
Automatic Presentation of Model Data in MVC++ Applications

Markku Vuorenmaa

University of Tampere
Department of Computer and
Information Sciences
Master's thesis
April 2000

i

University of Tampere
Department of Computer and Information Sciences
Markku Vuorenmaa: Automatic Presentation of Model Data in MVC++
Applications
Master's thesis, 63 pages

April 2000

Although Model-View-Controller architecture and MVC++ support building
object-oriented and modular applications, designing and implementing the
model data handling in view and controller layers requires a lot of work. If an
abstraction about the generic behaviour of the model layer can be constructed,
an object-oriented framework could be designed to provide automatic
handling and presentation of model layer data.

This thesis presents a design of such a framework as well as some early
usage experiences. The presented framework succeeds in supporting
presentation and modifications of already existing data, but can not offer good
support for object creation and removal. Experimenting with test programs and
prototypes has been encouraging, but has also revealed some typical problems
of framework design, implementation and usage.

As a conclusion, one can say that a framework reaching beyond MVC++
functionality can provide partly automatic data handling for MVC++
applications. The presented Model Presentation Framework undoubtedly
needs more work to reach the maturity level found in more advanced
frameworks.

Keywords: frameworks, object-oriented design, design patterns, Model-View-
Controller architecture, MVC++

ii

Acknowledgements
The colleagues in my department at Nokia have greatly encouraged and
supported me during this work. They deserve my full gratitude. Especially I
would like to mention former department manager Juha Tuominen, who
approved the faint idea and believed in it in the beginning. My group manager
and thesis instructor, Heli Viitanen, has given me good advice and new
viewpoints throughout the process. Peter Burgess has kept my spirits up, and
supported my views. He was also kind enough to correct the language.

At the University of Tampere, my supervisor Roope Raisamo has been very
helpful, patient and understanding. He has been able to bring balance to the
content and to guide me towards new directions. My second supervisor, Tarja
Systä, has been very flexible and thanks to her I was able to keep my schedule
in the end.

Finally, I wish to thank Merja for love and support she has given me during
my studies.

iii

Contents
1. Introduction..1
2. Model-View-Controller Architecture...3

2.1. Principles of Model-View-Controller Architecture3
2.1.1. Parts of Model-View-Controller Architecture....................................3
2.1.2. Loose Coupling with Dynamic Binding ...6

2.2. Applying MVC++ in Practise...7
2.3. Laborious MVC++ ..8

2.3.1 MVC Architecture requires many Classes...8
2.3.2 Domain Object Parameters in MVC++ Model Part9

2.4. Reducing the MVC++ Overhead ... 10
3. Object-Oriented Frameworks ... 12

3.1. Framework Definition .. 12
3.2. Frameworks and Class Libraries ... 13
3.3. Frameworks and Design Patterns ... 14
3.4. White-box and Black-box Frameworks... 15
3.5. Deploying multiple Frameworks .. 16
3.6. Framework Benefits and Pitfalls.. 17
3.7. Framework Life Span ... 17

4. Developing Object-Oriented Frameworks .. 19
4.1. Identifying Abstractions... 19
4.2. Designing a Framework ... 20
4.3. Framework Implementation .. 22
4.4. Testing and Supporting the Framework... 23
4.5. Framework Maintenance.. 24
4.6. Framework Development Tools .. 25
4.7. Summary.. 26

5. Model Presentation Framework ... 27
5.1. Motivation behind the Model Presentation Framework 27
5.2. Model Presentation Framework Overview .. 28
5.3. Model Presentation Framework Architecture.. 31

5.3.1. Attribute Encapsulation ... 31
5.3.2. Model Interface ... 32
5.3.3. Model Object Encapsulation .. 35
5.3.4. User Interface Component Adaptation... 37
5.3.5. Customised User Interface Components .. 38
5.3.6. Editing Support ... 39

6. Utilising the Model Presentation Framework... 42
6.1. Roles of the Model Presentation Framework in Applications 42

iv

6.2. Displaying the Data .. 42
6.3. Modification through the Model Presentation Framework 43
6.4. Creating new Objects.. 45
6.5. Sample Application... 46
6.6. Filtering and Sorting... 49
6.7. Status of the Model Presentation Framework .. 50

7. Applicability of MPF ... 51
7.1. Achieved Benefits ... 51
7.2. Drawbacks ... 52
7.3. Existing Usage Experiences ... 53
7.4. Comparison to other Frameworks... 55

7.4.1. ET++... 55
7.4.2. HotDraw .. 56
7.4.3. Comparison Summary.. 58

8. Conclusion.. 59
References... 61

1

1. Introduction
The modern world relies more and more on software [Jacobson et al., 1997].
Many daily activities have moved or are moving into computers or computer
networks and software is embedded into various devices that people use
[Jacobson et al., 1997]. Customer requirements for new software products get
more demanding all the time. On the other hand software is used in critical
areas, where the quality has the highest priority [Pree, 1995]. The competitive
market causes pressure to produce software faster, cheaper and better
[Jacobson et al., 1997]. That can be done by improving the efficiency of software
production and increasing the amount of reuse [Jacobson et al., 1997]. Object-
oriented design and programming solve some problems of efficiency and reuse
[Lewis et al., 1995], but achieving best results requires planned and purposeful
adoption of reuse in software development processes [Jacobson et al., 1997].

Frameworks are abstract subsystems that can be specialised to produce new
software [Jacobson et al., 1997]. Model-View-Controller (MVC) architecture can
be seen as a low-level application framework [Jacobson et al., 1997]. MVC++ is
an implementation of the MVC architecture for C++ and Java [Bonnet, 1999].
MVC++ applications have many common characteristics. Model, view and
controller parts are clearly separated in design and implementation phases.
Although the common conventions help in doing the work better and faster,
there still are many repeating tasks in building the user interfaces for real-life
applications. A gap between a small MVC++ example and an actual complex
user interface application leads to huge increase of work effort in practise. A lot
of this work is put to making a user interface look and behave as designed.
One common and heavy work phase is visualising the data stored in the model
layer of the application. The data must be exchanged between view and model
layers in some form, and the task is not always trivial. Displaying the data in
complex user interface components often requires implementation of a new
controller and even model functionality into view layer of the application. This
means that we actually implement nested MVC structures inside the view
layer.

This thesis examines the MVC architecture, object-oriented frameworks and
the issues involved in building frameworks. As an example I use the design
and implementation of the Model Presentation Framework, which is an
extension to the MVC++ architecture and addresses the problems found in
bringing the application data to the user interface layer. The framework
presented here provides automatic mapping of data from the model part of an
MVC++ application to view components in the user interface and thus offers

2

one solution to the problem. I will discuss the usual strengths and weaknesses
of application framework development and compare those with the findings
from the development process of the Model Presentation Framework. ET++
and HotDraw frameworks are introduced and small comparison between them
and the Model Presentation Framework is presented.

Chapter 2 introduces the Model-View-Controller architecture and also some
shortcomings found in it. Chapter 3 covers the nature of frameworks in the
object-oriented programming and chapter presents the building process of
object oriented framework. Chapter 5 specifies the design of the Model
Presentation Framework and chapter 6 gives some examples to demonstrate
how the Model Presentation Framework would be used in the development of
the MVC++ application. The experiences of using the Model Presentation
Framework and more advanced frameworks, ET++ and Hotdraw are discussed
in chapter 7. Chapter 8 presents a conclusion on the contents and the results of
the thesis.

3

2. Model-View-Controller Architecture
Methods and guidelines in ever more complex software development have
become extremely important. Object-oriented design and programming
encourage reuse by inheritance and polymorphism, but still the reusability can
only be reached by a careful design [Johnson and Foote, 1988]. Nowadays, as
the sizes of software products grow larger and larger, the architecture, design
and implementation have to be well organised, clear and maintainable. On the
organisational level this means that all developers should use similar working
processes in different projects. When people switch from one project to another
they should already know the basic principles and be able to get productive
faster. This is an important factor as the goal is to reduce the time-to-market.
These needs are the motivation for creating predefined software architectures,
design methods and conventions. Model-View-Controller is one example of
such application architecture.

This chapter introduces first the original Model-View-Controller (MVC)
architecture and moves on then to the MVC++. The roles of all parts, model,
view and controller are explained. In relation to MVC++, the chapter
introduces the concepts of abstract partners and observers that increase
modularity and reusability. In the end, advantages and some drawbacks of the
MVC++ architecture are discussed.

2.1. Principles of Model-View-Controller Architecture
This section covers the Model-View-Controller architecture and its C++
implementation called MVC++. The purpose of the layers in the Model-View-
Controller architecture is presented and loose coupling between the MVC++
layers is dealt with.

2.1.1. Parts of Model-View-Controller Architecture
The idea of Model-View-Controller architecture is to divide application into

manageable parts, which have their own responsibilities [Jaaksi, 1994]. Model-
View-Controller architecture was originally designed for Smalltalk-80
applications in Xerox Palo Alto Research Center [Krasner and Pope, 1988].
Figure 2-1 illustrates the original Model-View-Controller design.

4

Controller
User input

device
interaction

Model
Application

domain state
and behavior

View
Display layout
and interaction

views

View messages

Model access and
editing messages

Dependents
change messages

Dependents
change messages

User input Display output

Figure 2-1. Model-View-Controller Architecture [Krasner and Pope, 1988].

Model-View-Controller architecture defines the structure and abstract base
of classes for Smalltalk-80 applications. As similar guidelines for designing and
implementing X/Motif software using C++ did not exist at Nokia
Telecommunications, the Model-View-Controller architecture was adapted to
suit development in C++ and OMT++ design process [Jaaksi, 1995]. This
modified MVC has been named MVC++ and has successfully been applied in
building a family of network management system products in Nokia [Jaaksi,
1995]. The MVC++ has the same three functional layers as the original Model-
View-Controller architecture, but their interaction is a bit different.

ViewView

ControllerController

ModelModel

Application specific
decisions

Domain specific
actions

ResultsResults Action requestsAction requests

Action requests
to show results
Action requests
to show results

Interpreted user’s
requests to start an action

Interpreted user’s
requests to start an action

View components
interacting with user

Figure 2-2. Parts of an MVC++ application [Jaaksi et al., 1999].

5

Shortly, the tasks of the different layers in Figure 2-2 are the following [Jaaksi
et al., 1999]:

• The model layer defines the classes that represent the concepts of the
problem domain.

• The view layer forms the user interface.
• The controller layer is glue between model and view layers. It handles

the interaction between model and view and therefore contains a lot of
the logic of the application.

In MVC++ there is no direct connection between the view and the model.
[Jaaksi, 1995]. The user interacts with views and they pass the information to
their controllers. At this point the controller makes the application specific
decisions and operates according to them. In the original Model-View-
Controller architecture the view does not receive user input as the controller
makes the decisions and delegates the needed actions to view and model layers
[Krasner and Pope, 1988].

