
The Impact of Global Software Development on Software
Configuration Management

Kaisa Uotila

University of Tampere
Department of Information Sciences
Master of Science Thesis
May 2003

ii

University of Tampere
Department of Information Sciences
Kaisa Uotila: The Impact of Global Software Development on Software
Configuration Management
Master of Science Thesis, 69 pages
May 2003

Abstract
In today’s large and complex software projects, companies have understood the
importance of software configuration management. The ability to manage
changes effectively is a major key to successful projects. At the same time, the
global software development has become common. Virtual corporations, usage
of subcontractors, and starting a new development in a country, where the
labour costs are cheaper, are few examples of the reason why software
corporations are going global. The aim of this study is to analyse what kinds of
impacts the emerging trend of global software development has on software
configuration management systems.

The main conclusion is that the role of software configuration management
is greater in global software projects than in local projects. Global software
projects have extra requirements on software configuration management that
can be divided in three groups: security, reliability, and ease of use. In an ideal
situation, the used software configuration management tool supports all these
requirements. However, the software company needs also to define processes to
the software configuration management system to overcome all of the
requirements.

Keywords: software configuration management, SCM, change control, global
software development, distributed development, geographical distribution,
parallel development, concurrent development

iii

Acknowledgements
I would like to take this opportunity to thank my employer, Nokia Networks,
for providing me the resources to write this thesis. All my former colleagues at
the software configuration management teams deserve my gratitude for the
challenging and inspiring working atmosphere. A special thanks goes to Katri
Saarinen, who has endlessly supported and instructed me with this thesis. A
word of thanks goes also to my present colleague and friend Johanna Välimäki
for commenting my text.

At the University of Tampere, I wish to thank Seppo Visala for helping me
to get started and for the encouragement at the early stages of this project. I’m
also grateful to professor Jyrki Nummenmaa, who acted as my supervisor and
gave me valuable advice and comments at the final stages of this work.

Finally, warm thanks to my family. Thank you to my parents, who have
always supported me with my studies, and who have been taking care of me
and my son during the many days I have been writing this thesis at their house.
A loving thanks to my husband Aleksi, who has been my main supporter by
encouraging me, commenting and advising with the text, giving me new ideas,
and nursing our son, while I have been concentrating on this work. And a
special thanks goes to my son Aaro for being the most important reason for me
to finish this thesis.

iv

Content
1. Introduction... 1
2. Software configuration management .. 3

2.1. Background.. 5
2.2. Main concepts .. 6
2.3. Different areas of software configuration management.......................... 9

2.3.1. Configuration identification .. 10
2.3.2. Configuration control ... 12
2.3.3. Status accounting .. 14
2.3.4. Auditing.. 15

2.4. Software configuration management plan.. 16
2.5. Tools .. 18
2.6. Software configuration management in a lifecycle of a project 20
2.7. Summary .. 23

3. Global software development... 25
3.1. Background.. 25
3.2. Main concepts .. 27
3.3. Global software development categories .. 27
3.4. Challenges .. 29

3.4.1. Organisational issues .. 30
3.4.2. Communication issues ... 31
3.4.3. Cultural issues ... 33
3.4.4. Technical issues ... 34

3.5. Models of distributed software development... 34
3.6. Architectures.. 35
3.7. Combinations of architectures and models... 38
3.8. Summary .. 40

4. SCM in global software development ... 42
4.1. Organisational issues and SCM .. 42
4.2. Communication issues and SCM.. 44
4.3. Cultural issues and SCM.. 45
4.4. Technical issues and SCM.. 45
4.5. SCM tools and global software development... 46
4.6. The impact of different models and architectures on SCM 48
4.7. The object-oriented team model ... 50
4.8. Implications.. 52

5. Case study: RC2 project in Nokia Networks .. 56
5.1. Basic concepts of ClearCase... 56
5.2. Basic concepts of the SCM system.. 57

v

5.3. Used models and architectures ... 58
5.4. Impacts on the SCM system .. 59

5.4.1. Impacts of the security requirements ... 60
5.4.2. Impacts of the reliability requirements .. 60
5.4.3. Impacts of the ease of use requirements 62

6. Conclusions ... 64

References .. 66

1

1. Introduction
During the last decades the trend in software business has been towards global
software development. Geographically distributed development teams have
become common in organisations. Virtual corporations, usage of
subcontractors, and usage of team members from geographically distributed
units of the same organisation are new cases in software development projects.
Open source community has taken this trend to the maximum. Their idea is that
individual programmers located anywhere in the world are connected to the
Internet to read, redistribute, and modify the source code freely. Thus, the
software evolves as people improve the code, adapt it and fix bugs.

Software configuration management (SCM) is one of the areas of software
engineering. It is involved during the whole software project. Software
configuration management controls the project by identifying the configuration
of the system, recording and tracing changes to the system components,
providing tools to control the changes and providing tools for auditing and
reporting [Mordechai, 1994]. The members of a software project (especially
developers) are involved with software configuration management functions in
their everyday tasks. When the development of a project is divided into
geographically different places, some of the above tasks get complicated.

The goals of global software development are to save time, save costs,
shorten the time to market and share knowledge. These are the benefits that all
organisations hope to gain, when starting global software development.
However, there are also new challenges compared to the traditional local
development. Global software development brings challenges in technical
implementation of the development environment, in communication between
people working in geographically different places, in handling the cultural
differences of employees working around the world, and in the ways the
organisations should work with virtual teams. Karolak [1998] has divided these
challenges into three categories: organisational, communication and technical. I
introduce a fourth category in this thesis: cultural. There are many research
studies, which describe the impacts of these challenges in software projects
[Carmel, 1999] [Damian and Zowghi, 2002] [Herbsleb et al., 2001]. Asklund
[1999] has presented models and architectures to implement global software
development projects.

The intention of this thesis is to clarify how the known problems of global
software development impact software configuration management systems.
The impact of the different architectures and models is handled also. I have
used a constructive research method to clarify the theories of software

2

configuration management and global software development. As a result, I
present viewpoints on issues that should be considered or resolved for software
configuration management systems to manage the impacts of global software
development. I also describe how some of these viewpoints could be solved in
practise using one real global project as an example case.

This thesis is divided into six chapters. Chapter two presents history,
concepts, methods, and tools of software configuration management and
describes how software configuration management is used in software projects.
Chapter three introduces the concept of global software development, why it
has become a trend in software development, what benefits and challenges it
has, and how it can be implemented. Chapter four sums up chapters two and
three by describing how global software development impacts on software
configuration management. Chapter five presents a global software project
executed in Nokia Networks. The conclusions of the thesis are presented in
Chapter six.

3

2. Software configuration management
Most people who have been participating in a software project have used some
kind of a version control system. Version control is perhaps the most known
and visible part of software configuration management (SCM), but software
configuration management includes also other areas. Software configuration
management is a discipline for controlling the whole evolution of software
systems [Dart, 1991]. The role of software configuration management is to
control the software project from the beginning to the end. Section 2.6 in this
thesis will explain how SCM proceeds during the software lifecycle.

Projects usually have dedicated personnel responsible of software
configuration management tasks. These people create and administer the
software configuration system, train project members to use the software
configuration management tool, write the SCM plan, mark the baselines of the
software product, build the software product, and so on. However, there are
many other SCM tasks, which are left for the developers, architects, testers, and
other members of the project to do. A well-implemented SCM system is such
that the software project members are not necessarily aware that they are doing
software configuration management tasks. The concepts and disciplines of
software configuration management described below usually blend with each
other and with other tasks in a project, and they do not appear as such. SCM
tasks are behind-the-scenes activities necessary to turn standalone software into
a useful and usable commodity [Futrell et al., 2002]. A task in which a
programmer creates a new program file is a good example. When a new file is
created and put into the version control system, the programmer does not
necessarily need to know that a new configuration item is created with the help
of configuration identification practices, and that it is stored with the help of
configuration control practices, and that the status accounting functions are
recording the whole process.

Software configuration management helps to deliver highly functional
quality software, in time and to budget, and helps with the development,
support, and maintenance tasks in the longer term [Thompson, 1997]. The
purpose of SCM is to ensure that the software product is traceable and
reproducible, and it helps managers and developers to ensure that the software
product fulfils all of its requirements. Therefore, software configuration
management is very closely connected to the product, the organisation, and the
way they operate. Several authors and institutions have created well-defined
disciplines and practises on how software configuration management should be
managed. However, the way SCM is implemented in an organisation is deeply

4

affected by the processes and disciplines organisations follow when producing
software. On the other hand, if software configuration management is well
defined, it has a great impact on overall software development processes of an
organisation. The software configuration management disciplines are described
in more detail in section 2.3.

Software configuration management has an effect on every phase of a
software project like requirement management, design, implementation, testing
and maintenance. The most important phase is the implementation, in which
the function of software configuration management is to ensure a stable
working environment for developers. SCM provides records of what has been
done and by whom. This saves time, as developers do not need to be constantly
in contact with each other to know what has happened in the development
work. Software configuration management provides procedures that simplify
the development process for the engineers, eliminate many sources of conflicts
between project members, and institute logical change control process. Software
configuration management offers valuable information for testing, quality
assurance, project management, and maintenance. SCM can also be applied in
planning budgets and staffing, writing specifications, and designing interfaces.

Berlack [1992] lists three reasons to consider software configuration
management as an important function in software projects. First, SCM
facilitates the ability to communicate the status of documents and
implementation as well as changes that have been made. Second, corporate
management looks at related software as an asset that can be used on other
projects without the need to change or modify it. Third, software configuration
management enhances the ability to provide maintenance support once the
software is deployed in the field or sold in the marketplace. SCM does so
through well-identified software elements and a history of the development of
software, which enable a cost-effective fix with little impact on user or
customer. These reasons concentrate on implementation and maintenance
phase of software process and also on reuse of software components. On a more
abstract level, Kelly [1996] has presented five criteria in which software
configuration management is meant to ensure that

• you know what you have got to produce,

• once you have got it, you know where it is and what state it is in,

• only the right people can use or change it and they will understand
the impact of that change,

• useful reports are available and

5

• the agreed procedures are being followed, so that everything hangs
together properly.

The overall goal of software configuration management is to maximise
productivity by minimising mistakes.

Software configuration management can be divided into different methods
and procedures. There are methods to control different versions of different
components, methods to control configurations and their versions, and
procedures for creating and modifying versions and configurations. In the
maintenance phase of a project, software configuration management clarifies
the configurations each customer has, the compatibility information of
components’ versions, the parts impacted by planned changes, and the
information needed for rebuilding the version of the product of a certain
customer. All the above are examples of software configuration management
tasks at a more detailed level.

2.1. Background
Configuration management got its start in the defence industry environment
after World War II as a management technique and a discipline to resolve
problems of poor quality, wrong parts ordered and parts not fitting [Berlack,
1992]. The need for a discipline to identify and control the design and to
communicate information was most apparent in the defence industry, where
the expected high-quality workmanship appeared to be slipping. The first
standard for configuration management was authored and published in 1962 by
the US Air Force. In 1968, first instructions were published that divided
configuration management to description and definition of the major
components and activities, change control, specifications, and status
accounting. In 1971, a first standard was published that recognised also
configuration management of software. After this standard many standards of
software configuration management were written. The first approved standard
was DOD STD 2167. It divided configuration management using the phases of
the life cycle of a project [Berlack, 1992]. Within each phase, it described the
activities to be performed, the product expected from these activities, the design
reviews that were required for approvals, and the role of software configuration
management in capturing the documented descriptions and subsequent change
paper. After the first approved software configuration management standard,
many standards and guides for SCM have been published. For example, the
following organisations have published SCM standards: Electronic Industries
Association (EIA), Institute of Electrical and Electronics Engineers Inc. (IEEE),

6

Society of Automotive Engineers (SAE), American National Standards Institute
(ANSI), and International Standardisation Organisation (ISO).

Today there are several definitions of software configuration management.
Mordechai [1994] defines that configuration management is a management
discipline, which

• identifies the proposed or implemented configuration of a system at
discrete points in time,

• systematically records and traces changes to all system components,

• provides tools for controlling changes, and finally,

• allows everything happening with the system, throughout the entire
life cycle of the system, to be verified via auditing and reporting tools.

This definition quite well points out the four main areas of software
configuration management: identification, configuration control, status
accounting, and auditing. There is a section of each one of these areas in section
2.3. All these areas are important to guarantee integrity, accountability,
visibility, reproducibility, project coordination, traceability, and formal control
of product evolution [Mordechai, 1994]. The four main areas are key issues
when trying to improve the effectiveness of projects and helping in
maintenance tasks.

2.2. Main concepts
Software products consist of different components such as program files and
documents. Binaries and other derived objects, which are produced from other
components by some automatic method, are also components. The term
component is used to describe an identifiable part of a project [Kelly, 1996].
Software components may be made up of several modules, with each
component itself forming a part of the whole system.

Configurations are collections of components that form a product or a part of
a product. They can be thought of as functional units that are defined in
technical documentation and achieved in a product. One configuration can
include other configurations. New configurations are normally created when
new versions of components appear. Often a reason to form a new
configuration is that customer-specific changes are needed or different
hardware or software environment is taken into use.

Figure 1 shows how configurations are created. One version of each
component is selected to a configuration. Configuration A includes the first
version of Component 1, the second version of Component 2, and the second
version of Component 3. Configuration B includes the third version of

7

Component 1, the same second version of Component 2 as Configuration A and
the third version of Component 3. It could be that the Configuration B is created
to replace Configuration A, because of the new versions of Component 1 and
Component 3.

Component 3Component 2Component 1

Configuration A

Configuration B

Figure 1. A configuration is a collection of components.

Both components and configurations are called configuration items (CI) in
software configuration management systems. Formally a configuration item is a
part of the system that needs to be independently identified, stored, tested,
reviewed, used, changed, delivered or maintained during development or
delivery [Kelly, 1996]. Configuration items are usually identified by mnemonics
and some kind of a running numbering system. Configuration items can vary in
complexity, size and type.

The first version of a configuration item is created, when the configuration
item is put under control of software configuration management. This also
means that the configuration item is frozen. Freezing a configuration item means
that no one can modify that version of the configuration item anymore. When
the configuration item needs modifications, a new copy is created from the
frozen version. Then the copy is modified and frozen as a new version.

There are two types of versions: revisions and variations. New versions that
supersede old version are called revisions. They represent the evolution in a
software project, when bugs are corrected or new functionalities are added, and
the intention is to make the older versions obsolete. Variation is an equal
alternative of one version. Variation fulfils the same function, but for a slightly
different situation. An example of a different situation is a different hardware
environment. The set of all revisions and variations that belong to one
configuration item is called a version tree. Branch is a variant development path

8

in a version tree. Variations can be merged. The two variations are compared to
each other and to their common ancestor to perform the merge.

Figure 2 shows how configurations are formed using specific versions of
components or other configurations. Circles in the figure represent versions of
the illustrated configuration items. All versions are identified using a running
numbering system. An arrow from a circle to a box of configuration items
signifies that the version is created using the configuration items inside the box.
The selected versions are filled with black colour. Feature1, feature2, and
feature3 are components and subproductA, subproductB, and productX are
configurations. Version 4 of feature1, version 3 of feature2 and version 3.1.1 of
feature3 are used to create version 2.2.2 of subproductB. Versions 2 of
subproductA and version 2.2.2 of subproductB are used to create version 2 of
productX.

p rod u ctX

su bp rodu ctA su bp rodu ctB

featu re1 featu re2 featu re3

1

2

1

2

1

2

33.1.1

1

2

33.1.1

1

2

3

2.1.1 2.2.1

2.2.2

1

2

3

2.1.1 2.2.1

2.2.2
1

2

3

4

2.1.1

2.1.2

1

2

3

4

2.1.1

2.1.2

1

2

3

4

1

2

3

4

1

2

3

2.1.1

2.1.2 3.1.1

1

2

3

2.1.1

2.1.2 3.1.1

Figure 2. Configurations and version trees.

