
Morphological Parsing with Two-Level Framework

Simo Härkönen

University of Tampere
Department of Computing Sciences
Master's Thesis
December 2006

University of Tampere
Department of Computing Sciences
Simo Härkönen: Morphological Parsing with Two-Level Framework
Master's Thesis, 51 pages, 4 appendix pages
December 2006

This Master's thesis describes the two-level model, which is one way to do
morphological parsing. The basic components of the two-level model are the simplified
deep form of the language, and the rules which define the relation between the
imaginary deep form and the actual words.

The thesis synthesizes the theoretical background in formal languages and same-
length relations and uses them to describe the two-level model formally. It introduces a
novel way to compile rules, which is simpler than the previous methods.

The empirical part investigates how determinizing the transducer affects parsing
performance and transducer size.

Key words and phrases: computational morphology, two-level model, same-length
relation, morphological parsing, determinization

1

Table of Contents
1. Overview... 3
2. Informal Description of the Two-Level Model.. 5

2.1 Language Model in Two-Level Morphology..5
2.2 The Deep Form and the Surface Form... 5
2.3 Two-Level Rules..6
2.4 Rules and Transducers... 7
2.5 Lexicon and Feasible Pairs... 9
2.6 Parsing in Action... 9

3. Formal Language Machinery... 11
3.1 Basic Notations.. 11
3.2 Regular Expressions and Regular Relations... 11
3.3 Finite State Machines and Transducers... 13
3.5 Same-Length Languages.. 15

4. Two-Level Rules and Their Application...20
4.1 The Rules.. 20
4.2 Rules as Transducers.. 22

5. Compiling the Rules.. 24
5.1 Previous Compilation Algorithms... 24
5.2 Compiling Context Restriction Rules...25

5.2.1 Compiling Single Rules...25
5.2.2 Compiling Batch Rules..27

5.3 Compiling Surface Coercion Rules...29
5.4 Implementing the Algorithms...30

6. The Lexicon... 31
6.1 Continuation Classes.. 31
6.2 The Deep Form State Machines...34
6.3 Removing Semiempty Transitions... 39

7. Input Determinization... 42
7.1 The Determinization Algorithm... 42
7.2 Problems with Determinization..44

8. The Effects of Determinization on Size and Performance..................................46
8.1 Test Software and Data.. 46
8.2 Determinization and the Size of the Transducer.. 47
8.3 Determinization and Parsing Performance... 48

9. Conclusions... 50
Appendix 1. Notation Sheet..52
Appendix 2. Sample of the Lexicon Format... 53

2
Appendix 3. Sample of the Rule Format...54

3

1. Overview
This thesis describes a morphological parsing algorithm based on two-level model.
Two-level model was introduced over 20 years ago by Koskenniemi [1984], and it has
inspired numerous publications and applications ever since.

Chapter 2 gives the reader an intuitive idea of morphological parsing and the two-
level model. Chapter 3 introduces definitions, which are needed when formalizing these
ideas. Chapter 4 describes the parsing algorithm, and Chapter 5 presents the rule
compiler. Chapter 6 describes one way to organize the vocabulary in two-level
morphology. Chapters 7 and 8 discuss the theoretical and empirical performance of the
parsing algorithms.

Morphological parsing is a computation, which takes as input a derived form of a
word. It outputs the dictionary form of the word and information about the derivation. If
several derivations from different words can produce the same surface form, all possible
parsings are listed. Figure 1.A illustrates this.

Figure 1.A. Morphological parsing from a word to a cohort.

A proper natural-language parsing pipeline takes a sentence as an input. The output is a
tree, where the words are mapped to leaf nodes, while the syntactic structure of the
sentence is mapped to the structure of the tree.

Figure 1.B. Parse tree and the parts of speech for the sentence ”The quick brown fox
jumped over the lazy dog.”

ladoin lato + in: “with barns”
substantive, plural instrumental

lada + in: “with Ladas”
substantive, plural instrumental

lato + i + n: “I typesetted”
verb, singular 1. person imperfective

Word : The quick brown fox jumped over the lazy dog.
Part of speech: Determiner adjective adjective noun verb preposition determiner adjective noun

Noun phrase Noun phrase

Preposition phrase

Sentence

Verb phrase

4

This kind of pipeline has two or three stages. The morphological analysis is the first
one. The second phase, called parts-of-speech tagging, aims to find out the classes of
the words. The third phase constructs the parsing tree. The words are the leaf nodes of
the parsing tree, while the inner nodes represent various syntactic structures. The arcs
represent relationships: for example a noun phrase being the subject of the sentence.
Figure 1.B shows an example of a parsing tree.

In languages with little inflection, like English, parts-of-speech tagging is
combined with syntactic analysis. In highly inflected languages like Finnish,
morphological analysis also disambiguates the parts of speech for most words.

The most obvious parsing method is to collect a list of acceptable words. Ispell, a
free Unix spell checking program, uses this method. Ispell also supports affix files.
Affix files specify, which postfixes you can add to a certain class of words. Ispell
doesn't support analysis of derivation – it only recognizes ungrammatical words and
proposes grammatical ones.

This thesis synthesizes the development of the two-level model after Koskenniemi
[1983]. Chapter 5 introduces a novel way to compile rules. The method is in many
aspects similar to one introduced by Kaplan and Kay [1994], but simpler. Chapter 6
provides the first mathematical formulation of continuation classes, which is the way
vocabulary is expressed in the two-level model. The final chapters provide new
information about the interaction between parsing performance and the grammatical
structure of Finnish.

5

2. Informal Description of the Two-Level Model

2.1 Language Model in Two-Level Morphology
Two-level model assumes that morphology is fundamentally concatenative, but various
phonological and notational aspects make it seem more complex. Two-level model
dinstiguishes between the surface form – the form we see in everyday texts – and an
artificial deep from. In the deep form, parsing and production are a matter of
concatenation.

Two-level grammar consists of a set of rules, which define the correspondence
between the deep form and the surface form. The rules are bidirectional: They define
both how to parse the deep form when you know the surface form, and also how to
produce the surface form given the deep form.

In the end of parsing, the deep form is converted into tag form. Tag form consists
of a set of tags that denote the meaning and inflection of the word. Table 2.A illustrates
the differences between the surface, the deep and the tag forms.

Word Surface form Deep form Tag form

cats cats cat+s cat, plural

spies spies spy+s spy, plural

Table 2.A. Surface, deep and tag form. Note that deriving a plural in deep form is
concatenative, while surface form has nonconcatenative irregularities.

2.2 The Deep Form and the Surface Form
Table 2.B illustrates the Finnish consonant gradation. The letter ”p” is realized as ”v”,
when certain inflectional affixes are added to the stem.

Surface Form Deep Form In English Case

papu paPu bean Nominative

pavussa paPu+$ssa in a bean Inessive

pavun paPu+$n of a bean Genitive

papua paPu+a bean as an object Partitive

papujen paPu+Ien of beans Plural genitive

Table 2.B. Deep form and surface form in consonant gradation.

In the deep form, the special character P is used to denote a potentially gradated
consonant. We say that P may be realized in the surface form as either p or v. There are
also non-letter characters in the deep form. ”+” denotes the boundary between a stem
and an affix. Whether the gradation happens or not depends on the affix, and ”$” is used
as the trigger for gradation.

6

There is a specific correspondence relation between the deep form and the surface
form. For each character in the surface form there is a unique counterpart in the deep
form. However, some characters in the deep form realize in the surface as nothing.
Figure 2.C illustrates this.

Figure 2.C. Correspondence relation between the deep form and the surface form.

2.3 Two-Level Rules
The rules define the correspondence between the characters in the surface form and the
deep form. They may also be intepreted as filters which deny illegal correspondences, or
as transformations between the deep form and the surface form. Figure 2.D shows the
components of a two-level rule.

Figure 2.D. The components of a two-level rule. Here “a” is a deep form character and
“b” is a surface form character.

Two-level rules either allow or deny the occurence of a correspondence in a specific
context. The left context and the right context are regular expressions, except that they
are matched against both the deep form and the surface form. There are two main types
of rules, and the operator indicates the type.

⇒ : A context restriction rule indicates that the given correspondence is
possible only in the given context. For example, when modeling irregular plural
inflection as in spy-spies, y : i ⇒ , e s , s indicates that deep y may become
a surface i only in the presence of a plural ending.

⇐ : A surface coercion rule restricts the possible realizations of a deep form
character in the given context. If the correspondence in the rule is d :S and the deep
form contains a letter d , then it must realize in the surface as some s∈S . For
example, y , i ⇐ , S any indictes that y always realizes as i when followed by a

a: b ⇔ L R

Correspondence Left context

Operator Right context

p a P u + I e n

p a p u ∅ j e n

Deep form:

Surface form:

7

plural marker; that is, it coerces deep y not to realize as surface y in this particular
context.

The following additional rule types can be easily translated into context restriction
and surface coercion rules.

⇔ : The effect of a composite rule is the same as the effect of a context
restriction rule and an identical surface coercion rule combined.

 ⇍ : A negative surface coercion rule says that in the given context, the deep
character d must not realize as any s∈S .

The next example relates to the consonant gradation described in Table 2.B. The
surface coercion rule, which allows P to realize as either p or v would be

 P : pv ⇐ . (2.3.1)
The contexts are empty, since P can't realize as something else in any context. The
empty contexts always match.

The choice of p and v would be determined by a composite rule
P :v ⇔ Dall , Sall ∗ $,∅ . (2.3.2)

The star marks optional repeating, as usual in regular expressions. The rule says that a
gradatable P realizes as v if and only if the gradation trigger ”$” follows. There may be
other characters between P and the gradation trigger.

In the absence of a gradation trigger P always realizes as p, since P may only
realize as p or v, and it may realize as v only in the presence of a gradation trigger.

2.4 Rules and Transducers
The separation to a deep form and a surface from is a familiar concept from
transformational grammar theory [Grinder and Elgin, 1973], and the format of the rules
is similar to linguistic notation. The remaining problem is to construct a system, which
can execute the rules and actually generate the deep form and the surface form.

For execution, the rules are compiled into 2-tape transducers. If some
deep/surface form pair violates the rule, the transducer won't accept the pair.

For example, the surface coercion rule (2.3.1) would be translated as in Figure
2.E.

Figure 2.E. Transducer for the surface coercion rule P : pv ⇐ .

(Dall \ {P}, Sall)

({P}, {p,v})

8

The execution starts from the initial state. There are two transitions – one for each
correspondence, where the deep character is P, and another for each correspondence,
where the deep character is non-P. If the transducer meets a correpondence with the
deep character P and a surface character that is something else than p or v, it stops and
rejects the input.

The composite rule (2.3.2) would be translated as two rules. The rules are
presented in Figures 2.F and 2.G.

Figure 2.F. Transducer for the surface coercion rule

P :v ⇐ Dall , S all∗$,∅ .

The rule in Figure 2.F says that a deep P must realize as v when followed by the
gradation trigger. The rule is violated, if the gradation trigger is present, but P realizes
as non-v. The state 1 scans for P realized as non-v. The state 2 scans for the gradation
trigger. If both are found, then the input is rejected. The double circles indicate that both
states are final states – the rejection is handled by stopping.

Figure 2.G. Transducer for the context restriction rule

P :v ⇒ Dall , S all∗$, ∅ .

The rule in Figure 2.G says that P can realize as v only in the given context. If the
transducer finds the correspondence, it has to find the gradation trigger $ before it can
accept the word. State 1 is a final state, while state 2 is not.

(Dall \ {P}, Sall) (Dall \ {$}, Sall)

({$}, ∅)

1 2

(P, Sall \ {v})

(P, v)

(Dall \ {P}, Sall)

(P, v)

(P, Sall \ {v})

(Dall \ {$}, Sall)

({$}, ∅)1 2

9

2.5 Lexicon and Feasible Pairs
Suppose we have a surface form word, which we want to parse. We also have a set of
transducers, which filter out the rule-breaking deep forms. How do we generate the
hypothesis of the deep form? We can't try all characters from a to z, since the rules
ignore most character pairs. For example, the rules in Figures 2.E, 2.F and 2.G accept
the surface form ”spy” to become parsed as ”zzz”, simply because they don't say
anything about the character z.

