
Using XML in Web Services

Vision of the Future

Timi Soinio

University of Tampere
Department of Computer and
Information Sciences
Master's thesis
June 2000

University of Tampere
Department of Computer and Information Sciences
Timi Soinio: Using XML in Web Services – Vision of the Future
Master's thesis, 97 pages + 20 appendix pages

June 2000

Abstract

World Wide Web (Web, for short) services have traditionally been produced with
techniques that combine the content and presentation of the services. Dynamic
content produced by Web applications also mixes programmatic logic into those
services. For example, ASP (Active Server Pages) and JSP (Java Server Pages) are
techniques where program code is embedded in HTML (Hypertext Markup
Language) pages.

The combination of these three layers – content, logic, and presentation – poses
some challenges to the production, delivery, and consumption of the Web services.
The resulting services are often Web device dependent, have poor content re-use,
and use the network throughput inefficiently. This thesis presents some solutions to
overcome these challenges.

The solutions focus on Extensible Markup Language (XML) and its related
techniques. XML can be used to describe pure content; the presentation is left to
discrete style sheets. The majority of the current Web technologies have not
properly supported the complete separation of content and logic. This thesis
introduces one service platform where this problem has also been solved.

In order to make device independent and network-friendly Web services, it is
necessary to have mechanisms to define the Web device and network properties.
This thesis also presents some of these mechanisms.

Tiivistelmä

Tämän työn aiheena on World Wide Web (WWW)-palvelut. Nykyiset tekniikat
WWW-palvelujen toteuttamiseksi ovat eräiltä osin ongelmallisia. Ne yhdistävät
tiukasti toisiinsa kolme osa-aluetta – sisällön, muodon ja toiminnallisuuden. Tämä
yhdistäminen aiheuttaa haasteita niin palvelujen tuottamiseen, levittämiseen kuin
kuluttamiseenkin. Palvelut ovat usein suunnattuja tietyille päätelaitteille, niiden
sisältö on huonosti uudelleenkäytettävää tai ne saattavat kuluttaa verkon
kapasiteettia tarpeettoman informaation välittämiseen.

Työssä esitetään ratkaisuja näiden haasteiden voittamiseksi. Ratkaisut perustuvat
XML-kieleen (Extensible Markup Language) sekä siihen liittyviin tekniikoihin.
XML:ää voidaan käyttää pelkän informaation, sisällön, kuvaamiseen kun taas
muoto eli ulkoasu voidaan ilmaista erillisien tyylimäärityksien avulla.
Toiminnallisen logiikan erottaminen sisällöstä ei suurimmassa osassa nykyisistä
järjestelmistä ole täydellisesti mahdollista. Tässä työssä esitellään kuitenkin eräs
järjestelmä, jossa tämäkin pulma on ratkaistu.

Pelkät mekanismit laiteriippumattomien ja verkon käyttöä optimoivien palvelujen
toteuttamiseksi eivät vielä riitä, tarvitaan lisäksi tapoja selvittää, millä perusteilla
palvelut pitää kussakin tapauksessa muodostaa. Työssä esitetään myös joitakin
tekniikoita, jotka on kehitetty WWW-sisällön muuntamiseksi vastaamaan
asiakkaiden ja heidän käyttämiensä päätelaitteiden toiveita ja ominaisuuksia.

Keywords: Web services, Web applications, Web publishing, XML, XSL, HTML,
WML

Acknowledgements
I greatly thank Nokia Mobile Phones for giving me the opportunity to do this work
in the first place. Without the resources and support they have given me during the
process, this thesis would not have been finished in its present form. I appreciate all
the help and advice I have received from my colleagues. Special thanks go to
Hannu Hakala and Tommi Ojala who have given me instructions on this work.

During the development and testing of the Schedule Board service, I have had
valuable help and suggestions from other people in my working community. I
would like to thank Hannu Lehtimäki, Hannu Mähönen, Salla Laurikka, and Anna
Mari Salonranta for their time and comments.

A word of thanks goes to Tuija Sonkkila at the library of Helsinki University of
Technology for inspiring me to write this study in a structured format. Based on the
pointers she gave me, I chose the DocBook XML V3.1.3 for the DTD of this work.
I am grateful to Jyrki Nummenmaa and Pertti Järvinen, the supervisors of this
thesis at the University of Tampere. Many thanks also to Virginia Mattila for help
and advice on language.

And finally, I thank my fiancée, Terhi, for her support and love during all those
months I have struggled with this study.

i

Table of Contents
1. Introduction ..1

1.1. Background ...1
1.2. Research Problem and the Goals of the Thesis ...1
1.3. Research Structure and Methods...2

2. Web Publishing and Web Applications..4
2.1. Web Publishing ...4
2.2. Web Applications..5

2.2.1. Dynamic Content Creation Techniques ...5
2.3. Existing Problems ...6

2.3.1. Misuse of Structural Markup Languages ...6
2.3.2. Device Dependency..6
2.3.3. Maintenance Problems ...7
2.3.4. Poor Searchability ..7
2.3.5. Accessibility Problems...8

3. Structured Information ...9
3.1. Different Perspectives of Markup ...9
3.2. XML - Extensible Markup Language ...10
3.3. XML Structure and Syntax ...11

3.3.1. Elements ...12
3.3.2. Entity References ...12
3.3.3. Comments ..13
3.3.4. Processing Instructions...13
3.3.5. CDATA Sections..13
3.3.6. Document Type Declarations...14

3.4. Validity of XML documents ...14
3.4.1. Well-formed XML ...14
3.4.2. Valid XML ...15

3.5. XML vs. SGML ..15
3.6. Applications of XML ..16
3.7. The Three R's of XML ..18

3.7.1. Re-publish ..18
3.7.2. Re-use...19
3.7.3. Re-purpose ...20

3.8. Why Use XML in Web Applications? ..21
3.8.1. Simplicity ...21
3.8.2. Richness of Data Structure...21
3.8.3. International Character Handling ...23

4. Styling XML Documents ...24

ii

4.1. DOM and CSS...24
4.1.1. DOM - Document Object Model ...24
4.1.2. CSS - Cascading Style Sheets ..25
4.1.3. Style with Programming...26

4.2. XSL - Extensible Stylesheet Language...27
4.2.1. XSLT - XSL Transformations..28
4.2.2. XSL Formatting Vocabulary..29
4.2.3. “Formatting Objects Considered Harmful”....................................30
4.2.4. Using XSLT for Client-side and Server-side Styling.....................32
4.2.5. XPath..33

4.3. Using XSL and CSS Together ..33
4.4. Rendering Languages..34

4.4.1. XHTML - Extensible Hypertext Markup Language35
4.4.2. WML - Wireless Markup Language ..36
4.4.3. VoiceXML ...37

5. Customisations and Personalisations ...40
5.1. Client-Specific Web Services by Using User Agent Attributes................40
5.2. RDF - Resource Description Framework..42
5.3. CC/PP - Composite Capabilities / Preferences Profile..............................43

5.3.1. CC/PP Framework..43
5.3.1.1. The CC/PP Data Model...43

5.3.2. CC/PP Exchange Protocol over HTTP...44
5.4. UAProf - User Agent Profiles ...45
5.5. PIDL - Personalized Information Description Language..........................46

5.5.1. Progressive Storage of Processed Content47
5.5.2. Compact Storage of Processed Content ...49

5.6. P3P - Platform for Privacy Preferences...50
5.7. Conclusions ...51

6. XML Clients and Servers ..53
6.1. Client-side Formatting...53

6.1.1. Microsoft Internet Explorer..54
6.1.2. DocZilla..56

6.2. Server-side Formatting..57
6.2.1. XML Enabler..58
6.2.2. Rocket...59
6.2.3. Cocoon ...60

7. Cocoon...62
7.1. What is Cocoon? ...62
7.2. Cocoon's Infrastructure ...63

7.2.1. Architecture..63
7.2.2. Cocoon Cache System..65

7.3. Dynamic Content in Cocoon...66

iii

7.3.1. Servlet Chaining vs. Servlet Nesting..66
7.3.2. Producers and Processors ...67

7.4. Cocoon's Advantages and Disadvantages ...69
7.4.1. Why is Cocoon a good solution? ...69
7.4.2. Has Cocoon any disadvantages? ..70

8. Cocoon Service Implementation: Schedule Board..71
8.1. Background ...71
8.2. Requirements...72
8.3. Implementation..73

8.3.1. Hardware and Software Environment ..73
8.3.2. Schedule Board Service Design ...74

8.4. Conclusions ...80
8.4.1. The Nature of the Application..80
8.4.2. Room for Further Improvement ...81
8.4.3. The Value of This Exercise..81

9. Summary ...82
References ...84
Glossary...92
A. Trilogy DTD...98
B. XSL and CSS..99
C. Inline CC/PP ..101
D. CC/PP with Indirect References ..102
E. Cocoon XSP..104
F. Cocoon DCP ...105
G. Selected Schedule Board Source Files ...106

iv

List of Tables
3-1. Predefined Entities in XML..13

v

List of Figures
3-1. The Relation of XML to Its Applications in theUML Notation.17
3-2. Re-publishing Information [Holman, 1999b]. ..19
3-3. Re-using Information [Holman, 1999b] ...20
3-4. Re-purposing Information [Holman, 1999b]. ...20
3-5. An XML Document as a Tree Structure [Maruyama et al., 1999, p. 43].22
4-1. Styling by Transforming and Rendering...24
4-2. Using DOM and CSS on a Browser [Holman, 1999c].27
4-3. Using DOM and CSS on a Web Host [Holman, 1999c].27
4-4. The XSL Processing Model Overview [Holman, 1999a].29
4-5. The Ladder of Abstraction. ...31
4-6. Using XSL on Both the Server and the Client [Holman, 1999d].32
4-7. XSLT and CSS..34
4-8. Building Applications with XML [(modified from) Connolly, 2000]..............35
4-9. The Deck and Card Metaphor in WML..37
4-10. The Document and Dialog Metaphor in VoiceXML......................................38
5-1. A Basic Idea for Customised Web Services ...40
5-2. Progressive Storage of Processed Content [PIDL, 1999]48
5-3. The Advantage of Progressive Storage [PIDL, 1999]48
5-4. Compact Storage of Processed Contents [PIDL, 1999]....................................49
6-1. Using HTTP to Serve XML Documents from a Web Server [(modified from)

StLaurent and Cerami, 1999, p. 28]. ..53
6-2. Converting Stored Information to XML Using a Servlet [(modified from)

StLaurent and Cerami, 1999, p. 33]. ..53
6-3. Beyond HTML on MSIE. ...55
6-4. Beyond HTML on Netscape. ..56
6-5. A Sample XML document on DocZilla..57
6-6. Using XML on the Server but Sending HTML to the Browser [(modified

from) StLaurent and Cerami, 1999, p. 31]. ..57
6-7. XML Enabler Receives a Request [Tidwell, 1999]. ...59
6-8. XML Enabler Sends the Processed Response [Tidwell, 1999].59
6-9. Typical Interaction Between a Browser and a Web Server Enabled with Rocket

[Floyd, 2000, p. 44]..60
7-1. Cocoon Schema [Cocoon, 2000, guide.html] ...64
8-1. An Office Personnel Schedule Board. ..71
8-2. File Relationships in Schedule Board Requests..74
8-6. File Relationships in Update Requests ...79
B-1. XML Transformed to HTML...99
B-2. XML with XSL and CSS Styling in MSIE5.5 ...100

vi

List of Examples
3-1. A Sample XML Document ...11
5-1. User Agent Attributes in a HTTP Header...40
A-1. Trilogy DTD ..98
B-1. Source document sote.xml..99
B-2. XSLT style sheet sote.xsl ..99
B-3. CSS style sheet sote.css...100
C-1. A sample profile for a hypothetical smart phone [CC/PP, 1999].101
D-1. User agent profile [CC/PP, 1999]. ...102
D-2. Hardware profile [CC/PP, 1999]..103
D-3. Web browser profile [CC/PP, 1999]. ...103
D-4. Mail application profile [CC/PP, 1999] ...103
D-5. Calendar application profile [CC/PP, 1999] ..103
E-1. Embedded XSP logic [Cocoon, 2000, xsp.html]. ...104
F-1. A Sample Document Containing DCP Processing Instructions [Cocoon, 2000,

dcp.html]. ..105
G-1. Source code of board.xml..106
G-2. Source code of board-xsp.xsl ..106
G-3. Source code of board-xsp-html.xsl ..108
G-4. Source code of board-xsp-generalhtml.xsl ...109
G-5. Source code of board.css..111
G-6. Source code of update-xsp.xml ..112

1

Chapter 1. Introduction
1.1. Background

Electronic content distribution has witnessed a huge revolution in the last decade of
the 20th century. Two major factors in this revolution have been the birth of the
World Wide Web (the Web, for short) and the growth of digital cellular telephony
usage, both of which have given content providers new channels to distribute their
products to customers.

Since its conception in the early 1990's, the Web has become a critical component
in the strategic thinking of content providers [Lie and Saarela, 1999]. More
recently, Short Message Service (SMS) and Wireless Application Protocol (WAP)
have provided means of distributing content in wireless telephony networks. Since
WAP offers a chance to access Web content via wireless telephones, there is a
demand to draw these two media together and make their creation process as
uniform as possible.

Online information today is mainly Web-oriented. The content and its formatting
are designed to be viewed on a Web browser. WAP, however, imposes its own
demands on the content due to the more limited capabilities of the browser devices.
Not even Web browsers are all alike in their capabilities; Web content can also be
accessed with e.g. text-only displays, speech synthesizers or Braille devices.

To put this research into a framework, two areas must be covered. One is electronic
publishing, especially aforementioned multipurpose Web publishing, the other is
Web applications. In this thesis, the combination of these two is sometimes called
by a common name Web services. Since wireless telephony networks and the
Internet are gradually converging, Web services will eventually be accessed with
many different terminals, including mobile phones.

1.2. Research Problem and the Goals of the
Thesis

Håkon Lie and Janne Saarela have written about multipurpose Web publishing. In
their article [1999], they discuss the questions that Web publishing poses, including
“How should content be represented to support device independence, searchability,
and efficient network throughput?” They write about multipurpose publishing,

Chapter 1. Introduction

2

where the same content is presented on a range of Web devices 1. The concept of
publishing also forms the basis of this thesis; here the subject matter is expanded to
include online applications. Still, the main problem in this study can be outlined as
in Lie and Saarela's article, i.e.

how to deal with the most important challenges of delivering content on the
network: device independence, content re-use, and network-friendly
encodings.

This thesis aims to study the techniques to overcome those challenges. The
solutions presented are based on Extensible Markup Language (XML) and other
members of the XML specification family, including Extensible Stylesheet
Language (XSL), XSL Transformations (XSLT), Extensible Hypertext Markup
Language (XHTML) and Wireless Markup Language (WML). Using XML as a
generic source language for all content enables the information providers to
separate content and presentation, and the same content source can be combined
with necessary presentations.

One goal of this thesis is to examine and implement a working Web service. The
idea is to make it accessible with both a Web browser and a WAP phone.

1.3. Research Structure and Methods
This thesis is structured into nine chapters, the first one being this Introduction. In
Chapter 2, the present situation of Web services and its existing problems are
discussed.

The next three chapters present the theory of some solutions to improve Web
services. Chapter 3 examines structured information, focusing on one particular
technology, XML. Techniques for styling and representing XML are examined in
Chapter 4. Chapter 5 presents various techniques to customise the content to suit a
particular user and Web device. These include specifications like CC/PP, UAProf,
and PIDL that enable the consumers to choose and access just the content they
want.

The next three chapters present some applications and other software that make use
of the presented solutions in practice. Chapter 6 introduces some existing client and
server software that supports XML as the content format. Chapter 7 presents one
specific publishing platform capable of serving different consumers with different
needs. The platform is called Cocoon [Cocoon, 2000] and it is built on open source
solutions by Apache Software Foundation. Chapter 8 presents the implementation
part of this thesis, the electronic Schedule Board built on Cocoon platform.

1 Along with the concept “multipurpose publishing”, Lie and Saarela present another useful term: as in their
article [1999], “Web device” is used here to denote any hardware or software through which a user accesses
Web content.

Chapter 1. Introduction

3

Chapter 9 concludes the study and gives the final summary.

4

Chapter 2. Web Publishing and Web
Applications

The World Wide Web has become an important channel of information distribution
during the past few years. Since its conception at the beginning of 1990's, the
essence of Web content has shifted from static documents to dynamically created
pages. In this study, Web content is seen as both static and dynamic. The definition
originates from Web technology: either the pages are created in advance (static
content) or they are generated programmatically at request time (dynamic content).

Static content is associated with existing documents and electronic publishing,
while dynamic content is associated with Web applications. This is the key
classification in this chapter.

2.1. Web Publishing
The publication of static documents over Web has traditionally been based on
document description languages such as Hypertext Markup Language (HTML),
Portable Document Format (PDF), and PostScript (PS). For example, the online
version of Web Techniques magazine 2 provides HTML versions of all of its
articles (free of charge). PDF and PS documents have often been created originally
for print media but they have also been made accessible online. A recent addition to
content description formats is Wireless Markup Language (WML) for WAP
content.

Dynamic elements in static HTML and WML documents, and especially in PDF
and PS documents, are scarce. The content has been created once and it is
published as it is, no modifications are made afterwards. To support various
browsers and user demands, content providers may have offered the document in
multiple formats. Some publishers are offering their content in both HTML and
PDF, for example.

During the mid-1990's, the era also known as the Browser Wars 3, some Web sites
were offering their content optimized for one specific browser 4. This meant that
while those Web pages were taking full advantage of one browser's presentational
features, the presentation on other browsers was likely to be poorer. Sites that leant

2 http://www.webtechniques.com/
3 “Browser Wars” was the era when the makers of the two most popular Web browsers, Netscape and Microsoft,
were fighting hard for the dominant market position. It was characterised by the introduction of new, exotic tags
that were often incompatible with the rival browsers.
4 Alas, this habit is still a reality even today. Take a look with a search engine of your choice and search for
pages with keywords “best viewed with netscape” or “best viewed with internet explorer”.

Chapter 2. Web Publishing and Web Applications

5

heavily on graphical content (images and animation), were almost unreadable with
e.g. text-only browsers such as Lynx. This meant that content providers who
wanted their sites to be accessed by as wide as possible an audience would have to
design their pages more wisely.

Luca Passani [2000] has written that the Browser Wars have divided Web
developers into two groups. While one camp insists on producing a unique version
of each HTML page to be viewed with each of the different browsers, the other
group has sought out an alternative idea. It is to use server-side techniques to tweak
up pages dynamically for different Web devices.

Relying mainly on static content is still convenient for some purposes. It is useful
for creating content that does not need to be changed or updated frequently. For
example, online versions of printed articles are published as they are. Online
publications often offer archives of their earlier documents. Archived documents
are seldom changed, they may even have a historical value. An example of such an
archive is World Wide Web Consortium's (W3C) Web History section, containing
documents about the evolution of the Web 5.

2.2. Web Applications
Web applications rely on dynamic content. Dynamic information is created in real
time, according to each user's needs 6. Generated content may depend on individual
user's parameters and preferences, the capabilities of the user's Web device, the
available transmission bandwidth, etc. For example, it is quite common for a Web
site to offer pages in two or more versions: text based, graphic enhanced, with or
without frames, etc. The point is to give the Web device or, preferably, the user the
chance to determine the accessed content.

In his article Where the Web Leads Us, O'Reilly [1999] discusses the role of Web
sites now and in the future. He notes that Web sites can be thought of as
applications: when people are buying books and CDs, they want to use
Amazon.com, not “the Internet” or “the Web”. Web sites as applications represent
an entirely new breed, something one might call an “information application”, or
perhaps even “infoware”.

2.2.1. Dynamic Content Creation Techniques
Conventional techniques to generate dynamic Web content can be divided into two
groups. One group can be characterised as “content-in-logic” techniques, the other

5 W3C's Historical Archives (http://www.w3.org/History/)
6 With Web applications, it is here more appropriate to write about users than viewers or readers. Applications
normally imply some kind of interaction between a system and its user.

Chapter 2. Web Publishing and Web Applications

6

as “logic-in-content” techniques. The terms are not established, they are created for
this thesis only in the absence of generally used terminology.

“Content-in-logic” means that the content generator is a functional component, e.g.
a CGI (Common Gateway Interface) program or a Java servlet, that either has the
content elements hard coded in it or retrieves the information from an external
source.

“Logic-in-content” stands for techniques that take the opposite approach: program
code is embedded in static content, e.g. HTML elements. Microsoft's ASP (Active
Server Pages) and Sun's JSP (Java Server Pages) are examples of these.

Although both techniques may help in the separation of content and logic, it is not
enough. The output of CGI programs, servlets, ASP and JSP pages still have the
content and its presentation mixed together. This is enough to cause some
problems, as seen in the following section.

This study will not dwell on different dynamic content generation techniques more
profoundly. They are not the primary subjects here but they are mentioned in order
to show their deficiency.

2.3. Existing Problems
HTML and WML, created either manually or automatically, specify both the
content structure and the format of the documents. It is this key element in content
creation process, the mixing of structure and presentation, which causes a lot of
problems.

2.3.1. Misuse of Structural Markup Languages
HTML and WML are by definition markup languages. Marking up a document is
describing its structure using metadata, also called tags [Siegel, 1997]. HTML was
originally created to describe scientific documents, especially their structure, not
their presentation [Lie and Saarela, 1999, p. 96]. During the development of the
Web, HTML has expanded also to include presentational markup. For example, <I>
(italics) and (font formatting) are tags which describe how the information
is presented on the Web device. The role of HTML has changed from a structural
markup language to a presentational markup language.

2.3.2. Device Dependency
When Web pages are created with markup that also contains presentational
instructions, pages are created for a specific medium. Generally, this has not been a
serious problem, as the majority of content has originally been created to be viewed
with a personal computer and a graphical Web browser. This has led the role of

Chapter 2. Web Publishing and Web Applications

7

HTML and the Web itself to shift substantially: The Web today is strongly a visual
medium [Siegel, 1997].

However, there have always been situations where it is hard or even impossible to
access visual content with available Web devices. Text that has been laid out
attractively on the computer screen using the <TABLE> tag causes problems when
rendered with a browser that does not support tables 7. As the variety of different
Web devices is more likely to increase than decrease along with mobile Internet
devices, device dependency is no longer acceptable. It is both the consumers' and
the content providers' benefit that the same content can be accessed with all kinds
of terminals.

2.3.3. Maintenance Problems
Mixing content, its presentation, and sometimes even the programmatic logic
together can cause the content provider maintenance problems. Suppose that a
company Web site has a large collection of pages which has a consistent visual
design. Overall page layout with headers, footers, fonts, colours, navigational
elements, etc. stays the same on every page although the content on each page
varies. If every single page has the style information coded along with the content,
making changes to layout means that the changes must be included in all pages.
When the number of pages is high, this work can be very tedious and error prone,
especially if the work is done manually.

Tightly bundled content and logic can cause similar problems. For example,
modifying a JSP file that contains program logic in the document structure would
require changes to both the structure and the logic. Sometimes the responsibilities
for creating and maintaining content, layout and logic are divided between different
persons. Maintaining documents that have all these elements mixed together would
require efforts to ensure that changing one element does not break other elements.