A baseline is a specification or a product that has been formally reviewed and
agreed upon, that thereafter serves as the basis for further development, and
that can be changed only through formal change control procedures [IEEE,
1990]. Before a baseline is created, the developer can make changes to the
configuration items unofficially upon her consideration. Baseline is a reference
point in the life cycle of a project and it relates to project milestones, as defined
in the quality plan of the project. There are three different kinds of baselines:
functional baselines, allocated baselines, and product baselines. The functional
baseline is the initially approved technical documentation describing the
functional characteristics of an item, and the verification required to
demonstrate the achievement of those specified functional characteristics. The
allocated baseline is the initially approved specification governing the
development of configuration items that are a part of a higher-level

9

configuration item. The specification includes description of the functional and
interface characteristics of an item. The product baseline is the initially
approved technical documentation defining a configuration item during the
production, operation, maintenance and logistic support of its life cycle.

System building is the process of combining source components of a system
into components, which execute on a particular target configuration [Leon,
2000]. A build is defined as an operation that takes one or more configuration
items and performs some action on them to create new deliverable
configuration item [Thompson, 1997]. It is the compilation and integration
process. At the time of the build, it is likely that several versions of the
configuration items exist, so the selection of the correct configuration items is
critical to success. When the source components are changing, the system or
parts of it have to be rebuilt. Release includes the executable code, installation
files, data files, set-up programs, and electronic and paper documents [Leon,
2000]. A system release is the set of items that is given to the customer. Each
system release includes new functionality or feature, or some fixes for the faults
found by customers, developers or testers.

Traceability means that a complete history of all configuration items is
known and can be proven. It also means the information about which program
configurations a component has been included in. Part of repeatability is the
ability to reproduce a configuration item, baseline or total configuration exactly
as it was at a given point in time or in a given release. Repeatability also ensures
the possibility to verify that the reproduction has been correctly implemented.

2.3. Different areas of software configuration management
There are some variations in the literature how the main areas of software
configuration management have been defined. IEEE Guide to Software
Configuration Management [1987] lists following as primary activities:
configuration identification, configuration control, status accounting and auditing.
The division is represented in Figure 3. The four primary activities are practised
throughout the project and the next sections describe them more.

Software configuration
management

Control Status accounting AuditingIdentification

Figure 3. SCM divides into four primary activities.

10

Sometimes also interface control, subcontractor control, process
management, and teamwork are considered as independent activities of
software configuration management [Berlack, 1992] [Dart, 1991]. Interface
control is about the evaluation, coordination, and approval or disapproval of all
proposed changes to established functional and physical interfaces as defined in
specifications, documents, and drawings. Subcontractor control is about the
evaluations, coordination, and approval or disapproval of all changes
submitted by the subcontractor to approved configuration documentation. It is
also about the monitoring of the subcontractor’s performance of the software
configuration management function. Process management ensures that all
procedures, policies, and lifecycle model of the organisation are followed.
Teamwork controls the work and interactions between multiple users on a
product.

Before configuration identification can start, the following phases in
software configuration management need to be implemented [Leon, 2000]. First
the software configuration management system must be designed. If the
company already practices and has guidelines on SCM, this phase is easy.
Nevertheless, because no two projects are the same, the guidelines need to be
customised to suit the needs of the current project. In addition to the guideline
customisation, questions on which software configuration management tool to
use and how, are to be decided in software configuration management system
design phase. After the initial system design has been done, a software
configuration management plan is to be written and the SCM team will be
organised. The software configuration management team size can vary from a
single person to a full-fledged team depending on the project. Training of the
team members and the project members on how the software configuration
management is practised in the project is the last step before the project
members can start the identification of their configuration items.

2.3.1. Configuration identification
Configuration identification is the most essential part of software configuration
management. If nothing is identified, nothing can be controlled. The official
definition of IEEE [1990] says that configuration identification is an element of
configuration management, consisting of selecting the configuration items for a
system and recording their functional and physical characteristics in technical
documentation. Identification defines in higher level what belongs to the total
configuration and plans an identification method for configuration items,
baselines and the whole product. Planning the identification scheme is an
important activity, because the scheme is used throughout the life cycle of the

11

software product and because the structure of the product is not yet completely
known.

An identification method for configuration items includes planning the
structures of all configuration items of the system and the relationships between
the configuration items. Poor selection of configuration items can affect costs
and scheduling, and can become an unnecessary administrative and technical
burden [Leon, 2000]. An identification method for configuration items also
includes planning naming conventions and labelling of all the actual
configuration items, their files, and releases. Naming conventions must
uniquely identify each configuration item and they can use the hierarchy of
designed items to make the identification effective [Whitgift, 1991]. A good
naming system will make it possible to understand the relationships between
the configuration items from their names. The decision on the complexity and
detail of the configuration item names depends on the size and complexity of
the project.

Labels are attached to the configuration items when the items need to be
marked for some purpose. Most common cases are when configuration items
are attached to some larger configuration. The labelling can happen during a
build or when marking a baseline, for example. During the labelling process
labels and date and time stamps are attached to all involved configuration
items. Labels contain a numbering system or mnemonics or both. Numbering
systems usually consist of two parts that are separated by a dot. The number on
the left of the dot denotes the number of the last baseline and the number on the
right of the dot denotes the current revision from the last baseline [Mordechai,
1994]. Generally, the second part will be zeroed when new baseline occurs.
Mnemonics can be given to each configuration item and build to accompany the
numbering system. Mnemonics can be derived from the project or system and
the type of the item and the item name. An example of a label is
SS_TOOLS_2.12. This is a label of a subsystem (SS) of some larger software
product. This subsystem is meant to produce tools for controlling the software
product. Number two indicates that the second baseline of the project has been
created. With this label we are labelling the 12th build after the creation of the
second baseline.

An identification method for baselines involves planning when the baselines
will occur. Baselines are connected to a life cycle of a software project and they
can mark the end of one phase or segment of a phase, or a beginning of a new
phase. Therefore the criteria for every baseline must be decided in an early
stage of project and it must be followed from the beginning to the end.
Changing criteria can cause enormous amount of work. Baselines define the

12

state of the system at a given point of time [Mordechai, 1994]. So, it is obvious
that recording this information can be critical for the success of the project.
After the first baseline, changes to the approved versions of configuration items
must be made through a formal review and agreement.

An identification method for the product is mainly planning the structure of
the whole software hierarchy. This is the first time when a structural overview
of the software system and its items is presented. When the structure is planned
early enough it is easier to preassign document numbers, keep track of the
progress as it matures, and estimate the manpower and resources that will be
required. It also helps to select the candidate configuration items. The chosen
identification method should reflect the structure of the product, the project,
and the organisation and it should ensure visibility and traceability of the
software. Visibility permits the software to be seen by anyone who is allowed to
see it. Traceability is the ability to link individual events and parts to each other
in time.

2.3.2. Configuration control
When all items are identified, there comes a need to control them.
Configuration control (also known as change management and control) does that
by controlling the database where all configuration items are stored, providing
ways to report problems in the system, and controlling changes that are made
to the configuration items. Configuration control provides methods to control
the system implementation process. The goal is to manage the life cycle of the
software in a controlled way, so that nothing unexpected or unplanned could
happen. Configuration control is the answer to the following most common
problems the developers have: shared data, double maintenance and parallel
updates. Configuration control is the software configuration management
function that is performed most often. The activities of configuration control
will increase as the project evolves, because more and more items will undergo
change, more and more people will be inducted, requirements will change, new
modules and subsystems will be added, different versions will have to be
maintained, and so on.

The database where all configuration items are safely stored is called
controlled area (or library). It contains all items that are essential to the project:
source code, user and system documentation, test data, specifications, project
plans, and derived items. Controlled area uses access control to safeguard
items. Access control governs which developers can access and modify which
configuration items [Pressman, 1997]. It takes care that only right people can
have access to right versions of right configuration items to browse and modify

13

them. Synchronisation control helps to ensure that parallel changes made by
two different people do not overwrite one another [Pressman, 1997]. Access
control and synchronisation control can be handled automatically by version
control systems (like RCS [Tichy, 1985] or SCCS [Rochkind, 1975]). These
systems usually use checkout-checkin model, in which user first has to check
the wanted item out of the database to modify it and the item is checked back in
when modifications are done. Only people who have access rights to modify
items can check them out and, while item is checked out, nobody else can
modify the same version of it.

Problem reporting is the mechanism to report problems that appear in
configuration items. There are two classes of problems to which the activity of
problem reporting is based on: errors reported and anomalies discovered
[Mordechai, 1994]. Error is a mistake in the code, in the design or in the
requirements specification, and anomaly is unintended behaviour in the
software, for example. Problem reporting includes investigating the problems
and their satisfactory clearance. The consequence of problem reporting can be
cancelling the report, creating a new configuration item or modifying an
existing configuration item [Kelly, 1996]. Problem reporting guides what should
be the content of the report. The report should include the full identity of the
item exhibiting the problem, the nature of the problem, the circumstances in
which the problem occurred, the environment in which the problem occurred,
diagnostic information, and the effect of the problem [Whitgift, 1991].

The change control process starts from a change request. A change request can
be based on a problem report, or an enhancement idea, or a new product
feature. The change requests are classified into different categories with
different priorities. They are evaluated and analysed in terms of impact to
system functionality, interfaces, utility, cost, schedule, software safety,
reliability, maintainability, efficiency, and so on. An appropriate authority will
approve, disapprove or defer the change depending on the criticality of the
change request. Usually major changes need the approval of a Change Control
Board (CCB). A named individual (a configuration management officer) or a
member of the software configuration management team can approve the
minor changes [Leon, 2000]. The composition of a Change Control Board can
vary from a single person to a highly structured and very formal set-up with
many people, depending on the complexity, size, and nature of the project. In
large projects, the CCB should contain a representative from the software
configuration management group, and representatives from the project team,
quality assurance group, company management, and marketing. After the
approval, the change can be implemented and verified at the system level. A

14

change history is recording the events that occurred to items from the state
before change to the one after.

The ability to make changes rapidly is a big benefit of the existence of
software [Mordechai, 1994]. It is one of the main reasons why software is
everywhere. Changes to the requirements drive the design, and design changes
affect the code [Paulk et al., 1995]. Testing uncovers problems that result in
further changes, sometime even in the original requirement. At the same time,
the intangible nature and susceptibility to change make software difficult to
control [Thompson, 1997]. In the software configuration management point of
view, changes can be quite uncontrolled and developers can do changes as
much as they want by themselves until the first baseline occurs. After that,
changes have to be controlled. Uncontrolled changes lead quickly to chaos and
they slow down the project. Often changes are documented, but the impact of
the changes is not analysed. That is why a change request should be made and
evaluated before the change is made. After a thorough impact analysis for both
technical and resources or timescales have been done, a configuration item can
be updated [Kelly, 1996]. One part of the update is to ensure that the changed
configuration item is reviewed and tested to ensure that the whole approved
change, and nothing else, is implemented.

2.3.3. Status accounting
IEEE [1990] defines configuration status accounting as an element of
configuration management, consisting of the record and reporting of
information needed to manage a configuration effectively. This information
includes a listing of the approved configuration identification, the status of
proposed changes to the configuration, and the implementation status of
approved changes. Status accounting makes configuration management visible
by recording the status of all items and change requests. It is the information
gathering and dissemination component of software configuration management
[Leon, 2000]. It is a collection of information that provides answers to questions
like what happened, who did it, when it happened, what were the reasons, and
what was affected.

Status accounting is the element of software configuration management that
records information on different activities. These are creation of a new
configuration item, update of an existing configuration item, and approval of a
change, for example. Different people need this information in different forms
and in different phases of the project. That should be considered when planning
status accounting. Only right information should be recorded at the right time
so that correct reports could be made when they are needed. At minimum,

15

status accounting reports the transactions occurring between SCM-controlled
entities [IEEE, 1987]. Other important reports are change logs and delta reports
[Mordechai, 1994]. Transaction reports show the effect and relationships
resulting from each event that has occurred during the project. Change logs
contain all information of requested changes. Delta reports summarise the
progress of the development and compare it to the progress presented in the
previous report. Also resource usage, status of all configuration items, change
in process, and progress reports are typical reports [Mordechai, 1994; Leon,
2000].

The output of status accounting must be accessible to all members of the
project. The project members can follow how the project is progressing
compared to the project plan using reports produced by status accounting.
They can check forthcoming changes that can have an affect on their
configuration items. They can also use status accounting information to see the
history of an item. The purpose of status accounting is to communicate
information to the project, users or support activities as soon as it becomes
available. Thus, status accounting plays a significant role in the success of
software projects. The status accounting reports are invaluable also during the
maintenance phase. To understand and identify the cause of a problem, it is
important for the maintenance staff to know the history of the configuration
items. The recorded data must be in a form, which allows traceability from top
to bottom and bottom to top for software in development, in the field or sold in
the open market [Berlack, 1992]. The history records can also be used to analyse
and improve the software development process.

2.3.4. Auditing
Configuration auditing ensures that all procedures are followed correctly and
that the information of configuration items and their structures is correct. IEEE
[1990] divides configuration audits to functional and physical audits. Functional
audit is an audit conducted to verify that the development of a configuration
item has been completed satisfactorily, that the item has achieved the
performance and functional characteristics specified in the configuration
identification, and that its operational and support documents are complete and
satisfactory. Functional audits normally involve a well-defined sequence of tests
designed to ensure that the performance of the item conforms to the
requirements in the specification. The process may include some or all of the
following forms of tests, analysis or demonstrations: environmental tests,
reliability tests, user trials, interfaces with other systems, software testing, and
stress testing [Leon, 2000]. Physical audit is an audit conducted to verify that a

16

configuration item conforms to the technical documentation that defines it.
When a physical audit is completed, the product baseline is established.
Software configuration management auditing completes the technical review by
evaluating the characteristics of the configuration item that are not commonly
considered during the review.

Quality assurance performs audits to control change procedures and other
activities, but it has other criteria to determine product integrity and reliability.
Software configuration management audits concentrate on verifying that a
software product is a consistent and well-defined collection of parts.
Configuration audit of the developed software product provides assurance that
what was required has been “built” as evidenced by the software test reports,
documentation, and media [Berlack, 1992]. At a minimum, the configuration
should be audited when the product baseline is established and whenever it is
subsequently changed due to the release of a new version of the software.
Auditing the final release gives the company and the customer the satisfaction
of knowing that what they are delivering or getting is complete and meets the
requirements. Leon [2000] recommends an external auditor to do the
configuration audit because the auditing activity requires a very high degree of
objectivity and professionalism. It is the responsibility of the SCM team to
schedule the audits and find qualified personnel to perform them. The person
who conducts the audit should be knowledgeable about SCM activities and
functions, and technically competent to understand the functionality of the
project.

2.4. Software configuration management plan
Once the software configuration management system is designed, it should be
documented. The document should make the working of the SCM system, the
procedures, and the functions, duties, and responsibilities of each member
transparent and known to all members of the software configuration
management team, project team, the possible subcontractor team, and others
[Leon, 2000]. This document is called the software configuration management plan
(SCM plan). Earlier studies have examined the key elements of a successful
software configuration management solution. They all agree that the SCM plan
is one of them. Bounds and Dart [1993] present three such key elements. In
addition to SCM plan, they introduced the software configuration management
system and the software configuration management adoption strategy. Moreira
[1999] listed four key elements: SCM plan, skilled SCM personnel, funding, and
sponsorship. By funding Moreira means money to purchase appropriate tools
and infrastructure, and by sponsorship he means commitment of management

17

to the effort. Capability maturity model [Paulk et al., 1995] defines software
configuration management plan as the first step in establishing a software
configuration management system. The SCM plan creates awareness among
project team members, software configuration management team members, and
other people who are in some way related to the project. It documents what and
how the software configuration management activities are to be done, who is
responsible for doing specific activities, when they are to happen, and what
resources are required [IEEE, 1998]. In addition, the SCM plan forms the basis
of training the personnel who are a part of the project team or the software
configuration management team. It will also be used in the resolution of
conflicts regarding the practise or implementation of software configuration
management functions in the project [Leon, 2000].

