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This  Master's  thesis  describes  the  two-level  model,  which  is  one  way  to  do 
morphological parsing. The basic components of the two-level model are the simplified 
deep  form  of  the  language,  and  the  rules  which  define  the  relation  between  the 
imaginary deep form and the actual words.

The thesis synthesizes the theoretical background in formal languages and same-
length relations and uses them to describe the two-level model formally. It introduces a 
novel way to compile rules, which is simpler than the previous methods.

The empirical part investigates how determinizing the transducer affects parsing 
performance and transducer size.
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1. Overview
This  thesis  describes  a  morphological  parsing  algorithm based  on  two-level  model. 
Two-level model was introduced over 20 years ago by Koskenniemi [1984], and it has 
inspired numerous publications and applications ever since.

Chapter 2 gives the reader an intuitive idea of morphological parsing and the two-
level model. Chapter 3 introduces definitions, which are needed when formalizing these 
ideas.  Chapter  4  describes  the  parsing  algorithm,  and  Chapter  5  presents  the  rule 
compiler.  Chapter  6  describes  one  way  to  organize  the  vocabulary  in  two-level 
morphology. Chapters 7 and 8 discuss the theoretical and empirical performance of the 
parsing algorithms.

Morphological parsing is a computation, which takes as input a derived form of a 
word. It outputs the dictionary form of the word and information about the derivation. If 
several derivations from different words can produce the same surface form, all possible 
parsings are listed. Figure 1.A illustrates this.

Figure 1.A. Morphological parsing from a word to a cohort.

A proper natural-language parsing pipeline takes a sentence as an input. The output is a 
tree, where the words are mapped to leaf nodes, while the syntactic structure of the 
sentence is mapped to the structure of the tree.

Figure 1.B. Parse tree and the parts of speech for the sentence ”The quick brown fox 
jumped over the lazy dog.”

ladoin lato + in: “with barns”
substantive, plural instrumental

lada + in: “with Ladas”
substantive, plural instrumental

lato + i + n: “I typesetted”
verb, singular 1. person imperfective

Word             : The              quick        brown      fox       jumped    over             the               lazy         dog.
Part of speech: Determiner  adjective  adjective  noun    verb         preposition   determiner  adjective  noun

Noun phrase Noun phrase

Preposition phrase

Sentence

Verb phrase
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This kind of pipeline has two or three stages. The morphological analysis is the first 
one. The second phase, called parts-of-speech tagging, aims to find out the classes of 
the words. The third phase constructs the parsing tree. The words are the leaf nodes of 
the parsing tree, while the inner nodes represent various syntactic structures. The arcs 
represent relationships: for example a noun phrase being the subject of the sentence. 
Figure 1.B shows an example of a parsing tree.

In  languages  with  little  inflection,  like  English,  parts-of-speech  tagging  is 
combined  with  syntactic  analysis.  In  highly  inflected  languages  like  Finnish, 
morphological analysis also disambiguates the parts of speech for most words.

The most obvious parsing method is to collect a list of acceptable words. Ispell, a 
free Unix  spell  checking program, uses this  method.  Ispell  also supports  affix  files. 
Affix files specify, which postfixes you can add to a certain class of words.   Ispell 
doesn't support analysis of derivation – it only recognizes ungrammatical words and 
proposes grammatical ones.

This thesis synthesizes the development of the two-level model after Koskenniemi 
[1983].  Chapter 5 introduces a novel way to compile rules. The method is  in many 
aspects similar to one introduced by Kaplan and Kay [1994], but simpler. Chapter 6 
provides the first mathematical formulation of continuation classes, which is the way 
vocabulary  is  expressed  in  the  two-level  model.  The  final  chapters  provide  new 
information about  the interaction between parsing performance and the grammatical 
structure of Finnish.
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2. Informal Description of the Two-Level Model

2.1 Language Model in Two-Level Morphology
Two-level model assumes that morphology is fundamentally concatenative, but various 
phonological  and notational  aspects  make  it  seem more  complex.  Two-level  model 
dinstiguishes between the  surface form – the form we see in everyday texts – and an 
artificial  deep  from.  In  the  deep  form,  parsing  and  production  are  a  matter  of 
concatenation.

Two-level grammar consists of a set of rules, which define the correspondence 
between the deep form and the surface form. The rules are  bidirectional: They define 
both how to parse the deep form when you know the surface form, and also how to 
produce the surface form given the deep form.

In the end of parsing, the deep form is converted into tag form. Tag form consists 
of a set of tags that denote the meaning and inflection of the word. Table 2.A illustrates 
the differences between the surface, the deep and the tag forms.

Word Surface form Deep form Tag form

cats cats cat+s cat, plural

spies spies spy+s spy, plural

Table 2.A. Surface, deep and tag form. Note that deriving a plural in deep form is 
concatenative, while surface form has nonconcatenative irregularities.

2.2 The Deep Form and the Surface Form
Table 2.B illustrates the Finnish consonant gradation. The letter ”p” is realized as ”v”, 
when certain inflectional affixes are added to the stem.

Surface Form Deep Form In English Case

papu paPu bean Nominative

pavussa paPu+$ssa in a bean Inessive

pavun paPu+$n of a bean Genitive

papua paPu+a bean as an object Partitive

papujen paPu+Ien of beans Plural genitive

Table 2.B. Deep form and surface form in consonant gradation.

In  the  deep  form,  the  special  character  P  is  used  to  denote  a  potentially  gradated 
consonant. We say that P may be realized in the surface form as either p or v. There are 
also non-letter characters in the deep form. ”+” denotes the boundary between a stem 
and an affix. Whether the gradation happens or not depends on the affix, and ”$” is used 
as the trigger for gradation.
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There is a specific correspondence relation between the deep form and the surface 
form. For each character in the surface form there is a unique counterpart in the deep 
form. However,  some characters in the deep form realize in  the surface as nothing. 
Figure 2.C illustrates this.

Figure 2.C. Correspondence relation between the deep form and the surface form. 

2.3 Two-Level Rules
The rules define the correspondence between the characters in the surface form and the 
deep form. They may also be intepreted as filters which deny illegal correspondences, or 
as transformations between the deep form and the surface form. Figure 2.D shows the 
components of a two-level rule.

Figure 2.D. The components of a two-level rule. Here “a” is a deep form character and 
“b” is a surface form character.

Two-level rules either allow or deny the occurence of a  correspondence  in a specific 
context. The left context and the right context are regular expressions, except that they 
are matched against both the deep form and the surface form. There are two main types 
of rules, and the operator indicates the type.

⇒ :  A  context  restriction rule indicates  that  the  given  correspondence  is 
possible  only  in  the  given  context.  For  example,  when  modeling  irregular  plural 
inflection as in spy-spies,  y : i ⇒   , e s , s  indicates that deep y may become 
a surface i only in the presence of a plural ending.

⇐ : A surface coercion rule restricts the possible realizations of a deep form 
character in the given context. If the correspondence in the rule is d :S  and the deep 
form contains  a  letter d ,  then it  must  realize  in  the  surface as  some s∈S .  For 
example,  y , i ⇐ , S any indictes that y always realizes as i when followed by a 

a: b ⇔ L R

Correspondence Left context

Operator Right context

p a P u + I e n

p a p u ∅ j e n

Deep form:

Surface form:
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plural marker; that is,  it  coerces deep y not to realize as surface y in this particular 
context.

The following additional rule types can be easily translated into context restriction 
and surface coercion rules.

⇔ :  The effect  of  a  composite  rule is  the  same as  the  effect  of  a  context 
restriction rule and an identical surface coercion rule combined.

 ⇍ : A  negative surface coercion rule says that in the given context, the deep 
character d must not realize as any s∈S .

The next example relates to the consonant gradation described in Table 2.B. The 
surface coercion rule, which allows P to realize as either p or v would be

 P : pv ⇐  . (2.3.1)
The contexts are empty, since P can't  realize as something else in any context.  The 
empty contexts always match.

The choice of p and v would be determined by a composite rule
P :v  ⇔ Dall , Sall ∗ $ ,∅  . (2.3.2)

The star marks optional repeating, as usual in regular expressions. The rule says that a 
gradatable P realizes as v if and only if the gradation trigger ”$” follows. There may be 
other characters between P and the gradation trigger.

In the absence of a gradation trigger P always realizes as p, since P may only 
realize as p or v, and it may realize as v only in the presence of a gradation trigger.

2.4 Rules and Transducers
The  separation  to  a  deep  form  and  a  surface  from  is  a  familiar  concept  from 
transformational grammar theory [Grinder and Elgin, 1973], and the format of the rules 
is similar to linguistic notation. The remaining problem is to construct a system, which 
can execute the rules and actually generate the deep form and the surface form.

For  execution,  the  rules  are  compiled  into  2-tape  transducers.  If  some 
deep/surface form pair violates the rule, the transducer won't accept the pair.

For example, the surface coercion rule (2.3.1) would be translated as in Figure 
2.E.

Figure 2.E. Transducer for the surface coercion rule P : pv ⇐  .

(Dall \ {P}, Sall)

( {P}, {p,v} )
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The execution starts  from the initial  state.  There are two transitions – one for each 
correspondence, where the deep character is P, and another for each correspondence, 
where the deep character is non-P. If the transducer meets a correpondence with the 
deep character P and a surface character that is something else than p or v, it stops and 
rejects the input.

The composite rule (2.3.2) would be translated as two rules. The rules are 
presented in Figures 2.F and 2.G.

Figure 2.F. Transducer for the surface coercion rule

P :v  ⇐ Dall , S all∗$ ,∅  .

The rule  in  Figure 2.F says that  a  deep P  must  realize  as  v  when followed by the 
gradation trigger. The rule is violated, if the gradation trigger is present, but P realizes 
as non-v. The state 1 scans for P realized as non-v. The state 2 scans for the gradation 
trigger. If both are found, then the input is rejected. The double circles indicate that both 
states are final states – the rejection is handled by stopping.

Figure 2.G. Transducer for the context restriction rule

P :v  ⇒ Dall , S all∗$ , ∅  . 

The rule in Figure 2.G says that P can realize as v only in the given context. If the 
transducer finds the correspondence, it has to find the gradation trigger $ before it can 
accept the word. State 1 is a final state, while state 2 is not.

(Dall \ {P}, Sall) (Dall \ {$}, Sall)

({$}, ∅)

1 2

(P, Sall \ {v} )

(P, v)

(Dall \ {P}, Sall)

(P, v)

(P, Sall \ {v})

(Dall \ {$}, Sall)

({$}, ∅)1 2
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2.5 Lexicon and Feasible Pairs
Suppose we have a surface form word, which we want to parse. We also have a set of 
transducers, which filter  out the rule-breaking deep forms.  How do we generate the 
hypothesis of the deep form? We can't try all characters from a to z, since the rules 
ignore most character pairs. For example, the rules in Figures 2.E, 2.F and 2.G accept 
the  surface  form ”spy” to  become  parsed  as  ”zzz”,  simply because  they don't  say 
anything about the character z.

The answer two-fold. First, we form a set of feasible pairs. Only feasible pairs are 
allowed to occur in the correspondences. The feasible pairs include

• default character correspondences, like (a:a), (b:b), (c:c),...
• feature-to-null correspondences, like (“+”, ), (“$”, ),...∅ ∅
• pairs which are mentioned in the rules like (P,p), (P,v), (I,i), (I,j).

Secondly, we  construct  the  lexicon  acceptor,  a  state  machine  that  accepts  all 
possible deep forms. Figure 2.H gives an example of a lexicon acceptor containing all 
words in Table 2.B.

Figure 2.H. Lexicon acceptor containing the deep forms in Table 2.B. The double 
circles are final states.

Lexicon also solves a problem with characters, which realize as nothing. When we use a 
lexicon  to  generate  deep form hypothesis, we don't  need to  worry about  situations, 
where we take reckless amount of empty transitions based on the hypothesis that the 
following deep form characters are all boundary markers, which realize as empty.

2.6 Parsing in Action
Table 2.I shows how surface form ”papua” gets parsed by the previously mentioned 
rules and the lexicon in Figure 2.H.