In more detail, the model part contains all application domain specific data
and knows how to manipulate it [Jaaksi, 1994]. The model does not have any
kind of user interface and it does not define any application specific logic. The
model should be able to perform the data related tasks independently, without
knowing anything about the controller and the view layers [Jaaksi, 1994]. On
many occasions the model can be completely separate of the rest of the
application as it may have only a static role of doing the operations when
requested [Jaaksi, 1995]. As an exception, some models may be acting
independently. For example, they may perform real-time monitoring or receive
events from an external source. In such cases the model layer is able to invoke
operations by calling the controller layer without any user interaction [Jaaksi,
1995].

According to Jaaksi [1994], the view shows the state of the model to the
user, displays the user interface, and manages all user interactions. The view
can also contain reusable view components that may have a simple view-only
implementation or they can also define their own internal MVC++ structure
[Jaaksi, 1995]. The view component can have methods for manipulation,
feedback and querying the state of the view [Jaaksi, 1995].

The controller manages the interaction between the model and the view
parts. Whereas model defines the logic of the real world, it is a job of a
controller to define the actual application logic [Jaaksi, 1995]. The controller
knows the tasks that the model and view can perform, and delegates the
application tasks to them. The controller does not need to have detailed

6

knowledge of how the model and the view actually handle the delegated
operations.

2.1.2. Loose Coupling with Dynamic Binding
Jaaksi [1994] introduces abstract partners that are not a part of the original

MVC architecture. They are a way to reach loose coupling between objects and
increase reusability. The view component defines an interface towards the
controller by declaring an abstract partner class that controller must inherit and
so it is possible to build reusable views as components. Those views can be
used in any application and the only requirement is that the new controllers
(the partners) implement the abstract methods defined by abstract view partner
class. The similar approach between different controllers makes it possible to
replace old controllers with new implementations that conform to the old
interface [Jaaksi, 1994]. Abstract controller partner between controller and
model may also be needed. If the model for instance is monitoring some
dynamic system, it may need to pass the notification about the changes to the
controller part [Jaaksi, 1995].

uses

uses

MainView

MainController

Request()
Notify()

DomainModel

<<interface>>
AbstractMainControllerPartner

Notify()

<<interface>>
AbstractMainViewPartner

Request()

Figure 2-3. Abstract partner relationships between MVC++ layers.

Figure 2-3 above shows a simple object model illustrating typical abstract
partner usage. MainView class is able to ask information by calling Request()
method defined in AbstractMainViewPartner interface and DomainModel class is
able to notify MainController about changes in the model by calling Notify()
method defined in AbstractMainControllerPartner interface. The valid

7

MainController (in this case) must implement the methods defined in abstract
partners as it inherits both of them.

When an MVC++ application is started, the main controller has a special
role when compared to other controllers. The main controller is responsible for
creating a model and the view for the application [Jaaksi, 1995]. It must also
create controllers for other views, which can be dialogs or other secondary
windows [Jaaksi, 1995]. The controllers created by the main controller are
called subcontrollers. Their methods can be called directly by the main
controller, but the subcontrollers should call the main controller through
abstract partner interfaces [Jaaksi, 1995]. Therefore the main controller often
inherits multiple abstract partner classes as it can be accessed by the main
view, model or other controllers [Jaaksi, 1995].

Recent implementation of MVC++ for Java abandoned the idea of abstract
partners for two reasons. Generally, complex views are usually application
specific and therefore not reusable anyway [Bonnet, 1999]. So being, the view
and controller are allowed to call each other directly in the MVC++ Java
implementation [Bonnet, 1999]. In addition, the observer pattern [Gamma et al.,
1995] can be used to replace the abstract partners in controller-controller and
controller-model relations [Bonnet, 1999]. Unlike abstract partners, the
observers offer one-to-many relationships between the interacting parties
[Bonnet, 1999]. In general, the solution is very similar to the event model in
Java AWT and Swing libraries and thus familiar to Java developers [Bonnet,
1999]. To sum it up, the Java implementation of the MVC++ allows the views
and controllers to be bound statically together and it applies the observer
pattern in controller-controller and controller-model interactions.

2.2. Applying MVC++ in Practise
It has been shown that by using abstract partners it is possible to replace all

parts of an MVC++ application with new implementations. However, in
practise many domain specific parts of the application are often built from
scratch and replacing the parts of the implementation later is not considered.
Reusability in that case often means using generic services and fairly simple
reusable UI components. So being, all complicated domain specific
functionality and the user interface are practically rebuilt every time.

My own experience has shown that it requires a lot of discipline and
patience to keep the application implementation purely MVC++ structured. In
addition, MVC++ is sometimes applied in development environments that are
not based on C++ and especially in those cases the shortcuts exist and there can
be strong reasons for taking them. The adjustments made for the Java
implementation of the MVC++ also indicate the need for environment specific

8

modifications [Bonnet, 1999]. The original desktop environment for applying
MVC++ was based on X-Motif and also the architecture of user interface
applications in other environments can have significant differences. Moreover,
using abstract partners is not possible with all programming languages. Under
these circumstances there can be various reasons to bypass the MVC++
architecture in some small details of the implementation.

The MVC++ architecture can as well be interpreted in multiple ways and
this leaves software developers a bit too much freedom. This is potentially
harmful. For instance a set of objects from the model layer can be passed
directly to the view component by the controller instead of making an
abstraction of presentation. When the view component has the actual model
objects it has the total freedom to access and modify them. If that is done, the
MVC++ layers are still formally in place, but the view has made an application
specific decision that breaks the MVC++ on a logical level. A better solution in
this case would be to pass the model objects back to the controller with the
information about the user’s changes and let the controller make the decisions.
But this also causes more work effort for the designer and the MVC++
guidelines do not define this detail very clearly.

The downside is that once MVC++ model is broken, there is no turning
back. In the worst case the model becomes dependent of the view and is thus
no more reusable. On the other hand the view may contain some logic that
actually belongs to the model part. Even if the view makes a simple decision on
behalf of the controller, it is not anymore completely reusable. When these
rough corners start piling up, your application slowly turns into a non-reusable
entity that has no clear structure, and is therefore hard to maintain.

2.3. Laborious MVC++
Although MVC++ has proven to improve software architecture and quality, it
has some downsides as well. The number of classes grows and more work is
needed to handle the domain specific data. The following sections cover these
issues in more detail.

2.3.1 MVC Architecture requires many Classes
The MVC++ model defines three modular layers and interfaces between them.
In practise layers and interfaces are realised as classes that divide the
implementation into manageable parts in several files. Jaaksi [1994] uses a
simple bank application with two views (windows) as an example. The views
are also split into visual and functional classes as Nokia Telecommunications
design methods required for X-Motif applications at the time. Due to MVC++
rules and working methods a fairly simple functionality is split into eleven

9

classes in the object model. Implementations of those classes are fairly simple,
but it is hard to get the idea if you do not know the MVC++ architecture
beforehand.

Of course the MVC++ is not at its best in these small examples. In larger
applications MVC++ has more benefits and power. It divides the functionality
nicely into separate logical parts, especially if the application consists of a few
fairly complex windows that allow many user actions. In that kind of
application the number classes does not grow so much, but nowadays the user
interface guidelines usually demand a different approach. A typical user
interface has a main window, which is the starting point of almost all action
sequences in the user interface. Many actions in turn open their own dedicated
dialogs that should be fairly simple and usable. This is good for the end user,
but it also requires more user interface design and increases the number classes
in the MVC++ application. All views have own dedicated classes with abstract
partners and some of them have own controllers and maybe even models. A
typical user interface application may have about twenty windows or dialogs.
Even if five of them are completely reusable this can still easily mean about
fifty classes in the implementation. Complex views usually have complex
model parts, and then the model layer can easily define ten to twenty more
classes and the total number of classes can be about 80 or 90.

A user interface application of this size is usually so big that it will be
designed to have more than one module or library with well-defined
interfaces. When this kind work is done in many separate projects, some
questions should be asked. The goals of MVC++ architecture were modularity,
clear structure and reusability. If the user interface applications still tend to
grow so big, is there something more that could be done to increase
reusability? Are there tasks in a typical user interface applications that are
performed in almost every application, or over and over again inside the same
application?

2.3.2 Domain Object Parameters in MVC++ Model Part
When a new application is going to the implementation phase there are many
choices to speed up the development. Possibly there are libraries, templates or
even frameworks for doing the skeleton of typical MVC++ application.
Graphical User Interface may be designed in some GUI builder, which in PC
platform often is actually a complete development environment. After a fast
kick-start with the user interface there is still a lot of work left.

Let us assume that we use C++ to implement an MVC++ application in
which the architecture is designed as presented by Jaaksi [1994]. Our assumed
client-server product should display and modify many different objects and

10

the parameters contained in them. Now is the time when we start adding
support for different parameters.

We shall skip modifications in the server and client-server interface part as
it is out of our scope of interest in this context. First we need to add the new
parameters to the model part implementation that describes the real world we
are dealing with. Then we need to support the new parameter in the user
interface. This means new fields or mapping of the parameter to some existing
component in a view part of the application. As the view should not call the
model directly [Jaaksi, 1994], we also need to add support for new parameters
in a controller part. Furthermore, handling the new parameter may need some
additional logic that must be implemented either in controller or model,
depending on which kind of decisions should be made.

Adding each parameter means changes at least to two source files (C++
header and implementation) in model, view, and controller layers. Possibly
also the abstract view partners have to be changed, and therefore the new
parameter usually causes changes from six to eight files. With Java the number
is most likely four, meaning changes in all MVC layer plus at least one
observer class. If this seems laborious at the first time, it is even more so in
maintenance phase, when implementation details are have been partly
forgotten or a new developer is maintaining the product.

Again, a question arises. When model objects need to support new
parameter or parameters, could there be one single or a few well-defined
places where the support for new parameters could be added? Could such
places be centralised to fit inside the model classes that need to have the new
parameters? Furthermore, could there be a unified way to bring the
information about the model objects and their parameters automatically to the
view part of the application? If these issues could be solved by a generic
approach, it would reduce the effort of creating user interfaces.

2.4. Reducing the MVC++ Overhead
It is time to make a couple of statements. In my opinion coding the
functionality of user interfaces is not very productive; a lot of the work repeats
itself. When a new window or a user interface component is created, it usually
needs some external data. This data often comes from the model part and when
the view retrieves it through the controller, the data is in some format that is
not compatible with the user interface components. Thus, the controller or view
does some interpretation work to create a set of data that fits inside the user
interface component or components. This is the ordinary way of putting to data
into the user interface components and it is repeated for different applications
and even inside the same application.