The answer two-fold. First, we form a set of feasible pairs. Only feasible pairs are
allowed to occur in the correspondences. The feasible pairs include

• default character correspondences, like (a:a), (b:b), (c:c),...
• feature-to-null correspondences, like (“+”,), (“$”,),...∅ ∅
• pairs which are mentioned in the rules like (P,p), (P,v), (I,i), (I,j).

Secondly, we construct the lexicon acceptor, a state machine that accepts all
possible deep forms. Figure 2.H gives an example of a lexicon acceptor containing all
words in Table 2.B.

Figure 2.H. Lexicon acceptor containing the deep forms in Table 2.B. The double
circles are final states.

Lexicon also solves a problem with characters, which realize as nothing. When we use a
lexicon to generate deep form hypothesis, we don't need to worry about situations,
where we take reckless amount of empty transitions based on the hypothesis that the
following deep form characters are all boundary markers, which realize as empty.

2.6 Parsing in Action
Table 2.I shows how surface form ”papua” gets parsed by the previously mentioned
rules and the lexicon in Figure 2.H.

The parsing starts from the initial state. At each state, we make a list of transitions
that may correspond to the next surface character. If the surface character is p then
possible lexicon acceptor transitions include (1) deep characters that may realize as p,
like (p,p) or (P,p), and (2) deep characters that realize as empty, for example (+,).∅

1 2 3 4 5

11 127

17 18

8

p a P u #

+

a I
e n

$
n

s s A

6

1915

9

13

10

142016
#

#

#

10

In the first four transitions, there isn't any choice. The first branching point is at
state 5, where also the end symbol (#,#) is accepted by lexicon. However, the next
surface character is ”a” and (#, a) is not a feasible pair so this branch is rejected.

In state 7, both ($,) and (a, a) are allowed by the lexicon acceptor, and we try∅
first ($,). At this point, the rule transducer in Figure 2.F stops. It is in state 2, and the∅
transition ($,) is a stopping one. This way, the rule filters out a wrong hypothesis that∅
the lexicon acceptor has generated. Therefore, we have to backtrack back to state 7.

State Parsed character Transition Deep form Note

1 [p]apua# 1 -> 2 p Only choice

2 p[a]pua# 2 -> 3 pa Only choice

3 pa[p]ua# 3 -> 4 paP Only choice

4 pap[u]a# 4 -> 5 paPu Only choice

5 papu[Ø]a# 5 -> 7 paPu+

Deep # can't realize as Ø nor

”a”.

7 papuØ[Ø]a# 7 -> 8 paPu+$ Rule rejects $; backtrack

7 papuØ[a]# 7 -> 15 paPu+a

Second choice after $ branch

failed

15 papuØa[#] 15 -> 16 paPu+a# 16 is a final state

Table 2.I. Parsing surface form ”papua”. The states refer to the lexicon acceptor in
Figure 2.H. Parsed character means the next surface character to be parsed; note that
the next character may be either the actual surface character or an imaginary empty

character. The deep form is the output of the algorithm.

When the lexicon acceptor reaches state 16, we notice that the input is finished and the
lexicon acceptor is at a final state, as is the rule transducer in Figure 2.F. This means
that we have found an acceptable deep form, ”paPu+a#”.

11

3. Formal Language Machinery
This chapter presents the mathematical definitions which we need when formalizing the
ideas presented in the previous chapter. Aho and Ullman [1972] is my main source on
state machines. Kaplan and Kay [1994] introduce transducers and same-length relations.

3.1 Basic Notations
An alphabet is a finite set of characters. A word is a concatenation of 0n
characters. Let M =Σ∗ ,● be the free monoid spanned by and the concatenation
operation ● . Then Σ∗ is the set of all words. A subset L⊂Σ∗ is a language. I use
small letters to denote characters: a ,b∈Σ . The concatenation a ●b is written as

ab . Capital letters denote sets. Specifically, capital letters L , M , ... denote
languages.

The empty word λ∈Σ∗ is the identity element of the monoid. The empty
language is the empty subset of Σ∗ . The set Σ λ contains the alphabet and the
empty word. It is not a subset of , since the empty word is not a character. The
length of a word is defined recursively: Length =0 , Length a =1 and

Length ax =1Length x , when a∈ and x∈∗ .
The main set operations on languages L , L1 , L2∈Σ∗ are
• union: L1L2= L1∪L2 ,
• concatenation: L1 L2={w1 w2∣w1∈ L1 ,w2∈L2} ,
• Kleene star: L∗=Φ∪L∪LL∪LLL∪... , and
• Kleene plus: L=LL∗ .

3.2 Regular Expressions and Regular Relations
Regular expressions are a shorthand notation for certain formal languages. The regular
expressions are defined as follows [Aho and Ullman, 1972]:

1) The empty expression is a regular expression denoting the empty language
 .

2) Let a∈Σ λ . Then a is a regular expression denoting the language {a} .
3) If p and q are regular expressions and P and Q are the corresponding

languages, respectively, then
a) union pq is a regular expression denoting the language P∪Q ,
b) concatenation pq is a regular expression denoting the language PQ ,
c) Kleene star p∗ is a regular expression denoting the language P∗ .

4) Nothing else is a regular expression.

12
Regex denotes the set of regular expressions for the alphabet . If

r ∈Regex is a regular expression, then L r is the corresponding language. A
language is regular, if it can be denoted by a regular expression. We use RL to
denote the family of all regular languages over an alphabet . The family is closed
under union, concatenation and Kleene star by the definition of regular expressions. It is
also closed under complement and intersection [Aho and Ullman, 1972, p.129].

In order to express the left and the right contexts in the rules, which state the
correspondence between the surface and the deep form, we need a 2-tape equivalent of
regular expressions. The regular relations introduced by Kaplan and Kay [1994] are just
that.

From now on, I will use to denote the deep form alphabet, and to denote
the surface alphabet. The building blocks of regular relations are character pairs

a , b∈ , . Sets D⊂ and S⊂ define a pair set
D , S ={ d , s ∣ d ∈D∧s∈S } . Empty pair is , . A semi-empty pair

belongs either to the pair set {}, or ,{} .
We define the pair concatenation operator as

d 1 , s1●d 2 , s2=d 1● d 2 , s1● s2 . We get a monoid by taking the Cartesian
product of the component word sets: ∗×∗ ,● . The empty pair is the identity
element of the monoid. A 2-language L is a subset of ∗×∗ . Note that a 2-
language is much more than a set of deep words and surface words

W d ,W s⊂∗ ,∗ , since the deep words and surface word are linked. For
example, the 2-language {reptile , adder ,mammal , cow} defines a containment
relationship, while two sets {reptile , mammal }, {adder , cow} don't. When
formulating the two-level model with 2-languages, we link the deep form with the
corresponding surface form: For example { spy# , spy# , spy+s# , spies# } . Parsing
becomes a matter of finding the deep form words that correspond to the surface word
being parsed. To give another example, the ambiguous words in Figure 1.A would be
represented with {lato+in# , ladoin# ,lada+in# ,ladoin# ,lato+i+n# , ladoin# } .

Regular relations are a shorthand for 2-languages. The following definition is by
Kaplan and Kay [1994]:

1) The empty set is a regular relation denoting the empty 2-language
Φ⊂∗ ,∗ .

2) The pair a ,b is a regular relation, when a ,b∈ , . It denotes the
2-language {a ,b} .

3) If r 1 and r 2 are regular relations denoting 2-languages R1 , R2 , then
• Concatenation r 1 r2 is a regular relation denoting the 2-language

{ d 1 d 2 , s1 s2 ∣ d 1 , s1∈R1 ∧ d 2 , s2∈R2} .
• Union r 1 r 2 is a regular relation denoting 2-language R1∪R2 .
• Kleene star r 1∗ is a regular relation denoting ΦR1R1 R1 .

4) Nothing else is a regular relation.

13

A 2-language is regular, if it can be denoted by a regular relation. A 2-language L
is same-length, if the corresponding surface form and deep form words are equally long:
that is, wd , w s∈L implies length wd=length w s . Later we will prove that
regular same-length 2-languages are closed under complement and intersection, just like
regular languages.

3.3 Finite State Machines and Transducers
A finite state machine is a 5-tuple M =Q , , , q0, F , where

• Q is the set of states,
• is the input alphabet extended with the empty word,
• q0∈Q is the initial state,
• F ⊂Q is the set of final states,
• ⊂Q××Q is the transition relation.

A finite state machine starts from the state q0 and reads input from the tape. It
moves from state q1 to state q2 by reading a character a from the tape, if

q1 , a ,q2∈ . It is also possible to move between states q1 and q2 without
reading anything, when q1 , , q2∈ .

A state machine accepts input w ∈∗ , if it is possible to move from the initial
state to some final state f ∈F while reading the word character-by-character. The
language accepted by the state machine, L M , is the set of input words it accepts.
The set of all finite state machines that use alphabet is denoted by SM .

It can be proven that the family of regular languages equals the family of
languages acceptable by finite state machines [Aho and Ullman, 1972, p.119]. The
proof is constructive and is based on building a state machine out of a regular
expression and the other way around.

If we understand the regular expression as a tree, we can also reverse it, so that
the language it defines is reversed. This happens by reversing all concatenations. It is
tricky to prove, since we have to establish a mapping between the regular expression
tree and the word.

A state machine is deterministic, if the state and the next character unambiguously
define the next state. Determinization is a process, where the result is a deterministic
state machine accepting the same language. Subset construction [Aho and Ullman,
1972, p.117] is the classic way to determinize a state machine. In the transition relation
of the resulting state machine, the current state and the next character uniquely
determine the next state:

q1 , x , q2 ∧ q1 , x , q3 ⇒ q2 = q3 .

The difference between a finite transducer and a finite state machine is that a transducer
has two tapes. The transition relation has two conditions that must be fulfilled – one for

14
each tape. For this reason, the transition relation is a subset of Q×××Q , where

 and are the deep form and the surface form alphabets, respectively. The set of
all transducers over alphabets and is denoted by TR , .

The transducer accepts a pair of words w1 , w2 , if it is possible to move from
the initial state to a final state in such a way that all characters of both words have been
consumed. When T is a transducer, the 2-language accepted by the transducer is
denoted by L T .

It is also possible to run the transducer so that the other tape is empty, in
transformation mode. Suppose that only the deep form of a word is given. Then we
have only one condition for transitions. When we make a transition, we write the
surface letter to the other tape. When the input word ends and we are in the final state,
we output the surface word. This process transforms a deep form word into a set of
surface form words.

It is possible to construct a transducer from a regular relation with an algorithm,
which is very similar to the state machine construction algorithm. The state machine
construction algorithm can be found for example at Aho and Ullman [1972]. The only
difference between the definitions of regular relations and regular expressions is the
alphabet where we operate: When state machine definition talks about , the
transducer definition talks about × . The adjustment to the construction
algorithm is equally simple, as seen in Algorithm 3.A. Kaplan and Kay [1994] assumed
that it is easy to construct a transducer from a regular relation, as it in fact is, but didn't
specify the exact algorithm to do so. Therefore I have formalized the algorithm myself.

Algorithm 3.A: Builds a transducer from a regular relation.
Input: A regular relation r , parsed into a tree T r . Each leaf of T r contains
a character pair, which may be empty or semiempty. The inner nodes contain unions,
concatenations or Kleene stars.
Output: A transducer T accepting the language denoted by r .
Algorithm:
 1. Start form the root of T r .
 2. Parse the left and the right subtree using this algorithm, if they exist. We call the

resulting left subtransducer T 1 :=Q1 , , ,1 , q1 , F1 and the right
subtransducer T 2 :=Q2 , , ,2 , q2 ,F 2 .