The parsing starts from the initial state. At each state, we make a list of transitions 
that may correspond to the next  surface character. If the surface character is  p then 
possible lexicon acceptor transitions include (1) deep characters that may realize as p, 
like (p,p) or (P,p), and (2) deep characters that realize as empty, for example (+, ).∅

1 2 3 4 5

11 127

17 18

8

p a P u #

+

a I
e n

$
n

s s A

6

1915

9

13

10

142016
#

# #

#
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In the first four transitions, there isn't any choice. The first branching point is at 
state 5, where also the end symbol (#,#) is  accepted by lexicon.  However,  the next 
surface character is ”a” and (#, a) is not a feasible pair so this branch is rejected.

In state 7, both ($, ) and (a, a) are allowed by the lexicon acceptor, and we try∅  
first ($, ). At this point, the rule transducer in Figure 2.F stops. It is in state 2, and the∅  
transition ($, ) is a stopping one. This way, the rule filters out a wrong hypothesis that∅  
the lexicon acceptor has generated. Therefore, we have to backtrack back to state 7.

State Parsed character Transition Deep form Note

1 [p]apua# 1 -> 2 p Only choice

2 p[a]pua# 2 -> 3 pa Only choice

3 pa[p]ua# 3 -> 4 paP Only choice

4 pap[u]a# 4 -> 5 paPu Only choice

5 papu[Ø]a# 5 -> 7 paPu+

Deep # can't realize as Ø nor 

”a”.

7 papuØ[Ø]a# 7 -> 8 paPu+$ Rule rejects $; backtrack

7 papuØ[a]# 7 -> 15 paPu+a

Second choice after $ branch 

failed

15 papuØa[#] 15 -> 16 paPu+a# 16 is a final state

Table 2.I. Parsing surface form ”papua”. The states refer to the lexicon acceptor in 
Figure 2.H. Parsed character means the next surface character to be parsed; note that  
the next character may be either the actual surface character or an imaginary empty 

character. The deep form is the output of the algorithm.

When the lexicon acceptor reaches state 16, we notice that the input is finished and the 
lexicon acceptor is at a final state, as is the rule transducer in Figure 2.F. This means 
that we have found an acceptable deep form, ”paPu+a#”.
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3. Formal Language Machinery
This chapter presents the mathematical definitions which we need when formalizing the 
ideas presented in the previous chapter. Aho and Ullman [1972] is my main source on 
state machines. Kaplan and Kay [1994] introduce transducers and same-length relations.

3.1 Basic Notations
An  alphabet  is a finite set of  characters.  A  word is a concatenation of 0n  
characters. Let M =Σ∗ ,● be the free monoid spanned by  and the concatenation 
operation ● . Then Σ∗ is the set of all words. A subset L⊂Σ∗ is a language. I use 
small  letters to  denote characters: a ,b∈Σ .  The concatenation a ●b is  written as

ab .  Capital  letters  denote  sets.  Specifically,  capital  letters L , M , ... denote 
languages.

The  empty  word λ∈Σ∗ is  the  identity  element  of  the  monoid.  The  empty 
language  is the empty subset of Σ∗ . The set Σ λ contains the alphabet and the 
empty word. It is not a subset of  , since the empty word is not a character. The 
length  of  a  word  is  defined  recursively: Length =0 , Length a =1 and

Length ax =1Length  x , when a∈ and x∈∗ .
The main set operations on languages L , L1 , L2∈Σ∗ are
• union: L1L2= L1∪L2 ,
• concatenation: L1 L2={w1 w2∣w1∈ L1 ,w2∈L2} ,
• Kleene star: L∗=Φ∪L∪LL∪LLL∪... , and
• Kleene plus: L=LL∗ .

3.2 Regular Expressions and Regular Relations
Regular expressions are a shorthand notation for certain formal languages. The regular 
expressions are defined as follows [Aho and Ullman, 1972]:

1) The empty expression  is a regular expression denoting the empty language
 .

2) Let a∈Σ λ . Then a is a regular expression denoting the language {a} .
3) If p and q are regular expressions and P and Q are the corresponding 

languages, respectively, then
a) union pq is a regular expression denoting the language P∪Q ,
b) concatenation pq is a regular expression denoting the language PQ ,
c) Kleene star p∗ is a regular expression denoting the language P∗ .

4) Nothing else is a regular expression.
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Regex   denotes  the  set  of  regular  expressions  for  the  alphabet  .  If 

r ∈Regex  is a regular expression, then L r  is the corresponding language. A 
language is  regular, if it can be denoted by a regular expression. We use RL to 
denote the family of all regular languages over an alphabet  . The family is closed 
under union, concatenation and Kleene star by the definition of regular expressions. It is 
also closed under complement and intersection [Aho and Ullman, 1972, p.129].

In order to express the left  and the right contexts in the rules, which state the 
correspondence between the surface and the deep form, we need a 2-tape equivalent of 
regular expressions.  The regular relations introduced by Kaplan and Kay [1994] are just 
that. 

From now on, I will use  to denote the deep form alphabet, and  to denote 
the  surface  alphabet.  The  building  blocks  of  regular  relations  are  character  pairs 

a , b∈ , .  Sets  D⊂  and  S⊂  define  a  pair  set 
D , S ={ d , s  ∣ d ∈D∧s∈S } .  Empty  pair is  , .  A  semi-empty  pair 

belongs either to the pair set {},  or  ,{} .
We  define  the  pair  concatenation  operator  as

d 1 , s1●d 2 , s2=d 1● d 2 , s1● s2 .  We  get  a  monoid  by  taking  the  Cartesian 
product  of the component word sets: ∗×∗ ,● .  The empty pair is  the identity 
element  of  the monoid.  A  2-language L is  a  subset  of ∗×∗ .  Note  that  a  2-
language  is  much  more  than  a  set  of  deep  words  and  surface  words

W d ,W s⊂∗ ,∗ ,  since  the  deep  words  and  surface  word  are  linked.  For 
example,  the  2-language {reptile , adder  ,mammal , cow} defines  a  containment 
relationship,  while  two  sets {reptile , mammal }, {adder , cow} don't.  When 
formulating the  two-level  model  with  2-languages,  we link the  deep form with  the 
corresponding surface form: For example { spy# , spy#  , spy+s# , spies# } . Parsing 
becomes a matter of finding the deep form words that correspond to the surface word 
being parsed. To give another example, the ambiguous words in Figure 1.A would be 
represented with {lato+in# , ladoin#  ,lada+in# ,ladoin#  ,lato+i+n# , ladoin# } .

Regular relations are a shorthand for 2-languages. The following definition is by 
Kaplan and Kay [1994]:

1) The  empty  set  is  a  regular  relation  denoting  the  empty  2-language
Φ⊂∗ ,∗ .

2) The pair a ,b is a regular relation, when a ,b∈ , . It denotes the 
2-language {a ,b} .

3) If r 1 and r 2 are regular relations denoting 2-languages R1 , R2 , then
• Concatenation r 1 r2 is  a  regular  relation  denoting  the  2-language 

{ d 1 d 2 , s1 s2 ∣ d 1 , s1∈R1 ∧ d 2 , s2∈R2} .
• Union r 1  r 2 is a regular relation denoting 2-language R1∪R2 .
• Kleene star r 1∗ is a regular relation denoting ΦR1R1 R1 .

4) Nothing else is a regular relation.
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A 2-language is regular, if it can be denoted by a regular relation. A 2-language L 
is same-length, if the corresponding surface form and deep form words are equally long: 
that  is, wd , w s∈L implies length wd=length w s . Later  we  will  prove  that 
regular same-length 2-languages are closed under complement and intersection, just like 
regular languages.

3.3 Finite State Machines and Transducers
A finite state machine is a 5-tuple M =Q ,  , , q0, F  , where 

• Q is the set of states,
•  is the input alphabet extended with the empty word,
• q0∈Q is the initial state,
• F ⊂Q is the set of final states,
• ⊂Q××Q is the transition relation.

A finite state machine starts from the state q0 and reads input from the tape. It 
moves  from  state q1 to  state q2 by  reading  a  character a from  the  tape,  if

q1 , a ,q2∈ .  It  is  also  possible  to  move  between  states q1 and q2 without 
reading anything, when q1 , , q2∈ . 

A state machine accepts input w ∈∗ , if it is possible to move from the initial 
state  to  some final  state f ∈F while  reading the  word  character-by-character.  The 
language accepted by the state machine, L M  , is the set of input words it accepts. 
The set of all finite state machines that use alphabet  is denoted by SM  . 

It  can  be  proven  that  the  family  of  regular  languages  equals  the  family  of 
languages  acceptable by finite  state  machines  [Aho and Ullman,  1972,  p.119].  The 
proof  is  constructive  and  is  based  on  building  a  state  machine  out  of  a  regular 
expression and the other way around.

If we understand the regular expression as a tree, we can also reverse it, so that 
the language it defines is reversed. This happens by reversing all concatenations. It is 
tricky to prove, since we have to establish a mapping between the regular expression 
tree and the word. 

A state machine is deterministic, if the state and the next character unambiguously 
define the next state. Determinization is a process, where the result is a deterministic 
state  machine  accepting  the  same  language.  Subset  construction  [Aho  and  Ullman, 
1972, p.117] is the classic way to determinize a state machine. In the transition relation 
of  the  resulting  state  machine,  the  current  state  and  the  next  character  uniquely 
determine the next state:

q1 , x , q2 ∧ q1 , x , q3 ⇒ q2 = q3 .

The difference between a finite transducer and a finite state machine is that a transducer 
has two tapes. The transition relation has two conditions that must be fulfilled – one for 
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each tape. For this reason, the transition relation is a subset of Q×××Q , where

 and  are the deep form and the surface form alphabets, respectively. The set of 
all transducers over alphabets  and  is denoted by TR , .

The transducer accepts a pair of words w1 , w2 , if it is possible to move from 
the initial state to a final state in such a way that all characters of both words have been 
consumed.  When T is  a  transducer,  the  2-language  accepted  by the  transducer  is 
denoted by L T  .

It  is  also  possible  to  run  the  transducer  so  that  the  other  tape  is  empty,  in 
transformation mode. Suppose that only the deep form of a word is given. Then we 
have  only one  condition  for  transitions.  When  we make  a  transition,  we  write  the 
surface letter to the other tape. When the input word ends and we are in the final state, 
we output the surface word. This process transforms a deep form word into a set of 
surface form words.

It is possible to construct a transducer from a regular relation with an algorithm, 
which is very similar to the state machine construction algorithm. The state machine 
construction algorithm can be found for example at Aho and Ullman [1972]. The only 
difference between the definitions of regular relations and regular expressions is the 
alphabet  where  we  operate:  When  state  machine  definition  talks  about  ,  the 
transducer  definition  talks  about × .  The  adjustment  to  the  construction 
algorithm is equally simple, as seen in Algorithm 3.A. Kaplan and Kay [1994] assumed 
that it is easy to construct a transducer from a regular relation, as it in fact is, but didn't 
specify the exact algorithm to do so. Therefore I have formalized the algorithm myself. 

Algorithm 3.A: Builds a transducer from a regular relation.
Input: A regular relation r , parsed into a tree T  r  . Each leaf of T  r  contains 
a character pair, which may be empty or semiempty. The inner nodes contain unions, 
concatenations or Kleene stars.
Output: A transducer T accepting the language denoted by r .
Algorithm:
 1. Start form the root of T  r  .
 2. Parse the left and the right subtree using this algorithm, if they exist. We call the 

resulting  left  subtransducer T 1 :=Q1 , ,  ,1 , q1 , F1 and  the  right 
subtransducer T 2 :=Q2 , , ,2 , q2 ,F 2 .

 3. If the root is the empty language  , we construct a transducer which accepts 
nothing.  We  set T :={q0}, ,  ,∅ , q0 ,∅ .  Since T has  no  final  states,  it 

clearly accepts nothing.
 4. If the root is a word d , s ∈ , , we construct a transducer with a single 

transition d , s  from  the  initial  state  to  the  final  state.  We  set
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T :={q0 , q1}, , ,q0 , d , s , q1 , q0 , {q1} .  Clearly  this  accepts  only  the 

language {d , s }⊂∗ .
 5. If the root is the union of regular relations accepted by the transducers T 1 and

T 2 ,  we make a new indeterministic  transducer,  where we can move from the 
initial state q0 to either T 1 or T 2 by using an empty transition. As a result, we 
set

T := ( q0∪Q1∪Q2 ,  ,  ,
     {q0 , , , q1 ,q0 , , , q2} ∪ 1 ∪ 2 ,
     q0 , F 1∪F 2 ).

