently more serious than the other in practice, the EER is 

obviously not optimal in a specific application. 

The characters of the classification methods applied were from the simple to the 

complicated. Decision mechanisms of some methods, such as k-nearest neighbour 

searching, were modified based on different situations. The results showed that the 

performance of simple methods could suffice at an early stage of research when 

numbers of subjects and saccades were small, but their accuracies began to decline 

when the size of a training set was extended. Although complicated methods could 

improve accuracy, they also brought problems. One of the problems was setting 

suitable parameter values. Typically, the more complicated the method, the more 
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parameters need to be set. Since there is no perfect solution to find the optimal 

parameter values, multiple tests is the only reasonable approach. For example, a 

matrix of parameter combinations was usually used for finding the best accuracy in 

our research. In addition, time consuming as another problem should be considered. 

For example, both too small goal (output error) in multilayer perceptron networks and 

too large cost parameter value in support vector machines would make the 

computation of these methods slow. However, sometimes it has to be done to obtain a 

satisfying result. Hence, how to balance between classification accuracy and 

execution time is important in biometric verification which is supposed to be run fast 

in practice. 

Multiple recordings of each subject were discussed in Publication V. In fact, from 

the accuracies obtained, we can conclude that using saccadic eye movements to verify 

an authenticated user or subject from multiple sessions (88% for Condition 1 with 14 

subjects in Publication V) is more difficult than separating subjects (96% for 

Condition 2 with 68 subjects in Publication III), because the values of the variables of 

saccades varied. Along with a longer time, the range of variability would obviously be 

extended due to rather unpredictable and unknown factors. In other words, 

verification was more difficult when the interval between recording sessions was 

longer. For the present, aside from the present research, few studies based on the 

classification of eye movements have focused on multiple recordings, so it will be one 

direction our future research could take. In terms of the length of an interval, several 

combinations of multiple recordings are good to explore, such as intervals of four 

weeks for several recording days, morning and afternoon recordings on several 

successive days, and several recordings for intervals even longer than four weeks. 

In this thesis, classification concerns binary classes, which is also used by most 

studies that consider the verification or identification of subjects based on eye 

movements. Compared with identification of n-class (n>2) classification, verification 

is simpler. However, verification can completely satisfy the requirements of all 

personal devices and most security systems that have one authenticated user only. 

Especially concerning safety, a model of a high accuracy has to be the primary aim. 

Identification can be considered as the combination of n verifications, and accuracy 

would be probably lower than that of verification, since with verification error is 

amplified for n subjects. Identification was initially attempted, but the accuracy was 

inferior to those of the verification tests performed, especially when the number of 

subjects was large. Regardless of the accuracy of identification using eye movements, 

as an advanced classification model, it may still be another direction for future 

research to go in. At any rate, subject to verification, promising results were obtained. 
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Abstract: Biometric verification of subjects as users of computers or other 
devices has mainly based on fingerprints, face, iris or other images. We 
developed biometric verification using eye movements to be measured with eye 
movement videocameras. We measured saccades using the same stimulation 
for each subject. Our data included signals recorded in two manners: electro-
oculographically from 30 subjects and with a videocamera system from 
additional 30 subjects. Verification tests were run with k-means clustering, 
linear and quadratic discriminant analysis, Naïve Bayes rule and k nearest 
neighbour searching. The highest accuracies were obtained with k-means 
clustering, discriminant analysis and Naïve Bayes rule, up to 90% and even 
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1 Introduction 

Fingerprints and face images are perhaps the most usual biometric means to verify  
a subject. Numerous computational techniques have been developed for these biometric 
images, e.g., Chang et al. (2011), Chellappa et al. (2010), Danielyan (2004), Jain et al. 
(1997), Kant and Nath (2009), Kukharev et al. (2011), Mane and Jadhav (2009), Rani  
et al. (2008), Shih and Liu (2011), in which the recognition process started from 
preprocessing and image analysis. Other biometric images have also been studied, for 
example, iris images (Abdullah et al., 2011; Arivazhagan et al., 2009; Danielyan, 2004; 
Dey and Samanta, 2010), palmprints (Prasad, 2010) or other images recorded from 
subjects. In addition, these alternatives have been combined to produce multimodal 
processes (Mane and Jadhav, 2009) and perhaps to improve verification. 

Verification of a user or subject is generally seen as a situation in which the actual 
user of a computer has to be determined and other possible subjects should be determined 
as non-users or imposters (Bednarik et al., 2005; Chellappa et al., 2010). Identification is 
usually seen as a more extensive computational task, in which any individual can be 
identified and distinguished from others in a group of subjects. We can see the former as 
a binary classification problem and the latter as a multiclass classification problem. In the 
present research we describe a novel technique to utilise saccade eye movements for 
verification purposes, as a simulation to verify an actual user of a computer or some 
device including a measuring component for eye movements. 

Our motivation to develop a verification technique applying eye movements arose 
from our earlier, long-term research in the field of otoneurological eye movement studies, 
e.g., Aalto et al. (1989), Juhola et al. (1985, 1997, 2007), Juhola, (1986). Of course, one 
reason was the technical development over the last 15 years of new videocamera systems 
to facilitate eye movement studies for various purposes (Morimoto and Mimica, 2005).  
In addition, we noticed how the values of a few essential features computed from eye 
movements varied fairly clearly between individuals (Juhola et al., 2007) which formed a 
sound basis for an objective to exploit eye movements in the process of verifying 
subjects. As the research of eye movements for human-computer interaction is currently 
very active, we may assume that in the future such systems can be used to aid interaction 
with computers in addition to a mouse and keyboard by registering the targets of the 
user’s gaze on a computer screen. Maybe such videocamera systems will be like the 
webcameras of today, cheap and easy to use. Therefore a verification procedure based on 
eye movements would be a timely and expedient property for a computer system 
including eye movement cameras. 

Saccades are probably the simplest eye movements (see Figures 1 and 2) to detect 
with signal analysis (Bahill et al., 1981; Baloh et al., 1976; Juhola et al., 1985, 2007, 
Juhola, 1986). They are also the fastest eye movements, in fact the fastest movements of 
any performed by a human being. They are very easy to stimulate. Most of the eye 
movements performed in daily life are saccades while moving the gaze from one target to 
another. These properties naturally give additional motivation to design a verification 
procedure based on saccades and not, for instance, on other eye movement types such as 
smooth pursuit movements. Using saccades we can deal with short signals of no longer 
than one to a few minutes being long enough for verification, since they can include tens 
of saccades. Compared to images this is an advantage because of the decidedly smaller 
quantities of data, which may reduce the computation times required for verification  
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and simplify the recognition process as such. When eye movement signals are  
one-dimensional signals, these include much less data than in images. 

To the best of our knowledge, one-dimensional physiological signals except voice 
have so far only seldom been investigated for the purpose of biometric verification or 
identification (Deshpande and Holambe, 2011). Still, voice is obviously a difficult area, 
not only because of recognition difficulties of voice signals as such, but since there can 
be so many disturbing factors such as surrounding noise from several sources, for 
instance, other speakers and traffic. As to other one-dimensional signals, studies (Chantaf 
et al., 2010; Israel et al., 2005; Sufi and Khalil, 2011) seem to include virtually only 
Electrocardiographic (ECG) signals, obviously being the most explored signal type in 
biomedical engineering. Since any accurate recording of ECG signals always requires  
a fixed contact to some parts of the limbs or body, its use for rapid verification is 
complicated. Furthermore, a subject should be at rest, for instance, should not have 
exerted before a measurement is taken. Otherwise, the intravariation between the ECG 
signals of an individual might be considerable. Thus these ideas have been perhaps at 
their best for special purposes, e.g., identifying a patient within a hospital, where ECG 
signals are recorded from time to time for medical investigations and follow-up. On the 
other hand, the advantage here is that ECG signal analysis has been studied very 
extensively for several decades and there are effective computational techniques available 
in that field. 

Eye movements have very rarely been studied for user verification purposes. Recently 
there have been four attempts to utilise eye movements for verification or identification. 
In one of these (Nishigaki and Arai, 2008), they detected the blind spot on a subject’s 
retina. If an object of a subject’s gaze was displayed at a position outside the blind spot  
in the visual field of the right user or subject, he or she saw it. In other words, the right 
subject moved the gaze to it while performing an eye movement. Another subject whose 
blind spot was very slightly different from that of the correct one should not have seen it, 
obviously making no saccades during the following one second recorded. The technique 
seemed to be complicated as every subject had to lean against a chin rest. In addition, 
there was a possibility that a subject made extraneous eye movements during this 1 s;  
he might have moved his eyes although did not see the actual object. It is inherent for 
everyone to constantly shift the gaze while looking at the surroundings – this has perhaps 
been very important in the distant past in our biological development to survive when 
human beings were both prey and predators, and, e.g., in traffic at present. During 
scientific tests extraneous eye movements may be forbidden, but not in natural behaviour 
expected in the routine use of computers. The investigation included no machine learning 
algorithm, which was our crucial idea in order to facilitate distinguishing between the 
right user and others and to adapt to the possible slow intraindividual alteration of  
a subject’s saccades in the course of time. 

Secondly, eye movements were studied (Kapczyński et al., 2006; Kasprowski and 
Ober, 2004) by computing the cepstrum of a signal and by classifying results according 
to naïve Bayes decision, nearest neighbour searching, decision trees and support vector 
machines. Thirdly, pupil sizes, gaze velocity and distance between eyes were used 
(Bednarik et al., 2005) for the biometric objective. Here fast Fourier transform and 
principal component analysis were computed for eye movement signals. Nearest 
neighbour searching was applied to the data tested according to the leave-one-out 
manner. Nevertheless, this technique was chiefly based on using a distance between eyes 
(images) and eye movements were in a minor role. In any case, their results proposed 
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discriminatory information between subjects in eye movements. Fourthly, a mathematical 
model of the oculomotor system was used for verification (Komogortsev et al., 2010) 
focusing on saccade trajectories. The parameter vectors of the model were used as input 
for the classification to distinguish subjects. Verification was executed by applying 
nearest neighbour and C4.5 tree classifications. 

Figure 1 This includes a 20 s Electro-oculographic (EOG) signal and its stimulation signal, 
which is the more regular and smoother of these. The stimulation signal precedes  
the EOG signal, because the subject has followed the stimulation light dot by his gaze, 
except concerning an extraneous small saccade on the right (starting approximately  
at sample 7000). Such a saccade was not used as an acceptable case because it was  
no response to any actual stimulation movement (see online version for colours) 

 

Figure 2 A VOG signal of 20 s and the corresponding smooth stimulation signal (see online 
version for colours) 
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2 Recording eye movements 

We applied two data sources. The more important data was measured with a videocamera 
or Video-oculogram (VOG) system (Visual Eyes, Micromedical Technologies, UK). 
However, since its sampling frequency (frame rate per second) was low, 30 Hz, we used 
another data set recorded earlier (Juhola et al., 2007). The same stimulation procedure 
was applied to both, so their results are comparable. The advantage of the latter  
Electro-oculographic (EOG) data set was that its sampling frequency was as high as  
400 Hz. We knew that this might be a critical issue given the earlier research (Andersson 
et al., 2010; Bahill et al., 1981; Juhola et al., 1985) since, of course, the higher sampling 
frequency enables gathering more information on eye movement signals. 

In VOG there is a videocamera for each eye registering horizontal and vertical eye 
movements according to positional changes of the pupils in images. In EOG skin 
electrodes are placed close to the eye corners to register potential differences changing 
along with the eye movements. To make the stimulation as simple and practical as 
possible we applied horizontal eye movements only. In addition, EOG is better for 
horizontal than vertical eye movements, since the latter are sensitive to eye blinks and so 
wide vertical angles cannot be recorded as accurately as horizontal movements. EOG  
is typically noisier than VOG, because the former may include abundant noise, such as 
that originating from facial muscles because of talking, smiling, frowning, gasping etc. 
Therefore, a subject is advised not to do these during tests. VOG is much more  
 ‘user-friendly’ in many respects, since it excludes the described problems provided that  
a subject remembers to keep her eyes open. 

Signals such as those in Figures 1 and 2 were measured with the EOG and VOG 
techniques. The videocamera system worn by an author is seen in Figure 3. With his 
gaze, he followed a light dot (LEDs) in the black bar in front of him. The light dot was 
altered rapidly to another place in the bar (actually one LED was switched off and 
another switched on) so that the angle formed by them in the direction of the spectator 
seemed to be random from the spectator’s viewpoint. Such angles were constant when  
the distance of the eyes from the bar was constant. However, any slight alteration in this 
distance would have had only a negligible effect. In addition, varying the time intervals 
between jumps of the light dot made the stimulation movements random-like for the 
spectator, although they formed a fixed series of stimulation movements shown for each 
subject. Such a series was complicated enough so that it could not be learnt although  
it was repeated several times for an individual. It was important to avoid any proactive 
saccades that would not have been authentic responses to the stimulation movements 
arranged. This type of saccade stimulations has been applied to medical investigations for 
decades as a standard convention, for instance, Aalto et al. (1989), Bahill et al. (1981), 
Baloh et al. (1976), Kaminiarz et al. (2009). On the other hand, for data analysis it was 
important that there were several responses to similar stimulations from each subject so 
that a machine learning algorithm was able to learn the feature values of individuals from 
the data. 

The stimulations employed were used as if in the initialisation of a subject’s computer 
session, which he or she begins by logging into the computer. The idea was not to write a 
password, but that the computer would recognise its legal user by recording the user’s 
eye movements during the initialisation of the computer system. The purpose was that the 
computer would present the same stimulation series of light dot jumps on its screen.  
The user was due to look at the dot jumping approximately once in two seconds for a 
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minute or so. Both stimulation amplitude (lengths of jumps of the light dot) and time 
intervals between jumps were varied, and most amplitudes should be large enough, such 
as 40–60°. The large amplitudes guaranteed that variation occurred for saccade features 
between subjects (Henriksson et al., 1980; Juhola et al., 2007). The large saccade 
amplitudes were used for verification, but occasionally a smaller one could be 
interspersed so that the angle was changed surprisingly in the stimulation series to make 
it random-like for a spectator. 

Figure 3 A subject was following the target with his gaze on the bar in front of him. The small 
red LED was the target light, which jumped abruptly from one place to another along 
the bar (see online version for colours) 

 

Using both EOG and VOG we utilised data measured from two disjoint sets of 
individuals each including 30 people. The EOG signals, the duration of which was 80 s, 
consisted of 12 or more large saccades. Since the VOG signals of duration 64 s included 
only four large saccades (above 40º), three such segments were measured from each 
subject. Since the sampling frequency of EOG was 400 Hz and that of VOG 30 Hz only, 
the VOG signals were linearly interpolated to raise its (artificial) frequency (13 times  
30 Hz) up as close as possible to that of EOG in order to enable comparisons between  
the two techniques and to make VOG ‘more accurate’ as regards saccade features. The 
effect of increasing sampling frequencies on saccade features, particularly maximum 
velocity, was presented earlier (Andersson et al., 2010; Bahill et al., 1981; Juhola et al., 
1985). Interpolation, of course, is not the same as an original measurement using a higher 
sampling frequency, but it can be used as an estimate. 

The EOG signals had been recorded monocularly at the same time from both eyes 
with two skin electrodes and a ground electrode on the forehead. The signals were 
recorded at 400 Hz, amplified to a scale of ± 10 V, converted with an analog-digital 
converter of 13 bits and filtered digitally with a lowpass filter of 70 Hz cutoff. Calibration 
was accomplished with the signals themselves by employing the constant amplitude 
stimulations of 60º at the beginning and end of each signal. The VOG system included  
a built-in image processing system to find the pupil of an eye in order to compute eye 
movements on the basis of the positions of the pupil. The sampling frequency was 30 Hz 
interpolated up to 390 Hz. The system required no separate calibration (except when the 
system was installed for the very first time). Since in VOG there were two videocameras, 
one for each eye, two horizontal signals were received at every measurement. The better 
one, with less possible noise or artefacts such as eye blinks, was chosen from these two. 
The amplitude accuracy of both measuring techniques was 1º or better. 
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The EOG signals had been recorded at a university hospital, and a physician had 
checked all the voluntary subjects for being able to do the test without any impediments. 
Spectacles could be used since skin electrodes attached to the corners of the eyes had 
been used. There had been approximately as many females as males among the 30 
subjects and their approximate mean age had been 45 years. The distance between the 
target of a computer-controlled light dot and a subject had been 1.40 m. The VOG signals 
were measured from a younger population of 20 males and 10 females, whose mean age 
was 29 ± 10 years. Since spectacles could not be used in the VOG measurements,  
the ability of all subjects to see accurately enough was checked first to avoid possible 
problems such as severe myopia. Associated with the age, two subjects only had 
presbyopia. In addition, the distance between the target of the bright LED light and  
a subject was 0.74 m for VOG measurements, shorter than for EOG. There were two 
different groups: the former (EOG) with ages from young to old and with both sexes 
equally, and the latter (VOG) as a fairly homogeneous age group of mainly young males. 
It was hard to find clear indications from the physiological literature showing whether  
a subject’s sex might have any effects on saccades. We have not observed anything like 
this in our several earlier eye movement studies. Obviously, age can have effects. 
Therefore, it was interesting to have two quite different groups. 

3 Signal analysis and forming data for verification 

The EOG eye movement signals were considered according to the method presented,  
e.g., in Juhola (1986) and Juhola et al. (2007). The VOG eye movement signals, being 
usually less noisy than EOG, were processed with conventional, straightforward signal 
analysis methods. The objective in both was to identify saccades from them, i.e., the 
beginning and end of every saccade as accurately and correctly as possible so that 
features could be computed from the saccades detected. The principle in both techniques 
was to approximate the first derivative, which equals the angular velocity of eye 
movements. Detecting clear, rapid changes in this reveals saccade beginnings and ends. 
A threshold criterion of 10 s was used for velocity. In addition to this, stimulation signals 
had to be considered so that we knew at which time each stimulation movement (a jump 
of the light dot) had started. This was an easy task, because stimulation signals are 
noiseless and very regular, as seen in Figures 1 and 2. 

The EOG data included 12–35 large saccades from each subject. The VOG data 
consisted of exactly 12 large saccades from a subject. After the detection of saccades the 
features of latency, amplitude, accuracy and maximum velocity (Figure 4) were 
computed from every acceptable saccade found from a signal. Latency or reaction time is 
the time between the beginning of a saccade and its stimulation. An accuracy value  
is equal to the difference of the amplitudes (angles) of a stimulation movement and its 
response. A saccade amplitude is more frequently less than its stimulation amplitude,  
but sometimes also greater. Finally, the maximum of the velocity curve was computed 
(Figure 4). For the EOG and VOG signals the means and standard deviations of the 
features are given in Table 1. The negative accuracy denotes smaller saccade amplitudes 
than stimulation amplitudes. Thus these fairly large standard deviations denoted 
opportunities to distinguish subjects from each other. The differences of the means 
between the techniques came from the different subjects and the different measurement 
techniques. 
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Table 1 Means and standard deviations of features in the EOG and VOG data sets and their 
ratios between interindividual variation and intraindividual variation 

Data 
set 

Amplitud
e (º) 

Accuracy 
(º) 

Latency  
(s) 

Maximum 
velocity 

(º/s) 
Duration 

(s) 

Maximum 
acceleration 

(º/s2) 

Maximum 
deceleration 

(º/s2) 

Means and standard deviations 

EOG 53 ± 11 –7 ± 11 0.231 ± 0.110 631 ± 121    

VOG 47 ± 11 2 ± 8 0.216 ± 0.058 965 ± 280 0.182 ± 0.055 42980 ± 23667 40464 ± 24757 

Ratios rj of interindividual and intraindividual variations 

EOG 0.81 0.85 1.39 1.33    

VOG 0.97 0.68 0.40 0.71 0.36 0.71 0.75 

The features described above are commonly used in medical and physiological tests, 
because changing in these can reveal peculiarity of a human being’s physiology. Further, 
others are sometimes also computed. We still computed the duration, maximum angular 
acceleration and maximum angular deceleration (Table 1) of the saccades of the VOG 
data in order to see whether these could improve the verification results of our main  
data. The duration is equal to the time difference between the beginning and end of a 
saccade. The acceleration curve is the approximated second derivative during  
a saccade (Figure 4). The latter part of this curve consists of deceleration (in the opposite 
direction in Figure 4). The maxima of both parts form two additional physiologically 
meaningful features. 

To further explore the separation ability of the features we calculated ratios of 
interindividual and intraindividual variations in the following (Gu et al., 2003). Here  
j denotes a feature, n is equal to the number of subjects, ūij is equal to the mean of feature 
j of subject i, ēj the mean of feature j for all subjects, ukj the value of feature j of saccade k 
for subject i and pi the number of the saccades for subject i. The higher the ratio,  
the better the distinguishing property of a feature is met: 
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The results rj in Table 1 indicated that the features of accuracy, latency and maximum 
velocities were better to distinguish in EOG than VOG because of their greater values  
in EOG. Thus these predicted that EOG saccades could be verified better. Perhaps the 
originally low sampling frequency of VOG also affected this, even after the interpolation, 
so that the ratios of VOG were less than for EOG, apart from the amplitudes. 
Nonetheless, we cannot draw any firm conclusions about this, since the two data sets 
were entirely disjoint, not only measured with the different techniques, but also from 
different subjects. 

We restricted ourselves to the preceding time domain variables, only excluding 
possible frequency domain variables. This choice was based on the extensive use of these 
time domain variables in such areas of medicine as physiology, ophthalmology, 
otoneurology and neurophysiology and medical informatics since the 1960s (Bahill et al., 
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1981; Baloh et al., 1976; Boghen et al., 1974; Bollen et al., 1993; Henriksson et al., 1980; 
Juhola et al., 1985, 1997, 2007; Pyykkö et al., 1984; Robinson, 1964; Schmidt et al., 
1979; Thomas and O’Beirne, 1967). We therefore knew that the features selected can 
express various physiological phenomena. As regards verification with eye movements, 
cepstrum was applied (Kasprowski and Ober, 2006), and fast Fourier transform 
(spectrum) and principal component analysis were used (Bednarik et al., 2005). 
Nevertheless, the significance of eye movements was minor in the latter, since the 
verification computation was chiefly on the basis of the image analysis subject to the 
distance of eyes and pupil diameters. Naturally, the use of frequency domain is worth 
studying although not included in the present research. 

Figure 4 An ideal saccade curve on the left from which seven features can be computed: 
amplitude, accuracy, latency, duration, maximum angular velocity, maximum angular 
acceleration and maximum angular deceleration. All are physiological features used  
in medical, psychological etc. investigations 

 

4 Verification tests 

Two test conditions were applied to simulate the verification of a user on the basis of 
saccade eye movements. For the first test condition we needed two classes: saccades  
of the right user and those of others called non-users. For the second test condition we 
needed a third group of subjects, excluding the right user and non-users used for  
a training set. The third group then formed a test set of imposters. 
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First, the right user was due to be verified as such in the first condition. The former 
pseudocode described how a training set and its corresponding test set of one saccade 
were built for the classification of n subjects. Since the leave-one-out testing method was 
used, one saccade at a time formed a test set and all other saccades of the same subject 
(the right user) were a part of a training set jointly with some saccades randomly taken 
from other subjects (non-users). 

For the second condition, we had to divide subjects excluding the right user into  
non-users and imposters, each of these two groups being approximately equal parts  
of n–1 subjects. Test saccades were taken from the group of imposters. 

The ratio between the number of the saccades of the right user and that of non-users 
could have been selected in numerous ways, but it was reasonable to set more saccades  
in the latter, which should represent a clearly larger area in the feature space.  
We determined two different selections to form these ratios as follows. 
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For the first selection and for the first condition there, the saccades of every subject  
as the right user were taken and these were tested against one saccade (b = 1) from other 
c = 18 subjects as non-users (not the right user) randomly chosen from 29 subjects. 
Alternately each of n = 30 subjects was in the role of the right user. For the second test 
condition the saccades of each subject (right user) were taken against 2b = 2 saccades 
times some other d = 9 subjects (non-users). Additional 9 random subjects were used  
as imposters due to be verified as such (not the right user). Since there were at least 12 
(large amplitude) saccades from each subject, we varied this selection when there were 
more (only in EOG). Thus, a = 12 saccades were taken for the right user. In this way, 
there were a user’s 11 saccades versus non-users’ 18 saccades in a training set of the first 
condition and a user’s 12 saccades versus non-users’ 18 saccades in that of the second 
condition. 

For the second selection and for its first condition there were again a = 12 saccades 
for the right user. Then b = 1 saccade was taken randomly from each of c = 29 non-users. 
In the second condition 2b = 2 saccades were taken randomly from each of c = 15  
non-users. Here the saccades of d = 14 imposters were naturally used merely for testing, 
not for training, since in reality they would not have been known in advance. When  
10 more or less different training sets had been built, we could run t = 10 test rounds for 
30 subjects using both EOG and VOG data, i.e., 60 individuals in total. The results were 
then computed for 300 test series for every classification setup. Thus, there were a user’s 
11 saccades versus non-users’ 29 saccades in a training set of the first condition and  
a user’s 12 saccades versus non-users’ 30 saccades in that of the second condition. 

Because the number of saccades was rather small, we ran leave-one-out tests for both 
data sets as described. This is appropriate for small data sets. A test result was checked  
as to whether it was correct: in the first test condition a saccade of the right user denoting 
this individual and in the second test condition a saccade of an imposter denoting  
non-users’ saccades. Our verification problem was a binary classification task for both 
conditions. 

If an entire guess had been made for classification in the first condition of the second 
selection, it would have been incorrect, since the a priori probability of incorrect 
classification was 29/40, greater than 0.5. Instead, that of the correct classification was 
11/40 in every training set. Therefore, no pure guess would have helped here, but  
a machine learning algorithm really had to learn the features from a data set. Thinking of 
the situation more abstractly, we can understand that the binary classification task 
contained a feature space of the current features and values, in which every right user 
consisted of a minor part and the corresponding non-users the rest, a major part of the 
feature space used. Imposters were probably within the volume of the feature space,  
but their feature values were not known in advance as for those of a training set. On the 
average, imposters ought to resemble more the non-users of a training set than the right 
user. More similar cases ought to be present among non-users, because non-users 
predominated in a far larger part of the feature space volume used than that of a single 
correct user. 

We ran our classifications using k-means clustering, k nearest neighbour searching, 
linear and quadratic discriminant analysis and naïve Bayes rule. These methods were 
chosen since they can be trained even with relatively small training sets. They can cope 
with situations where a class distribution between two classes is rather imbalanced,  
for instance, 10% and 90% of training cases. (Although we did not test so biased 
distributions this time, they are in our future plans.) For example, multilayer perceptron 
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networks might be unsuitable due to the reasons presented (Siermala and Juhola, 2006; 
Autio et al., 2007). Computational time complexities were not crucial here, since the 
numbers of input data were relatively small, probably not more than a few hundred 
training cases and fewer test cases. Naturally, there are other classification methods that 
could be as effective as these tested. For example, support vector machines could be such 
since they are designed especially for binary classifications, but we shall address other 
classification methods in our future research. 