2.3.4. Poor Searchability
Search engines (or rather: their indexing engines) go through Web pages and index
their content automatically. When textual information in a page is indexed, its
context is lost 8: indexing engines have no way to absolutely define the meaning of
textual elements. The semantics in HTML and WML is sparse. HTML was
influenced by presentational document formats, including PostScript. Both HTML
and WML contain such elements as (for bold) and <I> (for italics) that encode
document presentation rather than structure. [Lie and Saarela, 1999, pp. 96-97] and
[WML, 1999, pp. 55-56]

7 Such a browser is for example in Nokia Communicator 9000.
8 This also concerns visual and aural information as well.

Chapter 2. Web Publishing and Web Applications

8

Due to the nature of a visual medium, a part of the information on a Web page
comes from its visual layout. A human reader can generally see what the various
elements on a page represent, at least in a case where the layout of the page is well
designed. Normally, a number followed by the character “°” (e.g. 25°) is
interpreted as a temperature and a number preceded by the character “$” (e.g.
$4.95) is interpreted as a price. A human knows these and many other visual
notations by convention but automatic indexing engines do not. It makes the
indexing even harder when the notations vary among information creators. An
indexing engine can be taught the notation conventions in some specific
information system but to cover all possible notation variations is not reasonable.

As a result of non-contextual indexing, the searchability of information becomes
inefficient. For example, if a reader wants to search for information about films
where Woody Allen is mentioned as an actor, not a director, regular search engines
have no ways to distinguish these two cases.

2.3.5. Accessibility Problems
Using markup languages intended primarily for graphical Web browsers or mobile
phones poses a serious accessibility problem when the same information needs to
be presented on a different kind of user interface. The problem is an issue not only
for disabled people with special types of Web devices, such as aural browsers or
Braille devices, but also for anyone who is temporarily unable to use all his senses.
Situations where a person's normal senses may be limited are e.g. dark or noisy
places, or when the person is driving a car.

Accessibility problems also concern the users of visual Web devices. Screen sizes
and resolutions may vary from a small-screen, low-resolution display of a handheld
Personal Digital Assistant (PDA) device, through a 28" low-resolution display such
as WebTV, to a 15" - 21" high-resolution display of a desktop computer. The job of
rendering HTML using a modality or display resolution different from which it was
originally designed for is a process that usually produces medium- to low-quality
output. This is because it is difficult to extract the relevant content from HTML
documents and separate it from the display directives such as columns, tables,
frames and JavaScript widgets [Flammia, 1997].

9

Chapter 3. Structured Information
This chapter presents some solutions to the problems posed in the previous chapter.
Generally speaking, the answer lies in structured information. Computer encodings
of documents have long concentrated on preserving the final form presentation,
such as a nicely laid-out paper document. Structured document formats take a
different approach; rather than preserving the final form of presentation, they
encode the document's logical structure. In order to achieve device independence,
the layout formatting must be separated from the information content. The
separation also improves document searchability and information re-use in general
[Lie and Saarela, 1999, p. 96].

When delivered to multiple media or to readers with different needs, structured
information can be automatically tailored for particular demands. It can be filtered,
sorted, or re-organised in some other way for various uses and it can be given an
appropriate presentation. Having the original content in the native format of a
particular medium, e.g. an HTML file, is not very effective. Such a format contains
the information only in the structure for one medium and nothing to make the
information accessible in other media or by individual user needs. A generic format
is a better choice for expressing the structure of information. Relational databases
and markup languages are important means for adding this kind of structure [Baker,
1998, pp. 318-319].

The focus of this thesis is on one markup language standard, Extensible Markup
Language (XML), and its related techniques. Database solutions are not discussed
here.

3.1. Different Perspectives of Markup
Holman [1999b] has noted that “markup is everything in a stream of information
that is used to describe the data but isn't the data itself". In other words, markup can
also be called metadata, information about the data. With markup, it is possible to
express that e.g. the text string “Timothy Zahn” means the author of a book in an
online bookstore, not for example the publisher or the title of the book.

Holman [1999b] defines a markup language as “a formal syntax for markup to be
recognized by (parsed by) a computer program". For instance, HTML and WML
are good examples of these. Normally, HTML is parsed by a Web browser and
WML is parsed by a WAP phone microbrowser. Pardi [1999, pp. 10-12] calls these
specific markup languages.

Holman's definition for a meta-markup language is “a syntax description
mechanism to formally describe different markup languages”. Two of the most

Chapter 3. Structured Information

10

important meta-markup languages are SGML and XML. Both of them use a very
similar looking syntax for marking up information, using markers “<” and “>” to
denote markup elements, tags. Pardi's [1999, pp. 10-14] definition of these kind of
languages is generalized markup languages.

3.2. XML - Extensible Markup Language
XML began its life in 1996 when the World Wide Web Consortium (W3C)
working group started to specify a subset of Standard Generalized Markup
Language (SGML) suitable for the Web. The specification gained the status of a
W3C Recommendation 9 in February 1998 [Lie and Saarela, 1999].

XML is not just a language for defining other markup languages, it is a family of
languages. The specifications of all essential XML technologies are coordinated by
W3C, an international industry consortium founded in 1994 to guide the
development of the Web [W3C, 1997]. The specifications released by W3C (also
known as W3C Recommendations) are not official standards in the same sense that
e.g. ISO standards are 10. However, in the Internet community, there are certain
types of documents that are commonly considered as “standards”, especially IETF
11 RFCs (Request for Comments) and W3C Recommendations. Specifications
under development, like IETF Internet Drafts, W3C Proposed Recommendations,
and W3C Working Drafts are often considered as guiding specifications, although
their status is not yet final. XML.com, a Web site dedicated to XML resources, is
referring to all these types of documents in its XML-related standards list
[XML.com, 2000]

When XML was being developed, the design goals were clearly stated. They were
included in the 1.0 specification:

1. XML shall be straightforwardly usable over the Internet.

2. XML shall support a wide variety of applications.

3. XML shall be compatible with SGML.

4. It shall be easy to write programs which process XML documents.

5. The number of optional features in XML is to be kept to the absolute
minimum, ideally zero.

6. XML documents should be human-legible and reasonably clear.

7. The XML design should be prepared quickly.

8. The design of XML shall be formal and concise.

9 Available on W3C's website: http://www.w3.org/TR/1998/REC-xml-19980210
10 SGML is an ISO standard: ISO 8879: 1986.
11 Internet Engineering Task Force. http://www.ietf.org/

Chapter 3. Structured Information

11

9. XML documents shall be easy to create.

10. Terseness in XML markup is of minimal importance [XML, 1998].

Of course, some of these goals may seem somewhat vague and informal. How is it
possible to determine the “easiness” of creating XML applications and documents,
for example?

Walsh [1998] has commented the goals in his technical introduction to XML. For
instance, he notes that while the specification was being developed, the colloquial
way of expressing the fourth goal was that it ought to take about two weeks for a
competent computer science graduate student to build a program that can process
XML documents. The easiness of creating XML documents (goal number 9) arises
from the fact that XML is textual: XML documents can be created with text editors,
shell and Perl scripts, etc. Eventually there will be more sophisticated tools and
editors available for XML.

3.3. XML Structure and Syntax
This section introduces the logical structure and syntax of an XML document. The
purpose is not to give a thorough description of every detail in the language.
Rather, the principal components that form an XML document are explained. We
use a sample XML document (Example 3-1) as a reference.

Example 3-1. A Sample XML Document
01: <?xml version="1.0"?>
02: <!DOCTYPE trilogy SYSTEM "trilogy.dtd">
03: <?my-pi do-some-processing-here?>
04: <!-- This is a sample document presenting
05: some key aspects of XML -->
06: <trilogy title="The Bounty Hunter Wars">

07: <author>K. W. Jeter</author>
08: <part>
09: <title>The Mandalorian Armor</title>
10: <image src="armor.gif"/>
11: </part>
12: <part>

13: <title>Slave Ship</title> &s1;
14: </part>
15: <part>
16: <title>Hard Merchandise</title>
17: </part>
18: </trilogy>

Chapter 3. Structured Information

12

XML documents are composed of markup and content. There are six kinds of
markup that can occur in an XML document: elements, entity references,
comments, processing instructions, marked sections (CDATA sections), and
document type declarations [Walsh, 1998]. Each of these markup concepts is
introduced in the following subsections.

3.3.1. Elements
Elements are the most common form of markup. They are identified by markers
(tags) that surround the content in the document, expressing the nature of it.
Elements form one part of the metadata nature of XML; they give the content
within them a meaning. For example, <author> in our sample document indicates
that “K. W. Jeter ” is the author of the sample trilogy. Elements can also be empty
(such as <image> in our example). They have to be marked with either a trailing
"/>" in the tag (<element/>) or an end-tag right after the start-tag
(<element></element>).

Attributes

 Attributes are name-value pairs that occur within start-tags after the element
name. They refine the nature of the element by defining its characteristics. For
example, title="The Bounty Hunter Wars" (line 6) is an attribute in the
<trilogy> element that states the title of our trilogy.

3.3.2. Entity References
Entities are predefined content that can be added to documents with entity
references. In XML, some characters have been reserved to identify the start of
markup. For example, the left angle bracket (“<”) normally identifies the beginning
of an element start-tag or end-tag. Entity references are a way to insert these
characters into the document content. They can also be used to represent often
repeated or varying text and to include the content of external files.

Entity references are marked with an ampersand (“&”), entity name, and a
semicolon (“;”). For example, < represents the left angle bracket and &s1; (line
13 in our example) represents the string “Sponsored by Kuat Drive Yards”. Table
3-1 shows the five predefined entities in the XML specification [XML, 1998]. The
s1 entity is declared in the Document Type Definition (DTD) of our example
(Appendix A).

Chapter 3. Structured Information

13

Table 3-1. Predefined Entities in XML
Entity Reference Character

< < (opening angle bracket)

> > (closing angle bracket)

& & (ampersand)

' ' (apostrophe)

" " (double quotation mark)

3.3.3. Comments
Comments are the way to add human readable explanations in XML documents.
They begin with “<!--” and end with “-->” (as on lines 4 and 5 in our example).

Comments are not a part of the textual content of an XML document. The XML
specification does not require XML processors to pass them to applications.

3.3.4. Processing Instructions
Processing Instructions (PIs) can be used to provide information to applications.
Like comments, they are not a part of the document character data but XML
processors are required to pass them to applications (line 3 in our example).

PIs have the form <?pitarget pidata?>. The pitarget is used to identify the
application to which the instruction is directed. The pidata part is optional, it is
meant for the application that recognises the target.

The target names “XML”, “xml”, and so on are reserved for XML standardisation
[XML, 1998]. The first line in our example is a very special kind of PI, an XML
declaration. While it is not required, its presence explicitly identifies the document
as an XML document and indicates the version of XML to which it was authored
[Walsh, 1998].

3.3.5. CDATA Sections
CDATA sections instruct the XML parser to literally interpret all characters in
them. They are used to escape blocks of text that would otherwise be recognised as
markup. CDATA sections begin with the string “<![CDATA[” and end with “]]>” .

Our example does not have any CDATA sections but one example could look like
this:

<![CDATA[<anthology>Tales from Jabba's Palace</anthology>]]>.

Chapter 3. Structured Information

14

3.3.6. Document Type Declarations
XML documents may contain a document type declaration (line 2 in our example)
which specifies the document type and the grammar for using the markup. This
grammar is known as a document type definition (DTD). The document type
declaration can point to an external subset containing markup declarations, or it can
contain the markup declarations directly in an internal subset, or it can do both. The
DTD for a document consists of both subsets taken together [XML, 1998].

A DTD has its own, XML-incompatible, syntax. It is not important to present the
syntax in detail here but Appendix A shows the DTD of our example document.

3.4. Validity of XML documents
The XML specification defines two categories of XML documents: well-formed
and valid. The following subsections discuss them both.

3.4.1. Well-formed XML
According to XML specification, a textual object is a well-formed XML document
if it obeys the syntax rules of XML [XML, 1998]. Walsh [1998] lists the rules in
his technical introduction to XML. Since some of the rules rely on concepts in
XML that are not discussed in this study, only some of them are described below.

• The document instance must conform to the grammar of XML documents. In
particular, some markup constructs are only allowed in specific places. The
document is not well-formed if they occur elsewhere, even if the document is
well-formed in all other ways.

• No attribute may appear more than once in the same start-tag.

• Attributes must be declared without ambiguity, notably attribute values must be
enclosed between two similar quotation marks.

• Non-empty tags must be properly nested: any non-empty element must be closed
by its end-tag before its ancestors.

• Empty element tags must be closed or they must contain a slash “/” just before
the end bracket as shown below:

<EMPTYTAG ATTR1="..." ATTR2='...' /> [Walsh, 1998] and [Ouahid and
Karmouch, 1999].

By definition, if a document is not well formed, it is not XML. This implies that
there is no such thing as an XML document that is not well-formed. XML
processors are not required to parse such documents [Walsh, 1998].

Chapter 3. Structured Information

15

In well-formed documents, it is allowed to add any element with any attribute in
any hierarchy, on the condition that the rules for well-formedness are obeyed.
However, XML provides a mechanism to define constraints on the logical structure
of the document, thus forcing the XML files to follow a strict, predefined format.
This mechanism is described in the following subsection.

3.4.2. Valid XML
A valid document is a well-formed document that obeys the rules and the model
defined in an associated Document Type Definition (DTD). A DTD specifies all
the elements that the associated elements may contain, their hierarchy, their types,
and their attributes [Ouahid, 1999, p. 678]. Validation is a process for ensuring that
documents conform to structures defined in the DTD [StLaurent and Cerami, 1999,
p. 90].

The concept of a DTD is borrowed from SGML. SGML documents are required to
have an associated DTD, XML documents are not. While validation is optional for
XML, it can be a useful tool e.g. in gathering conforming information from
individual content creators. For example, if a Web site publishes news stories or
articles created by independent news agencies or editors, it can require that the
delivered content conforms to a mutually agreed DTD.

In valid XML, the model of the document is explicit in the set of declarations
(DTD), while in well-formed XML it is implicit in the hierarchy of the data
[Holman, 1999b].

3.5. XML vs. SGML
XML is generated as an application profile of SGML. This means that any fully
conformant SGML system will be able to read XML documents. The conformance
is not required the other way around, though: XML systems are not required to be
capable of using and understanding the full generality of SGML. Roughly
speaking, XML is a restricted form of SGML [Walsh, 1998]. The main differences
between the languages originate from these restrictions in XML.

Clark [1997] has written a note about comparison of SGML and XML. The
following list presents some of the most notable differences.

Optional Document Type Declaration

 All SGML documents have to be validated against a DTD. For XML
documents, DTDs are optional.

Chapter 3. Structured Information

16

Case Sensitivity

 In SGML, case sensitivity can be controlled by the document declaration. In
XML, case sensitivity is always in use.

Element Minimisation

 SGML elements can be minimised, i.e. their end-tags can be omitted, if the
DTD allows it. For example, the following code fragment is possible in
SGML:

 List item 1

 List item 2
.

In this case, the start of another element also marks the end of the previous
element. Element minimisation is not possible in XML. Instead, all elements
must be properly closed:

 List item 1
 List item 2
.

Empty Elements

 Empty SGML elements can have the form: <emptyelement> but in XML, they
have to be marked as presented in subsection 3.3.1.

Attribute Values

 Attribute values in XML are always required to be enclosed in quotation
marks. In SGML, the quotes can be omitted if it does not affect the readability
of the attribute value. For example, the following markup is valid SGML but
not valid (or even well-formed) XML: <e attr=123>...</e>.

3.6. Applications of XML
As an extensible markup language XML allows the content creators to define new
sets of elements, new types of documents for specific needs. This means that XML
can encode semantics more accurately than HTML and WML [Lie and Saarela,
1999, p. 97]. It is used for defining the content and structure of documents, not their
presentation.

Since 1998, XML has been a base for several document type specifications, also
known as “XML applications”. As St. Laurent and Cerami write [1999, p. 18], an
application of XML or SGML is a particular document structure specified through

Chapter 3. Structured Information

17

the use of tools like document type definitions (DTDs). HTML has originally been
an application of SGML (at least in its standards) but on January 2000 W3C
released a recommendation of XHTML, a reformulation of HTML 4 in XML
[XHTML, 2000]. Wireless Markup Language (WML) is another application of
XML defined by WAP Forum [WML, 1999]. Voice eXtensible Markup language
(VoiceXML) is an application of XML for audio applications, developed in
partnership with AT&T, IBM, Lucent, and Motorola [VoiceXML, 2000a].

It may sometimes be confusing when SGML and XML experts talk about “tagging
information in XML” when they actually mean “tagging information in a language
defined by XML” (e.g. WML). The shorter expression comes from the need for
simplicity and practicality but it is still important to know the underlying concept.
The matter can be drawn an analogy with object oriented analysis. The relationship
between XML and its applications is a classic example of generalisation [Booch et
al., 1999, pp. 64-65]. XML itself can be seen as an abstract base language whereas
e.g. WML is a specialised form of XML (language). Therefore it is reasonable to
say that a document is written in XML when the actual document type used is
WML; a WML document “is-an” XML document. Figure 3-1 shows the
relationship between XML and some of its applications in the Unified Modeling
Language (UML) notation.

Figure 3-1. The Relation of XML to Its Applications in the UML Notation.

Using XML to describe information content and separating the presentational
aspects apart solves the problems that were posed in the earlier chapter. XML
documents can act as the “source” of all content. They can be coupled with several
different presentations, style sheets, that specify how to render each field of XML-
encoded information on various types of Web devices [Flammia, 1997].

According to Baker [1999, p. 318], taking a piece of information created for one
medium and attempting to use it in another medium is done by converting it from
one structure to another. However, every method of content adapting is not based
on modifying the structure of information. For instance, using Cascading Style

Chapter 3. Structured Information

18

Sheets for rendering XML (or HTML) content on different media does not change
the general structure of documents, it only changes the way the content is formatted
[Holman, 1999a]. Therefore, instead of calling the process of adapting content “a
conversion”, it is more convenient to talk about “formatting”. This further
harmonises with the juxtaposition of content and format.

In a network environment, the process of formatting can basically be done on two
places: the Web device (client) or the Web server. Of course, it is also possible to
have certain middle-tier servers, proxies, to handle it but the techniques for that do
not significantly separate from the two basic cases. The following sections discuss
the client-side and server-side approaches in more detail, noting the use of proxies
where applicable.

3.7. The Three R's of XML
Holman [1999b] has presented three roles for the usefulness of XML. These roles,
“The Three R's of XML”, are especially applicable in the field of this study, Web
content. They address the very problems stated in the introduction: how to achieve
device independence, content re-use and efficient network throughput in
multipurpose Web publishing.

3.7.1. Re-publish
When XML documents are the common source of all information content, they can
be re-published to multiple information products (Figure 3-2): paper, CD-ROM,
Web, proprietary format files, etc. [Holman, 1999b]. This is still useful, even if the
products were targetted for the Web alone. As stated earlier, Web content can not
be seen as homogeneous data, accessed only with devices with uniform
capabilities. By adjusting the content for different types of Web devices, the
properties of devices and networks can be taken into account. For example, on a
news provider's front Web page, it may be reasonable to offer only headlines of
news items to a WAP phone but also short abstracts to a Web browser with larger
display screen. Further information can be linked to other pages.

Chapter 3. Structured Information

19

Figure 3-2. Re-publishing Information [Holman, 1999b].

3.7.2. Re-use
Using XML, it is possible to use fragments of included documents in the content of
other documents (Figure 3-3). This helps to decrease the production costs, promote
consistency and enforce corporate standards and use of common material (e.g. legal
statements) [Holman, 1999b]. Here again the benefits also affect Web services: it is
very advisable for Web sites that their pages have a consistent look. Consistency,
after all, is one of the most basic principles in usability engineering [Lewis et al.,
1989].

Chapter 3. Structured Information

20

Figure 3-3. Re-using Information [Holman, 1999b]

3.7.3. Re-purpose
The third role concerns the contentual aspect of information. Using XML, it is
possible to translate a given document into multiple renditions, each applicable to a
different audience (Figure 3-4). This enables the different levels of creators
(writers, editors, technical editors, etc.) to have different views of the content. What
is perhaps more important in the Web environment, it is also possible to offer
different orientations for different kinds of Web devices [Holman, 1999b]. Another
consequence is the possibility to create personalised information for various targets.

Figure 3-4. Re-purposing Information [Holman, 1999b].

According to Holman, re-purpose differs from re-publish in that here the same
information is processed for different purposes and presentations by using the same
medium. Both of these two roles represent a marketing strategy called versioning
where the virtually same content can be slightly altered, re-packaged, and sold to
multiple customer segments [Shapiro and Varian, 1998].

Chapter 3. Structured Information

21

3.8. Why Use XML in Web Applications?
As e.g. Maruyama et al. [1999, pp. 21-22] point out, XML may not be the only or
the most efficient way to achieve the goals of device independence, content re-use,
and network efficiency. For example, relational databases have been commonly
used on server side to contain structured information. Expressing content data in a
binary format instead of a verbose textual format would reduce the amount of data
to be transferred, while using e.g. Internet Inter-ORB Protocol (IIOP) or a Remote
Procedure Call (RPC) instead of HTTP would be much more efficient in terms of
communication bandwidth and computation power [Maruyama et al., 1999, pp. 21-
22].

Maruyama et al. present three of the benefits of using XML in the area of Web
applications: simplicity, richness of data structure, and international character
handling.

3.8.1. Simplicity
Unlike binary formats, XML is human-readable. It is possible to read, create, and
modify the document structure and content data with a simple text editor.
Displaying and editing binary data would require specific software tools.
Implementing such tools would require bit-by-bit understanding of the encoding
format [Maruyama et al., 1999, p. 22].

Although XML as a character-based format is more verbose than binary formats,
this has not been considered a drawback. According to Bray's Annotated XML
Specification [AXML, 1998], clarity always takes precedence over brevity in
XML. Further, the documents and messages encoded in XML can often be
compressed for transmission. This is exactly the approach used in Wireless
Application Protocol where the data communication over narrowband channels is
encoded in binary format. The format is defined in WAP Forum's Binary XML
Content Format Specification [WBXML, 1999].

3.8.2. Richness of Data Structure
Although XML is a textual notation, it is still powerful enough to express complex
data structures. The intrinsic data structure of an XML document is a rooted tree
(Figure 3-5). However, as Maruyama et al. [1999, pp. 23-24] point out, other
structures, such as tables and graphs, might be better suited for certain types of
data. Tables represent the logical data structure of relational databases, and graphs
can represent shared elements and cycled paths.

Chapter 3. Structured Information

22

Figure 3-5. An XML Document as a Tree Structure [Maruyama et al., 1999, p.
43].

Maruyama et al. claim that for many applications a tree structure is still general and
powerful enough to express fairly complex data. This is mostly true in the area of
Web information where the majority of available content has traditionally been
HTML documents. HTML pages tend to have at least some degree of tree structure
in them, although the browsers have been quite forgiving about the compliance
with HTML syntax rules. With XML, the tree structure is always present in well-
formed documents.

The richness of data structures implied in the title of this subsection comes from the
possibility to also express other kinds of data in a tree structure. There are even
ways to represent graphs and tables in a tree, although they may not be the most
efficient solutions. An important characteristic of XML is its ability to conform to
object databases. St. Laurent and Cerami [1999, pp. 36-37] note that XML can be
parsed into object structures and further stored in object databases. Applications
can rapidly access elements and attributes of XML document objects without
requiring the loading and parsing of a sequential file. This would reduce the time
required for processing data on the server side.