 6. If the root is  the concatenation of the subrelations accepted by the transducers
T 1 and T 2 , we build a transducer, where all paths from the initial state to a final 

state pass through both T 1 and T 2 .  The new transducer starts  from the initial 
state of the first transducer T 1 . From all the final states of the first transducer we 
add an empty transition to the initial state of the second transducer T 2 . The set of 
final states of the new transducer is the set of final state of T 2 . As a result, we set

T := ( Q1∪Q 2 ,  ,  ,
     1 ∪ 2 ∪ {  f 1 , , , q2 ∣ f 1∈F 1}

     q1 , F 2 ).
 7. If the root is  the Kleene star of the left  subrelation,  and T 1 is  the transducer 

accepting it, we modify T 1 to accept the empty language and to loop in order to 
accept several repetitions. First, we make the inital state a final state. Secondly, we 
add empty transitions from all the final states to the initial state. As a result, we set

T := ( Q1 , , ,
     1∪ { f , , , q1 ∣ f ∈F1},
     q1 , F1∪q1 ).

3.5 Same-Length Languages
The  similarity  between  transducers  and  state  machines  can  be  characterized  by an 
isomorphism. The formulation of the isomorphism is my own, since Kaplan and Kay 
[1994, p.343] consider it trivial enough to merit only a passing mention in one sentence. 
We interpret the two tapes as one tape, where each character has two components. Let 

=× be  the  state  machine  alphabet.  Then f alphabet :×  is  the 

character isomorphism:
f alphabet x , y=x , y  , for all x∈ , y∈ ,

f alphabet  ,= , .

The word mapping f word :∗×∗ ∗ reduces a series of characters:
f word  ,= , ,
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f word d ● d rest , s● srest = f alphabet d , s ● f word d rest , srest  .

The  transducer  isomoprhism f transducer :TR , SM  switches  the 
alphabet of the transitions:

f transducerQ , ,  , , q0, F =
Q ,  , { q1 , f alphabet d , s , q2 ∣ q1 , d , s , q2∈ } , q0, F 

.

The  only problem concerns  semiempty  transitions.  They don't  have  a  natural 
interpretation  in  state  machines.  Figure  3.B  illustrates  this.  Suppose  there  are  3 
transitions from the current state – one with transition condition d , s  , another with

d , , and yet another with  , s . The next pair of input characters is d , s  . 
In the realm of transducers, it is clearly possible to take any of the three transitions. In 
the  realm  of  state  machines, d , s  , d , and  , s represent  different 
members of the alphabet  . The fact that any of these transitions is possible would 
mean that the same input can denote three different elements of the input alphabet  .

Figure 3.B. A situation, where semiempty transitions make the isomorphism fail.

The answer is  to  scrap semiempty transitions.  We restrict  ourselves  to  same-length 
languages. A  2-language L is  same-length,  if  the  words  in  each  word  pair

x , y∈L are equally long, that is, Length x =Length  y . We denote the family 
of  same-length  languages  with  deep  alphabet  and  surface  alphabet  with

SameLength , .
If L is a same-length language, and a transducer T accepts L , and T has 

no  semiempty transitions,  then  the  state  machine  isomorphism preserves  the  set  of 
accepted words: w1, w2∈LT  ⇔ f word w1, w2∈L  f transducerT  . 

The  state  machine  mapping  guarantees  that  transducers  without  semiempty 
transitions are isomorphic to finite state machines. Next, we prove that all regular same-
length  2-languages  are  accepted  by some transducer  without  semiempty transitions. 
This perfects the link between regular same-length languages and state machines.

Before presenting the proof as Theorem 3.C we need to define the concept of 
imbalance.  Suppose  that  there  is  a  path Path from  the  initial  state q0 to  state

State . Now
Imbalanceq0 , State , Path=deep form length – surface form length .

In this case, the imbalance is calculated along a specific path. However, if some 
path  leads  from State to  a  final  state,  then  the  path  must  correct  the  imbalance. 

...

...

...

...

(d,λ)

(d,s)

(λ,s)
1

2

3
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Suppose that the imbalance is k . Then all paths from State to any final state must 
make a similar −k correction, since a same-length transducer can't accept unbalanced 
input. Therefore, imbalance does not depend on the path. If p1 and p2 are two paths 
from the initial state to the state state , then

Imbalance q0 , State , p1=Imbalance q0 , State , p2 .
This means that given a specific transducer T =Q , , , , q0 , F  we can define a 
function Imbalance :Q ℕ so that

ImbalanceState=Imbalance q0 , State , Path ,
where Path can be any path between q0 and State .

Theorem 3.C [Kaplan and Kay 1994, p.343]:
A 2-language S is a same-length regular 2-language if and only if it is accepted by a 
transducer, which has no semiempty transitions. 
Proof:

⇐ : If the transducer has no semiempty transitions, then each transition reads 0 or 1 
characters  from both  tapes.  Therefore,  no  transition  creates  imbalance  between  the 
surface word length and the deep word length.

⇒ :  First  of  all,  the  language  is  accepted  by  some  transducer T ,  since 
Algorithm 3.A can be used to build a machine for any regular 2-language. We prove 
that  if  a  transducer T accepts  the  same-length  language S ,  then T can  be 
transformed into a transducer with no semiempty transitions.

We prove that if the maximal imbalance of a machine is k , we can reduce the 
imbalance to k−1 . We show that we can remove any state, which has imbalance 

k . By removing all of them, we get a machine with imbalance k−1 . We assume 
that the transducer has no  , -transitions. They are easy to remove by an obvious 
generalization of the algorithm that deletes such transitions from a state machine.

Suppose  a  transducer  has  maximal  imbalance k0 at  state s .  Now,  all 
incoming transitions are either of the form v , or x , y , since otherwise some 
previous state would have bigger imbalance. Similarly, all outgoing transitions are of 
the form  ,w  or x , y . Figure 3.D illustrates this.

Figure 3.D. A state with maximal imbalance.

s
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Next, we remove transitions of the form x , y , so that all incoming transitions are of 
the  form v , and  all  outgoing  transitions  are  of  the  form  ,w  .  Figure  3.E 
illustrates this. Suppose there is an incoming transition of the form x , y from state

t 1 to s . We split the transition t1 , x , y , s into two transitions, which use a new 
intermediate  state u1 .  The  new  transitions  are t1 , , y , u1 and u1 , x , , s . 
Now u1 is a new state with imbalance k−1 . The same process can be applied to 
outgoing transitions of the form x , y . This way, we remove all transitions of the 
form x , y .

Figure 3.E. Removing transitions of the form (x,y) from the state with maximal  
imbalance.

Now we are ready to smite the rogue state s . If there are n incoming transitions of 
form x , and  m  outgoing transitions of form  , y , we can replace s by

n×m transitions of the form x , y . Figure 3.F illustrates this.

Figure 3.F. Removing the state with maximal imbalance.

We can continue  the  process  until  maximal  imbalance  has  been reduced to  0,  and 
generalization to negative imbalance −k  is obvious.

Hence, the theorem follows.□
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We have  constructed  an  isomorphism,  which  converts  between  state  machines  and 
same-length transducers while preserving the accepted language. To put  it  formally, 
when w1, w2 is  an  element  of  a  same-length  language,

w1 ,w 2∈LT ⇔ f word w1 , w2∈L f transducer T  .  Now  we  import  some  state 
machine theorems into same-length relations.

Since the regular languages are closed under 
• union,
• concatenation, 
• complement, 
• intersection, 
• Kleene star and
• reversal,

also the regular same-length 2-languages are.
However,  the  imported  same-length  complement  is  not  the  same  as  native  

complement. This is because of the nature of the inverse mapping. Suppose we have a 
state machine S in =×∪ , ,  which accepts the language ∗ .  When 
we use the isomorphism to obtain the transducer, it only accepts the set of same-length  
word pairs. The full language of same-length pairs is ∗ , while without the same-
length restriction the full language is {w1 ,w2 ∣ w1∈∗ ,w2∈∗} .
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4. Two-Level Rules and Their Application

4.1 The Rules
The following definitions  has  been adapted from Ritchie  [1992].  Unless  mentioned 
otherwise, all words belong to the regular same-length 2-language ∗= ,∗ .

A  3-tuple x ,a , y  is  a  partitioning of  a  word w ,  if w=xay ,  where
a∈ and x , y∈∗ . A  context pair l , r  consists of a left word l ∈∗ and a 

right word r ∈∗ . Either or both of them may be empty.
A context  pair l , r  matches  to  a  partitioning x , s , d  , y  ,  if  there  exist

x start , yend ∈∗ such  that  x= xstart l  and  y=r yend .  In  this  case,  the  word 
x  s , d  y  can be expressed as x start l s , d  r yend . A set of context pairs matches a 

partitioning if one of them does.
For  example,  the  word  flys , flies∈∗ can  be  partitioned  as 

 fly , fli  , , e , s , s . The context pair  y , i  , , , which only inspects the 
left context, matches to the partitioning.

A  two-level  rule Pair ,Contexts  consists  of  a  correspondence  pair  set 
Pair={d } , S  where d ∈ and S⊂ ,  and  a  set Contexts of  context  pairs. 

The number of context pairs is often infinite.
In a  regular  two-level  rule,  the  context  set  can  be  denoted by a  same-length 

regular  relation. Regular  two-level  rules  can  be  written  as Pair , L , R ,  where 
Pair is  a  correspondence  pair,  and L and R are  regular  relations.  If 
Pair ,Contexts  is the “plain” rule and Pair , L ,R is the same regular rule, then 

the  set Contexts is  equivalent  to  the  set  of  context  pairs  implied  by  the  regular 
relations L and R , which is {l , r  ∣ l∈L∧r∈R} .

A two-level  rule {d }, S  ,Contexts  contextually  allows a  word w ,  if  any 
character  pair d , s ∈{d }, S  appears  only  within  the  given  context.  To  put  it 
formally, for each partitioning P=Left ,d , s  , Right  ,  where s∈S ,  the context 
set Contexts matches P . Especially, if the pairs in {d } , S  are not present in the 
word, the rule trivially allows the word.

For  example,  the context  restriction  rule  in  Chapter  2  that  controls  consonant 
gradation, P :v  ⇒ Dall , S all∗$ ,∅  ,  would  be  written  as 

{P} ,{v } ,  , , Dall , S all ∗$ ,∅   .  The  rule  contextually  allows 
 paPu $n , pavu∅ ∅ n ,  since  it  contains  the  gradation  trigger  $.  However,  it 

doesn't  allow  paPua , pavu∅ a  ,  since  the  partitioning 
 pa , pa  ,P ,v  ,ua ,u∅ a  contains the correspondence pair but the right side 

doesn't  match to  the  regular  relation Dall , S all∗$ ,∅  ,  as  it  lacks  the gradation 
trigger $.
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A two-level rule {d }, S  ,Contexts  coercively allows a word w , if the deep 

form character d always realizes in the surface as some s∈S in the given context. 
To  be  formal,  for  each  partitioning P=Left ,d , x , Right  that  matches  to

Contexts it holds that x∈S . The rule trivially allows all words, where either d is 
not present in the deep form, or no partitioning matches any context in Contexts .

For example, a rule that coerces the + in “y+s” to realize as “ies” would be written 
as {}, {e } , y , i  , s , s  .  However,  the  rule  doesn't  suffice  alone:  it  allows 

 flys , fly ∅ s since the context  doesn't  match to the only relevant partitioning: 
 fly , fly  ,,∅  , s , s doesn't  have  left  context  y , i  .  For  this  reason,  we 

need another surface coercion rule {y}, {i} ,  , ,, Sany , which signals that a 
deep  form  +  on  the  right  side  makes  y realize  as  i.  This  second  rule  rejects  the 
partitioning  fl , fl , y , y , s ,∅ s .

A  set  of  rules  contextually  allows  a  word w ,  if  for  each  partitioning
L ,d , s  , R either d , s  is not in the correspondence of any rule,  or some rule 

with  correspondence d , s  contextually  allows w .  Note  that  if  there  are  two 
context restriction rules, which concern the same pair, it is enough for one of them to 
accept w .