11

Holub [1999a] criticises the MVC architecture strongly by stating that it fails
as an application-level architecture. He introduces a visual-proxy architecture,
where objects have very strong control of themselves [Holub, 1999b]. In short,
the objects have control over their internal data, behaviour and even the user
interface for editing the object data [Holub, 1999b]. This solution implements
all layers of the MVC architecture inside each object class, and thus seems to
break the modularity of the MVC. A rationale for doing this is the fact that it
saves the developer from passing parameters in and out of all the MVC layers,
as the objects of course can access their data internally [Holub, 1999b].
Although Holub’s solution is far from traditional, it has many valid points that
are worth consideration. Effectively, when the model is changed, work focuses
on a single class: to the implementation of the model class itself. That is a great
advantage when compared to the typical MVC++ architecture implementation.
However, I do not see that the visual-proxy architecture can be applied to large
data sets very easily. If each object defines its user interface, handling
thousands of objects can cause some performance and memory problems.
Visual-proxy architecture may be good for editing small amount of objects in
form based user interfaces, like Holub [1999b] presents it. However, the same
solution does not necessarily scale well enough to components that display a
large set of objects, for instance list, table, or tree components.

To support large data sets, I will concentrate more on the abstraction of
data than providing object specific user interfaces. I think that it is possible to
define the objects in the model part of the application so that they always have
a common interface when they are handled in the view layer. Furthermore, it is
also possible to convert the data so that it is automatically suitable for different
user interface components. This claim applies to model objects and individual
parameters inside them. What it means is that once the application developer
has defined a structure and content of the model data and implemented the
model classes of the application, the data can be shown in the user interface
components with minimal effort. It also means that when new parameters are
added the changes in the code are more local than in a typical MVC++
application. This was one of the goals that Holub [1999b] reached with visual-
proxy architecture.

Having made those statements, I should next find a way of putting some
credibility behind them. Therefore, it is time to go further in the world of
object-oriented design and study the principles of object-oriented frameworks.

12

3. Object-Oriented Frameworks
This chapter describes object-oriented frameworks. The concept of object-
oriented framework is studied and different characteristics of frameworks are
introduced. On the surface frameworks seem very similar to class libraries, but
a closer look reveals some differences. This chapter defines the concept of
frameworks in the scope of this thesis. It also studies the frameworks in
relation to other close concepts in the field of object-oriented design.

3.1. Framework Definition
Framework seems to be an overused term in a software industry, as it suits to
many occasions. For instance, it can be used in description of high-level system
architecture, in connection with the way the software documentation is
produced or in relation to project management and administration guidelines.
Frameworks can also be wide and colourful sets of separate services that
support software development. From now on I set the concept of the
framework to mean object-oriented characteristics of an object hierarchy, which
make it an object-oriented framework. Thus framework should be interpreted
as object-oriented framework, unless otherwise mentioned.

As Lewis [1995] states, frameworks are more than static services as they
also define dynamic portions of the program. He sees object-oriented
frameworks as class hierarchies that know how the objects in the hierarchy
interact with one another. Whereas Lewis [1995] usually considers frameworks
as minimal, but already working applications, which can be extended,
Koskimies [1997] states that a framework is a collection of interrelated classes
that forms an application or a significant part of it, when those classes are
properly complemented. The Taligent white paper states that in addition to the
benefits of object-oriented programming frameworks provide a working
infrastructure for developers [Taligent, 1993]. Johnson’s definition [1997]
contains the idea of frameworks in simple but sophisticated form:

“A framework is a reusable design of all or part of a system that is
represented by a set of abstract classes and the way their instances interact.”
[Johnson, 1997]

Pree [1995] takes a little more concrete approach by stating:
“A framework is a collection of abstract and concrete classes and the
interface between them, and is the design for a subsystem.” [Pree, 1995].

These definitions do not set frameworks into a specific domain in the real
world or application domain. This is easy to see as well by studying all the
three framework types described by the Taligent white paper [Taligent, 1994]:

13

Application frameworks are suitable for different types of applications. They
provide functionality that fits into many application domains. Many
such frameworks assist for instance in building user interface
applications.

Domain frameworks are built for a certain domain. They offer specialised
logic for example control systems, multimedia service or data access.

Support frameworks implement system-level services. These kind of
frameworks come handy in situations where existing software must be
able to support new hardware or other technological advancement. In
such cases support framework isolates the writing a new device driver
behind its own interface and there is a minimum effect to the rest of the
system.

As this thesis will cover the design of a concrete framework, both of the
presented definitions are valid. Another definition by Johnson [1997] is very
close to Pree’s definition, by referring to frameworks as customisable
application skeletons. In the scope this work, I prefer Pree’s definition as we
are later going to handle the design and implementation of a framework, that
is a generic subsystem for presenting and modifying domain specific data in
user interface applications. So, from this point on the term framework refers to
object-oriented frameworks as defined by Pree [1995].

3.2. Frameworks and Class Libraries
The concept of class library sounds more coherent than a framework. Drawing
a line between class libraries and frameworks is not a trivial task, as both can
have individual features belonging to the other. In practise class libraries and
frameworks often complement each other [Fayad and Schmidt, 1997].

14

Class libraries and frameworks can be seen to form a continuum. In Figure
3-1 class libraries are in the other end and frameworks in the other. [Taligent,
1994]

Library Framework

•Set of classes instantiated by client

•Client calls functions

•No predefined flow of control

•No predefined interaction

•No default behavior

•Provides for customization by
subclassing

•Calls client functions

•Controls flow of execution

•Defines object interaction

•Provides default behavior

Figure 3-1. Taligent’s view on class library – framework continuum
[Taligent, 1994].

Instead of routines in a class library, framework user reuses design solution
shared by framework classes [Koskimies, 1997]. Moreover, Koskimies [1997]
specifies three forms of reuse: composition, specialisation of classes and the
reuse of the flow of control.

According to Fayad and Schmidt [1997] the power of the frameworks
comes from increased modularity, reusability, extensibility and inversion of
control. For a software developer the significant difference between using class
library and framework is in the working method. When class libraries are used
the developer exploits bits and pieces from the class libraries and defines the
skeleton of the application by himself. With frameworks the developer defines
the bits and pieces and the framework defines a skeleton for the whole
application or a part of it.

3.3. Frameworks and Design Patterns
Design patterns are very essential part of object-oriented software
development. They are generic solutions to reoccurring problems that are
constantly faced in designing software as well as any other products [Gamma
et al., 1995]. Both design patterns and frameworks reuse the design.

Like design patterns, frameworks also solve repeating problems, but there
are a few clear differences between the two. Frameworks contain
implementation, but design patterns are abstract and must be implemented
every time they are utilised. Frameworks usually use several design patterns,

15

but design patterns never use frameworks, because the design patterns are
smaller entities. Moreover, frameworks are more specialised than design
patterns. Frameworks solve application domain specific problems, whereas a
design patterns are generic and apply to many problem areas that have similar
characteristics. [Gamma et al., 1995]

3.4. White-box and Black-box Frameworks
Frameworks can be divided into white-box and black-box frameworks
according to the way they are used in building the applications. White-box
frameworks are utilised by inheritance and dynamic binding, whereas black-
box frameworks rely on object composition done by the user [Fayad and
Schmidt, 1997].

Usually frameworks are invented from concrete problems that are faced
and solved repeatedly in software projects. Designer finds some abstraction
that suits to more than one occurrence of the same problem. Parts of the earlier
solutions are found to be generic and they are collected into an abstract class
defining the common logic that handles the problem. Once the abstract class
has been designed, subclasses can then inherit it and define the application
specific functionality. This is the way white-box frameworks work. The user
tailors the application behaviour by defining and overriding framework
methods in subclasses [Johnson and Foote, 1988]. Actually a partly abstract
class can be a minimal white-box framework, although practically all
frameworks consist of multiple classes.

In order to use white-box frameworks, the developer must understand how
they work [Johnson and Foote, 1998]. The developer must know when and
why the framework is calling his methods. Johnson and Foote [1988] also state
the fact that an application developer must be familiar with the structure of the
framework itself. A fairly large amount of subclasses are created when an
application is developed using a white-box framework [Johnson and Foote,
1988]. This may cause confusion, as the complete logic is not visible in the
application. The scattered logic is especially hard for a new software engineer
that tries to study the application in order to maintain it [Johnson and Foote,
1988].

Black-box framework behaviour is customised by components, which can
be used from a separate component library. In this case the framework user
must only know the interface of components, and thus such frameworks are
called black-box frameworks [Johnson and Foote, 1988].

The learning curve of a black-box framework is easier, but also the potential
for customisation depends on the available set of components [Johnson and
Foote, 1988]. If the desired component is not available the framework user

16

could create a suitable one by implementing the abstract interface of the
needed component, but this again is the way things are done with a white-box
framework. Over time the frameworks tend to get more and more black-box
features, and in many cases frameworks are somewhere between the two
extension methods [Fayad and Schmidt, 1997].

3.5. Deploying multiple Frameworks
Taligent’s programming model is building strongly on top of existing
frameworks in their environment [Taligent, 1993]. In fact, Taligent [1994] even
encourages designing new frameworks along with new applications. This
process surely requires highly controlled and mature development process.

Well-designed frameworks, all acting in separate domains, are potentially
able to act or co-exist together inside the same application. As an example
Johnson and Foote [1988] mention FOIBLE, which is a framework built on top
of Smalltalk MVC framework. Similarly, the Java MVC++ framework built in
Nokia Networks is targeted to serve all user interface application developers
[Bonnet, 1999]. Such frameworks do not restrict the application above the very
basic structure, so it is fairly easy to deploy another framework on top of it.
With more detailed and restricting frameworks the situation may become more
complex. According to Koskimies [1997] problems may arise when two
frameworks assume that they have the control of the application or when two
frameworks leave a gap between them in the application functionality. The
control problem is clearly caused by frameworks that work at least partially in
the same domain area. The gap problem may emerge for instance when the
two or more frameworks were not originally designed to work together.

Many frameworks may be deployed in a single application, without even
giving it much consideration. In Java, for example, there are event delegation
model (AWT), data models for several advanced user interface components
(Swing), collections framework and object serialisation [Java2]. All those
provide framework features and they may be used for instance in an
application that is built on top of Java MVC++ framework designed in Nokia
Networks. The application utilising the mentioned frameworks would still be
perfectly able to use another framework that would have a different purpose,
for example defining the data specific operations in the application domain.
Fayad and Schmidt [1997] see that application development is turning more
and more into utilising and integrating multiple frameworks. It is reasonable to
agree with that point of view, as it possible to develop ever more complex
software only by extensive reuse.