Chapter 3. Structured Information

23

3.8.3. International Character Handling
The character set chosen for XML is Unicode (ISO/IEC standard 10646) which has
the benefit of handling international character sets [XML, 1998]. As the Web is
truly a medium without national borders, the possibility of having content also in
foreign alphabets is extremely important. Unicode has currently some 39 000 built-
in letters (and plenty of room for expansion) [Fuchs, 1999], so virtually all the
characters used today all over the world are legal characters [Maruyama et al.,
1999, p. 24].

24

Chapter 4. Styling XML Documents
Holman [1999a] has considered the styling of structured information as comprising
of two major processes: transforming the source information into the organisation
desired for rendering, and rendering the organised information into the presentation
desired for consumption (Figure 4-1) 12.

Figure 4-1. Styling by Transforming and Rendering.

This section examines two approaches for styling: programmatic and declarative.
First comes the programmatic approach, concerning DOM and CSS, then the
declarative method with XSL and XSLT. These two methods are not totally
unrelated, they can also be used together.

4.1. DOM and CSS
This subsection discusses two recommendations that have been created for the
W3C User Interface Domain: Document Object Model and Cascading Style Sheets.
They have been originally developed for HTML-oriented Web but both of them are
fully applicable with XML, too.

4.1.1. DOM - Document Object Model
The W3C Document Object Model (DOM) is a platform- and language-neutral
application programming interface (API) for XML and HTML documents. It
defines the logical structure of documents and the way a document is accessed and
manipulated [DOM1, 1998]. The logical structure is modelled as a tree (as seen in
Figure 3-5).

The DOM interface can be used to create documents, navigate their structure, and
manipulate their elements and content. Thus, an instant of a document tree can be
transformed to another tree structure by adding, changing, and deleting elements
(also known as nodes). For instance, an XML document can be transformed to a
WML document.

12 He has further divided the rendering of information into two major components: the semantics of style
interpreted by the rendering engine and the expression of those semantics.

Chapter 4. Styling XML Documents

25

DOM requires a program to read the entire document structure in the memory
before any processing can be done. There are also APIs that have an alternative,
event-driven approach. Simple API for XML (SAX) is an example of these 13. An
event-driven API allows the document to be manipulated with a one-pass process,
which means it can sometimes be more efficient than DOM. On the other hand, if
the processing requires random access to different parts of the document tree, DOM
API is more useful than a one-pass process [Maruyama et al., 1999, p. 68]. Both
methods have their pros and cons and the reasonable choice depends on the specific
application.

4.1.2. CSS - Cascading Style Sheets
Cascading Style Sheets (CSS) is a mechanism for adding style (e.g. fonts, colours,
spacing) to Web documents. The first release, CSS level 1 (CSS1), came out as
early as December 1996. At that time it was aimed only for HTML documents. The
second level (CSS2), released on May 1998, also included XML in its target
languages. CSS2 was adding media-specific formatting objects that enabled the
content to be made presentable with visual browsers, aural devices, printers, Braille
devices, handheld devices, etc. Currently a W3C working group is developing the
third level of Cascading Style Sheets (CSS3), adding more features to style
formatting.

Cascading style sheets separate content from presentation. In fact, the style sheets
are the presentation instructions that can be applied to one or more instances of
documents. For example, instead of using HTML markup like

<h1 align="center">

 First-level heading
</h1>

for all first-level headings, one could write them as

<h1>First-level heading</h1>

and associate the document with a separate style sheet which could contain the
following instruction:

h1 { text-align: center; color: blue }.

Using CSS2, the content could also be presented on different media. For example, a
style sheet for aural rendering of the preceding heading could contain:

@media speech {
 h1 { volume: loud }
}.

13 SAX is a rare exception in the XML related technologies because it does not originate from W3C. It is
developed by David Megginson and a number of people on the xml-dev mailing list on the Web [Maruyama et
al., 1999, p. 42].

Chapter 4. Styling XML Documents

26

Style sheets make documents simpler to write and maintain. A Web site author can
use a single style sheet for several documents [Korpela, 1998]. This is one example
of re-use mentioned in subsection 3.7.2, only here the re-use is concerning merely
style, not content. On the other hand, content can be re-used by associating one
document with multiple style sheets. This allows the same document to be used in
several publications, without the need to modify the content for particular media
[Palola, 1999].

As a CSS style sheet is typically processed in a Web device, it is an example of
client-side formatting (discussed in more detail in Section 6.1). However, to save
bandwidth for mobile handheld devices, it may be convenient to let a selected
portion of the formatting to be handled on a stationary proxy server. This could be
accomplished by instructing the proxy not to pass e.g. images and other bandwidth
consuming elements to the client:

@media handheld {
 IMG { display: none }

 P { display: none }
 P.ingress { display: block }
}

 [Lie and Saarela, 1999, p. 99].

CSS technology has still its deficiencies. Currently it is only applicable to most
HTML and XML-aware browsers, WAP phones do not understand style sheets. In
addition, as Holman [1999a] points out, CSS is not aimed at the transformation of
the source information prior to its rendering. While it has limited capabilities to
attach ornamental text and images to the document tree before rendering, it does
not have any document manipulation capabilities. CSS does not give one the power
to rearrange components of the document, collate and sort selected components of
the document, or decorate the rendered tree with rich information. In addition,
legacy browsers do not support CSS. Even the recent versions of major browsers 14,
including MSIE and Netscape, do not support the completed CSS specifications in
their entirety [Meyer, 2000].

To accomplish this kind of content manipulation with CSS, the style formatting
must be programmatically executed. This topic is discussed in the following
subsection.

4.1.3. Style with Programming
According to Holman [1999c], styling is “the application of both transformation
and formatting of information to a presented result”. The two W3C
recommendations described above work together to fulfil these two objectives.
DOM can be used to transform information obtained from a source into a particular

14 At the time of writing this thesis, the latest version of MSIE is 5.5 and Netscape is 4.72.

Chapter 4. Styling XML Documents

27

reorganisation while CSS is used for specifying and interpreting formatting
semantics for the presentation of information in different media.

Using DOM requires programming. Programs can be implemented in various
languages and for various execution environments. For example, DOM programs
used on browsers are generally coded with scripting languages such as JavaScript
or VBScript. They can handle the transformation and apply style sheets, as seen in
Figure 4-2.

Figure 4-2. Using DOM and CSS on a Browser [Holman, 1999c].

On the other hand, if the browser is not capable of interpreting scripts, the
transformation can be handled on the server (Figure 4-3).

Figure 4-3. Using DOM and CSS on a Web Host [Holman, 1999c].

4.2. XSL - Extensible Stylesheet Language
This section reviews an alternative technique for styling XML documents.
Extensible Stylesheet Language (XSL) is another language created by W3C User
Interface Domain for expressing style sheets. It consists of two parts: a language for
transforming XML documents (XSLT) and an XML vocabulary for specifying
formatting semantics (XSL). Note that the term “XSL” has actually two meanings:
one is the formatting semantics vocabulary (defined by one specification [XSL,
2000]), the other is the whole Extensible Stylesheet Language concept (defined by

Chapter 4. Styling XML Documents

28

two specifications: [XSLT, 1999] and [XSL, 2000] 15). To avoid confusion, the
formatting semantics part of the XSL language is called XSL:FO in this thesis
(“FO” for Formatting Objects). Although that is not an official acronym, it is
generally used in some sources.

While DOM and CSS are applicable with both HTML and XML, XSL is targetted
solely at XML. In particular, XSL is suitable for highly-structured, data-rich
documents that require extensive formatting [XSL, 1997, #FAQ].

The development of XSL style sheet language begun with one single specification
(released in August 1998). In April 1999 the work was split in two as the XSLT
and XSL:FO parts were separated. Later in July 1999, the XSLT specification was
further divided in two parts as the XPath addressing notation was separated into its
own specification 16. All three specifications are discussed in the following
subsections, the main focus laying in the first two, XSLT and XSL.

4.2.1. XSLT - XSL Transformations
As the name of the specification suggests, XSLT is meant for the transformation
part of styling (depicted in Figure 4-1). The specification defines the syntax and
semantics of XSLT, a language for transforming XML documents into other XML
documents. XSLT is also designed to be used independently of XSL:FO [XSLT,
1999].

The inputs for the transformation process are the source document to be
transformed and the XSL(T) style sheet, both being themselves XML documents
(Figure 4-4). The style sheet node tree consists of templates which describe how
certain structures of the source node tree are used in the result node tree. The
transformation is carried through matching nodes of the source tree to templates in
the style sheet, processing the nodes according to the style sheet rules and building
the result tree from the transformed nodes. It should be noted that the output of the
process is not a document: the result tree is built totally in the XSL Engine. When it
is finished, it may be serialised to target formats (e.g. files) if wanted.

15 Or three, depending on whether XPath [XPath, 1999] is counted as a part of XSL or not.
16 The evolution of the specifications can be examined in the W3C Web site by following the links to previous
versions to the documents.

Chapter 4. Styling XML Documents

29

Figure 4-4. The XSL Processing Model Overview [Holman, 1999a].

Transformation allows the structure of the result tree to be significantly different
from the structure of the source tree. While it is possible to transform an XML tree
into a WML or an HTML tree, it is also possible to add a table-of-contents to the
document, sort some elements in it, etc. The tree transformation process may add
the formatting information to the result tree [XSL, 2000]. This is where XSL:FO
vocabulary comes in. The following section discusses the XSL:FO language and
also gives an example of an XSL template.

4.2.2. XSL Formatting Vocabulary
XSL:FO is a language that brings formatting to the styling process depicted in
Figure 4-1. An XSL:FO style sheet can be used to express how an XML file is
presented; i.e. how the source content should be styled, laid out, and paginated on
some presentation medium.

It should be noted that an XSL:FO document is not absolutely required to be
produced by using the XSLT transformation on another XML document. For
example, it is quite possible to use a converter application that reads TeX and PDF
files and translates them into XSL formatting objects [Harold, 1999].

According to the XSL:FO specification, “formatting is enabled by including
formatting semantics in the result tree. Formatting semantics are expressed in terms
of a catalog of classes of formatting objects. The nodes of the result tree are
formatting objects. The classes of formatting objects denote typographic
abstractions such as page, paragraph, table, and so forth. Finer control over the
presentation of these abstractions is provided by a set of formatting properties, such
as those controlling indents, word- and letter-spacing, and widow, orphan, and

Chapter 4. Styling XML Documents

30

hyphenation control. In XSL[:FO], the classes of formatting objects and formatting
properties provide the vocabulary for expressing presentation intent [XSL, 2000].”

For example, a single XML element

<Heading1>The Headline</Heading1>,

transformed with a XSL style sheet template, such as

<xsl:template match="Heading1">

 <fo:block font-size="1.3em" margin-top="1.5em"
 margin-bottom="0.4em">
 <xsl:apply-templates/>
 </fo:block>
</xsl:template>

would produce into

<fo:block font-size="1.3em" margin-top="1.5em"

 margin-bottom="0.4em">
 The Headline
</fo:block>.

The resulting markup is all about formatting; it consists now of nothing but
instructions of presenting the content. An XML document that is styled with XSL
formatting objects does not contain the richness of data structure that was present in
the original XML source. Replacing the document semantics with presentational
properties decreases the level of abstraction in the content. The result has no
indication of the meaning of the original content [Lie, 1999].

4.2.3. “Formatting Objects Considered Harmful”
In this section we follow Lie's article [1999].

XSL:FO has caused some criticism, too. Lie warns about the misuse of formatting
objects. His main concern is that the use of XSL:FO in the Web is a threat to
accessibility, device-independence, and a semantic Web. This is due to the descent
on “the ladder of abstraction from semantics to presentation” (Figure 4-5), caused
by delivering content with pure formatting. Lie states that it is not formatting
objects per se that are harmful; the harm is done when they are stored and shipped
over on the Web.

Chapter 4. Styling XML Documents

31

Figure 4-5. The Ladder of Abstraction.

Lie speaks for the use of style sheets on the client side. That would gain the
benefits of both rich applications and rich presentations. He is sceptical about the
transformations to XSL:FO on the server: although that would seem a good
solution in theory, it does not work in practice. For example, to successfully present
content aurally, there are four prerequisites:

1. there must be a specification for aural formatting objects,

2. there must be implementations of aural formatting objects,

3. the fact that the user has an aural Web device must be known to the server, and

4. all Web sites must install XSLT sheets to transform content into aural
formatting objects.

In the framework of this study, Lie's example could be expanded to cover all
possible Web devices: browsers, WAP phones, aural devices, Braille devices, etc.
According to Lie, the first two prerequisites will require much time and work. The
third is undesirable, while the fourth is impossible in practice. In other words, it
would not be realistic to expect all Web sites to install XSLT sheets to transform
content into formatting objects for all Web devices.

Lie argues that although XSL:FO is not intended to be used in the web, it is
unlikely that it can be prevented. However, this is a statement where we disagree:
we do not see that HTML or WML would be replaced by XSL:FO. They both are
extremely useful in their own domain: presenting Web content on specific client
types. Web browsers are very likely to have HTML as their content encoding
format in the foreseeable future, too.

We argue that HTML and WML are simpler to learn and use than XSL formatting
objects. For example, a single headline element, presented in HTML as e.g.

<h1>The Headline</h1>

would require considerably more formatting in XSL:FO, like:

<fo:block font-size="2em" font-weight="bold">

Chapter 4. Styling XML Documents

32

 The Headline
</fo:block>.

More generally, XSL:FO has more formatting objects and object properties
concerning the overall layout than HTML. This is because HTML still has some
implicit semantics: e.g. <h1> is interpreted as a first-level-headline and it is usually
presented with enlarged, boldface font type. As browsers already have a default
rendering style for all known elements, there is no need to describe them again in a
style sheet (unless the default is wanted to be overwritten).

As Lie notes, the abstraction levels in HTML and WML are “high enough” so that
device independence and accessibility is preserved. They are, and continue to be,
good formats for delivering content from a server to Web devices. XML and XSL
style sheets can be used effectively on the server side.

4.2.4. Using XSLT for Client-side and Server-side
Styling

The optimal method to use XML and XSL could be a combination of server-side
and client-side XSLT processing (Figure 4-6). First, the Web server must be able to
detect the level of XML/XSLT-support of browsers. For legacy browsers, it can
perform the XSLT processing by itself and send them HTML and WML as a
response. The server can send both the XML content and the XSLT style sheet to
those browsers that support XML and XSLT, thus distributing the burden of
transformation to the browsers [Holman, 1999d]. This method is exactly the one
used in the XML server Rocket, introduced in section subsection 6.2.2 [Floyd,
2000].

Figure 4-6. Using XSL on Both the Server and the Client [Holman, 1999d].

This architecture allows information to be maintained in XML and still be available
to all users. In addition, there may be good business reasons to always perform
server-side transformations, sending clients only presentation-oriented information
instead of semantically rich XML. “Semantic firewall” is a concept where the

Chapter 4. Styling XML Documents

33

investment in rich markup is protected from being seen where not desired [Holman,
1999d].

4.2.5. XPath
XPath is a W3C Recommendation developed alongside with the XSLT language. It
provides a common syntax and semantics for functionality shared between XSLT
and XPointer (fragment identifier for XML documents). The primary purpose of
XPath is to address parts of an XML document with an abstract, logical structure
model. In support of this primary purpose, it also provides an expression language
for manipulation of strings, numbers and Booleans. XPath uses a compact non-
XML-syntax to facilitate the uses of XPath expressions within URIs and element
attribute values. The language is called XPath for its use of path notation as in
URLs for navigating through the hierarchical structure of an XML document
[XPath, 1999].

Both XSLT and XPointer build upon XPath as a core and add extended
functionality specific for each domain. XPath expressions are used in XSLT for:

• selecting nodes from the source tree for processing in an instruction,

• specifying matching conditions for choosing between alternative ways to process
a given node (conditional processing), and

• generating text to be included in the result tree [Holman, 1999d].

For example, the XPath expression “/book-order/customer” in the XSL template

<xsl:template select="/book-order/customer">
 <xsl:text>The Real Heroine: </xsl:text>

 <xsl:apply-templates/>
</xsl:template>

would evaluate to the customer node-set when the template is applied to the XML
document in Figure 3-5.

4.3. Using XSL and CSS Together
In some ways, XSL has similar goals with CSS. Both languages define a
vocabulary for defining formatting semantics to separate content, although with
different syntaxes. Each one provides a mechanism for selecting elements and
specifying how the selected elements are presented. However, they are not
competitors; they are likely to co-exist since they meet different needs. XSL is
more powerful than CSS in many ways, but it is also more complex. For Web
content encoded in HTML, CSS will be the easiest solution. For XML, the

Chapter 4. Styling XML Documents

34

manipulative power of XSL with its transformation capabilities will be required
[Walsh, 1999].

The different scopes of the style sheet languages suggest a solution where both of
them are used co-operatively (Figure 4-7). Web content can still remain in XML on
the server, where it is transformed into presentational markup languages for
browsers. The result can be e.g. basic (X)HTML, without any special formatting, or
WML 17. Resulted HTML files can further contain associations with separate CSS
style sheets which provide additional formatting and decoration. This kind of
approach is suitable with most current browsers, at least in some degree (see
subsection 4.1.2). The process of styling by transformation and rendering is
distributed among the server and the client.

Figure 4-7. XSLT and CSS

Still, even if the content is accessed with a browser that does not support CSS (or
supports it only partially), the information can be presented in some way. It is just
styled with the default formatting built in the browser.

If the content is accessed with an XML/XSL/CSS-aware browser, the situation
resembles the one presented in subsection 4.2.4. The difference is that such a
browser performs both the XSLT transformation and CSS formatting. An example
of that kind of situation is presented in Appendix B.

4.4. Rendering Languages
There are many other activities going on around XML in the W3C (and in other
forums as well). Since the release of the XML 1.0 Recommendation in February
1998, separate working groups have completed or are currently working on new
applications of XML. These include: XML namespaces, XML Queries, XML
Schemas, and XML Linking [Connolly, 2000]. They all have a place and

17 In fact, it is not necessary to only use HTML that avoids any markup supported by a specific browser. As the
Viewable With Any Browser campaign advices, content should be designed to gracefully degrade from state-of-
the-art browsers to the more simple ones [Burstein, 2000].

Chapter 4. Styling XML Documents

35

significance in their own domain; for instance, query and schema rules are useful in
XML database applications and XML linking enables the creation of hypertext
documents. However, they are not discussed here as they are not considered to be
in the focus area of this thesis.

Device independent, multipurpose publications and Web services can be achieved
by separating content and presentation. While XML was considered to present the
“content” part and styling the way to join content and format, one area still needs to
be examined: “format” (i.e. the final rendering formats). Languages that describe
how content is to be presented to the reader are called rendering languages [Martin,
2000b]. The vocabularies of these languages represent formatting objects that are
transformed by rendering engines to visual or audible objects. “Rendering engines”
are used to be called “browsers” or “viewers” but Martin [2000b] wants to call
them with a more general name rendering language interpreters.

XSL:FO (discussed in subsection 4.2.2) is one example of XML-based rendering
languages. The following subsections describe briefly three other of them:
XHTML, WML and VoiceXML.

4.4.1. XHTML - Extensible Hypertext Markup Language
As mentioned earlier, the Extensible HyperText Markup Language (XHTML) is a
reformulation of HTML in XML. XHTML 1.0, released in January 2000, is W3C's
recommendation for the latest version of HTML, following on from earlier work on
HTML 4.01, HTML 4.0, HTML 3.2 and HTML 2.0. Basing the future development
of HTML on XML is in consistency with W3C's tendency to support XML as a
common base for various technologies, as seen in Figure 4-8.

Figure 4-8. Building Applications with XML [(modified from) Connolly, 2000]

Chapter 4. Styling XML Documents

36

As XML means Extensible Markup Language, XHTML is also extensible. XHTML
could be combined with MathML markup, or developers and content creators can
add to it new sets of tags for specific uses. Of course, browsers (or “rendering
language interpreters”) may not be able to understand proprietary vocabulary
extensions but this is not a problem on the server side. For instance, Martin [2000a]
gives us an example where he uses XSLT with extended XHTML to aggregate
content from external documents into a single XHTML document – all on the
server.

XHTML is modularised into a series of smaller element sets. These sets can then be
recombined to meet the needs of different communities. This makes it possible to
use only subsets of the language for specific target uses. Not all of the XHTML
elements are needed in every Web device; for example a handheld device or a
cellular phone may only support a subset of XHTML elements [XHTML, 2000].

4.4.2. WML - Wireless Markup Language
The Wireless Markup Language (WML) specification is one of the many products
of WAP Forum. It defines an XML-based markup language that is intended for
expressing content and user interfaces for narrowband devices. The domain of
narrowband devices, including cellular phones and pagers, sets certain constraints
on the content and user interface, including:

• small display and limited user input facilities,

• narrowband network connection, and

• limited memory and computational resources [WML, 1999].

Small display screens with low resolution put an obvious constraint on the type and
amount of the content to be presented. For example, most current mobile phones
can only display a few lines of text, and each line can contain only 8-12 characters.
The input capacities of mobile phones are typically limited by a numeric keypad
and only a few additional function-specific keys. The computational resources are
often limited by a low power CPU, a small memory and power constraints [WML
Reference, 1999].

The characteristics of WML can be grouped into four major areas:

• text presentation and layout,

• deck/card organisational metaphor,

• inter-card navigation and linking, and

• string parameterisation and state management [WML, 1999].

WML offers text and image support, with a variety of formatting and layout
commands. As mentioned earlier, e.g. boldface and italics formatting are allowed.
The image format developed specially for WAP is Wireless Bitmap (WBMP).

Chapter 4. Styling XML Documents

37

All information in WML is organised into a collection of cards and decks. A card
represents a logical unit of an information container, a “page” that the user reads
and interacts with. Cards are grouped into decks. A WML deck is a “physical”
information container. It is similar to an HTML page in that it is identified by a
URL and it is the unit of content transmission. Figure 4-9 illustrates the deck/card
metaphor along with a sample WML deck.

Figure 4-9. The Deck and Card Metaphor in WML.

WML offers support for managing navigation between cards and decks. It includes
commands for event handling which may be used for navigational purposes or to
execute scripts. WML also supports anchored links, similar to those used in HTML.

Parameters can be set for WML decks using a state model. Variables can be used in
the place of strings and are substituted at run-time. This parameterisation allows for
more efficient use of network resources [WML, 1999].

The problem with WML is that there is no style guide for its rendering. Any WML
microbrowser implementor is free to choose its own way to render WML elements.
This means that a WAP application optimised for one specific WML browser may
have a poor interface and presentation in some other browser. This unfortunate
situation resembles the one experienced in the Web community a few years ago;
content providers have to adapt their WML pages for each desired target WAP
device. Although this can be done with XML and XSL style sheets, the testing and
tweaking can cost a great deal of money [Gregersen and Bilstrup, 2000].

4.4.3. VoiceXML
Numerous companies, including Motorola, IBM, AT&T, and Lucent, have been
developing their own versions of markup languages for voice browsers. So far,
none of those proposals has gained the status of a de facto standard or a clear
leading position. The situation may change with the foundation of an industry

Chapter 4. Styling XML Documents

38

organisation called VoiceXML Forum and its standard proposal for W3C, Voice
eXtensible Markup Language (VoiceXML). The forum is founded by the four
aforementioned companies and it has gained over 100 supporters by April 2000
[VoiceXML, 2000b, supporters_1.html] 18. Its purpose is to explore public
domain ideas from existing work in the voice browser arena.