A set of rules R coercively allows a word w , if all rules in R allow w . 
This is consistent with the idea that the rules are filters, and if one filter is violated, then 
the input is rejected.

The next  example  demonstrates interaction between a set  of  rules.  It  is  about 
consonant gradation, where gradated K realizes as an apostrophe between two identical 
vowels, as in riuku - riu'un. The “linguistic” notation for this is

K : '  ⇔ Vowels a ,a   a ,a $ ,∅  ∣∣
Vowels e , e  e , e$ ,∅  ∣∣
Vowels i , i   i ,i $ ,∅  ∣∣
Vowels o , o  o , o$ ,∅  ∣∣
Vowels u , u  u , u$ ,∅  ∣∣
Vowels  y , y   y , y $ ,∅  ∣∣
Vowels ä , ä   ä , ä $ ,∅  ∣∣
Vowels ö ,ö   ö ,ö $ ,∅  .

In mathematical notation this composite rule would be expressed as a set of 8 
rules, which are enforced both as context restriction rules and as surface coercion rules. 
The first  rule would be  {K }, {' } , Vowelsa , a , a , a $ ,∅   .  Now we see 
why sets of context restriction rules have to treated with “one rule accepts, all rules 
accept” policy. Otherwise the perfectly valid riuku – riu'un  inflection would be rejected 
by the other 7 rules. After all,  the partition riu , riu ,K , '  ,u $n , u ∅ ∅ n is 
not allowed by the rule that concerns vowel “a”, when the rule is considered as a single 
rule.
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A  two-level  grammar CR , SC  consists  of  a  set CR of  context  restriction 

rules, and a set SC of surface coercion rules. The set of feasible pairs is the union of 
default pairs and special pairs. In a default pair, the character realizes as itself. To put it 
formally, DefaultPairs={a , a  ∣ a∈∩} . A  special  pair is a  pair  which  is 
mentioned in the rules: SpecialPairs={d , s ∣ {d }, S  , X ∈CR∪SC , s∈S } .

A two-level grammar CR , SC  allows a word w , if w is a concatenation 
of feasible pairs, CR allows w contextually, and SC allows w coercively.

Ritchie's  [1992]  definition  of  feasible  pairs  also  included  any  pairs  that  are 
mentioned in the context sets of the rules, but there are practical reasons not to do so. 
There are unfeasible pairs, which are nevertheless very useful. For example, the pair set

 , can be used to skip any single character. The second difference is that Ritchie 
[1992]  didn't  define  default  pairs  and  special  pairs.  Thirdly,  in  his  definition  the 
correspondence part of a two-level rule was a mere pair, rather than a pair set, making 
rules like P : pv⇐ impossible.

4.2 Rules as Transducers
We consider the rules as filters. Each coercion rule forms one filter. Each set of context 
restriction  rules  concerning  the  same  correspondence  pair  forms  one  filter.  Any 
input/output pair must pass through all filters simultaneously.

In order to apply the rules to a pair of strings we compile them into transducers. 
The compilation can be done by hand [Koskenniemi, 1983], or by the method presented 
later in the thesis, or by method devised by Kaplan and Kay [1994].

A correct compilation of a rule or a set of rules produces a transducer, which 
accepts  a  2-language  word  if  and  only if  the  rule  allows  the  word  contextually or 
coercively, depending on the type of the rule.

The rules are executed in parallel: we take one input character at a time, and feed 
it to all transduers. Since the transducers are same-length ones, they can be intersected 
in order to produce a single transducer, even if it may not be economical in terms of 
memory.

The basic parsing algorithm is the following:

Algorithm 4.A: Parses a word.
Input: A set T of rule transducers. A set F of feasible pairs. A deep form acceptor

S . A word w to be parsed.
Output: The possible deep forms of the word.
 1. Set the input cursor to the beginning. Set the lexicon acceptor to the initial state. 

Set all rule transducers to the initial state.
 2. Take a character of surface input. Let it be c .
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 3. Make a list of feasible pairs, where the surface character is c , or the surface 
character is empty.

 4. Make a list of possible lexicon transitions. A lexicon transition is possible, if the 
transition condition is the deep character for some feasible pair listed in 3.

 5. For each possible transition:
 5.1. Push (1) the lexicon acceptor state, (2) the rule transducer states and (3) the 

input cursor to the stack.
 5.2. Go to the next state in lexicon acceptor and rule transducers.
 5.3. Advance input cursor: Read the next character.
 5.4. If the input is finished and a new character could not be read, check if all 

transducers  are  at  a  final  state.  If so,  output  the lexicon  path  as  one possible 
parsing result.

 5.5. If there is an input character, read forward recursively. Go to step 2.
 5.6. Pop the lexicon state, rule states and the input cursor from the stack.

Note that we don't know, whether the next input character is 'really' an empty character 
or the naïve c we read from the string. At step 3, we must generate all feasible pairs, 
where the surface is c or empty.  This means that also more lexicon transitions are 
possible.



24

5. Compiling the Rules

Compilation is  a  process,  where the input  is  a set  of  two-level  rules,  as defined in 
Chapter 4. The output is a transducer, which accepts the input if and only if the rules 
allow the input contextually/coercively. Past compilation efforts have concentrated on 
regular two-level grammars. Also in this thesis all rules are assumed to be regular. After 
reviewing past algorithms, a novel algorithm is presented. It differs from the previous 
ones in ease of implementation. It works entirely within the same-length framework, 
and therefore doesn't need full, variable length transducer support.

5.1 Previous Compilation Algorithms
First, I'll review the method of Kaplan and Kay [1994], which is based on composition 
of  several  transducer.  We proved in  Chapter  4,  that  for  any regular  same-length  2-
language it is possible to create a transducer, which doesn't have semiempty transitions. 
This means that we can compose several variable-length transducers into a single same-
length one, provided that the language they accept is same-length.

The  method  of  Kaplan  and  Kay  [1994]  is  based  on  first  introducing  context 
markers, then placing the restriction on the core correspondence, and then removing the 
context  markers.  The  result  is  highly  indeterministic  and  contains  semiempty 
transitions,  but is guaranteed to be reducible to a same-length transducer. Table 5.A 
illustrates their method.

Phase Input Output

Introduce context markers fly+s <f<>l<>y<>+<>s>

Restrict left and right context <f<>l<>y<>+<>s> <f<l<y><+<s

Replace <f<l<y><+<s <f<l<i><+<s

Remove context markers <f<l<i><+<s fli+s

Table 5.A. The phases of rewriting rule y i / + in Kaplan and Kay's method. 

The example in Table 5.A. is a rewriting rule rather than a two-level rule. The first 
phase introduces context markers to the word. The second phase removes those context 
markers that don't match the right context. The left context is empty, therefore it always 
matches. The third phase does the replacement to the location, which is surrounded by 
both the left and the right context marker. The final phase removes the context markers. 
Kaplan and Kay [1994] also discuss compiling two-level rules with similar methods.

The  Xerox  FST  library  (XFST)  implements  a  large  set  of  state  machine 
algorithms, including two-level rule compilation. There is every reason to believe that it 
implements the compilation method of Kaplan and Kay, since they work for Xerox.
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The second known two-level compilation algorithm is part of PC-KIMMO [Antworth, 
2004]  software.  PC-KIMMO is a free,  open-source implementation of the two-level 
model. It includes a rule compiler. It is the only rule compiler implementation with a 
freely available source code.

The  documentation  is  not  too  specific  about  the  compilation  algorithm.  I 
inspected the source code, and failed to find a proper finite state transducer library. 
Therefore I believe that the compilation method in PC-KIMMO is heuristic and limited 
to basic cases only.

5.2 Compiling Context Restriction Rules
First, I'll present two same-length operators that are heavily utilized in the compilation 
algorithm. These are from Kaplan and Kay [1994].  IfLeftThenRight transformation is 
based  on  two  regular  relations,  one  left  and  one  right.  It  accepts  the  input  if  the 
beginning  doesn't  match  the  left  regular  relation,  or  the  beginning matches  the  left 
relation  and  the  end  matches  the  right  relation.  Let = , ∪ , be  our 
alphabet, and let ~C denote the complement of C . Then

IfLeftThenRight L , R=∗−L ~R=~L~R .
The “reverse” operation is IfRightThenLeft . It is defined as

IfRightThenLeft L , R=∗−~L R=~~ LR .

Two-level  rules  can be  considered as  filters,  which reject  illegal  strings.  This 
suggests the following method of checking context restriction rules. When you notice a 
'restricted' correspondence, check that it has a legal context on the left and the right side.

Single context  restriction  rules  contain  only  one  context,  where  the 
correspondence(s) are allowed:

d :S  L R .
Batch context restriction rules contain several possible contexts:

d :S  L1R1 ∨ ... ∨ LnRn .
The difference between single and batch rules that makes it  difficult  to compile 

batch rules is the interaction between the contexts. Some contexts may match to both
L1 and Ln .

5.2.1 Compiling Single Rules
This  compilation  method is  presented in Kaplan and Kay [1994],  but  in  much less 
detail. First we prove that a single rule with a left and a right context can be divided into 
two simpler rules: One including only the left context, and another including only the 
right context. To put it formally, 

d :S ⇒ L R
⇔
d :S ⇒ L  ∧ d : S ⇒ R .
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Theorem 5.B:
A context restriction rule d :S ⇒ LR is equivalent to two separate rules, one of 
them containing only the left context and the other containing only the right context.
Proof:
We prove that given a word w ∈∗ of input, the original rule d :S ⇒ LR allows 
it  if and only if the left subrule d :S ⇒ L and the right subrule d :S ⇒R
allow  it.  The  original  rule  accepts w ,  if  and  only  if  for  an  arbitrary  relevant 
partitioning P=l ,d , s , r  ,  where s∈S , P matches  the  context  pair  set

L ,R . Now
P matches L ,R
⇔ l∈xL∧r ∈Ry for  some x , y∈∗ .  The  equivalence  holds  by  the 

definition of partition matching a set of context pairs. 
⇔ l ∈xL ∧ r∈ , y '  ∧ l ∈x '  , ∧ r ∈Ry for  some 

x , y , x ' , y ' ∈∗ . We have introduced two extra conditions, which can be always 

fulfilled by choosing y ' =r and x '=l .
⇔ L , , matches P ∧  , ,R matches P . This is true by the 

definition of a partition matching a set of context pairs.
⇔ d : S ⇒ L ∧ d :S ⇒R . The equivalence holds because we chose 

the partitioning P and the word w arbitrarily.
Hence, the theorem follows.□

Next,  we  show  that  the  rule  d :S ⇒ L  is  equivalent  to 
IfRightThenLeft ∗ L ,d ,S ∗ .  We  already  know  how  to  reduce  the 
IfRightThenLeft operator into basic 2-language operations which we know how to 

compute, so this finishes the compilation of the left subrule.

Theorem 5.C:
A context  restriction  rule d :S ⇒ L with  only the  left  context  is  equivalent  to

IfRightThenLeft ∗ L ,d ,S ∗ .
Proof:
Let w ∈∗ be an arbitrary word. The left subrule d :S ⇒ L  allows w , if and 
only  if  for  each  relevant  partitioning P=l ,d , s , r  where s∈S it  is  true  that 

L ,  matches P . Now firstly, we'll rephrase the left context condition:
L ,  matches P=l ,d , s , r 
⇔ l ∈xL , for some x∈∗ ,
⇔ l ∈∗ L .
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Secondly, we can express  the  presence  or  absence  of d , s  where s∈S in 

another way. It is equivalent to say that w can be partitioned into P=l ,d , s , r 
for some l ∈∗ , and to say that w ∈l d , S ∗ for some l ∈∗ . Therefore

w is accepted by d :S ⇒ L  ,
⇔ for all partitionings P=l ,d , s , r  it is true that L , matches P . 

This is true by definition of a rule allowing a word contextually.
⇔ For  all  partitionings P=l ,d , s , r  it  is  true  that l ∈∗ L .  The 

equivalence   is  true,  because  we  showed  earlier  that L , matching P is 
equivalent to l ∈∗ L .

⇔ If w ∈l d , S ∗ for  some l ∈∗ ,  then l ∈∗ L .  This  simply 
expresses the presence and absence of d , S  in another way.