17

3.6. Framework Benefits and Pitfalls
When the decision to build a new framework is made, it should be
remembered that frameworks are a long-term investment. In general, building
a framework is slower than creating a traditional library and the learning time
for designers that start to use the framework is longer. [Taligent, 1994]

Benefits are gained only by multiple uses of the framework [Taligent, 1993].
It is possible to reduce long-term development costs by applying frameworks,
as well as by collecting the domain experts’ experience [Taligent, 1994].
Frameworks also improve the consistency of applications and reduce the
maintenance work as errors fixed in the framework automatically affect all the
applications using it [Taligent, 1994]. Furthermore, frameworks let the
programmers focus more on the value-added functionality of the application as
the generic solution already exists [Taligent, 1994].

Framework development disadvantages are as well unavoidable. Building
a framework and learning to use it takes time [Taligent, 1994]. As the control of
the application is partly in the hands of the framework itself, a framework user
must be able trust that the framework functions correctly. If errors occur
finding them can be difficult, as frameworks are harder to debug [Taligent,
1994]. In addition to normal technical documents, frameworks require more
extensive documentation with examples for framework users to support the
learning of the framework [Taligent, 1994]. Framework users also require
support when or if the documentation does not answer their questions. One
must not also forget that the framework itself needs maintenance [Taligent,
1994].

From the project management viewpoint, frameworks seem risky.
Developing a framework is expensive and the framework alone does not have
any value. Using the framework should produce some results and realise cost
savings very quickly, but in practise such savings may not be visible in the first
projects that apply the framework. Projects that try out a new framework
should not be in the most critical path, as schedules can be affected by
framework development [Johnson and Russo, 1991]. Iterative development
rounds and requirements found in other projects may also create pressure for
changing the framework [Johnson and Russo, 1991]. Those changes affect all
the projects deploying the framework and therefore it is reasonable to wait
until the framework interfaces are relatively stable before taking the
framework into extensive use [Johnson and Russo, 1991].

3.7. Framework Life Span
Usually frameworks are born as white-box frameworks. Over time they will
absorb more black-box framework features. This process takes time and it is

18

often not possible to tell what kind of black-box framework evolves from the
original white-box design. The evolving process requires profound
understanding of the framework and its domain area. Some frameworks will
never reach the goal of being a pure black-box framework, but this does not
mean that they are not usable for building applications. White-box frameworks
can greatly support the product development. [Johnson and Foote, 1988]

White-box frameworks are usually harder to learn and use, but at the same
time they can be more customisable. It is a good idea to offer both black- and
white-box specialisation mechanisms for the framework. Designing classes for
black-box specialisation also gives an early first impression of the extensibility
of the new framework. Evolving towards a black-box framework may actually
require that framework is deployed in a few projects. After this the common
features that could be provided as black-box extensions can be identified
[Brugali et al., 1997].

Frameworks need routine maintenance caused by new requirements or
changes in the environment. This causes pressure for the application using the
framework to be changed as well [Fayad and Schmidt, 1997]. If the interfaces
are changing this is obligatory. Reasons causing an optional change can be for
example increasing performance or clarity of application design. A well-
designed framework of course tries to minimise these changes, but the iterative
nature of development often creates needs for the changes.

Eventually the framework lifecycle comes to an end. This could happen for
many reasons. Possibly a new hardware or software technology makes the
framework obsolete or unusable [Viitanen, 1999]. Alternatively someone may
find a better solution for the domain the framework is handling and this
solution will replace the framework [Viitanen, 1999]. In the software industry
changes happen all the time and therefore it can be very hard to anticipate how
long the framework will be in use.

19

4. Developing Object-Oriented Frameworks
Designing frameworks is quite different from designing a specific software
product. In this chapter the design process and rationales for framework
development are discussed. The roles and needs of framework designers and
framework users are taken into account.

4.1. Identifying Abstractions
Object-orientation has helped the software industry by changing the way
systems are designed so that the object-oriented design encourages reuse of
design and code [Johnson and Russo, 1991]. One task in object-oriented design
is finding the abstractions. As it is very hard to create new abstractions, they
should be identified from existing solutions and examples [Johnson and Foote,
1988]. This often leads to a repeating process where abstractions are revised on
the basis of new experiences [Johnson and Russo, 1991]. Implemented
operations in abstract classes call the unimplemented ones and this way they
exercise both reuse of design and code [Johnson and Russo, 1991]. On a
practical level you should find software solutions that are built repeatedly and
in addition recognise the common and unique parts in them [Taligent, 1994].

Johnson and Foote [1988] point out that reuse does not happen accidentally
and thus the experts are responsible for reusing old and looking for new
reusable components. Abstractions can be found by defining standard
interfaces when designing new classes and by designing minimum size
methods that increase modularity of classes [Johnson and Foote, 1988]. By
doing careful class design, finding abstract classes becomes easier. The abstract
classes should be placed at the top of class hierarchies and the hierarchies
themselves should be deep and narrow [Johnson and Foote, 1988]. Access to
variables in abstract classes should be minimised and the subclasses of an
abstract class should be specialisations [Johnson and Foote, 1988].

Good abstraction emerges when there is a clear understanding of hot spots,
places where maximum adaptation is needed [Pree, 1995]. According to Pree
[1995], hot spots are the domain specific parts in the abstraction or a framework
that must be kept as flexible as possible. The framework user hooks his
application into these hot spots and provides specialised implementations for
them. If hot spots have been correctly identified and flexible customisation is
supported in them, the framework is meaningful to use and it becomes more
powerful. Finding the hot spots is a task where domain area experts are needed
[Pree, 1995]. A higher level flow of control can be defined around the hot spots,
thus combining their functionality into a larger entity.

20

4.2. Designing a Framework
Johnson and Foote [1988] point out that designing good frameworks is harder
than designing abstract classes. An idea of a possible framework is usually
born from experience [Johnson and Foote, 1988] and therefore a framework
should targeted to the area of designer’s expertise.

A good framework is complete, flexible, extensible and understandable
[Taligent, 1994]. This means that the framework user understands how the
framework works and is able to concentrate on the value-added functionality
in his application [Taligent, 1994]. Framework can also solve problems of
different applications and when something is missing or needs to be redefined,
the framework does not prevent extensions or modifications [Taligent, 1994].
Obviously all these features are hard to reach in single framework, but it is
good to measure against them, as they are the requirements that the framework
users expect you to meet.

Good design and programming practises can also help in finding potential
frameworks in existing projects. When developing software you should always
consider splitting large classes that have grown over time. Similarly you
should divide differences in the same operation into separate subclass
implementations and define the abstraction of the operation in a common
superclass that can be declared abstract. You should also implement generic
operations outside your classes and utilise them from many classes. Classes
should not contain parameters that indicate some internal state, as they are
practically same as global variables. Such information should be delivered as
parameters in method calls. [Johnson and Foote, 1988]

Johnson and Foote [1988] also state that designing a white-box framework
first is a good starting point. As the actual application and test program design
and usage tests the fitness of the framework, the iteration rounds are essential
in guiding the development to the right direction [Johnson and Russo, 1991].
Testing the framework in pilot projects can reduce the risks [Johnson and
Russo, 1991]. This can also be done during the earlier iterative rounds, as
possible corrections do not have any critical impact. Extensive use of the
framework in early stage can be a serious mistake as the framework interfaces
keep changing and cause a lot of maintenance work in projects that already are
developing on top the framework [Johnson and Russo, 1991].

Abstractions for frameworks can be found on the solutions that are built
repeatedly [Taligent, 1994]. Unique and common features should be identified
and separated. They are the cornerstones of new framework or frameworks.
The abstractions can be discovered from existing solutions or an experienced

21

designer can invent them based on his past knowledge and expertise [Taligent,
1994].

If you can utilise design patterns in your frameworks, you built on the
common knowledge that helps framework users to better understand the
structure of your framework. Design patterns can also help you to save time in
your framework development [Taligent, 1994].

You should also consider whether you could provide specialisation of
abstract classes on top of your framework [Taligent, 1994]. Black-box type
default implementations can greatly help the framework user, as there is no
need to learn the internal functionality in detail. The number of classes as well
as the number of member functions should be minimised [Taligent, 1994]. A
balance in flexibility should be found; if the framework is not flexible, it is
neither very usable. On the other hand too much flexibility creates a lot more
work in the framework implementation and usually makes the framework
even harder to use or learn.

On some domain areas a very deep knowledge is needed to become an
expert. If a framework is to be implemented for such a domain, an external
expert must be allocated.

Koskimies and Mössenböck [1995] describe a framework design process
through step-by-step generalisation. In the first phase the generic concepts of
problem domain, application or framework, are iteratively examined and
mapped to design patterns and other solutions [Koskimies and Mössenböck,
1995]. After multiple generalisations the problem should be at its most general
form [Koskimies and Mössenböck, 1995]. In the second phase framework or
frameworks for generalisations are designed in a reverse order going from the
most generic solution towards the most complete [Koskimies and Mössenböck,
1995]. The last framework design that is produced by this process should be
the most complete, the one that solves the original problem [Koskimies and
Mössenböck, 1995].

Koskimies and Mössenböck [1995] admit that solving real and complex
design problems with this method may be hard and the actual design process
may not proceed so cleanly. However, they point out that knowing the
stepwise generalisation process can help the framework designer, even if the
process is not followed in detail [Koskimies and Mössenböck, 1995]. After all,
building a framework typically includes finding abstractions, iterative design
and implementation [Koskimies and Mössenböck, 1995]. Basically Koskimies
and Mössenböck describe more formal and structured way to perform those
steps.

22

Frameworks may use services of another frameworks. These kinds of
dependencies can be hard to manage and therefore it is wise to consider
minimising them. Taligent [1994] states that frameworks should be connected
with an interface or server object, which makes dependencies minimal. If
designing such an intermediate class is possible, it can provide architectural
benefits and clarify the design.

4.3. Framework Implementation
It is possible to implement a framework without object-oriented programming
language [Johnson and Russo, 1991]. However, as the object-oriented design
and programming have a strong position in the current software development,
I will concentrate on framework development process only with object-
oriented languages.

Pree [1995] introduces two types of methods for framework design:
template and hook methods. Template methods are based on hook methods,
which in turn can be abstract methods, regular methods or other template
methods [Pree, 1995]. Template methods implement non-changing, frozen
spots in the framework, thus defining implement abstract behaviour and flow
of control [Pree, 1995]. Hook methods define the hot spots and they are more
elementary as they are called by template methods [Pree, 1995]. Whether a
certain method in the framework is template or hook method depends on the
point of view. As an example, a smaller scale template method calling some
hook methods can act as a hook method for a template method of larger scale
[Pree, 1995].

Framework designers should keep an open mind for new solutions even in
the implementation phase. As Pree [1995] states, the evolving process of
framework development may create new requirements and needs revising
design. That is why framework developers should always be ready to design
new features and redesign the old ones during the implementation [Pree,
1995].

Taligent [1994] also encourages a prototyping approach for building
frameworks, for example by implementing a subset of problem domain.
Concrete experiences in prototyping approach can be collected in very early
phase, but also the developers trying to deploy the early prototype are lacking
a good documentation and they often have to update their application because
of changing framework interfaces. In general prototyping can be seen as first
iteration round, and therefore the first actual release may be more ripe and
complete. This can be extremely important benefit when multiple applications
are being designed on top of the framework.