The information model in VoiceXML is based on documents and dialogs. A
document represents the container unit of one or more dialogs, and dialogs
represent the interaction between a user and the system 19. There are two types of
dialogs: forms and menus. Forms present information and gather input; menus offer
choices of what to do next [VoiceXML, 2000a]. Figure 4-10 presents the
document/dialog metaphor and a sample document with one form dialog.

Figure 4-10. The Document and Dialog Metaphor in VoiceXML.

The VoiceXML language is based on the earlier work of the four founder members.
It has the similar goal as WML: to make Internet content accessible to telephones.
The difference is that while WML is dealing with visual content mostly based on
text, VoiceXML addresses the aural content (mostly) based on voice and sound.
According to the language specification, it provides means for handling:

• output of synthesized speech (text-to-speech),

• output of audio files,

• recognition of spoken input,

• recognition of DTMF (numeric keypad) input,

• recording of spoken input, and

18 As a matter of fact, to be on VoiceXML Forum's (or on some other similar consortium's) “supporter list”,
does not necessarily imply that an organisation is particularly involved in the forum's work. Sometimes a mere
request for further information is reason enough for a consortium to add an inquiring organisation on its list of
“supporters”. This is one way for industry consortiums to advertise their acceptance and popularity.
19 The model is analogous to WML and the deck/card metaphor.

Chapter 4. Styling XML Documents

39

• telephony features such as call transfer and disconnect [VoiceXML, 2000a].

The importance of aural medium is not to be underestimated. It is the only means of
accessing information with telephones without data support (WAP, SMS, etc.).
Furthermore, as described in subsection 2.3.5, there will always be situations, either
temporary or permanent, where users cannot rely on a visual medium.

While both WML and VoiceXML can present content originating from the World
Wide Web, the nature of their content would differ from that presented in XHTML.
This is due to the different features of each environment and their Web devices.
Having XML documents as the source of the information and transforming them to
suit the requirements of different environments help content providers to avoid
producing the same information individually for each medium. The point is to have
only one “content” and give it several presentations.

40

Chapter 5. Customisations and
Personalisations

The previous two chapters discussed the issues of content and presentation. The
presented solutions described how XML can be used as the original content format
and how it can be transformed to formats supported by various Web devices. An
important part of serving Web information is still missing. How to decide what
kind of content should be served? How to determine how it should be presented?
This chapter addresses these questions and presents some techniques that are
developed for the adaptation of Web services.

5.1. Client-Specific Web Services by Using
User Agent Attributes

W3C has released a note [Kamada and Miyazaki, 1997] concerning client-specific
Web services. It presents a simple framework for realising such services, based on
user agent (i.e. Web device) attributes. The idea behind the framework is very
straightforward, as seen in Figure 5-1.

Figure 5-1. A Basic Idea for Customised Web Services

The client reports useful “User Agent Attributes” to the server with the content
request. The server recognises these attributes, tailors the content to suit the client,
and sends the customised content to it.

The attributes are transferred to the server within the Hypertext Transfer Protocol
(HTTP) User-Agent header, as its comment field. Example 5-1 [Kamada and
Miyazaki, 1997] shows what that header for an Internet-TV could look like.

Example 5-1. User Agent Attributes in a HTTP Header
User-agent: AVE-Front/2.0
(BrowserInfo Screen=640x480x256; InputMethod=REMOCON,KEYBOARD;
Page=512K; Product=XXXX/Internet-TV; HTML-Level=3.2;

Language=ja.JIS; Category=TV; CPU=SH2; Storage=NO;)

Chapter 5. Customisations and Personalisations

41

The User-Agent header field is originally defined to inform the Web server about
the type and model of the Web device. The server can read this information in the
request and tailor responses to avoid particular user agent limitations [RFC2068,
1997]. The plain user agent type and model may not always give enough
information about the Web device; many of the devices have a lot of features that
can be modified and customised to meet the needs of different users. Such features
can be hardware-related (screen size, amount of memory, etc.), software-related
(level of HTML support, Java and JavaScript support, etc.) or user-related (various
user preferences, including language, sound, etc.). This is why W3C have presented
an extension to User-Agent header: the space for additional comments about the
user agent is used to carry structured and detailed information. It should be noted
that the extension is not a recommendation of any kind. The note, and all other
W3C Notes as well, are published for discussion only.

As seen in the previous example, the information is presented in simple property-
value format. The predefined properties describe the following features of the Web
device:

• screen size and the number of colours,

• input method,

• page (memory capacity for Web page buffer),

• client product information,

• HTML-level,

• preferred language,

• category of the client product,

• CPU type, and

• the amount of secondary data storage (e.g. flash memory or floppy disk)
[Kamada and Miyazaki, 1997].

As such, the presented user agent properties are somewhat limited. They focus on
the client device (hardware and software) and leave the majority of user preferences
outside. For example, a user can not specify whether she wishes to have sound
option on or off. What is more relevant in the context of the previous chapters, the
clients are all presumed to have at least some kind of HTML support. With WML,
VoiceXML and “some-other-ML” now in the set of possible rendering languages,
this presumption is no longer justified. The authors of the note admit these
limitations, of course, and present a possibility to extend the attribute set by adding
new properties and values to the definition.

However, since the release of the note better and more flexible frameworks have
been introduced. As they are based on RDF, an application of XML, they offer far

Chapter 5. Customisations and Personalisations

42

more powerful methods to express all necessary user agent properties and user
preferences.

5.2. RDF - Resource Description Framework
Resource Description Framework (RDF) is a framework for expressing metadata,
“data about data”, about resources in the Web. It is aimed to provide a foundation
for a domain-neutral mechanism that can be utilised in a variety of application
areas, for example:

• in resource discovery to provide better search engine capabilities,

• in cataloging for describing the content and content relationships,

• by intelligent software agents to facilitate knowledge sharing and exchange,

• in content rating,

• in describing collections of pages that represent a single logical “document”,

• for describing intellectual property rights of Web pages,

• for describing privacy preferences of a user as well as the

• privacy policies of a Web site,

• for describing Web device properties and

• other user preferences [RDF, 1999].

The definition of the mechanism is kept free of any particular application domain.
Different application areas complete the framework by specialising it to their
domain-specific needs. This is done by defining a collection of classes, also called
a schema, much like in many object-oriented programming and modelling systems.
Further refinement of the schemas for more detailed application areas is possible by
subclassing. RDF supports the reusability of metadata definitions through the
shareability of schemas.

In essence, RDF is a model of metadata which can have a syntactic presentation.
The syntax introduced in the RDF specification is based on XML (as seen in Figure
4-8) although that is not necessarily the only choice. It is possible to also introduce
alternative ways to represent the same RDF data model.

The following sections discuss the application areas where RDF is used to express
Web device capabilities and user preferences. Examples of the RDF syntax in XML
are presented there.

Chapter 5. Customisations and Personalisations

43

5.3. CC/PP - Composite Capabilities /
Preferences Profile

W3C has a working group which aims to develop an RDF-based framework for the
management of device profile information. The name of the group is CC/PP
(Composite Capabilities / Preferences Profile 20) Working Group.

5.3.1. CC/PP Framework
The CC/PP Framework [CC/PP, 1999 and CC/PP-ra, 2000] is an application of
RDF that is meant to provide general, yet extensible base for describing user
preferences and device capabilities. It addresses the same area as the method
presented in Section 5.1 but with a broader applicability. The use of XML-based
RDF implies that the framework can be further refined for more elaborate purposes;
it is designed to be easily extensible.

The CC/PP note describes a model called Composite Capabilities / Preferences
Profile (CC/PP) which means a collection of the capabilities and preferences
associated with the user and her user agent(s). The user agent information includes
the hardware platform, system software and applications used. Choosing common
technologies (XML and RDF) as the base of the framework was expected to
encourage the adoption of the technologies and simplify the metadata in the Web
[CC/PP, 1999]. RDF also seems to be a logical choice because user agent
capabilities and preferences can be thought of as metadata or descriptions and
attributes of the user and the user agent.

From the point of view of any particular network transaction, the only property or
capability information that is important is whatever is “current”. A network
transaction is not interested about the differences between defaults or persistent
local changes, the only information it cares about concerns the current transaction
[CC/PP, 1999]. Thus, within the same network session, unchanged attributes do not
need to be re-transmitted. Subsequent information requests can contain only
additions and modifications to the previous profiles.

5.3.1.1. The CC/PP Data Model
The basic data model for a CC/PP is a collection of tables. Each table roughly
compares to a significant hardware or software component, such as the general
hardware platform and the individual software applications. A CC/PP can be
organised to contain all profile descriptions inline, as seen in Appendix C, or it can

20 Even in the CC/PP-WG's own Web documents (http://www.w3.org/Mobile/CCPP/), the CC/PP abbreviation
has been given different interpretations: 1) Client Capabilities / Preferences Profile, 2) Composite Capability /
Preference Profile, 3) Composite Capabilities / Preference Profiles, and 4) Composite Capabilities / Preferences
Profile. In this study, the fourth form is used.

Chapter 5. Customisations and Personalisations

44

have indirect references to them, as seen in Appendix D. Instead of enumerating
each set of attributes within the CC/PP, a remote reference (URI) can be used to
name a collection of attributes such as the hardware platform defaults. This reduces
the amount of data to be transferred from a client to a server (or to a gateway or a
proxy), which means better response times in cases where the connection is slow
[CC/PP, 1999].

5.3.2. CC/PP Exchange Protocol over HTTP
One W3C Note [CC/PPex, 1999] has been written to cover the CC/PP exchange
protocol on HTTP networks. It admits the verbosity of the CC/PP format and
suggests two optimisation strategies for it. One is to use compressed form of XML
[WBXML, 1999] (introduced in subsection 3.8.1), and the other, a complementary
strategy, is to use references.

The CC/PP Exchange Protocol based on HTTP Extension Framework specification
(CC/PP-HTTP, for short) defines two elementary terms:

CC/PP description

A CC/PP description consists of the device capabilities and user preferences
which are described in the CC/PP framework. A CC/PP description is
intended to provide information necessary to adapt the content and the content
delivery mechanisms to best fit the capabilities and preferences of the user and
her agents.

CC/PP repository

A CC/PP repository is an application program which maintains CC/PP
descriptions. The CC/PP repository should be HTTP/1.0 or HTTP/1.1
compliant. The CC/PP repository is not required to comply with the CC/PP
exchange protocol [CC/PPex, 1999].

The primary protocol strategy is to send a request with profile information as little
as possible using references (URIs). When an origin server receives the request, it
inquires of CC/PP repositories the CC/PP descriptions using the URIs in the
request. CC/PP repositories containing default CC/PP descriptions can be stored on
the origin server or they can be distributed on the hosts of the hardware and
software vendors. Only those user agent attributes that the user has added or
changed locally on her Web device, either permanently or temporarily, need to be
sent in the request.

As the name of the specification suggests, the transferred profiles (containing
references or modifications) are included in the HTTP/1.1 header fields. The
request can contain two types of headers: Profile (for references) and Profile-
Diff (for modifications). One header, Profile-Warning, is specified for the

Chapter 5. Customisations and Personalisations

45

responses and it is used to carry warning information. If any of the CC/PP
repositories is not available, the server might not obtain the fully enumerated
CC/PP descriptions or it might not get up-to-date CC/PP descriptions. In these
cases, the server should respond to the client with the Profile-warning header
field and inform the user of the inadequate response [CC/PPex, 1999].

5.4. UAProf - User Agent Profiles
UAProf is the result of WAP Forum's development to enable user agent profiles in
wireless terminals. In the UAProf specification [UAProf, 1999], profiles are also
referred to as Capability and Preference Information (CPI). UAProf uses the
CC/PP model as a framework and defines a set of components and attributes that
WAP-enabled devices may convey within the CPI 21. The CPI may include, but is
not limited to:

• hardware characteristics (screen size, colour capabilities, image capabilities,
manufacturer, etc.),

• software characteristics (operating system vendor and version, support for MExE
22, list of audio and video encoders, etc.),

• application/user preferences (browser manufacturer and version, markup
languages and versions supported, scripting languages supported, etc.),

• WAP characteristics (WML script libraries, WAP version, WML deck size, etc.),
and

• network characteristics (bearer characteristics such as latency and reliability,
etc.) [UAProf, 1999].

The scope of UAProf is to provide origin servers with device preference
information such as that presented in the list above. The information in the user
agent profile is used for content formatting purposes. According to the WAP
Forum's specification, a user agent profile is distinct from a user preference profile
that would contain application-specific information about the user for content
selection purposes. For example, a user preference profile might designate whether
the user is interested in receiving sport scores and, if so, the particular teams. The
specification of user preference profiles is beyond the scope of WAP Forum's
UAProf document [UAProf, 1999].

21 The implementors can, but are not restricted to, use the components and attributes defined in the UAProf
specification. They are free to provide any additional components and attributes with their CPI. Of course, those
extensions may not be properly interpreted by most origin servers and proxies.
22 MExE (Mobile Station Application Execution Environment) is a framework on mobile phones for executing
operator or service provider specific applications. Essentially, it is the incorporation of a Java virtual machine
into the mobile phone, enabling full application programming. MExE is developed by the European
Telecommunications Standards Institute (ETSI) [Thompson, 2000].

Chapter 5. Customisations and Personalisations

46

In addition to defining the components and attributes for the CPI, the UAProf
specification also includes a section about the exchange of them between the client
and the server. It defines a protocol very similar to the one specified for CC/PP and
HTTP, using the WAP-equivalent to HTTP: Wireless Session Protocol (WSP). The
protocol, called CC/PP-WSP, is needed between the client and the WAP gateway.
The gateway bridges CC/PP-WSP and CC/PP-HTTP representations of the User
Agent Profile. As the origin servers are normally accessed with HTTP, this
bridging has to be made.

There is one problem concerning the deployment of UAProfs (and CC/PPs in
general): the lack of support. The specifications rely on mechanisms (such as the
HTTP 1.1 Extension Framework and the CC/PP-HTTP) that are not currently
deployed widely over the Internet. The UAProf specification recognises this
problem and proposes the use of interim proxies. Although origin servers may not
currently support UAProfs, proxies that do support them could use the information
to adapt the content received from the servers.

It may also be possible that the clients themselves do not support profiles. UAProfs
were not in the WAP specification suite till version 1.2 so WAP products
conforming to the earlier specifications do not support them. So far, none of the
major Web browsers have announced to include CC/PP (or UAProf) support in
their products. However, the UAProf specification presents a solution for these
clients, too. They can have indirect profile support by a gateway. It may be possible
to have a profile provisioned at the gateway by a carrier or service provider. This
profile would be presented to gateways, proxies, and servers on behalf of the
device(s) involved. The profiles could be static (shared by all users) or dynamic
(customised by individual users), chosen with an appropriate user identification
method.

5.5. PIDL - Personalized Information
Description Language

As CC/PP and UAProf were primarily developed for expressing profile and
preference information for content formatting purposes, other languages have been
created for the complementary part of service customisation: selecting content.
W3C has released its own proposition, Personalized Information Description
Language (PIDL), that currently is only in its initial state 23 [PIDL, 1999].

The purpose of PIDL is “to facilitate personalization of online information by
providing enhanced interoperability between personalization applications”. The
language tries to provide a common framework for applications to process contents
and offer personalised versions of it for individual users. According to the note,

23 At end of April 2000, only the initial draft of the W3C Note has been released. It is dated on 09 Feb 1999.

Chapter 5. Customisations and Personalisations

47

PIDL supports the personalisation of different media (plain text, structured text,
graphics, etc.), multiple personalisation methods (such as filtering, sorting, and
replacing), and different delivery methods (SMTP, HTTP, IP-multicasting, etc.)
[PIDL, 1999].

Numerous Web sites, mailing-list maintainers, and other content providers offer
personalised content today. It is a common feature on modern Web portals to have
service and layout customisation mechanisms so that their customers can have
“their own versions” of those portals. So what is a language like PIDL needed for?
What new can it offer? According to the PIDL document, it is an attempt to move
away from ad hoc implementations to general frameworks that provide efficiency
and interoperability.

PIDL is a XML-based language for expressing content. It claims to make
personalisation applications simple by realising the interoperability among such
applications. If content is originally created as PIDL documents, processed contents
of one application can be incrementally processed by other applications. The
language features are:

• it encapsulates both the original contents and the progressively processed
personalisations in a single XML document,

• it can contain personalised contents for multiple users in a single XML
document, allowing distribution of personalised content over 1-to-many
connections (such as IP-multicasting), and

• it supports incremental storage of personalisation results in order to keep the
overall document size small [PIDL, 1999].

Instead of having only the original content stored somewhere on the server and
applying different personalisation processes to it again and again, PIDL documents
contain both the original content and the results of each personalisation step in a
single document. Having the raw, non-customised content included in the
document along with the personalised versions allows later, independent processes
to continue or alter the initial personalisation. This progressive personalisation by
multiple, independent processes is described in the next subsection.

5.5.1. Progressive Storage of Processed Content
The result of each personalisation step is stored progressively in a PIDL document
as processed content. The blocks of such processed content can be used for further
processing independently and/or progressively, by building upon the results of
previous processes. Each personalisation process appends its results to the end of
the document, instead of altering the earlier blocks, as in Figure 5-2.

Chapter 5. Customisations and Personalisations

48

Figure 5-2. Progressive Storage of Processed Content [PIDL, 1999]

The advantage of this kind of progressive storage is that each personalisation step
has to be done only once, even if it was required for several users. For example, let
us suppose a company intranet for marketing division has two users, X and Y, and
each of them have their own customisation preferences. X wants to get her
information personalised by

1. only showing contents related to online marketing,

2. highlighting words that match the keywords she has registered.

Employee Y has her own customisation preferences, like:

1. only show contents related to online marketing,

2. shorten the contents so that they can be shown on a PDA.

With these personalisations, the PIDL document containing news items could look
like the one in Figure 5-3.

Figure 5-3. The Advantage of Progressive Storage [PIDL, 1999]

Chapter 5. Customisations and Personalisations

49

5.5.2. Compact Storage of Processed Content
The progressive storage of processed content could easily result in a huge
document containing hundreds of copies of almost identical content for each
subscribing user. To solve this problem, PIDL documents can store only the
processing method used and the personalisation data used for processing, not the
full content of each personalisation step.

For example, a PIDL document with newspaper articles could store a
personalisation process with only a set of flags for each user indicating whether a
particular article from the original content is relevant to the user (Figure 5-4).

Figure 5-4. Compact Storage of Processed Contents [PIDL, 1999]

The PIDL specification suggests that in order to create the personalised documents
out of such a compact presentation, a client-side PIDL document reader would
parse and display the document with only the wanted articles. However, this does
not seem a good solution. Is it reasonable to expect PIDL-aware clients to emerge
in the ever expanding variety of different Web devices? In the short term: not
likely. It has been a struggle to get a decent support for even existing standards to
clients: CSS, XML, etc. Another format atop of that is not likely to be reality in a
long time. In the long term: in some selected platforms, such as in PC browsers,
perhaps (provided that PIDL gets accepted as a W3C Recommendation). The
capabilities of small, handheld devices are likely to remain stripped-down versions
of their larger scale counterparts, such as desktop computers.

The fact that a PIDL document has content and preferences stored for multiple
users in a single file raises an important question: what about user privacy? If every
user gets the same document, can they view the source code and look what kind of
profiles other users have? The PIDL specification considers this issue by
suggesting the use of encryption. Each user's personalisation profiles could be
encrypted with their own public keys, which would ensure that only authorised
users could access profiled information. Still, this would leave some doubts to the
wary users: would they have their personal data, even in encrypted form, to be

Chapter 5. Customisations and Personalisations

50

freely accessed by anyone interested? Can they be absolutely certain there is not
some skilful hacker that can decrypt their data? This question will always remain if
one's personal data is released from a (more or less) trusted content provider.

Our opinion is that server-side processing with style sheets would be a more
reasonable way to utilise PIDL. All the customisations and content selections could
be made on the server, clients would get the processed results in the rendering
language they support. This approach solves the concerns about both the lack of
client support for PIDL and also the user privacy.

There is yet another standard that is related to personalisation and profiling. It is a
supplementary format to PIDL in that it can be used for submitting the data relevant
for personalising the documents, while PIDL can be used for personalisation. The
format is called P3P [PIDL, 1999].

5.6. P3P - Platform for Privacy Preferences
Platform for Privacy Preferences (P3P) is a protocol designed to enable Web sites
to express their privacy practices in a standard format (known as a P3P policy) that
can be retrieved automatically and interpreted easily by user agents. P3P user
agents will allow users to be informed of site practices (in both machine- and
human-readable formats) and to automate decision-making based on these practices
where appropriate. This frees the users from reading the privacy policies at every
site they visit [P3P, 2000].

The P3P specification 24 defines:

• a standard schema for data a Web site may wish to collect, known as the “P3P
base data schema”,

• a standard set of uses, recipients, data categories, and other privacy disclosures,

• an XML format for expressing privacy policy 25,

• a means of associating privacy policies with Web pages or sites, and

• a mechanism for transporting P3P policies over HTTP [P3P, 2000].

Although the primary goal of P3P is slightly different from the subject of this
chapter, adapting content according to user agent profiles and user preference
profiles, it is thought to be useful for those purposes, too. As the PIDL document
suggests, PIDL and P3P can supplement each other when creating personalised
services in the Web. P3P automates the exchange of personal information between
the user and a service and allows users to express preferences about the release and
usage of their personal information to services. Thus, P3P could fill the gap left by
CC/PP and UAProf: it could be used for expressing user preference profiles for

24 The specification is still a working draft in April 2000.
25 Actually, P3P is also an application of RDF, as shown in Figure 4-8.

Chapter 5. Customisations and Personalisations

51

content selection purposes. However, it is still an area for further work to extend
the existing P3P base data sets to allow user (and services) to express preferences
and capabilities regarding personalisation [PIDL, 1999].

5.7. Conclusions
Having presented various techniques and mechanisms for achieving content
customisation and personalisation, we should give some attention to the utilisation
of them in general.

Let us assume a user is a subscriber to several Web services (e.g. news and email)
and she uses them with two different devices: a PDA and a PC. Where should the
preference profiles be stored? For hardware- and software-specific properties,
CC/PP and UAProf take the approach where the “the client knows what it is like”.
In other words, they have the information about their capabilities in them. Of
course, that information can simply be a reference to some external profile
repository. It may be quicker for a Web server needing the capability information to
retrieve default values to hardware and software components from an Internet-
based repository than to get them from a mobile phone over a low-speed air
connection.

The philosophy in PIDL is to have the content and service selection profiles stored
on the network, on each content providers' Web site. This seems to be a rational
approach for other similar profiles as well. When the service profiles are stored on
the network, it does not matter what devices they are accessed by. For example, a
user of a news portal gets always just the content she is interested in, regardless of
whether she accesses it with a WAP phone or a desktop computer. It is only the
formatting that gets changed.

Of course, one could argue that it does not always make sense to bring the same
kind of content to every possible medium. For example, large blocks of text,
images or video files are not useful in a mobile phone. But is this kind of
customisation not content selection (rather than content formatting)? When a user
prefers to receive “sports news with video clips and audio commentaries”, does he
not then select what kind of content he wishes to receive?