⇔ If the right side of w matches to d ,S ∗ , then the left side matches to 
∗ L .

⇔ w ∈IfRightThenLeft ∗ L , d ,S ∗ .
Hence, the theorem follows.□

Similarly,  the  right  subrule  is  equivalent  to IfLeftThenRight ∗d , S  , R ∗ .  To 
sum up,

d :S ⇒ LR  
= IfRightThenLeft ∗ L ,d , S ∗ ∩ IfLeftThenRight ∗d ,S  ,R ∗ .

5.2.2 Compiling Batch Rules
The difficulties with batch rules like d :S ⇒ L1 R1 ∣∣  ∣∣ Lk Rk are: 
• Splitting the rules to the left subrule and the right one requires some preparation, 

since we don't want to allow Li d ,S R j where i≠ j .
• The left contexts or the right contexts of the subrules may intersect.

Our solution is to first split the k original rules into n subrules, where the left 
contexts don't intersect. This disintersection process may change the number of rules. 
Let d :S ⇒ L1 ' R1 ' ∨  ∨ Ln ' Rn ' be the disintersected rules. The fact that 
left  contexts  are  independent  means  that ∗ Li ' ∩ ∗ L j '=∅ when i≠ j . 

Compiling the disintersected rules is relatively straightforward, and a method to achieve 
it will be presented after the disintersection algorithm.

Algorithm 5.D splits the subrules so that their left contexts don't intersect.

Algorithm 5.D: Convert a batch rule into a format where the left contexts don't 
intersect.
Input: A batch rule d :S ⇒ L1 R1 ∨  ∨ Lk Rk .
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Output: A batch rule d :S ⇒ L1 ' R1 ' ∨  ∨ Ln ' Rn ' , where the left 
contexts do not intersect: i≠ j ⇒ ∗ L i ' ∩∗ L j ' =∅ .

Algorithm:
 1. Unprocessed is an array of input subrules with ∗ prefix. 

Unprocessed :={ ∗ Li ,Ri ∣ {d }, S  , Li , Ri is an input subrule} .

 2. Processed is an empty array of disintersected subrules.
 3. While Unprocessed is not empty:

 3.1. Current :=Unprocessed [1] . Let L ,R:=Current .
 3.2. IntersectionLanguage will be the left context in a new, disintersected rule. 

It is formed with a series of intersections. IntersectedRules is a list of original 
rules that are combined to form IntersectionLanguage . Initialize

IntersectionLanguage := L , IntersectedRules:={ L , R } .
 3.3. For all subrules Li , Ri∈Unprocessed :

 3.3.1. If the left contexts intersect, that is,
Li ∩ IntersectionLanguage ≠ ∅ :

 3.3.1.1. IntersectionLanguage := IntersectionLanguage ∩ Li .
 3.3.1.2. IntersectedRules.add  Li , Ri  .

 3.4. Subtract IntersectionLanguage from the other left contexts. For each rule
Li , Ri∈ IntersectedRules do:

 3.4.1. Li :=Li ∩ ~IntersectionLanguage . This change must be 
propagated to Unprocessed .

 3.4.2. If Li becomes an empty language: Remove Li , Ri from 
Unprocessed .

 3.5. Create a new, disintersected rule and add it to Processed :
 3.5.1. Lnew:=IntersectionLanguage .
 3.5.2. Create the right context. Initialize Rnew=∅ . For each rule 

Li , Ri∈ IntersectedRules do:
 3.5.2.1. Rnew :=Rnew ∪ Ri 

∗ .
 3.5.3. Processed.Add Lnew ,Rnew .

To see how Algorithm 5.D works, let's look how it handles a subrule L , R where 
left context doesn't intersect with any other subrule. At some iteration of the loop at step 
3,  the  algorithm  is  going  to  take ∗ L , R as  the Current rule,  and  initialize 

IntersectionLanguage as ∗ L .  The  loop  at  step  3.3  finds  out  that  only
∗ L , R itself intersects with ∗ L , R .  As a result,  after the loop at step 3.3 
IntersectedRules={∗ L , R} .  At  step  3.4, IntersectedRules has  exactly  one 

element. When the left context of this element ∗ L , R is substracted from itself, the 
result is an empty language and the rule ∗ L ,R is removed from Unprocessed . 
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At  step  3.5,  the  new  rule  that  is  added  to Processed is ∗ L , R .  The 
nonintersecting left context passes through the algorithm unscathed.

What guarantees that the algorithm stops? The loop at step 3.3 collects a subset of 
rules to IntersectedRules and calculates the intersection of their left contexts. Later, 
loop 3.4 substracts the resulting IntersectionLanguage from the left contexts at the 

Unprocessed . After this, the “diminished” rules in the array IntersectedRules no 
longer intersect. If there are n rules, there are 2n – 1 possible nonempty subsets of 
rules.  Therefore, IntersectedRules can have at  most 2n – 1 different  values during 
the execution of the algorithm. After they are exhausted, the algorithm stops. It is easy 
to construct  an example,  where full 2n−1 iterations are needed. For example,  rule 

x : y ⇒{abde} ,{a }r , r  ∣∣ {abcf }, {a }s , s ∣∣ {acdg } ,{a }t , t  is 
split to full 23 – 1 rules, since all combinations of left contexts intersect in a unique 
way. This also means that the worst-case performance of the algorithm is exponential, 
but that would require a very special grammar to cause any trouble in practice.

What guarantees that the resulting left contexts do not intersect? In short, the loop 
at step 3.4. The IntersectionLanguage is used as the left context of any new rules, and 
since it is subtracted from the existing rules, they can't intersect with it.

After the disintersection has been done, the rule can be compiled into n1
transducers:  One of them guarantees proper left  context  and the other n guarantee 
proper  right context. The transducer ensuring that the left context is correct is

IfRightThenLeft  ∗ L1 ' Ln '  , d ,S ∗  .

The remaining n transducers check the right contexts. Since the left contexts do 
not intersect, only one of them is triggered for each instance of c∈d , S  in a word.

IfLeftThenRight  ∗ L1 ' d ,S  , R1 ' ∗  ,

...
IfLeftThenRight  ∗ Ln ' d , S  , Rn ' ∗  .

This method of compiling a batch of context restriction rules is novel.

5.3 Compiling Surface Coercion Rules
This  method  is  from  Kaplan  and  Kay  [1994].  The  surface  coercion  rule

d :S  LR means  that  in  the  given  context,  a  deep  form  character d must 
realize  as  some surface character s∈S .  In other  words,  we want  to  reject  strings 
which contain

L d ,~S R .

When we modify this expression to ignore characters in the beginning and in the 
end, it becomes

∗ L d ,~S R ∗ .
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Since this is what we want to reject, the positive filter is

~∗ Ld :~S R ∗ .

5.4 Implementing the Algorithms
The rule compilation algorithm is a series of operations on same-length 2-languages. 
However,  the  practical  implementation  is  done  with  finite  state  transducers.  The 
following standard state machine operations are used in the compilation algorithm:
• union, 
• concatenation, 
• intersection,
• complement,
• determinization.

It is possible to implement also IfLeftThenRight and IfRightThenLeft with the 
operations listed above. Regarding left and right contexts, Algorithm 3.A showed a way 
to build a transducer from a regular relation. 

One operation that still  needs to be mentioned is  checking whether a machine 
accepts the empty language. It is  needed when disintersecting the left  contexts  of a 
batch context restriction rule. We know that the smallest machine that doesn't accept 
anything contains only one state; a state that is initial but not final. Therefore, if we 
minimize the transducer as if it was a state machine, we can deduce from the minimized 
transducer  if  it  accepts  the  empty  language  or  not.  Minimizing  is  also  useful  for 
decreasing the sizes of the transducers for other reasons.
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6. The Lexicon
In Chapter 2 we saw how parsing uses lexicon. When the parsing algorithm reads a 
surface form input character, it uses the lexicon to generate a list of possible deep form 
output characters. Rules filter out the wrong characters from this list.

In Chapter 5 we compiled rules into transducers. In this chapter, we compile the 
vocabulary into a transducer and combine it with the rule transducers to provide one big 
transducer for parsing from the surface form to the deep form.

This entire chapter is the first mathematical formalization of continuation classes 
[Koskenniemi, 1983]. The developers of two-level morphology probably didn't see the 
topic as worth exact formalization. After two-level morphology, morphological tools 
have developed towards general finite state libraries [Beesley and Karttunen, 2003], 
where there is no reason to restrict oneself to continuation classes.

6.1 Continuation Classes
In Chapter 2 we said that the two-level model assumes inflection to be fundamentally 
concatenative.  This  means  that  in  the  deep  form,  words  are  inflected  by attaching 
prefixes and suffixes. We also know that many words have similar inflection. We want 
to group related inflection suffixes into classes; this way we can denote the inflection of 
a word by a reference to the class of continuations.

Before defining continuation classes we need to discuss  tags. They are the final 
result of parsing and the raw material for producing words. For example, the surface 
form “going” should  be  parsed into  tag list  (“go”,  “progressive”).  When producing 
words, for example the tag list  (“go”, “imperfect”) should produce the surface form 
“went”. Tags can denote words or grammatical categories. Sometimes it is possible to 
split the deep form into “tag-size” pieces so that each tag corresponds to a part of the 
deep form string. Sometimes a deep form string corresponds to several tags but can't be 
analysed into subcomponents.

Let  be the deep form alphabet and T the tag alphabet. The smallest unit of 
vocabulary  is  a  word  triple Stem ,Continuation ,Tags where Stem∈∗ is  the 
string that characterises the word or inflection suffix, Continuation is the name of the 
continuation class that can be appended after the stem (we define continuation classes in 
the next paragraph), and Tags∈T ∗ is a string of tags that identify the meaning of the 
stem.  For  example  “ go” , IrregularVerbInflection ,“ go”  or

“ ing ” , End ,“ progressive ” may be word triples in an English grammar.
A continuation class groups related words or inflection suffixes together. It is a 4-

tuple Name , Triples , ,T  where Triples is a set of word triples. The word triples 
in Triples use  as their deep alphabet and T as their tag alphabet. When a word 
triple references to a continuation class, it uses Name as the handle.  A continuation 
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class  is  empty if  it  contains  no  word  triples.  Continuing  the  previous  example,  a 
continuation class IrregularVerbInflection could contain word triples for

• forming a present tense with no suffix,
• forming a singular 3rd present tense with -s or -es and
• forming a progressive form with -ing.

A  union of  two  continuation  classes A=Namea , Triplesa , , T  and
B=Nameb ,Triplesb , ,T  denotes  the  union  of  their  word  triples: 
A∪ B=Triplesa∪Triplesb .

Since continuation classes refer to one another, we need a container structure for 
them. A  lexicon is a 5-tuple  ,T , Classes , Root , End  where Classes is a set of 
continuation  classes  where  stems belong to ∗ and tags  are  strings  in T ∗ .  The 
continuation class Root starts the word-forms. The continuation class End signals 
the end of a word-form. Continuation class references in a lexicon must be consistent: 
their  names have to  be unique,  and all  continuation  classes  mentioned in  the word 
triples must exist.

The following set of tables describes the inflection of singular Finnish nouns. It is 
based on the two-level Finnish grammar of Koskenniemi [1983]. The example is quite 
long, but it demonstrates many different things in this and the next chapter. The crude 
formula for noun inflection is

 stem [+case] [+possessive suffix] [+clitic].
This means that each word starts with the stem. After the stem, 0 – 3 optional 

suffixes can follow. Cases denote mainly various prepositions, for example, the phrase 
“in a house” is expressed with the inessive case in Finnish. Possessive suffixes denote 
ownership: “my house” is expressed with singular 1st person possessive suffix. Clitics 
have various meanings that depend heavily on context. Table 6.A lists two noun stems. 
Table 6.B lists  singular  case  inflection.  However,  in  any real-life  grammar also the 
plural noun inflection has to be included. Table 6.D lists the possessive suffixes, and 
Table 6.C lists  the clitics.  Table  6.E and Table 6.F list  Root and  End  continuation 
classes, respectively. They are required for a valid two-level lexicon. Finally, Table 6.G 
lists the continuation classes, which are unions of other continuation classes.