For clustering we also tested different distance measures and feature values either 
normalised into interval [0,1] or without normalisation. As seen in the previous means  
of the features (in Section 3), their scales varied considerably. Thus normalisation might 
have affected something in machine learning. In addition, to compare EOG and VOG 
results we ran VOG tests with the basic four features. Furthermore, we tested the  
VOG data set with all seven features as described above. 

5 Test results 

As mentioned, 10·30 random test series were executed in the manner of leave-one-out 
among a set of 30 subjects in both EOG and VOG data. There were two selections for the 
sizes of the groups of non-users (9 or 15 subjects) and imposters (9 or 14 subjects) and 
two test conditions for these: correct user verification and imposter verification. All the 
computation was executed with Matlab R2010a™ (MathWorks Inc., USA). The results 
are described in the following, first for the first selection and then slightly more concisely 
for the second selection. 

For the first selection we performed tests by using k-means clustering either without 
or with feature value normalisation. We tested four distance measures: Euclidean and city 
block (Manhattan) in Table 2, and cosine and correlation distance measures in Table 3. 
(To limit the number of results presented we did not give standard deviations, which were 
mostly small, a few percent or less.) The numbers of clusters were tested from 2 to 6. 
Greater numbers of clusters were not applied since there were only 29 (or 30 for the 
second condition) cases altogether in a training set in our binary classification. We found 
that greater numbers of clusters would also have started to yield empty clusters. 
Understandably, this was due to the small number of training cases. For the VOG data, 
there were two alternatives of the features applied. V4 included amplitude, accuracy, 
latency and maximum velocity. In addition to these, V7 comprised duration, maximum 
acceleration and maximum deceleration. The results are given as accuracies in 
percentages, in other words, how many classifications were correct related to all cases 
tested. If false rejection rates are desired (Type I error or false negative rate), these are 
formed by decreasing an accuracy value from 100% in the first condition. 
Correspondingly, false acceptance rates (Type II error or false positive rate) can be 
calculated in the second condition. 

Looking at the best accuracies in Tables 2 and 3 we found that the results of the EOG 
data set were better than those of the VOG data set for the condition 1. Instead, for 
condition 2 there were no such differences. The best accuracies of condition 1 were 
typically obtained with 5 or 6 clusters. Their differences were small between all clusters 
for condition 2, except occasionally in 2–4 clusters of EOG. Subject to the best VOG 
results, condition 2 was better classified than condition 1, but between the best EOG 
results no differences could be seen. 
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Table 2 Selection 1: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for Euclidean and city block distance 
measures. EOG denotes the results of the EOG data set, V4 the VOG data set with 
four features and V7 with seven features. The best value or values of every column 
are given in bold face and their mean is B 

With normalisation Without normalisation 

Euclidean distance measure 

Condition 1 Condition 2 Condition 1 Condition 2 
k EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 

2 58 ± 6 32 ± 5 25 ± 7 93 ± 5 97 ± 2 98 ± 2 69 ± 5 15 ± 4 16 ± 5 87 ± 6 99 ± 2 98 ± 3 
3 88 ± 5 56 ± 8 48 ± 5 88 ± 6 95 ± 4 96 ± 2 84 ± 6 42 ± 8 51 ± 8 96 ± 3 93 ± 5 97 ± 4 
4 94 ± 5 69 ± 7 63 ± 7 93 ± 6 96 ± 3 98 ± 2 89 ± 5 62 ± 8 63 ± 8 95 ± 4 96 ± 3 96 ± 3 
5 97 ± 3 79 ± 3 79 ± 6 98 ± 3 97 ± 4 98 ± 4 89 ± 5 75 ± 9 80 ± 6 98 ± 2 96 ± 3 99 ± 2 
6 97 ± 3 83 ± 5 83 ± 5 97 ± 2 97 ± 2 98 ± 2 97 ± 2 85 ± 11 84 ± 7 96 ± 4 97 ± 3 98 ± 2 

B 93 94 
City block distance measure 

 Condition 1 Condition 2 Condition 1 Condition 2 
 EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 

2 62 ± 9 34 ± 7 25 ± 4 96 ± 3 97 ± 4 99 ± 2 68 ± 7 28 ± 7 30 ± 8 89 ± 4 96 ± 3 96 ± 3 
3 86 ± 8 55 ± 9 55 ± 7 94 ± 4 98 ± 2 98 ± 3 84 ± 6 52 ± 7 49 ± 5 96 ± 3 97 ± 3 98 ± 2 
4 96 ± 4 66 ± 7 63 ± 6 96 ± 4 97 ± 3 97 ± 3 90 ± 3 67 ± 5 61 ± 7 95 ± 4 95 ± 4 97 ± 3 
5 96 ± 4 83 ± 6 78 ± 5 96 ± 2 98 ± 2 99 ± 3 97 ± 4 78 ± 4 73 ± 8 97 ± 4 98 ± 3 98 ± 2 
6 97 ± 2 86 ± 4 84 ± 7 98 ± 2 98 ± 2 98 ± 3 97 ± 3 89 ± 4 87 ± 6 99 ± 2 97 ± 5 99 ± 1 
B 94 95 

Table 3 Selection 1: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for cosine and correlation distance 
measures. EOG denotes the results of the EOG data set, V4 the VOG data set with 
four features and V7 with seven features. The best value or values of every selection 
(column) are given in bold face and their mean is B 

With normalisation Without normalisation 

Cosine distance measure 
Condition 1 Condition 2 Condition 1 Condition 2 

k EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 
2 53 ± 6 24 ± 6 25 ± 7 93 ± 2 99 ± 2 98 ± 2 55 ± 6 843 ± 9 28 ± 4 91 ± 5 94 ± 3 96 ± 4 
3 79 ± 4 42 ± 7 41 ± 9 87 ± 6 97 ± 4 98 ± 3 82 ± 6 61 ± 9 40 ± 6 88 ± 7 95 ± 4 97 ± 2 
4 91 ± 3 60 ± 6 65 ± 8 93 ± 4 97 ± 2 96 ± 1 93 ± 3 72 ± 8 56 ± 7 95 ± 3 95 ± 6 99 ± 2 
5 96 ± 4 73 ± 7 79 ± 7 93 ± 2 98 ± 3 98 ± 2 95 ± 3 83 ± 3 66 ± 9 97 ± 4 96 ± 5 99 ± 2 
6 96 ± 3 83 ± 6 84 ± 5 97 ± 2 97 ± 3 98 ± 4 98 ± 2 88 ± 4 76 ± 4 97 ± 3 97 ± 3 98 ± 2 
B 93 93 
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Table 3 Selection 1: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for cosine and correlation distance 
measures. EOG denotes the results of the EOG data set, V4 the VOG data set with 
four features and V7 with seven features. The best value or values of every selection 
(column) are given in bold face and their mean is B (continued) 

Correlation distance measure 

Condition 1 Condition 2 Condition 1 Condition 2 

 

EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 

2 49 ± 9 20 ± 5 18 ± 4 93 ± 6 98 ± 2 98 ± 2 60 ± 5 42 ± 9 25 ± 7 88 ± 5 94 ± 4 95 ± 4 
3 76 ± 7 43 ± 9 43 ± 6 90 ± 3 97 ± 3 97 ± 3 87 ± 6 57 ± 5 40 ± 7 88 ± 5 96 ± 3 97 ± 3 
4 92 ± 4 59 ± 7 60 ± 9 93 ± 4 96 ± 3 98 ± 3 92 ± 5 69 ± 8 52 ± 4 93 ± 4 97 ± 3 98 ± 2 
5 93 ± 5 71 ± 7 76 ± 7 96 ± 4 97 ± 3 97 ± 3 95 ± 4 78 ± 7 62 ± 8 95 ± 4 98 ± 2 98 ± 4 
6 96 ± 3 83 ± 3 80 ± 7 96 ± 3 99 ± 1 98 ± 2 99 ± 2 89 ± 6 78 ± 7 96 ± 3 99 ± 2 99 ± 2 
B 92 93 

We also computed means B of the best accuracies of the columns to roughly estimate 
possible differences between distance measures and with or without normalisation. 
Whether the normalisation of the features was applied revealed no differences. For the 
results within single distance measures, the situations varied slightly, but generally there 
were no differences between their best values. In most of all cluster numbers there were 
none, but occasionally differences greater than 5% appeared between the use of V4 and 
V7 for 2–4 clusters of condition 1 in the VOG data set. Considering still the means of the 
best values and comparing the four distance measures with each other we noticed that 
there were virtually no differences between them. 

Next we ran tests using k nearest neighbour searching, linear and quadratic 
discrimination analysis, and naïve Bayes rule. All tests were implemented similarly to 
that mentioned above for clustering. Nonetheless, we did not normalise feature values 
except in k nearest neighbour searching. Since there were k (>1) nearest neihgbours 
involved in every classification instead of 1 compared to all other classification methods, 
we did not use directly majority vote. The verification procedures in Section 4 were 
modified to indicate a correct verification in condition 1 provided that 

1 ,
1

x a
ka a bc

−>
− +

 

where a, b and c were defined in Section 4 and k is the number nearest neighbours and  
x equals the number of correctly classified saccades of subject i. Here the left side was 
compared to the a priori probability of a correct verification. For condition 2 the opposite 
operator (≤) was employed since correct verification decisions then corresponded to 
matching with non-users’ saccades more frequently than with those of a right user.  
The results are presented in Tables 4 and 5. The Euclidean distance measure was applied 
to these tests. 

While running k nearest neighbour searching its maximum was 11, since no more 
than 12 saccades were used for a right user, in other words, for the smaller class.  
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According to Table 4, the tests of condition 1 were classified better than for condition 2. 
According to Table 5, linear discriminant analysis generated the best results for  
condition 1. Instead, quadratic discriminant analysis was best in condition 2. 

Table 4 Selection 1: Results in percentages for k nearest neighbour searching (k equal to  
1, 3, 5, 7, 9, or 11). EOG denotes the results of the EOG data set, V4 the VOG data set 
with four features and V7 with seven features. The best value of each column is given 
in bold face 

 Condition 1 Condition 2 

k EOG V4 V7 EOG V4 V7 

1 73 ± 8 82 ± 6 82 ± 6 58 ± 9 74 ± 8 63 ± 5 
3 82 ± 6 84 ± 5 89 ± 5 62 ± 7 73 ± 5 67 ± 7 
5 86 ± 6 88 ± 3 87 ± 5 66 ± 7 71 ± 7 68 ± 9 
7 87 ± 6 89 ± 4 91 ± 4 59 ± 6 65 ± 9 64 ± 8 
9 85 ± 4 88 ± 2 89 ± 2 51 ± 7 58 ± 4 57 ± 3 
11 82 ± 3 87 ± 1 87 ± 2 60 ± 6 51 ± 6 53 ± 8 

Table 5 Selection 1: Results in percentages for linear and quadratic discriminant analysis and 
naïve Bayes rule. EOG denotes the results of the EOG data set, V4 the VOG data set 
with four features and V7 with seven features. The best value of each column is given 
in bold face 

Condition 1 Condition 2 
Method EOG V4 V7 EOG V4 V7 

Linear discriminant 99 ± 1 84 ± 5 82 ± 4 78 ± 4 70 ± 6 76 ± 9 
Quadratic discriminant 96 ± 2 86 ± 5 37 ± 7 85 ± 8 83 ± 5 92 ± 4 
Naïve Bayes rule 97 ± 3 78 ± 3 80 ± 4 87 ± 5 83 ± 7 80 ± 7 

We still computed tests for the second selection mentioned above, which incorporated 
more non-users and more saccades of non-users in training sets than in the first selection. 
On the basis of the a priori probabilities of its two classes, the right user and non-users, 
condition 1 could become more difficult to verify and vice versa for condition 2. 

We ran k-means clustering tests similar to those shown in Tables 2 and 3. 
Nevertheless, since the results obtained were quite similar between the four distance 
measures, Table 6 only includes results for the Euclidean measure. They indicated how 
the increase of non-users’ saccades in training sets significantly decreased accuracies  
in condition 1. On the other hand, those of condition 2 increased virtually up to 100%. 
The magnitudes of the changes in condition 1 were surprising, although changes were 
indeed expected. For condition 2 the changes were small, because the accuracies  
were already close to 100% in Table 2 and the a priori probabilities in selection 2 
favoured condition 2. 

 
 
 



   

 

   

   
 

   

   

 

   

   332 Y. Zhang et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Table 6 Selection 2: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for the Euclidean distance measures. 
EOG denotes the results of the EOG data set, V4 the VOG data set with four features 
and V7 with seven features. The best value or values of every column are given in 
bold face and their mean is B 

With normalisation Without normalisation 
Euclidean distance measure 

k Condition 1 Condition 2 Condition 1 Condition 2 
 EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 
2 28 12 10 97 100 100 21 ± 8 6 ± 2 6 ± 3 99 ± 2 100 100 
3 42 18 13 99 100 100 38 ± 4 9 ± 2 14 ± 5 100 100 100 
4 60 26 20 98 99 100 50 ± 8 19 ± 5 21 ± 5 99 ± 1 100 100 

Table 6 Selection 2: Clustering results in percentages of k-means (k equal to 2, …, 6) without 
and with feature value normalisation to [0,1] for the Euclidean distance measures. 
EOG denotes the results of the EOG data set, V4 the VOG data set with four features 
and V7 with seven features. The best value or values of every column are given in 
bold face and their mean is B (continued) 

With normalisation Without normalisation 
Euclidean distance measure 

k Condition 1 Condition 2 Condition 1 Condition 2 
 EOG V4 V7 EOG V4 V7 EOG V4 V7 EOG V4 V7 
5 72 35 26 99 99 98 56 ± 7 28 ± 5 22 ± 7 100 100 100 
6 78 46 34 100 99 99 63 ± 9 36 ± 8 34 ± 9 100 100 100 
B 76 72 

Finally, we tested nearest neighbour searching (Table 7) and the other three classification 
methods (Table 8). Compared to the results in Table 4, the method of nearest neighbour 
searching gave slightly better results for condition 2, as expected, but only a few percent 
poorer for k equal to 1 in condition 1. Linear and quadratic discriminant analysis and 
Bayes rule altered the best results of condition 2 from Table 5 to Table 8. 

Table 7 Selection 2: Results in percentages for k nearest neighbour searching (k equal to  
1, 3, 5, 7, 9, or 11). EOG denotes the results of the EOG data set, V4 the VOG data set 
with four features and V7 with seven features. The best value of every column is 
given in Bold face 

Condition 1 Condition 2 
k EOG V4 V7 EOG V4 V7 
1 69 ± 5 79 ± 4 80 ± 6 70 ± 8 80 ± 5 75 ± 5 
3 83 ± 6 88 ± 2 87 ± 5 66 ± 12 72 ± 8 76 ± 6 
5 86 ± 5 86 ± 6 87 ± 4 62 ± 9 69 ± 11 75 ± 5 
7 86 ± 5 89 ± 3 89 ± 3 61 ± 8 67 ± 5 73 ± 6 
9 90 ± 4 90 ± 4 91 ± 6 58 ± 8 69 ± 7 67 ± 8 
11 87 ± 5 88 ± 3 89 ± 2 54 ± 5 60 ± 7 60 ± 7 
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Table 8 Selection 2: Results in percentages for linear and quadratic discriminant analysis and 
naïve Bayes rule. EOG denotes the results of the EOG data set, V4 the VOG data set 
with four features and V7 with seven features. The best value of each column is given 
in bold face 

Condition 1 Condition 2 
Method EOG V4 V7 EOG V4 V7 

Linear discriminant 89 ± 6 87 ± 4 84 ± 3 89 ± 6 87 ± 4 87 ± 3 
Quadratic discriminant 97 ± 2 85 ± 3 25 ± 2 93 ± 4 89 ± 4 98 ± 2 
Naïve Bayes rule 90 ± 2 65 ± 3 69 ± 3 98 ± 3 97 ± 2 92 ± 4 

6 Conclusion and discussion 

In the following we draw conclusions on the results obtained. On the basis of Tables 2-8 
nearest neighbours produced poorer results for condition 1 compared to those of other 
methods. Further, selection 2 was more successful for condition 2 than selection 1 
according to Tables 4 and 7. Although the results for condition 2 could be improved from 
selection 1 to selection 2, the results for condition 1 did not drop. Unlike with the other 
methods, the results of k-means clustering for condition 1 were greatly impaired along 
with this change, where clustering favoured the majority class of non-users. Instead, 
linear and quadratic discriminant analysis and naïve Bayes rule were fairly intolerant of it 
in condition 1, but could improve results in condition 2. Neither normalisation nor choice 
of distance measure seemed to affect the results in clustering.  

Computing with or without normalisation did not lead to differences in these data 
sets, but since the scales of the seven features applied are very different, it is reasonable 
to return to this issue later in the future research after having collected larger VOG data 
sets. Viz., latency and duration are roughly in [0.05,0.5], amplitude in [10,70], accuracy 
in [–40,30], maximum velocity in [100,1100] and maximum acceleration and 
deceleration in [10000,100000]. The current VOG data was our preliminary data set.  
In the VOG data the differences between the results of either four or seven features 
varied and were mostly small, a few percent. Thus both could be applied. 

The results introduced could not be easily compared with the results of the 
verification tests presented for fingerprints and face images, among others, since these 
test situations and methods were very different. However, looking at classification 
accuracy values only, our results turned out well. It was possible to verify a right subject 
(condition 1) up to 90% and even close to 100% with the EOG data and also to detect an 
imposter as such at its best for the current data. For those other eye movement or related 
results (Bednarik et al., 2005; Kapczyński et al., 2006; Kasprowski and Ober, 2004), they 
obtained various results for subject identification. For 9 subjects they obtained average 
false acceptance rates of 1.4-17.5% and average false rejection rates of 12.6-35.6% 
depending on a classification method (Kasprowski and Ober, 2004), for 47 subjects 
average false acceptance rates of 4.8% and average false rejection rates of 9.4% 
(Kapczyński et al., 2006), and for 12 subjects 90% accuracy based mostly on distance 
between eyes (not actually on eye movements) (Bednarik et al., 2005). Nearest neighbour 
searching yielded false acceptance rates of 5.4 % and false rejection rates of 56.6 %, but 
C4.5 trees gave poor false acceptance and good false rejection rates (Komogortsev et al., 
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2010). Altogether, they recorded 68 subjects, but only 41 subjects passed criteria set for 
the analysis. Our highest accuracies were better than those of the few other studies 
published so far. 

Although EOG recordings are not relevant in the planned routine use of eye 
movements for the verification of users because of the skin electrodes needed, they were 
useful in the present research to predict how the results might have been better while 
waiting for more effective videocamera systems in the future regarding their sampling 
frequency (frame rate per second). As was seen, the results obtained with EOG were 
sometimes (for condition 1 in Tables 2, 3 and 6) slightly better than those with VOG.  
A probable cause is the higher sampling frequency of EOG applied, 400 Hz, compared to 
the low one for the VOG data, 30 Hz only. There are VOG systems with higher 
frequencies up to at least 500 Hz, but they are expensive. After all, we also showed here  
that it is possible to verify a user with a low frequency camera, which is a beneficial 
property when considering the use of eye movement for verification. 

As one-dimensional signals eye movements can be fairly easily measured and rapidly 
analysed in the theoretical time complexity sense compared to image data.  
Eye movements can also be measured in difficult circumstances such as in dim light. The 
stimulation can be run within one minute, which is enough to include 30–40 saccades, 
perhaps only in 30–45 s. 

What could be possible problems concerning user verification based on eye 
movements? Falsification is out of the question here since it is virtually impossible to 
imitate some one else’s eye movements. Modern videoacameras can function well  
in difficult circumstances regarding illumination and temperature. An interesting issue is 
ageing (Lanitis, 2010) for most biometric techniques. Saccades may become slower with 
age, which would decrease, e.g., maximum velocity and latencies could become longer. 
However, the meaning of such possible phenomena is negligible in the current context of 
user verification, because this can always be implemented so that the verification system 
is adaptive, where after each acceptable login the training data buffer of the users’ 
saccade features would be updated with a new item, leaving out the oldest one.  
A few dozen items would be sufficient in such a data buffer. Thus the period from which 
the content of the buffer is collected would be short, perhaps a few weeks. Moreover, 
computers, mobile phones etc. are seldom used for more than five years. A more drastic 
effect on eye movements might be caused by some disease affecting eye movements 
(Henriksson et al., 1980; Juhola et al., 1997, 2007; Pyykkö et al., 1984). These, however, 
are very infrequent. The adaptation property of the verification system would then be 
very useful. 

A problem could be a possible variability in individuals’ saccade feature values.  
If a subject’s saccades vary too much at short intervals, say during days, this may cause 
difficulties in distinguishing his or her saccades from those of others. However, such 
studies have been reported showing no significant differences between different 
measurement times. For instance, no statistically significant differences had been 
obtained when average maximum velocities of 58 healthy subjects were computed within 
an interval of two weeks (Bollen et al., 1993). Nevertheless, we are going to study this 
matter in the future. 

In the future we shall collect measurements from more subjects and develop our 
technique on the basis of the research introduced. We believe that eye movements could 
be used for verification when eye movement videocamera systems are used like 
webcameras at the moment. The encouraging results of the verification experiments 
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presented support these objectives well. There are still several other classification 
methods worth testing. Logistic discriminant analysis has sometimes been effective.  
Like support vector machines they are designed for binary classification in particular. 
Neural networks such as multilayer perceptron networks, learning vector quantisation 
networks, self-organising maps (Kohonen networks), and radial basis function networks 
are possible, but neural networks frequently require a large amount of training data. Thus 
their use might be complicated. Decision trees may cope well with small amounts of data 
and imbalanced class distributions. 
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a b s t r a c t

Matching digital fingerprint, face or iris images, biometric verification of persons has advanced.

Notwithstanding the progress, this is no easy computational task because of great numbers of

complicated data. Since the 1990s, eye movements previously only applied to various tests of medicine

and psychology are also studied for the purpose of computer interfaces. Such a short one-dimensional

measurement signal contains less data than images and may therefore be simpler and faster to

recognize. Using saccadic eye movements we developed a computational verification method to

reliably distinguish a legitimate person or a subject in general from others. We tested features extracted

from signals recorded from saccade eye movements. We used saccades of 19 healthy subjects and 21

otoneurological patients recorded with electro-oculography and additional 40 healthy subjects

recorded with a videocamera system. Verification tests produced high accuracies.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Fingerprints [1,3], face [2–4] or iris images [1,2] have been
intensively studied and developed for the biometric verification
and identification of subjects. Further, human palms [5] have
been studied for the biometric verification and identification.
Multimodal verification has also been researched, for example by
applying fingerprint, face and hand geometry data [2].

We define verification as a condition according to [4,6] where,
for example, the right user of a computer is due to be recognized
and any other person to be recognized as an impostor. Actually,
the subject could be a certain person in general such as a patient
in a hospital, but since the test is made with a computer we
call him or her as a user here. Identification [4] can be understood
as a more complicated situation, where any person given has
to be recognized from among a very large group of members.
In the present study we introduce a method which applies
a subject’s rapid eye movements called saccades to the biometric
verification.

Fingerprint, face, iris, palm and possibly other images are two-
dimensional data or even include more than two dimensions,
which contain great numbers of data. Our aim was to apply
smaller data quantities pursuing faster and, above all, simpler
signal analysis and pattern recognition tasks for verification.
Using simpler recognition objects than, for instance, faces in
images, computational complexity can be reduced. An advantage

could be faster computation. Computation of eye movement
signals could also be done with lesser powerful processors as in
mobile phones. A disadvantage might be the loss of wider degree
of variables in the sense of more versatile data types.

Even after intensive research on the use of fingerprints, face
and iris images, these objects still consist of difficulties for the
sake of their complicated data types subject to the automatic
recognition to be performed by a computer. For example, face
images of an individual may considerably vary according to
acquisition conditions [4] the pose of the face with respect to
the camera, illumination, facial expressions, wearing glasses,
sunglasses or a hat, aging, or changing hairstyle.

Since short one-dimensional signals can include far less data
than two-dimensional images, the former could be easier and
faster to be analyzed. Obviously, very few attempts only have
been made to utilize one-dimensional signals for the biometric
verification, except voice [2]. These studies have considered
almost merely ECG signals [7–12]. These approaches have been
methodological with respect to their signal analysis techniques,
but less considering their applications, for instance, with the idea
to use identification while transferring ECG signals between a
patient’s mobile phone and a hospital [12]. ECG signals of good
quality require measurements with skin electrodes attached to
the chest. The detection of several precise features, e.g., durations
of parts of QRS complexes, requires that electrodes are attached to
the certain locations of the body. The requirements directly
restrict the biometric verification of a subject to special applica-
tions such as signal transferring of patient ECG data.

The biometrics verification techniques described above are
called physiological. The other alternative is to apply behavioral
biometrics [13] where verification is frequently on the basis of
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muscle control such as keystrokes, gait or signature. An important
characteristic of biometrics then depends on time or duration
between the beginning and end to do something specifically
determined that is used to verify a subject. Behavioral biometrics
researchers attempt to quantify behavioral traits exhibited by
subjects in order to separate different feature values between
these [13]. For example, gait feature fusion was presented in
which verification was computed with hidden Markov models
[14]. Mouse dynamics is also studied for biometrics [15]. Gaze
based verification [16] and visual attention research [17] are
related to our present study, but the interest in these areas
usually covers such issues as at what location or at what object
a subject looks in the visual field.

A novel alternative for the verification task is to apply eye
movements, saccades particularly. These are very fast eye move-
ments that can be measured with eye movement cameras. Eye
movements are generated by six eye muscles of each eye. The eye
muscles are functioning constantly even when the eyes do not
move keeping the eye directed at a fixed target. If the gaze is due
to move to a new target, the ‘‘control signal’’ from the brain to the
eye muscles changes to move the eyes to a new position and to
keep them there [18,19]. The visually controlled ocular stabilizing
systems of man produce saccade, nystagmus and smooth pursuit
eye movements. The saccade system responds to an error in the
direction of the gaze with respect to the position of a target by
starting a fast movement called saccade, to correct this retinal
position error and brings the visual target to the fovea in the
shortest possible time. Smooth pursuit eye movements require
much longer stimulation periods than saccades. Nystagmus is a
reflexive movement occurring sometimes spontaneously. From
these, saccades are probably the easiest and most practical eye
movement type to be applied to straightforward eye movement
tests. Once started the trajectory and angular velocity of saccades
cannot be voluntarily altered [20]. Therefore, these are suitable
for biometric use.

One of few previous studies touching on biometric authentica-
tion and eyes applied measurements of the blind spot [21]: if an
object is displayed at a position outside the blind spot in the
visual field of a legitimate subject, he sees it and moves his gaze
to it, in other words, performs a saccade to look at it. Another
subject whose blind spot is slightly different should not see it,
making probably no saccade during the following 1 s recorded.
The technique seemed to be complicated, because a user rested
against a chin rest. No machine learning ability (such as nearest
neighbor searching in our later presentation) was applied, and no
accurate saccade features were calculated for the verification
purpose [21]. These are the main points of our approach so that
the system can be ‘‘taught’’ according to a legitimate subject.

Eye movements for biometrics were studied and concisely
described in [22,23] by computing cepstrum for a signal and by
classifying its output values with nearest neighbor searching,
naı̈ve Bayesian rule, decision trees and support vector machines.