The answer is not an easy one. To draw a line between content selection and
formatting is something that should be considered case by case. The above example
could be seen to represent both situations: choosing sports news from the set of
whatever news sections the content provider has can be thought of content
selection. On the other hand, stating “I want to receive video clips and audio
commentaries” (in addition to and/or instead of text, images, etc.), can be
interpreted as content formatting. The content provider can have the “same”
content, e.g. a news item concerning Formula-1 races, in multiple content formats:
text, images, audio, video. Selecting the appropriate formats, choosing how it is

Chapter 5. Customisations and Personalisations

52

presented can also be interpreted as what is presented. In this case, formatting is
some kind of selecting. The information that gets selected, however, is a little
different by its nature. The first case selects the kind of information (sports news
instead of anything else), the second case selects the format of it.

CC/PP has its rule to give all profiles an order of precedence [CC/PP, 1999]. A
profile with the highest precedence overrides all other conflicting profiles. What
about conflict situations between different preference formats? Suppose a user has
stated in her content selection profile that she wants to also have video clips with
her news items. When she happens to access the service with a Web device that
cannot play video objects, such as a WAP phone, how should the server respond?
The presented techniques give no answer to this, the applications using them are
responsible for solving these kind of situations. This is reasonable since it leaves
more freedom to service providers to implement their own conflict solving rules.

53

Chapter 6. XML Clients and Servers
This chapter discusses the principles in client-side and server-side formatting and
presents some available software applications that support the use of XML in Web
services.

6.1. Client-side Formatting
The first of the models for using XML in Web content is close to the traditional
HTML / WML approach. As shown in Figure 6-1, a Web server receives a normal
HTTP request from the Web device and responds with an appropriate XML file.
The important thing is that the Web device supports XML: it can parse the XML
file, determine its document type, and display it with appropriate formatting.

Figure 6-1. Using HTTP to Serve XML Documents from a Web Server
[(modified from) StLaurent and Cerami, 1999, p. 28].

Figure 6-2 shows a slightly more elaborate solution where the content is stored in a
relational database. The Web server uses an interface to make the queries to the
database and convert the results into XML.

Figure 6-2. Converting Stored Information to XML Using a Servlet [(modified
from) StLaurent and Cerami, 1999, p. 33].

Client-side formatting has its advantages. Using XML to create a content-based
vocabulary makes it possible to build new client applications by extending the
browser. A browser could combine its typical text-and-graphics display with a set
of small programs that can do something with the XML data in a document. For

Chapter 6. XML Clients and Servers

54

example, a table could be rendered in different forms: tables, diagrams, graphs, etc.
Some elements that are intended for display in the browser may also be useful in
the context of a spreadsheet, where the user can perform more sophisticated
analysis. Applications that can interpret XML can import shared information
without losing context, making it possible to exchange information seamlessly
[StLaurent and Cerami, 1999, pp. 28-31].

When Web servers are used for only providing clients with the requested XML
files (and the corresponding style sheets), the computational burden of formatting is
shifted from the server to the clients. This may make the request serving process
more effective in a centralised, one-server architecture.

Using XML is convenient for designers and document editors. While they are no
longer restricted to use the limited vocabularies of e.g. HTML or WML, they are
able to develop style sheets that reflect their own formatting needs. This is a benefit
for the server side as well.

Client applications could be used to find and extract specific parts of the content,
searches can be limited to particular tag sets or vocabularies. Focusing searches on
certain types of information gives the users smaller and more focused lists of
possible matches, and thus more useful results. This is another advantage that is
also gained on the server side.

The problem in serving XML for the Web devices is that there are not many XML-
aware clients currently available. In March 1999 Microsoft announced the release
of Internet Explorer 5, the first commercially available browser software supporting
XML [Microsoft, 1999]. The competitor Netscape Communications has stated it is
going to support XML in its future browser version, Communicator 6.0 (also
known as Mozilla) [Zelnick, 1998]. Since Netscape released the source code of its
browser in March 1998 [Netscape, 1998], various third party developers have been
able to freely modify the code to make their own improvements 26. One such third
party developer is a Finnish Company CiTEC Information with its own version of
Mozilla browser, known as DocZilla 27. Examples of these browsers are presented
in the following sections.

6.1.1. Microsoft Internet Explorer
In Figure 6-3, Microsoft Internet Explorer (MSIE) 5.0 shows the front-page of
Michael Floyd's Web site, beyondHTML 28. This Web site is an example of using
XML for multipurpose publishing. It takes advantage of MSIE's XML support by
serving the pages for that browser in XML. The browser detection is made

26 Web site for the open-source development of Mozilla: http://www.mozilla.org/
27 DocZilla Web site: http://www.doczilla.com/
28 http://www.beyondhtml.com/

Chapter 6. XML Clients and Servers

55

automatically with HTTP's User-Agent request header. As the User-Agent header
in MSIE's case includes a text string “MSIE 5”, the server can identify the browser.

Figure 6-3. Beyond HTML on MSIE.

For the sake of comparison, the same page on Netscape Communicator 4.72 is
shown in Figure 6-4. The main difference is invisible to the user: Netscape receives
the content in HTML while MSIE transforms the HTML page by itself, using the
XML and XSL files it receives. There are also some differences in the layout.

Chapter 6. XML Clients and Servers

56

Figure 6-4. Beyond HTML on Netscape.

6.1.2. DocZilla
DocZilla is a browser based on Netscape's open-source Mozilla. On March 2000
the software is still in its alpha phase which means that it has bugs and deficiencies
in the feature set [DocZilla, 1999]. The technical manual sample page shown in
Figure 6-5 is coded in XML and the formatting information is given in an
accompanying Cascading Style Sheet (CSS) file. Since the content oriented XML
file does not have any formatting instructions, all information concerning the layout
is written in the CSS file.

Chapter 6. XML Clients and Servers

57

Figure 6-5. A Sample XML document on DocZilla.

6.2. Server-side Formatting
An alternative solution to use XML is to have the Web server handle the
conversion from XML to other formats. According to Floyd [1999], client-side
processing of XML will always be doomed to inconsistent support. After all, it has
been hard for browser developers to get even HTML 4 features to behave
consistently in the major browsers.

A situation where the initial content on the server is in plain XML files is shown in
Figure 6-6. The server receives an HTTP request from the Web device and retrieves
the requested XML file from the repository. After that, it converts the file structure
into another format, e.g. HTML, and sends the resulting file to the browser.

Figure 6-6. Using XML on the Server but Sending HTML to the Browser
[(modified from) StLaurent and Cerami, 1999, p. 31].

Chapter 6. XML Clients and Servers

58

Processing XML documents on the server, outputting e.g. HTML or WML means
that content providers can benefit from the flexibility and power of XML without
having to worry about whether a particular client provides XML support or not
[Mikula, 1998]. This is a strong benefit of server-side XML processing, it provides
true device independence by serving each user and Web device just the information
they need and are able to handle. The prerequisite is, however, that the server has
the information to do the processing. In other words, it has style sheets for each
supported Web device.

The following sections present some of the available software packages for
building an XML-based Web site, XML server for short. The first is IBM's XML
Enabler, the next is Michael Floyd's Rocket, and the third is Apache Software
Foundation's Cocoon.

6.2.1. XML Enabler
XML Enabler is one solution for an XML server, offered by IBM on its alphaWork
Web site 29. Basically, it is a Java servlet that converts XML-tagged data to other
markup languages, including HTML [XMLEnabler, 1999a].

The architecture and the functional model of XML Enabler are shown in Figure 6-7
and Figure 6-8. XML Enabler uses two pieces of information to transform the
XML-tagged data: the type of the Web device, encoded in the User-Agent field of
the HTTP header, and a table that maps user-agent values to Extensible Stylesheet
Language (XSL) style sheets [XML Enabler, 1999a].

When the user requests an XML document, XML Enabler gets the XML document
from the requested URL, determines which XSL style sheet to use for the user's
Web device, and uses an XSL Processor to convert the XML-tagged data. Finally,
the output from the XSL Processor is sent back to the Web device [XML Enabler,
1999a].

29 http://www.alphaworks.ibm.com/

Chapter 6. XML Clients and Servers

59

Figure 6-7. XML Enabler Receives a Request [Tidwell, 1999].

Figure 6-8. XML Enabler Sends the Processed Response [Tidwell, 1999].

Unfortunately, the development of XML Enabler has not been very active.
According to the downloadable software's licence agreement, it is not even
generally available software (sic!). It is still in experimental state in order to allow
developers to evaluate the software [XML Enabler, 1999b].

6.2.2. Rocket
A more recent solution for an XML server is Michael Floyd's effort called Rocket.
Instead of a Java servlet, it uses Active Server Pages (ASPs) as its interface to
perform Web device detection and style processing. Although there is nothing to
prevent porting the framework into a servlet or a CGI environment, the gateway
programs would have to be rewritten [Floyd, 2000].

Chapter 6. XML Clients and Servers

60

Figure 6-9 shows a typical interaction between a browser and a Rocket-enabled
server. The interaction follows the pattern presented in the previous section with
XML Enabler. Only here, the Gateway Interface is a JavaScript program contained
in an ASP file. The default configuration has content formatting support for three
different client types: Internet Explorer 5, Netscape Navigator, and generic (i.e. all
other) browsers. Examples of a Web page served by Rocket can be seen in Figure
6-3 and Figure 6-4 where Floyd's own Rocket-enabled Web site is viewed in
MSIE5 and Navigator 4.72, respectively.

Figure 6-9. Typical Interaction Between a Browser and a Web Server Enabled
with Rocket [Floyd, 2000, p. 44].

Although Rocket seems to be slightly better maintained than XML Enabler, it still
has a few deficiencies. The fact that it is based on ASP technology makes it highly
dependent on Microsoft server environment. Deploying Rocket on other server
platforms requires more or less tedious handwork. Furthermore, like XML Enabler,
Rocket is still incapable of serving dynamic content [Floyd, 2000]. The presented
solutions are not sufficient for having a Web server handle both on-the-fly XML
conversion and dynamic content generation (like Java servlets and CGI programs
do).

6.2.3. Cocoon
Cocoon is the third XML server presented in this study. It is a part of the Apache
XML Project, headed by the Apache Software Foundation. The project aims to
contribute to the development and utilisation of XML standards through the open
source development of XML tools. It currently consists of four subprojects, each

Chapter 6. XML Clients and Servers

61

focused on a different aspect of XML. In addition to Cocoon, the project also has
sections called: Xerces (XML parses in Java, C++, and Perl), Xalan (XSLT style
sheet processor, in Java and C++), FOP (XSL formatting objects, in Java), and
Xang (rapid development of dynamic server pages, in Java) [Apache, 1999].

Apache XML Project refers to Cocoon as a “publishing platform” or a “framework
for XML Web publishing”. Although the general concept conforms to the one
depicted in XML Enabler and Rocket (with browser detection and style
processing), Cocoon architecture is much more elaborate. It introduces a whole
new paradigm to the way Web information is created, rendered and served. The
paradigm aims to a complete separation of document content, style and logic. This
separation is based of the fact that these three different layers are often created by
different individuals or working groups. Dividing the work among different persons
allows the layers to be independently designed, created and managed, thus reducing
management overhead, increasing work re-use and speeding up publishing
schedules [Cocoon, 2000].

Unlike XML Enabler and Rocket, Cocoon also takes into account the generation of
dynamic content. This is a strong benefit of this platform as a far majority of
today's Web content is created dynamically. According to Sahuguet and Azavant
[1999], in 1999 the percentage of database-generated content in the Web was over
80 %. A more detailed discussion of the Cocoon platform is given in Chapter 7.

62

Chapter 7. Cocoon
This chapter takes a closer look at Cocoon, the XML server introduced briefly in
subsection 6.2.3. First, we give a general overview of the server platform. Then we
examine the server infrastructure and dynamic content generation mechanisms.
After that, Cocoon's advantages and disadvantages are considered.

It should be noted that the following discussion concerns the versions 1.x of the
Cocoon framework 30. As Cocoon is under constant development, the following
major release (Cocoon 2) is expected to have a few modifications in its design
[Cocoon, 2000, cocoon2.html].

7.1. What is Cocoon?
Cocoon is a publishing platform that relies on some of the technologies presented
in previous chapters (such as XML, DOM, and XSLT) to provide Web content. To
put it simply: Cocoon uses server-side XSLT transformations to serve client-
specific Web content for different client types.

It differs from most of the other server platforms in that it allows the complete
separation of the three layers: content, style, and logic. We have earlier discussed
mostly the fist two layers, content and style, but the logic layer can not be ignored
either. It is as important part of Web services as they are. It is hard to imagine a
successful Web portal that does not have any dynamically created content. Of
course, nothing prevents one from using Cocoon to publish only static content; it
just means that the logic part is not used.

The separation of the different layers divides the development of Web services in
three separate levels:

• XML content creation,

• XML processing, and

• XSL rendering [Cocoon, 2000, index.html].

The content is created by people who have the money, resources, skills, and
whatever it takes to generate new content. They do not need to have any knowledge
about how the XML content is further processed. The only thing they must be
aware of is the particular document type (DTD).

XML processing means that the requested XML file is processed by applying the
logic contained in its logic sheet. This is the main difference to the other dynamic

30 The current version of Cocoon at the time of writing this chapter was 1.72.

Chapter 7. Cocoon

63

content generation techniques discussed in subsection 2.2.1: in Cocoon the logic
can be separated from the content file.

The created and processed document is finally rendered by giving it a style. This is
done by applying an XSL style sheet to it and formatting the document to the
specified resource type. The presentation formats can be e.g. HTML, XHTML,
WML, XML, and PDF.

The distinction of the three layers allows Web service providers to have each level
managed by individuals best suited for their particular job. The Cocoon model
allows the people working in each context to concentrate in their own tasks,
minimising the cross-talks (and cross-work) between different working contexts.
Multiply skilled persons who have talents for content creation, programming, and
graphical design are hard to find. Even if such persons existed, the distinction of
different working contexts to independent layers could help to divide and structure
the work logically.

7.2. Cocoon's Infrastructure
Cocoon documentation claims that unlike other XML projects, Cocoon
concentrates on solving the publishing infrastructure problem. What Cocoon offers
is a transparent way of making the transformations from XML to other markup
languages, processing it with programmatic logic on the way, if necessary. The
infrastructure handles automatically the calls for XML parsers and XSL processors
[Cocoon, 2000, infrastructure.html].

The performance of the framework is improved with a memory-based cache system
for both static and dynamic pages. The following subsections discuss the Cocoon
architecture and cache system.

7.2.1. Architecture
The platform has an engine that is based on the Reactor design pattern, illustrated
in Figure 7-1.

Chapter 7. Cocoon

64

Figure 7-1. Cocoon Schema [Cocoon, 2000, guide.html]

The components of the schema are described below.

Request

 A wrapper around the client's request and all the information needed by the
processing engine. The information contained in the request includes: client
type (user agent), requested URL, and producer needed to handle the request.

Producer

 The handler for the requested URI that produces an XML document. Cocoon
itself is implemented as a Java servlet, producers are servlet-like pluggable
components that work in this framework. A producer creates the XML
document (either by generating it or by reading it from a file) and feeds it into
the processing reactor.

Reactor

 The component that directs the document to the correct processor, reacting on
XML processing instructions. The essence of the architecture, the reactor
pattern is different from a processing pipeline in that it allows the processing
path to be dynamically configurable. It increases performance since only the
required processors are called to handle the document. The reactor is also
responsible for forwarding the document to the appropriate formatter.

Chapter 7. Cocoon

65

Processor

 A processor transforms a given XML document into some other structure (in
the memory). It can either perform a straightforward XSLT transformation or
it can also replace portions of the document with dynamically generated
content. The Cocoon distribution has a few built-in processors (XSLT, XSP,
DCP, SQL, and LDAP) but more about these in Section 7.3.

Formatter

 A formatter is responsible for transforming the memory representation of the
XML document into a stream that may be interpreted by the requesting client.

Response

 An encapsulation of the formatted document along with its properties (such as
length, MIME type, etc.).

Loader

 The component that loads the formatted output when it is executable code.
Instead of sending the output directly back to the client, it gets loaded and
executed as a document producer. This part is used for building new producers
from compiled server pages (XSPs) [Cocoon, 2000, guide.html].

7.2.2. Cocoon Cache System
The Cocoon server environment has a few critical issues concerning performance
and memory usage. XML parsing, XSLT transformations, document processing
and formatting are all relatively heavy operations that require their share of the
processing power on the server. To make Cocoon handle effectively the load of
multiple requests the designers implemented a special cache system in its engine. It
is able to cache both static and dynamically created pages.

The cache adheres to the following algorithm:

when the request comes, the cache is searched

 if the request is found;
 its changeable points are evaluated
 if all changeable points are unchanged
 the page is served directly from the cache
 if a single point has changed and requires reprocessing

 the page is invalidated and the server continues
 as if it was not found
 if the request is not found;
 the page is normally processed
 it is sent to the client
 it is stored into the cache

[Cocoon, 2000, guide.html]

Chapter 7. Cocoon

66

The pages are processed with the help of many components (XML content files,
style sheets, and possibly logic sheets), many of which may change independently
over time. This requires that every component that can be changed must be checked
by the cache system at request time. If, for example, a style sheet or a file template
is updated on disk, the whole page is reprocessed.

The cache system is based on a persistent object storage system and it is able to
save stored objects in a persistent state that outlives the server environment's Java
Virtual Machine (JVM) execution. It is responsible for handling the cached pages
as well as the pre-parsed XML documents, including XSL style sheets. Applying
pre-parsed style sheets to XML pages that have changed (which supposedly is a
rather frequent case) helps to speed up the execution [Cocoon, 2000, guide.html].

7.3. Dynamic Content in Cocoon
What makes Cocoon different from most of the other publicly available XML
servers, including XML Enabler and Rocket, is that it has support for the generation
of dynamic content 31. Java servlet API sets certain limitations on interconnecting
several servlets; Cocoon designers have created special techniques to overcome
these limitations.

7.3.1. Servlet Chaining vs. Servlet Nesting
Java servlets were introduced by the Java Web Server team as Java-equivalents of
CGI-programs, server-side pluggable components to handle dynamic Web content.
The need for a componentised request handler was not taken into serious
consideration in the design phase. It was only considered afterwards, when at an
implementation phase. The ability to chain multiple servlets was added in the Java
Web Server but unfortunately the servlet API does not include such possibility. The
API designers came up with their own solution: servlet nesting [Cocoon, 2000,
dynamic.html].

Servlet chaining (also known as servlet piping)

 The servlets are executed sequentially so that the output of one servlet
becomes the input to another (Figure 7-2). The output of the last servlet is
returned to the client [Callaway, 1999, pp. 287-289]. Servlets can be used to
filter the output of previous servlets.

31 At least the current version of Rocket (0.1) and the soon-to-be-released version 0.2 do not support dynamic
content.

Chapter 7. Cocoon

67

Figure 7-2. The Servlet Chaining Process [Callaway, 1999, p. 288]

Servlet nesting

 A servlet executes other servlets inside its own code and includes their output
inside its own. The output of the first servlet is returned to the client.

The limitation in the servlet API and servlet nesting is that the servlet that gets
called within another servlet cannot modify the output of the caller. If no further
XML processing is needed on the server side, this is no problem: servlets or JSP
files can do the work just fine. However, if this output requires some server-side
processing by other servlets (such as XLST transformations), the servlet API as
such is not adequate. XML Enabler, Rocket, and Cocoon are all examples of these
“other servlets”.

Although servlet chaining is not supported by the servlet API, it can be managed
with special solutions on the servlet engine (“Chaining Process” in Figure 7-2). The
Cocoon framework is one implementation of such a chaining process. Rather than
turning Cocoon into yet-another servlet engine, thus limiting its portability, its
designers came up with alternative solutions. These solutions offer servlet-
equivalent functionality with the Cocoon design ideas introduced in subsection
7.2.1 [Cocoon, 2000, dynamic.html].

7.3.2. Producers and Processors
Producers are responsible for initiating the request handling phase. They are the
Cocoon-equivalents of servlets that evaluate the HTTP request parameters and
create XML content for further processing by processors (“Servlet 1” in Figure 7-
2). The Cocoon documentation suggests that if a servlet needs many parameters to
work, it is more reasonable to write a processor instead. Processors are Cocoon-
equivalents of the subsequent servlets in Figure 7-2. The platform distribution has a
number of processors that implement common needs and situations. These are
explained below.

Chapter 7. Cocoon

68

XSLT Processor

 The XSLT processor is probably the most common of the provided
processors. As the name states, it applies XSLT transformations to the input
document.

XSP Processor

 The XSP processor evaluates Extensible Server Pages (XSP) and compiles
them into producers. An XSP page is the Cocoon-equivalent of an ASP/JSP
page, an XML document containing tag-based directives that specify how to
generate dynamic content at request time.

The logic can be embedded in an XML page or it can be separated in discrete
modules (e.g. JavaBeans) called with simple method calls. Appendix E shows
a sample XSP page with embedded logic and its processed result.

DCP Processor

 The Dynamic Content Processor (DCP) represents a little earlier design than
XSP in the Cocoon framework. The difference is that while XSP pages are
compiled and executed directly as document producers, DCP is interpreted
and executed at runtime. This makes DCP somewhat inferior to XSP:
interpretation requires some time and the results are not cached. The
developers of Cocoon have stated that the further development of DCP is
currently limited to bug fixes; it will eventually be deprecated in favor of XSP
[Cocoon, 2000, dcp.html].

DCP uses XML processing instructions (e.g. <?dcp-object?>, <?dcp-

content?>) in the content files to denote directives for DCP logic. The logic
that gets executed is written in separate modules, in e.g. Java or JavaScript.
Appendix F shows what a document containing DCP directives could look
like.

SQL Processor

 The SQL processor acts as an interface to relational databases. It performs
SQL queries, translates the result set into an XML fragment and inserts the
fragment in the original document. As a considerable amount of data is
currently stored in relational databases, a means to utilise that in also XML
applications is certainly appreciated. The SQL processor is the means
provided in Cocoon's distribution [Cocoon, 2000, sql.html].

LDAP Processor

 Like the SQL processor, the LDAP Processor is an interface processor. Its
functioning is similar to the previous description: it performs LDAP queries,

Chapter 7. Cocoon

69

translates the result set into an XML fragment, and inserts the fragment in the
original document.

7.4. Cocoon's Advantages and Disadvantages
This section summarises the advantages Cocoon has over other XML servers and
conventional Web servers as well. It also presents some problems still existing in
the framework.

7.4.1. Why is Cocoon a good solution?
Cocoon is by no means the only server solution to enable transformations from
XML to other markup languages, even with dynamic content generation
capabilities. Various software manufacturers, including Oracle, have released
similar products as well. Cocoon has still some advantages over other products.

• It is free. A working Web server environment with XML support can be built
totally on free software, such as Apache Web server, Apache JServ servlet
engine, and Cocoon.

• A free Web server is not a requirement, though. It can be installed in numerous
server platforms, as long as they have a servlet engine.

• It is open source. Anyone is allowed to modify the source code to meet her own
needs.

• It allows a complete separation of content, logic, and style, thus enabling better
management of data and human resources.

• It is based on standard technologies, such as DOM, XML and XSLT. In the Web
community, relying on standards should result to a better chance to be widely
accepted (at least in the long run).