 3. If the root is the empty language , we construct a transducer which accepts
nothing. We set T :={q0}, , ,∅ , q0 ,∅ . Since T has no final states, it

clearly accepts nothing.
 4. If the root is a word d , s ∈ , , we construct a transducer with a single

transition d , s from the initial state to the final state. We set

15
T :={q0 , q1}, , ,q0 , d , s , q1 , q0 , {q1} . Clearly this accepts only the

language {d , s }⊂∗ .
 5. If the root is the union of regular relations accepted by the transducers T 1 and

T 2 , we make a new indeterministic transducer, where we can move from the
initial state q0 to either T 1 or T 2 by using an empty transition. As a result, we
set

T := (q0∪Q1∪Q2 , , ,
 {q0 , , , q1 ,q0 , , , q2} ∪ 1 ∪ 2 ,
 q0 , F 1∪F 2).

 6. If the root is the concatenation of the subrelations accepted by the transducers
T 1 and T 2 , we build a transducer, where all paths from the initial state to a final

state pass through both T 1 and T 2 . The new transducer starts from the initial
state of the first transducer T 1 . From all the final states of the first transducer we
add an empty transition to the initial state of the second transducer T 2 . The set of
final states of the new transducer is the set of final state of T 2 . As a result, we set

T := (Q1∪Q 2 , , ,
 1 ∪ 2 ∪ { f 1 , , , q2 ∣ f 1∈F 1}

 q1 , F 2).
 7. If the root is the Kleene star of the left subrelation, and T 1 is the transducer

accepting it, we modify T 1 to accept the empty language and to loop in order to
accept several repetitions. First, we make the inital state a final state. Secondly, we
add empty transitions from all the final states to the initial state. As a result, we set

T := (Q1 , , ,
 1∪ { f , , , q1 ∣ f ∈F1},
 q1 , F1∪q1).

3.5 Same-Length Languages
The similarity between transducers and state machines can be characterized by an
isomorphism. The formulation of the isomorphism is my own, since Kaplan and Kay
[1994, p.343] consider it trivial enough to merit only a passing mention in one sentence.
We interpret the two tapes as one tape, where each character has two components. Let

=× be the state machine alphabet. Then f alphabet :× is the

character isomorphism:
f alphabet x , y=x , y , for all x∈ , y∈ ,

f alphabet ,= , .

The word mapping f word :∗×∗ ∗ reduces a series of characters:
f word ,= , ,

16
f word d ● d rest , s● srest = f alphabet d , s ● f word d rest , srest .

The transducer isomoprhism f transducer :TR , SM switches the
alphabet of the transitions:

f transducerQ , , , , q0, F =
Q , , { q1 , f alphabet d , s , q2 ∣ q1 , d , s , q2∈ } , q0, F

.

The only problem concerns semiempty transitions. They don't have a natural
interpretation in state machines. Figure 3.B illustrates this. Suppose there are 3
transitions from the current state – one with transition condition d , s , another with

d , , and yet another with , s . The next pair of input characters is d , s .
In the realm of transducers, it is clearly possible to take any of the three transitions. In
the realm of state machines, d , s , d , and , s represent different
members of the alphabet . The fact that any of these transitions is possible would
mean that the same input can denote three different elements of the input alphabet .

Figure 3.B. A situation, where semiempty transitions make the isomorphism fail.

The answer is to scrap semiempty transitions. We restrict ourselves to same-length
languages. A 2-language L is same-length, if the words in each word pair

x , y∈L are equally long, that is, Length x =Length y . We denote the family
of same-length languages with deep alphabet and surface alphabet with

SameLength , .
If L is a same-length language, and a transducer T accepts L , and T has

no semiempty transitions, then the state machine isomorphism preserves the set of
accepted words: w1, w2∈LT ⇔ f word w1, w2∈L f transducerT .

The state machine mapping guarantees that transducers without semiempty
transitions are isomorphic to finite state machines. Next, we prove that all regular same-
length 2-languages are accepted by some transducer without semiempty transitions.
This perfects the link between regular same-length languages and state machines.

Before presenting the proof as Theorem 3.C we need to define the concept of
imbalance. Suppose that there is a path Path from the initial state q0 to state

State . Now
Imbalanceq0 , State , Path=deep form length – surface form length .

In this case, the imbalance is calculated along a specific path. However, if some
path leads from State to a final state, then the path must correct the imbalance.

...

...

...

...

(d,λ)

(d,s)

(λ,s)
1

2

3

4

17

Suppose that the imbalance is k . Then all paths from State to any final state must
make a similar −k correction, since a same-length transducer can't accept unbalanced
input. Therefore, imbalance does not depend on the path. If p1 and p2 are two paths
from the initial state to the state state , then

Imbalance q0 , State , p1=Imbalance q0 , State , p2 .
This means that given a specific transducer T =Q , , , , q0 , F we can define a
function Imbalance :Q ℕ so that

ImbalanceState=Imbalance q0 , State , Path ,
where Path can be any path between q0 and State .

Theorem 3.C [Kaplan and Kay 1994, p.343]:
A 2-language S is a same-length regular 2-language if and only if it is accepted by a
transducer, which has no semiempty transitions.
Proof:

⇐ : If the transducer has no semiempty transitions, then each transition reads 0 or 1
characters from both tapes. Therefore, no transition creates imbalance between the
surface word length and the deep word length.

⇒ : First of all, the language is accepted by some transducer T , since
Algorithm 3.A can be used to build a machine for any regular 2-language. We prove
that if a transducer T accepts the same-length language S , then T can be
transformed into a transducer with no semiempty transitions.

We prove that if the maximal imbalance of a machine is k , we can reduce the
imbalance to k−1 . We show that we can remove any state, which has imbalance

k . By removing all of them, we get a machine with imbalance k−1 . We assume
that the transducer has no , -transitions. They are easy to remove by an obvious
generalization of the algorithm that deletes such transitions from a state machine.

Suppose a transducer has maximal imbalance k0 at state s . Now, all
incoming transitions are either of the form v , or x , y , since otherwise some
previous state would have bigger imbalance. Similarly, all outgoing transitions are of
the form ,w or x , y . Figure 3.D illustrates this.

Figure 3.D. A state with maximal imbalance.

s
(v,λ)

(x,y) (x,y)

(λ,w)

Imbalance:k Imbalance:k

Imbalance:k

Imbalance: k-1Imbalance: k-1

t
1

t
2

18
Next, we remove transitions of the form x , y , so that all incoming transitions are of
the form v , and all outgoing transitions are of the form ,w . Figure 3.E
illustrates this. Suppose there is an incoming transition of the form x , y from state

t 1 to s . We split the transition t1 , x , y , s into two transitions, which use a new
intermediate state u1 . The new transitions are t1 , , y , u1 and u1 , x , , s .
Now u1 is a new state with imbalance k−1 . The same process can be applied to
outgoing transitions of the form x , y . This way, we remove all transitions of the
form x , y .

Figure 3.E. Removing transitions of the form (x,y) from the state with maximal
imbalance.

Now we are ready to smite the rogue state s . If there are n incoming transitions of
form x , and m outgoing transitions of form , y , we can replace s by

n×m transitions of the form x , y . Figure 3.F illustrates this.

Figure 3.F. Removing the state with maximal imbalance.

We can continue the process until maximal imbalance has been reduced to 0, and
generalization to negative imbalance −k is obvious.

Hence, the theorem follows.□

Imbalance:k Imbalance:k

Imbalance: k-1Imbalance: k-1

(λ,y) (x,λ)

(v,w)

(x,y)

(v,y) (x,w)s

t
1

t
2

u
1

u
2

s(v,λ) (λ,w)

Imbalance:k Imbalance:k

Imbalance:k Imbalance: k-1Imbalance: k-1

(λ,y)

(λ,y)(x,λ)

(x,λ)t
1

t
2

u
1

u
2

19

We have constructed an isomorphism, which converts between state machines and
same-length transducers while preserving the accepted language. To put it formally,
when w1, w2 is an element of a same-length language,

w1 ,w 2∈LT ⇔ f word w1 , w2∈L f transducer T . Now we import some state
machine theorems into same-length relations.

Since the regular languages are closed under
• union,
• concatenation,
• complement,
• intersection,
• Kleene star and
• reversal,

also the regular same-length 2-languages are.
However, the imported same-length complement is not the same as native

complement. This is because of the nature of the inverse mapping. Suppose we have a
state machine S in =×∪ , , which accepts the language ∗ . When
we use the isomorphism to obtain the transducer, it only accepts the set of same-length
word pairs. The full language of same-length pairs is ∗ , while without the same-
length restriction the full language is {w1 ,w2 ∣ w1∈∗ ,w2∈∗} .

20

4. Two-Level Rules and Their Application

4.1 The Rules
The following definitions has been adapted from Ritchie [1992]. Unless mentioned
otherwise, all words belong to the regular same-length 2-language ∗= ,∗ .

A 3-tuple x ,a , y is a partitioning of a word w , if w=xay , where
a∈ and x , y∈∗ . A context pair l , r consists of a left word l ∈∗ and a

right word r ∈∗ . Either or both of them may be empty.
A context pair l , r matches to a partitioning x , s , d , y , if there exist

x start , yend ∈∗ such that x= xstart l and y=r yend . In this case, the word
x s , d y can be expressed as x start l s , d r yend . A set of context pairs matches a

partitioning if one of them does.
For example, the word flys , flies∈∗ can be partitioned as

 fly , fli , , e , s , s . The context pair y , i , , , which only inspects the
left context, matches to the partitioning.

A two-level rule Pair ,Contexts consists of a correspondence pair set
Pair={d } , S where d ∈ and S⊂ , and a set Contexts of context pairs.

The number of context pairs is often infinite.
In a regular two-level rule, the context set can be denoted by a same-length

regular relation. Regular two-level rules can be written as Pair , L , R , where
Pair is a correspondence pair, and L and R are regular relations. If
Pair ,Contexts is the “plain” rule and Pair , L ,R is the same regular rule, then

the set Contexts is equivalent to the set of context pairs implied by the regular
relations L and R , which is {l , r ∣ l∈L∧r∈R} .

A two-level rule {d }, S ,Contexts contextually allows a word w , if any
character pair d , s ∈{d }, S appears only within the given context. To put it
formally, for each partitioning P=Left ,d , s , Right , where s∈S , the context
set Contexts matches P . Especially, if the pairs in {d } , S are not present in the
word, the rule trivially allows the word.

For example, the context restriction rule in Chapter 2 that controls consonant
gradation, P :v ⇒ Dall , S all∗$,∅ , would be written as

{P} ,{v } , , , Dall , S all ∗$,∅ . The rule contextually allows
 paPu $n , pavu∅ ∅ n , since it contains the gradation trigger $. However, it

doesn't allow paPua , pavu∅ a , since the partitioning
 pa , pa ,P ,v ,ua ,u∅ a contains the correspondence pair but the right side

doesn't match to the regular relation Dall , S all∗$,∅ , as it lacks the gradation
trigger $.

21
A two-level rule {d }, S ,Contexts coercively allows a word w , if the deep

form character d always realizes in the surface as some s∈S in the given context.
To be formal, for each partitioning P=Left ,d , x , Right that matches to

Contexts it holds that x∈S . The rule trivially allows all words, where either d is
not present in the deep form, or no partitioning matches any context in Contexts .

For example, a rule that coerces the + in “y+s” to realize as “ies” would be written
as {}, {e } , y , i , s , s . However, the rule doesn't suffice alone: it allows

 flys , fly ∅ s since the context doesn't match to the only relevant partitioning:
 fly , fly ,,∅ , s , s doesn't have left context y , i . For this reason, we

need another surface coercion rule {y}, {i} , , ,, Sany , which signals that a
deep form + on the right side makes y realize as i. This second rule rejects the
partitioning fl , fl , y , y , s ,∅ s .

A set of rules contextually allows a word w , if for each partitioning
L ,d , s , R either d , s is not in the correspondence of any rule, or some rule

with correspondence d , s contextually allows w . Note that if there are two
context restriction rules, which concern the same pair, it is enough for one of them to
accept w .