The third study [6] on eye movements for the biometric
purpose applied pupil sizes, gaze velocity and distance between
eyes and proposed to use eye movements as an additional
biometric to be integrated with other biometric means. Either
fast Fourier transform or principal component analysis or both
were run for eye movement signals and then performed 3-nearest
neighbor searching with the leave-one-out crossvalidation. After
all, the identification was mostly based on the distance between
eyes as the best biometric feature found. As the authors wrote [6],
this is no feature of eye movements, although was effective in the
identification. In summary, their results showed that there is
discriminatory information in eye movements.

The fourth approach involved a model of the oculomotor system
used for subject verification by means of saccade trajectories [24].

Verification was accomplished with nearest neighbor searching and
C4.5 decision trees.

We developed a method for the verification of a subject, who
uses some device including a computer, an instrument to mea-
sure eye movements and applicable software to control this
instrument and detect eye movements and ultimately to verify
whether he or she is a legitimate subject.

When we have studied eye movement signals for long [25–32]
to develop signal analysis, pattern recognition, data mining and
classification methods for medical purposes, especially otoneur-
ological balance investigations, we have used physiologically
important features (variables or attributes) there. Recently, we
observed how such feature values frequently varied considerably
between individuals [31]. Because these features directly express
a subject’s reactions to a visual stimulus, originate from his or her
natural behavior and are fairly straightforward to be computed,
we used them in the present research. Saccades are easy to
stimulate and natural (voluntary) while reading or looking at
the surroundings all the time and even during the REM (rapid eye
movements) phase of sleep. Using saccades only parts of eye
movements signals are necessary to include in the actual recogni-
tion process, since after the recognition of saccades signal
segments between them can be left out, which further decreases
data used for verification reducing processing.

2. Methodology

2.1. Measurements and saccade features

Our eye movement experiments simulated a condition where
a person sits down at a computer and the computer system has to
verify him or her to be or not to be the legitimate, authenticated
subject. The system consisted of a device (Fig. 1) able to detect a
subject’s eye movements, saccades (Fig. 2), and a program that
computed such physiologically or medically interesting features
from saccades as amplitude [1], latency [s], accuracy [1] and
maximum angular velocity [1/s] (Fig. 3). Latency is the time
difference between the beginnings of the stimulus movement
and response, saccade, which is a voluntary, rapid eye movement.
Accuracy is equal to the difference of the amplitudes of the
stimulation and saccade. To compute the maximum angular
velocity, the first derivative was approximated by differentiating
an eye movement signal numerically and searching for the
maximum velocity during the eye movement. Its location is

Fig. 1. The subject followed, by his gaze, the light spot (in the LED bar)

horizontally jumping abruptly from one location to another after varying intervals.
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approximately in the middle of the duration of a saccade. We
selected these features, because they and some other are gen-
erally employed for diagnostic purposes in medical and physio-
logical eye movement studies in order to reveal exceptional
values affected by diseases and disorders. We took these four
particularly after having observed how clearly they varied
between individuals [31].

2.2. Stimulation

In our simulation the task of a subject was to follow, by the
gaze, a small stimulation target corresponding to a moving target
on the computer screen for approximately one minute so that eye
movements could be recorded during that session. This was an
easy task and it is of inherent curiosity to follow a moving target
in the visual field by the gaze.

We used a stimulation target that jumped horizontally in the
visual field of a subject and was a switched-on LED in the eye
movement stimulation device as in Fig. 1. By switching off one

LED and another on in the bar in Fig. 1 the system moved the
stimulation light abruptly from one location to another. Intervals
between jumps and also amplitudes were randomly varied
slightly so that a subject could not anticipate movements of the
light. We applied this stimulation type [28] commonly used for
decades in medical eye movement investigations since it was very
easy for a subject and rapid to perform. It was important that a
spectator could not anticipate a stimulation movement, because
the anticipation would mean that he or she would not respond to
an actual stimulation, but would make somewhat random eye
movement. Naturally, the motivation for this stimulation type
was also that we knew that subjects’ responding eye movements,
saccades, differed more or less between individuals [31]. For
classification methods based on machine learning it is important
that there are as many as possible eye movements (or data in
general) stimulated in the similar way to collect a large enough
training set so that a classifier could be trained to reliably
separate subjects. On the other hand, a measurement should be
as short as possible so that subjects did not become fatigued, a
test was easy to make and verification results could be computed
fast. According to our experience [25–32] and numerous medical
sources, e.g., [33], a suitable duration was from 30 s to a few
minutes to be sufficiently long for the signal analysis purpose, but
not too long to cause fatigue or tiredness.

Our experiments simulated a situation, where a subject was
due to look at a small, horizontally jumping target and his or her
eye movements were recorded for the verification purpose. Every
subject was seated in chair at a fixed location and with the same
distance from the stimulation device. Although the heights of the
subjects naturally varied, the stimulation angles between their
eyes and stimulation light dots were always identical for all
subjects. At first, the test was carefully explained and demon-
strated to everyone to avoid misunderstandings how to do it. In
addition to a testee and the researcher, nobody else attended in
the laboratory. The objective was then that the computer program
is able to recognize or verify whether the person is a legitimate
subject or not.

Although horizontal, vertical and even torsional (the rotary
axis approximately the same as the visual axis) eye movements
can be measured, horizontal stimulation movements were only
used, because we could then restrict ourselves to one one-
dimensional signal, producing simpler and less data, faster to
analyze than two one-dimensional signals like horizontal and
vertical eye movements, or two- or three-dimensional signals
such as images. Our objective was to form as straightforward
verification task as possible, since this approach enabled short
measurements. Since a training set of saccades was inevitably small
because of short measurements, it was important to use only a few
features to enable successful test circumstances for a classifier.
If there had been several features designed to be used for verifica-
tion, there should obviously have been a greater number of training
cases, more data or longer signals for a classifier. On the other hand,
there is few features used with eye movements and the currently
employed are typically used, for example, in otoneurology [31] and
other medical subspecialties.

2.3. Eye movement recording and tests

Since the 1960s eye movements are measured electro-
oculographically (EOG) by setting skin electrodes on the corners of
a subject’s eyes. Such signals can be recorded with as high sampling
frequency as the analog–digital converter used enables. In our
previous studies [25,29,30], we found that 400 Hz is sufficiently
high to measure accurately such short and sensitive features as
latency and maximum velocity for the medical purposes. First, we
used such electro-oculographical signals (Fig. 2) stimulated as
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mentioned above and recorded at 400 Hz and lowpass filtered
below about 100 Hz. The information content of saccades is known
to be below 50–70 Hz [25,34]. Since EOG utilizes skin electrodes,
this is not practical for the biometric purpose. However, we were
interested in comparing its results to those of the other technique
with a lower sampling frequency, because we knew that the
sampling frequency of 400 Hz was high enough for the recognition
of saccades, the fastest movements of a human.

The modern way to measure eye movements is to employ two
small videocameras, one for each eye, to follow the pupils of a
subject’s eyes. Such systems have recently been started to use for
clinical eye movement research and also to develop human–
computer interfaces [35]. Signals (Fig. 2) given by this two-
dimensional (horizontal and vertical) video-oculography system
(Visual Eyes, Micromedical Technologies, UK) can be typically
measured with a low sampling frequency, in this case with 30 Hz
(image resolution 320�240). This is no topmost sampling fre-
quency for eye movements, since there are systems applying [6]
50, 60, 120 Hz or even more like 250 Hz [23] and also including
the third, torsional dimension. Nevertheless, our interest was to
employ a moderate sampling frequency so that it would be closer
to webcamera-like eye movement videocameras probable in
future computers.

It is rather obvious than potential that in the future human–
computer interfaces will be extended to other tools in addition to
a keyboard and mouse. Eye movement cameras can be used to
follow targets of a subject’s gaze on a computer screen. Further,
we were interested in experimenting with the videocameras of
the low resolution and sampling frequency to study whether it is
possible to record eye movements accurately enough so that their
sensitive features could be extracted, notwithstanding the low
resolution and sampling frequency, from eye movement signals
for the biometric verification of subjects. Since 30 Hz was far
lower than 400 Hz used for EOG signals, we linearly interpolated
eye movement signals given by the present video-oculograhpy
(VOG) system. Twelve samples were interpolated between each
pair of consecutive samples in a VOG signal because the rounded
ratio of 400 and 30 Hz is 13. Virtually the same sampling interval,
2.5 ms, was then the time interval for latency (Fig. 3). The
amplitude resolution was 0.5–1.01 for eye movement signals
calibrated (built-in in the systems).

During all tests every subject was asked not to move the head.
The duration of the EOG signals were 80 s, and that of the VOG
signals 64 s. Since the latter included fewer stimulation move-
ments of large amplitudes (over 401) than the former, three VOG
signals were recorded successively from every subject. The signals
(20 s parts in Fig. 2) included stimulation movements following
each other after 1–3 s. More or less randomly varying intervals
between stimulations were important so that no subject could
learn to guess when a stimulation movement appeared. Similarly,
stimulation amplitudes (Fig. 3) were randomly changed. Not only
maximum amplitudes, which were 601 for EOG and 481 for VOG
signals, were stimulated, but also smaller to achieve a randomly
varying stimulation sequence from a subject’s viewpoint. There-
fore, a subject could not learn such a stimulus sequence although
it was repeated. The larger the amplitudes, the greater differences
could be obtained for feature values computed from saccades
[31,36–38]. Variation between subjects enabled separation
between these in the recognition. If there had been no random-
ness in time intervals and amplitudes of stimulation movements,
a subject could have attempted to anticipate some of stimulation
movements. No anticipation was allowed, because anticipated
saccades are no actual responses for stimulations. No saccade,
with the latency less than 0.120 s, was incorporated into the data
sets. This value was seen as the lower limit [31,36] for physiolo-
gical reasons. Visual information is transferred via eyes into the

brain to detect a stimulation and then information back as a
‘‘command’’ to move eyes. Thus a saccade appearing before its
actual stimulation or before the limit of 0.120 s after the stimula-
tion would have been rejected as anticipation.

Although smaller amplitudes (just used for variation to avoid
anticipation) than either 601 for EOG or 481 for VOG signals were
also stimulated, such small amplitudes were excluded in the
actual biometric verification, since apparently the differences of
the feature values of saccades with smaller amplitudes would be
minor between subjects. Viz., feature values depend on stimula-
tion amplitudes [25–27,29,36–38]. For instance, large saccade
amplitudes yield greater maximum velocities than those of small
amplitudes, since a saccade needs time to accelerate. Measure-
ments of all test subjects included at least 12 large saccades (601
for EOG or 481 for VOG). Employing both measuring ways eye
movements of 40 subjects were measured, 80 subjects altogether.
All our subjects measured with VOG were healthy. Among those
measured with EOG there were 19 healthy subjects and 21
otoneurological patients.

2.4. Signal analysis and final data for verification

The EOG eye movement signals were analyzed according to a
method presented earlier, among others [31]. The VOG signals
containing less noise than the EOG signals were analyzed with
conventional signal analysis techniques. The main approach of
both was to compute their angular velocity signals by approx-
imating the first derivatives of the original position signals and
from velocity signals to detect the locations where the velocity
values rapidly increased or decreased corresponding to the
beginnings or ends of saccades. A threshold velocity value of
101/s was employed here. The beginnings of the stimulation
movements were also detected being simple, because their
intervals were known and their step-like signals were very
regular (Fig. 2).

The EOG data consisted of 40�12¼480 saccades from 19
voluntary, healthy subjects and from 21 otoneurological patients
with the average age of around 50 years and roughly equally of
both sexes. The VOG data also contained 12 saccades from each of
40 voluntary, healthy subjects (14 females and 26 males), whose
average age was 2979 years. We tested different groups to
include versatile data. After the recognition of every valid saccade
its amplitude, accuracy, latency and maximum velocity were
computed. The means and standard deviations of the amplitude,
latency, accuracy and maximum velocity features were 527111,
0.24970.137 s, �5791 (the negative accuracy corresponded to
undershooting, i.e., smaller response amplitudes than stimula-
tions) and 62171211/s in the EOG data and 477111,
0.21570.055 s, 2781 and 96672961/s in the VOG data. The
greater maximum velocity of the latter is a consequence of the
different recording systems.

Velocity values (approximated first derivative) of VOG data
were computed with the formula of two-point central difference
differentiator (m equal to 3) where x is an eye movement signal,
v is a velocity signal to be computed, time interval T is equal to 1/f
(f sampling frequency) and N is the number of signal samples:

v lð Þ ¼
x lþmð Þ�x l�mð Þ

2Tm
,l¼mþ1,::,N�m ð1Þ

There exist various manners to approximate derivatives. For
instance, another is to compute linear regression in a sliding
window through a signal and apply slope values given by its
formula (optimal in the sense of least squares sums). To clarify
these alternatives we also computed maximum velocity values on
the basis of the two-point central difference differentiator with
m equal to 1–4, when the window length was 2mþ1¼3, 5, 7
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and 9 samples, and with slopes of linear regression within the
window length of 3, 5, 7 and 9 samples. Results obtained for the
VOG signals are given in Table 1. Their differences were small.
Thus we chose the alternative mentioned above (window length
of 7 samples). Note how these differentiators function as lowpass
filters: the longer the filter window, the slightly smaller max-
imum velocities [25,39].

In principle the approximation formula of velocity values also
affected values of latency, duration and amplitude values slightly.
However, for the VOG signals such differences were very small
because the signals were interpolated from 30 to 390 Hz which
made the interpolated signals virtually noiseless. Since no noise
would affect the locations of beginnings and ends of saccades,
effects of the velocity computation on latency, duration and
amplitude values were negligible. Nevertheless, we applied those
different formulas together with the following concept.

To examine the separation ability of the features we calculated
ratios of interindividual and intraindividual variations in the
following [40] where j denotes a feature, n equals the number
of subjects, %uij equals the mean of feature j of subject i, āj is the
mean of feature j of all subjects, ukj is the value of feature j of
saccade k of subject i and pi is the number of the saccades of
subject i. The greater the ratio, the better discriminating feature
was found:

rj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=n

Pn
i ¼ 1 uij�aj

� �2
q

1=n
� �Pn

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=pi

Ppi

k ¼ 1 ukj�uij

� �2
q ð2Þ

Results given by the preceding formula are shown in Table 2
for all four features and separately for EOG and VOG signals.
Moreover, results of EOG healthy subjects and patients are also
shown. For the EOG signals velocities had earlier been computed
with the slopes of linear regression using the window length of
6 samples. (At the beginning the EOG signals were also filtered
with a median filter of length 11 samples [29,31], because these

signals sampled at 400 Hz were relatively noisy compared to the
VOG signals.) All result values were small indicating relatively
large intraindividual variation. The ratios for latency and max-
imum velocity were greater for the EOG saccades than for the
VOG saccades. Therefore, the EOG saccades would probably
enable better classification results. Presumably this came from
the higher original sampling frequency of the EOG signals. None-
theless, we cannot be sure about this since the subjects of the two
sets as well as their saccades were not the same. Hereafter we
consider the signals of all EOG subjects together as one data set.

3. Recognition tests for the verification of subjects

Our objective was to design a technique which could be used
to verify a legitimate subject, but at the same time be able to
reject any other subjects as impostors. This approach can be
divided into two test conditions. For the former we describe in the
following how a legitimate user could be recognized. For the
latter we present a test procedure how all other subjects could be
rejected as impostors. In future the term called ‘‘non-user’’
corresponds to other subjects than a legitimate user. Some of
non-users’ saccades were employed to be one part of a training
set, whereas the other part was based on saccades of a legitimate
user. Because our data sets were measured from two rather
limited groups of 40 subjects, we employed leave-one-out testing
procedure that is suitable for small data sets. As normal in
machine learning, the main idea was to vary randomly the
contents of training sets in order to enable statistically reasonable
results for tests. See Appendix 1.

In the preceding ways we built two test conditions to simulate
that a computer user had to be verified through saccades and an
impostor was not verified to be a legitimate user. These were two
opposite conditions relevant to any biometric verification man-
ner. We constructed two alternatives to vary a ratio between the
numbers of saccades of a legitimate user and non-users in a
training set. For alternative A we took a¼11 saccades of a
legitimate user (see variables from Appendix 1) and one saccade
from each of c¼18 non-users for condition 1. For condition 2 we
then took a¼11 saccades of a legitimate user and 2b¼18 saccades
from b¼9 non-users and tested with two saccades from each of
9 impostors. Note that impostors had to be disjoint from non-
users, in other words, impostors’ saccades could not exist in a
training set since they had to be unknown to the verification
system. For alternative B we increased the share of non-users in
training sets. For condition 1 we now took a¼11 saccades of each
subject (as a legitimate user) and one saccade from each of c¼38
non-users. For condition 2 we took a¼11 saccades of a legitimate
user and 2b¼38 saccades from b¼19 non-users. We tested with
one saccade from each of 20 impostors.

We repeated every test series p¼10 times. Subject to both EOG
and VOG data, for alternative A we obtained 10�40�12¼4800
tests for condition 1 and 10�40�18¼7200 tests for condition 2.
For alternative B we then obtained again 4800 tests for condition 1
and 10�40�20¼8000 tests for condition 2.

Table 1
Means and standard deviation of maximum velocity [1/s] values computed with different formulas for 40 VOG signals.

Formula Window length

3 5 7 9

Two-point central differentiator 9877307 9797303 9667296 9477286

Slope of linear regression 9877307 9817304 9717299 9597292

Table 2
Ratios between interindividual and intraindividual variations for the features of

amplitude, latency, duration and maximum velocity: for the VOG signals results

given for all differentiators and for the EOG signals results given separately for

healthy subjects and patients.

Method and data set Feature

VOG Window

length

Amplitude Latency Accuracy Maximum

velocity

Two-point central

differ. differentiator

3 0.71 0.44 0.62 0.68

5 0.77 0.44 0.64 0.68

7 0.77 0.44 0.64 0.68

9 0.67 0.44 0.65 0.68

Slopes of linear

regression

3 0.71 0.44 0.62 0.68

5 0.73 0.44 0.64 0.68

7 0.73 0.44 0.64 0.68

9 0.71 0.44 0.65 0.68

EOG: Slopes of linear regression

19 healthy 6 0.75 0.95 0.75 1.35

21 patients 6 0.45 0.98 0.49 1.36

40 subjects 6 0.71 1.44 0.58 1.44
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For verification we applied k-nearest neighbor searching, linear
and quadratic discriminant analysis and naı̈ve Bayesian classifica-
tion, where a saccade represented by its four features (amplitude,
accuracy, latency and maximum velocity; Fig. 3) was compared to
saccades of a training set, either from a legitimate user or other
subjects (non-users). For k-nearest neighbor searching the number
of the closest cases (k-nearest neighbors where k was an odd
integer) classified into the class of the same subject (legitimate
user) was compared to a priori probability of the class of this
legitimate user as to be shown later. Classification was determined
on the basis of such comparison. Of course, if the nearest neighbors
were classified to be from the same subject as a case to be tested,
this was the right recognition, but otherwise wrong. Closeness was
computed by using Euclidean distance between saccades on the
basis of four features computed. For linear and quadratic discrimi-
nant analysis and naı̈ve Bayesian classification we ran tests by using
majority vote for a test subject’s saccades between two classes: a
legitimate user and non-users.

Since the number of the saccades of a subject was small, we
applied the leave-one-out principle suitable for the classification
of small test sets: one by one, each saccade was the only case in a
test set and other cases forming the cases of a training set to
which the test case was compared.

For each test of condition 1 there were 12 large amplitude
saccades (one of them alternately as a test case) from a legitimate
user (every subject in turn) and one saccade from each of 18 other
subjects (non-users) in alternative A. If a decision had been a pure
guess, it would have been wrong, since its probability was greater,

18/29, of two possibilities. The task of the 11 saccades was to
represent the class of a legitimate user in the feature space formed
by the four real-value features and that of other 18 saccades to
represent the class of non-users. Since obviously the latter with
more subjects than one should include a larger part in the feature
space, it was reasonable to incorporate more saccades into the class
of non-users. For alternative B the above probability was 38/49,
higher than that of alternative A. These a priori probabilities show
that for condition 1 alternative A was easier for verification than
alternative B, but for condition 2 this was vice versa.

According to the leave-one-out procedure we tested all saccades
of each subject, one saccade by one, by computing Euclidean
distances between the one selected and all other saccades of the
same subject and then between the one and those of the other
subjects (non-users). Following nearest neighbor searching techni-
que we computed k nearest neighbors (saccades), k in {1, 3, 5, 7, 9,
11}. The k nearest neighbors were sorted according to whether they
represented a legitimate user or non-users. Since there were kZ1
nearest neighbors due to be searched for, for condition 1 we
classified a test saccade to represent a legitimate user provided that

x

k� t
4

a�1

a�1þb� c
ð3Þ

where a equals the number of the saccades of a legitimate user in a
training set, b those for each of c non-users, x the number of
candidate saccades (nearest neighbors) from the class of a legitimate
user, k the number of nearest neighbors searched for and t the
number of tested saccades per subject. For condition 2 this formula
was similar, but its comparison was opposite (r).

For other methods than nearest neighbor searching the major-
ity of the test saccades determined the class: a legitimate user or
non-users. We then computed the same tests using linear and
quadratic discriminant analysis and naı̈ve Bayesian rule.

We used feature values as both unnormalized and normalized
into scale [0, 1]. Nevertheless, both alternatives yielded rather
similar verification outcomes. All the test programs described
were programmed with Matlab R2010aTM (MathWorks Inc., USA).

4. Results

The two test conditions and alternatives were run according to
the procedures of the preceding section for both eye movement
data sets including measurements from 40 subjects (different
people in the sets). Using each subject’s saccades p¼10 test runs
were repeated by randomly varying saccades of non-users used in
training sets. The outcomes of nearest neighbor searching in
percentages are given in Table 3 with the data normalization

Table 3
Correct verifications of two data sets (EOG and VOG) with data normalization and

two test conditions of (1) a legitimate user vs. non-users and (2) impostors vs. a

legitimate user in percentages for the different odd numbers of nearest neighbors

(saccades) found. Alternative A included smaller training sets than alternative B, in

which the part of non-users was increased.

Verification results [%] Number of nearest neighbors k searched for

Data set and test

condition

k¼1 k¼3 k¼5 k¼7 k¼9 k¼11

Alternative A

EOG(1) 7676 7878 8578 8178 78710 7276

VOG(1) 6877 7875 8177 8475 8274 8175

EOG(2) 6179 7078 64710 6479 5779 5775

VOG(2) 6678 7076 66710 6179 5377 5477

Alternative B

EOG(1) 7279 7474 8076 8675 84710 84712

VOG(1) 6977 6975 7676 8076 7978 8177

EOG(2) 5977 6579 6178 64711 63712 6177

VOG(2) 6577 6579 6776 6576 64711 63710

Table 4
Correct verifications of two data sets (EOG and VOG) without data normalization and two test conditions of (1) a legitimate user vs.

non-users and (2) impostors vs. a legitimate user in percentages for the different odd numbers of nearest neighbors (saccades)

found. Alternative A included smaller training sets than alternative B, in which the part of non-users was increased.

Verification results [%] Number of nearest neighbors k searched for

Data set and test condition k¼1 k¼3 k¼5 k¼7 k¼9 k¼11

Alternative A

EOG(1) 7675 8276 8278 80710 7879 7174

VOG(1) 7075 7477 8075 8477 8378 8375

EOG(2) 6477 66711 6578 6275 61711 5879

VOG(2) 6976 7177 6876 6178 5678 5679

Alternative B

EOG(1) 7279 7573 7977 8576 83710 83712

VOG(1) 6976 6976 7774 8077 7977 8177

EOG(2) 57710 6579 62710 6679 6579 59711

VOG(2) 6179 6679 6677 6778 63714 6278
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and in Table 4 without this. The greatest k was equal to 11 since
we used 12 saccades to represent each subject.

For test alternative A the results of test condition 1 simulating
the verification for a legitimate user vs. non-users yielded 85% of
EOG test subjects and 81% of VOG test subjects correct on the
average for the best nearest neighbor searching test set-ups. Then
their false rejection rates (FAR) also called Type I error or false
negative rate were 15% and 19%. The results of test condition 2
simulating a legitimate user vs. non-users tested with the
impostors seemed to be a more difficult classification problem
according to the results in Tables 3 and 4. On the basis of k equal
to 3 the average results of 70% correct with nearest neighbor
searching were obtained. Then false accept rate also called Type II
error or false positive rate was around 30%.

Results of linear and quadratic disrciminant analysis and naı̈ve
Bayesian classification are shown in Tables 5 and 6. Mostly the EOG
results were better than the VOG results. Throughout Tables 5 and 6
for condition 2 the average results were approximately 10% better
than the corresponding best results of nearest neighbor searching in
Tables 3 and 4. Naı̈ve Bayesian rule gave poor results, less than 50%,
for the VOG data of alternative B and condition 1, but resulting in
high average accuracies for condition 2. The latter phenomenon is as
expected for the binary classification, since the a priori probability in
Alternative B favored the larger non-users’ class. The use of data

normalization did not affect the results crucially although the scales
of the features varied greatly.

Let us remember that we have to look at the results of
conditions 1 and 2 of the same test set-up at the same time,
because these are the opposite sides of testing: either a legitimate
user or a random impostor. There were only small differences
(a few percent) between the results of the corresponding test set-
ups in Tables 3 and 4. Between test results in Tables 5 and 6
differences were 0–3%. The results gained with or without data
normalization did not virtually differ from each other.

5. Conclusions

Our measurements included two types of eye movement
signals, those recorded electro-oculographically (EOG) and those
from image recordings of the videocamera system or video-
oculography (VOG). The advantage of the former was its high
sampling frequency (400 Hz), while that of the latter was fairly
noiseless eye movement signals. The disadvantages were noisi-
ness often present in the former and the low sampling frequency
interpolated in the latter. Not only concentrating on the latter,
which is naturally the motivation for the biometric verification
and recognition for practical reasons, we also used EOG signals to
compare their results and to estimate what increasing sampling
frequencies of forthcoming VOG systems could produce.

In most situations the EOG measurements achieved better results
on the average than the VOG measurements. We suppose that the
higher original sampling frequency of the EOG signals resulted in
better verification results when this property produces more accurate
feature values compared to far lower sampling frequency of the VOG
signals. Data normalization did not seem to affect results. As
expected, alternative B was an easier approach for condition 2 than 1.

For Alternative A the best EOG results of 90% (condition 1) and
91% (condition 2) were obtained with naı̈ve Bayesian rule, but the
EOG results of quadratic discriminant analysis were virtually similar.
Correspondingly, the best VOG results of 74% and 82% were obtained
with quadratic discriminant analysis. For Alternative B the best EOG
results of 86% (condition 1) and 97% (condition 2) were also
computed with quadratic discriminant analysis as. Similarly this
yielded the best VOG results of 72% and 93%. The results obtained
are competitive with the following results. Eye movement identifica-
tion rates were given in [22] average false accept rates of 1.4–17.5%
and average false rejection rates 12.6–35.6% depending on classifiers
were gained. For the former, nearest neighbor searching of k equal 7
gave the best results. For the latter, naı̈ve Bayesian classification gave
them. Average results of 4.8% for false accept rate and 9.4% for false
rejection rate were later presented [23]. In [24] they obtained false
accept rates of 5.4% and false rejection rates of 56.6%. In [6], the
feature of distance between eyes produced the best results, 90%
accuracy for identification. However, test alternatives including
velocity values of eye movement signals without the previous eye
distance gave lower values. Since the use of eye movement features
only were not tested [6], these values cannot actually be compared to
our results. The numbers of the subjects were 12 [6], 9 [22], 47 [23]
and 41 [24].