There are several standards written [IEEE, 1998; MIL, 1994; ISO, 1995] for
the software configuration management plan. Bounds and Dart [1993] found
out in their survey that standards prove invaluable in assisting a person in
writing SCM plan, since they provide the basic framework, and act as a
guideline for writing the plan. The format specified by most of the standards is
similar and they offer considerable latitude and freedom to the person who
writes the plan [Leon, 2000]. All standards expect the plan author to define
some topics such as scope, purpose, definitions, software configuration
management organisation, software configuration management functions,
responsibilities, and resources. The degree of detail and amount of additional
information, as well as the format of the information, depends on the writer and
the nature of the project.

Leon [2000] has presented a sample outline of a software configuration
management plan. This outline is shortly introduced here as an example
structure. The plan contains six chapters: introduction, SCM management, SCM
activities, SCM schedules, SCM resources, and SCM plan maintenance.
Introduction provides an overview of the plan: purpose, scope, definitions and
references. It should give the user a clearer understanding of the plan. SCM
management gives information about the software configuration management
organisation, software configuration management responsibilities, relationship
of software configuration management to the software process life cycle,
interfaces to other organisations in the project, and software configuration
management responsibilities of the organisations. It describes the organisational
structure of the software configuration management team, the duties and
responsibilities of all those involved in carrying out the software configuration
management activities, how the SCM team will interact with other
organisations in the project, and the responsibilities of the vendors,

18

subcontractors and other organisations in relation to the carrying out of
software configuration management functions. It also relates the software
configuration management activities to the different phases of the software
development life cycle. SCM activities concentrates on the four primary
activities of software configuration management with addition of interface
control and subcontractor control. The first part of the chapter discusses about
configuration identification. It identifies the items to be selected as
configuration items, specifies the identification system, describes how the
configuration items are to be stored, and how the access to them will be
controlled. The second part concentrates on configuration control. It describes
how to initiate a change, how the evaluation of a change request is carried out,
how the change request is processed, and how the approved change request is
to be implemented. It also describes the functioning of the Change Control
Board. The third part of the SCM activities chapter covers configuration status
accounting. It describes the information requirements of the project, how the
status accounting information is gathered, the various reports that will be
created, how and to whom the status accounting information will be
disseminated, and detailed information about the releases. The fourth part of
the chapter discusses about configuration auditing. It describes the different
types of audits that will be performed, the procedure to be followed for each
audit, and the activities that should be carried out after the audit. It also
specifies the list of configuration items that are to be audited. SCM schedules
chapter describes the sequence of the software configuration management
activities, their interdependencies and relationship to the project life cycle and
project milestones. This chapter of the plan also establishes the schedule for the
different configuration audits. SCM resources chapter identifies the software
tools, techniques, equipment, personnel, and training necessary for the
implementation of the software configuration management activities. SCM plan
maintenance describes the activities that are required to keep the plan current
during the life cycle of the project.

2.5. Tools
During the software configuration management system design phase the
selection of the used software configuration management tool has to be made.
Every software development team has some SCM tools and methodologies
[Leblang and Levine, 1995]. In the simplest case, developers send email, talk to
each other on the corridors, and tape notes to their monitors. Some developers
working with UNIX depend on free UNIX utilities (like RCS and Make) layered
with custom scripts to implement procedures for keeping track of what has

19

changed. These systems were common in 1980s and focussed closely on file
control [Estublier, 2000]. Some organisations have built up scripts to create
developer “sandboxes” that mirror the contents and structure of predetermined
baseline. The examples above can work in small teams and organisations. But
the software configuration management demands grow as the organisation
hires more people, supports a longer history, and accumulates more code.

A software configuration management tool should help the project team to
manage all the main areas of SCM. Dart [1991] defines following as the overall
functional requirements:

• identifies, classifies, stores, and accesses the components of the
software product,

• represents the architecture of the product,
• supports the construction of the product and its artefacts,
• keeps an audit trail of the product and its processes,
• gathers statistics about the product and the process,
• controls how and when changes are made,
• supports the management of how the product evolves, and
• enables a project team to develop and maintain a family of products.

The first generation of software configuration management systems did not
meet these requirements, but the second-generation products largely satisfy the
functional requirements [Hoek et al., 1995]. The first generation software
configuration management tools, such as RCS and SCCS, focus mainly on
version and release control. The second-generation tools, such as DSEE
[Leblang and Chase, 1987], pay much more attention to network support for
parallel software development [Chan and Hung, 1997].

The software configuration management tools commercially available today
are full-fledged tools that offer such diverse features as build management,
defect and enhancement tracking, requirement tracking, release management,
software production control, software packaging and distribution control, and
site management. They provide automated support for maintaining control
over the evolution of a software system by structuring the work of developers,
providing visibility into the work of others, and gathering all the system’s
components together [Grinter, 1996]. The market leaders currently are
Continuus and ClearCase [Estublier, 2000]. Referring to the above these tools
can be called the third generation software configuration management tools.
The third generation tools reduce development time by reducing mistakes,
tracking problems and rebuilding systems easily and quickly. They automate
the most of the monotonous and repetitive tasks that were earlier done by
people. These tools have all the information programmers, managers, analysts,

20

auditors or any other people in the project need, and they can deliver the
information to the users in any format almost instantly [Leon, 2000]. The second
half of 1990s saw the consecration of software configuration management, as a
mature, reliable, and essential technology for successful software development,
and many observers consider SCM as one of the very few software engineering
successes [Estublier, 2000]. But as Moreira [1999] listed sponsorship as one of
the key elements in successful SCM implementation also Grinter [1996] has
noticed in her empirical studies that the usage of SCM tools depends on the
surrounding organisational and social context.

Leblang and Levine defined in 1995 that the challenges for a good SCM tool
are scaling, product complexity and importance of history [Leblang and Levine,
1995]. A few years later, Estublier [2000] added interoperability with the other
software engineering tools and efficiency to the list. These challenges are still valid
and at least multi-user support, graphical user interface, ease of set-up and
process management can be added. Most software development organisations
consist of tens (or hundreds) of engineers, tens of thousands of source files, and
millions of lines of code - all scattered across dozens of machines. So for this
large-scale programming environment, software configuration management
must encourage parallel development by combining flexibility with absolute
safety. A large-scale software development organisation produces dozens of
applications and all from different combinations of the same underlying source
code. Thus, in spite of this complexity, a developer must be able to select the
initial set of file versions that make sense for a particular project, and evolve the
software from that point. The importance of history emerges when organisation
needs to reliably reproduce any software build or do a bug fix or a minor
enhancement to an old release, for example.

2.6. Software configuration management in a lifecycle of a project
Software configuration management communicates with all of the software
project activities. SCM collects their outputs and products. Its role starts with a
product proposal and continues through the product release to the customer or
when it is turned over to a support facility [Berlack, 1992]. Figure 4 describes
what activities of software configuration management are involved in different
phases of a software project. In the figure, the software project is divided into
six phases: concepts, requirements analysis, design, implementation, testing,
and delivery. The inputs for the project come from the contract made with the
customer. The requirements for software configuration management are also
indicated in the contract. It is presumed that the initial software configuration

21

management system is already designed and this process describes a project
specific SCM system.

CM
requirements

Software
product

Concepts Requirements
analysis Design DeliveryImplementation Testing

Plan

System identification

CI identification

Control

Status accounting

Design reviews Developmental configuration Configuration audits

Release

Figure 4. SCM process model modified from the original picture of H. Roland
Berlack [1992].

In Figure 4, the initial activity of software configuration management
process is the software configuration management plan. SCM plan defines and
documents the software configuration management concepts at the same time
as the concepts of the whole software project are defined. The next phase of
software project in Figure 4 is requirements analysis, which starts after concepts
are defined. At the same time, software configuration management process
moves on to system identification. The initial software configuration
management system is customised for this project according to the procedures
documented in the SCM plan. Configuration control and status accounting
activities are started at the end of requirements analysis phase. These activities
are needed when design phase of the software process starts and first
configuration items are identified.

All configuration items are identified during the design phase of the SCM
process model in Figure 4. The planned milestones and the structure of the
software product have impact on the configuration identification activities.
Control and status accounting activities are ongoing through implementation,
testing, and delivery phases of software process. These activities provide the
means of communicating any changes that have been made to the configuration
items. The software configuration management plan is the input for design

22

reviews and developmental configuration, which prevail throughout the
development cycle. Configuration audits take place at the end of the testing
phase. The audits ensure that the configuration items are correct and complete.
A release is produced as the last software configuration management activity in
Figure 4 during the delivery phase of the software process.

Software configuration management provides security, control and status
accounting software project members. A good example is quality assurance,
which tries to ensure the integrity of the software product from beginning to
end. Quality assurance monitors the performance of other activities including
software configuration management. Software configuration management
provides status accounting activities to quality assurance. Software
configuration management communicates closely also with maintainer function
and data management. Data management and software configuration
management relate in terms of the specifications and documents. Software
configuration management ensures correct identification, records change
history, and maintains status information for specifications and other
documents as they change or are released. SCM provides information to
maintainer function about the software product and process changes, and
initiating releases of revised software.

Software configuration management should be in place at the start of the
project to communicate with all parts of project organisation. This includes
activities like the identification and approval of documents, changes that have
occurred or are pending, and releases, deliveries and returns. The role of
software configuration management in the software project starts with the
response to a request for a bid, estimate or proposal and ends by initiating
action to turn over products of the development phase to the customer or
support facility. Along with software engineering, software configuration
management relies a great deal on the methodology, analysis and trades carried
out by system engineering in determining the levels of functional performance
required to design, develop, build, and test the software product [Berlack,
1992]. Once software configuration management has the knowledge of the
software hierarchy, its role is to begin planning for the amount of documents
and changes that will occur. When software engineering has determined the
number of lines of source code, the number of changes can be estimated based
on previous history.

Do [1999] has described how software configuration management is
proceeding during software lifecycle. In this example, the software lifecycle is
divided into phases according to the waterfall model. In the system
requirement analysis phase, a software configuration management plan should

23

be written and detailed procedures should be prepared. Also SCM tools should
be chosen. When system requirements and system design documents are
reviewed, a software functional baseline is established and all documents are
placed under configuration control. Software requirements analysis identifies
all requirements towards the software to be developed as configuration items.
Once configuration items are approved, they are placed under software
configuration management control and can be considered the allocated
baseline. After this baseline a formal change recommendation must be prepared
and submitted for approval for every change impacting a software
configuration item. During the design and coding phase software configuration
management can determine the impact to subsequent modules when changes to
specific modules are requested. After the code is tested, detected software
anomalies are analysed to determine the causes. Proposed change impacting
any configuration item is reviewed in the Change Control Board meeting to
determine severity, priority, and cost and schedule impact. This SCM function
is crucial to assure product quality. In the final phase of the software
development cycle, configuration audits control the software delivery to the
customer. In the functional configuration audit, formal tests are conducted to
verify that configuration items meet all software requirement specifications.
The physical configuration audit allows verifying and validating that the
software release is documented in the version description document, with
software modules, test procedures, and results that prove the required
functionality. This documentation becomes a product baseline. It is placed
under configuration control and delivered to the customer.

2.7. Summary
There have been standards and guides for software configuration management
for about 30 years. Different organisations define software configuration
management slightly differently, but the main ideas are the same. Software
configuration management is about identifying and controlling the software.
There are different ways to do it and different tools to use for help, but the goal
is always the same: get software projects ready in time and with best possible
quality.

To achieve the goals in software business, organisations are utilising the
four main disciplines of software configuration management: configuration
identification, configuration control, status accounting, and auditing.
Configuration identification includes methods for identifying configuration
items, baselines, and the whole product. Configuration control controls the
configuration item database, changes made to the configuration items and the

24

problem reports. Status accounting takes care of recording the status of all items
and change requests. Auditing ensures that all procedures are followed and all
information is correct.

Software configuration management has a significant role in software
project since it is involved in all phases of a project. It is used when first
contracts are made to start a new project and it is still involved when project has
been transferred to the maintenance phase. It should be recognised at a high
priority in the organisation to have visibility over the design, development and
testing [Do, 1999]. An effective SCM system will help to improve productivity
of the staff and decrease ramp up time for new employees. Software
configuration management communicates with many other project activities,
such as quality assurance and data management. However, the main function
of SCM is to help development and ensure that the work of developers is safe
and controlled.

Though software configuration management has been used in software
projects over a few decades, I have noticed that organisations did not invest on
it very much in the near past. Organisations understood that version control
and change control are helping development, but they did not always
concentrate on the other areas of SCM. Nowadays, when software projects are
getting larger and market demands are getting higher, software companies
have understood the importance of software configuration management. To
survive and stay competitive in the market, software manufactures must
eliminate inefficiencies in their software development lifecycle and minimize
the time it takes to revise their products. The ability to manage change
effectively is a major key to success [Do, 1999]. More complex software projects
are also bringing new demands on software configuration management. In the
early 80’s, software configuration management focused in programming in the
large (such as versioning) and in the 90s in programming in the many (such as
concurrent engineering) [Estublier, 2000]. Late 90s the focus turned to
programming in the wide, which brought out the demand of global software
development.

25

3. Global software development
In global software development (GSD), the software development activities are
distributed across multiple sites [Mockus and Herbsleb, 2001]. These sites can
be located anywhere. In a smallest case, there are two sites in the same city. In a
large project, there can be many sites in several different countries around the
world. In all of these sites, there are teams working on a common software
project. They are working independently at some level, but sharing a common
software base.

There are several reasons why global software development has emerged.
Carmel and Agarwal [2001] state that today two critical, strategic reasons for
global software development are cost advantages and a large labour pool.
Organisations are seeking lower costs and access to skilled resources from
remotely located facilities or using outsourcing. The problem with the resources
is that the traditional organisations are situated on areas, where local resource
pool is limited. In addition, in the mid 1990s the labour costs escalated as
companies competed for resources [Karolak, 1998]. However, there are centres
of software R&D growing outside the traditional centres (such as USA) [Carmel
and Agarwal, 2001]. In these emerging centres, cost savings can be achieved
from low software labour costs. Also using the emerging centres along with the
traditional centres offers a possibility for organisations to utilise the round-the-
clock development. The new centres provide necessary experts with cheaper
costs who are willing to do the less exiting tasks such as maintenance, porting
and testing [Carmel, 1999]. For western European organisations this means
collaboration with organisations in Russia or Hungary, for example. To also
benefit from round-the-clock development a possible choice for a western
European organisation is to expand in China, India or Philippines.

Saving costs is the main benefit the organisations are looking for in global
software development. The new locations demand some investments in
premises, communication lines, and computers, but those are insignificant
compared to the savings. But as global software development becomes more
commonplace, there is a possibility for organisations to consider the individual
work preferences. Working at home or working on the road can have positive
effect on those employees that are able and willing to use it.

3.1. Background
Global software development became more common at the last decade. In the
early 1990’s, the number of entities engaging global software development was
small, but this has rapidly changed [Carmel and Agarwal, 2001]. MacKay [1995]

26

says that geographically distributed development is simply recognition of the
true state of software development today. More than 50 nations are currently
participating in collaborative software development internationally. Leon [2000]
states that as communications and information technology make rapid strides
forward, distributed development is going to be commonplace.