A set of rules R coercively allows a word w , if all rules in R allow w .
This is consistent with the idea that the rules are filters, and if one filter is violated, then
the input is rejected.

The next example demonstrates interaction between a set of rules. It is about
consonant gradation, where gradated K realizes as an apostrophe between two identical
vowels, as in riuku - riu'un. The “linguistic” notation for this is

K : ' ⇔ Vowels a ,a a ,a $,∅ ∣∣
Vowels e , e e , e$,∅ ∣∣
Vowels i , i i ,i $,∅ ∣∣
Vowels o , o o , o$,∅ ∣∣
Vowels u , u u , u$,∅ ∣∣
Vowels y , y y , y $,∅ ∣∣
Vowels ä , ä ä , ä $,∅ ∣∣
Vowels ö ,ö ö ,ö $,∅ .

In mathematical notation this composite rule would be expressed as a set of 8
rules, which are enforced both as context restriction rules and as surface coercion rules.
The first rule would be {K }, {' } , Vowelsa , a , a , a $,∅ . Now we see
why sets of context restriction rules have to treated with “one rule accepts, all rules
accept” policy. Otherwise the perfectly valid riuku – riu'un inflection would be rejected
by the other 7 rules. After all, the partition riu , riu ,K , ' ,u $n , u ∅ ∅ n is
not allowed by the rule that concerns vowel “a”, when the rule is considered as a single
rule.

22
A two-level grammar CR , SC consists of a set CR of context restriction

rules, and a set SC of surface coercion rules. The set of feasible pairs is the union of
default pairs and special pairs. In a default pair, the character realizes as itself. To put it
formally, DefaultPairs={a , a ∣ a∈∩} . A special pair is a pair which is
mentioned in the rules: SpecialPairs={d , s ∣ {d }, S , X ∈CR∪SC , s∈S } .

A two-level grammar CR , SC allows a word w , if w is a concatenation
of feasible pairs, CR allows w contextually, and SC allows w coercively.

Ritchie's [1992] definition of feasible pairs also included any pairs that are
mentioned in the context sets of the rules, but there are practical reasons not to do so.
There are unfeasible pairs, which are nevertheless very useful. For example, the pair set

 , can be used to skip any single character. The second difference is that Ritchie
[1992] didn't define default pairs and special pairs. Thirdly, in his definition the
correspondence part of a two-level rule was a mere pair, rather than a pair set, making
rules like P : pv⇐ impossible.

4.2 Rules as Transducers
We consider the rules as filters. Each coercion rule forms one filter. Each set of context
restriction rules concerning the same correspondence pair forms one filter. Any
input/output pair must pass through all filters simultaneously.

In order to apply the rules to a pair of strings we compile them into transducers.
The compilation can be done by hand [Koskenniemi, 1983], or by the method presented
later in the thesis, or by method devised by Kaplan and Kay [1994].

A correct compilation of a rule or a set of rules produces a transducer, which
accepts a 2-language word if and only if the rule allows the word contextually or
coercively, depending on the type of the rule.

The rules are executed in parallel: we take one input character at a time, and feed
it to all transduers. Since the transducers are same-length ones, they can be intersected
in order to produce a single transducer, even if it may not be economical in terms of
memory.

The basic parsing algorithm is the following:

Algorithm 4.A: Parses a word.
Input: A set T of rule transducers. A set F of feasible pairs. A deep form acceptor

S . A word w to be parsed.
Output: The possible deep forms of the word.
 1. Set the input cursor to the beginning. Set the lexicon acceptor to the initial state.

Set all rule transducers to the initial state.
 2. Take a character of surface input. Let it be c .

23

 3. Make a list of feasible pairs, where the surface character is c , or the surface
character is empty.

 4. Make a list of possible lexicon transitions. A lexicon transition is possible, if the
transition condition is the deep character for some feasible pair listed in 3.

 5. For each possible transition:
 5.1. Push (1) the lexicon acceptor state, (2) the rule transducer states and (3) the

input cursor to the stack.
 5.2. Go to the next state in lexicon acceptor and rule transducers.
 5.3. Advance input cursor: Read the next character.
 5.4. If the input is finished and a new character could not be read, check if all

transducers are at a final state. If so, output the lexicon path as one possible
parsing result.

 5.5. If there is an input character, read forward recursively. Go to step 2.
 5.6. Pop the lexicon state, rule states and the input cursor from the stack.

Note that we don't know, whether the next input character is 'really' an empty character
or the naïve c we read from the string. At step 3, we must generate all feasible pairs,
where the surface is c or empty. This means that also more lexicon transitions are
possible.

24

5. Compiling the Rules

Compilation is a process, where the input is a set of two-level rules, as defined in
Chapter 4. The output is a transducer, which accepts the input if and only if the rules
allow the input contextually/coercively. Past compilation efforts have concentrated on
regular two-level grammars. Also in this thesis all rules are assumed to be regular. After
reviewing past algorithms, a novel algorithm is presented. It differs from the previous
ones in ease of implementation. It works entirely within the same-length framework,
and therefore doesn't need full, variable length transducer support.

5.1 Previous Compilation Algorithms
First, I'll review the method of Kaplan and Kay [1994], which is based on composition
of several transducer. We proved in Chapter 4, that for any regular same-length 2-
language it is possible to create a transducer, which doesn't have semiempty transitions.
This means that we can compose several variable-length transducers into a single same-
length one, provided that the language they accept is same-length.

The method of Kaplan and Kay [1994] is based on first introducing context
markers, then placing the restriction on the core correspondence, and then removing the
context markers. The result is highly indeterministic and contains semiempty
transitions, but is guaranteed to be reducible to a same-length transducer. Table 5.A
illustrates their method.

Phase Input Output

Introduce context markers fly+s <f<>l<>y<>+<>s>

Restrict left and right context <f<>l<>y<>+<>s> <f<l<y><+<s

Replace <f<l<y><+<s <f<l<i><+<s

Remove context markers <f<l<i><+<s fli+s

Table 5.A. The phases of rewriting rule y i / + in Kaplan and Kay's method.

The example in Table 5.A. is a rewriting rule rather than a two-level rule. The first
phase introduces context markers to the word. The second phase removes those context
markers that don't match the right context. The left context is empty, therefore it always
matches. The third phase does the replacement to the location, which is surrounded by
both the left and the right context marker. The final phase removes the context markers.
Kaplan and Kay [1994] also discuss compiling two-level rules with similar methods.

The Xerox FST library (XFST) implements a large set of state machine
algorithms, including two-level rule compilation. There is every reason to believe that it
implements the compilation method of Kaplan and Kay, since they work for Xerox.

25

The second known two-level compilation algorithm is part of PC-KIMMO [Antworth,
2004] software. PC-KIMMO is a free, open-source implementation of the two-level
model. It includes a rule compiler. It is the only rule compiler implementation with a
freely available source code.

The documentation is not too specific about the compilation algorithm. I
inspected the source code, and failed to find a proper finite state transducer library.
Therefore I believe that the compilation method in PC-KIMMO is heuristic and limited
to basic cases only.

5.2 Compiling Context Restriction Rules
First, I'll present two same-length operators that are heavily utilized in the compilation
algorithm. These are from Kaplan and Kay [1994]. IfLeftThenRight transformation is
based on two regular relations, one left and one right. It accepts the input if the
beginning doesn't match the left regular relation, or the beginning matches the left
relation and the end matches the right relation. Let = , ∪ , be our
alphabet, and let ~C denote the complement of C . Then

IfLeftThenRight L , R=∗−L ~R=~L~R .
The “reverse” operation is IfRightThenLeft . It is defined as

IfRightThenLeft L , R=∗−~L R=~~ LR .

Two-level rules can be considered as filters, which reject illegal strings. This
suggests the following method of checking context restriction rules. When you notice a
'restricted' correspondence, check that it has a legal context on the left and the right side.

Single context restriction rules contain only one context, where the
correspondence(s) are allowed:

d :S L R .
Batch context restriction rules contain several possible contexts:

d :S L1R1 ∨ ... ∨ LnRn .
The difference between single and batch rules that makes it difficult to compile

batch rules is the interaction between the contexts. Some contexts may match to both
L1 and Ln .

5.2.1 Compiling Single Rules
This compilation method is presented in Kaplan and Kay [1994], but in much less
detail. First we prove that a single rule with a left and a right context can be divided into
two simpler rules: One including only the left context, and another including only the
right context. To put it formally,

d :S ⇒ L R
⇔
d :S ⇒ L ∧ d : S ⇒ R .

26

Theorem 5.B:
A context restriction rule d :S ⇒ LR is equivalent to two separate rules, one of
them containing only the left context and the other containing only the right context.
Proof:
We prove that given a word w ∈∗ of input, the original rule d :S ⇒ LR allows
it if and only if the left subrule d :S ⇒ L and the right subrule d :S ⇒R
allow it. The original rule accepts w , if and only if for an arbitrary relevant
partitioning P=l ,d , s , r , where s∈S , P matches the context pair set

L ,R . Now
P matches L ,R
⇔ l∈xL∧r ∈Ry for some x , y∈∗ . The equivalence holds by the

definition of partition matching a set of context pairs.
⇔ l ∈xL ∧ r∈ , y ' ∧ l ∈x ' , ∧ r ∈Ry for some

x , y , x ' , y ' ∈∗ . We have introduced two extra conditions, which can be always

fulfilled by choosing y ' =r and x '=l .
⇔ L , , matches P ∧ , ,R matches P . This is true by the

definition of a partition matching a set of context pairs.
⇔ d : S ⇒ L ∧ d :S ⇒R . The equivalence holds because we chose

the partitioning P and the word w arbitrarily.
Hence, the theorem follows.□

Next, we show that the rule d :S ⇒ L is equivalent to
IfRightThenLeft ∗ L ,d ,S ∗ . We already know how to reduce the
IfRightThenLeft operator into basic 2-language operations which we know how to

compute, so this finishes the compilation of the left subrule.

Theorem 5.C:
A context restriction rule d :S ⇒ L with only the left context is equivalent to

IfRightThenLeft ∗ L ,d ,S ∗ .
Proof:
Let w ∈∗ be an arbitrary word. The left subrule d :S ⇒ L allows w , if and
only if for each relevant partitioning P=l ,d , s , r where s∈S it is true that

L , matches P . Now firstly, we'll rephrase the left context condition:
L , matches P=l ,d , s , r
⇔ l ∈xL , for some x∈∗ ,
⇔ l ∈∗ L .

27
Secondly, we can express the presence or absence of d , s where s∈S in

another way. It is equivalent to say that w can be partitioned into P=l ,d , s , r
for some l ∈∗ , and to say that w ∈l d , S ∗ for some l ∈∗ . Therefore

w is accepted by d :S ⇒ L ,
⇔ for all partitionings P=l ,d , s , r it is true that L , matches P .

This is true by definition of a rule allowing a word contextually.
⇔ For all partitionings P=l ,d , s , r it is true that l ∈∗ L . The

equivalence is true, because we showed earlier that L , matching P is
equivalent to l ∈∗ L .

⇔ If w ∈l d , S ∗ for some l ∈∗ , then l ∈∗ L . This simply
expresses the presence and absence of d , S in another way.

⇔ If the right side of w matches to d ,S ∗ , then the left side matches to
∗ L .

⇔ w ∈IfRightThenLeft ∗ L , d ,S ∗ .
Hence, the theorem follows.□

Similarly, the right subrule is equivalent to IfLeftThenRight ∗d , S , R ∗ . To
sum up,

d :S ⇒ LR
= IfRightThenLeft ∗ L ,d , S ∗ ∩ IfLeftThenRight ∗d ,S ,R ∗ .

5.2.2 Compiling Batch Rules
The difficulties with batch rules like d :S ⇒ L1 R1 ∣∣ ∣∣ Lk Rk are:
• Splitting the rules to the left subrule and the right one requires some preparation,

since we don't want to allow Li d ,S R j where i≠ j .
• The left contexts or the right contexts of the subrules may intersect.