Intervals between the stimulation movements in our VOG
measurements were fairly long, almost 3 s at their largest.
However, in principle intervals could be well cut down to
approximately 1 s used, e.g., in [28,31]. Because around 30
saccades, from which perhaps 2/3 are of large amplitude saccades
as 401–601, are sufficient to be applied to a verification process, it
is possible to decrease the test duration to 60 s, perhaps even so
short as 45 s. The actual verification process can be computed
virtually in real time because of the fast classification methods
and a small number of signal data. We used these targets

Table 5
Correct verifications of two data sets (EOG and VOG) with data normalization and

two test conditions of (1) a legitimate user vs. non-users and (2) impostors vs. a

legitimate user in percentages by linear discriminant and quadratic analysis and

naı̈ve Bayesian rule classification.

Verification

results [%]

Classifier

Data set and test

condition

Linear discriminant

analysis

Quadratic

discriminant analysis

Naı̈ve

Bayesian

rule

Alternative A

EOG(1) 8975 8679 9073

VOG(1) 6875 7477 6677

EOG(2) 8279 9375 9175

VOG(2) 7276 8277 8475

Alternative B

EOG(1) 8677 8778 7973

VOG(1) 6375 7277 4473

EOG(2) 9174 9675 9971

VOG(2) 8874 9375 9971

Table 6
Correct verifications of two data sets (EOG and VOG) without data normalization

and two test conditions of (1) a legitimate user vs. non-users and (2) impostors vs.

a legitimate user in percentages by linear discriminant and quadratic analysis and

naı̈ve Bayesian rule classification.

Verification

results [%]

Classifier

Data set and test

condition

Linear discriminant

analysis

Quadratic

discriminant analysis

Naı̈ve

Bayesian

rule

Alternative A

EOG(1) 8974 8679 9072

VOG(1) 6676 7275 6879

EOG(2) 8377 9276 9076

VOG(2) 7479 8275 8975

Alternative B

EOG(1) 8777 8677 7873

VOG(1) 6474 7278 4573

EOG(2) 9176 9774 9972

VOG(2) 8777 9076 9971
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described especially, because we knew that this was a natural and
easy test set-up for subjects on the basis of our long-term
research in medical informatics. Some ‘‘effort’’ is needed for any
biometric technique. For example, to take a face or iris image one
has to look at a camera. If eye movement verification data could
be analyzed faster than two-dimensional image data, an eye
movement test can be comparable as to the duration of the
processing time with other biometric alternatives.

To the best of our knowledge, no other attempts have been
published, in addition to the referred articles, to apply eye move-
ments for the verification or recognition of subjects. Of course, there
are several chances to extend our study, e.g., by collecting more data,
and to improve our techniques. We applied the nearest neighbor
searching, linear and quadratic discriminant and naı̈ve Bayesian rule
in the classification. These are perhaps some of the simplest classi-
fication methods. Their important advantage is that they are very
straightforward to program and, in particular, fast for small data sets,
which is essential for the use of such almost real-time computational
tasks as biometric verification and recognition.

In principle the eye movement verification could be used in a
device including a computer and eye movement camera system.
Since saccades of the same subject can vary in the course of time,
at least long time, their feature values could be occasionally
updated to the computer or even regularly after a successful
verification. Machine learning methods applied to our classifica-
tions are effective to adapt along with slightly changing data.
Thus such a method would be used to verify a legitimate user. For
instance, the maximum velocities of 101 saccades recorded with
the infrared reflection technique from 58 subjects varied �2% on
average between two weeks [33]. However, the maximum velo-
city feature is, as to our experience, the most sensitive of those
used. It is calculated along with the noise-sensitive first derivative
of an eye movement signal. Instead, the other features are directly
calculated from an actual signal.

Fatigue, alcohol and aging are known to affect eye movements
[25–39]. In order to prevent effects of fatigue one minute record-
ing time for verification is certainly short enough, because far
longer, such as several minutes, are used in medicine without
visible fatigue. The abrupt effect of alcohol dosage may affect
saccades. However, really greatly affecting fatigue or alcohol
dosage would cripple behavior so clearly that the use of any
biometric verification means would be clumsy in general. Aging is
a slow process. The adaptive system of machine learning methods
could follow it easily if it changed saccades. There are diseases
that affect saccades, but they are infrequent [36–38]. In fact, in
the present study we also used the otoneurological patients’ EOG
saccades affected by diseases that altered saccades on the average
[31]. Notwithstanding this, both patients and healthy subjects of
the EOG data were verified fairly reliably at their best. To
conclude these issues have merely marginal influence from the
practical viewpoint.

In principle the technique presented might be used even with
small devices as mobile phones including a small eye movement
camera in the future. If the width of the screen were 13 cm and the
distance from a user’s eye 15 cm, the angle between the edges of the
screen would be approximately 471, which would be sufficient for the
verification purpose according to our tests described.

In the future we will continue our study by extending our data
and especially by confirming our present results with other classi-
fication methods and test set-ups simulating a legitimate user’s as
well impostor’s use. For instance, support vector machines are
efficient classification algorithms for complicated recognition pro-
blems. They are also computationally fast, a crucial property for the
biometric verification. Moreover, eye movements are interesting for
the biometric use since eye movements of someone else can hardly
be imitated or faked.
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Appendix 1. verification procedures

Condition 1:
For i¼1,y,p do// p iterations are accomplished to calculate

averages
For j¼1,..,n do// n subjects are tested, each of them
alternately as legitimate one

For k¼1,y,a do// leave-one-out procedure
Create a training set by taking a�1 saccades of a

subject j except the kth saccade and choose randomly b

saccades from every of c random subjects l (non-user),
l¼1,y,c, crn�1 (la j).

Create a test set by taking the kth saccade of subject j

(excluded from the training set) as a single test case.
Test by classifying with some method and check

whether its verification outcome was right (legitimate user)
or not.

End
End
Calculate the numbers of right and wrong verifications.

End
Calculate the means and standard deviations of right and

wrong verifications of p iterations.
Condition 2:
For i¼1,y,p do// p iterations are accomplished to calculate

averages
For j¼1,y,n do// leave-one-out procedure

Create a training set by taking a saccades of subject j

and select randomly 2b saccades from every of d¼c/2 (c

even) subjects k (non-user) randomly extracted, k¼1,y,d,
crn�1 (ka j).

For l¼dþ1,y,c, crn�1, la j do// testing impostors
Create a test set by randomly extracting an impostor’s

(the lth subject) saccade as a single test case.
Test by classifying with some method and check

whether its outcome was right or wrong.
End

End
Calculate the numbers of right and wrong verifications

End
Compute the means and standard deviations of right and

wrong verifications for p iterations.
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Abstract: The biometric verification of users of computers or other machines 
is usually performed with fingerprints, face images or even iris or palm images. 
Eye movements have seldom been studied for biometric verification, although 
in the future their use will perhaps extend from laboratory applications to 
integrated parts of computer interfaces. Eye movements have long been studied 
in medical and psychological applications. We have noticed that there are 
differences between saccade eye movements of individuals, even in a group of 
young people approximately of the same age. We measured saccades from 68 
voluntary subjects by performing the same stimulation for each to obtain 
comparable data. We tested two verification conditions: (1) an authenticated 
user vs. all other subjects and (2) an impostor vs. an authenticated user and 
others. Thorough randomized classifications with discriminant analysis, k-d 
tree and k nearest-neighbour searching, decision trees and the naïve Bayesian  
rule provided good verification results at best, but the best results of all were 
obtained with logistic discriminant analysis. 
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1 Introduction 

Several computerized biometric authentication methods have been researched and 
developed in the past 20 years. Perhaps best known are fingerprints (Conti et al., 2010) 
and face images (Pentland and Choudbury, 2000; Frischholz and Dieckmann, 2000). In 
addition, retina, iris (Negin et al., 2000; Sun et al., 2005) and palm print 
(Veeramachaneni, Osadciw, and Varshney, 2005) scanning; voice signals have been 
studied as well. Not only the reliable verification of a subject is essential, but spoofing 
attacks and counterfeits must be detected. Fingerprints and face images have been studied 
frequently and are seen as promising. Nevertheless, there are also problems in reliably 
recognizing faces, for example, because of changing factors such as illumination, glasses 
and hairstyle. Iris images obviously separate individuals well, but both iris and retinal 
images are somewhat complicated to measure. 

Palm vein patterns seem to be effective (Boatwright and Luo, 2007), since they 
are ostensibly different from one individual to the next. Voice (Frischholz and 
Dieckmann, 2000) may be interesting, but is sensitive to background noise and other 
circumstancial factors (Boatwright and Luo, 2007). The voices of same-sex parent and 
child can sometimes resemble each other. Voice biometric data sets are often relatively 
large, as is also the case with images. Therefore, if it is possible to find novel 
physiological measurements that contain smaller data quantities, a verification procedure 
might become simpler and perhaps computationally faster. Information originated from 
images frequently comprises a great number of features: e.g. a face image could require 
as many as 100 different features. As a result, image data analysis is typically a 
complicated process in respect of the demand for a rapid verification service. Of one-
dimensional signals, EEG (Nakayama and Abe, 2012) and ECG (Israel and Irvine, 2012) 
have been researched with a view to use in biometrics, but obviously less than image data. 

In this research, we followed the definition that the verification of the identity of 
a user of a computer or other device is separating a certain subject from the rest of a 
group. On the other hand, another person, an impostor, who might attempt to use the 
computer of the authenticated person, should not be able to log into the computer. 
Identification is defined as a more extensive task in which each subject of a group can be 
separated from anyone else in the group of C individuals, where C is the number of 
individuals in the group. We characterize the former to be two-class or binary 
classification and the latter C-class or multiclass (C>2) classification task. For example, 
the latter is needed for the identification of criminals. For a computer user recognition or 
equivalent task, however, verification is sufficient. A novel biometric technique should 
also be impossible to forge or steal. Passwords are easy to acquire if an impostor finds the 
written password of a user, tricks it out of him or her, or sees at the writing moment, for 
instance, which keys an authenticated user presses. We emphasize that our research 
concerns verification, not identification. 

Eye movements are an interesting and potential objective for biometric 
recognition purposes. They have been investigated for decades in various medical fields 
(Bahill, Brockenbrough and Troost, 1981; Bollen et al., 1993; Fricker and Sanders, 1975;  
Schmidt et al., 1979), in related areas (Joyce, 2002; Juhola, Jäntti and Pyykkö, 1985; 
Juhola, Aalto and Hirvonen, 2007; Salvucci and Goldberg, 2000; Tweed and Vilis, 1990), 
and in psychology (Allik, Rauk and Luuk, 1981; Underwood, Bloomfield and Clews, 
1988). In the recent years, eye movements have also been studied with a view to 
developing human-computer interfaces (Hyrskykari, 2006; Majaranta, 2009). It is useful 
to attempt to utilize such cumulated knowledge. For instance, we can draw the conclusion 
that mostly time domain rather than frequency domain variables have been used to 
evaluate the influence of diseases and physiological disorders on saccadic eye 
movements or to detect these movements. 
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Our interest is directed towards saccades, since these eye movements are 
especially relevant for our current research. The brainstem is partly responsible for 
controlling the saccades of a human being. Some variables, for example latency, reaction 
time or angular velocity, are used to characterize the form and properties of saccades 
measured in the respect of time (Abrams, Meyer and Kornblum, 1989; Sparks, 2002). 
They have been extensively and increasingly studied in many areas such as physiology 
and psychology, but not in biometrics. Saccade latency has been explored in children and 
adults, and children‟s latencies have been found to be longer than those of adults (Yang, 
Bucci and Kapuola, 2002). Infants between four and eight months old were studied to 
determine the latency values of their saccades, which became shorter just during these 
four months (Gredebäck, Örnkloo and von Hofsten, 2006). Saccade trajectory deviations 
were studied for their association with visual attention, with the latency and endpoint of a 
saccade observed to determine its trajectory (Van der Stigchel, 2010). In this area, the 
remote distractor effect is frequently studied. Saccades may be delayed, with longer 
latencies than usual, by the appearance of distractor in a subject‟s visual field, even 
though the target location of the gaze is fully fixed (McIntosh and Buonocore, 2012). 
Effects of suddenly appearing visual stimulations or distractors on saccades were studied, 
and various effects were found, depending on when and where in the visual field the 
distractor appeared (Edelman and Xu, 2009). Saccades have also been used to investigate 
visual memory, with subjects whose eye movements were recorded to evaluate their 
observations after deletions and changes of objects in a scene (Henderson and 
Hollingworth, 2003). In addition, the processing of shape information of subjects in 
human peripheral visual fields has been studied with saccades: Nandy and Tjan (2012) 
looked at problems of visual crowding, i.e. the inability to identify shapes of targets in 
peripheral vision. 

 Eye movements can be measured sufficiently precisely with small eye-
movement cameras so that saccades are possible to detect reliably. Saccades are the 
fastest eye movements, but probably also the simplest to detect and recognize. Of other 
types of eye movements, smooth pursuit could be considered, but they are longer and 
often include small-amplitude corrective saccades (the brain “automatically” correcting 
the direction of movement). Nystagmus is a repeated “sawtooth” reflexive movement that 
must first be stimulated in various ways: e.g. by seating the subject in a rotating chair that 
is then stopped abruptly. Its stimulation is complicated from a practical point of view, and 
nystagmus responses from the same individual may vary considerably. Especially since it 
is involuntary, it cannot be used here. Actually, saccades are obviously the most suitable 
type. They are very natural for us, since looking at almost anything in our surroundings 
involves mostly saccades. To read, we use a sequence of saccades, moving our gaze from 
one unit of a few letters to the next, sometimes returning to the previous unit or changing 
rows. Saccades are seen as paramount to observing the surroundings in several situations 
that depend on visual information. For example, sight is the most important sense in 
traffic. 

Eye movements, particularly saccades (including fixations), are also being 
studied for human-computer interfaces, which means that eye movement camera 
technologies are advancing as well. It follows naturally, then, to look at using eye 
movements in the biometric verification of subjects, although very few attempts have as 
yet been made to use eye movements for biometric purposes. In other studies 
(Kapczyński, Kasprowski and Kuźniacki, 2006; Kasprowski and Ober, 2004), researchers 
recorded saccade signals and used them to compute cepstrum signals. They classified 
their signal analysis results using naïve Bayesian rules, nearest-neighbour searching, 
decision trees and support vector machines. Pupil size, gaze velocity and distance 
between subjects‟ eyes were also used (Bednarik et al., 2005), in which the fast Fourier 
transform and principal component analysis were run for the saccade signals measured; 
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nearest-neighbour searching was used for the classification of subjects. Altogether, the 
technique (Bednarik et al., 2005) was mainly based on distances between the eyes of 
subjects using image analysis, since the other aforementioned variables did not provide 
promising outcomes. Thus, this technique cannot really be applied with eye movements. 
In a recent article (Komogortsev et al., 2010), the authors introduced an approach on the 
basis of a computational model of the oculomotor plant derived from an earlier model 
(Bahill, 1980). These techniques model the function of the six muscles that rotate the 
eyeball during eye movements. The input of their recognition procedure was formed from 
parameter vectors of the model, and they used nearest-neighbour searching and decision 
trees provided by the C4.5 method for classification. They reported better results, i.e. 
fewer false acceptance rates (FAR) and false rejection rates (FRR) than earlier studies 
(Kasprowski and Ober, 2004) when nearest-neighbour searching was used for both. 
However, their test results indicated that the C4.5 decision tree method was not 
promising (Komogortsev et al., 2010). Recently, a new technique for biometric 
identification based on eye movements was published in which face images were shown 
to subjects whose eye movements were monitored at the same time (Rigas, Economou 
and Fotopoulos, 2012). They used minimum spanning trees derived from graphs of the 
fixation points on the plane and classified using nearest-neighbour searching and support 
vector machines. 

In the present article, we introduce a method to employ saccades in verification 
of a user. The method is very different from those in previous studies, since our approach 
is based on physiological variables of saccade eye movements, such as those that have 
long been applied in medical investigations (Bahill, Brockenbrough and Troost, 1981; 
Bollen et al., 1993; Fricker and Sanders, 1975; Schmidt et al., 1979) and related areas 
(Gredebäck, Örnkloo and von Hofsten, 2006; Joyce, 2002; Juhola, Jäntti and Pyykkö, 
1985; Juhola, Aalto and Hirvonen, 2007; Yang, Bucci and Kapuola, 2002). 

The present research was started concurrently with other recently published 
articles in which we used smaller data sets measured with the same device as the present 
data set combined with data sets measured electro-oculographically with skin electrodes 
(Zhang, Rasku and Juhola, 2012; Juhola, Zhang and Rasku, 2013). The latter, old 
measuring method was interesting for comparison purposes because it enabled the use of 
a high sampling frequency. In addition, we made a third measurement series with the 
same device as now (Zhang and Juhola, 2012). However, measuring set-ups and the 
majority of classification methods and their training arrangements as used in those former 
studies were different from those applied in the present research. Some of them, such as 
linear and quadratic discriminant analysis, were also utilised this time for comparison. In 
the present research, we started our signal analysis phase by comparing three different 
interpolation techniques to “artificially” increase the originally low sampling frequency. 
  

2 Saccade eye movement measurements 

We measured saccade signals using a two-camera eye movement detection system 
(Visual Eyes, Micromedical Technologies, UK) with an image resolution of 320×240 and 
a sampling frequency (frames per second) of 30 Hz. As was the case before, the system 
detected positions of a pupil in images and used them to compute eye movements. Both 
horizontal and vertical movements could be registered, but to make the approach as 
straightforward as possible we used horizontal movements only. This is practical for a 
subject and makes a verification test faster. On the other hand, the larger the data set we 
have at our disposal, the more information we can get from a subject‟s eye movements. 
The 30 Hz sampling frequency was low compared to other sampling frequencies used for 
eye movement cameras, i.e. 50 Hz, 60 Hz, 120 Hz or even 1000 Hz. One aim of our 
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research was to simulate the use of web cameras, whose sampling frequencies are usually 
low. It would be useful if user verification could be employed in this context. 

Figure 1. A subject following the stimulation movement (horizontally jumping light dot) with his 
gaze. 

 
 

The same stimulation series was run for each subject to make tests comparable 
to each other. Subjects were asked to watch a jumping small red light (Figure 1). The 
light was an abruptly switched-on LED in the black bar in front of a seated subject. The 
same distance from the LED bar was kept for the chair and every subject, whose alertness 
was checked. Neither alcohol nor medication were permitted during a measurement day 
prior to testing. Only one LED of the row was switched on at a time. When it was 
switched off by the measurement computer, another was switched on so that the subject 
moved his or her gaze between them, making a saccade to the new position after each 
change. Stimulation amplitudes (angles) and intervals between stimulation movements 
were varied so that a subject could not anticipate a movement, which is important in 
obtaining valid responses to genuine stimulation movements rather than extraneous 
movement without any stimulation. Anticipation would occur if a saccade preceded the 
temporally closest stimulation or followed this earlier than 0.120 s, which is considered 
the minimum latency (Juhola, Aalto and Hirvonen, 2007). A subject could not learn the 
stimulation series even after several repetitions because of variations in stimulation 
directions, intervals and amplitudes and the number of saccades to be made. Such 
stimulation set-ups have been used in medical applications for decades (Henriksson et al., 
1980; Juhola, Jäntti and Pyykkö, 1985; Juhola, Aalto and Hirvonen, 2007). 

With the present approach, we simulated a situation in which a computer user 
would sit down to start the computer and to wait for it to boot up. This was assumed to 
end with the stimulation light jumping on the screen as described above roughly 20 times 
to measure the user‟s eye movements and using neither user identifier nor password to 
verify him or her as either an authenticated user or not. A human being is curious. It is 
inherent for humans to follow the “events” on a screen, especially when nothing else 
catches their attention. Naturally, the whole process should be as quick as possible. 

To enable good circumstances for prospective data analysis, it was necessary to 
repeat several large-amplitude saccades in the stimulation series. Relatively large saccade 
amplitudes, preferably at least 40º, were required because large stimulation amplitudes 
can produce sufficient differences between variable values of saccades in different 
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subjects (Juhola, Aalto and Hirvonen, 2007). There may also be some intraindividual 
variation for some saccade variables, at least maximum velocity (Bollen et al., 1993). 
Notwithstanding this, interindividual variation seemed to be more prominent because we 
could detect individuals from among the whole set of subjects in our verification process. 
Results indicated that maximum velocities showed no statistically significant differences 
when 5º and 10º saccades of 58 healthy subjects were measured on two occasions with 
two weeks in between (Bollen et al., 1993). This supported the thought that saccades 
from the same individual do not vary greatly over the course of weeks. Thinking our 
verification simulation of a computer user, this is a long enough time, since variable 
values of saccades of an authenticated user could be collected to a buffer from every 
accepted login. A buffer including perhaps the last ten measurements would be updated 
along with each accepted login, which would adapt to slow average changes. 

Since the sampling frequency was low, only 30 Hz, we approximated saccades 
using linear and other interpolation techniques in order to raise the number of samples per 
second as high as 33-fold to correspond to approximately 1000 Hz. In principle, 300-
400 Hz would be enough to precisely express important physiological features of 
saccades such as maximum angular velocity (Juhola, Jäntti and Pyykkö, 1985). 
Nevertheless, to measure saccades very accurately, even 1000 Hz is also used (Bahill, 
Brockenbrough and Troost, 1981) in laboratory studies. The high precision was desirable 
in order to attempt to increase the success rate of verification. On the other hand, the 33-
fold interpolation is heavy, which might even overstate some values. Recently (Wierts, 
Janssen and Kingma, 2008), it was shown that although a low sampling frequency of 50 
Hz typical to eye movement cameras was applied, accurate maximum velocities of 
saccades were obtained for saccades with amplitudes 5º-28º. Because amplitudes of our 
saccades employed were around twice their maximum, after all this should mean a 
favourable situation. The result (Wierts, Janssen and Kingma, 2008) was obtained with a 
modern eye movement camera, but our old one (Juhola, Jäntti and Pyykkö, 1985) with 
noisy electro-oculographic signals compared to signals measured with videocameras. 

Since our objective was to verify an authenticated user, it was necessary to 
separate him or her from the others, called non-users, using the values of their saccade 
variables. Our main aim was not to attempt to achieve as correct and precise variable 
values as possible (with a high sampling frequency of a special device) as such for them, 
but rather to calculate estimates sufficient to distinguish them from each other. Actually, 
it is no easy question to determine precisely what the correct values are, as they depend 
on many factors such as measuring method and device and the computational methods 
used. 
 

3 Signal detection and data preparation for verification 

The beginning and end of each saccade were detected as precisely as possible. At first, 
the angular velocity of a saccade signal was approximated as the first derivative of a 
signal. As usual with eye movement signals, the beginning of a saccade was found when 
velocity magnitude began to increase and its end correspondingly when its velocity 
magnitude began to decrease close to a small value. The velocity threshold value of 50º/s 
was employed; all saccade variables were computed from responses to fast step-like 
stimulation movements. It usually takes an average of about 0.2 s to generate a saccade 
(Juhola, Aalto and Hirvonen, 2007; Yang, Bucci and Kapuola, 2002). During this time, 
visual information, after observation of the stimulation, is transferred from the eyes to the 
brain and processed there, and control information is transferred to the two sets of six 
ocular muscles that move the eyes. 

We took the largest 20 saccades from each subject by using the same stimulation 
series for each. Five measurements were repeated for each subject, and four saccades 
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larger than 40º were taken from each of five measurements. Using several measurements 
from every subject, our motivation was also to test and ensure that this would not impair 
verification results. In principle, slight calibration variations between different 
measurements could affect values of saccade variables, which could result in the larger 
intraindividual variation of saccade values than within a single measurement of a subject. 
Altogether, 68 voluntary subjects (16 females and 52 males) with the mean age of 25±5 
years were measured. The objective was to test quite young people close to the same age 
so that our data source would form a homogeneous basis so that we could test as difficult 
verification cases as possible. Namely, we assumed that age could affect saccades. 

Saccade variables calculated on the basis of accepted saccades larger than about 
40º are described in Figure 2. All these variables were computed in time domain, since 
we knew that most of them have commonly been used in various medical tests since the 
1970s at least. These variables reflect the physiological condition of subjects with respect 
to their ability to perform saccades and follow their surroundings rapidly. 

Figure 2. A hypothetical saccade curve and its stimulation. Variables computed for verification: 
saccade amplitude, accuracy, latency, maximum angular velocity (approximated first 
derivative of saccade curve), maximum angular acceleration and maximum angular 
deceleration (approximated second derivative). 

 

 
 

Means and standard deviations in the accepted saccades of all 68 subjects were 
as follows: 0.265±0.056 s for latency, 1010±300º/s for maximum velocity, 47±13º for 
amplitude, 5±9º for accuracy, 46700±22500º/s

2
 for maximum acceleration and 

43800±24000º/s
2
 for maximum deceleration. Before computation of the results, cubic 

spline interpolation was applied to the saccades. When means and standard deviations 
varied among the individuals measured, this denoted an opportunity to separate between 
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the subjects. All signal and verification computations were performed using Matlab 
R2010a™ (MathWorks Inc., USA). 

 

4 Verification computation 

We formed two verification conditions to experiment with the data collected. The 
purpose of Condition 1 (Figure 3) was to test whether an authenticated user could be 
detected as such. Condition 1 corresponded to a test of false rejection. The data set used 
for this machine learning task was created by taking all 20 saccades of an authenticated 
user and various samples from other subjects (called non-users) to test whether results 
might depend on the ratio of the sizes of these two subsets. One subset represented the 
saccades of an authenticated user and the other subset corresponded to those of the non-
users. In the space of the six saccade variables, the non-users represented the area outside 
an authenticated user‟s saccades. For the purpose of testing, every subject was alternately 
in the role of an authenticated user and in the group of those other non-users represented. 

 

Figure 3. Verification Condition 1 in a hypothetical two-dimensional variable space. An 
authenticated user‟s saccades should be more similar to each other than to those of 
randomly selected saccades of the other subjects (non-users), whose task is to represent 
the variable space outside the authenticated subject‟s saccades. 

 

 

 

 

 

 

 

 

 

Figure 4. Verification Condition 2 in a hypothetical variable space. Impostors‟ saccades should be 
more similar, on the average, to those of non-users in the training set than the saccades 
of an authenticated user. 

 
Verification Condition 2 (Figure 4) corresponded to the situation of an impostor 

attempting to log in: in other words, a test of false acceptance. We then divided the 
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subjects into three subsets: an authenticated user, the subset of non-users to build the part 
outside him or her in the variable space of a training set, and a distinct subset 
representing impostors. Each of the last two subsets was roughly a half of the whole set, 
the former being 30 and the latter 37 subjects at a time. Impostors had to be outside each 
training set, because we did not “know” their saccades as we knew those of non-users 
used to form that training set together with the saccades of an authenticated user. 