• It allows multiple presentations of the same content, e.g. HTML or WML
versions of the original XML documents, thus increasing work re-use.

• It has a cache system that makes the server processing more effective, thus
reducing latency time.

• It has been developed for a relatively long time now (in the XML/XSL time
scale) 32. This along with the fact that many individuals under the open source
philosophy have aided its development has made Cocoon a relatively robust
framework.

32 Cocoon's creator, Stefano Mazzocchi, claims to have the inspiration for the framework in around Christmas,
1998 [Cocoon, 2000, faqs.html].

Chapter 7. Cocoon

70

7.4.2. Has Cocoon any disadvantages?
The Cocoon documentation reckons some known problems in the framework. The
biggest of those problems is thought to be the lack of XML and XSL knowledge,
being relatively new formats. However, even when the public knowledge of those
technologies spreads (as it most probably will do), service providers must learn to
use them and be willing to fully apply them. Cocoon developers are confident that
XML and XSL are going to “do magic” when they gain broader public acceptance
[Cocoon, 2000, index.html]. Whether it does it or not, that remains to be seen.

Another, much more concrete problem concerns the processing complexity. The
creators of the framework admit that the kind of operations required to process the
document layers are complex and consume a fair amount of computing power on
the server side. The problem has been alleviated by the implementation of a page
compiler for dynamic pages and a memory-based cache system for both static and
dynamic pages. Distribution of computing should also be a solution to lessen the
burden on one server. Logic components can be encapsulated in e.g. JavaBeans and
distributed on several hosts to take care of raw computing while other servers
handle the document serving.

One limitation in the context of the previous chapter is the lack of support for
different client adaptation techniques. The decision of what markup language to use
(i.e. what XSLT style sheet is used) is based on the HTTP User-Agent header
alone. Cocoon does not take into account any of the previously presented formats
for preference profiles. On the other hand, one could argue that it is not Cocoon's
responsibility to adapt the content to meet the preferences of different users and
client terminals; it is the applications that should take care of that. That may well
be true but the server platform could make the job for the applications easier by
providing at least some support for the mechanisms. For example, the API for
Cocoon producers could have means to access UAProf or P3P attributes.

71

Chapter 8. Cocoon Service
Implementation: Schedule Board

This chapter describes the implementation of a Web service using XML and
Cocoon. The idea is to build an electronic version of an office schedule board. The
motivation behind the exercise is to examine the techniques presented earlier and to
develop a proof-of-concept demonstration of an XML Web service.

8.1. Background
A schedule board is a tool for any community which needs to keep track of its
members' whereabouts. A very common use for such a tool is for example in an
office, where employees mark their current status (“in office” / “out of office”),
along with some additional, explanatory information. An example of such a board
is seen in Figure 8-1.

Figure 8-1. An Office Personnel Schedule Board.

Chapter 8. Cocoon Service Implementation: Schedule Board

72

A typical schedule board has a roster of employees and a set of information
associated with each employee, including:

• status (in/out),

• schedules for the days of the current week and/or

hours of the current day, and

• additional remarks.

The idea is that each employee marks oneself “in” on coming to the office and
“out” on leaving it. Writing down some explanatory remarks, such as “Monday to
Friday: on holiday”, helps other employees to check one's whereabouts and to
decide how and when to contact her (or whether to contact her at all).

The electronic schedule board implemented here could be used in a company
intranet. It would be mainly updated with a desktop PCs but a WAP connection
would also be possible. This means the schedule board could be checked and
updated virtually anyplace and anytime... at least if a WAP connection to the
service is possible.

One of the reasons why we chose a schedule board as the target of our application
is the way its content is created. There are few content providers that offer publicly
meaningful, structured data in well-formed XML. For this kind of exercise, we
wanted to rely on data that was “home-made”, created by its very users.

8.2. Requirements
This section lists the few requirements our implementation should fulfil.

Data content

 The schedule board should contain the following information:

• number of current week,

• name of every employee in the office (must be unique),

• status information (“in” / “out”), and

• optional remarks for each day of the week.

Accessibility

 The schedule board should be accessible using a Web browser or a WAP
phone. (In the absence of available WAP gateway, the board is tested with a
WAP browser emulator running on a PC.)

Chapter 8. Cocoon Service Implementation: Schedule Board

73

Implementation

 The system should be implemented with tools presented in the earlier chapters,
namely XML, XSLT, DOM and Cocoon.

8.3. Implementation
This section describes the technical details of the development. First, we present the
implementation platform used in the work. After that, we describe the design of the
system.

8.3.1. Hardware and Software Environment
The implementation platform is documented here. The information is admittedly
quite technical and may not be of interest to all readers. However, its main purpose
is to describe a combination of components which are “tried and true”; i.e. they
have been proven to work in at least one platform. This may be valuable
information to those readers who are trying to build their own services with
Cocoon.

Hardware

 IBM ThinkPad 600E laptop computer

Operating System

 Microsoft Windows 95

Java Virtual Machine

 Sun Java 2 SDK, Standard Edition version 1.2.2

Web Server

 Apache HTTP Server v. 1.3.9

Servlet Engine

 Apache JServ v. 1.1

Cocoon Servlet Environment

 Cocoon v. 1.7.3

Xerces XML parser v. 1.0.1 33

Xalan XSL processor v. 0.19.2 34

33 The Xerces parser (v. 1.0.3) included in the applied Cocoon distribution was not working with XSP pages in
the platform.
34 The Xalan processor (v. 1.0.1) included in the applied Cocoon distribution was not working with XSP pages
in the platform.

Chapter 8. Cocoon Service Implementation: Schedule Board

74

Web Browser

 Netscape Communicator 4.72 (for viewing the HTML output)

WML Browser

 Nokia WAP Toolkit v. 1.2 (for viewing the WML output)

8.3.2. Schedule Board Service Design
The structure of the schedule board implementation can be seen from two
viewpoints: logical and physical. The pages that are shown in a Web device are
thought to form the logical structure; they affect the way the user understands the
service and interacts with it. The physical structure consists of all the files the
system uses: two XML files, five XSLT files, and one CSS file. None of them per
se are shown to the user, they are only meaningful to the inner functionality of the
system. The files and the relationships between them are presented in Figure 8-2.

Figure 8-2. File Relationships in Schedule Board Requests

Chapter 8. Cocoon Service Implementation: Schedule Board

75

Actually, the pages rounded with dashed line (“board-general.html”, “board-
person.html”, and “board-deck.wml”) are not serialised in a file at all. They
represent the logical view of the service, the pages that get sent to the browser.

Presenting the source codes of all the files would take too much space here.
However, as the source codes are perhaps the best way to exactly document the
implementation and the functionality of the service, it is essential to present at least
some of them in this thesis. A selected set of the source files is shown in Appendix
G. They represent one particular chain of files in Figure 8-2, from board.xml to
board-xsp-generalhtml.xsl and board.css.

The files on the server and their roles are presented below.

board.xml

 This is the XML file that has the data content of the schedule board. It does
not contain any logic or presentational information. An excerpt from the file
looks like this:

<?xml version="1.0" encoding="iso-8859-1"?>
<?cocoon-process type="xslt"?>

<?xml-stylesheet href="board-xsp.xsl" type="text/xsl"?>
<scheduleboard>
 <!-- <servlet-parameters/> is needed for the board-xsp.xsl. -->
 <!—- It is replaced by the HTTP request parameters, -->
 <!-- if there are any. -->
 <servlet-parameters/>

 <!-- Person data is omitted here. -->
</scheduleboard>.

A more detailed excerpt from the whole file is shown in Appendix G, Example
G-1.

board-xsp.xsl

 This XSLT file transforms board.xml to an XSP “page” that adds some
additional information to board.xml. The added information (HTTP request
parameter “personID” and the number of the current week) is generated
dynamically upon each request. The resulted XSP “page” is then automatically
compiled into a Cocoon producer (_board.class) and stored in Cocoon's
repository. Although its source code and the compiled byte code are saved on
the hard disk, the producer remains on the server's memory for further
processing. The producer is finally responsible for producing the dynamically
expanded version of board.xml object (in memory, not as a file).

The XSL template that adds the servlet parameters to the source document is
shown below.

Chapter 8. Cocoon Service Implementation: Schedule Board

76

<xsl:template match="servlet-parameters">
 <xsp:logic><![CDATA[

 Enumeration e = request.getParameterNames();
 if ((e != null) && (e.hasMoreElements())) {]]>
 <request-params>
 <xsp:logic><![CDATA[
 while (e.hasMoreElements()) {
 String k = (String) e.nextElement();

 String val = request.getParameter(k);
 String vals[] = request.getParameterValues(k);]]>
 <param>
 <xsp:attribute name="name">
 <xsp:expr>k</xsp:expr>
 </xsp:attribute>

 <xsp:logic> <![CDATA[
 for (int i = 0; i < vals.length; i++) {]]>
 <value>
 <xsp:expr>vals[i]</xsp:expr>
 </value>
 }

 </xsp:logic>
 </param>
 }
 </xsp:logic>
 </request-params>
 }

 </xsp:logic>
</xsl:template>

The entire file source is shown in Appendix G, Example G-2.

board-xsp-html.xsl

 This is the XSLT file that does the transformation to HTML. It has an
xsl:include element to copy two separately stored XSLT files into itself. The
included files describe the formatting for two different views on the original
XML file. The decision of what view to choose is made dynamically in the
board-xsp-html.xsl style sheet, based on the now included request
parameter.

The following code selects the value of the request parameter and sets it to an
XSL variable (“pID”).
<xsl:param name="pID"
 select="//request-params/param[@name='personID']/value"/>

The XSL template that chooses the appropriate view (or mode in the XSL
terminology) on the document is shown below.

<xsl:template match="/">
 <xsl:processing-instruction

 name="cocoon-format">type="text/html"</xsl:processing-
instruction>

Chapter 8. Cocoon Service Implementation: Schedule Board

77

 <html>
 <xsl:choose>

 <xsl:when test="$pID">
 <xsl:apply-templates mode="person"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates mode="general"/>
 </xsl:otherwise>

 </xsl:choose>
 </html>
</xsl:template>

The entire file source is shown in Appendix G, Example G-3.

board-xsp-generalhtml.xsl

 This is the first of the “view files” for HTML rendering. It generates a table
with all the information in the board. This view is chosen if there is no
“personID” parameter in the HTTP request. Figure 8-3 shows the generated
page (“board-general.html”) in Netscape Navigator.

Figure 8-3. “board-general.html” in Netscape Navigator

The XSL template that adds the status cell in the HTML table is shown below.

<xsl:template match="status" mode="general">
 <td>
 <xsl:choose>
 <xsl:when test="@value='in'">
 <xsl:attribute name="class">in</xsl:attribute>
 </xsl:when>

 </xsl:choose>
 <xsl:value-of select="@value"/>
 </td>

Chapter 8. Cocoon Service Implementation: Schedule Board

78

</xsl:template>

The entire file source is shown in Appendix G, Example G-4.

board-xsp-personhtml.xsl

 This is the second view to the original XML file. It is chosen if there is a
“personID” provided in the request. The result is an HTML document
(“board-person.html”) that shows the information of the requested employee.
It is also an HTML form which allows the user to update the data. Figure 8-4
shows the page in Netscape Navigator.

Figure 8-4. “board-person.html” in Netscape Navigator

board.css

 This is the common style sheet for the two HTML pages shown on the
browser. It has the formatting instructions, “text decorations”, for Web
browsers.

The CSS rule for HTML elements of the class “in” is shown below.

.in {

 font-weight: bold;
 }

The result is that the status sells (in board-general.html) with the value “in”
are rendered with boldface font.

The entire file source is shown in Appendix G, Example G-5.

Chapter 8. Cocoon Service Implementation: Schedule Board

79

board-xsp-wml.xsl

 This style sheet transforms the XML file to WML. The resulting WML page
(“board-deck.wml”) contains one card for the list of all employees and a card
for each individual employee. The cards that show each employee's data also
have means to update the information. In the implementation environment, the
WML page was tested with a WAP phone emulator's WML browser. Figure 8-
5 shows the card for the employee list (left) and the card for one employee
(right).

Figure 8-5. Two Cards from “board-deck.wml”

The files in the preceding list are used when the file board.xml is requested. There
is still one file, update-xsp.xml, that is used for updating information. This XSP
page contains the Java code that is compiled into a producer by Cocoon. The
producer does not generate any substantial output itself; when it has processed the
update, it redirects the HTTP request back to the file board.xml (Figure 8-6). From
there on, the process continues as explained earlier.

Figure 8-6. File Relationships in Update Requests

An example of a Java function that manipulates the board.xml file with the DOM
interface is shown below.

<xsp:logic><![CDATA[

 /**
 * Return 'null' if first person in not found

 */
 private Node getFirstPerson(Node node) {
 // returns 'null' if first person in not found
 if (node == null || node.getNodeName().equals("person"))
 // return 'null' or 'person' node
 return node;

 else {
 Node child = node.getFirstChild();

Chapter 8. Cocoon Service Implementation: Schedule Board

80

 if (child == null)
 return getFirstPerson(node.getNextSibling());

 else return getFirstPerson(child);
 }
 }
...

The entire file source is shown in Appendix G, Example G-6.

8.4. Conclusions
This section takes a look at the final application and considers the value of the
achieved result.

8.4.1. The Nature of the Application
In general, the possibility to update the data on-line by different types of Web
devices may cause some interesting problems. Suppose a Web service created by
transforming XML to various presentation formats would also have other kinds of
media types to offer: images, audiofiles, binary documents, etc. According to the
capabilities of the Web devices, it chooses the appropriate content formats for each
device from a repository of existing documents or, alternatively, it can modify the
existing documents dynamically to meet the required capabilities (e.g. by
converting image files to other formats).

So what happens when such a service is used with a terminal with very limited
capabilities? How can the terminal update the content on the server when it is not
capable to even handle the same formats the server does? For example, our
schedule board application could also have included a means to attach an image to
the data of each person. The users could have changed the image; most HTML
browsers can be used for uploading images to servers. On the other hand, WAP
phones do not have the capability to do that.

In this situation, we would have had to accept the fact that a portion of the service,
updating images, would have been accessible by only some of the Web devices.
Similarly, in other kind of Web services where the information can also be fed from
the clients to the servers, some updates can be managed from most clients and some
not. In the case of our Schedule Board, the inputted information is only text. The
problem does not have any effects here because WAP phones are as capable to send
textual information to servers as the HTML browsers are.

Still, updates concerning only textual information may rise a situation that
resembles the problem of view update in traditional databases [Date, 1995, p. 472].
HTML and WML represent views on the data originally stored in XML. If XML is
considered to have the greatest power of expression, is it possible to retain that

Chapter 8. Cocoon Service Implementation: Schedule Board

81

power also in the updates coming from less powerful presentation languages? Our
conclusion is that yes it is, provided the transmission mechanism from the client to
the server supports the structuring of information. In the case of HTML and WML
(and HTTP and WSP), request parameters provide a way to structurise the
submitted data.

8.4.2. Room for Further Improvement
Although the implemented application is functional and serviceable, it is not
polished for real use. For example, it lacks proper error handling, which means the
results on incorrect requests may not always be sensible. This is not a serious
problem, however, since the work is not intended to be utilised in real office
environment.

If wanted, the application could be improved with many additional features. For
instance, it could be modified to produce XML output for those browsers who
support it. This would allow the browsers to perform tasks to the content without
contacting the server, such as filtering the information or sorting the table by
different columns.

8.4.3. The Value of This Exercise
Even with a few imperfections, the implementation has presented its worthiness. It
is a demonstration of how content, logic, and style(s) can be totally separated. The
content (board.xml) is fed to a separate logic sheet (board-xsp.xml) and the
processed output is associated with an appropriate style (HTML and WML style
sheets).

It has been clear from the start that the implemented Schedule Board would not be
easily applicable in real life. The main reason is that it would be yet another
cognitive load for office employees. For the schedule board to be up-to-date at all
times, every employee would be required to dutifully update one's information.
This would hardly be probable on a day-to-day basis.

The value of the implementation is not so much in the particular resulting
application, a schedule board service, as in the proof-of-concept of the applied
techniques.

82

Chapter 9. Summary
Web services, the combination of Web applications and Web content, have been
traditionally produced with techniques that mix data content with styling
information, sometimes even with programmatic logic. The tight coupling of these
elements causes problems that affect the production, delivery, and consumption of
the services. Chapter 1 stated the main problem in this thesis as “how to deal with
device independence, content re-use, and network-friendly encodings”. This
chapter summarises the presented solutions.

Device independence can be achieved by separating the layers of content, logic,
and style. Content is pure information, it does not have any attributes that specify
what it is used for or how it is presented. It is the job of the applications that
process the content to handle those things. Logic, of course, has to know what the
content is like in order to be able to process it. However, logic does not have to be
tightly coupled with content; they can be only associated with each other. When
style (the formatting) is a separate layer, one content object can be given multiple
styles. For example, a document can be styled with either graphic-intensive or text-
based HTML formatting for Web use.

A general solution to content re-use is structured information. It is a prerequisite for
including pieces of information, anything from small fragments to whole
documents, in new aggregates. Structured information can be created in many
ways, databases and markup languages being two of the most important of them.
This thesis focused on one particular technology, Extensible Markup Language
(XML). It has some interesting features in its favour, such as: it has been developed
specially for the Web, it has its own styling language (XSL), it is extensible and
customisable.

Network-friendly encodings mean efficient network throughput. In other words, no
network capacity is wasted on transmitting data that is unnecessary or unwanted.
Such a situation may occur, for example, when a Web device without a colour
display is forced to receive content that uses colourful text or images. Another
example is a situation where a user receives information she is not interested in. All
these annoyances become even greater when the Web device is behind a slow
network connection, such as a telephone line.

Several solutions for this problem were presented in this thesis. Verbose textual
content can be compacted by binary encodings, such as Binary XML Content
Format in WAP. Content formats for customisation information (Chapter 6) are
meant for specifying the capabilities of Web devices and the user preferences. This
kind of information can be used to customise the content to better meet the needs

Chapter 9. Summary

83

and capabilities of users and their Web devices. One way to perform customisation
could be styling mechanisms presented in Chapter 5.

The scope of this study did not cover every aspect of device-independent,
customisable Web services. There are still interesting areas left for further research.
The following directions concern the practical application of the methods and
technologies presented in this thesis.

For a Web service provider, it would be important to determine how the
preferences and profiles affect the customisation process. Examples of open
questions could be: what facet of the customisation does a particular preference or
profile affect? In other words, what preference affects the content, what affects the
functional logic, and what affects the styling? What parts of the customisations can
be managed with program logic and what parts can be managed with styling?

Another practical issue is the service performance. A service provider planning to
build up a huge, device-independent Web portal should take this issue into serious
consideration. Can an XML-powered portal effectively substitute for database-
driven portals? What parts of the whole service platform could benefit from
distributed computing, what parts are better left centralised? To study these kind of
things would require systematic testing: setting up test environments and
comparing the performance data from varying architecture configurations.

The essence of this thesis was to present XML and relating its techniques as the
solution to the problems that exist today in the field of Web services and Web
publishing. XML has not yet made its breakthrough as a common format for all
Web content, and it is not likely to replace the existing formats (HTML, WML,
etc.), either. Services are still going to be implemented in traditional techniques,
too. XML can be used as a complementary technique, producing e.g. services that
need to be Web device independent.

How realistic is it then to expect content providers to adopt XML as the format for
their data? A simplistic answer would be: “it depends on the content provider”.
XML requires more strict rules to produce and process the data than traditional
HTML. The real world does not always obey rules and specifications; not every
content provider is willing to apply techniques that are thought to bring more
restrictions and complexity to the current situation. For those content providers who
wish to serve customers with a variety of Web devices, and who want to do that in
a maintainable and manageable way, XML is a solution to be reckoned with.

84

References
The reference entries are indexed by the (first) author of the document if the source
is a book or an article, and by the title of the document if the source is a
specification.

[AXML, 1998] Tim Bray, The Annotated XML Specification, XML.com, Apr. 15,
1998, Available online (http://www.xml.com/pub/axml/axmlintro.html)
Accessed on March 17, 2000.

[Apache, 1999] The Apache Software Foundation, xml.apache.org: Introduction,
1999, Web site (http://xml.apache.org/) Accessed on March 13, 2000.

[Baker, 1998] Mark Baker, “Using server side XML to create individualized Web
pages”, 317-319, Professional Communication Conference, 1998, IPCC 98,
IEEE International, 1998.

[Booch et al., 1999] Grady Booch, James Rumbaugh, and Ivar Jacobson, The
Unified Modeling Language User Guide, 4th Printing, Addison-Wesley ,
1999.

[Burstein, 1999] Cari D. Burstein, Frequently Asked Questions, Last Modified on
January 22, 2000, Online FAQ
(http://www.anybrowser.org/campaign/abfaq.shtml) Accessed on April 5,
2000, Viewable With Any Browser, Web site
(http://www.anybrowser.org/campaign/).

[Callaway, 1999] Dustin R. Callaway, Inside Servlets: Server-Side Programming
for the Java™ Platform, Addison-Wesley, 1999.

[CC/PP, 1999] Composite Capability / Preference Profiles, CC/PP, A user side
framework for content negotiation, World Wide Web Consortium, Edited by
Franklin Reynolds, Johan Hjelm, Spencer Dawkins, and Sandeep Singhal, 27
Jul 1999, Latest version available online (http://www.w3.org/TR/NOTE-
CCPP/) Accessed on June 5, 2000 .

W3C Note.

[CC/PP-ra, 2000] Composite Capabilities / Preference Profiles: Requirements and
Architecture, CC/PP-ra, World Wide Web Consortium, Edited by Mikael
Nilsson, Johan Hjelm, and Hidetaka Ohto, 28 February 2000, Latest version
available online (http://www.w3.org/TR/CCPP-ra/) Accessed on June 6, 2000
.

W3C Note.

References

85

[CC/PPex, 1999] CC/PP exchange protocol based on HTTP Extension Framework:
A user side framework for content negotiation, World Wide Web Consortium,
Edited by Hideka Ohto and Johan Hjelm, 24 Jun 1999, Latest version
available online (http://www.w3.org/TR/NOTE-CCPPexchange) Accessed on
June 5, 2000.

W3C Note.

[Clark, 1997] James Clark, Comparison of SGML and XML, World Wide Web
Consortium, 15 Dec 1997, Available online (http://www.w3.org/tr/note-sgml-
xml.html) Accessed on June 5, 2000.

W3C Note.

[Cocoon, 2000] Cocoon Documentation | Index, Apache XML Project, The Apache
Software Foundation, 1999, Web site (http://xml.apache.org/cocoon/)
Accessed on March 13, 2000.

[Connolly, 2000] Dan Connolly, Extensible Markup Language (XML) Activity:
W3C Architecture Domain Activity Statement, World Wide Web Consortium,
1998-2000, WWW document (http://www.w3.org/XML/Activity.html)
Accessed on April 10, 2000.

[Date, 1995] C. J., An Introduction to Database Systems, 6th Edition, Addison-
Wesley, 1995.

[DocZilla, 1999] DocZilla SGML/XML Module (Alpha3), CiTEC Information,
1999, DocZilla Web site (http://www.doczilla.com/download/index.html)
Accessed on March 9, 2000 .