In 1990's, software industry became under renewed pressure to achieve
higher software quality and better customer support. There was also a pressure
to increase productivity, reduce development time, and increase reuse of
software components [Murugesan, 1999]. Companies had to think how to
enhance the efficiency of their organisations. Many large companies had
employees in different cities and countries working on separate projects. These
companies started to create distributed teams to work on the same software
projects [Whitehead, 1999]. Another driver in the past was the need to be locally
present for customisation and after-sales service [Ebert and De Neve, 2001].
Showing local customers how many new local jobs were created could justify
more contracts. Also cross-organisational projects started to occur more
frequently, such as using a subcontractor. Finally, the most challenging
application areas demanded the formation of virtual corporations in order to
bring together the necessary key competence and resources [Cocchio and
Puttero, 1999].

For a long time, organisations have had access to global networks. Earlier it
meant that some programmers could connect their terminals to the central
mainframe through telephone or other slow communication lines. However, the
PC revolution and the rapid development of the Internet in 1990’s brought a
dramatically increased access to global networks [Carmel, 1999] [Asklund,
1999]. What happened in the 1990's was that the underlying networking
technology was developing quickly and workstations and personal computers
started to dominate the workplaces. The network bandwidth was increasing,
the costs were decreasing, and the microcomputers and controllers gain better
price-performance ratio. Thus, the emergence of the global network made it
possible to remotely access information across organisational and national
boundaries [Haag et al., 1997].

The Internet and the World Wide Web have facilitated global software
development as a new model of software development [Murugesan, 1999]. The
Internet and the Web provide software developers an easy access to real time
data and alleviate access to software development tools. Internet technologies
allow distributed networking, global access, platform independence,
information sharing, and internationalisation [Gao et al., 1999]. Development
teams are now able to work from all over the world on same software project 24

27

hours per day. This increases the possibility of using personnel and competence
in more efficient, flexible, and comfortable manner [Asklund, 1999].

3.2. Main concepts
A global software team is separated by a national boundary while actively
collaborating on a common software or system project. Two or more global
software teams are implementing software in global software development
projects. Each of the locations where these teams are working is called a site.
Usually every site has one or more servers that are connected to the servers in
another sites. The team members can be connected to the servers on their own
site from a number of workplaces.

When developing the same software, all teams need to be able to access all
needed source code, documents, and so on. All this information is stored in a
repository. Replication is a technique to copy the repository from one server to
another. Both the original repository and the copy are called replicas. The
replicas are synchronised regularly to make the published changes visible at all
sites. Some of the architectures that implement global software development
use replication to share data between different sites.

The term global software development has replaced the previously used
terms geographically distributed development, distributed software development and
software engineering over the Internet mainly during the year 2001. The trend is
not only shown in articles published of this area, but also in the name of the
annual international workshop. The workshop was arranged four times with
the name of “Workshop on Software Engineering over the Internet”, but in 2002
the name was changed to “International Workshop on Global Software
Development”. The intention of the change was to broaden scope and address
any issues of software development in global enterprises [Damian, 2002].

3.3. Global software development categories
Since companies are under pressure to increase productivity and reduce
development time, they need to find new ways to save costs and time. Global
software development has been seen as a good way to achieve these
advantages. Saving time and costs are general reasons for global software
development [McLaughlin, 1996]. It is possible to a global software
development team to reduce development cycle time and lower cost, and also
to improve quality and foster innovation [Carmel, 1999]. Often it is not an
intentional decision to start doing global software development. It is rather an
outcome of some change in organisation. In many cases, it is due to a merge of
two or more companies, an acquisition or a lack of competent employees. The

28

reasons that lead to global software development are divided into four
categories in this thesis: multinational organisation, subcontracting,
partnerships, and employment issues. Figure 5 represent these four categories
and the reasons belonging to each of the categories. The categories and the
reasons are explained more in the next paragraphs.

Reasons for GSD

Multinational organisation

Subcontracting

Partnerships

Employment issues

acquisition/merge

customising the product/
market needs

proximity to the customer

globalised presence

save training costs

decrease the need of
permanent employees

strategic partnerships

joint ventures

special talents

size factors

limited resource pool

cheaper labour costs

Figure 5 The reasons for global software development.

Multinational organisation is an organisation that has development groups
in two or more countries. This can be due to an acquisition or a merge of two or
more companies. The growing number of acquisitions and merges adds new
markets, products, engineers, and creativity to the existing team. It can mean
that software teams at other sites of the globe are suddenly forced to
collaborate. A multinational organisation has no need or possibility to relocate
all people to one geographical location. Thereby, large projects can be split
among the teams at different sites. Another cause to form a multinational
organisation is to set up an office to another country for some special reason.
The reason could be customisation of a product or a special need on the markets
in that area, for example. Other common reasons are proximity to the customer
and globalised presence. Proximity to the customer is important, since software
requires lot of interaction between designer and customer. This is ideally
handled in face-to-face meetings. However, usually it is enough if the company
is this close only to the main customers. Globalised presence is important

29

because it is a strategic signal from the company to the world that they are a
global player [Carmel, 1999].

Subcontracting is a fact of life for many organisations [McLaughlin, 1996]. It
is common to use a third party that has experience in a specialised area of
software engineering or some other form of excellence. By outsourcing
development activities, an organisation can save training costs. Thereby they do
not have to invest in knowledge, which is outside the core competence of the
company. In addition to software development, subcontractors can be used to
other tasks like secretarial work and technical writing. Thus, subcontracting
decreases the need of permanent employees.

Partnerships are the third category of reasons for global software
development. There are two kinds of partnerships: strategic partnerships and
joint ventures. Companies use strategic partnerships to develop and promote
their software products to gain better market access and to avoid becoming too
large. Too large software development centres are unwieldy to manage. Joint
ventures are formed to bring together different expertise of technology or
capital and resources [Karolak, 1998]. One partner may bring equipment
capital, while the other provides technical resources. One partner may bring
expertise in one type of technology, while the other brings in another
technology. In joint ventures, the partners start a separate company. The
company tends to have more financial pressure and thus aims to develop
software at a lower cost.

Employment issues can lead to global software development. Finding and
hiring specialised talents is one reason. A software company may need to hire
the best software developers regardless of their geographic location. Size factors
are another thing. When one development centre is becoming too large, a
solution can be to expand in another city or country. For large software
companies it is hard to find competent people from a single R&D centre, for
example. The resource pool is limited and there are several other organisations
competing in the same labour market. Thus, the company needs to expand to a
new location. Many companies are taking advantage of the cheaper labour costs
of third world countries [McLaughlin, 1996]. One popular new R&D centre is
India, which has cheap labour costs and a lot of technical universities educating
competent and fluently English-speaking engineers.

3.4. Challenges
Global software development has advantages as described earlier. However,
there are also several challenges to consider. Haag et al. [1997] think that
geographically distributed software processes have increased the magnitude of

30

the problems to be addressed. A part of the problems is due to the fact that the
process is induced by the changes in the social and economical environment of
software engineering. A good example of the increased magnitude concerns
defect detection. Studies show that teams, which sit at the same place, need
only a half the time for the defect detection compared to geographically
dispersed teams [Ebert et al., 2001] [Herbsleb et al., 2001].

There have been many projects studying the challenges of global software
development. Some of them target on technological aspects. Others target more
on non-technical issues, such as communication and coordination. Dale W.
Karolak [1998] has divided these challenges in three main categories in his
book: organisational, communication, and technical. After analysing several other
studies [Carmel, 1999] [Hofstede, 1997] [White, 2000] I decided to add a
category for cultural challenges in addition to these three in this thesis. The
following paragraphs present these categories as the four categories of global
software development challenges. Organisations can try to avoid these
challenges by limiting the dependencies between sites. This is not always
possible and usually some dependencies remain. I discuss more about how to
overcome these challenges, especially in software configuration management
point of view, in Chapter four.

3.4.1. Organisational issues
Organisational problems are about the roles and responsibilities of the project
participants. They concern both different sites inside one company and sites
working with subcontractor. An organisation cannot function without
coordination and control. Coordination is the act of integrating each task with
each organisational unit [Carmel and Agarwal, 2001]. Control is the process of
adhering to goals, policies, standards, or quality levels. Unfortunately,
geographical distance creates difficulties in both. Because of distance, people
cannot coordinate by peeking into the colleague’s office. Also managers cannot
control by walking down the hall and visiting subordinates. Coordination
mechanisms (like architectures and processes) are one key role in overcoming
distance in global software development [Herbsleb and Grinter, 1999].

According to White [2000] the key issues of coordination are:

• who is responsible of the whole project,

• who is responsible for the managerial issues,

• who is responsible of the overall system architecture, and

• who are the team members involved.

31

He recommends projects to establish a “super project” organisational structure.
In a “super project”, many smaller projects are collaborating on an overall
project. This is a good approach, since it is often difficult to integrate separated
independent teams into a coherent team. In addition, it may be that people
outside the traditional product organisation staff the project [Battin et al., 2001].
This creates a significant risk of the lack of problem domain. For the manager of
the “super project” there is a difficult decision to make: how to divide up the
work across sites.

Often organisations resist global software development. People may believe
their jobs are threatened. They experience a loss of control and fear the
possibility of relocation. Battin et al. [2001] reported in their survey that the
management team had a genuine concern that the international engineering
teams would not be able to produce as needed.

McLaughlin [1996] emphasizes that someone should be assigned to monitor
the development of the whole project. Otherwise there can appear seemingly
unrelated problems that are reported separately at each site without anyone
realising the real issues. He gives examples of situations where these problems
easily occur. One situation is when there is rarely anyone monitoring the project
progress on a technical level. Another situation relates to subcontracting. With
subcontractors there often appear additional problems when the build of the
whole software is started.

3.4.2. Communication issues
Communication problems also hinder global software development. These
problems involve the technical infrastructure the team members use to
communicate with each other [Karolak, 1998]. Distance makes coordination and
control problems worse through its negative effects on communication [Carmel
and Agarwal, 2001]. However, several studies show that communication is the
key to a successful project and that inadequate communication creates most
challenges [Battin et al., 2001] [Damian and Zowghi, 2002] [Haywood, 2000].
Haywood’s [2000] surveys confirm that success is more likely when people
emphasize improving their communication as much as improving the tools
they use.

In global software projects, communication is weakened, because the teams
are geographically separated. People in the teams may speak different native
language, they have experience on different processes, and they have different
training backgrounds. The geographic separation makes it impractical to ever
get the entire team together. Thus, it takes time to get information from all
members of the project and the interactive conversation within the project is

32

limited. The communication problem is not only with team members in
different cities or countries. In fact, being in another building or even at the
other end of a long corridor severely reduces communication [Herbsleb and
Moitra, 2001]. Tom Allen [1977] found in his study that communication drops
precipitously when offices of engineers are more than 25 meters from another.

Perhaps the most distinguishing feature of global software development
teams compared to local teams is the need to find new ways to augment or
replace the traditional face-to-face meetings [Ramesh and Dennis, 2002]. Today
there are many new communication channels like e-mail, groupware, and video
conferencing, but they cannot compensate face-to-face meetings in all cases.
Face-to-face meetings are the richest communication media since it is a real time
two-way interaction involving also nonverbal and implicit communication. It
has been estimated that about 80% of the message that we communicate is other
than explicit text. The bigger part consists of body language such as gestures,
facial expressions, and posture. A recent study of dispersed software teams
found that team members always wanted a richer communication medium no
matter what the task [Carmel, 1999]. However, other media have their
advantages. For example, e-mail provides the ability to explain details and keep
written record and history of issues. But the downside of e-mail compared to
traditional meetings is its lowered ability to handle ambiguity and that e-mail
can be forgotten [Damian and Zowghi, 2002].

As mentioned above, traditional face-to-face meetings play a big role in
communication of local software projects. But a surprisingly large role is also on
informal face-to-face communication. Asklund [1999] has reported that an
astonishingly large part of information is covered during discussions at review
meetings, during coffee breaks, in the corridors and so on. Informal “corridor
talk” helps people stay aware of what is going on around them [Herbsleb and
Moitra, 2001]. It provides people with many essential pieces of background
information that enables working efficiently. When those communication
channels are missing there is a risk that connectivity within the group will be
weakened. Understanding people’s motives, agendas, and other human
interactions will be more difficult. Damian and Zowghi [2002] report from their
field study that without the informal talks it is harder for project members to
become a team. Since “you need to know each other personally to trust each
other, to see a value of a person, to become engaged and committed”.
Distributed team members may mistrust each other due to excessive
stereotyping and lowered interpersonal attractiveness [Carmel, 1999]. One
solution to ensure effective communication is to keep global teams small. Small

33

teams also associate with the sense of intimacy that creates trust and
cohesiveness.

The global software development team members should have a common
understanding on how to prioritise the communication media they use
[Haywood, 2000]. Prioritising communications builds trust among team
members. Any organisation that is developing software in a geographically
distributed way should also pay close attention to the costs, methods, and
procedures associated with communication [McLaughlin, 1996]. A global way
of doing business requires an investment in people and training that
emphasises effective communication.

3.4.3. Cultural issues
Different cultures and different development styles introduce additional
obstacles in global software development [White, 2000]. Managing cultural
differences can only be achieved by awareness of the fundamentals of cultural
differences [Carmel, 1999]. However, stereotyping about cultures and work
styles can lead to misinterpretation of actions. But the cultural differences do
not confine only to the differences between nationalities. There are also other
types of cultures such as ethnic, corporate, and professional cultures. Each
individual is a member of multiple cultures and each of these cultures has a
different kind of grip on them. The corporate culture and the professional
culture can make things easier in global software development, when all
members of the project are from the same company and have the same
profession. But it is still essential to be aware of the differences of the national
cultures.

Cultures differ in many dimensions, such as the need for structure, attitudes
towards hierarchy, sense of time, and communication styles [Hofstede, 1997]. In
some cultures, employees are careful about expressing their opinions to
superiors and show proper respect to the boss. In individualist cultures, people
are concerned with personal achievements and independence, while in
collectivist cultures people see themselves primarily as a part of the group. The
cultural attitudes towards business versus softer values are most apparent
when comparing Japanese and Scandinavians [Carmel, 1999]. The Japanese
norms value long work days and little utilised vacation time. Instead,
Scandinavians have a 38-hour workweek and long annual vacations. Some
cultures avoid high risk and place greater emphasis on stability rather than
innovation and change.

34

3.4.4. Technical issues
Technical issues are a fourth group of challenging issues of global software
development. These issues involve the methods and tools used to solve
technical problems. First, there is a risk to become dependent on slow and
unreliable network [Asklund, 1999]. Tasks that involve transmission of critical
data and multisite production must be planned and executed precisely.
Software configuration management is one example of such tasks.

Another risk is differing technologies. It may be possible for all teams in one
global project to use different technologies. However, it can have significant
effects on usability, ease of installation, and look and feel, for example [White,
2000]. Also problems in system interoperability and usage of incompatible data
formats can be complex and time-consuming. Thus, it is important to decide at
some level what kind of technologies and standards teams are going to use. It
helps planning and discussion when common concepts and terms are agreed
on. Commonality in these areas provides a common practise that unites
developers across language and cultural barriers [Karolak, 1998]. The
development tools should also have the same version, if all teams decide to use
same tools. Having same version at all sites can be difficult, since the latest
version is not always available at the same time in all countries. In addition, it is
important to assure that all sites can obtain support from the tool vendor.
Simultaneous tool updates at every location may be costly and cumbersome to
coordinate and control [Murugesan, 1999]. When development tools for global
software projects are being chosen it must be ensured that they are able to
support global software development [White, 2000].

Security is also a technological issue. The information of organisation is
company proprietary. Thus, in global software production most information
repositories should only be accessible from within the organisation intranet
[Gao et al., 1999]. A rigorous security mechanism must control the access of
users outside, if needed.

3.5. Models of distributed software development
There are different ways to implement global software development. Different
projects can use different ways depending on the size of the project and the
technical possibilities available. The ways are divided into four models in this
thesis according to Asklund [1999]:

• distance working,

• subcontracting,

• co-located groups, and

35

• distributed groups.

Each of these models can occur alone in a project or there can be combinations.
Despite of the name, the third model is not necessarily used in all
subcontracting cases. Subcontractors can also use distance working or co-
located groups models.