Our solution is to first split the k original rules into n subrules, where the left
contexts don't intersect. This disintersection process may change the number of rules.
Let d :S ⇒ L1 ' R1 ' ∨ ∨ Ln ' Rn ' be the disintersected rules. The fact that
left contexts are independent means that ∗ Li ' ∩ ∗ L j '=∅ when i≠ j .

Compiling the disintersected rules is relatively straightforward, and a method to achieve
it will be presented after the disintersection algorithm.

Algorithm 5.D splits the subrules so that their left contexts don't intersect.

Algorithm 5.D: Convert a batch rule into a format where the left contexts don't
intersect.
Input: A batch rule d :S ⇒ L1 R1 ∨ ∨ Lk Rk .

28
Output: A batch rule d :S ⇒ L1 ' R1 ' ∨ ∨ Ln ' Rn ' , where the left
contexts do not intersect: i≠ j ⇒ ∗ L i ' ∩∗ L j ' =∅ .

Algorithm:
 1. Unprocessed is an array of input subrules with ∗ prefix.

Unprocessed :={ ∗ Li ,Ri ∣ {d }, S , Li , Ri is an input subrule} .

 2. Processed is an empty array of disintersected subrules.
 3. While Unprocessed is not empty:

 3.1. Current :=Unprocessed [1] . Let L ,R:=Current .
 3.2. IntersectionLanguage will be the left context in a new, disintersected rule.

It is formed with a series of intersections. IntersectedRules is a list of original
rules that are combined to form IntersectionLanguage . Initialize

IntersectionLanguage := L , IntersectedRules:={ L , R } .
 3.3. For all subrules Li , Ri∈Unprocessed :

 3.3.1. If the left contexts intersect, that is,
Li ∩ IntersectionLanguage ≠ ∅ :

 3.3.1.1. IntersectionLanguage := IntersectionLanguage ∩ Li .
 3.3.1.2. IntersectedRules.add Li , Ri .

 3.4. Subtract IntersectionLanguage from the other left contexts. For each rule
Li , Ri∈ IntersectedRules do:

 3.4.1. Li :=Li ∩ ~IntersectionLanguage . This change must be
propagated to Unprocessed .

 3.4.2. If Li becomes an empty language: Remove Li , Ri from
Unprocessed .

 3.5. Create a new, disintersected rule and add it to Processed :
 3.5.1. Lnew:=IntersectionLanguage .
 3.5.2. Create the right context. Initialize Rnew=∅ . For each rule

Li , Ri∈ IntersectedRules do:
 3.5.2.1. Rnew :=Rnew ∪ Ri

∗ .
 3.5.3. Processed.Add Lnew ,Rnew .

To see how Algorithm 5.D works, let's look how it handles a subrule L , R where
left context doesn't intersect with any other subrule. At some iteration of the loop at step
3, the algorithm is going to take ∗ L , R as the Current rule, and initialize

IntersectionLanguage as ∗ L . The loop at step 3.3 finds out that only
∗ L , R itself intersects with ∗ L , R . As a result, after the loop at step 3.3
IntersectedRules={∗ L , R} . At step 3.4, IntersectedRules has exactly one

element. When the left context of this element ∗ L , R is substracted from itself, the
result is an empty language and the rule ∗ L ,R is removed from Unprocessed .

29
At step 3.5, the new rule that is added to Processed is ∗ L , R . The
nonintersecting left context passes through the algorithm unscathed.

What guarantees that the algorithm stops? The loop at step 3.3 collects a subset of
rules to IntersectedRules and calculates the intersection of their left contexts. Later,
loop 3.4 substracts the resulting IntersectionLanguage from the left contexts at the

Unprocessed . After this, the “diminished” rules in the array IntersectedRules no
longer intersect. If there are n rules, there are 2n – 1 possible nonempty subsets of
rules. Therefore, IntersectedRules can have at most 2n – 1 different values during
the execution of the algorithm. After they are exhausted, the algorithm stops. It is easy
to construct an example, where full 2n−1 iterations are needed. For example, rule

x : y ⇒{abde} ,{a }r , r ∣∣ {abcf }, {a }s , s ∣∣ {acdg } ,{a }t , t is
split to full 23 – 1 rules, since all combinations of left contexts intersect in a unique
way. This also means that the worst-case performance of the algorithm is exponential,
but that would require a very special grammar to cause any trouble in practice.

What guarantees that the resulting left contexts do not intersect? In short, the loop
at step 3.4. The IntersectionLanguage is used as the left context of any new rules, and
since it is subtracted from the existing rules, they can't intersect with it.

After the disintersection has been done, the rule can be compiled into n1
transducers: One of them guarantees proper left context and the other n guarantee
proper right context. The transducer ensuring that the left context is correct is

IfRightThenLeft ∗ L1 ' Ln ' , d ,S ∗ .

The remaining n transducers check the right contexts. Since the left contexts do
not intersect, only one of them is triggered for each instance of c∈d , S in a word.

IfLeftThenRight ∗ L1 ' d ,S , R1 ' ∗ ,

...
IfLeftThenRight ∗ Ln ' d , S , Rn ' ∗ .

This method of compiling a batch of context restriction rules is novel.

5.3 Compiling Surface Coercion Rules
This method is from Kaplan and Kay [1994]. The surface coercion rule

d :S LR means that in the given context, a deep form character d must
realize as some surface character s∈S . In other words, we want to reject strings
which contain

L d ,~S R .

When we modify this expression to ignore characters in the beginning and in the
end, it becomes

∗ L d ,~S R ∗ .

30

Since this is what we want to reject, the positive filter is

~∗ Ld :~S R ∗ .

5.4 Implementing the Algorithms
The rule compilation algorithm is a series of operations on same-length 2-languages.
However, the practical implementation is done with finite state transducers. The
following standard state machine operations are used in the compilation algorithm:
• union,
• concatenation,
• intersection,
• complement,
• determinization.

It is possible to implement also IfLeftThenRight and IfRightThenLeft with the
operations listed above. Regarding left and right contexts, Algorithm 3.A showed a way
to build a transducer from a regular relation.

One operation that still needs to be mentioned is checking whether a machine
accepts the empty language. It is needed when disintersecting the left contexts of a
batch context restriction rule. We know that the smallest machine that doesn't accept
anything contains only one state; a state that is initial but not final. Therefore, if we
minimize the transducer as if it was a state machine, we can deduce from the minimized
transducer if it accepts the empty language or not. Minimizing is also useful for
decreasing the sizes of the transducers for other reasons.

31

6. The Lexicon
In Chapter 2 we saw how parsing uses lexicon. When the parsing algorithm reads a
surface form input character, it uses the lexicon to generate a list of possible deep form
output characters. Rules filter out the wrong characters from this list.

In Chapter 5 we compiled rules into transducers. In this chapter, we compile the
vocabulary into a transducer and combine it with the rule transducers to provide one big
transducer for parsing from the surface form to the deep form.

This entire chapter is the first mathematical formalization of continuation classes
[Koskenniemi, 1983]. The developers of two-level morphology probably didn't see the
topic as worth exact formalization. After two-level morphology, morphological tools
have developed towards general finite state libraries [Beesley and Karttunen, 2003],
where there is no reason to restrict oneself to continuation classes.

6.1 Continuation Classes
In Chapter 2 we said that the two-level model assumes inflection to be fundamentally
concatenative. This means that in the deep form, words are inflected by attaching
prefixes and suffixes. We also know that many words have similar inflection. We want
to group related inflection suffixes into classes; this way we can denote the inflection of
a word by a reference to the class of continuations.

Before defining continuation classes we need to discuss tags. They are the final
result of parsing and the raw material for producing words. For example, the surface
form “going” should be parsed into tag list (“go”, “progressive”). When producing
words, for example the tag list (“go”, “imperfect”) should produce the surface form
“went”. Tags can denote words or grammatical categories. Sometimes it is possible to
split the deep form into “tag-size” pieces so that each tag corresponds to a part of the
deep form string. Sometimes a deep form string corresponds to several tags but can't be
analysed into subcomponents.

Let be the deep form alphabet and T the tag alphabet. The smallest unit of
vocabulary is a word triple Stem ,Continuation ,Tags where Stem∈∗ is the
string that characterises the word or inflection suffix, Continuation is the name of the
continuation class that can be appended after the stem (we define continuation classes in
the next paragraph), and Tags∈T ∗ is a string of tags that identify the meaning of the
stem. For example “ go” , IrregularVerbInflection ,“ go” or

“ ing ” , End ,“ progressive ” may be word triples in an English grammar.
A continuation class groups related words or inflection suffixes together. It is a 4-

tuple Name , Triples , ,T where Triples is a set of word triples. The word triples
in Triples use as their deep alphabet and T as their tag alphabet. When a word
triple references to a continuation class, it uses Name as the handle. A continuation

32

class is empty if it contains no word triples. Continuing the previous example, a
continuation class IrregularVerbInflection could contain word triples for

• forming a present tense with no suffix,
• forming a singular 3rd present tense with -s or -es and
• forming a progressive form with -ing.

A union of two continuation classes A=Namea , Triplesa , , T and
B=Nameb ,Triplesb , ,T denotes the union of their word triples:
A∪ B=Triplesa∪Triplesb .

Since continuation classes refer to one another, we need a container structure for
them. A lexicon is a 5-tuple ,T , Classes , Root , End where Classes is a set of
continuation classes where stems belong to ∗ and tags are strings in T ∗ . The
continuation class Root starts the word-forms. The continuation class End signals
the end of a word-form. Continuation class references in a lexicon must be consistent:
their names have to be unique, and all continuation classes mentioned in the word
triples must exist.

The following set of tables describes the inflection of singular Finnish nouns. It is
based on the two-level Finnish grammar of Koskenniemi [1983]. The example is quite
long, but it demonstrates many different things in this and the next chapter. The crude
formula for noun inflection is

 stem [+case] [+possessive suffix] [+clitic].
This means that each word starts with the stem. After the stem, 0 – 3 optional

suffixes can follow. Cases denote mainly various prepositions, for example, the phrase
“in a house” is expressed with the inessive case in Finnish. Possessive suffixes denote
ownership: “my house” is expressed with singular 1st person possessive suffix. Clitics
have various meanings that depend heavily on context. Table 6.A lists two noun stems.
Table 6.B lists singular case inflection. However, in any real-life grammar also the
plural noun inflection has to be included. Table 6.D lists the possessive suffixes, and
Table 6.C lists the clitics. Table 6.E and Table 6.F list Root and End continuation
classes, respectively. They are required for a valid two-level lexicon. Finally, Table 6.G
lists the continuation classes, which are unions of other continuation classes.

Stem Continuation Tags
talo noun "house"
öljy noun "oil"

Table 6.A. Example of a continuation class. The continuation class is named “stem”.

Table 6.B lists the cases. The non-alphabet character “+” denotes the boundary between
the stem and case suffix and is necessary for some rules. The character “$” denotes
consonant gradation. Chapter 1 had an example of consonant gradation, but this
example does without. The last two lines with “@” denote compound words. In Finnish,

33

it is possible to form compound words by attaching substantives or adjectives after the
nominative form or the genitive form of a word.

Stem Continuation Tags
clitic_end singular, nominative

$+n clitic_end singular, genitive
+n possessive singular, nominative
+n possessive singular, genitive
+nA possessive_clitic_end singular, essive
+A possessive_clitic_end singular, partitive
$+ksi clitic_end singular, translative
$+kse possessive singular, translative
$+ssA possessive_clitic_end singular, inessive
$+stA possessive_clitic_end singular, elative
+:n possessive_clitic_end singular, illative
+h:n possessive_clitic_end singular, illative
$+llA possessive_clitic_end singular, adessive
$+ltA possessive_clitic_end singular, ablative
$+lle possessive_clitic_end singular, allative
$+ttA possessive_clitic_end singular, abessive
@ stem singular, nominative
$+n@ stem singular, genitive

Table 6.B. Continuation class “case”. It represents the Finnish singular noun case
inflection. The last two lines represent compound words.