23

4.4. Testing and Supporting the Framework
Testing the framework has two sides, the technical and practical. Technically a
framework developer may be able to fully test the framework. Technical
testing tests that the framework actually works as expected and therefore test
drivers or otherwise automated testing can be very useful. With the
frameworks that define user interface functionality by themselves, an
interactive testing with small test user interfaces may be necessary. This is
because there might be no reliable way to pass user interface events
automatically to the framework components. Technical testing may also utilise
other testing tools, such as test coverage analysers, code optimisation or
analysis tools.

I consider the practical side of framework testing as testing against known
and unknown requirements. A framework developer is possibly able to
perform tests against the known requirements as well. For the unknown
requirements the framework needs testing that is done by application
developers using the framework [Taligent, 1994]. This is the first opportunity
to gather new requirements and improve the old ones. This process also
requires a lot of discipline, because the flood of new requirements can be
overwhelming. You should select a reasonable set of requirements to be
implemented, but most likely some of them have to be dropped or
implemented later.

You should regard your frameworks as products [Taligent, 1994]. Even
though they may not directly make any profit, the developers using your
framework have the role of clients. The quality of framework code and
comments in it are therefore essential, but still not enough [Taligent, 1994].
Framework users expect to see sample programs, technical documents with
architecture diagram, verbal descriptions of the framework and its usage
[Taligent, 1994]. In other words, you have to reveal the nuts and bolts of your
design by example and guidance, as it will be too hard to find and learn them
otherwise.

Johnson [1992] gives framework documentation three goals. It should
describe the purpose of the framework, how to use it and the detailed design of
the framework. Johnson [1992] uses patterns to document frameworks. In this
context they mean informal, but structured essays about different features of
the framework [Johnson 1992]. The first pattern should give an overview of the
framework domain, and the others should concentrate to specific topics,
gradually deepening the reader's knowledge of how to use the framework
[Johnson 1992]. Technical design is easier to learn, after the reader has had
some experience of using the framework [Johnson 1992]. That is why Johnson

24

[1992] thinks that the framework design should the last issue in the
documentation. This indicates that documenting technical design is targeted to
users who really need in-depth knowledge of the framework or are just
otherwise curious of what is actually happening under the hood. Not having
this knowledge should not prevent the developer from using the framework
itself [Johnson 1992]. This is true especially for black-box frameworks, but with
white-box frameworks some design details may be necessary to know.

Emphasising further the importance of documents, it can be possible to
extend your framework with extensive documentation. Just outside the reach
of framework domain, there can be tasks or operations that are frequently
needed in the applications using the framework. As framework developers
know the hearts of the framework, such issues should be brought to their
attention. Knowing those problems, they can also find a sophisticated ways to
implement such features in the applications by effectively using the framework
to partially perform such tasks. When these solutions are written down to
cookbooks or corresponding documents, they actually extend the scope and
usability of the framework further and by doing so, they provide additional
value to the framework as well as to the applications.

4.5. Framework Maintenance
After the framework release and some projects that have applied the
framework, the knowledge of the problem domain and true framework
requirements have probably improved [Taligent, 1994]. When the framework
maintenance is started, you should carefully collect as many experiences as
possible and design and prioritise the maintenance work accordingly. A few
aspects of the framework maintenance phase are discussed here.

All known errors in the framework should be fixed as fast as possible
[Taligent, 1994]. Correcting errors affects all the software using the framework
and also prevents software developers from making additional code just to
avoid existing errors. Later, such solutions may cause new problems to arrive.
Naturally the severity of errors must be considered, and work must be
prioritised.

Initially during the early development of the framework, it is easy to refine
and change existing interfaces and you should not hesitate to do so [Taligent,
1994]. Eventually, the time of freezing the framework interfaces comes. After
this the interfaces should be kept as stable as possible, as the existing software
is already using them [Taligent, 1994]. This is the point where new
functionality should be added by extending the old interface instead of making
changes in the existing parts [Taligent, 1994]. In some cases however, there
might be very strong reasons to change the existing interface. If this must be

25

done you should notify the users of the framework early enough and also find
a good timing for making those changes [Taligent, 1994].

Once both framework and application developers have gained experience,
one important task in the maintenance phase is to identify places where
usability of the framework could be improved by offering new black-box
functionality. Those ideas can emerge from the questions and feedback
received from developers using the framework. It can also be worthwhile to
study the software that has been implemented by using the framework. One or
more developers may have found a good way to complement the functionality
of the framework in their own code. If that kind of solutions can be adapted to
be a part of the framework itself, it will create additional value to the
framework.

4.6. Framework Development Tools
In theory, frameworks can be built for any domain. They can work in different
areas of the application and multiple frameworks can be utilised to build a new
application. Conceptually, frameworks are hard to understand and finding a
common denominator from them is not so simple. Framework design and
implementation often leads to long and unpredictable roads [Hakala et al.,
1999]. Therefore, building a development tool for building frameworks is a
challenging task.

Universities of Helsinki and Tampere have built FRED (Framework Editor),
which is a tool supporting framework development. FRED’s model of
framework development is based on specialisation templates and design
contracts. Design contract is described as a design pattern without the
semantics of the pattern, thus being structural sets of classes that fulfil certain
conditions and constraints. Like classes in object oriented design, design
contracts can extend other design contracts. In FRED, a language Cola is used
to describe them. [Hakala et al., 1999]

A specialisation template is based on a certain design contract and fills a
flexibility requirement of a framework [Hakala et al., 1999]. It is used to bind a
generic design contract into the framework [Hakala et al., 1999]. Unbound
entities are then left to application developer, but specialisation templates may
also extend more general specialisation templates [Hakala et al., 1999]. This
leads to process of stepwise implementation [Hakala et al., 1999], which has
also been described by Koskimies and Mössenböck [1995].

The purpose of FRED is to help and guide a developer to specialise a
framework into an application [Hakala et al., 1999]. FRED maintains a list of
tasks that need to be done and can create also default implementations for
some tasks [Hakala et al., 1999]. In addition, FRED can notice when user

26

implementation does not conform to the requirements of the framework
[Hakala et al., 1999]. New tasks for correcting such errors are created
immediately, when the error is detected in the integrated code editor [Hakala
et al., 1999]. FRED can be used to specialise a framework further, thus creating
a new specialisation template, or to develop an application on top of existing
framework [Hakala et al., 1999]. The project team sees that FRED clears the
framework building process, as well as it especially helps the designers to
utilise white-box frameworks with lesser knowledge of the framework itself
[Hakala et al., 1999]. Personal evaluation of FRED indicated that some learning
is needed in order to use FRED, but it also convinced me, that FRED and also
framework development tools in general have potential. Undoubtedly, more
research is needed to better understand the process of building frameworks to
aid framework designers in their work. The FRED team has taken promising
steps in that direction.

4.7. Summary
We now have an idea of what frameworks are and what it takes to design and
implement them. Identifying the right abstraction from existing solutions is
essential and the framework development process has to be iterative and
flexible to be able to respond to real needs. Helpful documentation alongside
the framework itself has a very important role and one should also reserve
time for maintaining the framework. We have also reason to assume that tools
and applications for developing frameworks will become more common in the
future.

At this point we can again face the problems of MVC++ architecture that
were brought up in chapter 2. All MVC++ applications handle the domain
specific data in model, controller and view layers. In principle this has to be re-
implemented every time, because the data is always different. The starting
point here is that if a generic interface can be defined to represent the
application data, a framework can then implement generic handling of the
model data in other layers of the MVC++ application. This can also mean
working support for different user interface components, which require
different kind of model implementations in order to visualise the data. In the
next chapter, we will address these issues further.

27

5. Model Presentation Framework
The purpose of this chapter is to describe the Model Presentation Framework,
which was constructed in order to reduce the work that is repeated in building
many MVC++ user interface applications. In short, the purpose of the Model
Presentation Framework is to assist the work of a software developer, when the
domain model data must be presented and in the user interface. The developer
must implement his model layer so that it is Model Presentation Framework
compliant and use the adaptation services of the framework when he passes
the data to the user interface components.

5.1. Motivation behind the Model Presentation Framework
The idea of the Model Presentation Framework grew up after experiencing the
design and implementation work of user interface applications, mostly
network management applications built in Nokia Networks. According to my
experience, some common characteristics of user interface applications can be
collected. Typically a user interface application displays or presents the data to
the user. When the user interacts with the application, he can execute two types
of tasks. The user can perform tasks of the user interface itself, such as
managing windows, using menus or customising the user interface. Another
type of interaction done in the user interface is actually interacting with the
data. This type of interaction can mean for instance navigating inside the data
hierarchy, creating or deleting objects or modifying their parameters. Even
with the MVC++ architecture, the interaction with the data is usually re-
implemented in each user interface application. This is because the data is
different almost every time. Implementing data presentation and editing
functionality for the user interface can be a hard and time consuming task,
especially if the structure of the data is complex and consists of many different
types of objects.

If a generic way of describing the data can be defined as an interface, it is
possible to define generic operations that handle the data through the defined
interface. And as there are common operations for the data, also they can be
generalised. The generalised parts can then be combined into a framework
implementation, so that they can be utilised in multiple applications. This
approach can reduce the time of designing and implementing a user interface
application. The use of such framework automatically gives more
responsibility to the model classes. This is because they must describe the
object hierarchy for the user interface. Therefore the applications based on this
framework will have a more predefined way of designing the model classes

28

than the MVC++ architecture, which does not tell much about how the model
classes should actually be designed. Using the framework also leads to the
situation where the view layer has a minimal amount of information about the
application model part. As the model layer is often accessed through the
framework, the developer has not such a great temptation to implement the
logic of the controller or the model in the view layer. This should harmonise
and simplify the application architecture in view and controller layers.

As described earlier, typical data related functions in user interface
applications are:

• Displaying the data for the user (output)
• Navigation in hierarchically structured data (input/output)
• Modifying the data (input)
These operations define the domain for the Model Presentation Framework.

Java was selected as a development environment, because more and more user
interface development in Nokia Networks is moving towards that direction.

5.2. Model Presentation Framework Overview
The Model Presentation Framework defines a generic interface for describing
model classes of an MVC++ application. On top of this abstraction, framework
defines a functionality, which adapts the Model Presentation Framework
model objects for presentation in different user interface components.

The Model Presentation Framework sets some requirements for the
application, but gives a lot of services in return. Figure 5-1 illustrates an
application that is built around the Model Presentation Framework. White area
is the application and the grey boxes are different parts in the framework. The
correct way to read the figure is to consider the model part of MVC++
application being at the very bottom, where application model is placed at the
picture. The application view is at the top and the controller defining the logic
of the application on the left side. Boundaries of MVC++ layers in the
framework side are instructional. They show an example of which the Model
Presentation Framework layers should be used in view, controller and model
layers of the application.