Distance working means usually that some short task is done somewhere else
than in the office. It can be done at home, for example. For this model it is
typical that only slow network connection is available, but the person has a
need to establish the working environment fast. There are two ways to do
distance working: either a person can bring the needed files home as a copy or
she can take a remote connection to the office.

Subcontracting means that a third party is bought to develop certain parts of
the software. Subcontracting is based on close co-operation between the
customer company and the subcontractor. Usually the customer company
provides an environment to the subcontractor where the subcontractor can test
the components before delivery. The customer company is responsible of the
whole product and it controls errors and changes also to the parts developed by
the subcontractor.

The notion of co-located groups means that developers belong to a local group
or project. The work is divided between groups so that every group is as
independent as possible. Division enables working locally as long as possible
without communicating with other groups. Groups usually have access only to
the latest stable version of other groups' outputs. In global software
development, updates and deliveries between groups demand more
consideration and administration. It can be thought of as an inner delivery,
which tends to come infrequently. Co-operation between groups is easier if
work is divided to phases that all developers are aware of.

Distributed groups mean that not only groups of developers work in different
sites, but also developers in one group can be located at different sites. There is
no daily communication even inside one group. Decreased communication can
cause problems when several developers inside one group want to modify
common components at the same time.

3.6. Architectures
Usually software is developed locally on a server. All developers are in the
same place using a fast network connection and the same server. In
geographically distributed development, there is a need for different kind of
architectures. Asklund [1999] introduces five types of architectures:

• remote login,

36

• laptop computer to a server,

• several sites by master-slave connections,

• several sites with differing areas of responsibility, and

• several sites with equal servers.

The architecture to choose in development phase depends on the tasks, on the
organisation structure, and on the policies that the organisation follows.
Architecture has significant influence on the developers' awareness of the
product phases. Long time intervals between synchronisations prevent changes
becoming effective and thus control the degree of awareness.

Remote login is typically used in a situation when all developers are
connected to the same server, but some of them are located elsewhere than
where the server physically exists. Figure 6 represents the remote login model.
Dashed line describes the site where developers normally work. All
workstations are connected to the same server where different subcomponents
are stored. Small circles represent subcomponents. Developers located
elsewhere than the server can use telnet, for example, to get connection to the
server. Technically this is a same situation than if all developers would be
locally connected to the server. Only the network connections are slower.

Home PC
Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F il e Ed it Lo ca te Vi ew H el p

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
D
CB
A

Network
Tr affic Help

telnet

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F i le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
D
CB
A

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F i le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
ED
C
BA

Network
Traffic Help

Home PC
Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F il e E d it Lo ca te V i ew H el p

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
D
CB
A

Network
Tr affic Help

telnet

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F i le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
D
CB
A

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F i le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
ED
C
BA

Network
Traffic Help

Home PC
Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F il e E d it Lo ca te V i ew H el p

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
D
CB
A

Network
Tr affic Help

telnet

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F i le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
D
CB
A

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F i le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
ED
C
BA

Network
Traffic Help

Figure 6. Remote login.

Laptop computer to a server describes a situation where some files are copied
from the server and are developed locally. Figure 7 represents this model.
Developers work normally at one site. There they are connected to the server
where subcomponents are stored. A developer can take a copy of the needed
files to be developed locally. She can take the copy to the laptop, for example.
This case occurs when the developer takes some files with her to home or while
travelling. Copied files are updated and synchronised every day or less
frequently. The local development is usually done without the support from the
software configuration management tool.

37

copy

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le Edi t Loc a te View He lp

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
D
C
BA

Netwo rk
Tr affic He lp

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le E di t Loc ate View He lp

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
D
C
BA

Networ k
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

File Ed it Loca te View H elp

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
CB
A

Net work
Traff ic Help

copy

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le Edi t Loc a te View He lp

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
D
C
BA

Netwo rk
Tr affic He lp

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le E di t Loc ate View He lp

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
D
C
BA

Networ k
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

File Ed it Loca te View H elp

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
CB
A

Net work
Traff ic Help

Figure 7. Laptop computer to a server.

The notion of several sites by master-slave connections means that one version
from a subcomponent is copied from the master server to a slave server. The
copy is developed further on the slave server. Figure 8 represents how the
master server on the left has several subcomponents and one of them is copied
to the slave server on the right. There can be several weeks or even months
between updates. This architecture is typical in subcontracting, for example. It
may be that there is no software configuration management tool or a different
software configuration management tool in the slave server. Thus, version
history does not get copied in the updates and the master site usually does not
allow changes to the subcomponent.

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F il e Ed it L oc ate Vie w Hel p

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
CBA

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F il e E dit Lo ca te V i ew H e lp

1 2 3 4 5 6 70

1 00

2 00

3 00

4 00

5 00
E
D
CB
A

Networ k
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
ED
C
BA

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F i le E di t L oc at e Vi ew H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
CBA

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
ED
C
BA

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F il e E d it L oc at e V ie w H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
CBA

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F il e E dit Lo ca te V i ew H e lp

1 2 3 4 5 6 70

1 00

2 00

3 00

4 00

5 00
E
D
CB
A

Networ k
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
ED
C
BA

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

F i le E di t L oc at e Vi ew H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
CBA

Network
Traffic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le E di t L oc at e V ie w H el p

1 2 3 4 5 6 7
0

100

200

300

400

500
ED
C
BA

Network
Traffic Help

Figure 8. Several sites by master-slave connections.

Several sites in different areas of responsibility restrict access rights to
components from those sites that do not develop them. Sites have no write
access to files belonging to subcomponents they are not responsible of. In
Figure 9, subcomponents are represented with a dashed line on that server
where they have a read only status. Synchronisation is done by copying
changes from the original to the replica. This can be done inside a software
configuration management tool or manually with application level protocols
like ftp or http. Usually replicas are automatically synchronised.
Synchronisation takes place regularly or when needed. The same server can
have both original subcomponents and replicas from other subcomponents.
This means that updates can happen in both directions. Compared to master-

38

slave connections the division between sites is more permanent and
synchronisation is more automatic and frequent.

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

File Edi t Loc ate View Help

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
C
B
A

Netwo rk
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

File E di t Loc ate View H elp

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
D
CB
A

Ne twor k
Traff ic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le Edi t Loc ate View Help

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
D
C
BA

Netwo rk
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le Edit Loc ate View Help

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
D
C
B
A

Netwo rk
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

File Edi t Loc ate View Help

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
C
BA

Netwo rk
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

File Edi t Loc ate View Help

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
C
B
A

Netwo rk
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

File E di t Loc ate View H elp

1 2 3 4 5 6 7
0

10 0

20 0

30 0

40 0

50 0
E
D
CB
A

Ne twor k
Traff ic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le Edi t Loc ate View Help

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
D
C
BA

Netwo rk
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

Fi le Edit Loc ate View Help

1 2 3 4 5 6 7
0

1 00

2 00

3 00

4 00

5 00
E
D
C
B
A

Netwo rk
Tr affic Help

Mount
431 7437 1950
79% /
02 631963 47358
93% /us

File Edi t Loc ate View Help

1 2 3 4 5 6 7
0

100

200

300

400

500
E
D
C
BA

Netwo rk
Tr affic Help

Figure 9. Several sites in different areas of responsibility.

Several sites with equal servers can be thought of as an ideal situation. It means
that there are equal kinds of servers in several different sites. The servers are
synchronised automatically between short time intervals and they all contain
the same information. Figure 10 represents the situation where two sites have
equal servers. There is an identical copy of both subcomponents on both
servers. Developers can work at any site they like without noticing any
difference.

Mount431 7437195079% /026319634735893% /us

FeEi oaeVe Hel

2 7000
0000
0000 EDCBA

NeworkTrafi Help

Mount431 7437195079% /026319634735893%/us

ledtLcteView ep

12345671020
3040
50 EDCBA

NeworkTraffc Hep

Mount431 7437195079% /026319634735893% /us

FeEitoaeVe Help

4
00
00
0 EDCBA

NetworkTafi Help

Mount431 7437195079% /026319634735893% /us

FEit oatVe Hl

12345010
2030
4050

NetworkTai Help

Mount431 7437195079% /026319634735893% /us

Fil Ei ocaVe Hl

1 3400
00
00

NetworkTafi Help

Mount431 7437195079% /026319634735893% /us

FeEi oaeVe Hel

2 7000
0000
0000 EDCBA

NeworkTrafi Help

Mount431 7437195079% /026319634735893%/us

ledtLcteView ep

12345671020
3040
50 EDCBA

NeworkTraffc Hep

Mount431 7437195079% /026319634735893% /us

FeEitoaeVe Help

4
00
00
0 EDCBA

NetworkTafi Help

Mount431 7437195079% /026319634735893% /us

FEit oatVe Hl

12345010
2030
4050

NetworkTai Help

Mount431 7437195079% /026319634735893% /us

Fil Ei ocaVe Hl

1 3400
00
00

NetworkTafi Help

Figure 10. Several sites with equal servers.

3.7. Combinations of architectures and models
There are a couple of suitable possibilities in the architectures to choose from
when implementing each of the models of global software development. In
cases of co-located groups and distributed groups, there is one option that suits
best, but distance work and subcontracting can be implemented with more than
one architecture. All combinations are described below and illustrated in Figure
11. Shaded boxes in the figure show the suitable combinations.

39

Distributed
groups

Co - located
groups

Subcontracting

Distance
working

Several sites
with equal
servers

Several sites
with differing
areas of
responsibility

Several sites
by master -
slave
connections

Laptop
computer to a
server

Remote login

Distributed
groups

Co - located
groups

Subcontracting

Distance
working

Several sites
with equal
servers

Several sites
with differing
areas of
responsibility

Several sites
by master -
slave
connections

Laptop
computer to a
server

Remote login

Figure 11. Different combinations of models and architectures. Shaded boxes
illustrate the suitable combinations.

Distance working is usually implemented either with remote login or with
laptop computer to a server. Other architectures are not suitable, since this model
usually concerns only one employee at a time. Remote login is a good option,
when distance working means working from home. The employee can have a
network connection (like ISDN or ADSL) from home to work. She can use the
real development environment and necessary tools from the same server where
the work is normally done. A laptop computer to server is a better choice if the
employee is working elsewhere than home, like when travelling. Working with
the necessary files is faster, but the real development environment is not
available.

Subcontracting can be implemented with all other architectures except
several sites with equal servers. Equal servers would mean that the subcontractor
has an access to all source files of the customer company. That is usually not
wanted nor it is necessary. Subcontractors can use a remote login to customer
company’s server if the replication of sources is not possible for a lack of
support from the software configuration management tool, for example. When
there is only one person from the subcontractor company doing some small task
to customer company, she can use the laptop computer to server architecture. The
most typical architecture for subcontracting is several sites by master-slave
connections [Asklund, 1999]. Customer company’s server gives a copy of
necessary source files to the subcontractor’s server where the development can
continue in isolation. The source files are copied back to server of the customer
company when the development tasks are ready. Several sites in different areas of
responsibility is a good option, if the subcontractor is working in a more close

40

relationship with customer company. Customer company can restrict the access
rights of subcontractor from those parts of the repository, which they do not
want the subcontractor to be able to read and write. In this architecture, the
replication is more frequent and source files are more up to date at both sites.

With co-located groups the most suitable architecture is several sites in
different areas of responsibility. Since one group is always located at one site they
do not need write access to source files developed at other sites. Each site has
access rights to those files they need to modify and they can also read and use
files from other sites for compiling, for example. Several sites with equal servers
could also be used but the additional value it brings is not necessary. Other
architectures are not appropriate for co-located groups. If every developer
would use remote login or laptop computer to server architecture it would mean
extra work and wasted time. With several sites by master-slave connections the
replication happens infrequently, which can slow down the development
needlessly.

Distributed groups model is most effective if the chosen architecture is
several sites with equal servers. Several sites with equal servers is the only
architecture that enables developers to modify their code from every site when
ever they want. Since the communication between developers in one group is
decreased it could be very risky if developers could not trust that the source
files they see are always up to date. Remote login is another choice as the
architecture in distributed groups model. Its drawback is slow working, if many
developers need to login to a server on another site. In other architectures, the
source files would be updated so rarely that they cannot compensate the
reduced communication. In addition, developers could not work without the
risk of overlapping and conflicting changes.

3.8. Summary
In the last decade of the 20th century, software industry had to face new
challenges. There was pressure for better quality, increased productivity and
reduced development time. At the same time Internet was developing rapidly.
Organisations were growing bigger due to fusions and subcontracting became
more popular. Because of the huge growth of information technology business,
IT-companies needed much more employees. However, the traditional R&D
centres had reached the limit of their labour pools. One option for organisations
to find enough competent employees was to expand to other geographical
locations. There are emerging centres of talented software engineers in
countries like India, China, Philippines, Russia, and Hungary. These countries
have also much cheaper labour costs, so they are a tempting choice for a

41

company to expand. These are some of the reasons why global software
development has emerged.

Companies try to achieve cost- and timesaving by using global software
development. However, there are challenges like organisational,
communication, cultural, and technical issues. Organisational issues relate to
problems caused by unclear responsibilities and roles. Communication issues
include decreased possibility to informal and face-to-face communication.
Cultural problems are due to different cultures and they cause poor
communication and misunderstandings. Technical challenges relate mostly to
problems with network connections, development environment, and
development tools.

There are four different models to distribute development geographically:
distance working, subcontracting, co-located groups, and distributed groups.
Organisation can choose to use only one of the models or to combine them.
Remote login, laptop computer to a server, several sites by master-slave
connections, several sites in different areas of responsibility, and several sites
with equal servers are the five architectures to implement the models. Models
and architectures can be combined according to the needs of the organisation.

Global software development is nowadays a fact in many organisations.
Organisations have noticed that it is not an easy task to control geographically
dispersed software projects. Keeping the repository up-to-date and all
developers aware of the implemented changes is a difficult task, when the
number of communication channels is reduced and the number of repositories
is increased. Software configuration management is the area, which takes care
of the repositories and has tools that can assist on information sharing.

42

4. SCM in global software development
As seen in Chapter 2, software configuration management is a discipline for
controlling the whole evolution of software systems. It helps to deliver highly
functional quality software in time and to budget, and helps with the
development, support, and maintenance tasks in the longer term. A software
configuration management system helps to improve the productivity and
decreases the ramp up time of new employees. Today most SCM systems cover
all the areas of software configuration management and help to maintain
control over the evolution of the software project. However, many of the
systems lack a proper support for global software development. The
commercial software configuration management tools do not have complete
solutions to overcome and deal with all the challenges global software
development brings to software projects.

Chapter 3 described how global software development is a fact in many
organisations nowadays. The possibility to save costs and reduce time-to-
market has increased the amount of organisations involved in global software
projects. Yet, global software development has disadvantages that prevent
organisations to gain most of the benefits it brings. There are many
organisational, communication, cultural and technical challenges, as described
in section 3.4, which can cause global software development projects to be
unsuccessful. Also the chosen geographical distribution architecture can have
impact on how much and in what way those issues affect the software project.

The next sections concentrate on discussing what kind of an impact the four
challenges of global software development have on software configuration
management. It seems that some of the areas of software configuration
management contain the same features that were discussed in the challenges
section of chapter three. These features are the demand of formalism, capability
to track changes, and control of the configuration item repositories, for
example. After this analysis, we move on to explore what kind of an impact the
eight different ways to combine geographically distributed development
models and architectures have on software configuration management. Section
4.7 presents a new theory to overcome the barriers of global software
development. I believe software configuration management systems have a
significant role in this theory.

4.1. Organisational issues and SCM
The organisational issues relate to the roles and responsibilities of the members
of the software project. In global software development, the major

43

concentration in organisational issues should be focused on coordination and
control, as discussed in section 3.4.1. Other concerns are the resistance of people
towards sharing knowledge among global team members and monitoring the
development of the whole project. Software configuration management is an
essential tool for controlling and monitoring, since it has configuration control
and status accounting activities.