We ran all tests by applying the leave-one-out technique that is suitable in 
machine learning validations with relatively scarce data, since the size of each training set 
was then maximized to n-1 cases (saccades) out of the total of n. One by one, each 
saccade from the whole set selected was the only test case of the current test round, and 
all other selected saccades formed the training set. Each of 20 saccades of an 
authenticated user was tested versus those 19 of the same user and those of the others in 
the training set in Condition 1. The result of a test was correct if a test saccade of an 
authenticated user resembled more his or her own saccades than those of non-users: in 
other words, if the test saccade was classified as being in its own class. 

In Condition 2, impostors‟ saccades were classified against all of the training set 
in the hope that they would resemble, on average, more the saccades of non-users than 
those of the authenticated user in the training set. Saccades taken from an impostor were 
tested and their values calculated, whether their verification results were correct or not. 

Before actual verification tests, we were interested in experimenting with 
different techniques for interpolation of saccades. The simplest choice was to run with 
linear interpolation. However, we could expect it to be too straightforward because of the 
curvature of saccades and therefore it was best to also test other alternatives: a cubic 
spline curve and a piecewise cubic Hermite interpolating polynomial. For these we used 
linear discriminant analysis to find which of the interpolation techniques would result in 
the best verification results. For actual tests we used discriminant analysis, nearest-
neighbour searching with exhaustive searching or k-d search trees, decision trees and the 
naïve Bayesian rule. 

Every test set-up was repeated t=10 times by randomly picking up b saccades 
from c non-users, other than an authenticated user, whose all a=20 saccades were 
involved in the whole set. We ran 10 times n=68 (each was the authenticated user in turn) 
test series for both verification conditions. The next procedures describe our test 
implementations. 

To make classification majority vote was computed: the majority of test 
saccades of a subject determined a decision, the class of an authenticated user or that of 
non-users. For nearest-neighbour searching with exhaustive searching or k-d trees the 
following formula was applied to Condition 1 since k nearest neighbours were searched 
for each test saccade: 

 
x/k r > (a-1)/(a-1+b c)  

 
Numbers a and b were mentioned above, x is the number of the saccades classified into 
an authenticated user‟s class, k the number of nearest neighbours searched for and r the 
number of saccades tested (=a for Condition 1 and =n-c-1 for Condition 2). For 
Condition 2 the inequality was opposite (≤). 
 
 
 
 
 
Verification Condition 1: 
h=0 
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while h< t; h=h+1 {this is iterated to test several random selections} 
i=0; while i<n; i=i+1 {n is the number of subjects in the entire data set} 
 l=0; while l<a; l=l+1 {a equals the number of saccades of subject i} 

To construct a training set: 
Choose a-1 saccades of a user, i, other than the lth saccade 
and select randomly b saccades from each of c subjects j 
(non-users), j=1,…,c, j≠i, c≤n-1. 
To construct a test set: 
Run leave-one-out: Choose a user‟s lth saccade (excluded in 
training) to be the test saccade. 
Classify using method M. 

        end 
Check whether either correct or incorrect verification was obtained: 
either an authenticated user (correct) or some of non-users (incorrect) 
obtained more hits. 

        end 
Compute the numbers of correct and incorrect verifications. 

end 
Compute the means of correct and incorrect verifications for t iterations. 
 
Verification Condition 2: 
h=0 
while h< t; h=h+1  {iterated to test several random selections} 

i=0; while i<n; i=i+1 {n is the number of subjects in the data set} 
 To construct a training set: 

Choose a-1 saccades of user i and select randomly b saccades from 
each of c subjects j (non-users) randomly selected, j=1,…,c, j≠i, c<n-1. 
q=c+1; while q<n, q=q+1; q≠i, {n-c-1 impostors are tested} 

To construct a test set: 
Run leave-one-out: Randomly pick up an impostor‟s saccade 
(the qth subject) to be the test saccade. 
Classify using method M. 

        End 
Check whether either correct or incorrect verification was obtained: 
either an authenticated user (incorrect) or some of non-users (correct) 
received more hits. 

        end 
Compute the numbers of correct and incorrect verifications. 

end 
Compute the means of correct and incorrect verifications for t iterations. 
 
 

The two procedures could be united, but we ran separate tests due to the relative 
scarcity of subjects. Performing tests on the basis of the separate procedures, we were 
able to vary training sets more extensively than we could with one procedure including 
both test types. Namely, Condition 2 required both training saccades of non-users and test 
saccades of impostors: in other words, two separate sets, in addition to the saccades of an 
authenticated user. Condition 1 did not incorporate impostors, yielding more extensive 
opportunities for the selection of non-users. 
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5 Computational results 

At first we computed the classification results from linear discriminant analysis after all 
the saccade signals were interpolated using the techniques mentioned above. The motive 
here was to find the best interpolation technique for large-amplitude saccades measured 
using the current device. Our effectiveness criterion was the accuracy of correct 
classifications for the two verification conditions described. Accuracy was computed on 
the basis of the outermost loops of the preceding verification procedures as follows. For n 
subjects and t iterations, the mean accuracy A is 
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where dh stands for the number of correct classifications of iteration h in each procedure. 

The mean results of the correct verifications obtained are shown in Figure 5. 
False acceptance and false rejections rates are sometimes used, and can be calculated 
straightforwardly by subtracting accuracies from 100% in Condition 1 for false rejections 
and in Condition 2 for false acceptances. 

The five sizes of training sets given in Figure 5 correspond to different divisions 
between the numbers of saccades of an authenticated user and those of non-users. Each 
subject had 20 saccades measured. In addition to an authenticated user, there were 67 
other subjects. First, one saccade was taken randomly from each of a=20 non-users 
randomly selected (ratio 19:20) for a training set of 39. Second, b=1 saccade from each of 
c=40 non-users in Condition 1, or b=2 saccades from c=20 non-users in Condition 2 
(ratio 19:40) for a training set of 59. Third, from 60 non-users, either one (19:60), two 
(19:120) or three (19:180) saccades were selected randomly for training sets of 79, 139 or 
199 for Condition 1. In Verification Condition 2, there were either two (19:60), four 
(19:120) or six (19:180) randomly selected saccades from each of 30 non-users. Note that 
the saccades of 37 other subjects serving as impostors formed the data source for a test 
set. Still, for training sets of 39 or 59, the number of test subjects was 47, since we used 
each subject in two of the three roles (authenticated user, non-user or impostor) to utilize 
the data maximally for tests. 

For Condition 1, all 20 saccades from each subject were tested as if they were 
from an authenticated user. For Condition 2, the saccades of each impostor were run. 
Since random selections were used for the subsets of non-users and impostors, all these 
tests were repeated ten times to vary the contents of the two subsets. For Condition 1, 
there were 68×20=1360 tests, which were repeated ten times to calculate the means for 
each size of training sets and method. Correspondingly, for Condition 2 there were 
68×{47|37} ={3196|2516} tests repeated ten times. 

Let us consider the results shown in Figure 5 and the way we evaluated their 
meaning in general. We have to assess verification results xi and yi by maximizing the 
results of both verification conditions at the same time: 
 

      sizesset  training ,maxmax  iy
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It is important that an authenticated user is accepted with as great a degree of certainty as 
possible according to xi of Condition 1, and that an impostor is rejected reliably according 
to yi of Condition 2. We can handle this maximization by calculating, for example, the 
sum of the accuracies of both conditions: 
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Figure 5. Mean accuracies of correct classifications for Verification Conditions 1 (C1) and 2 (C2) 
after interpolating saccade signals using linear, cubic spline and cubic Hermite 
techniques before linear discriminant analysis classifications for five training sets 
between an authenticated user‟s saccades and those of non-users. 
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Of course, we pursued a situation where it would be as difficult as possible for an 
impostor to succeed in logging in. For this reason, we increased the number of non-users‟ 
saccades when thinking that there should be more possible representatives of non-users 
than one authenticated user. Thus, non-users ought to cover a clearly larger area in the 
variable space formed by the six saccade variables selected than the part covered by an 
individual authenticated user. 

According to the results in Figure 5, differences were small between the 
interpolation techniques. When s of the cubic spline interpolation was a few per cent 
better than the other on the average, we chose it for actual verification tests. 

Our main results were obtained by computing tests for Verification Conditions 1 
and 2 with different classification methods. First, we employed linear, quadratic and 
logistic discriminant analysis and nearest-neighbour searching with exhaustive searching 
or with k-d trees. Nearest-neighbour searches were run with k (number of nearest 
neighbours) equal to 1, 5, 9 and 13, for which a classification decision was computed 
according to the inequality given above to classify a saccade case in one of two classes: 
authenticated user or a subset of non-users. Figure 6 shows results of discriminant 
analysis. Figures 7 and 8 present those of nearest-neighbour searching. Figure 9 includes 
results of decision trees performed with pruning and the naïve Bayesian rule. 

In Figure 6, the standard deviations of the means presented were 1.1%-4.9%. 
The linear and quadratic discriminant analysis methods were better than logistic 
discriminant analysis for training set sizes other than 39, for which the latter was better 
and the best of all methods throughout Figures 6-9. However, for other training set sizes, 
it greatly favoured Condition 2 and mostly failed in Condition 1. 
 

0 

20 

40 

60 

80 

100 

120 

39 59 79 139 199 
Training set size 

Linear: C1 
Linear: C2 
Spline: C1 
Spline: C2 
Hermite: C1 
Hermite: C2 

Accuracy [%] 



   

 

   

   

 

   

   

 

   

    Biometric verification of a user based on eye movements    
 

    

 

 

   

   

 

   

   

 

   

       
 

Figure 6. Mean accuracies of correct classifications for subjects in Verification 
Conditions 1 (C1) and 2 (C2) with five sizes of training sets: linear (LinDA), quadratic 
(QDA) and logistic (LogDA) discriminant analysis. 
 

 
 
Figure 7. Mean accuracies of correct classifications for subjects in verification 
Conditions 1 (C1) and 2 (C2) with five sizes of training sets: exhaustive nearest-
neighbour searching with k equal to 1, 5, 9 or 13. 
 

 
 

 
Linear and quadratic discriminant analysis methods succeeded better in Condition 2. The 
discriminant analysis methods were clearly superior to exhaustive nearest-neighbour 
searching in Figure 7 and a few percent better than k-d tree searching in Figure 8. In 
Figures 7 and 8, standard deviations were 1.1%-6.1% and 1.4%-5.9%. In Figure 7, the 
best result was obtained with k equal to 5 and a training set size of 39. The results were 
fairly stable for other k values except 1 and for other sizes of training sets. In Figure 8, 
the best result was given by k equal to 1 and a training set size of 39. Otherwise, the 
results varied slightly. Results were impaired at k values greater than 1, whereas in 
Figure 7 this depended on verification conditions. Both searching methods were better for 
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Condition 1 than Condition 2, which was the opposite of the case with most pairs in 
Figure 6. In Figure 9, standard deviations were 1.1%-4.9% and decision trees were 
superior to the naïve Bayesian rule for a training set size of 39, but otherwise inferior. 
Both methods were considerably better in Condition 2 for the other training set sizes. 
 
Figure 8. Mean accuracies of correct classifications for subjects in Verification 
Conditions 1 (C1) and 2 (C2) with five sizes of training sets: k-d tree searching with k 
equal to 1, 5, 9 or 13. 
 

 
 
Figure 9. Mean accuracies of correct classifications for subjects in verification 
Conditions 1 (C1) and 2 (C2) with five sizes of training sets: the naïve Bayesian rule and 
decision trees. 

 
 
 
As regards the result values in all figures, we emphasize that these values 

indicate how many of the test subjects were classified correctly as authenticated users for 
Verification Condition 1 or as impostors for Condition 2. Thus, the values do not denote 
the numbers of saccades correctly classified, although decisions are based on such 
information. 
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Up to now, sizes of training sets other than 39 and 59 did not seem to yield the 
highest results when both verification conditions were taken into account at the same 
time. The results of logistic discriminant analysis were the best, but they were highly 
prone to poor results in Condition 1 with other training set sizes than 39. For this reason, 
we continued our testing by balancing (Swingler, 1996) the sizes of the classes of an 
authenticated user and non-users in a training set. For a training set size other than 39 
(ratio 19:20), we inserted 19 copies of the saccades of each authenticated user once, twice, 
five or eight times to include 38, 57, 114 or 171 cases in an authenticated user‟s class. 
These extensions balanced a priori probabilities between the two classes. Note that our 
original idea of using a skewed distribution for the two classes was adopted from the 
assumption that the class of non-users representing several non-users should be larger 
than that of an authenticated user in the variable space (Figures 3 and 4). The tests were 
repeated the same as previously, but nearest-neighbour searching tests were left out. 
Above, they gave worse outcomes than those of the other methods. In addition, with 
respect to an authenticated user‟s class, our technique of balancing by copying would 
have reduced most nearest-neighbour searching situations to a scenario similar to that of 
k equal to 1. Figures 10 and 11 below show the results obtained: their standard deviations 
were 1.2%-6.1% and 0-5.2% respectively. 

 
 

Figure 10. Mean accuracies of correct classifications for subjects in Verification 
Conditions 1 (C1) and 2 (C2) with five sizes of training sets: linear (LinDA), quadratic 
(QDA) and logistic (LogDA) discriminant analysis. 
 

 
 
 

As shown in Figure 10, the results of linear and quadratic discriminant analysis 
methods did not change considerably, mostly remaining within ±3% (a minimum of -
5.9% and a maximum of 8.5%), compared with the results in Figure 6 before balancing. 
Instead, the results of logistic discriminant analysis for Verification Condition 1 and the 
training set sizes ranging from 78 to 351 in Figure 10 were essentially improved 
compared with the corresponding rows in Figure 6, but the results of Condition 2 did not 
decrease much: 3.7-9.6%. The results of logistic discriminant analysis were clearly better 
than the other method in Figure 10. The best in all figures (6-11) was logistic 
discriminant analysis for the training set size of 234. In Figure 11, the results of the naïve 
Bayesian rule for the training set sizes of 78 to 351 were greatly bettered for Condition 1 

0 

20 

40 

60 

80 

100 

120 

39 78 117 234 351 
Training set size 

Accuracy [%] 

LinDA: C1 
LinDA: C2 
QDA: C1 
QDA: C2 
LogDA: C1 
LogDA: C2 



   

 

   

   

 

   

   

 

   

    Y. Zhang and M. Juhola    
 

    

 

 

   

   

 

   

   

 

   

       
 

compared with Figure 9, but also 15-20% impaired for Condition 2. At the same time, the 
effects on the results of decision trees were minor; they could not be properly classified 
in Condition 1. 

 
Figure 11. Mean accuracies of correct classifications for subjects in Verification 
Conditions 1 (C1) and 2 (C2) with five sizes of training sets: decision trees and the naïve 
Bayesian rule. 
 

 
 

6 Discussion and conclusion 

The results presented in Figures 5-9 revealed the phenomenon of Condition 1 becoming 
easier to verify as the class of non-users in a training set grew smaller. On the other hand, 
Condition 2 was easier to verify, the larger that class was. The reason was simple. 
Calculating a priori probabilities on the basis of these subsets of saccades, the a priori 
probability of obtaining a correct verification in Condition 1 is greatest (49%) with a 
training set size of 39 and smallest (10%) with a training set size of 199. For Condition 2 
the situation is the opposite: 51% and 90%. In principle, one should look at the selection 
that satisfies both requirements as well as possible. Balancing the number of saccades of 
an authenticated user close to that of non-users in Figures 10 and 11 served this aim while 
also improving the results of logistic discriminant analysis and the naïve Bayesian rule. 

Logistic discriminant analysis yielded the best results. Among other methods, 
linear and quadratic discriminant analysis methods were the second-most promising ones, 
but they were inclined to produce good results only for one of the two conditions. This is 
a typical problem for binary classification in general. Nearest-neighbour searching and 
naïve Bayesian rules produced poorer results and decision trees the poorest results of all. 

It is, naturally, essential to eliminate the possibility of an impostor occasionally 
succeeding in logging into a computer, so it was best to choose the ratio for training sets 
that provided the highest possible expectation of preventing impostor success. At the 
same time, verification of an authenticated user has to be reliable. In this sense, the best 
results are in Figure 10. Since the training set sizes of 234 (ratio 114:120) and 351 (ratio 
171:180) satisfied these two opposite requirements for both verification conditions while 
applying logistic discriminant analysis, they were the best choices. 

The results of the few other publications on this research theme are not directly 
comparable because their methods, data and objectives were different from ours. Their 
average false acceptance rates of 1.4-17.5% and the average false rejection rates of 12.6-
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35.6% depended on a different classification method for nine subjects (Kasprowski and  
Ober, 2004), average false acceptance rates of 4.8% and the average false rejection rates 
of 9.4% for 47 subjects (Kapczyński, Kasprowski and Kuźniacki, 2006), and 90% 
accuracy for 12 subjects (Bednarik et al., 2005). The last study‟s results were, however, 
obtained mainly on the basis of image analysis with distances between eyes, not with eye 
movements. Recently reported were false acceptance rates of 5.4% and false rejection 
rates of 56.6% with 41 subjects tested (Komogortsev et al., 2010). The results gained 
with minimum spanning trees were approximately 70% correct with nearest-neighbour 
searching and a support vector machine after applying the equal error rate technique 
(Rigas, Economou and Fotopoulos, 2012). However, please note that none of these 
results cannot be directly compared with ours: their approaches were very different; they 
used different eye movement recording systems and test set-ups; and they obviously 
performed identification in the sense defined in Section 1. In the results of our present 
research, false rejections were obtained from the first condition and false acceptances 
from the second condition by reducing their accuracy values from 100%. 

To summarize, our results indicate that it is possible to distinguish an 
authenticated user from a set of other subjects, and that a training set collected from an 
authenticated user must be sufficiently large, preferably more than 100 saccades. Class 
sizes for an authenticated user and for non-users representing the area in the variable 
space outside an authenticated user should be approximately equal. In a case such as ours 
with the current data, copying the scarce saccade data of an authenticated user could be 
used to balance the two classes successfully. Furthermore, our results showed that the 
variables selected were good for the purpose of biometric verification and for the test set-
ups used in our present research. In a signal analysis sense, all these variables were of the 
time domain type. We did not use variables based on frequency, for instance, given by 
power spectrum. A weak point of these variables might be the possible instability over 
the course of a longer period of time: say, days, weeks or more. Researchers have 
investigated their variability only infrequently (Bollen et al., 1993; Schmidt et al, 1979), 
so we intend to study this substantive issue in the future by performing pertinent repeated 
measurements for groups of the same subjects. 

Since good accuracies were gained, we consider the user verification procedure 
introduced to be promising and worth investigating further. Naturally, we intend to 
collect data from more subjects, study other classification methods, and test alternatives. 
Obviously, it is possible to design other ways to use saccades for the verification of an 
authenticated user. A good feature of using eye movements is that they can hardly be 
stolen or emulated. 
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Abstract—In biometric verification, a signal, image or other 

dataset is measured from a subject to detect him or her to be 

or not to be an authenticated subject such as the user of a 

computer. So far, biometric verification has mainly been on the 

basis of fingerprints or face images, infrequently other images, 

e.g., iris. We studied the idea to apply fast eye movements 

called saccades to verify an authenticated user from among 

other subjects. We recorded eye movement signals with eye 

movement cameras using a suitable visual stimulation for a 

subject. By means of machine learning methods, we classified a 

subject’s eye movements to verify whether one was an 

authenticated user.  We employed multilayer perceptron 

networks, radial basis function networks, support vector 

machines and logistic discriminant analysis for classification. 

The best accuracy results obtained were approximately 90% 

and showed that it is possible to verify a subject according to 

saccade eye movements. 

Keywords-biometric verification; eye movements; saccades; 

multilayer percetron neural networks; radial basis function 

networks; support vector machines; logistic discriminant analysis 

I.  INTRODUCTION 

So far, various biometric data sources have been used to 
verify a subject. Mostly fingerprints [1, 2] and face images [3] 
are applied to this task. Other images measured from subjects 
such as iris images [2, 4] are also studied. In addition to these 
two-dimensional data sources, one-dimensional signals are 
also used, e.g., voice signals [5]. Usually, these datasets 
contain an abundance of data and several variables are 
computed from them to ground the verification procedure on 
variable values of different subjects. Data mining tasks 
needed here may be complicated because of complex data. 

Eye movements are a new potential alternative for 
biometric verification. Eye movements have been researched 
for decades in medicine. During the past 15 years eye 
movements have become an important research objective for 
human-computer interfaces. Along with these applications 
efficient eye movement cameras have been developed. Since 
there is long-term experience in the signal analysis of eye 
movements, for example [6-8], for biomedical and 
physiological applications, it was a direct development to 
attempt to utilize them for biometric verification of a subject 
simulating a computer user. Note that verification 
corresponds to the binary classification between two classes: 
an authenticated user and other subjects. 

There are a few different eye movement types such as 
saccade, nystagmus, smooth pursuit and vestibulo-ocular 
reflex eye movements [7]. Probably the most frequent of all 
are saccades which are made while looking at surroundings 
or reading a text. In addition, they are very fast, in fact the 
fastest movements of man. They are easy to visually 
stimulate and their recording does not require more time than 
a few minutes for our tests. Those other eye movement types 
would require longer recordings or more complicated 
stimulation arrangements [7]. For these reasons, we chose 
saccades to be our data sources here, particularly after 
observing differences between saccades of individuals [7]. 

Up to now, a couple of attempts only have been 
published about this idea to use eye movements for biometric 
verification. In one research [8] they recorded saccade eye 
movement signals to compute cepstrum from these and 
classified signal analysis outcomes by using naïve Bayesian 
method, nearest neighbour searching, decision trees as well 
as support vector machines. In another research [9] they used 
a computational oculomotor model on the parameters of 
which verification was based using nearest neighbour 
searching and decision trees. Our approach differs from 
those since we use physiological variables computed from 
eye movement signals. Most of these variables have been 
employed for long in biomedical investigations [6,7]. 

II. EYE MOVEMENT DATA 

We recorded saccade eye movements with a two-camera 
system (Visual Eyes, Micromedical Technologies, UK). Its 
resolution is 320×240 and sampling frequency or frames per 
second 30 Hz. The camera system recognized positions of 
each pupil from successive images of a video stream to 
detect eye movements. The system records horizontal and 
vertical signals, but we used the horizontal direction only. 
We wanted to keep the arrangement as simple as possible for 
stimulation design so that this was simple for a subject in 
order to avoid complex stimulations. Furthermore, using 
simple stimulations means that long recordings are not 
necessary which is important to see this biometric 
verification idea as sensible. On the other hand, the more 
data from each individual, the easier it is perhaps to separate 
him or her from the group of other subjects. The sampling 
frequency of 30 Hz was low compared to other typical ones 
used in eye movement camera systems such as 50 or 60 Hz, 
occasionally even higher like 200 Hz. Nevertheless, it was 
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interesting to see whether this low sampling frequency 
allowed verification. Perhaps using a higher frequency in the 
future could only better results because of more accurate 
variable values to be computed. The system included one 
camera for each eye embedded in the mask attached tightly 
with a headband. The one of lower noise level of two eye 
movement signals was used for verification. Usually, both 
are almost identical. 

We used the same stimulation series for every subject. 
This is, of course, the essential detail for biometric 
verification so that we can assume that every subject has 
followed the same stimulation by his or her gaze and we can 
classify them according to their eye movements. Each 
subject saw a horizontally jumping LED light dot in front of 
him or her. The stimulation component of the eye movement 
recording system included a horizontal LED bar in which 
one LED was switched on for a while, then switched off and 
another switched on immediately, and so on, by varying the 
LED to be next switched on. This way different gaze angles 
were formed. Intervals between light dot jumps were varying 
to make them random for a watching subject. Since intervals 
of 1-3 s were short and varying, the spectator could learn 
neither them nor varying stimulation angles. Varying, 
“random” intervals are important to minimize anticipations 
of a subject while waiting for the next stimulation movement. 
Anticipation would occur if latency or reaction time from the 
beginning of a stimulation movement to the beginning of its 
response, saccade, were shorter than 0.120 s seen as a 
minimum latency in the physiological sense [7].  It takes 
some time for the brain to observe a movement and control 
the response to move the eyes. 

The present stimulation arrangement was used to 
simulate the beginning of a computer session where a user 
would first sit down to start the machine and to wait for its 
initialization. We can imagine that the eye movement 
stimulation would be run immediately after the initialization 
by stimulating a subject with a few dozen stimulation 
movements on the screen of a computer or mobile device. 
Thereafter, the verification procedure would be run. 

We used saccades with the largest stimulation amplitudes 
of around 48º only since saccades of such large amplitudes 
contain greater differences between subjects than those with 
small amplitudes [7]. Great differences between subjects aid 
in verification. Nonetheless, there were smaller stimulation 
angles between large to give a random character between 
stimulations from a spectator’s viewpoint. Consequently, we 
obtained 20 large amplitude saccades from every subject. 
Values of saccade variables depend on saccade amplitudes. 
Thus, we used merely the saccades of the largest stimulation 
amplitude, 

For the sake of the low sampling frequency of 30 Hz, we 
interpolated every signal with a cubic spline method up to 
1000 Hz. The purpose here was to simulate a sampling 
frequency of the newest, expensive high resolution eye 
movement cameras and, most of all, to estimate values of 
eye movement variables more precisely than enabled by the 
original signals sampled at 30 Hz. 
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Figure 1.  (a) The step (broken line) is a stimulation movement produced 

by a horizontally jumping light dot from the left (down in the figure) to the 

right (up). A saccade as a response follows it after a latency. The difference 
between amplitudes determines a negative accuracy, because the saccade 

amplitude is smaller here. A positive accuracy is also possible, but is more 

infrequent than negative. In our tests these values were used as absolute. 
Accuracy, amplitude and latency were three variables used. (b) From the 

saccade signal the first derivative approximation of the velocity curve is 

computed from which (c) the second derivation of the acceleration curve is 
approximated. The maximum velocity, maximum acceleration and 

maximum deceleration were other three useful variables to be computed. 

III. SIGNAL ANALYSIS AND DATA PREPROCESSING 

Fig. 1 depicts an ideal saccade and its stimulation as a 
schema. The first signal analysis task is to detect the exact 
beginning and end of every stimulation movement and those 
of the following response eye movement, saccade. 
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Figure 2.  A smooth  (green) stimulation signal of 64 s sampled at 30 Hz and its (blue) response with saccades.

The former is easy to detect since it is a clear step in a 
signal. The latter may rarely be somewhat corrupted by noise 
or artifacts such as blinks; See Fig. 2, including horizontal 
saccades. 

If a saccade is inaccurate, its amplitude clearly differs 
from that of its stimulation. The brain can rapidly produce a 
corrective saccade with a small amplitude to correct the gaze 
closer to the objective. One cannot sense this correction 
movement, but it is “automatic”. We did not include possible, 
quite infrequent corrective saccades, but determined the 
accuracy of a saccade along with the primary saccade as 
usual. A response to its stimulation movement had to 
resemble a real saccade sufficiently to be accepted for further 
use in signal analysis. In principle a subject might not 
occasionally follow the target with the gaze. This would 
yield no saccade at all. Anticipation as a too early eye 
movement including a latency value less than 0.120 s or even 
a saccade before a stimulation would be rejected as no actual 
responses to stimulations. The quality of signals given by the 
camera system was high with low noise. Thus, rejections of 
eye movements from signals were infrequent, no more than a 
few per cent of all saccades.  