29

Attribute encapsulation

Model object encapsulation

UI component adaptation

Customised UI components

Editing support

Model interfaceModel

View

Controller

M
od

el
 P

re
se

nt
at

io
n

Fr
am

ew
or

k

Figure 5-1. An application using the Model Presentation Framework.

The Model Presentation Framework itself has roles in all parts of the
MVC++ application. For the model it defines the base classes, some default
functionality as well as an interface for describing hierarchical data structures
in the application. On many occasions the logic that would be implemented in
the controller part for navigation or making modifications to data is already
implemented inside the framework. This way the framework takes over some
general logic from the application controller. In the view part the Model
Presentation Framework defines adaptation for several user interface
components, as well as customised user interface components that already
have default functionality. Editing support can be seen as a complementing
piece that uses the framework presentation functionality on several layers and
provides additional pieces on many layers to implement the editing
functionality.

To further clarify Figure 5-1 the meaning of different parts of the Model
Presentation Framework need to be explained. They are covered in more detail
later in this chapter, but following summaries should help to form the overall
picture:

Attribute encapsulation: Primitive types are encapsulated into class
presentations. Besides the attribute value, an attribute class may
contain additional information. This can mean for example a set or
range of valid values. Attributes can be grouped into attribute sets,
from where attributes are accessible by name. Attribute sets are
dynamic and allow runtime insertions, deletions and modifications.

30

Model interface: Model objects can form hierarchies that describe the
application domain. Their attributes and hierarchy are handled
through a predefined interface. Model classes have two sets of data.
Basic data allows model object presentation without displaying
attributes or children. Complete data set includes attribute values and
children of the object. Object with complete data can be in expanded
state in the user interface.

Model object encapsulation: This layer defines a data node that can store any
Model Presentation Framework model object. Model objects are
encapsulated inside data nodes before they are presented in the user
interface. This means that user interface is able to display many nodes,
even if the nodes actually refer to the same model object instance. This
prevents an unnecessary multiplication of the data.

User interface component adaptation: As the data nodes are presented in
different user interface components that have unique requirements for
the format of the data, they must be interpreted separately for each
type of user interface component. User interface component specific
adapter classes provide this functionality.

Customised user interface components: As the Model Presentation Framework
defines functionality that supports automatic expansion of object
hierarchies, it is also reasonable to define extended user interface
components. They have built-in support for navigation in the model
object hierarchy and may define some look-and-feel issues as well. This
is a more convenient way of applying the Model Presentation
Framework services, as it saves the work of a software developer who
builds the end-user application.

Editing support in user interface components: The Model Presentation
Framework has a support a limited editing functionality in certain user
interface components. This support means providing separate data
aware components for editing operations and an automatic transfer of
modifications internally through the Model Presentation Framework.
The editing components can be integrated into the actual presentation
components that display the model object data, which in turn
simplifies the work of a framework user.

The Swing user interface components in Java Foundation Classes form a
very good basis for these abstractions. When using Swing components, the
developer does not have to insert the data into components by hand. The
components expect the user to give them objects that implement a certain

31

interface, a component specific model that describes the contents of the data
[JavaTutorial]. The problem is that these interfaces are component specific
[JavaTutorial]. On one level the Model Presentation Framework provides a
new abstraction layer that implements the object presentations for different
Swing components. In the architectural level Swing components give an ideal
starting point for creating such a higher level abstraction.

5.3. Model Presentation Framework Architecture
Next we will take a more detailed look into the architecture of the Model
Presentation Framework. Object models and interaction between different
layers are presented. The focus is on the design of class functionality and
interfaces rather than specific design and implementation details. Therefore
many class attributes and insignificant methods have been left out of the
presented object models.

5.3.1. Attribute Encapsulation
Presenting attributes in a generic manner throughout the Model Presentation
Framework requires powerful abstractions starting from the bottom layer.
Attribute encapsulation layer defines class presentations for all primitive types
of Java language. Java already defines class presentations for primitive types
[Java2], but to provide additional functionality customised class presentations
were designed. This allows assigning more functionality into the common base
class, which is great asset when designing upper layers of the framework. In
addition these customised classes can be extended to contain attribute specific
information if a need arises. Such information can be for example valid value
ranges for numeric attributes, or maximum lengths for strings. The overview of
class hierarchy is illustrated in figure 5-2.

32

contains

Attribute

boolean editable
short type
short state

compareTo()
getType()
getState()
setState()
isNull()
isEditable()
setEditable()

BooleanAttribute

boolean value

CharAttribute

char value

DoubleAttribute

double value

EnumAttribute

String [] choices
int value

FloatAttribute

float value

IntegerAttribute

integer value

LongAttribute

long value

ByteAttribute

byte value

AttributeSet

attributeNames

isSubsetOf()
isDescriptionOf()

StringAttribute

String value

Figure 5-2. Attribute encapsulation layer.

All classes for different types of attributes and attribute sets are derived
from the Attribute class based on which specific implementations are designed.
In addition to primitive types, defining attributes for strings, enumerated types
and grouping of attributes into sets are supported. Attribute is a base class for
all attributes. It has a field for the type of the attribute that can be used for
dynamic checking of attribute type. The state field does not have any meaning
inside the framework and the application user can choose to use it in some
meaningful manner, if there is one. The state field was created as a response to
future project requirements for storing detailed information about the different
modifications to the domain specific data. Introducing the state in a base class
provides the feasible solution to the problem already at the attribute level.

It is possible to create an instance of the Attribute class. Such an instance
always represents a null value. AttributeSet class makes grouping attributes
into sets possible. Construction of attribute sets from instances of Attribute class
itself is a typical example of applying Composite design pattern [Gamma et al.,
1995]. There is also a method that can check whether one AttributeSet contains a
subset of another. AttributeSet has proven to be a powerful abstraction that can
be used for performing many operations in the framework. Subsets can be used
to implement for instance filtering or selection functionality, which is partly
generic.

5.3.2. Model Interface
The model interface is the part that handles most of the interaction between the
Model Presentation Framework itself and the application using the framework.

33

The model interface defines how the application designer must implement his
model classes for them to be compatible with the Model Presentation
Framework.

<<inte rface>>
DataObject

collapse()
expand()
getAttributes()
getChild()
getChildCount()
getChildren()
getName()
isExpanded()
isLeaf()
setAttributes()

AbstractDataObject

expand()*
collapse()*
isExpanded()*
isLeaf()*
abstract discardCompleteData()
initialize()
abstract retrieveBasicData()
abstract retrieveChildren()
abstract retrieveCompleteData()
abstract setValue()
toString()

De faultDataObje ct

expand()*
getChild()*
getChildCount()*
getChildren()*
getAttributes()*
setAttributes()*
addChild()
removeChild()
setValue()

DynamicDataObject

getAttribute()
removeAttribute()
setAttribute()

Figure 5-3. Model interface and implementations of DataObject interface.

Figure 5-3 presents the interfaces and classes in the model interface layer.
The inheritance relationships in the figure are drawn from left to right for
presentation reasons. The DataObject defines the interface that is used
internally by higher layers of the framework. However, this interface is very
primitive and quite large and therefore not the most convenient. More
specialised classes with default functionality are offered on top of this
interface.

Methods implementing the DataObject interface are marked with '*' in the
figure. The AbstractDataObject class defines such methods of DataObject
interface that are completely generic. They are collapse, expand, isExpanded and
isLeaf. This class also declares some new abstract methods, which are new hook
methods called by the methods that are already implemented. With default
functionality and new hook methods the AbstractDataObject defines the
concepts of basic and complete data. An object that is not yet expanded is
assumed to have only basic data. In practise the basic data should be enough to
visualise the object in the user interface without showing its parameters. This
functionality was designed for optimising performance and memory
consumption when large amount of objects are presented for example in tree,
list or drop down list user interface components. An expanded object in turn is
assumed to have a complete data for presenting attributes and the children of
the object. The children in this case do not need to be in expanded state. All
objects in user interface components that represent object attributes must be in
expanded state and therefore have complete data. In practise the Model
Presentation Framework ensures that such objects are expanded before
presentation. As the user actually implements the application model classes by

34

inheriting objects of the model interface layer, it is up to him to define whether
there is any practical difference between basic and complete data set.

The AbstractDataObject is the first class that has a reasonable functionality
that can be inherited into application model classes. As the name indicates the
AbstractDataObject class still leaves many methods unimplemented and
especially if the framework user wants to define hierarchical model structures
a more complete implementation is needed.

The DefaultDataObject defines the most complete functionality for the model
classes. Only five methods are left abstract, although to build a more complete
functionality some methods with default implementations need to be
overridden. The abstract methods left are getName, discardCompleteData,
retrieveBasicData, retrieveChildren, and retrieveCompleteData. Methods
getAttributes and setValue have default implementations that do absolutely
nothing. They only save the trouble of defining them if they are not needed.
However, implementing them is often essential, but also dependent of domain
specific data, and therefore the implementation must be left to application
developer’s responsibility. The DefaultDataObject implements default child
handling that supports building object hierarchies. This means mostly
implementations for child-related methods of DataObject interface, but also
methods for adding and removing children. Children can be added and
removed freely, and the default functionality also serves the upper layers of the
Model Presentation Framework reliably. In spite of the most complete
implementation, utilising the DefaultDataObject is not so easy and this is why
very good documentation and concrete examples are needed to assist
framework users. In the future the DataObject interface could be extended to
support sorting of child objects and the DefaultDataObject could have the
default implementation of that functionality [Virtanen, 1999].

The DynamicDataObject class extends the DefaultDataObject further by
making handling of dynamic parameters possible. As parameters can be added
or removed during the runtime of the application, this class is able to provide
an extended functionality for special purposes. It could be used for instance in
cases where the application should allow the user to specify additional
information at runtime and attach this information to any object. It could be
also used in cases when the structure of same type of objects can vary a lot,
meaning for example that the number of attributes varies greatly between
individual instances of the same class.

The model interface layer is the basis for designing application model
classes. To pass information to upper layers of the Model Presentation
Framework in generic manner, application model classes must use the services

35

provided by attribute encapsulation layer that was presented in the previous
section. Model interface is clearly a hot spot in the Model Presentation
Framework. Although default implementations from the model classes exist,
none of them is complete or usable in the application without inheriting and
extending it.

5.3.3. Model Object Encapsulation
An application developer using the Model Presentation Framework defines the
application model classes by inheriting them from the classes in the model
interface. However, on top of the application model there is a need for yet
another model layer. This need can be hard to realise or understand unless you
have enough experience of user interface design. Actually, same layers exist in
almost any modern user interface, but in those the model object encapsulation
is usually designed to be as a part of the user interface component in question,
or at least component dependent.