For coordinating responsibilities White [2000] suggests that projects would
establish a “super project” organisational structure and share the main
responsibilities with the help of it. Ebert and De Neve [2001] add that one
project leader should be fully responsible for achieving the targets of the whole
project. The leader should have a project management team that represents the
major cultures within the project. Software configuration management system
is a tool for the project management team to control the project.

Monitoring the project on technical level should be planned carefully.
Monitoring of the whole project can be easily neglected when multiple sites are
involved with teams having different kind of responsibilities. There can be, for
example, teams following up the performance of the network, teams taking care
of the functionality of the SCM tool, and sub-project managers who follow up
the progress of each sub-project. Each of these teams can notice problems at
their site, which may seem unrelated. However, all these problems may be
caused by a common technical problem.

It seems that the main question in handling the organisational issues on
global software development projects is how to follow the progress of the
whole project. In addition, there is a question on how to clear up everybody’s
responsibilities to all members of a project in a multisite organisation. These
questions have clearly an impact on software configuration management.
Software configuration management is in a key role when project members are
solving these questions, because it holds the information of what has happened
and by whom. SCM systems collect and capture the history of changes made to
the software and they contain the information of who was responsible for
which change. These features are even more important in global software
projects than in local projects, since changes are made on multiple sites.
Therefore it is obvious that project members are going to use these status
accounting features more in global software projects. SCM systems have to
allow this information to be accessible from all sites that need it. Managers must
be able to follow the progress of the project and the status of the work on each
site. Following the progress and the status must be easy, and it must be possible
to do these tasks from the site the managers are located at. When software
configuration management is used in process control to help coordination, it is

44

important that the functionality of the SCM tool is configurable by a user of
different projects and project’s phase as well as user and user groups, roles,
sites and responsibilities [Cocchio and Puttero, 1999].

Haag et al. [1997] report in their study that 30% of organisations valued
software configuration management highly as a suitable solution for
coordination in large projects. I believe that there are still possibilities for SCM
systems to enhance in this area. Many of the commercial tools are still too
complicated to use for managers, for example, because they use the tool so
infrequently. The information is not easily available, but the person needs to
execute several commands to find what she is looking for. I believe that the
tools would be utilised more, if they would offer an easy to use Web access to
the repository, for example.

4.2. Communication issues and SCM
When an organisation is distributing software development in geographically
different locations, the communication between developers usually decreases
and becomes more formal. The interpersonal relations are more difficult to
maintain in large environments and formal procedures are required since
humans cannot cope with the increased volume of information [Grudin, 1988].
Still the need to exchange information is much higher in global software
development environments compared to local development [Cocchio and
Puttero, 1999]. There are many technical solutions available like e-mail and
video conferencing to help communication. However, they require extra work
and they do not compensate the informal communication channels. On the
contrary, e-mails can easily cause information overflow by providing too much
information.

Haag et al. [1997] noticed that software engineering community is placing
most emphasis on technological issues faced by global software development
teams and less attention is paid to informational problems. The main goal in
activities supporting communication is that people get all the information they
need at the right time. At the same time they should be protected from any
information they do not really need. It should be ensured that all material
produced during the project is properly controlled and that only the necessary
material is available at each site [Cocchio and Puttero, 1999].

In global software development, the communicational issues can be
encapsulated to two main problems: decreased informal communication and
increased amount of formal information. Software configuration management
systems try to support collaboration by providing information about what other
developers are doing, structuring development work, and automating various

45

development activities [Grinter, 1996]. Thus, both of the problems above bring
challenges to software configuration management. Project members need to use
more the configuration control activities of software configuration management
to compensate the decreased informal communication and to be aware of what
has happened in the development work done by others. A software
configuration management system can be an easy tool for developers to find the
information they need from the information overflow. On the other hand, the
decreased informal communication can cause misunderstandings. And
misunderstandings lead to overlapping or unintended changes, for example. At
the same time the amount of formal communication required can feel annoying
to the project members and decrease the motivation to fulfil the necessary
configuration identification and control activities of software configuration
management. In global software development, the SCM system should pay
attention to these kinds of situations, especially when changes affect
configuration items in multiple sites. The possibilities to integrate e-mail or
other communication tools to software configuration management systems
should also be considered. It could help reducing the information overflow by
sending the information only to the people concerned.

4.3. Cultural issues and SCM
Cultural issues in global software projects concern mainly different national
cultures and different development styles. But in cases of subcontracting,
partnership or acquisition, for example, it can also involve different corporation
cultures. However, the software professionals worldwide belong to the same
professional culture. Studies show that this computer subculture is stronger
than national culture and in that way it reduces the amount of cultural
problems [Carmel, 1999].

The different national cultures can have impacts on software configuration
management. The SCM system is not effective and useful, if all the project
members are not dedicated to use it. All the project members need to
understand why the SCM system is in use and why it is necessary to use it
appropriately. Thus, in multicultural projects the training of the software
configuration management system must be done carefully. The cultural
differences must be taken into account and assure that all project members have
same understanding of the importance of the SCM system.

4.4. Technical issues and SCM
Software projects that are developed in many geographically different places,
which are far away from each other, are highly dependent on network

46

connections. Today network bandwidth is high and costs have decreased so
that all developers can have almost immediate access to the sources [MacKay,
1995]. Still network failures happen and this hinders developers’ work.
Network failures cause problems in software configuration management. Most
SCM tools cannot reliability transfer information or recover if a network failure
happens during information transfer [Cocchio and Puttero, 1999].

Corporate firewalls cause another technical problems. Firewalls protect
companies from unauthorised connections from public Internet to company’s
intranet. A firewall consists of a dedicated machine with special security
precautions on it. It protects a cluster of more loosely administrated machines
hidden behind it. A typical firewall machine has modems and public network
ports on it, but it has just one carefully watched connection back to the rest of
the cluster. All the software configuration management tools do not support
replication of the repositories through firewall directly. It will probably need
some extra adjustments before the replication works satisfactorily.

In global software development, the software configuration management
system must handle the fact that development is done at multiple sites. Multi-
site projects need an SCM database that controls the material produced at each
site. This database contains read-only copies of material produced at other sites,
fault reports, change requests, and modification reports for material, which is
either produced at the site or used at the site [Cocchio and Puttero, 1999]. Thus,
SCM systems need to cope with network failures, security issues and firewalls.
Thereby, it is a good idea to dedicate a person to concentrate on these technical
aspects.

4.5. SCM tools and global software development
On technical level one requirement from an SCM tool in global software
development environment is replication of the repository. Allen et al. [1995]
have presented few techniques to share common parts of the repository
between multiple sites. The simplest approach is to provide all users at all sites
the access to a centralised shared repository across a wide-area network.
However, this approach is vulnerable to network problems, has unacceptable
effect on system performance when using low bandwidth access methods, and
presents problems with scaling the system to a very high number of users.
Another option is to cache information locally at each development site by
making use of a caching remote file system. A caching file system has the same
problems as a central repository, but it can reduce the file I/O load imposed by
remote access to version data on the central server. A third option is to replicate

47

the entire repository to each local site. This way the sites may change their
replicas independently.

Allen et al. [1995] introduce two different types of replicas: serially consistent
replicas and weakly consistent replicas. Serially consistent replicas are
continuously synchronised and avoid the possibility of lost or conflicting
changes. However, this imposes a significant penalty on the availability of data
in each replica: either reading or writing of data at any replica requires that, at
least, a majority of all replicas are accessible. This majority-consensus
requirement also means that the serially consistent replication approach has
even worse scaling characteristics than using a central repository. Weakly
consistent replicas allow the contents of individual replicas to temporarily
diverge, with no guarantee that a change made at one replica is immediately
visible at the other replicas. The presumption is that eventually the replicas will
be resynchronised.

Replication requires automation to define a start time for the replication and
to schedule synchronisation between sites, for example. Besides the technology
and automation there are several important issues to think about to make
replication efficient [Cocchio and Puttero, 1999]. What to replicate and where
depends on the rights and responsibilities of each site. When and how often the
replication should happen depends on the development processes used by sites.
Thus, the software configuration management database should be able to
model and track these processes either using its own features or by links to
other process support tools. How to replicate depends on the infrastructure of
tools and communication used by sites. Thus, the software configuration
management database should be capable of being managed by a variety of
tools, communicating across a variety of networks, and using a number of
different replication strategies. It should support several ways of data
transmission like online, temporary offline, and all-the-time offline as well as
client-to-server, server-to-client, and server-to-server. Compression of the
material replicated from one site to another is also required to be able to reduce
transmission time and costs.

Parallel development of software components is common even in smaller
software projects where all developers are working on the same site. Global
software development brings an additional dimension to this by enabling a case
where two developers working at different sites try to modify the same
software component at the same time. Software configuration management tool
should be able to handle these cases. One common way to handle parallel
development is to use a branch and merge strategy, which can be used also in
global software development. But globally distributed projects may require not

48

just merging of some files but also merging of whole project structures [Cocchio
and Puttero, 1999]. Branch names can include site information to help tracking
down of changes.

There can be several different projects on-going at the same time in an
organisation with many sites. There are large projects with many sites involved
and smaller projects, which are developed in one site or at few sites. An SCM
tool should be customisable so that it can be used satisfyingly with every
project. It should be possible to customise the environment by selecting location
and structure of projects, frequency of synchronisation as well as rights to
access distributed functions [Cocchio and Puttero, 1999]. A software
configuration management tool must also ensure security and privacy in data
communications. Furthermore, an SCM system must take into account
compatibility with corporate firewalls, as well. To maintain the tool flexibility,
and to avoid the loss of customisability, the system should enable plug-in of
proprietary encryption tools.

The software configuration management tool should be able to integrate
with project management, CASE, process management, and development tools
[Cocchio and Puttero, 1999]. Integration with reporting tools is useful to
improve visibility of the development process as recorded by the SCM tool.
Integration with project management tools means interacting with these tools
by transferring tasks into them. Integration could automate the scheduling of
implementation and could collect productivity metrics, which is very useful for
project managers by bringing transparency into the project.

4.6. The impact of different models and architectures on SCM
As illustrated in section 3.7, there are eight different ways to meaningfully
combine geographically distributed development models and architectures:

• distance working and remote login,

• distance working and laptop computer to a server,

• subcontracting and remote login,

• subcontracting and laptop computer to a server,

• subcontracting and several sites by master-slave connections,

• subcontracting and several sites with differing areas of
responsibility,

• co-located groups and several sites with differing areas of
responsibility, and

• distributed groups and several sites with equal servers.

49

In the next paragraphs, I discuss how these cases differ from software
configuration management point of view. I present the demands they bring to
software configuration management systems compared to local development. I
also make some suggestions on how to resolve these issues.

Distance working can be done locally using a laptop computer to a server or
remotely using remote login. When working locally, a developer is doing her
work outside of the control and support of a software configuration
management system. This means that the developer may need to create
additional branches to configuration items before she can copy the files to her
computer. An SCM system should have tools to help the synchronisation when
changes are merged back to the original repository. The locally working
developer is not aware of what others are doing and that can cause overlapping
changes. Also, testing is impossible because the developer cannot see the work
of others. Working remotely can cause extra branches, since the developer is
working behind a slower network connection. It is more convenient to isolate
work with branches since slower network connections can otherwise obstruct
the work. There is a tendency in remote working that work models are not
followed correctly but the work models could be integrated in the software
configuration management system so that the system could force the developer
to use them.

Subcontractors can work using remote login, laptop computer to a server, several
sites by master-slave connections, or several sites with differing areas of responsibility.
These architectures can have different impacts on the SCM system when
combined with the subcontractor model. Here is presented only the most
challenging case in software configuration management point of view. It is the
phase where the components the subcontractor has implemented are integrated
into the product, which may have been developed further. This situation is
more complex when the subcontractor is working with remote login or laptop
computer to a server. Despite of the chosen architecture, a customer company
should manage the updating of the development and test environments.
Performing the update can be difficult, if the subcontractor and the customer
company use different software configuration management tools. The SCM tool
can support the task, if the tools are same at both sites. Thus, at least several sites
by master-slave connections and several sites with differing areas of responsibility
architectures are easier to update.

The development groups are using the same software configuration
management tool in case of co-located groups and several sites with differing areas
of responsibility. Thus, this combination is an easier case. Nowadays also SCM
tools usually support this architecture. Therefore, each group has a complete

50

development environment and possibility to test their code. Files can still be on
a different file system and groups more likely deliver sub-products between
them rather than develop together. The most important issue in this case is that
the communication works as well as possible between the groups. There are
often few or no unplanned daily contacts between groups, but it is very
important to all developers to have knowledge of the status between groups. In
the software configuration management point of view, especially change
management of common components is important.

Distributed groups and several sites with equal servers would be an ideal
choice for global software development in developers’ point of view.
Unfortunately, there is no software configuration management tool that would
support the architecture at the time. This architecture creates demands on how
to implement the updating of the repository so that all configuration items are
in the same state in every server without slowing down developers work with
constant updates. In this case, communication is again important. All
developers need to know what others are doing, how the project is proceeding,
and which changes have been done and by whom. The SCM tool should have a
strong support on division of files and on concurrent, simultaneous changes.

4.7. The object-oriented team model
An interesting approach on overcoming the barriers of global software
development is presented in the article of Ramesh and Dennis [2002]. Ramesh
and Dennis have analysed different global software development projects to
find the key technologies and work processes of a successful global software
development team. A traditional approach in research suggests using
information rich media as much as possible to drive the project and to
overcome the distance. Ramesh and Dennis found out a strikingly different
pattern of interaction in their study. They term a team using this new pattern as
“Object-oriented team” and the traditionally working team as “Integrated
team”. In the following paragraphs, I will present the Object-oriented team
model, since it is very interesting in point of view of this thesis. The integrated
team model is left out, since it is not in focus of this thesis.

The Object-oriented team strives to decouple team members through the use
of semantically rich media. The decoupling is meant to decrease the ripple
effects of changes in tightly coupled systems. The Object-oriented team model
tries to avoid this tight coupling using a set of independent objects. These
objects

• have a standardised or well-defined processes,

51

• exchange information with other objects through well-defined
semantically rich interfaces, and

• produce a decreased flow of information.
The Object-oriented team uses well-defined processes and data. Each phase

of the software project has clearly defined inputs and outputs, and rules for
performing the work. The use of standard templates for documents is one key
factor in facilitating effective communication among team members. However,
while the processes and data are well defined, the assignments faced by the
team are not.

The communication and coordination among the Object-oriented team
members occurs mostly through well-defined messages passed via semantically
rich media. Semantically rich media enable the transmission of information in
containers that provide meaning beyond the information itself. These digital
containers clarify, extend, and constrain the meaning of the information so that
it is easier for recipient to understand. All the interviewees of the study of
Ramesh and Dennis agreed that the availability of the semantically rich
repositories was “the most important thing”. From a theoretical perspective,
these semantically rich media enable the sender to edit and rehearse the
information to ensure the meaning is conveyed exactly as intended. They also
enable recipient to reprocess the message multiple times until the correct
meaning has been extracted. The semantically rich media usually enable the
recipient to manage information complexity by providing search capabilities
and different views of the information. Many of the media automatically collect
statistics and enable analyses of the information that would be practically
impossible to collect from less semantically rich media.

The use of well-defined processes and semantically rich media, enable the
decoupling of team members and a reduction in the flow of information. Once
complexity goes beyond a certain level, it becomes impractical to communicate
with information rich media. Thus, semantically rich media are needed to
reduce the unneeded flow of information. Semantically rich media enable the
“selective push” or the “selective pull” of coordination information. In the
Object-oriented team, communication and coordination occurs mostly using
semantically rich media. Nonetheless, information rich media is used to
supplement the semantically rich media.