The same stimulation movements (Fig. 2) were run for 
every recording, so that eye movements of subjects were 
comparable with each other. A stimulation series included 
four stimulations with the largest amplitude of 48º. Five 
recordings were run successively from every subject giving 
20 large saccades for a subject. 

The five recordings of each subject formed our data for 
biometric verification tests. The stimulation series also 
contained saccades of smaller amplitudes between those four 
large to make the stimulation series more random-like for a 
subject not able to guess the direction or amplitude of a 

stimulation movement or an interval between two successive 
stimulations. Intervals were 1-3 s within a recording of 64 s.  

After the interpolation of signals, the first derivative and 
second derivative were computed with approximation 
formulas such as two-point central difference differentiation 
[8] from each eye movement signal. A saccade beginning 
was found provided that absolute velocity values rapidly 
increased above a threshold of 50º/s and the corresponding 
saccade end was found when velocity decreased back below 
that threshold. After detecting a saccade and ensuring that it 
was valid according to latency criterion, etc., all its variable 
values were computed and stored: amplitude, accuracy, 
latency and maximum velocity, acceleration and deceleration. 

During recordings, a sitting, alert, relaxed subject was 
asked to follow the stimulation light dot by the gaze. In all, 
we recorded five successive recordings from healthy 132 
subjects from whom 33 were females and 99 males. Mean 
and standard deviation of their ages were 26.2±7.2 years. 
Neither alcohol nor medications were used during 24 h 
before a measurement. We wanted to test mainly young 
subjects in a pretty homogeneous dataset to create a strict 
testing basis. Age, alcohol or medications may have 
influence on values of saccade variables. Means and standard 
deviations were the following: amplitude 48.0±13.4º, 
accuracy 3.2±8.4º, latency 0.269±0.057 s, maximum velocity 
1038±322 º/s, maximum acceleration 47591±23166 º/s

2
 and 

maximum deceleration 44845±24745 º/s
2
.  

IV. VERIFICATION PROCEDURE 

In biometric or whatever user verification, we have to 
prepare two opposite conditions: a subject attempting to log 
in is either authenticated user or impostor. Thus, we built our 
test procedure to take these two conditions into account. 
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When machine learning algorithms are used, we have to 
construct a training set and its corresponding test set. The 
content of these two sets are varied on the basis of available 
data. In the current case, our eye movement data were quite 
limited. Although there were several subjects, the bottle neck 
for tests was the small number 20 of saccades of the largest 
amplitude. Therefore, we implemented two experimental test 
settings called Alternatives 1 and 2. In the one of them for 
every subject there were either three recordings (12 saccades) 
in a training set and the rest of two recordings (q=8 saccades) 
in the corresponding test set. In the other there were four 
recordings (16 saccades) in a training set and one recording 
(q=4 saccades) in its test set. Since from every subject there 
were five recordings all in all, we obtained c=10 different 
combinations of a training set and a test set from five 
recordings for the former Alternative 1 and c=5 
combinations for the latter Alternative 2. These were 
prepared for every of n=132 subjects. Our aim was to test 
our data as broadly as possible as conventional while 
applying data mining methods for classification. 

Our verification task (Fig. 3) comprised two classes. 
Therefore, it was best that the number of saccades of an 
authenticated user and that of other subjects now called 
nonusers were not very imbalanced. We had either m=12 
(Alternative 1) or m=16 (Alternative 2) saccades of an 
authenticated user in a training set. We then took one 
saccade randomly from either 2m=24 or 32 nonusers to test 
Condition 1 (an authenticated user) and, in addition, still one 
saccade to represent an impostor from q=8 or 4 other random 
subjects. Nonusers and impostors were naturally represented 
by different random subjects from among n-1=131 subjects 
(an authenticated user excluded). At first, we implemented 
tests with this approach since we may assume that randomly 
selected subjects represent a more extensive area in the 
variable space than one authenticated. Nonetheless, we 
noticed that better results could be obtained by once copying 
the saccades of an authenticated user to balance the class size 
of an authenticated user’s class and that of nonusers to be 
equal 2m. Copying once m saccades of the former increased 
the density of these saccades in a dataset. 

In the verification procedure, the following symbols are 
also employed. All tests were repeated r=10 times since 
there were random choices of saccades of nonusers and 
impostors and also random initializations, among others, in 
multilayer perceptron networks. To test the remaining q 
saccades were taken to a test set where q was equal to 8 
(Alternative 1) or 4 (Alternative 2). Symbols TP and FN 
equal the numbers of true positive and false negative 
decisions in classifications and FP and TN those of false 
positive and true negative decisions. On the basis of the two 
former, a decision for a subject is made whether a test 
subject is an authenticated user (Condition 1). 
Correspondingly, the two latter are used for a decision 
whether a test subject is an impostor (Condition 2). 

 
C11=C21=C12=C22=0; % counters for correct classifications 
of authenticated users and those of impostors 
 
For h=1:r  % iterations of the main loop 

 For i=1:n % one by one as an authenticated user 
TP2=TN2=FP2=FN2=0 (Alternative 2); 

       For j=1:c % c combinations of recordings 
Take m saccades from 3 (Alternative 1) or 
4 (Alternative 2) recordings of an 
authenticated user to a training set; 
Copy these m saccades in the training set; 
Take randomly 2m nonusers and one 
saccade from each and add these saccades 
to a training set; 
Train a model with 4m saccades of two 
classes: an authenticated user and nonusers; 
TP1=TN1=FP1=FN1=0 (Alternative 1); 
For j=1:q % tests of Condition 1 

Classify a test saccade of an 
authenticated user into either 
correct class 
TP=TP+1 
 or incorrect class 
FN=FN+1; 

End 
For k=1:q % tests of Condition 2 

Classify a test saccade of an 
impostor into either correct class 
TN=TN+1 
or incorrect class 
FP=FP+1; 

  End 
  % Follow majority vote for decision 
            If TP1≥FN1 then C11=C11+1 (Alternative 1); 
            If TN1>FP1 then C21=C21+1 (Alternative 1); 
        End 
        % Follow majority vote for decision 

If TP2≥FN2 then C12=C12+1 (Alternative 2); 
If TN2>FP2 then C22=C22+1 (Alternative 2); 

 End 
End 
(Alternative 1) 
Accuracy of authenticated users=100 % ∙ C11/(r∙n∙c)  
Accuracy of impostors=100 % ∙ C21/(r∙n∙c) 
(Alternative 2) 
Accuracy of authenticated users=100 % ∙ C12/(r∙n) 
Accuracy of impostors=100 % ∙ C22/(r∙n) 
 

Figure 3.  Verification procedure for authenticated users (Condition 1) and 

impostors (Condition 2). Two different test settings are called Alternatives 

1 and 2. 

V. CLASSIFICATION RESULTS AND DISCUSSION 

The main data mining task was to classify test saccades 
into two classes: an authenticated user or nonusers. There 
were n=132 subjects and r=10 main iterations in the 
verification procedure yielding 13200 decisions in 
Alternative 1 and 1320 decisions in Alternative 2. 
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TABLE I.  CLASSIFICATION ACCURACIES OF MLP NETWORKS 

WITHOUT NORMALIZATION: MEANS AND STANDARD DEVIATIONS IN 

PERCENTS (ON EQUALS THE NUMBER OF OUTPUT NODES AND C CONDITIONS 

1 AND 2) 

Accuracies for two test alternatives, output node numbers  ON and 

conditions C 
Alter-

native 
ON C Number of hidden nodes 

   4 6 8 10 

1 1 1 71.8±0.8 70.8±0.9 71.0±1.6 70.4±0.8 

1 1 2 64.9±0.7 65.2±1.8 66.5±1.4 66.4±0.9 

1 2 1 72.1±1.2 71.8±1.3 72.2±0.8 71.7±1.1 

1 2 2 66.8±1.5 66.8±1.5 66.8±1.7 67.0±1.5 

2 1 1 78.5±3.3 79.6±3.4 78.9±2.5 78.5±2.5 

2 1 2 74.2±3.1 78.0±3.4 79.8±3.6 80.8±2.6 

2 2 1 81.9±2.8 82.6±3.2 82.2±3.5 79.8±2.8 

2 2 2 77.8±1.9 78.6±3.0 78.6±2.7 79.2±3.0 

TABLE II.  CLASSIFICATION ACCURACIES OF MLP NETWORKS WITH 

NORMALIZATION AND ALTERNATIVE 2: MEANS AND STANDARD 

DEVIATIONS IN PERCENTS 

Accuracies for output nodes and conditions 

Output 

nodes 
Condition Number of hidden nodes 

  4 6 8 10 

1 1 81.1±2.7 78.4±3.9 78.9±2.6 78.4±2.5 

1 2 75.8±2.4 79.5±3.2 81.1±3.6 80.5±3.2 

2 1 80.5±1.8 80.1±4.2 80.0±4.5 79.6±2.6 

2 2 77.3±2.4 81.7±3.6 80.2±4.3 82.7±2.5 

 
We applied multilayer perceptron (MLP) networks [9] 

with 6 input nodes (6 variables), 4, 6, 8 or 10 hidden nodes 
and 1 or 2 output nodes for two classes. A validation error 
was used for MLP networks. It automatically stopped 
training after 9 or 10 epochs to avoid overtraining. Since we 
used the backpropagation algorithm in Matlab (MathWorks 
Inc., USA) also used for all tests of our research, we 
experimented with its training procedure variations including 
the adaptive learning rate, Powell-Beale restarts, batch 
gradient descent with momentum and Levenberg-Marquardt 
algorithm [10]. For actual tests we used the last method that 
yielded slightly better results than those of the other. 

At first, we investigated possible differences between test 
results of Alternatives 1 and 2. Since the number of 5 
recordings (20 saccades) of each subject was small subject to 
build training and test sets in data mining, it was important to 
test more than one alternative. However, the scarcity of the 
data did not allow more alternatives than the aforementioned 
two. We also varied the number of output nodes from 1 to 2. 
On the basis of the best results written in Bold in Tables I 
and II 2 output nodes produced accuracies 1-4% superior to 
those of 1 node. 

TABLE III.  CLASSIFICATION ACCURACIES OF LOGISTIC DISCRIMINANT 

ANALYSIS AND SVM WITH NORMALIZATION: MEANS AND STANDARD 

DEVIATIONS IN PERCENTS. 

Accuracies for two test alternatives A and conditions C 

A C LogDA SVM kernels 

   Linear 2nd deg. 3rd deg. Gaussian 

1 1 78.5±105 80.0±0.5 75.6±1.0 69.6±1.2 84.9±0.7 

1 2 65.7±1.7 62.2±1.3 63.6±1.7 61.8±1.7 73.0±1.3 

2 1 86.6±1.7 88.0±2.9 82.7±2.1 74.1±2.5 92.1±1.9 

2 2 77.4±3.4 73.9±4.8 77.1±2.9 73.3±4.5 84.8±1.9 

 
The scales of the variables markedly differed from each 

other. We tested MLP networks without and with 
normalization into interval [0,100]. The accuracies obtained 
without or with normalization had virtually no differences on 
an average. The results of the former are showed in Table I. 
Those of the latter are in Table II with Alternative 2 only, 
since Alternative 2 with the larger training set than with 
Alternative 1 indicated to be 7-13% better in Table I. The 
similar observation was gained for all later results. Note that 
while evaluating results we always have to look at both 
conditions at the same time, because they both are equally 
critical objectives. Note also that 50% is seen as a baseline 
result for Conditions 1 and 2. Because there are two classes 
of equal size, a random guess between them would be correct 
with probability 0.5. The number of the hidden nodes from 6, 
8 or 10 yielded the best results for the pairs of Conditions 1 
and 2. 

We ran support vector machines (SVM) with the linear, 
quadratic, third degree polynomial and radial basis function 
(Gaussian) kernels. Table III shows results for SVM kernels 
and logistic discriminant analysis (LogDA). We ran tests for 
all four SVM kernels and logistic discriminant analysis by 
using both Alternatives 1 and 2 with and without 
normalization. Alternative 2 again generated higher results 
than Alternative 1. The use of normalization according to 
Table III did not affect average results seemingly at all 
compared with those not presented without normalization, 
mostly less than ±1%. SVM with the radial basis function 
(Gaussian) kernel was the best choice here, but differences 
were small compared with a few other kernels. 

TABLE IV.  CLASSIFICATION ACCURACIES OF RBF NETWORKS WITH 

NORMALIZATION: MEANS AND STANDARD DEVIATIONS IN PERCENTS 

Accuracies for two test conditions 

Condition Spread and goal 

 15   0.05 15  0.08 20  0.08 20  0.1 

1 75.4±4.1 77.8±0.1 83.4±2.6 88.5±1.8 

2 92.6±1.6 94.7±1.6 88.9±3.9 88.9±1.9 

 
Ultimately, we exploited RBF networks by running 

system parameters of  spread 10, 15, 20, 25, 30, 35, 40, 45 
and 50, and goal 0.005, 0.02, 0.03, 0.05, 0.08 and 0.1. The 
best combinations of these were spread equal to 15 or 20 and 
goal equal to 0.05, 0.08 or 1.0. Final results of RBF networks 
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are presented in Table IV. For the RBF networks, our data 
required normalization, because our tests (not presented here) 
without it favoured Condition 2 and almost entirely failed 
with Condition 1. Thus, the results in Table V were 
computed with normalization and using Alternative 2. 

Since our final objective to develop a biometric 
verification procedure on the basis of eye movements 
included a criterion that computing time should be fast, it is 
important to look at running times of the preceding tests. 
There were 132×10×5=6600 models trained for every test 
type or structure (cell) in the case of Alternative 2. For 
Alternative 1 there were 132×10×10=13200 models trained, 
correspondingly. The training and test time of an MLP 
network was around 0.5 s on an average. For RBFs that time 
of one network was around 4 s and for SVMs and LogDA 
less than 0.05 s. Let us remember that these execution times 
also included training not always necessary to do while 
applying a data mining method in actual applications, except 
when the system is used for the first time and then adaptively, 
say, after a successful login. In any case, even the use of the 
slowest method here was fast enough. Of course, additional 
computation is needed before the data mining phase to 
perform signal analysis. Still, this is also very fast, because 
its time complexity is linear and the length of eye movement 
signals is short, no more than a few thousand samples, say 1-
3 minutes. Consequently, the running time would be minimal 
compared to such a recording time. At the beginning, in the 
course of a recording the eye movement camera system also 
makes image processing, but this is also close to real time. 
The camera system used consisted of only an initial 
calibration when taken into use. Thus, calibration required no 
additional processing time here. 

VI. CONCLUSION 

The MLP networks produced their best results with 
Alternative 2, 2 output nodes, 6 hidden nodes in Table I and 
10 hidden nodes in Table II. The use of normalization did not 
improve the results obtained which were around 8% poorer 
than the best of SVMs and RBFs in Tables III-V. The 
Gaussian kernel was the best choice with SVMs. RBFs were 
very sensitive to normalization needed apart from the other 
being very insensitive to normalization. 

The best results obtained were fairly good as 89% of the 
best results in Tables IV and V. We may assess that the best 
realistic accuracies based on various biometric verification 
references are around 95%. Thus, the results of this quite 
novel way to perform a biometric verification task are 
promising although more research has to be made to improve 
verification accuracies. A clear chance here is to collect a 
larger set of recordings from each individual. There were 
only five recordings with four large saccades per a subject. 
Forming a larger training set from each subject than now it is 
quite probable that we are able to improve classification 
results based on data mining methods. To compare with 
other scarce results presented thus far, our results were equal 
or better than various values 50-90% given in [11, 12]. 

The eye movement camera system used included a low 
sampling frequency of 30 Hz (frames per second). Still, 
verification was fairly successive. The low sampling 

frequency was, however, interesting since it was similar to 
that often used in cheap web cameras. We may except that in 
the future eye movement cameras are installed in computers 
or mobile devices to follow a user’s gaze for various human-
computer interface tasks [13]. If their sampling frequencies 
will be higher, e.g., 200 Hz, biometric verification with eye 
movements may well be realistic. 
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Abstract: We recently studied the application of saccadic eye movements, 
measured with video cameras, to biometric verification using subjects who 
receive identical stimulation. The properties of a subject‟s saccades may vary 
between measurements over the course of time, so to be useful as a means of 
biometric verification, the temporal variability of saccades should not distort 
verification results significantly. We investigated the effects of such variability 
by repeating the same test several times with the same groups of subjects. We 
found that temporal variability had only a minor effect on verification results 
when intervals were from a few hours to two months. Compared with the 
classification accuracies of approximately 90% of our earlier studies when 
measurements were run immediately one after another, our present verification 
accuracies were a few percent lower. In contrast, a long interval of 
approximately 16 months reduced the accuracies considerably. Our results 
indicate that reasonably short intervals between a subject‟s saccade 
measurements do not hinder verification based on them, while very long 
intervals between logins can pose a problem. Since most common electronic 
devices, such as computers and mobile phones, are used at frequent intervals, 
the analysis of saccadic eye movements seems to be viable technique for 
enabling biometric verification. 
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1 Introduction 

Fingerprints are probably the most extensively used biometric method to verify or 
identify a subject (Chang et al., 2011; Chen et al., 2006; Jain et al., 2000). Face images 
have frequently been studied for the biometric purposes (Kukharev et al., 2011; Torres, 
2004; Wright et al., 2009). Other biometric data sources, such as iris images (Abdullah et 
al., 2011) and palm images (Prasad, 2010), have also been employed. Furthermore, these 
can be combined to enable multimodal means of improving verification (Mane and 
Jadhav, 2009). 

We follow the definition of verification where a subject, for example the user of 
a computer or other device, has to be recognized to be the authenticated subject of that 
device. Anyone else should be recognized as an impostor. Identification is understood to 
mean a more complex task where any subject has to be separated from all others in a 
group. Thus, the former is a two-class classification task and the latter a multiclass task 
with far more than two classes. 

We are interested in verification enabled by saccadic eye movements, which has 
been studied very infrequently thus far. The origin of our research was our extended eye 
movement studies connected to medical informatics, signal, and data analysis in the area 
of otoneurological research on human balance problems (for example, see Juhola, 1988; 
Juhola et al., 2011). An imperative factor has been the technical development of eye 
movement cameras during the last 10-20 years (Morimoto and Mimica, 2005; Duchowski, 
2002). It is quite possible that in the future eye movement cameras will also be used for 
human-computer interaction for practical applications in addition to a keyboard, mouse, 
touchpad and other means. During recent years, the research of eye movement cameras 
has rapidly grown for this purpose (Duchowski, 2002). Consequently, employing eye 
movements for subject verification seems to be topical. 

For biometric verification purposes, a voluntary response is good for a simple, 
standard-type stimulation presented similarly to anyone attempting to log in. It must be 
similar for every attempt so that an authenticated user can be detected and distinguished 
from possible impostors; this is a classification task. 

One-dimensional physiological signals have rarely been studied for biometric 
verification or identification. Still, electrocardiogram (ECG) signals have recently been 
increasingly studied in this context (Shen et al., 2011; Wang et al., 2008). One could 
assume that its problem is the variation in heartbeat, but this can be alleviated with a 
suitable normalization of heartbeat waveforms (Lourenco et al., 2011). 

Research on eye movement signals for biometric purposes began a few years 
ago. Kapczyński et al. (2006) and Kasprowski and Ober (2004) computed the cepstrum 
of a signal and classified its results with the naïve Bayes technique, nearest neighbour 
searching, decision trees and support vector machines. A mathematical model of the 
oculomotor system was used (Komogortsev et al., 2012) in which the parameters of the 
model were classified. Scanpaths in reading were recently used (Holland and 
Komogortsev, 2011), and different stimulation types were also considered (Holland and 
Komogortsev, 2012). Face images were used for stimulation (Rigas, 2012) where fixation 
points of a subject‟s gaze on a face image stimulation were detected in the plane of the 
horizontal and vertical axes. Minimum spanning trees were then computed between 
fixation points and these trees were applied to biometric identification by classifying 
subjects with nearest neighbour searching and support vector machines. 

We began our research on the biometric use of saccadic eye movements by 
investigating the idea of using saccades for user verification of a computer or other 
device including a system to record a spectator‟s eye movements. In addition to signals 
acquired with a video camera system, we also employed electro-oculographic signals 
measured earlier at a higher sampling frequency, but otherwise in the corresponding way 
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so that we were able to compare the results (Zhang et al., 2012; Juhola et al., 2013). We 
continued the research by using various classification methods and various ways to form 
training and test sets for classification (Zhang and Juhola, 2012). All the time we have 
collected more data from study (Juhola et al., 2013) to study (Zhang and Juhola, 2012) in 
order to increase the numbers of subjects and measurements. 

Figure 1 A (blue) saccadic eye movement signal of 30 s as a response to its smooth (green) 
stimulation signal after interpolation from 30 Hz to 1000 Hz. The stimulation 
movements (angles) preceded the eye movements when the subject followed the 
stimulation light dot by gaze. 

 
 

  
In the present research, we continued to develop our methodological work by 

testing classification methods not yet applied to this data. Most of all, we studied the 
effect of various time spans between the measurements of individual subjects. If such an 
interval is hours, days or more, the features of saccades could change. Our fundamental 
task was to clarify how much such possible variations might distort the saccadic 
biometric verification. Medical and physiological literature indicates that eye movements 
of a subject, as responses for the same stimulation type and angle, vary between 
repetitions (Smeets and Hooge, 2003) and, consequently, over the course of time. 
Nonetheless, the majority of such investigations seem to consider variability within a 
single measurement or a few instantly successive measurements. Opinions of how, and 
by how much, they change in the case of saccades seem to be different. According to 
Smeets and Hooge (2003), the main source of variability in saccades depended on the 
measurement devices employed. It was observed that maximum velocities of saccades 
depended on measurement systems when saccades were recorded with two different 
devices at the same time (Juhola et al., 1985). 

Medical or physiological studies on the variability of saccades between days are rare. 
Intra-individual variability of maximum velocities of 20º, 40º, and 60º saccades recorded 
electro-oculographically were found to be statistically different at 9 a.m., 12 a.m., and 4 
p.m. and on three separate early autumn days, the intervals of which were not mentioned 
(Schalén et al., 1984). However, all calculations of maximum velocities were made 
manually with a pencil and ruler, because recordings were received in the form of rolls of 

stimulation   saccade 
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paper from the ink plotter of the recording device. Calculations based on manual 
approximation are not as equally precise as modern computer-based work. In particular, 
there were only six subjects, which is a very small sample from a statistical perspective. 
On the other hand, no statistically significant differences were reached when the average 
maximum saccadic velocities of 58 healthy subjects were measured repeatedly over a 
span of two weeks (Bollen et al., 1993). There is intra-individual and inter-individual 
variability in saccades with the same stimulation. While the former is considerable 
(Bollen et al., 1993; Zhang et al., 2012), the latter seems to be more influential for the 
separation of subjects, because we have succeeded in running such tests that yielded good 
verification accuracies (Zhang et al., 2012; Zhang and Juhola, 2012; Juhola et al., 2013). 
Other eye movement verification or identification experiments mentioned above support 
this result. Notwithstanding these, it was a rather obvious problem if the intra-individual 
variability of saccades decreased the accuracy of biometric verification when the time 
span between the measurements is longer than a few minutes or less. 
  

2 Acquisition of eye movement data 

2.1 Eye movement camera system used 

We conducted our eye movement recordings with a head-mounted video camera system 
(Visual Eyes, Micromedical Technologies, UK). Its resolution was 320×240. The system 
did not require calibration for each measurement, but was calibrated only once, after its 
installation. Since its sampling frequency (frame rate per second) was only 30 Hz, we 
interpolated every signal up to 1000 Hz. Interpolation (estimation) from 30 Hz to an 
upper frequency was necessary, since information content of saccades can reach 50-100 
Hz (Bahill et al., 1981; Juhola et al., 1985) suggesting sampling frequencies above 200 
Hz. Sampling frequencies up to 1000 Hz have been applied (Bahill et al., 1981) to 
measurements of saccadic eye movements. Our motivation to use the low sampling 
frequency of 30 Hz was to simulate situations where a possible eye movement camera 
close to properties of simple web cameras (or front cameras of cellular phones subject to 
sampling frequencies) could detect eye movements in future technologies. If they 
included low sampling frequencies, it would be interesting to study here whether it is 
sensible to apply a low sampling frequency such as 30 Hz and interpolate these signals to 
have a higher, “artificial” sampling frequency producing estimates for saccades.  Of 
course, the higher original sampling frequency would be better, but interpolation was, 
after all, very useful in our previous works with the same video camera system (Juhola et 
al. 2013; Zhang et al., 2012; Zhang and Juhola, 2012). Recently, results were presented 
that the sampling frequency of 50 Hz enabled fairly accurate computation for maximum 
velocity values of 5º only saccades (Weirts et al., 2008). Although the bandwidth of 
saccades exceeds its Nyquist frequency (25 Hz), obviously their main influence is below 
it and, thus, also below 70 Hz (Bahill et al., 1981). 

Even if an interpolated signal was not exactly the same as the actual higher 
sampling frequencies, it was sufficient for our verification purposes. As such, a frequency 
of 30 Hz would obviously have been too low to attempt successful verification. Our 
previous investigations showed that the estimation of saccades by means of interpolation 
helped to separate an authenticated user from among other subjects. We also wanted to 
use the same eye movement camera system as before because our intention was to 
compare our new results with earlier results. There was a new essential trait in our 
present research: the possible influence of temporal variability of saccades in biometric 
verification. 
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The video camera system included a built-in image processing system to search for 
the pupil of a subject‟s eye to compute saccades according to the positions of the pupil. 
The system required no separate calibration except when the system was installed. Since 
there were two video cameras, one for each eye, two horizontal signals were used at 
every measurement. The better of the two, i.e., the one with less possible noise or fewer 
artefacts, was selected. The amplitude resolution was better than 1º. 

2.2 Stimulation 

In the system there are two cameras, one for each eye. To make the stimulation as simple 
and easy for a subject as possible, only horizontal eye movements were utilised.  Figure 1 
contains part of a saccade signal and the corresponding stimulation signal. The moving 
gaze of a subject followed a light dot (LED) along a black bar. The distance between the 
target on the LED bar and the subject was 0.74 m for all measurements. The computer-
controlled light dot jumped to another place on the bar, in other words, one LED was 
switched off and another switched on. The angle formed by them in the visual field was 
random to the subject. Such angles were constant when the distance of the eyes to the bar 
was constant. Variation of time intervals between the jumps of the light dot made the 
stimulation movements seem random for a subject. Still, this was a fixed series of 
stimulation movements because it is essential that the same stimulation sequence is 
presented for every subject. This way, responses of a different subject and those of the 
same subject can be compared with each other. The sequence was so complicated that a 
subject could not learn it even if repeated. 

A simulated log on was as follows. The stimulation was used jointly with an 
occurrence of a subject starting a computer session by logging on to a computer. The log 
on required no written password, but instead the computer recognized its authenticated 
user by recording the user‟s saccades at the beginning. The computer  showed the same 
stimulation sequence of light dot jumps on its screen, and the user‟s task was to look at 
the stimulation dot which was moving approximately once every two seconds for one 
minute. Both stimulation amplitude (lengths of jumps of the light dot) and time intervals 
between jumps were varied, and most amplitudes were large. In this test, they were 48° at 
their widest. The large amplitudes helped obtain inter-individual variability from the 
subjects (Henriksson et al., 1980).  Only the largest saccade amplitudes were used for 
verification. Saccades of smaller amplitudes were only used to make the stimulation 
sequence seem random for the subject. 