[DOM1, 1998] Document Object Model (DOM) Level 1 Specification, W3C DOM
Working Group, World Wide Web Consortium, 1 October, 1998, Online
version (http://www.w3.org/TR/REC-DOM-Level-1/) Accessed on March 24,
2000.

W3C Recommendation.

[Flammia, 1997] Giovanni Flammia, “XML and style sheets promise to make the
Web more accessible”, 98-99, IEEE Expert, 12, 3, May/June 1997.

[Floyd, 1999] Michael Floyd, “Building an XML workbench”, Online version
(http://www.webtechniques.com/archives/1999/05/beyo/) Accessed on March
14, 2000, Web Techniques, Miller Freeman, 4, 5, May 1999.

[Floyd, 2000] Michael Floyd, “Launching XML Web sites with Rocket”, 44-48,
Online version (http://www.webtechniques.com/archives/2000/02/beyo/)
Accessed on March 21, 2000, Web Techniques, Miller Freeman, 5, 2, February
2000.

References

86

[Fuchs, 1999] Matthew Fuchs, “Why XML is meant for Java”, Online version
(http://www.webtechniques.com/archives/1999/06/fuchs/) Accessed on March
21, 2000, Web Techniques, Miller Freeman, 4, 7, June 1999.

[Gregersen and Bilstrup, 2000] Claus Leth Gregersen and Bent Bilstrup, “WAP
from an XML developer's point of view”, The Fifth International WAP
Developers' Symposium: Conference Proceedings, May 5, 2000.

[Harold, 1999] Elliotte Rusty Harold, XML Bible, IDG, 1999, An update available
online (http://metalab.unc.edu/xml/books/bible/updates/14.html) Accessed on
April 7, 2000.

[Holman, 1999a] Ken G. Holman, “What's the big deal with XSL?”, Online article
(http://www.xml.com/xml/pub/1999/04/holman/xsl.html) Accessed on
September 28, 1999, XML.com, O'Reilly Network, April 1999.

[Holman, 1999b] Ken G. Holman, The XML family of standards, XML Finland'99:
SGML Users Group Finland - Conference Paper, September 23, 1999.

[Holman, 1999c] Ken G. Holman, Introduction to DOM and CSS, XML
Finland'99: SGML Users Group Finland - Conference Paper, September 23,
1999.

[Holman, 1999d] Ken G. Holman, Introduction to XSLT and XPath, XML
Finland'99: SGML Users Group Finland - Conference Paper, September 23,
1999.

[Kamada and Miyazaki, 1997] Tomihisa Kamada and Tomohiko Miyazaki, Client-
Specific Web Services by Using User Agent Attributes, W3C, December 30,
1997, WWW document (http://www.w3.org/TR/NOTE-agent-attributes.html)
Accessed on April 17, 2000.

W3C NOTE.

[Korpela, 1998] Jukka Korpela, “Lurching toward Babel: HTML, CSS, and XML”,
103-104, 106, Computer, IEEE Computer Society, 31, 7, July 1998.

[Lewis et al., 1989] C. Lewis, D. Hair, and V. Schoenberg, Generalization,
Consistency, and Control: Proc. ACM CHI'89 Conf. (Austin, TX, 30 April 4 -
May 5), 1-5.

[Lie, 1999] Håkon W. Lie, Formatting objects considered harmful, April 15, 1999,
An online article published on Håkon Lie's website
(http://www.operasoftware.com/people/howcome/1999/foch.html) Accessed
on June 3, 2000.

[Lie and Saarela, 1999] Håkon Wium Lie and Janne Saarela, “Multipurpose Web
publishing using HTML, XML and CSS”, 95-101, Communications of the
ACM, 42, 10, October 1999.

References

87

[Lilley, 1997] Chris Lilley and Vincent Quint, Extensible Stylesheet Language
(XSL): XSL information page on the W3C site, W3C, 1997-2000,
http://www.w3.org/Style/XSL/ Accessed on March 30, 2000.

[Martin, 2000a] Didier Martin, “Component-based page layouts”, Feb. 16, 2000,
Online article (http://www.xml.com/pub/2000/02/16/style/index.html)
Accessed on April 10, 2000, XML.com: Style Matters, O'Reilly Network.

[Martin, 2000b] Didier Martin, “Markup: a family affair”, Apr. 5, 2000, Online
article (http://www.xml.com/pub/2000/04/05/style/index.html) Accessed on
April 10, 2000, XML.com: Style Matters, O'Reilly Network.

[Maruyama et al., 1999] Hiroshi Maruyama, Kent Tamura, and Naohiko Uramoto,
XML and Java™: Developing Web Applications, 2nd Printing, Addison-
Wesley, 1999.

[Meyer, 2000] Eric Meyer, webreview.com, Web Review / Miller Freeman, Jan. 4,
2000.

[Microsoft, 1999] Microsoft delivers industry's first XML-compliant browser:
comprehensive XML support enables developers to build new generation of
data-driven applications, Microsoft Corp., March 31, 1999, Online version
(http://www.microsoft.com/presspass/press/1999/Mar99/XMLISVpr.asp)
Accessed on June 5, 2000, PressPass: Microsoft's press release archive.

[Netscape, 1998] Netscape accelerates Communicator evolution with first release
of next-generation Communicator source code to developer community via
Mozilla.org: Industry leading companies support bold move and will
participate in early development of the source, Netscape Communications,
March 31, 1998, Online article
(http://home.netscape.com/newsref/pr/newsrelease591.html) Accessed on June
5, 2000, Company Press Relations: Netscape Press Release Archive.

[O'Reilly, 1999] Tim O'Reilly, “Where the Web leads us”, Online article
(http://www.xml.com/pub/1999/10/tokyo.html?wwwrrr_19991013.txt)
Accessed on June 5, 2000, XML.com, O'Reilly Network, Oct. 6, 1999.

[Ouahid and Karmouch, 1999] H. Ouahid and A. Karmouch, “Converting Web
pages into well-formed XML documents”, 676-680, 1999 IEEE International
Conference on Communications, ICC'99, Conference Record, IEEE, 1, 6-10
June 1999.

[P3P, 2000] The Platform for Privacy Preferences 1.0 (P3P1.0) Specification,
W3C Working Draft 04 April 2000 Available online
(http://www.w3.org/TR/P3P/) Accessed on April 15, 2000, Lorrie Cranor,
Marc Langheinrich, Massimo Marchiori, Martin Presler-Marshall, and Joseph
Reagle, 04 April 2000.

References

88

[Palola, 1999] Ilkka Palola, “CSS:n käyttö XML-sovelluksissa”, 80-88, XML
Finland '99: Conference Proceedings, SGML/XML Käyttäjäkerho, 23-
24.09.1999.

[Pardi, 1999] William J. Pardi, XML in Action: Web Technology, Microsoft Press,
1999.

[Passani, 2000] Luca Passani, “Building WAP services”: XML and ASP will set
you free, 48-53, Online version
(http://www.webtechniques.com/archives/2000/03/passani/) Accessed on June
5, 2000, Web Techniques, CMP Media, 5, 3, March 2000.

[PIDL, 1999] PIDL - Personalized Information Description Language, Edited by
Yuichi Koike, Tomonari Kamba, and Marc Langheinrich, World Wide Web
Consortium, 09 Feb 1999, Latest version (http://www.w3.org/TR/NOTE-
PIDL) Referred version (http://www.w3.org/TR/1999/NOTE-PIDL-
19990209) Accessed on June 5, 2000.

W3C Note.

[RDF, 1999] Resource Description Framework (RDF) Model and Syntax
Specification, Ora Lassila and Ralph R. Swick, 22 February 1999, W3C
Recommendation 22 February 1999 Available online
(http://www.w3.org/TR/REC-rdf-syntax/) Accessed on June 5, 2000.

[RFC2068] Hypertext Transfer Protocol -- HTTP/1.1: Request for Comments, R.
Fielding, U. C. Irvine, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee,
IETF, January 1997, Available online
(http://www.ietf.org/rfc/rfc2068.txt?number=2068) Accessed on June 5, 2000.

[Sahuguet and Azavant, 1999] Arnaud Sahuguet and Fabien Azavant, “Looking at
the Web through XML glasses”, 148-159, Cooperative Information Systems,
1999, CoopIS '99, Proceesings on 1999 IFCIS International Converence,
IEEE Computer Society, Conference held on September 2-4 , 1999.

[Shapiro and Varian, 1998] Carl Shapiro and Hal R. Varian, “Versioning”: The
smart way to sell information, 106-114, Harvard Business Review, Harvard
Business School Publishing, 76, 6, November-December 1998.

[Siegel, 1997] David Siegel, “The Web is ruined and I ruined it”, Published
originally on Web Review
(http://www.webreview.com/pub/97/04/11/feature/index.html). Also
published on XML.com (http://www.xml.com/pub/w3j/s1.people.html)
Accessed on June 5, 2000, XML.com, O'Reilly Network, Oct. 2, 1997.

[StLaurent and Cerami, 1999] Simon St. Laurent and Ethan Cerami, Building XML
Applications, McGraw-Hill, 1999.

References

89

[Tidwell, 1999] Doug Tidwell, “Tutorial: introduction to XML”, Available online
in HTML and PDF format. (http://www-
4.ibm.com/software/developer/education/xmlintro/) Accessed on June 5, 2000,
developerWorks: IBM's Web site for software developers, Web site
(http://www.ibm.com/developer/) Accessed on June 5, 2000, July, 1999.

[Thompson, 2000] Valerie Thompson, “What the hell is... MExE?”, 29/03/2000,
Online article (http://www.theregister.co.uk/000329-000007.html) Accessed
on May 29, 2000, The Register, Situation Publishing.

[UAProf, 1999] Wireless Application Group - User Agent Profile Specification,
WAG UAPROF, Wireless Application Protocol Forum, 10 Nov 1999, Online
version in PDF format
(http://www1.wapforum.org/tech/terms.asp?doc=SPEC-UAProf-
19991110.pdf).

WAP Forum Specifications.

[VoiceXMLa, 2000] Voice eXtensible Markup Language Version 1.00, VoiceXML,
VoiceXML Forum, 07 March 2000, Online version in PDF format
(http://www.voicexml.org/specs/VoiceXML-100.pdf).

[VoiceXMLb, 2000] VoiceXML Forum, Web site (http://www.voicexml.org/).

[W3C, 1997] About the World Wide Web Consortium [W3C]: W3C Web page,
Web page (http://www.w3.org/Consortium/).

[Walsh, 1998] Norman Walsh, A technical introduction to XML, O'Reilly &
Associates, Oct. 3, 1998, Appeared initially in the Winter 1997 edition of the
World Wide Web Journal, but revised and XML 1.0 up-to-date edition is
available online at XML.com (http://www.xml.com/pub/98/10/guide0.html).
Accessed on June 4, 2000.

[Walsh, 1999] Norman Walsh, The Extensible Style Language, Online version
(http://www.webtechniques.com/archives/1999/01/walsh/) Accessed on
September 9, 1999, Web Techniques, Miller Freeman, 4, 1, January 1999.

[WBXML, 1999] Wireless Application Protocol - WAP Binary XML Content
Format, WBXML, Wireless Application Protocol Forum, 4-November-1999,
Online version in PDF format.
(http://www1.wapforum.org/tech/terms.asp?doc=SPEC-WBXML-
19991104.pdf) Accessed on June 5, 2000.

WAP Forum Specification.

[WML, 1999] Wireless Application Protocol - Wireless Markup Language
Specification - Version 1.2, WAP WML, Wireless Application Protocol
Forum, 4-November-1999, Online version in PDF format.

References

90

(http://www1.wapforum.org/tech/terms.asp?doc=SPEC-WML-19991104.pdf)
Accessed on June 5, 2000.

WAP Forum Specification.

[WML Reference, 1999] WML Reference Version 1.1, Nokia, September 1999,
Online version at the Forum Nokia Web site (http://www.forum.nokia.com)
[Registration required] Accessed on June 5, 2000.

Nokia WAP Developer Forum: Documents.

[XHTML, 2000] XHTML™ 1.0: The Extensible HyperText Markup Language: A
reformulation of HTML 4 in XML 1.0, W3C HTML working group, Available
online in multiple formats (http://www.w3.org/TR/xhtml1/) Accessed on June
5, 2000, 26 January 2000.

W3C Recommendation.

[XLink, 2000] XML Linking Language (XLink), XLink, Edited by Steve DeRose,
Eve Maler, David Orchard, and Ben Trafford, 21-February-2000, Latest
version (http://www.w3.org/TR/xlink/) Accessed on April 7, 2000.

W3C Working Draft.

[XML, 1998] Extensible Markup Language (XML) 1.0, REC-xml-19980210,
Edited by Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen, 10-Feb-98,
Available online in multiple formats: HTML, XML, PDF, and PS
(http://www.w3.org/TR/1998/REC-xml-19980210) Accessed on June 5, 2000.

W3C Recommendation.

[XML.com, 2000] XML.com - Standards List, XML.com, O'Reilly & Associates,
2000, Web page (http://www.xml.com/pub/stdlist) Accessed on March 13,
2000.

[XMLEnabler, 1999a] FAQ for XML Enabler, IBM Alphaworks, Online FAQ
(http://www.alphaworks.ibm.com/aw.nsf/techFAQS?OpenAgent&FAQXML+
EnablerFAQ) Accessed on March 10, 2000.

[XML Enabler, 1999b] alphaWorks License Agreement, IBM alphaWorks,
Available in a downloadable XML Enabler package on alphaWorks Web site
Web page
(http://www.alphaworks.ibm.com/aw.nsf/frame?ReadForm&/aw.nsf/techmain
/D963C6A8CA1360548825671B00682901) Accessed on March 10, 2000.

[XPath, 1999] XML Path Language (XPath) Version 1.0, XPath, Edited by James
Clark and Steve DeRose, 16 November 1999, Online version
(http://www.w3.org/TR/xpath) Accessed on June 5, 2000.

W3C Recommendation.

References

91

[XPointer, 2000] XML Pointer Language (XPointer), XPointer, Edited by Steve
DeRose, Ron Daniel, Jr., and Eve Maler, 6 December 1999, Latest version
(http://www.w3.org/TR/WD-xptr) Accessed on April 7, 2000.

W3C Working Draft.

[XSL, 2000] Extensible Stylesheet Language (XSL) Version 1.0, XSL, W3C XSL
Working Group, 1 March 2000, Latest version (http://www.w3.org/TR/xsl/)
Accessed on March 30, 2000.

W3C Working Draft.

[XSLT, 1999] XSL Transformations (XSLT) Version 1.0, XSLT, Edited by James
Clark, 16 November 1999, Available online on Online version
(http://www.w3.org/TR/xslt) Accessed on March 30, 2000.

W3C Recommendation.

[Zelnick, 1998] Nate Zelnick, “Netscape builds XML parser into new version of
Navigator”, April 6, 1998, Online article
(http://www.internetworld.com/print/1998/04/06/webdev/19980406-
parser.html) Accessed on March 10, 2000, Internet World, Penton Media.

92

Glossary
Here are the essential terms and abbreviations used in this study.

Terms
Unless otherwise mentioned, the definitions are originally created for this thesis.

Content

Information, data.

Dynamic content

Any content that is created by a Web server as a function of request
parameters or state of the requested resource [Cocoon, 2000, dynamic.html].

Logic

Functionality.

Static content

Information that has been made available on a Web server. Static content
remains the same for every request.

Style

Formatting, rendering, presentation.

Web application

An application or system of applications that uses HTTP as its primary
transport protocol [Maruyama et al., 1999, p.].

Web content

Any content a Web server sends that to the Web device. Content is the
information that is consumed by the user: textual documents, images, sound
and video clips, etc. It can be either static or dynamic.

Web device

Any hardware or software through which a user accesses Web content [Lie
and Saarela, 1999]. A superconcept of: client (device and/or software), user
agent, browser, rendering engine.

Web publication

A Web service that is (mostly) comprised of static Web content.

Glossary

93

Web service

The combination of Web application(s) and Web content.

Abbreviations
API

Application Programming Interface

ASP

Active Server Pages

CC/PP

Composite Capabilities / Preferences Profile

CD

Compact Disc

CD-ROM

Compact Disc - Read Only Memory

CDATA

Character data

CGI

Common Gateway Interface

CPI

Capability and Preference Information

CPU

Central Processing Unit

CSS

Cascading Style Sheet

DCP

Dynamic Content Processor

DOM

Document Object Model

Glossary

94

DTD

Document Type Definition

ETSI

European Telecommunications Standards Institute

HTML

Hypertext Markup Language

HTTP

Hypertext Transfer Protocol

IEC

International Electrotechnical Commission

IETF

Internet Engineering Task Force

IIOP

 Internet Inter-ORB Protocol

IP

Internet Protocol

ISO

International Standard Organization

JSP

Java Server Pages

JVM

Java Virtual Machine

LDAP

Light Directory Access Protocol

MathML

Mathematical Markup Language

MExE

Mobile Station Application Execution Environment

Glossary

95

MIME

Multi-purpose Internet Mail Extensions

MSIE

Microsoft Internet Explorer

P3P

Platform for Privacy Preferences

PC

Personal Computer

PDA

Personal Digital Assistant

PDF

Portable Document Format

PI

Processing Instruction

PIDL

Personalized Information Description Language

PS

PostScript

RDF

Resource Description Format

SAX

Simple API for XML

SGML

Standard Generalized Markup Language

SMIL

Synchronized Multimedia...

SMS

Short Message Service

Glossary

96

SMTP

Simple Mail Transfer Protocol

SQL

Structured Query Language

SVG

Scalable Vector Graphics

UAProf

User Agent Profile

UML

Unified Modeling Language

URI

Uniform Resource Identifier

URL

Uniform Resource Locator

VoiceXML

Voice eXtensible Markup Language

W3C

World Wide Web Consortium

WAP

Wireless Application Protocol

WBMP

Wireless Bitmap

WBXML

WAP Binary XML

WML

Wireless Markup Language

WWW

World Wide Web

Glossary

97

XHTML

Extensible Hypertext Markup Language

XML

Extensible Markup Language

XSL

Extensible Stylesheet Language

XSL:FO

XSL Formatting Objects

XSLT

XSL Transformations

XSP

Extensible Server Pages

98

Appendix A. Trilogy DTD
This is the Document Type Definition of our sample XML document.

Example A-1. Trilogy DTD
<!ELEMENT trilogy (author, part, part, part)>
<!ATTLIST trilogy title CDATA #IMPLIED>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>

<!ELEMENT part (#PCDATA | title | image?)+>
<!ELEMENT image EMPTY>
<!ATTLIST image src CDATA #REQUIRED>
<!ENTITY s1 "Sponsored by Kuat Drive Yards">

99

Appendix B. XSL and CSS
This example shows how XSL and CSS style sheets can be used together with a
browser that supports both formats. The browser used here is Microsoft Internet
Explorer 5.5.

Example B-1. Source document sote.xml
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="sote.xsl"?>

<book>Shadows of the Empire</book>

Example B-2. XSLT style sheet sote.xsl
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/TR/WD-xsl">

 <xsl:template match="/">
 <html><head><title>Example</title>

 <link rel="stylesheet" href="sote.css" type="text/css"/>
 </head><body>
 <u><xsl:value-of select="book"/></u>
 </body></html>
 </xsl:template>

</xsl:stylesheet>

The source document after the XSLT transformation from XML to HTML:

Figure B-1. XML Transformed to HTML

Appendix B. XSL and CSS

100

Example B-3. CSS style sheet sote.css
body {
 font-style: italic;

 font-weight: bold;
}

The result viewed with MSIE5.5:

Figure B-2. XML with XSL and CSS Styling in MSIE5.5

Notice that the underlining is done with the XSLT transformation, while italics and
bolding is added with CSS style sheet.

101

Appendix C. Inline CC/PP
This appendix has an example of an inline encoding of a CC/PP.

Example C-1. A sample profile for a hypothetical smart phone [CC/PP, 1999].
<?xml version="1.0"?>
<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:prf="http://www.w3.org/TR/WD-profile-vocabulary#">

 <rdf:Description about="HardwarePlatform">
 <prf:Defaults
 Vendor="Nokia"
 Model="2160"
 Type="PDA"
 ScreenSize="800x600x24"

 CPU="PPC"
 Keyboard="Yes"
 Memory="16mB"
 Bluetooth="YES"
 Speaker="Yes" />
 <prf:Modifications

 Memory="32mB" />
 </rdf:Description>
 <rdf:Description about="SoftwarePlatform">
 <prf:Defaults
 OS="EPOC1.0"
 HTMLVersion="4.0"

 JavaScriptVersion="4.0"
 WAPVersion="1.0"
 WMLScript="1.0" />
 <prf:Modifications
 Sound="Off"
 Images="Off" />

 </rdf:Description>
 <rdf:Description about="EpocEmail1.0">
 <prf:Defaults
 HTMLVersion="4.0" />
 </rdf:Description>
 <rdf:Description about="EpocCalendar1.0">

 <prf:Defaults
 HTMLVersion="4.0" />
 </rdf:Description>
 <rdf:Description about="UserPreferences">
 <prf:Defaults
 Language="English"/>

 </rdf:Description>
</rdf:RDF>

102

Appendix D. CC/PP with Indirect
References

This appendix has the same profile information than the previous appendix but with
indirect references.

Example D-1. User agent profile [CC/PP, 1999].
<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.w3.org/TR/WD-profile-vocabulary#">
 <rdf:Description about="HardwarePlatform">
 <prf:Defaults>

 <rdf:li re-source="http://www.nokia.com/profiles/2160"/>
 </prf:Defaults>
 <prf:Modifications
 Memory="32mB"/>
 </rdf:Description>
 <rdf:Description about="SoftwarePlatform">

 <prf:Defaults>
 <rdf:li re-source="http://www.symbian.com/profiles/pda"/>
 </prf:Defaults>
 <prf:Modifications
 Sound="Off"
 Images="Off" />

 </rdf:Description>
 <rdf:Description about="EpocEmail">
 <prf:Defaults>
 <rdf:li re-
source="http://www.symbian.com/epoc/profiles/epocemail" />
 </prf:Defaults>

 </rdf:Description>
 <rdf:Description about="EpocCalendar">
 <prf:Defaults>
 <rdf:li re-
source="http://www.symbian.com/epoc/profiles/epoccal"/>
 </prf:Defaults>

 </rdf:Description>
 <rdf:Description about="UserPreferences">
 <prf:Defaults
 Language="English" />
</rdf:Description>
</rdf:RDF>

Then, the profile provided by the hardware vendor.

Appendix D. CC/PP with Indirect References

103

Example D-2. Hardware profile [CC/PP, 1999].
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <rdf:Description
 Vendor="Nokia"
 Model="2160"
 Type="PDA"
 ScreenSize="800x600x24"
 CPU="PPC"

 Keyboard="Yes"
 Memory="16mB"
 Bluetooth="YES"
 Speaker="Yes" />
</rdf:RDF>

Finally, the profiles provided by the software platform and application vendors.