Stem Continuation Tags
_hAn end hAn
_kA:n end kAAn
_kin end kin
_kO end kO
_pA end pA
_kinkO end kinkO
_kA:nkO end kAAnkO
_kOhAn end kOhAn
_kOs end kOs
_pAhAn end pAhAn
_pAs end pAs

Table 6.C. Continuation class “clitic”. Denotes clitics, which serve various
grammatical roles that are highly context-dependent.

34

Stem Continuation Tags
/ni clitic_end Singular 1st
/si clitic_end Singular 2nd
/nsA clitic_end Singular/Plural 3rd
/:n clitic_end Singular/Plural 3rd
/mme clitic_end Plural 1st
/nne clitic_end Plural 2nd

Table 6.D. Continuation class “possessive”. Denotes possessive suffixes that indicate
ownership. Possessive suffixes can be appended after stem or after case inflection.

It is useful to start and end the word with a special character, since some rules need to
refer to the beginning or end of a word. We use # as the special character. Table 6.E and
Table 6.F introduce this special character. Table 6.G, defines the continuation classes
that are combinations of existing classes.

Stem Continuation Tags
stem

Table 6.E. Continuation class “Root”. All word-forms start from this class.

Stem Continuation Tags
#
Table 6.F. Continuation class “End”. All word-forms end in this class.

Continuation Class Definition
possessive_clitic_end possessive∪clitic∪end
clitic_end clitic∪end
noun case

Table 6.G. Continuation classes that are combinations of other continuation classes.
Union means the union of word triples rather than that of continuation classes.

6.2 The Deep Form State Machines
Algorithm 6.H constructs a state machine that accepts all valid deep form words and
none of the invalid ones. The state machine is not useful in itself, but the construction
algorithm can be modified to produce transducers that convert between the surface
form, the deep form and the tag form.

35

Algorithm 6.H: Builds a lexicon acceptor from a lexicon.
Input: A lexicon L= , T ,Classes , Root , End .
Output: A state machine M =Q , , , q0 ,F that accepts the deep form of L .

Algorithm:
 1. Create an entry state for each continuation class c∈Classes . At this point, the

entry states are isolated states with no transitions. We denote the entry state of a
continuation class Name by Entry [Name] . Add entry states to Q .

 2. Set the initial state: q0:=Entry [Root] .
 3. For all continuation classes Name , S , , T ∈Classes :

 3.1. For all triples Stem ,Continuation , Tags∈S : Create the transition chain:
 3.1.1. CurrentState := Entry [Name] .
 3.1.2. For k :=1 to Length Stem do:

 3.1.2.1. Create a state and store it to variable NewState . Add it to Q .
 3.1.2.2. Add transition CurrentState , Stem[k] , NewState to .
 3.1.2.3. CurrentState := NewState .

 3.1.3. Create the transition to the next continuation class:
 3.1.3.1. If Name is End , make CurrentState final.
 3.1.3.2. If Name is not End , add a transition

CurrentState , , Entry [Continuation] to .

Figure 6.K illustrates what kinds of machines this algorithm produces. The lexicon
transducer in Figure 6.K converts between the deep form and the surface form. It is
produced by a modified algorithm. The only difference to deep form acceptor is that the
transducer accepts pairs instead of characters.

We can modify the algorithm to produce a transducer that maps between the deep
form and tags. The modification in Algorithm 6.I is restricted to the part where we
create the transition chain for a stem. After the transition where tape 1 accepts the last
letter of the stem we put transitions that have the tags on tape 2. The transitions up to
the last letter don't write any tags. This way, if the transducer reads the deep form it
writes appropriate tags. When producing deep forms from tags, at the time the
transducer reads a tag it must have gone through a long chain of semiempty transitions
that produce the appropriate deep form.

36

Algorithm 6.I: Creates a transducer that converts between the deep form and the tag
form.
Input: A lexicon L= , T ,Classes , Root , End .
Output: A transducer M =Q , , T , , q0 ,F that converts between the deep form

and the tag form defined by L .
Algorithm:
 1. Create an entry state for each continuation class c∈Classes . At this point, the

entry states are isolated states with no transitions. We denote the entry state of a
continuation class Name by Entry [Name] . Add the entry states to Q .

 2. Set the initial state: q0:=Entry [Root] .
 3. For all continuation classes Name , S , , T ∈Classes do:

 3.1. For all triples Stem ,Continuation , Tags∈S do: create the transition chain.
 3.1.1. CurrentState := Entry [Name] .
 3.1.2. For k :=1 to Length Stem do:

 3.1.2.1. Create a state and store it to variable NewState . Add it to Q .
 3.1.2.2. Add transition CurrentState , Stem[k] , , NewState to .
 3.1.2.3. CurrentState := NewState .

 3.1.3. Add the tags: For k :=1 to Length Tags do:
 3.1.3.1. Create a state and store it to variable NewState . Add it to Q .
 3.1.3.2. Add transition CurrentState , ,Tags [k] ,NewState to .
 3.1.3.3. CurrentState := NewState .

 3.1.4. Create the transition to the next continuation class:
 3.1.4.1. If Name is End , make CurrentState final.
 3.1.4.2. If Name is not End , add a transition

CurrentState , , , Entry [Continuation] to .

The second modification, Algorithm 6.J, generates the surface-deep transducer. We
have said that rules can be considered as filters that permit or deny certain
correspondences between the deep form and the surface form. The role of the surface-
deep transducer is to generate the raw data that is filtered by the rules. When parsing, it
ensures that the parsed deep forms are in the vocabulary.

37

Algorithm 6.J: Creates a transducer that converts between the surface form and the
deep form, ignoring the rules.
Input: A lexicon L= , T ,Classes , Root , End . A surface alphabet . A set

F ⊂ , of feasible pairs (see chapter 4.1).
Output: A same-length transducer M =Q , , , , q0 , F that converts between

the deep form defined by L and the surface form.
Algorithm:
 1. Create an entry state for each continuation class c∈Classes . At this point, the

entry states are isolated states with no transitions. We denote the entry state of a
continuation class Name by Entry [Name] . Add entry states to Q .

 2. Set the initial state: q0:=Entry [Root] .
 3. For all continuation classes Name , S , , T ∈Classes do:

 3.1. For all triples Stem ,Continuation ,Tags∈c , create the transition chain:
 3.1.1. CurrentState := Entry [c] .
 3.1.2. For k :=1 to Length Stem do:

 3.1.2.1. Create a state and store it to variable NewState . Add it to Q .
 3.1.2.2. Use feasible pairs to find out the set of possible surface characters:

SurfaceSet :={s ∣ Stem[k] , s ∈F } .
 3.1.2.3. Add transition CurrentState , Stem[k] , SurfaceSet , NextState to

 .
 3.1.2.4. CurrentState := NewState

 3.1.3. Create the transition to the next continuation class:
 3.1.3.1. If Name is End , make CurrentState final.
 3.1.3.2. If Name is not End , add transition

CurrentState , , , Entry [Continuation] to .

In Chapter 2, we ran the rules and the lexicon transducer separately for reasons of
conceptual clarity. Now we see that both the surface-deep transducer and the rules are
same-length transducers. Running transducers in parallel and rejecting input when one
of the transducers rejects it produces the same result as intersecting the separate
transducers into one transducer and using it to convert between the deep form and the
surface form. It is faster to intersect the lexicon transducer with the rule transducers than
to intersect the rule transducers with one another, since many complex interactions
between the rules never appear in real-life vocabularies. Algorithm 6.L combines the
rules and the surface-deep transducer.

38

Figure 6.K. Surface-deep transducer generated from the Finnish example. Clitics have
been omitted as well as parts of the case and possessive suffix continuation classes.

(#,#)

(t,t) (a,a) (l,l) (o,o)

(ö,ö)
(l,l) (j,j) (y,y)

(#,#)

...

($,)∅
(n,{n })∅

(+,)∅

(+,)∅

(+,)∅

(n,{n })∅

(n,{n })∅

(+,)∅ (n,{n })∅ (A,{aä})

(@,@)

(@,@)($,)∅ (+,)∅ (n,{n })∅

...
(/,)∅

(/,)∅
(n,n)

(n,n)

(n,n)

(i,i)

(e,e)

(λ,λ)
(to noun
continuation
class)

(to end
continuation
class)

(to possessive
continuation class)

(to end
continuation
class)

(to stem
continuation
class)

(λ,λ)

(λ,λ)
(λ,λ)

(λ,λ)

(λ,λ)

39

Algorithm 6.L: Combines the lexicon-based surface-deep transducer and the rules into
one transducer.
Input: A surface-deep same-length transducer T . A vector V of same-length rule
transducers.
Output: A single transducer that corresponds to running the transducers in parallel.
Algorithm:
 1. Initialize: Result :=T .
 2. For all rule transducers R∈V do:

 2.1. Result :=Result∩R .

6.3 Removing Semiempty Transitions
In Section 6.2 we created two useful transducers in order to convert between the surface
form, the deep form, and the tag form. Both transducers have plenty of semiempty
transitions.

The surface-deep transducer creates an illusion of same length between the deep
form and the surface form with a dedicated empty character. Special deep characters
like inflection boundary markers in the Finnish example realize as empty characters in
the surface form. This creates complications in parsing: When we get a real-life surface
word, it doesn't have empty characters. When parsing a surface form, we must guess at
each point whether the next character is an empty character or the actual character. In
this section we treat these transitions as semiempty transitions.

There are two reasons why we need a new type of transducer to express the
algorithm that removes semiempty transitions. Firstly, the algorithm is based on
concatenating the outputs of the transitions where the input tape is semiempty.
Therefore the transducer must be able to write several characters in one transition.
Secondly, we must take direction into account and treat the input tape and the output
tape differently. It is normal that the output tape has empty transitions: it doesn't create
any extra ambiguity when transforming input into output. Empty output has valid uses,
for example when converting deep form words to surface form words, where some
characters realize as empty. On the other hand, empty transitions in the input tape force
us to branch the transduction to a scenario where something is read and another scenario
where no input read, slowing down conversion.

The definition also introduces output function [Mohri 1996] as preparation to the
next chapter about determinization. If the transduction ends at some final state, the
output of the output function is written to the output tape. Output function enables us to

40

get rid of semiempty transitions and have limited amounts of indeterminacy without
branching.

A word transducer with p outputs T=Q , I ,O , , , q0 , F is a 7-tuple where
• Q is the set of states, q0 is the initial state and F is the set of final states,
• I is the input alphabet extended with the empty word,
• O is the output alphabet,
• ⊂Q×I ×O∗×Q is the transition relation. Note that the input condition is

always a single character or an empty transition while the output is a string.
• : F O∗p is the output function. If the transduction stops in a final state

q∈F , the results of the output function output ∈q are written to the
output tape. Note that the output function can always be replaced with a set of
semiempty transitions q , , output , q ' . In the process at most p new
states q ' are created and q becomes nonfinal.

Converting a regular transducer into a word transducer is almost trivial. The only
complication arises from the direction of transduction. One regular transducer splits into
two separate word transducers depending on which alphabet we choose to be the input
alphabet. After some algorithm modifies the word transducer to have several output
letters in one transition, it is no more possible to use the transducer in both directions.
Therefore, the plain surface-deep transducer splits into two word transducers: surface-
to-deep and deep-to-surface ones.

We say that a transition is input empty, if it the input condition is . Algorithm
6.M removes input empty transitions from a word transducer.

Algorithm 6.M: Removes input empty transitions from a word transducer.
Input: A word transducer T =Q , I ,O , , , q0, F .
Output: A word transducer T '=Q' , I ,O , ' , ' , q0, F ' without input empty

transitions.
Algorithm:
 1. Initialize T ' :=T .
 2. For each state in q∈Q ' :

 2.1. While q contains an input empty transition: Let t :=q , ,Output , q2 .
 2.1.1. For each transition in t ' ∈q2 : Let t ' :=q2 , Input2 ,Output 2 , q3 :

 2.1.1.1. Add transition t new:=q , Input2 ,Output ●Output 2 , q3 to ' .
 2.1.2. If q2 is final: Make q final. Since there is no longer a transition from

q to q2 , also the output function of q2 must be copied:
 2.1.2.1. If the output function ' q2 is empty, add Output to ' q .
 2.1.2.2. If ' q2 is not empty, add the strings Output ● FuncOutput to

 ' q , where FuncOutput∈ ' q2 .
 2.1.3. Remove transition t .