To formalise this issue further, we must define concepts of the data model
and presentation model. Data model is closer to real world and it should have
as accurate interpretation of the real world state as possible. Data model often
has many-to-one relationships between object instances. Understandable
examples of such relationships can be found from the daily life. For example
multiple persons may live at the same address or many employees can have
the same superior. In sports two teams have played the same game against
each other. In the world of telecommunications a very good example is the
routing of calls. Many dialled digits can map to the same destination that
routes the calls to a certain area in the network.

Many-to-one relationships can be drawn as graphs, but many user
interfaces have less visual methods for presenting information, such as lists,
tables or trees. Those presentations can be seen as sets or hierarchies and
typically they visualise the target object of many-to-one relationships multiple
times. In a fictional address database application, a tree component in the user
interface could show the same address under two or more persons. An existing
application called Traffic Flow Management does the same in digit to
destination mapping presentation for a switch in mobile telephone network
[TFM, 1999].

As we have demonstrated a possible difference between the real world and
an interpretation of the real world in user interface, we can find reasons why
presentation model should be defined. When the user interface displays the
same object multiple times on the screen, it actually needs many instances of
the same object. With direct mapping to the real world model, this would mean
that copies of the object must be created in order to present the information.

36

This is a waste of memory and just makes managing the model data more
complicated. If the attributes of the object are modified, we must make sure
that modifications are made for each and every copy of that object. A
hierarchical model requires that a parent can be found for each object. If we
have many separate object instances that actually should be the very same
object, which one of their parents is the correct one? Such problems can be
avoided by defining the presentation model.

The presentation model is a new abstraction on top of the data model. In
the Model Presentation Framework it defines a data node, which always has a
reference to a single object in the data model. As many instances of data nodes
can refer to a single object in the data model, we have solved the problem of
many-to-one relationship. In the presentation model, a data node can always
have only one parent object, but in the data model there is no need for such
relationship anymore. When a single object needs to be displayed multiple
times in the user interface, we make copies of data nodes and set them to refer
to a single object instance in the data model side. Very likely, the copies of data
node instances use less memory than copies of objects that model the real
world data. The data node is able to give handle to the real world object
behind it, so that a single object is accessible through many data nodes. Data
nodes also have children like the real world objects in data model. As a
summary the data model can have cross-relationships and can be seen as a
graph. The presentation model is an interpretation of that graph as a hierarchy
where some cross-relationships have been systematically forgotten and as an
implication, object instances are multiplied if need be.

uses

<<inte rface>>
DataObject

DataNode

collapse()
expand()
getChild()
getChildCount()
getDataObject()
getHierarchyLevel()
getParentNode()
isExpanded()
isLeaf()
setDataObject()
setParentNode()
toString()

Figure 5-4. Model object encapsulation using DataObject interface.

37

In the Model Presentation Framework design a single class called DataNode
(in figure 5-4) is used to implement model object encapsulation, in other words
the presentation model. It defines the same operations as the DataObject, and in
many ways is only a call-through layer towards it. The DataNode always
encapsulates one DataObject instance and in addition it contains a reference to
the parent node, because bi-directional one-to-one relationships exist on this
layer.

5.3.4. User Interface Component Adaptation
As the lower level layers of the framework together form an entity which
describes the application model objects and their relationships to each other in
a generic way, we now need to define how these objects can be displayed by
user interface components in the view part of the application. Figure 5-5 shows
the user interface component adapters offered by the Model Presentation
Framework. Many Swing user interface components in Java API require a
dedicated data model [Java2]. These models have component specific interfaces
and therefore a single generic model cannot be used anymore above this layer.
The solution is to provide user interface component specific adapters that are
able to use the common interfaces of DataNode and DataObject classes. The
adapters in turn implement the interfaces required by Swing user interface
components and can serve as a model class instance towards the components.

1-n1-n1-n1-n1-n1-n

uses uses uses uses uses

maps-to

uses

DataNode

ListAdapter

DataNode root

ComboBoxAdapter

DataNode root

TableAdapte r

DataNode root

AttributePane Adapter

DataNode root

TreeNodeAdapter

SortedTableAdapter

SingleTableRowAdapte r

DataNode root

Figure 5-5. User interface component adapters using the interface of DataObject.

All adapter classes are designed to be completely compatible with regular
Java Swing components. The role of the root node stored inside the adapters
varies. If the user interface component is supposed to display the data of
multiple objects, the child nodes under the root node are displayed. If the user
interface component is expected to display the attributes of a single node, that
node is the root node. Table 5-1 explains the purpose of all user interface
component adapters.

38

Table 5-1. Model Presentation Framework component adapters and their roles.
Name: Adapter for: Role:
TableAdapter JTable Provides a regular table model for displaying all

child nodes under a specified DataNode instance.
AttributePaneAdapter JTable Provides a two-column table presentation of

attribute name and value pairs of the attributes
under a specified DataNode (attribute names in the
left column and values in the right column).

SingleTableRowAdapter JTable Like AttributePaneAdapter, except that the
attribute names are displayed in the header of the
table and the values horizontally in a single row of
the table.

SortedTableAdapter JTable Encapsulates TableAdapter instance and
implements column sorting on top of it.

TreeNodeAdapter JTree Adapts a DataNode into a single node in the tree.
This adapter is unique as every tree node needs a
dedicated adapter instance.

ComboBoxAdapter JComboBox Maps all child nodes under specified DataNode
instance into a JComboBox.

ListAdapter JList Maps all child nodes under specified DataNode
instance into a JList.

Assigning data to be displayed in different user interface components is
fairly easy for the application developer using the Model Presentation
Framework. In principle he inserts the needed user interface component into
the user interface, encapsulates the suitable DataNode instance, which contains
the reference to the desired DataObject instance, inside the component specific
adapter. Then he passes the adapter as the model for the user interface
component. If an existing user interface component is being replaced with
another, there may be a need to make changes to the behaviour of the
application as the concepts of the whole user interface might be affected by the
change. Such changes should not however affect the domain specific model.

5.3.5. Customised User Interface Components
The idea of user interface component adaptation was to provide suitable
models for each user interface component that is supported. All user interface
component adapters in the Model Presentation Framework work with standard
Swing user interface components. The problem is that standard components
are not able to provide any additional functionality that supports the internal
architecture of the framework. For example customised tree component can
have default functionality notifying listeners about the selections or customised
table component can implement sorting functionality.

Tree component (JTree) is the only component that supports navigation in
the object hierarchy. In customised table and list components, navigation can
be supported by default. The table component has a ready-made
implementation that always encapsulates the table adapters inside

39

SortedTableAdapter and provides a working implementation for sorting the data.
Browsing functionality does not require much custom functionality from the
user interface components. Much harder requirements come from the fact that
components must be able to support usable editing functionality. Next we will
take a look at that.

5.3.6. Editing Support
Editing support has to be integrated to all layers of the Model Presentation
Framework. The structure of layers may already give hints where such support
is needed. The framework is designed so that implementing support for
editing can be added later into it. This was reasonable for both clarity of the
overall architecture and practical division of implementation into phases.
Editing support layer is the most complex layer in the framework as the
functionality cannot be totally separate from another layers.

A convenient way to study the editing support is to go from the top to the
bottom layer by layer. Editing operations are designed for table component,
although a similar approach is possible for trees. Many user interfaces contain
windows and dialogs, which have multiple separate components for editing
attributes individually. This type of modifications are not supported for the
reason that you basically have to draw the line somewhere and the attribute
pane is suitable for doing similar editing operations inside a single table
component.

The Swing table component uses external components for rendering the
contents. Swing defines a CellRenderer interface and some default
implementations for that [Java2]. The architecture also allows you to make
customised cell renderer classes [Java2]. Cell editing in tables and trees works
similarly. The developer can use the default implementation of CellEditor
interface or create a new cell editor class, if more specialised functionality is
required [Java2, JavaTutorial].

Basically Swing architecture offered two choices to implement the editing
support for the Model Presentation Framework. The easier solution would
have been to implement editing by using default cell editors that come with
Swing. This would have meant that once the Model Presentation Framework
passes modified attributes to the application model classes, they always come
in as strings without any specific type information. The application model
classes should then implement the logic that interprets values correctly. A more
complicated solution was to pass the attributes to the Model Presentation
Framework after editing, so that the type information is still in place. To do this
an attribute type aware cell editor was needed. This solution causes more work
in the framework side and makes the implementation more complex, but a

40

thing to remember is that the framework should reduce the work of an
application developer, instead of turning it into another form. That is why the
latter solution was chosen.

The most important part in the editing support layer is the class
implementing cell editor functionality for the table component. It is required to
handle every attribute type that exists in the Model Presentation Framework.
The adapter class is telling table components whether some cell is editable or
not. A mapping to the editable attribute declared in the Attribute class does this.
If the attribute is editable the table will invoke the TableCellEditor [Java2]
instance that is assigned for the table. Therefore the most convenient solution is
to define a single editor class that is able to handle any parameter it receives.
The default implementation in Swing is a good starting point as the existing
functionality can be used for editing string attributes. Numeric values,
booleans and enumerated types are a bit more problematic and specialised
components must be assigned for them. The Model Presentation Framework
utilises extended text field components from an internal Java platform
[Platypus, 1999]. This design in the editing support layer takes a detailed
responsibility of editing different types of attributes. As explained earlier in
section 5.3.1, the attributes themselves may contain additional information and
the customised cell editor classes can define their behaviour according to the
additional attribute information. At the moment there is no design of such
component in the customised user interface components layer that needs a
special editing support, but existing components make it easier to implement
editing functionality. When customised table component is used in the user
interface, it can assign the customised cell editor component for itself by
default. Therefore it is recommended for an application developer to deploy
the user interface components provided by the Model Presentation Framework
as much as possible. Doing that hides some implementation details and
reduces the amount of user interface related code in the application.

In the user interface component adaptation layer, some adapter classes
declare methods for setting the values. Their interface is already defined by
Swing API [Java2], and they must be simply implemented to be compliant with
the structure of the Model Presentation Framework.

The model object encapsulation layer is only for accessing the actual model
objects behind it. Therefore there is no need to modify it to implement editing
functionality. This is because the layer the adapters actually need to access is
the model interface layer. As the application developer should implement the
application model by inheriting and refining the classes in the model interface,
it is his responsibility to build the editing support to them. Depending on

41

which class or interface from the model interface layer is extended, the amount
of methods that must be overwritten varies.