Stem Continuation Tags
talo noun "house"
öljy noun "oil"

Table 6.A. Example of a continuation class. The continuation class is named “stem”.

Table 6.B lists the cases. The non-alphabet character “+” denotes the boundary between 
the stem and case suffix and is necessary for some rules. The character “$” denotes 
consonant  gradation.  Chapter  1  had  an  example  of  consonant  gradation,  but  this 
example does without. The last two lines with “@” denote compound words. In Finnish, 
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it is possible to form compound words by attaching substantives or adjectives after the 
nominative form or the genitive form of a word.

Stem Continuation Tags
clitic_end singular, nominative

$+n clitic_end singular, genitive
+n possessive singular, nominative
+n possessive singular, genitive
+nA possessive_clitic_end singular, essive
+A possessive_clitic_end singular, partitive
$+ksi clitic_end singular, translative
$+kse possessive singular, translative
$+ssA possessive_clitic_end singular, inessive
$+stA possessive_clitic_end singular, elative
+:n possessive_clitic_end singular, illative
+h:n possessive_clitic_end singular, illative
$+llA possessive_clitic_end singular, adessive
$+ltA possessive_clitic_end singular, ablative
$+lle possessive_clitic_end singular, allative
$+ttA possessive_clitic_end singular, abessive
@ stem singular, nominative
$+n@ stem singular, genitive

Table 6.B. Continuation class “case”. It represents the Finnish singular noun case 
inflection. The last two lines represent compound words.

Stem Continuation Tags
_hAn end hAn
_kA:n end kAAn
_kin end kin
_kO end kO
_pA end pA
_kinkO end kinkO
_kA:nkO end kAAnkO
_kOhAn end kOhAn
_kOs end kOs
_pAhAn end pAhAn
_pAs end pAs

Table 6.C. Continuation class “clitic”. Denotes clitics, which serve various 
grammatical roles that are highly context-dependent. 
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Stem Continuation Tags
/ni clitic_end Singular 1st
/si clitic_end Singular 2nd
/nsA clitic_end Singular/Plural 3rd
/:n clitic_end Singular/Plural 3rd
/mme clitic_end Plural 1st
/nne clitic_end Plural 2nd

Table 6.D. Continuation class “possessive”. Denotes possessive suffixes that indicate 
ownership. Possessive suffixes can be appended after stem or after case inflection.

It is useful to start and end the word with a special character, since some rules need to 
refer to the beginning or end of a word. We use # as the special character. Table 6.E and 
Table 6.F  introduce this special character. Table 6.G, defines the continuation classes 
that are combinations of existing classes.

Stem Continuation Tags
# stem

Table 6.E. Continuation class “Root”. All word-forms start from this class.

Stem Continuation Tags
#
Table 6.F. Continuation class “End”. All word-forms end in this class.

Continuation Class Definition
possessive_clitic_end possessive∪clitic∪end
clitic_end clitic∪end
noun case

Table 6.G. Continuation classes that are combinations of other continuation classes.  
Union means the union of word triples rather than that of continuation classes.

6.2 The Deep Form State Machines
Algorithm 6.H constructs a state machine that accepts all valid deep form words and 
none of the invalid ones. The state machine is not useful in itself, but the construction 
algorithm can be modified  to  produce  transducers  that  convert  between the  surface 
form, the deep form and the tag form.
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Algorithm 6.H: Builds a lexicon acceptor from a lexicon.
Input: A lexicon L= , T ,Classes , Root , End  .
Output: A state machine M =Q , , , q0 ,F  that accepts the deep form of L .

Algorithm:
 1. Create an entry state for each continuation class c∈Classes . At this point, the 

entry states are isolated states with no transitions.  We denote the entry state of a 
continuation class Name by Entry [ Name ] . Add entry states to Q .

 2. Set the initial state: q0:=Entry [Root ] .
 3. For all continuation classes Name , S , , T ∈Classes :

 3.1. For all triples Stem ,Continuation , Tags∈S : Create the transition chain:
 3.1.1. CurrentState := Entry [ Name ] .
 3.1.2. For k :=1 to Length Stem do:

 3.1.2.1. Create a state and store it to variable NewState . Add it to Q .
 3.1.2.2. Add transition CurrentState , Stem[k ] , NewState to  .
 3.1.2.3. CurrentState := NewState .

 3.1.3. Create the transition to the next continuation class:
 3.1.3.1. If Name is End , make CurrentState final.
 3.1.3.2. If Name is  not End ,  add  a  transition 

CurrentState , , Entry [Continuation] to  .

Figure 6.K illustrates  what  kinds of  machines this  algorithm produces.  The lexicon 
transducer in Figure 6.K converts between the deep form and the surface form. It is 
produced by a modified algorithm. The only difference to deep form acceptor is that the 
transducer accepts pairs instead of characters.

We can modify the algorithm to produce a transducer that maps between the deep 
form and tags. The modification in Algorithm 6.I is restricted to the part where we 
create the transition chain for a stem. After the transition where tape 1 accepts the last 
letter of the stem we put transitions that have the tags on tape 2. The transitions up to 
the last letter don't write any tags. This way, if the transducer reads the deep form it 
writes  appropriate  tags.  When  producing  deep  forms  from  tags,  at  the  time  the 
transducer reads a tag it must have gone through a long chain of semiempty transitions 
that produce the appropriate deep form.
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Algorithm 6.I: Creates a transducer that converts between the deep form and the tag 
form.
Input: A lexicon L= , T ,Classes , Root , End  .
Output: A transducer M =Q , , T  ,  , q0 ,F  that converts between the deep form 

and the tag form defined by L .
Algorithm:
 1. Create an entry state for each continuation class c∈Classes . At this point, the 

entry states are isolated states with no transitions. We denote the entry state of a 
continuation class Name by Entry [ Name ] . Add the entry states to Q .

 2. Set the initial state: q0:=Entry [Root ] .
 3. For all continuation classes Name , S , , T ∈Classes do:

 3.1. For all triples Stem ,Continuation , Tags∈S do: create the transition chain.
 3.1.1. CurrentState := Entry [ Name ] .
 3.1.2. For k :=1 to Length Stem do:

 3.1.2.1. Create a state and store it to variable NewState . Add it to Q .
 3.1.2.2. Add transition CurrentState , Stem[k ] , , NewState  to  .
 3.1.2.3. CurrentState := NewState .

 3.1.3. Add the tags: For k :=1 to Length Tags do:
 3.1.3.1. Create a state and store it to variable NewState . Add it to Q .
 3.1.3.2. Add transition CurrentState , ,Tags [k ] ,NewState  to  .
 3.1.3.3. CurrentState := NewState .

 3.1.4. Create the transition to the next continuation class:
 3.1.4.1. If Name is End , make CurrentState final.
 3.1.4.2. If  Name  is  not  End ,  add  a  transition 

CurrentState , , , Entry [Continuation ] to  .

The second modification,  Algorithm 6.J,  generates  the  surface-deep transducer.  We 
have  said  that  rules  can  be  considered  as  filters  that  permit  or  deny  certain 
correspondences between the deep form and the surface form. The role of the surface-
deep transducer is to generate the raw data that is filtered by the rules. When parsing, it 
ensures that the parsed deep forms are in the vocabulary. 
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Algorithm 6.J:  Creates a transducer that converts between the surface form and the 
deep form, ignoring the rules.
Input: A  lexicon L= , T ,Classes , Root , End  .  A  surface  alphabet  .  A  set

F ⊂ ,  of  feasible pairs (see chapter 4.1).
Output: A same-length transducer M =Q , ,  , , q0 , F  that  converts  between 

the deep form defined by L and the surface form.
Algorithm:
 1. Create an entry state for each continuation class c∈Classes . At this point, the 

entry states are isolated states with no transitions.  We denote the entry state of a 
continuation class Name by Entry [ Name ] . Add entry states to Q .

 2. Set the initial state: q0:=Entry [Root ] .
 3. For all continuation classes Name , S , , T ∈Classes do:

 3.1. For all triples Stem ,Continuation ,Tags∈c , create the transition chain:
 3.1.1. CurrentState := Entry [c ] .
 3.1.2. For k :=1 to Length Stem do:

 3.1.2.1. Create a state and store it to variable NewState . Add it to Q .
 3.1.2.2. Use feasible pairs to find out the set of possible surface characters: 

SurfaceSet :={s ∣ Stem[ k ] , s ∈F } .
 3.1.2.3. Add  transition CurrentState , Stem[k ] , SurfaceSet , NextState  to 

 .
 3.1.2.4. CurrentState := NewState

 3.1.3. Create the transition to the next continuation class:
 3.1.3.1. If Name is End , make CurrentState final.
 3.1.3.2. If  Name  is  not  End ,  add  transition 

CurrentState , , , Entry [Continuation ]  to  .

In Chapter  2,  we ran the rules and the lexicon transducer  separately for reasons of 
conceptual clarity. Now we see that both the surface-deep transducer and the rules are 
same-length transducers. Running transducers in parallel and rejecting input when one 
of  the  transducers  rejects  it  produces  the  same  result  as  intersecting  the  separate 
transducers into one transducer and using it to convert between the deep form and the 
surface form. It is faster to intersect the lexicon transducer with the rule transducers than 
to  intersect  the  rule  transducers  with  one another,  since  many complex  interactions 
between the rules never appear in real-life vocabularies. Algorithm 6.L combines the 
rules and the surface-deep transducer.
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Figure 6.K. Surface-deep transducer generated from the Finnish example. Clitics have 
been omitted as well as parts of the case and possessive suffix continuation classes.
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Algorithm 6.L: Combines the lexicon-based surface-deep transducer and the rules into 
one transducer.
Input: A surface-deep same-length transducer T . A vector V of same-length rule 
transducers.
Output: A single transducer that corresponds to running the transducers in parallel.
Algorithm:
 1. Initialize: Result :=T .
 2. For all rule transducers R∈V do:

 2.1. Result :=Result∩R .

6.3 Removing Semiempty Transitions
In Section 6.2 we created two useful transducers in order to convert between the surface 
form, the deep form, and the tag form. Both transducers  have plenty of semiempty 
transitions.

The surface-deep transducer creates an illusion of same length between the deep 
form and the surface form with a dedicated empty character. Special deep characters 
like inflection boundary markers in the Finnish example realize as empty characters in 
the surface form. This creates complications in parsing: When we get a real-life surface 
word, it doesn't have empty characters. When parsing a surface form, we must guess at 
each point whether the next character is an empty character or the actual character. In 
this section we treat these transitions as semiempty transitions.

There are  two reasons  why we need a  new type of  transducer  to  express  the 
algorithm  that  removes  semiempty  transitions.  Firstly,  the  algorithm  is  based  on 
concatenating  the  outputs  of  the  transitions  where  the  input  tape  is  semiempty. 
Therefore  the  transducer  must  be  able  to  write  several  characters  in  one  transition. 
Secondly, we must take direction into account and treat the input tape and the output 
tape differently. It is normal that the output tape has empty transitions: it doesn't create 
any extra ambiguity when transforming input into output. Empty output has valid uses, 
for example when converting deep form words to surface form words,  where some 
characters realize as empty. On the other hand, empty transitions in the input tape force 
us to branch the transduction to a scenario where something is read and another scenario 
where no input read, slowing down conversion.

The definition also introduces output function [Mohri 1996] as preparation to the 
next  chapter about  determinization.  If the transduction ends at  some final  state,  the 
output of the output function is written to the output tape. Output function enables us to 
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get rid of semiempty transitions and have limited amounts of indeterminacy without 
branching.

A word transducer with p outputs T=Q , I ,O , , , q0 , F  is a 7-tuple where
• Q is the set of states, q0 is the initial state and F is the set of final states,
• I  is the input alphabet extended with the empty word,
• O is the output alphabet,
• ⊂Q×I ×O∗×Q is the transition relation. Note that the input condition is 

always a single character or an empty transition while the output is a string.
•  : F O∗p  is the output function. If the transduction stops in a final state

q∈F ,  the results  of the output  function output ∈q are written to the 
output tape. Note that the output function can always be replaced with a set of 
semiempty  transitions q , , output , q '  .  In  the  process  at  most p new 
states q ' are created and q becomes nonfinal.