41

Figure 6.N. An example of using concatenation and output function to get rid of empty
transitions.

Figure 6.N illustrates how the algorithm removes semiempty transitions. The algorithm
doesn't always terminate: for example if a state q contains an input empty transition to
itself. Each iteration of the loop 2.1 removes one input empty transition from the state

q by replacing t with t new . However, if Input2 in t new is empty, the iteration
doesn't change the number of input empty transitions. Figure 6.O illustrates this.

Figure 6.O. An example of a transducer, where it is impossible to remove a semiempty
transition.

(λ,a) (x,b) (λ,c)

(x,ab) Output function:c

Before removing empty transitions:

After removing empty transitions:

(a,a) (λ, b)

42

7. Input Determinization

7.1 The Determinization Algorithm
Given a string of input, a deterministic state machine accepts or rejects the string in
linear time, since the next transition is always unique. Determinization is a guarantee of
linear performance.

Transducers can be “deterministic” in two different ways. As we saw in Section 3.5,
same-length transducers are isomorphic to state machines. We can determinize the
transducer as if it were a state machine. When the transducer is used as an acceptor and
both tapes are input tapes, this kind of determinization guarantees linear performance.
However, if one of the tapes is an output tape that is being written, we can no longer
expect linear performance.

The second type of determinization, input determinization, guarantees linear
performance when the transducer transforms input into output. The trick is that we don't
write output before we know exactly what to write. This method is illustrated in Figure
7.A. Note that the input determinized transducer has words as transition conditions, and
therefore it is a word transducer as defined in the previous chapter, instead of being a
plain transducer as defined in Chapter 3.

Figure 7.A. Using output function and empty output transitions to make transducers
input deterministic.

Mohri [1994] defines three classes of input deterministic transducers:
• Sequential transducers are such that at each state, the input letter determines the

next state. Sequential transducers don't have an output function.

(a,x)

(a,y)

(x,x)

(y,y)

(a,λ)
(x,xx)

(y,yy)

(b,x)

(b,y)

(b,λ) x
y

Before determinization:

After determinization:

43

• P-subsequential transducers can have an output function. The output function
can write at most p different strings at each final state. The transitions are
under the same restrictions as in sequential transducers. P-subsequential
transducers run in linear time but can still handle limited amounts of ambiguity.

• Subsequential transducers can have at most one output string in each final state.
Subsequential transducers can be represented by sequential ones almost always:
Only when the initial state is also a final state it is impossible to use a sequential
transducer instead.

Algorithm 7.B converts a word transducer into a P-subsequential transducer. The
basic idea is to write the output only after we know what to write. Ambiguous output is
implicitly stored in “state memory”. The algorithm is loosely based on subset
construction. In the subset construction, let Q be the set of states of the
nondeterministic transducer. Then the states of the deterministic transducer are subsets
of Q . In this algorithm, the states of the resulting transducer are sets of q ,String
pairs, where q∈Q and String∈O∗ is one possible unwritten output. We call a set of

q , string pairs a superstate.
 Not all transducers can be determinized, and sometimes deterministic transducers
are much bigger than nondeterministic ones. We'll look at the downsides of
determinization later.

Algorithm 7.B [Mohri, 1996]: Determinizes a word transducer.
Input: A word transducer T =Q , I ,O , , , q0, F without empty transitions.
Output: A p-subsequential word transducer T '=Q' , I ,O , ' , ' , q0 ' , F ' .

Algorithm:
 1. Let Queue be the temporary storage for superstates of the resulting transducer.

Queue contains superstates; that is, sets of q ,String pairs.
 2. Let StateHash be a hash table that maps between superstates and states of the

resulting transducer: If x is a superstate, then StateHashx∈Q ' .
 3. Add initial superstate to queue: Queue.Push {q0 ,} .
 4. Repeat while Queue is not empty:

 4.1. Get the next superstate:
 4.1.1. SuperState :=Queue.Head .
 4.1.2. CurrentState :=StateHashSuperState .

 4.2. For all final substates q ,Str in SuperState where q∈F .
 4.2.1. Make CurrentState final: F ' := F '∪CurrentState . That is, if there

is at least one final substate, then also the superstate becomes final.
 4.2.2. Add Str to the output function:

 ' CurrentState:= ' CurrentState∪Str .

44

 4.3. For all elements of the input alphabet i∈ I do:
 4.3.1. Make a list of substates with an i-transition: ISubstates :=

{q , Str ∣ q , Str ∈SuperState ,q ,i , o , q ' ∈ for some o , q ' } .
 4.3.2. Make a list of output strings that might be written when reading i :

IOutputs :={Output ∣ q , Str∈ISubstates , Output=Str ●Commonq , i }
where Commonq , i is the longest common output prefix when we move
from state q with various transitions which read i :

Commonq , i :=LongestCommonPrefix {o ∣ q ,i , o , q ' ∈} .
 4.3.3. Make a list of reachable substates: TargetStatesStrings :=

{q , Str , o , q ' ∣ q , Str∈SuperState ,q , i , o , q ' ∈ for some o∈O} .
 4.3.4. Calculate the transition output:

TransitionOutput :=LongestCommonPrefix IOutputs .
 4.3.5. Calculate the target superstate of the determinized transition:

 4.3.5.1. TargetState :=∅ .
 4.3.5.2. For each q ,Str , o , q ' ∈TargetStatesAndStrings : create the

string part of the (state, string) pair.
 4.3.5.2.1. Concatenate “state memory” and normal output:

StateString :=Str ● o .
 4.3.5.2.2. Remove the output that we write during transition

StateString :=StateString.DeleteFromStart TransitionOutput .
 4.3.5.2.3. Add (state, string) pair to the target superstate:

TargetState :=TargetState∪q ' , StateString .
 4.3.6. If the TargetState superstate is new:

 4.3.6.1. Create StateHashTargetState .
 4.3.6.2. Queue.PushTargetState .

 4.3.7. Add transition from CurrentState to TargetState :
 :=∪CurrentState ,i , TransitionOutput , StateHashTargetState .

 4.4. Remove the CurrentState from Queue , as we have finished processing
it.

7.2 Problems with Determinization
The positive effects of determinization include linear performance of the resulting
transducer and the simplification of other operations like computing the composition of
two transducers. Two kinds of adverse effects surface when determinizing natural
language transducers.

Suppose that we have a word, which has two interpretations. For example the
word “married” be both an imperfective form of verb “marry” and an adjective that has

45

its own definition in the dictionary. Suppose we construct a surface-to-tags transducer
that includes the word “married” and determinize it. The word “married” is represented
by a chain of letters. The first state has a transition labeled with 'm' and after the 'd'
transition comes the last state. The last state outputs two different interpretations:
“married” for the adjective and “marry + imperfective” for the verb. Since there is
ambiguity, we must output it in a final state's output function. We can't output it in
transitions, since they can give only one interpretation.

The problem surfaces, if the word with many interpretations has inflection. Take
the Finnish word “varattu” (reserved) for example. It can be either an adjective or a
participle form of a verb. There is a set of suffixes named clitics in the Finnish
grammar. There are 11 different clitics, and they are 2-6 characters long. They are listed
in Table 6.C in Chapter 6. Clitics can be attached to almost any word, including
“varattu”. Normally in a surface-to-tags transducer the clitic string outputs only its own
grammatical tag. However, if we add a clitic to the word “varattu”, the end of clitic
must output the two different interpretations, since only final states can handle
ambiguity. For this reason, determinization makes a dedicated copy of the states and
transitions that represent clitics in order to be able to output the two interpretations in
the end. Representing the clitics takes much more states and transitions than
representing the core word “varattu”. Therefore, determinization increases the size of
the transducer, since you need to make dedicated copies of inflection endings. There are
also other features in the Finnish grammar that have the same effect as clitics.

The other problem is caused by the fact that adding one word can add an infinite
amount of word-forms because of the compound word mechanism. The example in the
Chapter 6 illustrates this. After a nominative or a genitive form you can concatenate
other words in order to form compound words. This is visible in Table 6.B, where
strings that end with @ have continuation class “stem”, which refers back to the table
where new words start. Suppose you have multiple interpretations in a genitive or
nominative form of a word. The consequence is that adding a new word adds an infinite
amount of compound word-forms.

Now, suppose you have a word with two interpretations that can be used as a
basis of a compound word. The determinization algorithm is unable to push them to the
final states, since the number of required final states is infinite. As a consequence, the
machine is undeterminizable.

The next chapter examines empirically just how nonlinear the parsing and
production performance is without determinization, and how serious these two
drawbacks of determinization are in practice.

46

8. The Effects of Determinization on Size and Performance
This chapter quantifies the effects of determinization. The rule compiler and the two-
level parser/producer were implemented with Java. Also, a 1000-word Finnish
vocabulary was collected for testing. Since state machines are fast and Java is slow, it is
somewhat pointless to measure time. Therefore, the performance was measured by
counting the number of states visited while parsing.

8.1 Test Software and Data
A finite state library is the workhorse of the two-level software package that was used
for the experiments. It can handle finite acceptors, same-length transducers and word
transducers. It can compute the regular language algebra operations like union and
complement, determinize acceptors and same-length machines, and input determinize
word transducers. It also contains the special operations needed for rule compilation:
constructing machines that accept regular relations, and computing the

IfRightThenLeft operator. The rule compiler implements exactly the algorithm
described in the earlier chapters.

The vocabulary module inputs the data. It reads a set of continuation classes and
builds the transducers. First it builds the surface-deep transducer and intersects it with
the rule transducers. Then it splits it to surface-to-deep and deep-to-surface transducers.
Then it builds the deep-to-tags and tags-to-deep transducers. If configured to do so, it
determinizes some of the transducers and possibly combines the surface, deep and tag
levels to a single surface-to-tags transducer.

The dictionary and annotator modules work on the level of meanings and tags.
They read a dictionary and produce a word list for the vocabulary module without
concerning themselves with the details of parsing and production. The annotator can
annotate text by performing morphological analysis on words and attaching meanings to
them. The dictionary module can also run test cases that ensure that the parsing or
production results in the expected surface word-form or tag list, respectively.

The test vocabulary contains 1114 Finnish words, which all belong to a single
essay. Therefore, it contains a realistic mix of nouns, verbs and particles. The inflection
and rules have been adapted from Koskenniemi [1983]. Altogether, it contains 88 rules.
This is somewhat more than what Koskenniemi had, since he had a special notation for
grouping some very similar rules together.

47

8.2 Determinization and the Size of the Transducer
Since possible explosion in size is the main drawback of determinization, a test was
performed that compared the size of the 4 transducers before and after determinization.
The size was measured in number of states and transitions.

The results are in Table 8.A. The increase in sizes of the transducers reflects the
number of processes in Finnish grammar that create ambiguity. The size of the surface-
to-deep transducer increases more than tenfold because of the processes described in the
previous chapter. In tags-to-deep transformation, there are only two processes that
create ambiguity. It is possible to generate the partitive form and the genitive form with
several alternative endings, but the resulting words are synonymous. Since tag form
only knows that the user wants a “partitive form”, producing all partitive or genitive
deep forms generates ambiguity. The result is a fivefold increase in states, which is
offset by a decrease in the number transitions. Deep-to-surface transformation doesn't
really have any significant ambiguity-producing features, so the transducer stays small.