Example D-3. Web browser profile [CC/PP, 1999].
<?xml version="1.0"?>

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description
 OS="EPOC1.0"
 HTMLVersion="4.0"
 JavaScriptVersion="4.0"
 WAPVersion="1.0"

 WMLScript="1.0" />
</rdf:RDF>

Example D-4. Mail application profile [CC/PP, 1999]
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description
 Version="EpocEmail1.0"

 HTMLVersion="4.0" />

Example D-5. Calendar application profile [CC/PP, 1999]
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description
 Version="EpocCalendar1.0"
 HTMLVersion="4.0" />

</rdf:RDF>

104

Appendix E. Cocoon XSP
Example E-1. Embedded XSP logic [Cocoon, 2000, xsp.html].
<?xml version="1.0"?>
<?cocoon-process type="xsp"?>
<?cocoon-process type="xslt"?>
<?xml-stylesheet href="sample.xsl" type="text/xsl"?>

<xsp:page language="java"
xmlns:xsp="http://www.apache.org/1999/XSP/Core">
 <page title="Time of Day">

 <xsp:logic>

 // Define a variable to hold the time of day
 Date now = new Date();
 </xsp:logic>

 <p>
 To the best of my knowledge, it's now

 <!-- Substitute time of day here -->
 <xsp:expr>now</xsp:expr>
 </p>
 </page>
</xsp:page>

Upon XSP and XSLT processing , the page should yield something like:
<html>

<head><title>Time of Day</title></head>
<body>
 <h3 style="color: navy; text-align: center">Time of Day</h3>
 <p>It's now Thu Dec 23 20:11:18 PST 1999</p>
</body>
</html>

105

Appendix F. Cocoon DCP
Example F-1. A Sample Document Containing DCP Processing Instructions
[Cocoon, 2000, dcp.html].
<?xml version="1.0"?>
<?cocoon-process type="dcp"?>
<?cocoon-process type="xslt"?>
<?xml-stylesheet href="sample.xsl" type="text/xsl"?>

<page>
<?dcp-object name="util" language="javascript" code="test.js"?>

 <title>A Dynamic JavaScript Cocoon Page</title>
 <p>

 Hi, I'm a dynamic JavaScript page generated by Cocoon on
 <?dcp-content method="util.getSystemDate" format="MM/dd/yyyy"?>
 </p>
 <p>
 During my currrent incarnation, I'v been hit
 <?dcp-content method="util.getCount"?>

 times.
 </p>
</page>

106

Appendix G. Selected Schedule Board
Source Files

Example G-1. Source code of board.xml
<?xml version="1.0" encoding="iso-8859-1"?>
<!-- Written by Timi Soinio "Timi.Soinio@nokia.com" -->

<?cocoon-process type="xslt"?>
<?xml-stylesheet href="board-xsp.xsl" type="text/xsl"?>
<scheduleboard>

 <!-- servlet-parameters are needed for the board-xsp.xsl -->
 <!-- They are replaced by the HTTP request parameters, -->
 <!-- if there are any. -->
 <servlet-parameters/>

 <person id="AMSa" name="Anna Mari">

 <status value="out"/>
 <week>
 <day name="wednesday">Asioilla</day>
 </week>
 </person>
 <person id="TSo" name="Timi">

 <status value="in"/>
 <week>
 <!-- Note: days do not have to be ordered. -->
 <day name="wednesday">UML training</day>
 <day name="monday">UML training</day>
 </week>

 </person>

 <!-- Other persons are not shown in this example. -->

</scheduleboard>

Example G-2. Source code of board-xsp.xsl
<?xml version="1.0" encoding="iso-8859-1"?>

<!-- Written by Timi Soinio "Timi.Soinio@nokia.com" -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsp="http://www.apache.org/1999/XSP/Core">

<xsl:template match="/">

Appendix G. Selected Schedule Board Source Files

107

 <xsl:processing-instruction name="cocoon-
process">type="xsp"</xsl:processing-instruction>

 <xsl:processing-instruction name="cocoon-
process">type="xslt"</xsl:processing-instruction>
 <xsl:processing-instruction name="xml-stylesheet">href="board-xsp-
html.xsl" type="text/xsl"</xsl:processing-instruction>
 <xsl:processing-instruction name="xml-stylesheet">href="board-xsp-

wml.xsl" type="text/xsl" media="wap"</xsl:processing-instruction>

 <xsp:page language="java"
xmlns:xsp="http://www.apache.org/1999/XSP/Core">

 <xsp:logic>

 Calendar cal = new GregorianCalendar(new Locale("fi", "FI"));
 </xsp:logic>

 <xsl:copy>
 <xsl:apply-templates/>
 </xsl:copy>

 </xsp:page>
</xsl:template>

<xsl:template match="scheduleboard">
 <xsl:copy>

 <xsp:attribute
name="week"><xsp:expr>cal.get(Calendar.WEEK_OF_YEAR)</xsp:expr></xsp:a
ttribute>
 <xsl:apply-templates/>
 </xsl:copy>
</xsl:template>

<xsl:template match="servlet-parameters">
 <xsp:logic><![CDATA[
 Enumeration e = request.getParameterNames();
 if ((e != null) && (e.hasMoreElements())) {]]>
 <request-params>

 <xsp:logic><![CDATA[
 while (e.hasMoreElements()) {
 String k = (String) e.nextElement();
 String val = request.getParameter(k);
 String vals[] = request.getParameterValues(k);]]>
 <param>

 <xsp:attribute name="name">
 <xsp:expr>k</xsp:expr>
 </xsp:attribute>
 <xsp:logic> <![CDATA[
 for (int i = 0; i < vals.length; i++) {]]>
 <value>

 <xsp:expr>vals[i]</xsp:expr>
 </value>
 }

Appendix G. Selected Schedule Board Source Files

108

 </xsp:logic>
 </param>

 }
 </xsp:logic>
 </request-params>
 }
 </xsp:logic>
</xsl:template>

<xsl:template match="*|@*|text()|comment()">
 <xsl:copy>
 <xsl:apply-templates select="*|@*|text()|comment()"/>
 </xsl:copy>
</xsl:template>

</xsl:stylesheet>

Example G-3. Source code of board-xsp-html.xsl
<?xml version="1.0" encoding="iso-8859-1"?>
<!-- Written by Timi Soinio "timi.soinio@nokia.com" -->

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:import href="board-xsp-personhtml.xsl"/>
<xsl:import href="board-xsp-generalhtml.xsl"/>

<xsl:param name="pID" select="//request-

params/param[@name='personID']/value"/>
<xsl:param name="week" select="/scheduleboard/@week"/>

<xsl:template match="*"><xsl:apply-templates/></xsl:template>

<xsl:template match="text()|@*"><xsl:value-of se-

lect="."/></xsl:template>

<xsl:template match="/">
 <xsl:processing-instruction name="cocoon-
format">type="text/html"</xsl:processing-instruction>
 <html>

 <xsl:choose>
 <xsl:when test="$pID">
 <xsl:apply-templates mode="person"/>
 </xsl:when>
 <xsl:otherwise>
 <xsl:apply-templates mode="general"/>

 </xsl:otherwise>
 </xsl:choose>
 </html>
</xsl:template>

Appendix G. Selected Schedule Board Source Files

109

</xsl:stylesheet>

Example G-4. Source code of board-xsp-generalhtml.xsl
<?xml version="1.0" encoding="iso-8859-1"?>

<!-- Written by Timi Soinio "timi.soinio@nokia.com" -->

<xsl:stylesheet version="1.0"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:html="http://www.w3.org/Profiles/XHTML-transitional">

<xsl:output method="html"/>

<xsl:template match="*|/"><xsl:apply-templates/></xsl:template>

<xsl:template match="text()|@*"><xsl:value-of se-
lect="."/></xsl:template>

<xsl:template match="scheduleboard" mode="general">
 <head>
 <title>Schedule Board | Week <xsl:value-of se-
lect="$week"/></title>
 <link rel="stylesheet" type="text/css" href="board.css"/>

 </head>
 <body bgColor="white">
 <h1>Schedule Board (week <xsl:value-of select="$week"/>)</h1>
 <table border="0" cellPadding="5" cellspacing="0">
 <tr class="headrow">
 <th>

 Person
 </th>
 <th>
 Status
 </th>
 <th>

 Monday
 </th>
 <th>
 Tuesday
 </th>
 <th>

 Wednesday
 </th>
 <th>
 Thursday
 </th>
 <th>

 Friday
 </th>
 </tr>

 <!-- tr tags for days of week are in the following template -->

Appendix G. Selected Schedule Board Source Files

110

 <xsl:apply-templates mode="general">
 <!-- Persons do not need to be in alphabetical order. -->

 <!-- Sort by person name: -->
 <xsl:sort select="@name"/>
 </xsl:apply-templates>

 </table>
 </body>

</xsl:template>

<xsl:template match="person" mode="general">
 <tr>
 <xsl:attribute name="class">
 <xsl:choose>

 <xsl:when test="position() mod 2 = 0">evenrow</xsl:when>
 <xsl:otherwise>oddrow</xsl:otherwise>
 </xsl:choose>
 </xsl:attribute>
 <td>
 <a>

 <xsl:attribute name="href">board.xml?personID=<xsl:value-of
select="@id"/></xsl:attribute>
 <xsl:value-of select="@name"/>

 </td>
 <xsl:apply-templates mode="general"/>

 </tr>
</xsl:template>

<xsl:template match="status" mode="general">
 <td>
 <xsl:choose>

 <xsl:when test="@value='in'">
 <xsl:attribute name="class">in</xsl:attribute>
 </xsl:when>
 </xsl:choose>
 <xsl:value-of select="@value"/>
 </td>

</xsl:template>

<xsl:template match="week" mode="general">
 <td>
 <xsl:choose>
 <xsl:when test="day[@name='monday']">

 <xsl:apply-templates select="day[@name='monday']"/>
 </xsl:when>
 <xsl:otherwise>
 _
 </xsl:otherwise>
 </xsl:choose>

 </td>
 <td>
 <xsl:choose>

Appendix G. Selected Schedule Board Source Files

111

 <xsl:when test="day[@name='tuesday']">
 <xsl:apply-templates select="day[@name='tuesday']"/>

 </xsl:when>
 <xsl:otherwise>
 _
 </xsl:otherwise>
 </xsl:choose>
 </td>

 <td>
 <xsl:choose>
 <xsl:when test="day[@name='wednesday']">
 <xsl:apply-templates select="day[@name='wednesday']"/>
 </xsl:when>
 <xsl:otherwise>

 _
 </xsl:otherwise>
 </xsl:choose>
 </td>
 <td>
 <xsl:choose>

 <xsl:when test="day[@name='thursday']">
 <xsl:apply-templates select="day[@name='thursday']"/>
 </xsl:when>
 <xsl:otherwise>
 _
 </xsl:otherwise>

 </xsl:choose>
 </td>
 <td>
 <xsl:choose>
 <xsl:when test="day[@name='friday']">
 <xsl:apply-templates select="day[@name='friday']"/>

 </xsl:when>
 <xsl:otherwise>
 _
 </xsl:otherwise>
 </xsl:choose>
 </td>

</xsl:template>

<xsl:template match="day" mode="general">
 <xsl:number level="any"/>.
 <xsl:apply-templates/>
</xsl:template>

</xsl:stylesheet>

Example G-5. Source code of board.css
<!-- written by Timi Soinio "timi.soinio@nokia.com" -->

 A {

Appendix G. Selected Schedule Board Source Files

112

 color: #0000FF;
 font-weight:bold;

 font: 12pt palatino, times
 }
 BODY {
 margin-left:10px;
 font: 9pt palatino, times;
 color: #000080;

 background-color: white;
 margin-top: 0px;
 margin-right: 0px
 }
 H1 {
 font: 22pt palatino, times;

 color: #000080
 }
 TH {
 font: 12pt palatino, times;
 font-weight: bold;
 color: #000080

 }
 TD {
 font: 12pt palatino, times;
 color: #000080
 }
.headrow {

 background-color: #bebebe;
 }
.evenrow {
 background-color: #efefef;
 }
.oddrow {

 background-color: #cccccc;
 }
.in {
 font-weight: bold;
 }

Example G-6. Source code of update-xsp.xml
<?xml version="1.0"?>

<!-- Written by Timi Soinio "timi.soinio@nokia.com" -->

<?cocoon-process type="xsp"?>

<xsp:page language="java"
xmlns:xsp="http://www.apache.org/1999/XSP/Core">

 <xsp:structure>
 <xsp:include>org.apache.xerces.parsers.DOMParser</xsp:include>
 <xsp:include>org.apache.xml.serialize.*</xsp:include>
 <xsp:include>org.w3c.dom.*</xsp:include>

Appendix G. Selected Schedule Board Source Files

113

 <xsp:include>org.xml.sax.SAXException</xsp:include>
 <xsp:include>java.io.*</xsp:include>

 <xsp:include>java.util.*</xsp:include>
 </xsp:structure>

 <xsp:logic><![CDATA[

 /**

 * Return 'null' if first person in not found
 */
 private Node getFirstPerson(Node node) {
 // returns 'null' if first person in not found
 if (node == null || node.getNodeName().equals("person"))
 // return 'null' or 'person' node

 return node;
 else {
 Node child = node.getFirstChild();
 if (child == null)
 return getFirstPerson(node.getNextSibling());
 else return getFirstPerson(child);

 }
 }

 /**
 * Get the node with the specified person id.
 * Return the person node or 'null' if the person is not found.

 */
 private Node getPersonNode(String pID, Node node) {
 Node personNode = getFirstPerson(node);
 // NOTE: it is important to FIRST check for the validity of
'personNode'
 while (personNode != null

 && !person-
Node.getAttributes().getNamedItem("id").getNodeValue().equals(pID)) {
 personNode = getFirstPerson(personNode.getNextSibling());
 }
 // Now 'personNode' is either null or the node for the searched
person

 return personNode;
 }

 private Node makePersonNode(Document doc, String id, String name,
String statval, Hashtable days){
 Node newPerson = null;

 try {
 /*
 * Create element 'week' and all its child elements (days)
 */
 Element week = doc.createElement("week");
 for (Enumeration e = days.keys(); e.hasMoreElements();) {

 String dayName = (String) e.nextElement();
 Element day = doc.createElement("day");
 day.setAttribute("name", dayName);

Appendix G. Selected Schedule Board Source Files

114

day.appendChild(doc.createTextNode((String)days.get(dayName)));

 week.appendChild(day);
 }

 /*
 * Create 'status' element
 */

 Element status_elem = doc.createElement("status");
 status_elem.setAttribute("value", statval);

 /*
 * Create 'person' element
 */

 Element person = doc.createElement("person");
 person.setAttribute("name", name);
 person.setAttribute("id", id);

 /*
 * Append 'status' and 'week' to 'person'

 */
 person.appendChild(status_elem);
 person.appendChild(week);

 newPerson = person;
 }

 catch (Exception e) {
 e.printStackTrace();
 }
 return newPerson;
 }

 synchronized private String update(HttpServletRequest request,
HttpServletResponse response) {

 /*
 * Read some properties from the configuration file
 */

 String propertyFile = XSPU-
til.pathComponent(request.getPathTranslated()) +
 System.getProperty("file.separator") +
 "board.properties";
 Properties properties = new Properties();
 try {

 FileInputStream fiStream = new FileInputStream(propertyFile);
 properties.load(fiStream);
 fiStream.close();
 } catch (IOException e) {
 return e.toString();
 }

 /*
 * Setup parameters from the request

Appendix G. Selected Schedule Board Source Files

115

 */
 String[] weekdays = {"monday", "tuesday", "wednesday", "thurs-

day", "friday"};
 String xmlFile = properties.getProperty("xml_file",
"board.xml");
 String pID = re-
quest.getParameter(properties.getProperty("rp_person_id", "per-
sonID"));

 String status = re-
quest.getParameter(properties.getProperty("rp_status", "status"));
 Hashtable days = new Hashtable();
 String dayParam;
 for (int i=0; i < weekdays.length; i++) {
 dayParam = request.getParameter(

 properties.getProperty("rp_"+weekdays[i], week-
days[i])).trim();
 if (!dayParam.equals("")) {
 days.put(weekdays[i], dayParam);
 }
 }

 /*
 * All fine so far, proceed the update operation
 */
 try {
 /*

 * Try to read XML document
 */
 DOMParser parser = new DOMParser();
 parser.parse(xmlFile);
 Document doc = parser.getDocument();
 /*

 * Document is well-formed
 */

 /*
 * Search the required person node.
 */

 Node personNode = getPersonNode(pID,
doc.getDocumentElement());
 if (personNode == null)
 return "Person not found";
 else {

 /*
 * Person node is found; make a new person node with the
provided data.
 */
 String name = person-
Node.getAttributes().getNamedItem("name").getNodeValue();

 Node newPerson = makePersonNode(doc, pID, name, status,
days);

Appendix G. Selected Schedule Board Source Files

116

 personNode.getParentNode().replaceChild(newPerson, person-
Node);

 /*
 * Now that the document is created we need to *serialize*
it to file.
 */
 OutputFormat format = new OutputFormat(doc,

 properties.getProperty("output_encoding", "iso-8859-1"),
 true);
 format.setLineSeparator("\r\n");
 format.setLineWidth(72);
 format.setIndent(2);
 format.setPreserveSpace(true);

/*
 * System.out is for debugging purposes
 * XMLSerializer serializer = new XMLSerializer(System.out,
format);
 */

 FileOutputStream file = new FileOutputStream(xmlFile);
 XMLSerializer serializer = new XMLSerializer(file, format);
 serializer.serialize(doc);
 file.flush();
 file.close();
 }

 }
 catch (Exception e) {
 return e.toString();
 }
 /*
 * update successful

 */

 return "success";

 }

/*
 * NOTE: redirect has a hard coded URL ("board.xml")
 *
 * Trying to get the URL dynamically, e.g. using 're-
quest.getHeader("Referer")' does not
 * seem to work with a WML request (at least not in the Nokia WAP

Toolkit)
 *
 * It may help if the transformation to WML is made before redirect-
ing.
 *
 */

 private String redirect(HttpServletRequest request, HttpServletRe-
sponse response) {
 String newURL = null;

Appendix G. Selected Schedule Board Source Files

117

 newURL = "board.xml";
 try {

 response.sendRedirect(newURL);
 update(request, response);
 } catch (java.io.IOException e) {
 return e.toString();
 }
 response.setStatus(HttpServletResponse.SC_MOVED_PERMANENTLY);

 response.setHeader("Location", newURL);
 return newURL;
 }
]]>
 </xsp:logic>

 <page title="Redirect">
 Let's redirect to...
 <xsp:expr>redirect(request, response)</xsp:expr >
 </page>

</xsp:page>

	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Chapter 1. Introduction
	1.1. Background
	1.2. Research Problem and the Goals of the Thesis
	1.3. Research Structure and Methods

	Chapter 2. Web Publishing and Web Applications
	2.1. Web Publishing
	2.2. Web Applications
	2.2.1. Dynamic Content Creation Techniques

	2.3. Existing Problems
	2.3.1. Misuse of Structural Markup Languages
	2.3.2. Device Dependency
	2.3.3. Maintenance Problems
	2.3.4. Poor Searchability
	2.3.5. Accessibility Problems

	Chapter 3. Structured Information
	3.1. Different Perspectives of Markup
	3.2. XML - Extensible Markup Language
	3.3. XML Structure and Syntax
	3.3.1. Elements
	3.3.2. Entity References
	3.3.3. Comments
	3.3.4. Processing Instructions
	3.3.5. CDATA Sections
	3.3.6. Document Type Declarations

	3.4. Validity of XML documents
	3.4.1. Well-formed XML
	3.4.2. Valid XML

	3.5. XML vs. SGML
	3.6. Applications of XML
	3.7. The Three R's of XML
	3.7.1. Re-publish
	3.7.2. Re-use
	3.7.3. Re-purpose

	3.8. Why Use XML in Web Applications?
	3.8.1. Simplicity
	3.8.2. Richness of Data Structure
	3.8.3. International Character Handling

	Chapter 4. Styling XML Documents
	4.1. DOM and CSS
	4.1.1. DOM - Document Object Model
	4.1.2. CSS - Cascading Style Sheets
	4.1.3. Style with Programming

	4.2. XSL - Extensible Stylesheet Language
	4.2.1. XSLT - XSL Transformations
	4.2.2. XSL Formatting Vocabulary
	4.2.3. “Formatting Objects Considered Harmful”
	4.2.4. Using XSLT for Client-side and Server-side Styling
	4.2.5. XPath

	4.3. Using XSL and CSS Together
	4.4. Rendering Languages
	4.4.1. XHTML - Extensible Hypertext Markup Language
	4.4.2. WML - Wireless Markup Language
	4.4.3. VoiceXML

	Chapter 5. Customisations and Personalisations
	5.1. Client-Specific Web Services by Using User Agent Attributes
	5.2. RDF - Resource Description Framework
	5.3. CC/PP - Composite Capabilities / Preferences Profile
	5.3.1. CC/PP Framework
	5.3.1.1. The CC/PP Data Model

	5.3.2. CC/PP Exchange Protocol over HTTP
	
	CC/PP description
	CC/PP repository

	5.4. UAProf - User Agent Profiles
	5.5. PIDL - Personalized Information Description Language
	5.5.1. Progressive Storage of Processed Content
	5.5.2. Compact Storage of Processed Content

	5.6. P3P - Platform for Privacy Preferences
	5.7. Conclusions

	Chapter 6. XML Clients and Servers
	6.1. Client-side Formatting
	6.1.1. Microsoft Internet Explorer
	6.1.2. DocZilla

	6.2. Server-side Formatting
	6.2.1. XML Enabler
	6.2.2. Rocket
	6.2.3. Cocoon

	Chapter 7. Cocoon
	7.1. What is Cocoon?
	7.2. Cocoon's Infrastructure
	7.2.1. Architecture
	7.2.2. Cocoon Cache System

	7.3. Dynamic Content in Cocoon
	7.3.1. Servlet Chaining vs. Servlet Nesting
	7.3.2. Producers and Processors

	7.4. Cocoon's Advantages and Disadvantages
	7.4.1. Why is Cocoon a good solution?
	7.4.2. Has Cocoon any disadvantages?

	Chapter 8. Cocoon Service Implementation: Schedule Board
	8.1. Background
	8.2. Requirements
	8.3. Implementation
	8.3.1. Hardware and Software Environment
	8.3.2. Schedule Board Service Design

	8.4. Conclusions
	8.4.1. The Nature of the Application
	8.4.2. Room for Further Improvement
	8.4.3. The Value of This Exercise

	Chapter 9. Summary
	References
	Glossary
	Terms
	
	
	Content
	Dynamic content
	Logic
	Static content
	Style
	Web application
	Web content
	Web device
	Web publication
	Web service

	Abbreviations
	
	
	API
	ASP
	CC/PP
	CD
	CD-ROM
	CDATA
	CGI
	CPI
	CPU
	CSS
	DCP
	DOM
	DTD
	ETSI
	HTML
	HTTP
	IEC
	IETF
	IIOP
	IP
	ISO
	JSP
	JVM
	LDAP
	MathML
	MExE
	MIME
	MSIE
	P3P
	PC
	PDA
	PDF
	PI
	PIDL
	PS
	RDF
	SAX
	SGML
	SMIL
	SMS
	SMTP
	SQL
	SVG
	UAProf
	UML
	URI
	URL
	VoiceXML
	W3C
	WAP
	WBMP
	WBXML
	WML
	WWW
	XHTML
	XML
	XSL
	XSL:FO
	XSLT
	XSP

	Appendix A. Trilogy DTD
	Appendix B. XSL and CSS
	Appendix C. Inline CC/PP
	Appendix D. CC/PP with Indirect References
	Appendix E. Cocoon XSP
	Appendix F. Cocoon DCP
	Appendix G. Selected Schedule Board Source Files