Converting a regular transducer into a word transducer is almost trivial. The only 
complication arises from the direction of transduction. One regular transducer splits into 
two separate word transducers depending on which alphabet we choose to be the input 
alphabet. After some algorithm modifies the word transducer to have several output 
letters in one transition, it is no more possible to use the transducer in both directions. 
Therefore, the plain surface-deep transducer splits into two word transducers: surface-
to-deep and deep-to-surface ones.

We say that a transition is input empty, if it the input condition is  . Algorithm 
6.M removes input empty transitions from a word transducer.

Algorithm 6.M: Removes input empty transitions from a word transducer.
Input: A word transducer T =Q , I  ,O , , , q0, F  .
Output:  A  word  transducer T '=Q' , I ,O , ' , ' , q0, F '  without  input  empty 

transitions.
Algorithm:
 1. Initialize T ' :=T .
 2. For each state in q∈Q ' :

 2.1. While q contains an input empty transition: Let t :=q , ,Output , q2 .
 2.1.1. For each transition in t ' ∈q2 : Let t ' :=q2 , Input2 ,Output 2 , q3 :

 2.1.1.1. Add transition t new:=q , Input2 ,Output ●Output 2 , q3 to  ' .
 2.1.2. If q2 is final: Make q final. Since there is no longer a transition from

q to q2 , also the output function of q2 must be copied:
 2.1.2.1. If the output function  ' q2 is empty, add Output to  ' q .
 2.1.2.2. If  ' q2 is not empty, add the strings Output ● FuncOutput to 

 ' q , where FuncOutput∈ ' q2 .
 2.1.3. Remove transition t .
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Figure 6.N. An example of using concatenation and output function to get rid of empty 
transitions.

Figure 6.N illustrates how the algorithm removes semiempty transitions. The algorithm 
doesn't always terminate: for example if a state q contains an input empty transition to 
itself. Each iteration of the loop 2.1 removes one input empty transition from the state

q by replacing t with t new . However, if Input2 in t new is empty, the iteration 
doesn't change the number of input empty transitions. Figure 6.O illustrates this.

Figure 6.O. An example of a transducer, where it is impossible to remove a semiempty 
transition.

(λ,a) (x,b) (λ,c)

(x,ab) Output function:c

Before removing empty transitions:

After removing empty transitions:

(a,a) (λ, b)
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7. Input Determinization

7.1 The Determinization Algorithm
Given a string of input, a deterministic state machine accepts or rejects the string in 
linear time, since the next transition is always unique. Determinization is a guarantee of 
linear performance.

Transducers can be “deterministic” in two different ways. As we saw in Section 3.5, 
same-length  transducers  are  isomorphic  to  state  machines.  We  can  determinize  the 
transducer as if it were a state machine. When the transducer is used as an acceptor and 
both tapes are input tapes, this kind of determinization guarantees linear performance. 
However, if one of the tapes is an output tape that is being written, we can no longer 
expect linear performance.

The  second  type  of  determinization,  input  determinization,  guarantees  linear 
performance when the transducer transforms input into output. The trick is that we don't 
write output before we know exactly what to write. This method is illustrated in Figure 
7.A. Note that the input determinized transducer has words as transition conditions, and 
therefore it is a word transducer as defined in the previous chapter, instead of being a 
plain transducer as defined in Chapter 3.

Figure 7.A. Using output function and empty output transitions to make transducers 
input deterministic.

Mohri [1994] defines three classes of input deterministic transducers:
• Sequential transducers are such that at each state, the input letter determines the 

next state. Sequential transducers don't have an output function.

(a,x)

(a,y)

(x,x)

(y,y)

(a,λ)
(x,xx)

(y,yy)

(b,x)

(b,y)

(b,λ) x
y

Before determinization:

After determinization:
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• P-subsequential transducers can have an output function. The output function 
can write at  most p different strings at each final state.  The transitions are 
under  the  same  restrictions  as  in  sequential  transducers.  P-subsequential 
transducers run in linear time but can still handle limited amounts of ambiguity.

• Subsequential transducers can have at most one output string in each final state. 
Subsequential transducers can be represented by sequential ones almost always: 
Only when the initial state is also a final state it is impossible to use a sequential 
transducer instead.

Algorithm 7.B converts a word transducer into a P-subsequential transducer. The 
basic idea is to write the output only after we know what to write. Ambiguous output is 
implicitly  stored  in  “state  memory”.  The  algorithm  is  loosely  based  on  subset 
construction.  In  the  subset  construction,  let Q be  the  set  of  states  of  the 
nondeterministic transducer. Then the states of the deterministic transducer are subsets 
of Q . In this algorithm, the states of the resulting transducer are sets of q ,String 
pairs, where q∈Q and String∈O∗ is one possible unwritten output. We call a set of

q , string  pairs a superstate.
  Not all transducers can be determinized, and sometimes deterministic transducers 
are  much  bigger  than  nondeterministic  ones.  We'll  look  at  the  downsides  of 
determinization later. 

Algorithm 7.B [Mohri, 1996]: Determinizes a word transducer. 
Input: A word transducer T =Q , I  ,O , , , q0, F  without empty transitions.
Output: A p-subsequential word transducer T '=Q' , I ,O , ' , ' , q0 ' , F '  .

Algorithm:
 1. Let Queue be the temporary storage for superstates of the resulting transducer. 

Queue contains superstates; that is, sets of q ,String  pairs.
 2. Let StateHash be a hash table that maps between superstates and states of the 

resulting transducer: If x is a superstate, then StateHashx∈Q ' .
 3. Add initial superstate to queue: Queue.Push {q0 ,}  .
 4. Repeat while Queue is not empty:

 4.1. Get the next superstate:
 4.1.1. SuperState :=Queue.Head   .
 4.1.2. CurrentState :=StateHashSuperState  .

 4.2. For all final substates q ,Str  in SuperState where q∈F .
 4.2.1. Make CurrentState final: F ' := F '∪CurrentState . That is, if there 

is at least one final substate, then also the superstate becomes final.
 4.2.2. Add  Str  to  the  output  function: 

 ' CurrentState:= ' CurrentState∪Str .
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 4.3. For all elements of the input alphabet i∈ I do:
 4.3.1. Make a list of substates with an i-transition: ISubstates :=  

{q , Str ∣ q , Str ∈SuperState ,q ,i , o , q ' ∈ for some o , q ' } .
 4.3.2. Make a list of output strings that might be written when reading i : 

IOutputs :={Output ∣ q , Str∈ISubstates , Output=Str ●Commonq , i }
where Commonq , i  is the longest common output prefix when we  move 
from state q with various transitions which read i : 

Commonq , i :=LongestCommonPrefix {o ∣ q ,i , o , q ' ∈} .
 4.3.3. Make a list of reachable substates: TargetStatesStrings :=  

{q , Str , o , q '  ∣ q , Str∈SuperState ,q , i , o , q ' ∈ for some o∈O} .
 4.3.4. Calculate the transition output: 

TransitionOutput :=LongestCommonPrefix  IOutputs  .
 4.3.5. Calculate the target superstate of the determinized transition: 

 4.3.5.1. TargetState :=∅ .
 4.3.5.2. For each q ,Str , o , q ' ∈TargetStatesAndStrings : create the 

string part of the (state, string) pair.
 4.3.5.2.1. Concatenate “state memory” and normal output: 

StateString :=Str ● o .
 4.3.5.2.2. Remove the output that we write during transition

StateString :=StateString.DeleteFromStart TransitionOutput  .
 4.3.5.2.3. Add (state, string) pair to the target superstate:

TargetState :=TargetState∪q ' , StateString  .
 4.3.6. If the TargetState superstate is new:

 4.3.6.1. Create StateHashTargetState .
 4.3.6.2. Queue.PushTargetState  .

 4.3.7. Add transition from CurrentState to TargetState : 
 :=∪CurrentState ,i , TransitionOutput , StateHashTargetState  .

 4.4. Remove the CurrentState from Queue , as we have finished processing 
it.

7.2 Problems with Determinization
The  positive  effects  of  determinization  include  linear  performance  of  the  resulting 
transducer and the simplification of other operations like computing the composition of 
two  transducers.  Two  kinds  of  adverse  effects  surface  when  determinizing  natural 
language transducers.

Suppose that we have a word, which has two interpretations. For example the 
word “married” be both an imperfective form of verb “marry” and an adjective that has 
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its own definition in the dictionary. Suppose we construct a surface-to-tags transducer 
that includes the word “married” and determinize it. The word “married” is represented 
by a chain of letters. The first state has a transition labeled with 'm' and after the 'd' 
transition  comes  the  last  state.  The  last  state  outputs  two  different  interpretations: 
“married” for  the adjective  and “marry + imperfective” for the verb.  Since there is 
ambiguity, we must output it in a final state's output function. We can't output it  in 
transitions, since they can give only one interpretation.

The problem surfaces, if the word with many interpretations has inflection. Take 
the Finnish word “varattu” (reserved) for example. It can be either an adjective or a 
participle  form  of  a  verb.  There  is  a  set  of  suffixes  named  clitics  in  the  Finnish 
grammar.  There are 11 different clitics, and they are 2-6 characters long. They are listed 
in  Table  6.C  in  Chapter  6.  Clitics  can  be  attached  to  almost  any word,  including 
“varattu”. Normally in a surface-to-tags transducer the clitic string outputs only its own 
grammatical tag. However, if we add a clitic to the word “varattu”, the end of clitic 
must  output  the  two  different  interpretations,  since  only  final  states  can  handle 
ambiguity. For this reason, determinization makes a dedicated copy of the states and 
transitions that represent clitics in order to be able to output the two interpretations in 
the  end.  Representing  the  clitics  takes  much  more  states  and  transitions  than 
representing the core word “varattu”. Therefore, determinization increases the size of 
the transducer, since you need to make dedicated copies of inflection endings. There are 
also other features in the Finnish grammar that have the same effect as clitics.

The other problem is caused by the fact that adding one word can add an infinite 
amount of word-forms because of the compound word mechanism. The example in the 
Chapter 6 illustrates this. After a nominative or a genitive form you can concatenate 
other words in order to  form compound words.  This is  visible in  Table 6.B, where 
strings that end with @ have continuation class “stem”, which refers back to the table 
where  new words  start.  Suppose  you have multiple  interpretations  in  a  genitive  or 
nominative form of a word. The consequence is that adding a new word adds an infinite 
amount of compound word-forms.

Now, suppose you have a word with two interpretations that can be used as a 
basis of a compound word. The determinization algorithm is unable to push them to the 
final states, since the number of required final states is infinite. As a consequence, the 
machine is undeterminizable.

The  next  chapter  examines  empirically  just  how  nonlinear  the  parsing  and 
production  performance  is  without  determinization,  and  how  serious  these  two 
drawbacks of determinization are in practice.
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8. The Effects of Determinization on Size and Performance
This chapter quantifies the effects of determinization. The rule compiler and the two-
level  parser/producer  were  implemented  with  Java.  Also,  a  1000-word  Finnish 
vocabulary was collected for testing. Since state machines are fast and Java is slow, it is 
somewhat  pointless  to  measure  time.  Therefore,  the  performance was  measured by 
counting the number of states visited while parsing.

8.1 Test Software and Data
A finite state library is the workhorse of the two-level software package that was used 
for the experiments. It can handle finite acceptors, same-length transducers and word 
transducers.  It  can  compute  the  regular  language  algebra  operations  like  union and 
complement, determinize acceptors and same-length machines, and input determinize 
word transducers. It also contains the special operations needed for rule compilation: 
constructing  machines  that  accept  regular  relations,  and  computing  the 

IfRightThenLeft operator.  The  rule  compiler  implements  exactly  the  algorithm 
described in the earlier chapters.

The vocabulary module inputs the data. It reads a set of continuation classes and 
builds the transducers. First it builds the surface-deep transducer and intersects it with 
the rule transducers. Then it splits it to surface-to-deep and deep-to-surface transducers. 
Then it builds the deep-to-tags and tags-to-deep transducers. If configured to do so, it 
determinizes some of the transducers and possibly combines the surface, deep and tag 
levels to a single surface-to-tags transducer.