Transducer Before determinization After determinization

Surface-to-deep
3190 states,
10683 transitions

103588 states,
112518 transitions

Deep-to-tags
12930 states,
56966 transitions

16226 states,
27690 transitions

Tags-to-deep
4341 states,
41713 transitions

24681 states,
34281 transitions

Deep-to-surface
3190 states,
7054 transitions

3282 states,
7776 transitions

Table 8.A The effect of determinization of transducer size.

Acceptors can also be minimized. The simplest possible minimization algorithm,
although by no means newest, fastest nor best, is Brzozowski minimization
[Brzozowski 1962]. In this algorithm, the transducer is reversed, determinized,
reversed, and determinized again. This implies that also transducers may become
smaller if reversed and determinized twice. For transducers, we can apply Brzozowski-
style “minimization” where we run the determinization and reversal operations, but use
input determinization instead of the state machine determinization. Naturally there is no
reason to believe that this “minimization” results in any theoretically significant
canonical form. This “minimization” was run on the transducers of Table 8.A. Table
8.B shows the results. The algorithm didn't finish for the last two transducers. For the
surface-to-deep transducer the minimizing effect was negligible, probably because the
transducer was already minimized as a same-length transducer before conversion into a
word transducer. The process has significant effect only on the deep-to-tags transducer.

48

Transducer Before minimization After minimization

Surface-to-deep
103588 states,

112518 transitions
100514 states,

110331 transitions

Deep-to-tags
16226 states,

27690 transitions
12875 states,

15814 transitions

Tags-to-deep
24681 states,

34281 transitions Couldn't compute

Deep-to-surface
3282 states,

7776 transitions Couldn't compute
Table 8.B The effect Brzozowski minimization -style transformation on the size of the

transducers.

8.3 Determinization and Parsing Performance
The parsing performance was tested with all words in an essay. The essay is the same
on which the 1114-word vocabulary is based. Therefore, it presents a realistic
annotation scenario, where easy, difficult and ambiguous words occur with real-life
frequency. The results are in Table 8.C. In the first line, both transducers are
deterministic. In the second line, both transducers are nondeterministic. In the third line,
the determnistic surface-to-deep and deep-to-tags transducers were combined into a
surface-to-tags transducer; ease of composition is one motivation behind input
determinization. The last result is the most interesting: the surface-to-deep transducer
was left nondetermistic while the deep-to-tags transducer was determinized. The result
is a massive decrease in branching with a negligible increase in size. Once again, input
determinization produces little improvement on the surface-to-tags transducer, which
was determinized before conversion into a word transducer, while “virgin soil” deep-to-
tags transducer does show improvement.

Transducers States visited Transducer Size
S2D determinized, D2T determinized 53105 119814

S2D undeterminized, D2T undeterminized 506870 16120
S2D and D2T determinized and combined 23121
S2D undeterminized, D2T determinized 58368 19416

Table 8.C The effect of determinization of parsing performance. S2D mean
surface-to-deep, D2T means deep-to-tags. States visited means how many states were
visited while parsing. Transducer size means the number of states in the transducers.

To summarize the results of the empirical part, input determinization does increase the
size of the transducers 6-fold and cuts the parsing time to 1/20. With careful selection of
deterministic and nondeterministic transducers it is possible to get 10x speed-up with

49

only a slight increase in transducer size. The effects of determinization vary very much
between languages, and it is not possible to draw conclusions that would be valid for all
languages. For example, Mohri [1996, p.14] reports that determinization actually
compresses French, English and Italian morphological vocabularies.

50

9. Conclusions
This thesis has summarized the development of the two-level model after Koskenniemi
[1983]. Significant development has happened in three areas. Firstly, instead of
compiling linguistic rules into transducers by hand, nowadays linguists can use
automatic rule compilers. Secondly, all parts of the two-level framework have been
expressed in the formal language of transducers and strings, including the lexicon.
These two developments were discussed in the Thesis.

The final development has been a shift from two-level morphology to general finite
state transducer tools. This development has been spearheaded by Kay and Kaplan and
their Xerox Finite State Transducer library. It has succeeded to the point of making two-
level morphology obsolete. This development is outside the scope of the Thesis.

51

List of References
[Aho and Ullman, 1972] Alfred V. Aho and Jeffrey D. Ullman, The Theory of

Parsing, Translation and Compiling - Volume 1: Parsing. Prentice Hall, 1972.

[Antworth, 1990] Evan L. Antworh, PC-Kimmo, A Two-Level Processor for
Morphological Analysis. Summer Institute of Linguistics, Dallas, Texas, 1990.

[Antworth, 2004] Evan L. Antworth, PC-Kimmo, a morphological parser. Available
as http://www.sil.org/pckimmo/ (5.10.2004).

[Beesley and Karttunen, 2003] Kenneth R. Beesley and Lauri Karttunen, Finite State
Morphology. Leland Stanford Junior University, CSLI Studies in
Computational Linguistics N:o 3, 2003.

[Brodda and Karlsson, 1981] Ben Brodda and Fred Karlsson, An Experiment with
Automatic Morphological Analysis of Finnish. University of Helsinki, 1981.

[Brzozowski, 1962] J. A. Brzozowski, Canonical regular expressions and minimal
state graphs for definite events. In: Mathematical Theory of Automata (1962),
529-561.

[Grinder and Elgin, 1973] John T. Grinder and Suzette H. Elgin, Guide to
Transformational Grammar. Holt, Rinehart and Winston Inc., 1973.

[Kaplan and Kay, 1994] Ronald M. Kaplan and Martin Kay, Regular models of
phonological rule systems, Computational Linguistics 20, 3 (1994), 331 – 378.

[Koskenniemi, 1983] Kimmo Koskenniemi, Two-Level Morphology: A General
Computational Model for Word-Form Recognition and Production. University
of Helsinki, Publications of Department of General Linguistics N:o 11, 1983.

[Koskenniemi, 1985] Kimmo Koskenniemi, Compilation of automata from
morphological two-level rules. In: Papers of the Fifth Scandinavian
Conference of Computational Linguistics (1985), 143-149.

[Mohri, 1996] Mehryar Mohri, On some applications of finite-state automata theory
to natural language processing. Journal of Natural Language Engineering 2
(1996), 1-20.

[Reape and Thompson, 1988] Mike Reape and Henry S. Thompson, Parallel
intersection and serial composition of finite state transducers. In: Proc. of the
12th International Conference on Computational Linguistics 2 (1988), 535-
539.

[Ritchie, 1992] Graeme Ritchie, Languages generated by two-level morphological
rules. Computational Linguistics 18, 1 (1992), 41-59.

http://www.sil.org/pckimmo/

52

Appendix 1

Appendix 1. Notation Sheet

These notations are used through the whole thesis. They are explained in detail, when
they first appear in the text.

 Generic alphabet; surface alphabet.
 Deep alphabet.
 Same-length alphabet , ∪ , .
L , M , Languages.
S ,T , State machines.
a ,b , c , Charaters.
x , y , z , w , Words.
 Empty word.
 Empty language.
∅ Empty surface character; empty set.
RL Regular languages over the alphabet .
RR , Regular relations between the two alphabets.
SL , Same-length regular relations between the two alphabets.
SLall , A same-length relation accepting all same-length pairs.
FT all A transducer accepting the 2-language SLall , .

53

Appendix 2

Appendix 2. Sample of the Lexicon Format
The Finnish inflection expressed by the lexicon format is based on Koskenniemi [1983].
The sample is part of verb inflection.

LEXICON verb0 = {
"(" 1.3.n/v "present", "active";
"$(" verbClitic# "imperative", "active", "sg2";
"(mi" nen/s "toSubstantive";
// Agent construction: Kallen osta_ma_ auto.
"(mA" sNoCompound/s "agent", "active";
"(vA" aNoCompound "participle", "present", "active";
"(mAtTo" n.mA/a "participle", "past", "negative";

}
LEXICON verb1 = {

"+i(" 1.3/v "past", "active";
}
LEXICON verb2 = {

"(isi(" 1.3/v "conditional", "active";
}
LEXICON verb3 = {

"(ne" 1.3.n/v "potential", "active";
"(kOOn" clitic# "imperative", "active", "sg3";
"(kAAmme" clitic# "imperative", "active", "pl1";
"(kAA" verbClitic# "imperative", "active", "pl2";
"(kAAtte" end "imperative", "active", "pl2";
"(kOOt" end "imperative", "active", "pl3";
"(kO" end "imperative", "active", "negative";
"*$DA" 4.n/v "present", "passive";
"*$Xtiin" clitic# "past", "passive";
"*$XtAisi" 4.n/v "conditional", "passive";
"*$XtAne" 4.n/v "potential", "passive";
// hänet tuotakoon / häntä ei tuotako
"*$XtAkO" 4.n/v "imperative", "passive";
"(DA" clitic# "infinitive", "nominative";
"(DA+kse" possessive "infinitive", "translative";
"+De+ssA" possessive# "infinitive2", "active", "inessive";
"+Den" clitic# "infinitive2", "active", "toAdverb";

...

54

Appendix 3

Appendix 3. Sample of the Rule Format
The Finnish rules are based on Koskenniemi [1983]. These rules are part of consonant
gradation.
RULE consgrad = {

// s.79-81 Consonant gradation
// paikka - paikan
["K", null] => Vowels ["lrh", "lrh"]? ["k", "k"]? _ ;
["K", "'"] <=> Vowels ["a", "a"] _ ["a", "a"] Grad ||

Vowels ["e", "e"] _ ["e", "e"] Grad ||
Vowels ["i", "i"] _ ["i", "i"] Grad ||
Vowels ["o", "o"] _ ["o", "o"] Grad ||
Vowels ["u", "u"] _ ["u", "u"] Grad ||
Vowels ["y", "y"] _ ["y", "y"] Grad ||
Vowels ["ä", "ä"] _ ["ä", "ä"] Grad ||
Vowels ["ö", "ö"] _ ["ö", "ö"] Grad;

["K", "v"] => Cons ["uy", "uy"] _ ["uy", "uy"];
["K", null] /= Cons ["uy", "uy"] _ ["uy", "uy"];
["K", "g"] => Vowels ["n", "n"] _ ;

// This rule should not allow laKi$+n -> lajin.
// Probably the i should be restricted to plural I.
["K", "j"] => Vowels ["lrh", "lrh"]? _ (["eE", "e"] | ["E", null] | ["i", "i"]) ;
// Fix laKi and other non-plural-i forms.
["K", "j"] /= Vowels _ ["i", "i"] ["$", "Z"]? ["+", "Z"];
// Fix väKE$+ttä -> väjettä.
["K", "j"] /= Vowels _ ["E", surfAll];

["K", null] /= Vowels ["lrh", "lrh"] _ (["eE", "e"] | ["E", null] | ["i", "i"]) ;

["P", "v"] => Vowels ["lr", "lr"]? _ ;
["P", "m"] => Vowels ["m", "m"] _ ;
["P", null] => [deepAll, surfVowels]["lr", "lr"]? ["p", "p"] _ ;

["T", "d"] => [deepAll, surfVowels]["h", "h"]? _ ;
["T", "l"] => [deepAll, surfVowels]["l", "l"] _ ;
["T", "r"] => [deepAll, surfVowels]["r", "r"] _ ;

55

["T", "n"] => [deepAll, surfVowels]["n", "n"] _ ;
["T", null] => [deepAll, surfVowels]["lrnh", "lrnh"]? ["t", "t"] [deepAll, null]* _ ;

["K", "k"] <= ["s", "s"] _ ;
["P", "p"] <= ["s", "s"] _ ;
["T", "t"] <= ["s", "s"] _ ;

["K", "'vZgj"] <= _ [deepAllNoLimit, surfAll]* Grad;
["P", "vmZ"] <= _ [deepAllNoLimit, surfAll]* Grad;
["T", "dlrnZ"] <= _ [deepAllNoLimit, surfAll]* Grad;

["K", "k"] <= _ [deepAllNoGrad, surfAll]* EndOrLimit;
["P", "p"] <= _ [deepAllNoGrad, surfAll]* EndOrLimit;
["T", "t"] <= _ [deepAllNoGrad, surfAll]* EndOrLimit;
}