As an implication, Ramesh and Dennis state that they need additional
research on the Object-oriented team model to seek additional evidence about
its applicability. One challenge for the future lies in understanding when each
form of team is appropriate. Ramesh and Dennis speculate that the Object-
oriented team model may be most appropriate for large and complex projects,

52

while the Integrated team model may work on smaller and less complex
projects.

In the point of view of this thesis, the Object-oriented team model is
interesting. Software configuration management systems correspond exactly to
the description of a semantically rich medium. Software configuration
management systems have document, code and bug repositories, which track
changes, include comments about changes and history data. They provide
search capabilities and different views of the information, and collect statistics.
As the semantically rich media play a major role in the Object-oriented team
model, we may conclude that the software configuration management system
can be in a key role of a successful global software development project.
Nonetheless, the research work about the Object-oriented model is still in
progress and the results of the future studies should be followed closely. There
can emerge new demands and valuable observations to consider when
designing the software configuration management systems for global software
projects.

4.8. Implications
Today most organisations have software configuration management systems
that cover all the areas of software configuration management. However, many
of the systems lack a proper support for global software development. In
addition, the commercial software configuration management tools do not have
complete solutions to overcome and deal with all the challenges of global
software development. Thus, the global software development has impacts on
software configuration management and those impacts need to be analysed to
produce a successful global software project.

As a conclusion of the sections above, I state that in successful global
software projects the role of software configuration management is greater than
in local projects. Communicating in regular group meetings and having
informal conversations together with some simple software configuration
management system, which is mainly used in version and change control, may
manage local projects. Global software projects need a properly defined
software configuration management system with a full-fledged software
configuration management tool. The SCM tool needs to be easy to use, so that
every project member at every site would use it. The tool needs to ensure secure
data transmission over the public network. And the software configuration
management system has to guarantee reliable processes that are followed
correctly at each site. Otherwise, the SCM system cannot fulfil the challenges of
global software development. The requirements global software development

53

brings to software configuration management are collected from the sections
above and divided in three groups: security, reliability and ease of use.

The requirements of security, reliability and ease of use relate to
configuration identification, configuration control, and status accounting areas
of software configuration management system. These areas have functions that
need extra consideration when developing SCM system for global software
projects. Figure 12 represents how the single requirements in these three groups
divide between the SCM tool and SCM processes. The single requirements are
described more detailed in sections 5.4.1, 5.4.2, and 5.4.3. In an ideal situation, a
commercial SCM tool has solutions to all these requirements. However, usually
some of the requirements need to be solved with rules and defined processes. In
Figure 12, those requirements are listed at both sides. The chosen distribution
model and architecture change slightly the influence of the requirements to
these processes, but here the implications are covered on a more common level.

easy change tracking
integration to other tools
customisable
user-friendly user interface

Ease of use
requirements

dependencies
synchronisation control
change control

dependencies
synchronisation control
change control
system performance
replication

Reliability
requirements

access controlaccess control
network problems
secure and private data
transmission
compatibility with firewalls

Security
requirements

SCM processesSCM tool

easy change tracking
integration to other tools
customisable
user-friendly user interface

Ease of use
requirements

dependencies
synchronisation control
change control

dependencies
synchronisation control
change control
system performance
replication

Reliability
requirements

access controlaccess control
network problems
secure and private data
transmission
compatibility with firewalls

Security
requirements

SCM processesSCM tool

Figure 12 The requirements of global software development on software
configuration management systems.

On security issues, the main concern is the access control. The software
configuration management tool should handle properly the other issues, which
include the possible network problems, the security and privacy issues in data
transmission, and the compatibility issues with corporate firewalls. In global
software development, the access rights must be given only to necessary people
at all sites. It must be assured that these people really are able to access the
configuration items regardless of where they are. Possible solutions are to grant

54

the access rights in a centralised way, or from all development sites
independently.

The requirement of reliability means that the members of the software
project must be able to trust the software configuration management system.
They need to know that all configuration items are safely stored, easily
accessible, and nothing unexpected can happen to their work. In global
software development, the difficult parts are dependencies between
configuration items, synchronisation control, change control, system
performance, and replication of the repositories. The dependencies between
configuration items are inevitable, but in global software development the
amount of dependencies between different sites should be as small as possible.
Otherwise, the dependencies can cause complexity and slowness to the work.
The synchronisation control deals with the parallel changes, but in global
software development it has to cope with parallel changes happening
simultaneously at different sites. If the software configuration management tool
does not handle these situations automatically, the software configuration
management system has to have procedures to avoid overwriting the other
developer’s work. The change control procedures have to solve issues like how
to analyse the impact of the change at all sites and inform the necessary people.
The Change Control Board needs to have representatives from all sites to be
sure that the impact of the change is fully analysed. The system performance of
the software configuration management tool should be optimal also when
working from another sites. The repositories must be replicated frequently to
guarantee that all necessary information is accessible and up to date at all sites.
Members of the project should be aware of the replication frequency.

The software configuration management system should enable an easy way
to see what has happened, who is the responsible person, and how she did it.
This information is what all the members of the software project need. In global
software projects, this information is even more important for the members to
follow the status of the project and the configuration items at other sites. It may
be that the members from different sites have not ever met each other, so it is
difficult to know whom to contact. Thus, the information should be available
through the SCM system. The software configuration management tool should
provide a user interface, where it is easy to track changes from different sites. In
global software development, it is important for the SCM tool to be
customisable to different kinds of projects, since the project can be anything
from a small project developed at one site to a large multisite project. The
capability to integrate the SCM tool to other tools brings transparency into the
project, which is particularly useful in global software projects. A user-friendly

55

user interface will make it more tempting to use the software configuration
management tool and utilise all the information the system gathers.

The software configuration management system should compensate the
decreased amount of informal communication by forcing to increase the
amount of formal communication. Software configuration management system
should define processes that force members of the project to add additional
information to the repositories to clarify the actual configuration items. This
information may include descriptions of the items and their status, for example.
The SCM system should also gather automatically as much information as
possible to provide meaning beyond the information itself to represent the
semantically rich medium. This makes it easier for the recipient to understand
the information, but it should not become a burden to the sender. The
information should also help managers to be aware of the status of the project
at all sites.

56

5. Case study: RC2 project in Nokia Networks
In this chapter, I describe and analyse the methods used in a real-life global
software development project. The project has been ongoing in Nokia
Networks. The target of a project is to produce an optional module of a large
software product. The project (and the product the project is producing) is
called RC2.

Nokia Networks provides mobile, broadband and IP networks and related
services. The company develops mobile data applications and solutions for
operators and Internet service providers. One of the offered products is
network management system. The network management system is divided in
several independent hierarchical components and customers can collect the
components they need to manage their network. RC2 project implements one of
the upper level components.

RC2 it is being developed at three different sites in Finland. The project uses
a common platform as a ground for the development. A partner company
abroad maintains one part of the platform and the other part of the platform is
developed at two sites inside Nokia Networks. The other site is in Finland and
the other is in Central Europe. The development is mainly done in UNIX
environment. Some parts of the project are done in Windows environment,
including the part of the platform that is developed in Finland, but those parts
are left out from the scope of this case study. RC2 is using Rational’s ClearCase
as the software configuration management tool.

5.1. Basic concepts of ClearCase
ClearCase is a software configuration management tool made by Rational. It
helps software development teams to track the files and directories used to
create software, and enables them to manage the development and build
processes. It also enables them to re-create the source base from which a
software system was built, allowing it to be rebuilt, debugged, and updated.
ClearCase is specifically designed to support parallel development, whether it
means isolating the work of one developer from others on a small team,
developing multiple releases in parallel using different teams, or sharing a
source code base between multiple teams at geographically distributed sites.
[ClearCase, 1999]

Files and directories are called elements in ClearCase and they are stored in a
repository called versioned object base (VOB). The historical versions of the files
in the VOB are stored in data container files. The VOB database records the
evolution of the version-controlled file-system objects, and stores the associated

57

metadata. Elements can be accessed and changed using a view. A VOB contains
all versions of a particular set of elements. A view selects a specific version of
each element using a set of rules called a configuration specification (config spec). A
VOB looks like an ordinary file-system directory tree when accessed through a
view. ClearCase uses a checkout-edit-checkin model to manage changes to
elements.

ClearCase MultiSite extends ClearCase by supporting parallel software
development and software reuse across geographically distributed project
teams. ClearCase MultiSite enables developers at different locations to use the
same VOB. Each site has its own replica of that VOB. The set of replicas for a
particular VOB is called a VOB family. Each replica includes a full set of data
containers and a complete copy of the VOB database. At its site, a replica
appears to be a regular VOB. Regular ClearCase use models apply to the use of
replicas. At any time, a site can propagate the changes made in its own VOB
replica to the other members of the VOB family, using either an automatic or
manual synchronization process. Thus, the replicas in ClearCase MultiSite are
weakly consistent. MultiSite can also be used at a single geographical location,
to allow independent groups to work with the same development data, to
enable interoperation in a mixed UNIX/Windows networks, or to be a backup
mechanism.

5.2. Basic concepts of the SCM system
RC2 project is using a software configuration management system that is based
on ClearCase, ClearCase MultiSite, and some custom scripts on top of them. All
configuration items are created and stored in source VOBs. There are also
additional VOBs, which contain tools for building the software product and
tools for administrating the software configuration management system. Each
configuration item has a main branch, which represents the principal line of
development. Sub-branches can be created for special purposes. Common cases
for sub-branches are parallel development, maintenance work and trials. In
ClearCase, one site always owns each branch.

All members of the project need a view to access the configuration items in
ClearCase. Usually every developer has an own personal view (or several
views), but views can also be shared between developers. A view for building
the software product is one example of a common view.

The change control system is based on the usage of labels. All versions of
configuration items belonging to one change are marked with a change specific
label. The change labels include the description of the change. Labels are also
used to mark the new configuration of the software product after every build.

58

The numbering system in the label names of the software builds indicates the
phase where the project is.

ClearCase records automatically a lot of information on what happens
inside the tool. It stores information of who did a change and when it
happened. Developers can compare different file versions, do searches, and
look at the history of the configuration items. The members of the project can
view the whole version tree of the configuration items and see the descriptions
of each version, label, or branch type. ClearCase keeps also book on which
versions were included in the build and how the derived objects were created.

The source VOBs of RC2 are replicated to the development sites, since RC2
is a global software project. The ownership of different branches in a version
tree of a configuration item can reside in different VOB replicas. Thus, same
source files can be modified simultaneously at different sites. The simultaneous
modifications are done in different branches, since developers cannot modify a
version in a branch owned by another site.

5.3. Used models and architectures
RC2 is divided into several smaller parts called subsystems. Each subsystem
has one development team that is responsible of it. Most of the development
teams are located at the same site in Finland. However, one subsystem is
divided between a Nokia team at another site in Finland and a subcontractor
team. The platform is developed in Central Europe and it contains the part the
partner company abroad is producing. Thus, there are two combinations of
models and architectures used in RC2: subcontracting with several sites by master-
slave connections and co-located groups with several sites in different areas of
responsibility. The subcontracting team and the partner company abroad are
using the first combination when distributing work with the teams at Nokia
Networks. The teams at Nokia Networks are using the second combinations
when distributing work between them. Occasionally individual developers use
distance working as their distributed development model. At that time their
architecture can be remote login or laptop computer to a server.

Nokia Networks offers a development environment to the subcontractor
team. The subcontractor team has an access to an environment maintained by
Nokia, which contains a ClearCase server and subcontractor specific ClearCase
clients [Nokia, 2001]. Nokia ClearCase administrator and the software
configuration management responsible person in RC2 have set up the necessary
software configuration management environment. They are also responsible of
the updates and managing the possible errors in the environment. There are
firewalls between subcontractors’ hosts and Nokia Intranet. Hence, a

59

subcontractor team never has an immediate access to Intranet and they can only
see sources replicated to the server in the Extranet.

In the Nokia maintained environment, subcontractor teams can do the
development either on their own hosts using their own SCM tool and
procedures, or connecting to the ClearCase clients owned by Nokia [Nokia,
2001]. The subcontractor team in RC2 is working on clients of the Extranet.
Thus, the whole version history of all the elements the subcontractor team has
implemented is stored in ClearCase VOBs in the Extranet. The Extranet server is
acting as a slave server and the Intranet server as a master server.
Synchronisation is done several times per day.

For the platform part that is produced by the partner company abroad, the
architecture is same but it is implemented slightly differently. The team in the
partner company works at their own premises and use their own ClearCase
servers and clients. The team members can decide themselves how to handle
SCM inside their own environment, but they have to store the code in
ClearCase VOBs. The ClearCase server at the partner company is acting as a
slave server and the server at Nokia Networks is acting as a master server. The
replication is done through firewalls at Nokia and at the partner company, so
the firewalls need appropriate configuring.

The three sites inside Nokia Networks have divided the work so that they
can be as independent as possible. The teams have access to the latest stable
version of the subsystems the other teams are working on. They have no write
access to the files belonging to the subsystems they are not responsible of.
Replication between sites is done automatically and updates happen to both
directions. The VOBs can have both original configuration items and replicas
from other configuration items.

5.4. Impacts on the SCM system
The earlier versions of the network management system product were
developed using RCS version control tool. The tool was enhanced with custom
scripts to advance the change control procedures. Nokia Networks had several
development sites already then and there was a growing trend to increase the
cooperation between these sites. At some point, it was inevitable that RCS and
the custom scripts were not enough to handle the demands towards the
software configuration management system. The network management system
product needed a full-fledged third generation software configuration
management tool to respond to the new requirements. The tool needed to be
more scalable and flexible, because the projects were growing and becoming

60

more complex. It was also required that the tool would support global software
development. The new tool that was selected was ClearCase.

One of the reasons to select ClearCase was that ClearCase offered an
optional package of functionalities called ClearCase MultiSite. ClearCase
MultiSite is specifically developed to support global software development
projects. It has features that enable developers at different locations to access
the same data containers and to distribute their development efforts. It contains
features that print time stamps that reflect local time and features that enable a
configuration item with multiple branches to be developed in different sites
concurrently, for example.

As stated in chapter 4.8 there are three groups of requirements for software
configuration management systems in global software development. The
groups are security, reliability, and ease of use. Usually the software
configuration management tool responds to some of the requirements. Rules
and processes are defined depending on the capabilities of the used tool. Thus,
an appropriate SCM tool is a necessity for a successful SCM system in global
software projects.

5.4.1. Impacts of the security requirements
In the case of RC2 project, ClearCase provides the solution to the requirements
concerning security. ClearCase handles the security and privacy issues in data
transmission, it can recover from many network problems, and it is compatible
with the firewall solutions. ClearCase has a security model and the way access
rights are defined by the security policy devised by actual projects. This means
that RC2 can define how the access rights are granted.

5.4.2. Impacts of the reliability requirements
ClearCase offers solutions to some of the reliability requirements. It takes care
of synchronisation control, system performance, and replication after all sites
have defined common procedures for these. But there were still few areas in
reliability group, which needed consideration in RC2 project. The following
problematic areas were found during the early stages of the RC2 project when
the SCM system was taken into use.

The problems had to do with dependencies and change control. The
dependencies between configuration items at different sites caused problems
when compiling and building the software product. In the software
configuration management system of RC2, the building procedures are based
on the usage of the build avoidance. ClearCase supports build avoidance as an
in-built feature. The idea is to reuse the existing compilation results when

61

possible to reduce the overall building time. Thus, every time a developer
compiles her published changes ClearCase saves the compilation results. When
other developers later need the compilation results for their code, ClearCase
looks for the saved compilation results and uses them instead of recompiling
everything. This feature has reduced the building time of the whole product
tremendously. However, sometimes build avoidance can be a burden to an
individual developer because of the source code dependencies between sites.
The dependencies can form a chain, where a code of one developer has
dependencies on another configuration items controlled by other developers.
These items may have dependencies on some more configuration items, and so
on. This chain of dependencies can include multitude of configuration items
from several developers. When a configuration item at the end of the chain is
changed and compiled, the whole chain needs to be recompiled to have correct
results. When some of these configuration items are at another site, the
compilation time draws out very long. The reason for that is that ClearCase
cannot look for the saved compilation results from the other sites. Thus, it needs
to compile everything from the scratch and it takes a lot of time.