The dictionary and annotator modules work on the level of meanings and tags. 
They read a  dictionary and produce a word list  for  the  vocabulary module  without 
concerning themselves with the details of parsing and production. The annotator can 
annotate text by performing morphological analysis on words and attaching meanings to 
them. The dictionary module can also run test  cases that  ensure that  the parsing or 
production results in the expected surface word-form or tag list, respectively.

The test vocabulary contains 1114 Finnish words, which all belong to a single 
essay. Therefore, it contains a realistic mix of nouns, verbs and particles. The inflection 
and rules have been adapted from Koskenniemi [1983]. Altogether, it contains 88 rules. 
This is somewhat more than what Koskenniemi had, since he had a special notation for 
grouping some very similar rules together.
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8.2 Determinization and the Size of the Transducer
Since possible explosion in size is the main drawback of determinization, a test was 
performed that compared the size of the 4 transducers before and after determinization. 
The size was measured in number of states and transitions.

The results are in Table 8.A. The increase in sizes of the transducers reflects the 
number of processes in Finnish grammar that create ambiguity. The size of the surface-
to-deep transducer increases more than tenfold because of the processes described in the 
previous  chapter.  In  tags-to-deep  transformation,  there  are  only two  processes  that 
create ambiguity. It is possible to generate the partitive form and the genitive form with 
several alternative endings,  but the resulting words are synonymous. Since tag form 
only knows that the user wants a “partitive form”, producing all partitive or genitive 
deep forms generates ambiguity. The result  is a fivefold increase in states, which is 
offset by a decrease in the number transitions. Deep-to-surface transformation doesn't 
really have any significant ambiguity-producing features, so the transducer stays small.

Transducer Before determinization After determinization

Surface-to-deep
3190 states, 
10683 transitions

103588 states, 
112518 transitions

Deep-to-tags
12930 states, 
56966 transitions

16226 states, 
27690 transitions

Tags-to-deep
4341 states, 
41713 transitions

24681 states, 
34281 transitions

Deep-to-surface
3190 states, 
7054  transitions

3282 states,  
7776 transitions

Table 8.A The effect of determinization of transducer size.

Acceptors  can  also  be  minimized.  The  simplest  possible  minimization  algorithm, 
although  by  no  means  newest,  fastest  nor  best,  is  Brzozowski  minimization 
[Brzozowski  1962].  In  this  algorithm,  the  transducer  is  reversed,  determinized, 
reversed,  and  determinized  again.  This  implies  that  also  transducers  may  become 
smaller if reversed and determinized twice. For transducers, we can apply Brzozowski-
style “minimization” where we run the determinization and reversal operations, but use 
input determinization instead of the state machine determinization. Naturally there is no 
reason  to  believe  that  this  “minimization”  results  in  any  theoretically  significant 
canonical form. This “minimization” was run on the transducers of Table 8.A. Table 
8.B shows the results. The algorithm didn't finish for the last two transducers. For the 
surface-to-deep transducer the minimizing effect was negligible, probably because the 
transducer was already minimized as a same-length transducer before conversion into a 
word transducer. The process has significant effect only on the deep-to-tags transducer.
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Transducer Before minimization After minimization

Surface-to-deep
103588 states, 

112518 transitions
100514 states, 

110331 transitions

Deep-to-tags
16226 states, 

27690 transitions
12875 states, 

15814 transitions

Tags-to-deep
24681 states, 

34281 transitions Couldn't compute

Deep-to-surface
3282 states,  

7776 transitions Couldn't compute
Table 8.B The effect Brzozowski minimization -style transformation on the size of the 

transducers.

8.3 Determinization and Parsing Performance
The parsing performance was tested with all words in an essay. The essay is the same 
on  which  the  1114-word  vocabulary  is  based.  Therefore,  it  presents  a  realistic 
annotation scenario,  where easy, difficult  and ambiguous words  occur  with real-life 
frequency.  The  results  are  in  Table  8.C.  In  the  first  line,  both  transducers  are 
deterministic. In the second line, both transducers are nondeterministic. In the third line, 
the  determnistic  surface-to-deep and deep-to-tags  transducers  were  combined  into  a 
surface-to-tags  transducer;  ease  of  composition  is  one  motivation  behind  input 
determinization. The last result is the most interesting: the surface-to-deep transducer 
was left nondetermistic while the deep-to-tags transducer was determinized. The result 
is a massive decrease in branching with a negligible increase in size. Once again, input 
determinization produces little improvement on the surface-to-tags transducer, which 
was determinized before conversion into a word transducer, while “virgin soil” deep-to-
tags transducer does show improvement.

Transducers States visited Transducer Size
S2D determinized, D2T determinized 53105 119814

S2D undeterminized, D2T undeterminized 506870 16120
S2D and D2T determinized and combined 23121
S2D undeterminized, D2T determinized 58368 19416

Table 8.C The effect of determinization of parsing performance. S2D mean 
surface-to-deep, D2T means deep-to-tags. States visited means how many states were 
visited while parsing. Transducer size means the number of states in the transducers.

To summarize the results of the empirical part, input determinization does increase the 
size of the transducers 6-fold and cuts the parsing time to 1/20. With careful selection of 
deterministic and nondeterministic transducers it is possible to get 10x speed-up with 
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only a slight increase in transducer size. The effects of determinization vary very much 
between languages, and it is not possible to draw conclusions that would be valid for all 
languages.  For  example,  Mohri  [1996,  p.14]  reports  that  determinization  actually 
compresses French, English and Italian morphological vocabularies.
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9. Conclusions
This thesis has summarized the development of the two-level model after Koskenniemi 
[1983].  Significant  development  has  happened  in  three  areas.  Firstly,  instead  of 
compiling  linguistic  rules  into  transducers  by  hand,  nowadays  linguists  can  use 
automatic  rule compilers.  Secondly, all  parts  of the two-level framework have been 
expressed  in  the  formal  language  of  transducers  and strings,  including  the  lexicon. 
These two developments were discussed in the Thesis.

The final development has been a shift from two-level morphology to general finite 
state transducer tools. This development has been spearheaded by Kay and Kaplan and 
their Xerox Finite State Transducer library. It has succeeded to the point of making two-
level morphology obsolete. This development is outside the scope of the Thesis.
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Appendix 1

Appendix 1. Notation Sheet

These notations are used through the whole thesis. They are explained in detail, when 
they first appear in the text.

 Generic alphabet; surface alphabet.
 Deep alphabet.
 Same-length alphabet  , ∪ , .
L , M , Languages.
S ,T , State machines.
a ,b , c , Charaters.
x , y , z , w , Words.
 Empty word.
 Empty language.
∅ Empty surface character; empty set.
RL Regular languages over the alphabet  .
RR  , Regular relations between the two alphabets.
SL , Same-length regular relations between the two alphabets.
SLall  , A same-length relation accepting all same-length pairs.
FT all A transducer accepting the 2-language SLall  , .
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Appendix 2

Appendix 2. Sample of the Lexicon Format
The Finnish inflection expressed by the lexicon format is based on Koskenniemi [1983]. 
The sample is part of verb inflection.

LEXICON verb0 = {
"(" 1.3.n/v  "present", "active";
"$(" verbClitic#    "imperative", "active", "sg2";
"(mi"   nen/s  "toSubstantive";
// Agent construction: Kallen osta_ma_ auto.
"(mA"   sNoCompound/s      "agent", "active"; 
"(vA"   aNoCompound      "participle", "present", "active"; 
"(mAtTo" n.mA/a "participle", "past", "negative"; 

}
LEXICON verb1 = {

"+i(" 1.3/v "past", "active";
}
LEXICON verb2 = {

"(isi(" 1.3/v "conditional", "active";
}
LEXICON verb3 = {

"(ne"       1.3.n/v        "potential", "active";
"(kOOn"     clitic#      "imperative", "active", "sg3";
"(kAAmme"   clitic#      "imperative", "active", "pl1";
"(kAA"      verbClitic# "imperative", "active", "pl2";
"(kAAtte"   end          "imperative", "active", "pl2";
"(kOOt"     end          "imperative", "active", "pl3";
"(kO"       end          "imperative", "active", "negative";
"*$DA"      4.n/v          "present", "passive";
"*$Xtiin"   clitic#  "past", "passive";
"*$XtAisi"  4.n/v          "conditional", "passive";
"*$XtAne"   4.n/v          "potential", "passive";
// hänet tuotakoon / häntä ei tuotako
"*$XtAkO"   4.n/v          "imperative", "passive";
"(DA"       clitic#  "infinitive", "nominative";
"(DA+kse"   possessive   "infinitive", "translative";
"+De+ssA"   possessive#  "infinitive2", "active", "inessive";
"+Den"      clitic#      "infinitive2", "active", "toAdverb";

...
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Appendix 3

Appendix 3. Sample of the Rule Format
The Finnish rules are based on Koskenniemi [1983]. These rules are part of consonant 
gradation.
RULE consgrad = {

// s.79-81 Consonant gradation
// paikka - paikan
[ "K", null] =>  Vowels [ "lrh", "lrh" ]? [ "k", "k" ]? _ ;
[ "K", "'" ] <=>  Vowels [ "a", "a" ] _ [ "a", "a" ] Grad ||

Vowels [ "e", "e" ] _ [ "e", "e" ] Grad ||
Vowels [ "i", "i" ] _ [ "i", "i" ] Grad ||
Vowels [ "o", "o" ] _ [ "o", "o" ] Grad ||
Vowels [ "u", "u" ] _ [ "u", "u" ] Grad ||
Vowels [ "y", "y" ] _ [ "y", "y" ] Grad ||
Vowels [ "ä", "ä" ] _ [ "ä", "ä" ] Grad ||
Vowels [ "ö", "ö" ] _ [ "ö", "ö" ] Grad;

[ "K", "v" ] =>  Cons [ "uy", "uy" ] _ [ "uy", "uy" ];
[ "K", null ] /=  Cons [ "uy", "uy" ] _ [ "uy", "uy" ];
[ "K", "g" ] => Vowels [ "n", "n"  ] _ ;

// This rule should not allow laKi$+n -> lajin.
// Probably the i should be restricted to plural I.
[ "K", "j" ] => Vowels [ "lrh", "lrh" ]? _ ( [ "eE", "e" ] | [ "E", null ] | [ "i", "i" ] ) ;
// Fix laKi and other non-plural-i forms.
[ "K", "j" ] /= Vowels _ [ "i", "i" ] [ "$", "Z" ]? ["+", "Z"];
// Fix väKE$+ttä -> väjettä.
[ "K", "j" ] /= Vowels _ [ "E", surfAll ];

[ "K", null] /= Vowels [ "lrh", "lrh" ] _ ( [ "eE", "e" ] | [ "E", null ] | [ "i", "i" ] ) ;

[ "P", "v" ] =>  Vowels  [ "lr", "lr" ]? _ ;
[ "P", "m" ] =>  Vowels  [ "m",  "m"  ]  _ ;
[ "P", null] => [ deepAll, surfVowels ][ "lr", "lr" ]? [ "p", "p" ] _ ;

[ "T", "d" ] => [ deepAll, surfVowels ][ "h", "h" ]? _ ;
[ "T", "l" ] => [ deepAll, surfVowels ][ "l", "l" ]  _ ;
[ "T", "r" ] => [ deepAll, surfVowels ][ "r", "r" ]  _ ;
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[ "T", "n" ] => [ deepAll, surfVowels ][ "n", "n" ]  _ ;
[ "T", null] => [ deepAll, surfVowels ][ "lrnh", "lrnh" ]? [ "t", "t" ] [ deepAll, null ]* _ ;

[ "K", "k" ] <= [ "s", "s" ] _ ;
[ "P", "p" ] <= [ "s", "s" ] _ ;
[ "T", "t" ] <= [ "s", "s" ] _ ;

[ "K", "'vZgj" ] <= _ [ deepAllNoLimit, surfAll ]* Grad;
[ "P", "vmZ"   ] <= _ [ deepAllNoLimit, surfAll ]* Grad;
[ "T", "dlrnZ" ] <= _ [ deepAllNoLimit, surfAll ]* Grad;

[ "K", "k" ] <= _ [ deepAllNoGrad, surfAll ]* EndOrLimit;
[ "P", "p" ] <= _ [ deepAllNoGrad, surfAll ]* EndOrLimit;
[ "T", "t" ] <= _ [ deepAllNoGrad, surfAll ]* EndOrLimit;
}