2.3 Eye movement measurements 

We recorded saccades from two sets of subjects, one set consisting of 22 and the other 12 
subjects. Every subject was asked not to move his or her head during measurements to 
keep the angles of the saccades stable. Because the duration of measurements (signals) 
was 64 s, each of which contained only four large saccades of 48º, five such signals were 
recorded from every subject per session. Altogether, we took 20 saccades of 48º from 
every subject. Signals were interpolated to raise its (artificial) frequency up close to 1000 
Hz. Naturally, an interpolated signal is not precisely the same as an actual measurement 
with a 1000 Hz sampling frequency, but it can be used as an estimate. We applied cubic 
spline interpolation since after having compared this to linear and cubic Hermite 
interpolation, we obtained accuracies a few per cent higher (not presented for brevity) in 
verifications between an authenticated user (subject) and other subjects. 

The set of 22 subjects consisted of 14 males and 8 female. Their mean age was 
29±8 years. The other set included only 12 subjects. Originally 19 subjects took part in 
the first measuring session, but 7 of them, having moved away, did not attend the latter 
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session.  Consequently, those 7 absent were omitted from our research. The mean age of 
the 12 was 36±12 years. The group included 8 males and 4 females. There were 7 
subjects who were involved in both subject sets. The eyesight of all subjects who did not 
wear spectacles was checked before recordings. Two subjects had age-associated 
presbyopia, and they were involved in both data sets. In addition, one subject‟s eyes were 
rather astigmatic and the subject was also myopic. Furthermore, this subject used allergy 
medication (antihistamine and cortisone) throughout the involvement in the measurement 
sessions of the 22-subject data set, but nobody else had used medication or alcohol the 
day before each measurement. This subject was also a member in the set of 12 subjects. 
Some medications (van der Meyden et al., 1989), alcohol (Jäntti et al., 1983; Lehtinen et 
al., 1979) and age (Munoz et al., 1998) are known to affect values of saccade variables. 
Nonetheless, we did not discard the measurements of this subject as an outlier because 
we did not think it sensible to regard any subject as an outlier in a  biometric verification 
task, as would the subject might have been, for instance, in medical research. In a way, 
this made the research even more challenging. 

For the set of 22 subjects, measurements were performed on five separate days. 
Every measuring day consisted of two measurement sessions, the one in the morning and 
the other in the afternoon with a span of approximately five hours. This was arranged 
because circadian rhythm is sometimes seen as a plausible influence (Schalén et al., 1984; 
Fransson et al., 2008), given the assumption that eye movements could be affected by 
time of day, e.g., between morning and afternoon. To study different spans between 
measurement sessions, an interval of 7 days was used between the first and second 
measurements for all subjects. For the second and third measurement sessions, a longer 
time was chosen, varying from 15 to 35 days with 26±8 days on average between 
subjects. For the third and fourth measurement sessions, there were also varying intervals 
from 18 to 59 days, with 31±11 days on average between subjects. Ultimately, there was 
one day between the fourth and fifth measurement sessions. All in all, these covered an 
average of almost 10 weeks. For the set of 12 subjects, the span was much longer, 
approximately 16 months. These consisted of one daily measurement session only. The 
numbers of the subjects associated with our longitudinal research were limited for the 
sake of several repeated tests and practical reasons connected to attendance of the 
subjects. These types of longitudinal saccade test series have not perhaps ever been made 
for the same subjects with the same stimulations and measuring devices; this is surely the 
first time for biometric verification. 
 

3 Signal data preprocessing and analysis 

3.1 Recognition of saccades and stimulation movements from signal data 

After interpolation, the first task in signal analysis was to recognize the beginning and 
end of every saccade so that variables were possible to compute accurately from the 
saccades. After interpolation, the first derivative, angular velocity of eye movements, was 
approximated on the basis of a simple two-point differentiator (Juhola et al., 2013). A 
threshold of 50º/s was used for velocity in order to search for the beginning and, 
thereafter, 10º/s for the end of every saccade (Figure 1). The greater threshold was used 
for beginnings than ends of saccades because we had to accurately detect beginnings for 
the computation of latency values. The greater threshold value helped to pass slightly 
noisy samples and, thus, avoid resulting in incorrectly or inaccurately detected 
beginnings of saccades. On the other hand, ends of saccades were detected with the lower 
threshold because normally the latter half of a saccade curve is less steep than the former 
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half. This is seen from Figure 1 and later observed from our results that magnitudes of 
maximum decelerations are smaller than those of maximum accelerations. 

3.2 Analysis of saccades 

Stimulation signals were analysed to find at which time each stimulation movement, i.e., 
a jump of the light dot, started. An actual response to a stimulation movement had to be 
later than 0.120 s after the stimulation. This lower bound was used since the brain of a 
human being requires a short time to recognize the target and to control a movement of 
gaze. If there were any earlier response, this would be rejected as a probably anticipated 
eye movement, not a response to the stimulation movement. 

The data of a subject‟s measurement session included 20 large amplitude 
saccades (stimulation 48º): 4 saccades in 5 consecutive measurements made one after 
another with approximately one minute intervals. After the detection of saccades, the 
variables of latency, amplitude, accuracy, maximum velocity, maximum acceleration and 
maximum deceleration (Figure 2) were calculated from every valid large saccade of the 
subject. Latency or reaction time is the time between the beginnings of a saccade and the 
corresponding stimulation movement. Amplitude accuracy is the difference of the 
amplitudes (angles) of a stimulation movement and saccade. The maximum of velocity 
values was computed (Figure 2). Angular acceleration and deceleration were computed as 
the approximated second derivative of a saccade. We did not use the seventh possible 
variable, duration, which is the time difference between the beginning and end of a 
saccade, because we found it slightly less useful than the others, based on its smaller ratio 
of inter-individual and intra-individual variability (Zhang et al., 2012). 

To explore the separation ability of the features, we calculated ratios of inter-
individual and intra-individual variability by using standard deviations as follows: 
subscript j corresponds to the jth variable, n to the number of subjects, ūij to the mean of 
variable j of subject i, āj the mean of variable j for all subjects‟ saccades, ukj the value of 
variable j of saccade k for subject i, and ni the number of the saccades for subject i. We 
may expect that the higher the ratio, the better the separating variable. Results are shown 
in Table 1 promising reasonable chances for separation between subjects. 
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The results Rj in Table 1, computed for the larger set of subjects, indicated that 

the variables would be useful for the separation of subjects. Naturally, using simply 
standard deviations in this way only produces a crude estimate. 
 

4 Verification procedure and tests 

Two test conditions were performed to study the verification of an authenticated user on 
the basis of saccadic eye movements. We applied two classes to the first test condition: 
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saccades of an authenticated user and those of other named non-users. In addition, we 
employed a third group of subjects called impostors. Impostors were different from an 
authenticated user and non-users. The third group was then a test set for the second test 
condition. 
 
 
 

Figure 2 A hypothetical saccade on the left producing six variables computed: saccade amplitude, 
accuracy, latency, maximum angular velocity, maximum angular acceleration and deceleration. 

 

Table 1 Means and standard deviations of variables for the data set of 22 subjects and their ratios 
between inter-individual variability and intra-individual variability. 

Amplitude º Accuracy º Latency s Maximum 

velocity º/s 

Maximum 

acceleration º/s2 

Maximum 

deceleration º/s2 

Mean and standard deviation 

54±15 6±11 0.27±0.06 1106±336 50343±23501 47331±25298 

Ratio Rj of inter-individual and intra-individual variability 

1.13 1.13 1.09 1.13 1.06 1.05 
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The following procedure represents the pseudocode of the verification test for the larger 
set of n=22 subjects. For the smaller set of 12 subjects, the principle was similar, but 
there were 2 measurement sessions instead of 10 of the former. When classification 
accuracy values of Conditions 1 and 2 are subtracted from 100%, we obtain a false 
rejection rate (FRR) and a false acceptance rate (FAR) (in this order) frequently used for 
biometric identification and verification. However, we did not limit our tests with an 
equal error rate (EER) to have an opportunity to see results of various situations. 
 
% counters for successful classifications of authenticated users and those of impostors 
% (C1 for Condition 1 and C2 for Condition 2) 
C1=C2=0;  
For h=1:r  % iterations of the main loop 
 For i=1:n % one by one as an authenticated user 

       For j=1:c % c measurement sessions 
Take m saccades from s=c-1 measurement sessions (excluding the jth) 
of an authenticated user to a training set; 
Copy these m saccades in the training set; 
Take randomly 2m saccades from p non-users and add these saccades 
to a training set; 
Train a model with 4m saccades of two classes: an authenticated user 
and non-users; 
TP=TN=FP=FN=0; 
For k=1:q1 % tests of Condition 1 

Classify a test saccade of an authenticated user into either 
correct class 
TP=TP+1 
 or incorrect class 
FN=FN+1; 

End 
For l=1:q2 % tests of Condition 2 

Classify a test saccade of an impostor into either correct class 
TN=TN+1 
or incorrect class 
FP=FP+1; 

  End 
  % Follow majority vote for decisions 
            If TP≥FN then C1=C1+1; 
            If TN>FP then C2=C2+1; 
        End 

End 
End 
Accuracy of authenticated users=100 % ∙ C1/(r∙n∙c)  
Accuracy of impostors=100 % ∙ C2/(r∙n∙c) 
 
 

An authenticated user was verified in Condition 1. The pseudocode showed the 
building of a training set by using saccades from 9 measurement sessions of an 
authenticated user and its test set of 20 saccades of one measurement session for 
classification. This was iterated for 22 subjects and repeated several times by varying 
randomly which saccades were selected from s=9 measurement sessions to the training 
set. For Condition 2, subjects excluding an authenticated user were set into either non-
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users or impostors. Because the other set of 12 subjects was so small, we took an 
authenticated user and non-users from it, but randomly selected impostors from an 
entirely separate set of 132 subjects whose data was measured earlier, but precisely in the 
same way (Zhang and Juhola, 2012). 

In our earlier research (Zhang and Juhola, 2012), we found out that it is 
reasonable to apply a training set containing approximately as many training saccades of 
both an authenticated user and non-users. Since there are far more saccades available 
from the latter than from a single authenticated user, we balanced the number of the 
former by doubling its training saccades and took the same number from the set of non-
users. 

Here, we first explain the tests for the set of n=22 subjects. There were five 
times two measurement sessions made for every subject. Thus, we simulated verification 
so that one of c=10 measurement sessions formed a test set of q1=20 saccades, and its 
training set was randomly picked from the other s=9 measurement sessions. For 
Condition 1, there were m=9∙20=180 saccades doubled from an authenticated user and 
2m=10∙36=360 from p=10 randomly taken non-users in the training set. Thus, q1=20 
saccades of every subject as an authenticated user were tested against b=36 saccades 
from other p=10 subjects (non-users) randomly chosen from n-1=21 subjects. This was 
run one by one for n=22 subjects. This way there were 22∙10∙20=4400 saccades tested for 
22∙10=220 models trained. For Condition 2 one saccade was taken randomly from q2=n-
p-1=11 impostors after selecting an authenticated user and p=10 non-users.  There were 
now 22∙10∙11=2420 saccades tested for 22∙10=220 models trained. All these tests were 
repeated r=10 times for other classification methods except learning vector quantization, 
for which the previous models were run once only because of their relatively long 
execution times (a few hours). 

Tests for the longer period set of 12 subjects were performed almost in the same 
manner. However, there were only two measurement sessions instead of 10 as in the 
preceding set-up. As one alternative, the data of the former session was used as the 
source of training sets and that of the latter session as test sets. For the other alternative, 
these roles were changed. The former measurement session contained three 
measurements, giving 12 large amplitude saccades from every subject. The latter 
consisted of five measurements from a subject, i.e., 20 large saccades. Accordingly, we 
used n=12 subjects, c=2 measurement sessions and q1=q2={12 | 20} depending on two 
session days in this order. There were p=n-1=11 non-users and one saccade from q2 
impostors from an outside set of subjects. For the training sets we took 4 saccades 
randomly from each of p non-users, altogether 44 for the first alternative, but only 2 
saccades from p non-users, total 22, for the second alternative. In this way, we kept a 
ratio of 1:2 between the saccades of an authenticated user and non-users in any training 
set, but balanced this by doubling the saccades of an authenticated user. The doubling 
was performed because of scarcity of authenticated user saccades. All in all, there were 
12 subjects and 10 iterations, producing 120 models trained differently for both opposite 
alternatives. Thus, there were 120∙12=1440 and then 120∙20=2400 saccades tested for 
Conditions 1 and 2. 

We performed classifications by applying linear, quadratic and logistic discriminant 
analysis, naïve Bayes rule, multilayer perceptron networks (MLP), radial basis function 
networks (RBF), learning vector quantization (LVQ) and support vector machines (SVM). 
Variable values were used as either normalized into interval [0,1] or without 
normalization. According to the previous means of the variables in Section 3, the scales 
of the variables varied considerably. Therefore, normalization could be influential on the 
results for some classification methods. 
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5 Results 

Computation was implemented and executed with Matlab R2010a™ (MathWorks Inc., 
USA). Results are given as classification accuracies (true positive rates) as a percentage, 
i.e. how many classifications were correct compared to all cases tested. If false rejection 
rates are desired (false negative rate FNR), these are formed by decreasing an accuracy 
value from 100% for Condition 1. False acceptance rates (false positive rate FPR) can be 
calculated similarly from Condition 2. 
 

5.1 The results of the larger data set from 10 measurement sessions. 

 We ran multilayer perceptron networks (MLP) with a Levenberg-Marquardt learning 
algorithm and used 4, 6, 8 or 10 hidden nodes and 1 or 2 output nodes. Before the tests, 
variable values were normalized into [0,1]. The results in Table 2 were better than those 
(not presented) without using normalization. Note that results of both test conditions have 
to be considered at the same time; we pursue as high accuracies as possible for both. The 
combination of 10 hidden nodes and 2 output nodes gave the best results. 

Next, we ran radial basis function networks (RBF). This time normalization was 
necessary, since results without it would have been poor. The results are shown in Table 
3. The best are only shown from various pairs of parameter combinations. 
  

Table 2 Means and standard deviations of accuracies as a percent for multilayer perceptron 
networks with data normalization. The best value pair is given in bold face. 

 1 output node 2 output nodes 

Hidden nodes Condition 1 Condition 2 Condition 1 Condition 2 

4 85±2 77±3 86±1 75±3 

6 86±1 77±4 85±2 81±3 

8 84±2 81±3 85±1 81±4 

10 84±3 80±5 87±1 81±3 

 

Table 3 Means and standard deviations of accuracies as a percentage for radial basis function 
networks with its various parameter values of goal and spread and with data 
normalization. The best value pair is given in bold face. 

 Spread 15 Spread 20 

Goal Condition 1 Condition 2 Condition 1 Condition 2 

0.11 83±2 89±3 84±2 87±2 

0.12 84±1 90±3 85±2 86±3 

0.13 84±2 89±2 86±2 85±2 

 
Then we classified with learning vector quantization algorithm, linear, quadratic 

and logistic discriminant analysis, naïve Bayes rule and support vector machines with 
four kernels. Since learning vector quantization was very slow (hours) compared with the 
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other classification methods, it was calculated only once (in the main loop of the 
verification procedure, r was equal to 1) and no standard deviations were computed. For 
support vector machines, several different parameter combinations were computed and 
the best given in Table 4. Normalization was used only for learning vector quantization 
tests. For the other methods it did not bring improvement. As for the tests in Tables 2-4, 
the support vector machines with the RBF kernel yielded the best results of all, but the 
best alternative among the radial basis function networks was very close to it. 

Table 4 Means and standard deviations of accuracies as a percentage for learning vector 
quantization (LVQ), discriminant analysis, naïve Bayes rule and support vector 
machines with data normalization. The best value pair is given in bold face. 

Condition 1 Condition 2 Condition 1 Condition 2 

LVQ: step 30, rate 0.005 LVQ: step 50, rate 0.001 

84 57 80 55 

Linear discriminant analysis Quadratic discriminant analysis 

82±2 74±4 87±1 65±4 

Logistic discriminant analysis Naïve Bayes 

81±3 74±4 84±2 58±5 

Support vector machines 

linear Quadratic 

82±1 74±3 87±1 78±3 

polynomial 3rd degree RBF, σ=2.5 

88±2 81±3 88±2 86±3 

  
The results in Tables 2-4 corresponded to a situation in which classification was 

based on majority votes, in other words, a threshold of 0.5. To portray results more 
extensively, we computed ROC curves. In Figure 3 there are curves for discriminant 
analysis and naïve Bayes rule and in Figure 4 those of support vector machines. These 
indicate that support vector machines with the RBF kernel was the best. 
 

5.2 The results for the set of 12 subjects where the span between the 
measurement sessions was 16 months 

We ran fewer classification methods than above by employing only linear and quadratic 
discriminant analysis and support vector machines (Table 5). The best result was gained 
with quadratic discriminant analysis. We did not only maximize the average of the two 
conditions, but also chose such pair of values that were as close to each other as possible. 
For verification, both conditions should be maximized at the same time. We see that all 
results favoured strongly Condition 2, but the results of Condition 1 were moderate. We 
may assume that this was caused by gradual changes of subjects‟ saccade variable values 
over the long period of 16 months. This is, however, merely an assumption, because the 
number of subjects is too small to produce statistically definite conclusions. 

Ultimately, we dealt with our two data sets statistically in order to see whether 
there were any statistically significant differences for the values of the saccade variables 
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between morning and afternoon (day of time), and between the five measurement days. 
First, we describe results for the set of 22 subjects. Figure 5 describes the 95% 
confidence intervals of the subjects‟ latency values. The sixth subject was the myopic 
allergy medication-user. There is no doubt that the measurements of this subject differ 
from the others. 

 
Figure 3 ROC curves for linear, quadratic and logistic discriminant analysis and for naïve Bayes 
rule. TPR refers to true positive rate and FPR to false positive rate. 

 
 
 

Figure 4 ROC curves for support vector machines with linear, quadratic, polynomial and RBF 
kernels. TPR refers to true positive rate and FPR to false positive rate. 
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Table 5 Means and standard deviations of accuracies for the set of 12 subjects as a percentage for 
discriminant analysis and support vector machines with data normalization. The best 
value pair is given in bold face. 

Iteration j Condition 1 Condition 2 Condition 1 Condition 2 

 Linear discriminant analysis Quadratic discriminant analysis 

1 34±6 83±12 32±4 95±6 

2 51±6 65±12 16±5 94±6 

 Support vector machines 

 Linear Quadratic 

1 45±4 72±11 43±10 76±11 

2 52±12 65±9 52±11 58±14 

 polynomial 3rd degree RBF, σ=2.5 

1 34±14 77±9 43±8 73±10 

2 42±16 67±14 43±10 68±9 

 
Although there is naturally some intra-individual and inter-individual variability 

between days, and morning and afternoon, quite similar intervals of latency values were 
obtained for the same subject throughout all measurement sessions. This can be seen for 
the 22 subjects in Figure 5. The sixth subject had exceptionally large confidence limits, 
but this was caused by poor sight and medication. As for the other five variables, their 
confidence limits followed the corresponding trends as in Figure 5. All these support our 
assumption about the current data that intra-individual variability does not harm 
essentially biometric verification with saccades and inter-individual variability is large 
enough to enable verification. 

Repeated measures ANOVA was performed on all of the 22 subjects and all but 
one subject (the subject with exceptionally poor eyesight). The statistical significance (α 
= 0.05) of the main effects of day and time of day, and the interaction between day and 
time of day, were assessed both with multivariate and univariate testing. Wilks‟ Lambda 
was applied in the multivariate testing. Since Maulcy‟s test of sphericity indicated that 
the assumption of sphericity was not met, the degrees of freedom were adjusted using 
Greenhouse-Geisser correction in the univariate testing. Multivariate tests showed that 
the main effect of day was significant on maximum acceleration (p = 0.02) in the data set 
of the 22 subjects and on maximum acceleration (p = 0.03) and maximum deceleration (p 
= 0.04) in the data set of the 21 subjects. The other main effects, as well as all of the 
interactions, were insignificant. There were no significant results in the univariate testing. 

Next, we consider statistical results of the set of 12 subjects with the span of 
approximately 16 months between two measurement sessions. The sixth subject with 
poor sight and allergy medication was the same as in the data set of 22 subjects. The 
Mann-Whitney U test was used to assess the differences between the earlier and later 
measurements, both in the whole data and in individual subjects. A non-parametric 
method was used because the intra-individual groups were quite small and their sizes 
unequal (12 and 20 saccade measurements). The significance level α = 0.05 was 
corrected with the Bonferroni method to 0.05 / 6 ≈ 0.008 to counter the effects of 
multiple comparisons. 
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Figure 5 Confidence intervals (CI) of the latency values [s] of the 22 subjects for five days and two 
measurement sessions (morning and afternoon) of each day. The locations in order from the left to 
the right represent the same subjects for all sessions. Note the sixth subject‟s bar of every 
measurement session. It represents the medication-using subject with poor sight.  

 

 
The analysis of the whole data showed that there were statistically significant (p 

< 0.008) differences between the groups in all of the variables, except in latency, both 
with and without Bonferroni correction. 

Next, we explored the data of individual subjects (Table 6). A total of six 
subjects had no significant differences between the earlier and the later measurements. 
One subject had four significant differences in four variables, while three subjects had 
significant differences in three variables. The other two subjects had one and two 
significant differences. The earlier maximum velocity values of five subjects differed 
significantly from those of the later measurements. Accuracies and maximum 
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decelerations of three subjects were significantly different. These results are in accord 
with the analysis of the whole data, where the most significant differences were found in 
the maximum velocity (p < 10

-7
), accuracy (p < 10

-6
) and the maximum deceleration (p = 

0.0003) variables. Note that the total of pairs (cells) of a subject and variable is 72 in 
Table 6, but 24 of these obtained significant differences without Bonferroni correction 
and 16 with this. To summarise, one third or less than one fourth (with Bonferroni) of the 
pairs of a subject and variable encountered significant changes after a period of 
approximately 16 months. 

 
Table 6 Mann-Whitney U test results (p values) for the set of 12 subjects. Symbols #* mean the 
number of the variables with significant differences at α = 0.05 without Bonferroni correction and 
#+ those with (or without) correction for both rows and columns.  

 
Subject Latency Maximum 

velocity 

Amplitude Accuracy Maximum 

acceleration 

Maximum 

deceleration 

#*/#+ 

1 0.22 0.0482* 0.77 1.00 0.98 0.076 1/0 

2 0.89 0.070 0.26 0.24 0.86 0.80 0/0 

3 0.17 0.27 0.076 0.0118* 0.33 0.13 1/0 

4 0.0053+ 0.63 0.95 0.09 0.86 0.48 1/1 

5 0.72 0.0005+ <10-6+ <10-8+ 0.95 0.26 3/3 

6 0.92 0.14 0.058 0.0263* 0.21 0.41 1/0 

7 0.0019+ 0.0048+ 0.83 0.0063+ 0.099 0.0005+ 4/4 

8 0.98 0.0023+ 0.26 <10-7+ 0.0236* 0.076 3/2 

9 0.65 0.0072+ 0.35 0.064 0.0020+ 0.0072+ 3/3 

10 0.29 0.0092* 0.099 0.60 0.16 0.69 1/0 

11 0.25 0.0482* 0.29 0.69 0.099 0.0482* 2/0 

12 0.51 0.0001+ 0.24 0.0359* 0.0011+ 0.0027+ 4/3 

#*/#+ 2/2 8/5 1/1 6/3 3/2 4/3 ∑=24/16 

 

6 Conclusion and discussion 

According to Tables 2-4, the support vector machines with the RBF kernel produced the 
best results and radial basis functions with suitable parameter values were almost equally 
high for the set of 22 subjects. Regarding the set of 22 subjects, it was somewhat 
surprising that these results were so good compared with our previous results with the 
same eye movement camera system and stimulation, for which we had not yet 
experimented with measurement sessions from different times of day and different days 
(Juhola et al., 2013; Zhang et al., 2012; Zhang and Juhola, 2012). Our previous best 
results were only 1-4% higher than those presented, although they were measurement 
sessions where either three or five measurements were run immediately one after the 
other. These results clearly support the hypothesis that values of saccade variables do not 
change intra-individually highly on average between morning and afternoon and, 
moreover, between days or even a few weeks. Although there was some intra-individual 
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variability, it was not statistically significant except, at α = 0.05, for maximum 
acceleration and deceleration of multivariate tests between days only, and not for times of 
days or both, and not at all for univariate tests. It is of consequence why specifically 
acceleration and deceleration were found to differ between days. These variables are the 
most sensitive to changes in saccade signals since they approximate the second 
derivatives of saccades. 

The original low sampling frequency of 30 Hz might have been the cause why 
very few statistically significant differences were obtained. Perhaps interpolation did not 
help to reveal sufficiently the presumably small variability of saccade variable values. To 
study this detail more precisely in the future, we are going to use other eye movement 
camera systems with higher sampling frequencies. It is known that frequency content of 
saccades can reach 70 Hz, perhaps even 100 Hz (Bahill et al., 1981; Juhola et al., 1985). 
After all, in the present study we were especially interested in investigating whether and 
how it is possible to verify an authenticated user with saccades (after interpolating their 
signals) although the original sampling frequency was low, 30 Hz. 

 It must be remembered that the total span for the set of 22 subjects was almost 
10 weeks. Therefore, the span was fairly long, but did not deteriorate verification 
accuracies. The number of subjects was not large, but it was statistically tolerable to 
suppress random effects. The statistical results were, after all, a minor part of our 
research. The major and by far most important result was the relatively good biometric 
verification accuracies; the best obtained were 86% for an authenticated user (Condition 
1) and 88% for impostors (Condition 2) with support vector machines. If we aim at 95 %, 
which can obviously be reached with several biometric means such as fingerprints, and 
remember that we used long intervals up to weeks in length between measurement 
sessions, our results are promising. 

The smaller set of subjects included only 12 people. The span between its 
measurement sessions was very long at 16 months. This made it difficult to verify an 
authenticated user correctly, but greatly aided verification of impostors. This and the 
Mann-Whitney U results in Table 6 denote the probable cause that saccades had been 
changed intra-individually so much that an authenticated user was difficult to classify, 
which, on the other hand, alleviated the opposite task, classification of impostors. 

The results gained cannot be compared to results of other research, since no 
prior comparative, extensive tests for biometric verification have been done to the best of 
our knowledge. Recently, two measurements with an interval of 20 minutes were 
repeated after a week for each of the 32 subjects (Holland and Komogortsev, 2011). 
However, this research was very different from ours and the number of measuring days 
was only two. In other areas, such as medicine or psychology, some corresponding tests 
have been made with saccades, but, naturally, they considered intra-individual and inter-
individual variability, not as classification between subjects. 

In the future, we are going to study more subjects with various spans. We shall 
also use eye movement video camera systems with sampling frequency and other 
properties higher than the one now used. 