These compilation duration problems surprised the developers in RC2.
When developer took the new label into use, it might happen that she was the
first one to compile everything from scratch. Thus, it made the problem very
unpredictable. The project had already minimised the amount of dependencies,
but sometimes the problem still came up. There were two solutions in
consideration. One solution was to save the compilation result to a separate
VOB after every subsystem build. The developers would use these ready results
in their compilations to avoid the long compilation times. The other solution
was to create a script that tracks the need to compile the configuration items in
the chain. The script would ask the developer what to do, if it notices a
dependency to a changed configuration item at the other site and a need to
recompile many configuration items in the chain. The possibilities would be to
compile everything or use the older versions, which are compiled already.
Thus, it would be the developer’s choice whether she needs the new results and
is willing to wait or not.

The change control procedures lacked solution on how to inform the
necessary people at all sites about the published changes. This communication
problem is typical in the combination of co-located groups and several sites with
differing areas of responsibility. In RC2, the approved and published changes are
communicated using labels. Labels are included to the config specs, which then
select the right version of the configuration items. Occasionally the information
of the labels and what kinds of changes are included in the newest release was

62

not communicated to all necessary people. However, when the information was
communicated properly, there were additional problems. All of the changed
files were not necessarily replicated to the other sites at time when the request
to use new labels arrived. There were again two solutions considered. First was
to define strict procedures for communicating the information about the labels,
and the second was to create a script to do it. The procedures define who sends
the information to whom and when. They also define a person whose
responsibility is to check that the changes have been replicated to the other sites
before sending the information. The script automatically sends an email to
defined group of people when a new label is attached to the changed files.
Similarly the script checks that the changes are replicated to the other sites
before it sends the email.

The building of the replicated configuration items may fail due the
differences in the development environments. In RC2, this problem was not so
significant because of the chose distribution architecture. Several sites with
master-slave connections makes it easier to synchronise the replicas, since both
sites are using the same SCM tool to store their configuration items. A solution
to this problem was to keep the development environments consistent. For
example, storing the development tools into a VOB solves this issue. The tools
in VOBs are labelled during the build, so that the labels show the correct
version of them.

5.4.3. Impacts of the ease of use requirements
The requirements in the ease of use -group also bring out issues on the SCM
system. Especially in UNIX environment ClearCase is not a very easy tool to
use. ClearCase has plenty information on what has happened and how, but it is
not an easy task to find relevant piece of information when the task is at hand.
ClearCase has a command line interface and a graphical user interface to satisfy
the needs of different kinds of users. Some people prefer to use shell
commands. They are accustomed using them, they find that command line
interface provides quicker way to do batch tasks, and they can do own aliases
for the commands. Other people prefer graphical user interfaces. They like to
visualise their work, and to select the commands from predefined menus. In
ClearCase, the graphical user interface in UNIX is slightly slower to use than
the command line user interface. The graphical user interface is good at some
tasks like when looking at the version tree of a configuration item. However, it
needs to be started separately, which is not very convenient. The major
drawback is that custom scripts cannot be used via the graphical user interface.

63

In RC2, most developers use ClearCase with the command line user
interface. Since the project has many custom scripts to guide the developer
through the change control procedures, it is impossible to do the work using
mainly the graphical user interface. This is a big limitation since different users
of the project need different types of user interfaces. However, since the
graphical user interface in ClearCase is very slow to use, it is not reasonable to
try to configure it to show also the custom scripts. In this case, I believe that it is
better to wait for Rational to improve the graphical user interface first.

64

6. Conclusions
During the recent decades the trend in software engineering has been towards
global software development. A growing number of organisations have
development sites in several countries, are using subcontractors, or forming
virtual corporations. While the software projects are controlled with software
configuration management systems, it is inevitable that the global software
development has some impact on those systems. The intention of this thesis
was to find what kind of an impact the global software development has.

I have used a constructive method in this thesis to clarify the theories and
concepts of software configuration management and global software
development. I have presented results from several studies of the impacts
global software development has on software projects overall. From the results
I have picked up the ones that relate to software configuration management
systems and analysed them more. The conclusions of this analysis are presented
here as results of this work.

The main impact global software development has on software
configuration management is that in successful global software projects the role
of software configuration management is greater than in local projects. Global
software projects need a secure, reliable and ease of use software configuration
management system. The most important thing is to select a software
configuration management tool, which takes care of most of the requirements.
However, each SCM tool needs also appropriate processes to fulfil all the
requirements.

Depending on the SCM system, organisations can enhance the system by
improving the software configuration management tool or by modifying the
processes of the software configuration management system. If the SCM system
is new, the organisation can satisfy most of the requirements by choosing a
commercial software configuration management tool that best supports global
software development and needs less defining of appropriate processes. Free
tools usually do not have enough capabilities to support global software
projects, but the third generation commercial tools already contain many
necessary features. If the SCM system is already in use, it can be enhanced by
defining strict processes or by building custom tools on top of the used software
configuration management tool.

The requirements global software development has on security issues
concentrate on access control, handling network problems, granting secure and
private data transmission, and being compatible with corporate firewall. The
software configuration management tool can handle all of these issues, but in

65

access control also strict processes can fulfil the extra requirements. The
requirements of reliability are handled by decreasing dependencies between
configuration items, enhancing synchronisation control and change control to
work in multisite environment, and optimising system performance and
replication of repositories. The requirement on ease of use is even more
important in global software development. Since the role of software
configuration management is emphasized, the user interface of the SCM tool
should be so easy to use that it would be tempting to the members of the project
to utilise all the possibilities the SCM system has. It should provide easy ways
to look and search information from all the sites involved in the project.

The software configuration management system can be the tool that
compensates the decreased amount of informal communication. The theory of
Object-oriented team is very interesting, since its goal is to decouple the team
members and decrease the amount of necessary communication with the use of
semantically rich medium. A software configuration management system fulfils
the requirements of a semantically rich medium. Thus, it would be an
opportunity for future studies to evaluate this theory and the possibility to
utilise SCM system in it. This could be one solution to successful global
software projects in the future.

66

References
[Allen, 1977] Tom Allen, Managing the flow of technology. MIT Press, 1977.
[Allen et al., 1995] Larry Allen, Gary Fernandez, Kenneth Kane, David Leblang,

Debra Minard, John Posner: ClearCase MultiSite: Supporting
geographically-distributed software development. In: Software
Configuration Management: selected papers / ICSE SCM-4 and SCM-5
Workshops, 194-214.

[Asklund, 1999] Ulf Asklund, Configuration Management for Distributed
Development - Practice and Needs. Licentiate thesis, Dept. of Computer
Science, Lund University, Sweden, 1999.

[Battin et al., 2001] Robert D. Battin, Ron Crocker, Joe Kreidler, K. Subramanian,
Leveraging resources in global software development. IEEE Software, 18, 2
(March/April 2001), 70-77.

[Berlack, 1992] H. Ronald Berlack, Software Configuration Management. John
Wiley & Sons, Inc., 1992.

[Bounds and Dart, 1993] Nadine M. Bounds, Susan A. Dart, Configuration
Management (CM) Plans: The Beginning to Your CM Solution. Technical
Report, Software Engineering Institute, Carnegie-Mellon University, 1993.

[Carmel, 1999] Erran Carmel, Global Software Teams: Collaborating Across Borders
And Time Zones. Prentice-Hall PTR, 1999.

[Carmel and Agarwal, 2001] Erran Carmel, Ritu Agarwal, Tactical approaches
for alleviating distance in global software development. IEEE Software, 18,
2 (March/April 2001), 22-29.

[Chan and Hung, 1997] Angus K. F. Chan, Sheeung-Iun Hung, Software
configuration management tools. In: Proceedings of the Eight IEEE
International Workshop on Software Technology and Engineering Practice
incorporating Computer Aided Software Engineering, 238-250.

[ClearCase, 1999] Introduction to ClearCase. Rational Software Corporation, 1999.
[Cocchio and Puttero, 1999] L. Cocchio, D. Puttero, Industrial requirements for

distributed SCM tool. Software Quality Journal, 8, 2 (October 1999), 111-120.
[Damian, 2002] Daniela Damian, Workshop on global software development.

May 21, 2002. Available as http://www.cis.ohio-
state.edu/~nsridhar/ICSE02/GSD/PDF/summary.pdf

[Damian and Zowghi, 2002] Daniela E. Damian, Didar Zowghi, The impact of
stakeholders’ geographical distribution on managing requirements in a
multi-site organisation. In: Proceedings of the 10th IEEE International
Conference on Requirements Engineering, 319-328.

67

[Dart, 1991] Susan Dart, Concepts in configuration management systems. In:
Proceedings of the 3rd International Workshop on Software Configuration
Management, 1-18.

[Do, 1999] Aimee G. Do, The impact of configuration management during the
software product’s lifecycle. In: Proceedings of the 18th Digital Avionics
Systems Conference, 1.A.4-1 - 1.A.4-8.

[Ebert and De Neve, 2001] Christof Ebert, Philip De Neve, Surviving global
software development. IEEE Software, 18, 2 (March/April 2001), 62-69.

[Ebert et al., 2001] Christof Ebert, Casimiro Hernandez Parro, Roland Suttels,
Harald Kolarczyk, Improving validation activities in a global software
development. In: Proceeding of the 23rd International Conference on Software
Engineering, 545-554.

[Estublier, 2000] Jacky Estublier, Software configuration management: a
roadmap. In: Proceedings of the 22nd International Conference on the Future of
Software Engineering 2000, 279-289.

[Futrell et al., 2002] Robert T. Futrell, Donald F. Shafer, Linda Isabell Shafer,
Quality Software Project Management. Prentice Hall PTR, 2002.

[Gao et al., 1999] Jerry Z. Gao, Cris Chen Yasufumi Toyoshima, David K. Leung,
Engineering on the Internet for global software production. Computer, 32, 5
(May 1999), 38-47.

[Grinter, 1996] Rebecca E. Grinter, Understanding the role of configuration
management systems in software development. In: Proceedings of the CHI
’96 conference companion on Human factors in computing systems, 39-40.

[Grudin, 1988] Jonathan Grudin, Why CSCW applications fail: problems in the
design and evaluation of organizational interfaces. In: Proceedings of the
conference on Computer-supported cooperative work, 85-93.

[Haag et al., 1997] Z. Haag, R. Foley, J. Newman, Software process
improvement in geographically distributed software engineering: an
initial evaluation. In: Proceedings of the 23rd EUROMICRO Conference: New
Frontiers of Information Technology, 134-141.

[Haywood, 2000] Martha Haywood, Working in virtual teams: a tale of two
projects and many cities. IT Professional, 2, 2 (March/April 2000), 58-60.

[Herbsleb and Moitra, 2001] James D. Herbsleb, Deependra Moitra, Global
software development. IEEE Software, 18, 2 (March/April 2001), 16-20.

[Herbsleb and Grinter, 1999] James D. Herbsleb, Rebecca E. Grinter,
Architectures, coordination, and distance: Conway’s law and beyond.
IEEE Software, 16, 5 (September/October 1999), 63-70.

[Herbsleb et al., 2001] James D. Herbsleb, Audris Mockus, Thomas A. Finholt,
Rebecca E. Grinter, An empirical study of global software development:

68

distance and speed. In: Proceedings of the 23rd International Conference on
Software Engineering, 81-90.

[Hoek et al., 1995] Andre van der Hoek, Dennis Heimbinger and Alexander L.
Wolf, Does configuration management research have a future? In: Software
Configuration Management: selected papers / ICSE SCM-4 and SCM-5
Workshops, 305-309.

[Hofstede, 1997] G. H. Hofstede, Cultures and Organizations: Software of the Mind
- Intercultural Cooperation and Its Importance for Survival. McGraw-Hill, 1997.
[IEEE, 1987] IEEE Guide to Software Configuration Management, The Institute of

Electrical and Electronics Engineers, 1987.
[IEEE, 1990] IEEE Standard Glossary of Software Engineering Terminology, The

Institute of Electrical and Electronics Engineers, 1990.
[IEEE, 1998] IEEE Standard for Software Configuration Management Plans, The

Institute of Electrical and Electronics Engineers, 1989.
[ISO, 1995] ISO 10007: Quality Management - Guidelines for Configuration

Management, International Organization for Standardization, 1995.
[Karolak, 1998] Dale Walter Karolak, Global Software Development: Managing

Virtual Teams And Environments. IEEE Computer Society, 1998.
[Kelly, 1996] Marion V. Kelly, Configuration Management: The Changing Image.

McGraw-Hill Book Company, 1996.
[Leblang and Chase, 1987] D. Leblang and R. Chase, Parallel software

configuration management for networks, IEEE Software, 4, 6 (November
1987), 28-35.

[Leblang and Levine, 1995] David B. Leblang and Paul H. Levine, Software
configuration management: Why is it needed and what should it do? In:
Software Configuration Management: selected papers / ICSE SCM-4 and SCM-5
Workshops, 53-60.

[Leon, 2000] Alexis Leon, A Guide to Software Configuration Management. Artech
House, 2000.

[MacKay, 1995] Stephen A. MacKay, The state of art in concurrent, distributed
configuration management. In: Proceedings of the 5th International Workshop
on Software Configuration Management, 180-193.

[McLaughlin, 1996] Mark McLaughlin, Tackling the problems faced by
geographically dispersed development teams. In: Proceedings of the 2nd Joint
Conference on AUUG 96 and Asia Pacific World Wide Web, 1996.

[MIL, 1994] MIL-STD-498 Software Development and Documentation, The
Department of Defense, 1994.

69

[Mockus and Herbsleb, 2001] Audris Mockus and James Herbsleb, Challenges
of global software development. In: Proceeding of the Seventh International
Software Metrics Symposium, 182-184.

[Mordechai, 1994] Ben-Menachem Mordechai, Software Configuration
Management Guidebook. McGraw-Hill, 1994.

[Moreira, 1999] Mario E. Moreira, The 3 software configuration management
implementation levels. In: Proceedings of the 9th International Symposium of
System Configuration Management SCM-9, 244-254.

[Murugesan, 1999] San Murugesan, Leverage global software development and
distribution using the Internet and Web. Cutter IT Journal, 12, 3 (March
1999), 57-61.

[Nokia, 2001] Nokia Networks, Internal document, December 2001.
[Paulk et al., 1995] Mark C. Paulk, Charles V. Weber, Bill Curtis, Mary Beth

Chrissis, The Capability Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley Publishing Company, 1995.

[Pressman, 1997] Roger S. Pressman, Software Engineering A Practitioner's
Approach. McGraw-Hill Companies, 1997.

[Ramesh and Dennis, 2002] V. Ramesh, Alan R. Dennis, The object-oriented
team: lessons for virtual teams from global software development. In:
Proceedings of the 35th International Conference on System Science, 18-27.

[Rochkind, 1975] M. J. Rochkind, The source code control system. IEEE
Transactions on Software Engineering, SE-1, 4 (December 1975), 364-370.

[Thompson, 1997] S. M. Thompson, Configuration management - keeping it all
together. BT Technology Journal, 15, 3 (July 1997), 48-60.

[Tichy, 1985] W. F. Tichy, RCS - a system for version control. Software - Practice
and Experience, 15, 7 (July 1985), 637-654.

[White, 2000] Brian White, Software Configuration Management Strategies and
Rational ClearCase - A Practical Introduction. Addison-Wesley Publishing
Company, 2000.

[Whitehead, 1999] J. Whitehead, The future of distributed software
development on the Internet. WEB Techniques, 4, 10 (Oct. 1999), 57-63.

[Whitgift, 1991] David Whitgift, Methods and Tools for Software Configuration
Management. John Wiley & Sons, 1991.