To summarize, we see that our present and previous results show good opportunities 
to apply saccade measurements to user verification. Although the data sets of 22 and 12 
subjects were small, we implemented versatile repeated test sequences with far longer 
spans than minutes or even hours. The long span of 16 months may show that such a 
period is too long for the use of saccades for user verification. Nevertheless, it is marginal 
in the sense that computers are typically used daily. After very long a time since the 
preceding authentication, an authenticated user should probably “train” the computer 
anew by inputting a new, current eye movement data set of one‟s own to maintain the 
verification capacity of his or her device. 
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On applying signals  of saccade eye movements for 
biometric verification of a subject 

Youming Zhang and Martti Juhola 

{Youming.Zhang, Martti.Juhola}@uta.fi 

Abstract. We began to develop signal analysis and classification method to dis-
tinguish or verify an authenticated user of a computer from possible other sub-
jects called impostors. So far, we have shown that this is possible even with 
very low a sampling frequency of 30 Hz. In the present study, we continued our 
research after applying an eye movement camera system with a higher sampling 
frequency, 250 Hz. Our results obtained this time were better than those earlier 
with average classification accuracy of approximately 90%. Our current best 
average classification accuracies reached 95-96% with multilayer perceptron 
networks, radial basis function networks and support vector machines. 

Keywords: Biometric verification, eye movements, saccade, signal analysis, 
classification, machine learning, data mining 

1 Introduction 

Various images from subjects have been typical data sources in biometric verifica-
tion and identification. Maybe the fingerprints [18,22] and face images [4,14] are 
researched most frequently and these have also been implemented in some commer-
cial applications. Moreover, iris [12], palm [11] and even ear [19] images are studied 
for biometric purposes. Finally, these alternatives are combined in order to use mul-
timodal identification and to improve identification results [4]. One-dimensional sig-
nals have rather infrequently been studied for biometric purpose. However, at least 
electrocardiogram (ECG) signals have been researched for identification [16], alt-
hough  applying them is not so easy, because recordings require skin electrodes at-
tached to suitable positions on the body to collect ECG signal of good quality. To 
distinguish between subjects, high quality of data is always crucial. Otherwise, subtle 
differences between them may be very difficult to achieve. 

In the following we adhere to the definition of biometric verification that we at-
tempt to recognize an authenticated subject from among  a set of subjects and, on the 
other hand, to recognize any one else not to be an authenticated subject, but an outsid-
er called an impostor. Thus, this classification task involves two classes. Biometric 
identification not researched in the current study consists of probably a more complex 
classification task of many classes where any subject has to be discerned from a group 
of n subjects resulting in n-class classification and this group size n may be very 
large. To be an authenticated user of a computer, a cell phone or some device contain-
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ing a computer requires verification, which, as binary classification, is simpler than 
multiclass classification of n subjects for identification. 

The beginning of the present research was originated from our long-term work on 
signal analysis and pattern recognition of eye movements for medical purposes, espe-
cially balance studies in otoneurology [5,6]. It was salient that recording devices for 
eye movement signals have been developed remarkably in the past decades [3]. Intro-
duction of eye movement videocamera systems in the 1990s also brought about re-
search ideas to apply these in human-computer interfaces of computers. Even simple 
cell phones nowadays include a front camera system directed towards a user. In the 
future such camera systems will obviously be employed to follow a user’s gaze, i.e., 
what he or she looks at the screen of a computer, cell phone or possible other device 
and this gaze information is utilized by and with computers. Our idea for these camera 
systems is to develop such a method with which a computer is able to verify its au-
thenticated user and reject logins of impostors when starting it. 

Saccades are rapid eye movements that are performed while moving one’s gaze 
from a target to another. Perhaps, most of our eye movements are saccades. Other 
types of eye movements are of more complex forms, for instance, smooth pursuit 
tracking movements that are made when a moving target is followed by the gaze and 
the velocity of this target is not very high, say, less than 50º/s, because a clearly faster 
object cannot be tracked with smooth pursuit, but with much faster saccades. 
Nystagmus is a reflexive or involuntary movement which is repeatedly made and 
needs a suitably moving stimulation arrangement. Sitting in a train and following 
rapidly changing and sufficiently near views through a train window causes a specta-
tor to make optokinetic nystagmus. The curve profile of a saccade in Fig. 1 is simpler 
than those of smooth pursuit or nystagmus eye movement. Saccades are easier to 
stimulate than other eye movements. 

For the biometric purpose studies on eye movement signals were begun a few years 
ago. The cepstrum of an eye movement signal as calculated and its results were classi-
fied with naïve Bayes technique, nearest neighbour searching, decision trees and sup-
port vector machines [8,9]. A computational model for the oculomotor system was 
implemented, where parameter values of the model were classified [10]. Face images 
were used for stimulation, where fixation points of a subject’s gaze on an image stim-
ulation were detected in the plane of horizontal and vertical axes [15]. Minimum 
spanning trees were formed between fixation points and were applied to biometric 
identification by classifying subjects on the basis of nearest neighbour searching and 
support vector machines. 

Originally, we began our biometric verification investigations on the basis of sac-
cades by taking advantage of an eye movement camera system with a low sampling 
frequency (30 Hz) and, secondly, by utilizing our earlier eye movement signals meas-
ured with skin electrodes of an electro-oculographic (EOG) system [7]. The ad-
vantage of the latter was its high sampling frequency (400 Hz), but the character of 
EOG signals was typically very noisy compared with signals of modern camera sys-
tems. 
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Fig. 1. An example of a (blue) saccade signal and with its (green) smooth stimulation signal in 

which stimulation angles preceded their responses, saccades. The signal segment was 24 s long. 

Recently we tested various classification methods and ways to build training and 
test data sets collecting signals from more frequent numbers of subjects [20,21] than 
in [7]. It was naturally important to increase the total of subjects measured with the 
same way all the time in order to make classification tests more versatile and more 
convincing by including more people with their more or less different saccades. These 
preliminary investigations showed that saccades are sufficiently dissimilar between 
subjects, but also sufficiently similar within individuals to make a verification task 
possible with them. These are called interindividual and intraindividual variabilities. 

Research results and viewpoints about similarity or variability of saccades within 
and between individuals seem to vary between researches accomplished infrequently 
in medical sciences, physiology and psychology. Although natural intraindividual 
variability is typically found [2,17], when saccades with the same stimulation angles 
were repeatedly measured from subjects, this variability was not, after all, statistically 
significantly different between a group of 58 subjects even after two weeks time. 
Further, it was found that the main source of variability of saccades was different 
recording devices used [17]. Earlier, we noticed the same for maximum velocities of 
saccades, an important variable, when measured eye movements at the same time 
with two different devices [5]. 

In the present research, we continued our biometric verification research for theme 
how an improvement of a sampling frequency for eye movement signals may affect 
results. Previously, we applied the eye movement camera system of 30 Hz [7,20,21]. 
This was interesting, because using so low a sampling frequency we, in fact, showed 
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that in principle our verification procedure was possible to implement even at almost 
the lowest sampling frequency applied that is frequently utilized in cheap and simple 
web cameras. Naturally, higher sampling frequencies are also interesting, because we 
then have always better possibilities to collect more accurate signal information from 
eye movements. Better results could be expected because it is self-evident that better 
properties of camera system can reveal features of saccades more accurately than 
those more moderate devices. Instead, a question aroused whether any subtle differ-
ences between saccades of subjects possibly revealed by better recording devices do 
aid to improve verification results that are based on classifications made with variable 
values computed from saccades. By catering for our prior results obtained from EOG 
recordings of 400 Hz [7], we might expect improvements since the results given by 
EOG signals, although noisy, were somewhat better than those of 30 Hz with the 
videocamera system [7]. For the latter, suitable interpolation methods were deployed 
to raise the (artificial) sampling frequency up to 400 Hz or 1000 Hz [7,20,21]. 

 

2 Eye movement signals recorded and variables computed 

Eye movement recordings were conducted with a videocamera system named 
EyeLink (SMI, Berlin, Germany). Its sampling frequency is 250 Hz and enables the 
maximum angle of ±30º in the horizontal direction. All eye movement cameras are 
based on pupilometry, measuring, as accurately as possible, pupil locations in succes-
sive images of a videostream and computing their differences. Accuracy of this device 
is 0.1º for pupil locations. A subject wore the system attached to the headband so that 
cameras, one for each eye, were in front of him or her and slanting downwards in the 
visual field not covering view on the screen of computer (Fig. 2). The distance of a 
subject’s eyes to the screen of computer was constant 45 cm, which was kept for all 
subjects seated in a chair set in a fixed location. Before every recording the device 
required calibration as most eye movement recording systems. All recordings were 
performed painstakingly and precisely in the same way. 

For actual recordings, a computer-controlled stimulation sequence of small jump-
ing light dot was abruptly moved from a location to another in the horizontal direction 
in the middle of the screen. At the same time the computer recorded an eye movement 
signal of a subject looking at the jumping dot. This is a typical way for medical eye 
movement tests. Every recording took 60 s and included stimulation movement of 
intervals from 0.8 s to 1.5 s with an average of approximately 1 s. A half of stimula-
tion angles were less than the maximum angle of 51º used for the verification task. 
Those smaller were used nothing but to make stimulation sequence more random-like 
for a subject. Since both stimulation angles and intervals between these varied in a 
way seemingly random, the sequence of around 60 stimulation movements could be 
learnt by no one even if it had been repeated several times. Thirty saccades as re-
sponses to the largest stimulation angle of 51º were used for the verification task. 
When values of saccade variables may alter slightly between measurements for iden-
tical stimulation angles, four successive recordings were executed for every one. 
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Thus, 120 large amplitude saccades were recorded from each subject. The number of 
subjects was 55. There were 41 males and 14 females with the average age of 26±6 
years. The recordings were accomplished in a laboratory room of the cellar level 
equipped with shields of high quality against electric distortion, noise and tremble. 

 
 
 

 
 

Fig. 2. A subject performing calibration in which eye movement cameras are located so that 
each of them precisely catches the pupil in an image seen on the screen. 

The stimulation sequence was constant for every recording and every subject, be-
cause the main idea was to investigate verification tests, i.e., we had to have the exact-
ly same stimulation for every one to enable both intraindividual and interindividual 
computation and waiting for such situation that a subject’s saccades were more simi-
lar with each other than with those of other subjects on the average. It was also useful 
to collect fairly many saccades of the same large stimulation angle so that any subject 
was well represented in the data set in statistical sense. In our earlier studies [7,20,21] 
we had smaller numbers of saccades per subject because of different recording devic-
es and arrangements. Nevertheless, the larger training subset from every subject we 
govern, the better the starting point for classification. 

The type of stimulation sequence was as simple as possible to guarantee that it was 
easy to follow and did not cause fatigue though repeated consecutively four times for 
a subject. Further, as simple stimulation as possible is reasonable approach since if it 
were more complicated, we might need more repetitions to collect enough data to 
distinguish between subjects. A complicated stimulation set-up might produce failed 
tests, but our simple stimulation yielded none. 



83 
 

3 Data handling 

At first, eye movement signals were filtered with a median filter of length 3. Alt-
hough the camera system contained two cameras, one for each eye, only one of them 
was utilized, signal of which contained less noise. Normally, quality of these signals 
was very high. It is essential to detect beginnings and ends of saccades as exactly as 
possible. These underlie values of saccade variables to be calculated for our verifica-
tion task. See their breakdown delineated in Fig. 3. 

 
Fig. 3. A schema for a stimulation angle and its response, saccade, on the left achieving six 

variables: amplitude, accuracy, latency, maximum angular velocity, maximum angular acceler-
ation and maximum angular deceleration of the saccade. The saccade curve upwards in the 

figure corresponds to a horizontal eye movement from the left to right. Other possible variables 
such as duration here were not used for computation. 

At first, the first derivative is approximated by computing angular velocity values 
of an eye movement signal. Beginning and ends of all saccades are detected by means 
of velocity values along with the presentation in Fig. 3. When magnitudes of velocity 
values increase above the threshold of 50º/s, its beginning was registered. Corre-
spondingly, when magnitudes of velocity values decreased below 30º/s, its end was 
found. The latter was smaller than the former since saccades are typically steeper at 
the beginning and somewhat more gently sloping at the end which can be observed 
from Fig. 1. 
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The stimulation signals were also analysed, and beginnings and ends of stimulation 
angles were easy to detect being as steep steps according to Figs. 1 and 3. Such sac-
cades would be valid for the further computation being later than approximately 0.1 s 
after their stimulations. Any saccade prior to that lower bound was seen as anticipa-
tion, because one’s brain requires some time to observe a movement in the visual field 
and to control to move the gaze near a new location of stimulation light dot. 

The 4 recordings of every subject contained 4 times 30 large amplitude saccades. 
After detecting their beginnings and ends precisely, their variable values were com-
puted as outlined in Fig. 3. Latency is the difference in time between the beginning of 
a saccade and its stimulation beginning. Using the amplitudes of a stimulation angle 
and its saccade, accuracy is computed. The maximum velocity of a saccade is given 
by its velocity curve. Ultimately, the maximum acceleration and deceleration of a 
saccade are searched for from the approximated second derivative. 

To predict separation capability of six variables described, we computed ratios of 
interindividual and intraindividual variabilities by applying the formula given below. 
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Subscript j equals the jth variable, j=1,…,6, n the number of subjects, ūij the mean of 
variable j of subject i, āj the average of variable j for the saccades of all subjects, ukj 
the value of variable j of saccade k for subject i and ni the number of the saccades of 
subject i. We expected that the higher the ratio, the better separating variable. Results 
are presented in Table 1 indicating reasonable opportunity for separation of subjects. 

Table 1. Means and standard deviations of variables for the data of 55 subjects and ratios be-
tween interindividual and intraindividual variabilities. 

Amplitude 

[º] 

Accuracy 

[º] 

Latency 

[s] 

Maximum 

velocity [º/s] 

Maximum accel-

eration [º/s2

Maximum decel-

eration [º/s] 2

Mean and standard deviation 

] 

47±11 1±9 0.25±0.05 631±184 33991±22830 17587±19350 

Ratio Rj

1.68 

 of interindividual and intraindividual variabilities 

1.43 1.11 2.09 1.91 1.96 
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4 Verification procedure applied 

There are two opposite objectives in verification of subjects: to detect an authenti-
cated subject as accurately as possible and to observe possible impostors as effective-
ly as possible. We call these as Conditions 1 and 2, respectively, that are tested with 
the procedure by employing the eye movement recordings described above.  

% Verification: counters for correct classifications of  
% authenticated users and those of impostors 
% (C1 for Condition 1 and C2 for Condition 2) 
C1=C2=0;  
For h=1:r  % iterations of the main loop 
 For i=1:n % one by one as an authenticated user 
   For j=1:a % a measurements 

Take m saccades, apart from the jth, from b=a-1 
measurements of an authenticated user to a training 
set; 
Copy m saccades to have 2m in the training set; 
Take randomly 2m saccades from p non-users and add 
these saccades to a training set; 
Train a model with 4m saccades of two classes: an 
authenticated user and non-users; 
TP=TN=FP=FN=0; 
For k=1:c % tests for Condition 1 

Classify a test saccade of an authenticated user 
into either correct class 
TP=TP+1 
or incorrect class 
FN=FN+1; 

End 
For l=1:d % tests for Condition 2 

Classify a test saccade of an impostor into 
either correct class 
TN=TN+1 
or incorrect class 
FP=FP+1; 

  End 
  % Compute majority vote for decisions 
   If TP≥FN then C1=C1+1; 
   If TN>FP then C2=C2+1; 
  End 
 End 
End 
Mean accuracy of authenticated users=100 % · C1/(r·n·a)  
Mean accuracy of impostors=100 % · C2/(r·n·a) 
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The procedure is on the basis of typical machine learning tests how classification 
problems are considered by dividing a data set into training and test sets to be varied 
largely in order to achieve statistically relevant results via numerous training and test 
set pairs sampled from the available data. Arrangements for classification are de-
scribed exactly in the following section alongside with the verification procedure to 
be given as follows. 

The verification procedure given in pseudocode above was executed with the data 
set of 55 subjects. It deals with both Conditions 1 and 2. Its main loop executes r iter-
ations for the whole process. Because of random selections within the verification 
procedure, several repetitions are required from which means and standard deviations 
are computed as final results. Three disjoint subsets of subjects are needed. For Con-
dition 1 there is a single authenticated subject at a time and some other subjects taken 
randomly from the whole set. The latter are called non-users, who are thought not to 
be users of a computer or other device and whose saccades are used to represent the 
part in the variable space outside an authenticated subject. For Condition 2, a third 
subset is still required, impostors apart from non-users, in order to test verification. 
Both conditions are needed because we may assume that an occasional subject at-
tempting to log in a computer can be either an authenticated subject or an impostor as 
well. 

5 Test arrangements 

In Condition 1 of the verification procedure, one by one each subject was the au-
thenticated subject. From other n-1=54 subjects p=30 random subjects formed the 
subset of non-users. The rest of 24 subjects were the subset of impostors. Every sub-
ject possessed 30 large amplitude saccades from 4 successive measurements, 120 in 
total. Thus, m=90 saccades of 3 measurements of an authenticated subject (doubled to 
be 2m=180 saccades) were set to a training set, but c=20 randomly chosen saccades 
from those 30 of one measurement were set to the corresponding test set. Further, 
2m=180 saccades were randomly chosen from p=30 non-users to the training set. For 
Condition 2, we always employed the same construction, but test cases were from the 
subset of 24 impostors. Here, there were d=20 saccades taken from the subset of im-
postors. According to the verification procedure, r·n·a=10·55·4=2200 different models 
were built. With these 20 saccades were tested for both Condition 1 and Condition 2 
entailing 44000 tests for each. 

We ran tests by means of multilayer perceptron networks with several training al-
gorithms, radial basis function networks, logistic discriminant analysis and support 
vector machines. We chose these methods on the basis of our previous [7,20,21], 
where these typically gave the best results for our earlier data sets measured with two 
different devices, not the same as now. Subject to multilayer perceptron networks, we 
then used Levenberg-Marquardt training algorithm only. This time, we wanted to 
liken their several, various training algorithms as well. For these networks, 6 input 
nodes as saccade variables, 1 output node and 6, 8, 10 or 12 hidden nodes of 1 layer 
were exploited.  
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According to Table 1, the scales of the different saccade variables vary considera-
bly. Therefore, normalization into [0,1] of their values could be needed before input-
ting data values to classification programs. Nonetheless, on the basis of our tests, we 
observed that radial basis function networks were the only that required them in order 
to produce reasonable results. Meanwhile, for results of the other methods its use was 
meaningless and was not used as to results to be presented in the following section. 

6 Test results 

The section describes test results gained. All computations were implemented in 
Matlab R2010a (MathWorks Inc, USA). Results are presented as classification accu-
racies in percent, i.e., how many tests gave a correct decision between an authenticat-
ed subject and non-users. For Condition 1, the former alternative was right and for 
impostors of Condition 2 the latter. False rejection and false acceptance rates are often 
exerted. They can be directly derived from accuracy values: False rejection or false 
negative rate is attained by subtracting accuracy of Condition 1 from 100%. Corre-
spondingly, false acceptance or false positive rate can be computed by subtracting 
accuracy of Condition 2 from 100%. 

The results in Table 1 should not be compared directly with the corresponding re-
sults of other researches, e.g., those of our earlier [20], since the recording devices 
were different. Different recording devices and types of recording devices seem to 
affect somewhat [1,5,17]. It has to be understood that virtually all variable values of 
saccades depend on their amplitudes, for example, the greater amplitude, the greater 
the maximum velocity. Amplitudes of saccades, of course, depend on stimulation 
angles. We used large stimulation angles because it is possible to obtain more varia-
bility between subjects between large, say, over 30º than small such as 5º-30º. Never-
theless, the crucial result here was that there was clear interindividual variability when 
the same stimulation angle, test set-up and recording device were used for all the sub-
jects. 

First, we computed all results by using the original data sampled at the frequency 
of 250 Hz. Second, we computed the same tests with the same data that was interpo-
lated up to 1000 Hz before any signal analysis or other computation at the beginning. 
We included the latter, interpolation alternative in our tests, because we found it nec-
essary in our previous studies on biometric verification with saccades [7,20,21] in 
which we applied an eye movement camera system with the low sampling frequency 
of 30 Hz whereas now it was much higher, 250 Hz. 

Results of eight training algorithms of multilayer perceptron networks are given in 
Table 2. To reduce excessive numbers of result tables, we present merely the best 
choice for each network in regard with the number of hidden nodes. In addition, two 
other training algorithms were also run, Batch Gradient Descent (gd) and Variable 
Learning Rate Backpropagation (gdx), but since their results were around 10% inferi-
or to those of the other, they were left out. Note that to search for the best result in the 
following tables, we have to look at pairs of Conditions 1 and 2, because both of them 
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are due to be as high as possible. Levenberg-Marquardt training algorithm gave de-
cidedly the best outcomes, particularly for Condition 2. 

 

Table 2. Means and standard deviations of classification accuracies for multilayer percetron 
networks in percent: Resilient Backpropagation (rp), Fletcher-Powell Conjugate Gradient (cgf), 
Polak-Ribiére Conjugate Gradient (cgp), Conjugate Gradient with Powell/Beale restarts (cgb), 
Scale Conjugate Gradient (scg), BFGS Quasi-Newton (bfg), One Step Secant (oss) and 
Levenberg-Marquardt (lv). The best pair is marked in bold face. 

 
Training algo-

rithm and hidden 

nodes 

Condition 1 and 

250 Hz 

Condition 2 and 

250 Hz 

Condition 1 and 

1000 Hz 

Condition 2 and 

1000 Hz 

rp 8 91±2 87±2 86±2 81±2 

cgf 12 91±1 86±3 87±2 80±2 

cgp 10 91±1 85±2 87±2 78±4 

cgb 6 89±2 87±2 86±2 79±2 

scg 10 89±2 85±3 85±1 79±2 

bfg 12 91±2 87±3 87±2 80±3 

oss 8 89±2 84±2 83±3 79±3 

lm 6 95±1 95±2 91±1 92±2 

 

Table 3. Means and standard deviations of classification accuracies for radial basis function 
networks in percent. The best pair is marked in bold face. 

 
Parameters 

spread and goal 

Condition 1 and 

250 Hz 

Condition 2 and 

250 Hz 

Condition 1 and 

1000 Hz 

Condition 2 and 

1000 Hz 

20 0.08 97±1 93±1 95±1 87±2 

20 0.1 96±1 95±2 96±1 91±2 

20 0.12 96±1 94±2 96±1 93±2 

15 0.08 96±1 94±2 95±1 90±2 

15 0.1 96±1 95±2 95±1 91±1 

15 0.12 96±1 95±2 95±1 92±2 
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Next, we conducted tests of radial basis function networks with different values of 
parameters goal and spread. These results are presented in Table 3. The best results 
were obtained with three pairs of the parameter values, but differences between others 
were small, a few percent. 

Next, we ran tests with logistic discriminant analysis that succeeded well, usually 
better than linear or quadratic discriminant analysis in our previous studies [7,20,21]. 
Finally, we experimented with support vector machines using various kernels. Results 
are shown in Table 4. 

 

Table 4. Means and standard deviations of classification accuracies for logistic discriminant 
analysis and support vector machines (SVM) in percent. Kernel functions of SVM are linear, 
quadratic, polynomial of degree 3 and radial basis function (RBF). The best pairs are marked in 
bold face. 

 Condition 1 and 

250 Hz 

Condition 2 and 

250 Hz 

Condition 1 and 

1000 Hz 

Condition 2 and 

1000 Hz 

logistic discriminant 

analysis 

91±1 89±2 91±1 88±2 

kernel     

linear 90±1 86±2 90±1 85±3 

quadratic 97±1 91±3 96±1 90±2 

polynomial, degree 3 98±1 93±1 97±1 91±1 

RBF, σ=2.5 96±1 95±1 96±1 93±1 

 
All the preceding results in Tables 2-4 represented a situation where classification 

was based on majority votes, i.e., with a threshold values of 0.5 (equal error ratio). In 
order to administer results still more extensively, ROC curves are portrayed in Fig. 4 
for results of support vector machines that were among the best results in Tables 2-4. 
It indicates how the kernels of radial basis function (with parameter value σ=2.5) and 
polynomial of degree 3 manifested the best performance. 

7 Conclusion and discussion 

The results of the preceding section indicated multilayer perceptron networks im-
plemented with Levenberg-Marquardt training algorithm, radial basis function net-
works and support vector machines with the polynomial kernel of degree 3 or RBF 
kernel to be the most efficient methods to solve the main task of our verification pro-
cedure, classification between saccades of an authenticated subject and those of oth-
ers. 
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Fig. 4. ROC curves presented with true positive rates (TPR) and false positive rates (FPR) in 
percent for support vector machines with respect to linear, quadratic, polynomial of degree 3 
and radial basis function (RBF) kernel with σ=2.5. 

 
High accuracies of 93-98% were obtained in the present tests, in other words, 2-7% 

error rates. When accuracies were 90% at their best in our previous studies [7,20,21] 
and the original sampling frequency was only 30 Hz even if interpolated to be much 
higher, there is a clear betterment at hand. The obvious reason is the higher sampling 
frequency. This was now 250 Hz instead of the earlier 30 Hz that was interpolated up 
to approximately 400 Hz or 1000 Hz. Nevertheless, interpolation of the present data 
from 250 Hz to 1000 Hz did even impair results somewhat, 3-8% for multilayer per-
ceptron networks, 0-6% radial basis function networks, 0-1% for logistic discriminant 
analysis and 0-2% for support vector machines. This empowers us to conclude that 
there is no reason to interpolate to acquire a higher, artificial sampling frequency for 
the data of the present recording system since the original sampling frequency suffic-
es. Apparently, 250 Hz is high enough. The conclusion is natural while recalling that 
information content of large angle saccades is known to reach 50-100 Hz [1,5]. 
Nyquist frequency, a half of sampling frequency, ought to be enough here, in theory. 
In practice, however, it has to be taken into account a higher bound and, thus, 250 Hz 
is enough for verification task. 

Another reason for the present results may be that, this time, our recording system 
required calibration for every recording session and subject, while using the other eye 
movement videocamera system earlier this applied precalibration made only once. 
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Nonetheless, according to our experience with several eye movement recording de-
vices of different types, we deem this less important issue than the great difference of 
the sampling frequencies of 30 Hz and 250 Hz. 

Inasmuch as the results obtained by other researchers who have studied biometric 
verification or identification are originated from very different tests and methods [8-
10,15], we are not able to directly compare to their results. However, looking at sheer 
classification accuracies or error rates, ours are at least as good as theirs and partly 
better. 

In the future we are going to explore the use of saccade eye movement signals due 
to be measured in different times of days, days and perhaps even weeks. It is arguable 
how much and how in general variable values of saccades vary in the course of time. 
On the one hand, their values are seen to have intraindividual variability during days 
or weeks, but on the other hand it was seen [2] that, e.g., maximum velocities did not 
differ statistically significantly after two weeks. 

To draw the main conclusion, it is a sensible and good idea to verify a subject on 
the basis of saccade eye movements provided that an eye movement camera system is 
included in the device to be used. It does not require two cameras as were used here; 
only one eye can be measured. 
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