The application model class implementations have a very tight control of
the things that are done in the user interface. Based on the attribute information
retrieved by the application model classes the Model Presentation Framework
is able to determine whether the attribute can be edited or not. If the attribute is
editable the editing support layer selects the correct editor component
according to the attribute type information. Once the user has made some
changes in the user interface, the information about them is automatically
passed to the model object in question. At this point the application has all the
freedom to either accept the change or discard it. Naturally, if the change made
by the user is discarded, the user should be informed about it. After the change
has or has not been accepted the view component in the user interface is able to
update itself automatically.

uses

uses
uses uses uses uses

gets-model-fromgets-root-fromgets-model-from gets-model-fromgets-model-from

gets-model-from

maps-to

gets-model-from

Attribute

BooleanAttribute CharAttribute DoubleAttribute

EnumAttribute FloatAttribute IntegerAttribute LongAttribute

ByteAttribute

AttributeSet

StringAttribute

<<interface>>
DataObject

AbstractDataObject DefaultDataObject DynamicDataObject

DataNode

ListAdapterComboBoxAdapterTableAdapter AttributePaneAdapter TreeNodeAdapter

AttributeCellEditor

JListJComboBoxJTreeJTable

ObjectTable ObjectTree ObjectList

SortedTableAdapter

SingleTableRowAdapter

Figure 5-6. The overall class diagram of the Model Presentation Framework

When all the layers are combined into one diagram in Figure 5-6, we will
notice a very clear separation between the presentation and actual data. The
DataNode class defines the access point to the model connecting the two parts.
The adapter and editor classes are able to call and use classes below the
DataNode, but the view of the world they are seeing is always retrieved
through the DataNode. This kind of separation is necessary in order to keep the
architecture of the applications clear. When a common framework implements
this separation, there should be no need to redesign it for every new
application.

42

6. Utilising the Model Presentation Framework
The description of classes and object model gives a picture of the architecture,
but it does not tell very well how the framework works in practise. This section
explains how the Model Presentation Framework performs some operations
and presents architecture of a simple test program that uses the framework.

6.1. Roles of the Model Presentation Framework in Applications
In principle, using lower layers of the Model Presentation Framework does not
force developers to use higher layers. In this case, it can be argued whether
there is any point in not using them. If the application is meant to display the
data and allow user to modify it, there are very good reasons for building the
functionality on top of the Model Presentation Framework services. However,
some exceptional cases can be found. For instance if a very special approach in
user interface design is applied, there surely will not be any support from the
Model Presentation Framework in the form of user interface components.
There can also be needs to strongly separate viewing and editing operations in
the application. In such case the Model Presentation Framework could be used
only for viewing purposes and editing functionality would be implemented
separately. There are no restrictions for doing so, and as we will see later, a
typical way of implementing add or delete operations is very similar to this
approach.

The attribute encapsulation layer is a completely separate entity and can be
used alone, whether there is any user interface or not. So, in some cases only
parts of the Model Presentation Framework can be utilised.

6.2. Displaying the Data
When a client application with user interface is started, it does not necessarily
need to have the whole model data in memory after start-up. Depending on
user actions it may retrieve those parts of the model that are needed. This is
why data nodes and objects in the Model Presentation Framework can be
expanded. When the framework comes to a situation where internal data of a
new object needs to be accessed for the first time, it tries to expand that object
before passing it to the user interface. This ensures that all data, including
children of the object are accessible.

The following sequence describes a typical flow of control when the
controller initialises the model and the view to display the data:

1. Controller initialises the model.

43

2. Controller tells the view to show the model object by encapsulating the
model object inside a DataNode instance and passing it to the view. The
view creates the correct adapter for the UI component and puts the
data node into adapter as a root object.

3. The view component decides to expand the displayed object. To do this
it calls the component adapter.

4. User interface component adapter calls expand method of the DataNode
instance. Inside the framework this causes an expand method call to the
framework derived model object in the application.

5. When expand is done, the user interface component adapter has
enough information to show object attributes or the children of the
object. The user interaction may now begin.

When we study these steps we will see that only the first two steps are at
the responsibility of the application. The rest of the sequence happens inside
the framework itself. This is because the logic for expanding the object is quite
generic and simple and can therefore have a default implementation. If the
application needs to expand the object for some other reason there are no
restrictions for doing it. The view component displaying the object will not
notice that the object has been expanded before it needs to access the object in
order to display the expanded data.

6.3. Modification through the Model Presentation Framework
The most simple editing operation for the Model Presentation Framework is a
modification of an existing object. The domain specific model classes in the
application must be able to handle modifications that are passed to them by the
Model Presentation Framework. In addition the data in the user interface must
be presented in a component that allows user to do editing operations. When
these requirements are met, the rest of the editing is automatic. Figure 6-1
illustrates a control flow of a single modification in MVC++ application with
the Model Presentation Framework.

44

View

Controller

Model

MPF

1 2

3
5

6
7

4

Figure 6-1. Modification going through the Model Presentation Framework.

1. User makes modification in the view part. In this example we assume
that change was made in a table component.

2. View informs the Model Presentation Framework about the change in
object information. With table component this means that method
setValueAt in TableAdapter class gets called.

3. TableAdapter delegates changes to the framework compliant application
model object. First it finds the correct DataNode instance and then
retrieves the DataObject stored in it. Next the TableAdapter initialises an
AttributeSet instance and puts an attribute that describes the change in
it. Finally TableAdapter calls DataObject method setAttributes giving the
constructed AttributeSet instance as parameter.

4. Model object analyses the change and applies it to its parameters. At
this point the model object may also discard the changes if they are not
valid.

5. Model object returns the results back to the Model Presentation
Framework (OK/Not OK).

6. The Model Presentation Framework passes the results back to the view.
After this step the view should refresh itself, so that the data is
synchronised with the actual model data.

Optionally the view may inform the controller about modifications and the
controller can then do some additional operations.

45

6.4. Creating new Objects
Creation of new objects requires much more information than changing the
attributes of an existing one. The Model Presentation Framework does not
know the exact type of the object or how the object should be created and
initialised. Therefore it is better to execute the creation operation in traditional
MVC++ manner through the controller to the model. The purist interpretation
of MVC++ requires that it is the model layer that actually creates the new
object. The role of the Model Presentation Framework in creation of the new
object is only updating the changes to the user interface. Depending on the
design and logic of the application, the updating may need some additional
information or logic may be necessary in order to update the user interface
correctly.

View

Controller

Model

Add

AddObjectWanted(...)

Update(...)

CreateNewObject(...)

MPF

1

2

3

4

5 6

7

Figure 6-2. Creating a new object in the MVC++ manner and notifying
framework about the changes.

Figure 6-2 illustrates the object creation procedure. The steps performed go
as follows:

1. Add operation is invoked in the user interface, controller is called.
2. Controller handles the request and tells the model that new object

should be created.
3. The object is created and the flow of control returns to the controller.
4. Controller asks the view to update itself.
5. View asks the correct UI component or components to update

themselves.

46

6. View component calls the Model Presentation Framework to retrieve
the changed data.

7. The Model Presentation Framework retrieves the updated data from
the model classes and adapts it for the UI component that was asking
it.

Note: Step 4 can also be an OK/Not OK result to the view part of the
application. If so, the view must decide by itself whether any UI components
need to be updated.

The same circumstances apply to object removal. Creation and removal
require a fair amount of application logic and are therefore the weakest part of
the Model Presentation Framework. While some demo applications were
created on top of the Model Presentation Framework, it was clearly seen that it
is very hard to understand how to perform these operations and therefore they
need an extensive support in the framework documentation.

6.5. Sample Application
One of the test programs in the Model Presentation Framework demonstrates a
simple example of an MVC++ application using the Model Presentation
Framework. The test program has a simple MVC++ structure and working
functionality in only 150 lines of code. It is therefore very suitable example for
training material to demonstrate both application structure and hierarchical
model structures. The test program simply models a hierarchy of integers
being equal or greater than 0. At the first level in the hierarchy we find integers
from 0 to 9. Under '2' we find integers from 20 to 29 and so on. The screenshot
in figure 6-3 illustrates this. Theoretically there is no limitation for the number
of integers presented in the tree.

47

Figure 6-3. Test program for hierarchy of integers.

Similar functionality without the Model Presentation Framework was also
implemented for training purposes. That also took about 150 lines of code, but
a few issues should be taken into account. First, the model part in the
implementation was user interface dependent and only compatible with the
JTree component. If the model data should be presented in any other user
interface component the model implementation should be divided into two
classes and a new model class for another user interface component would be
needed. Second, this example does not manage any parameters. If parameter
handling is needed the amount of code in controller and view layers of regular
implementation would rise significantly. With the Model Presentation
Framework such changes would affect only the model layer and using the
same data in other user interface components than JTree would require only a
few additional lines of code.

48

View

Controller

Model

1

1

1-n

10

1

1

0-n

0-n
refers-to

creates

gets-tree-contents-from

contains

refers-to

contains

contains

Inte ge rDe mo MainControlle r

MainWindow

StrInte ge r

myInteger

De faultDataObject

DataNode

Obje ctTre e

Tre e NodeAdapte r

Figure 6-4. Test program class diagram.

The class diagram of the test program is presented in figure 6-4. Model
Presentation Framework classes are drawn in grey colour. The only task of
IntegerDemo class is to start the MainController, which then creates the MainView
and the model. The model in this case means one instance of StrInteger class
that serves as a root object for the data. When the MainController in the test
program passes the root object to the view, it needs to be encapsulated inside
DataNode instance. Once the view gets the DataNode object to be used as root of
the hierarchy, it creates a suitable adapter for it. In this case TreeNodeAdapter is
used and set as a model for the ObjectTree component coming from the Model
Presentation Framework. At this point there is a connection to the actual model
object through the framework classes.

In the next phase the framework classes get more active, because the tree
component needs to have more data. First this is because the tree needs to
know whether the visible nodes are leaf nodes or not. Later, also the user
interaction causes more calls to the model layer. As the test program has only
browsing functionality, all the calls to the model can be done through the
Model Presentation Framework classes. This example is, of course, very
simplified and a bit too optimistic, when compared to real application.
However, it is able to give the general idea how the application controller layer
is bypassed by utilising the framework classes.

49

6.6. Filtering and Sorting
Large sets of data are something that many applications have to cope with.
Application users in turn want to work effectively and often making changes
one by one and navigating to the next spot to be changed is far too slow. This
brings up the issues of finding the desired data and targeting the modifications
to the correct subset of data.

One way to access the correct set of data is to filter it so that only items that
match with certain conditions are visible. It is not so easy to determine these
conditions as they depend on the application data. Conditions that application
may need are, for example, exact values, value ranges, strings matching to
regular expression, and negations of all those. Designing a complete filtering
engine that can handle almost any thinkable condition is not reasonable on the
framework level. Therefore, filtering of data with the Model Presentation
Framework is one of the key issues that must be explained with good examples
in the framework documentation.

For a small convenience AttributeSet class offers a simple filtering support
with two methods. Method isSubsetOf can be used to determine whether the
AttributeSet instance has subset of identical parameters when compared to
another AttributeSet. This means that attribute types and their values must be
the same. Method isDescriptionOf works the same way, but allows the attribute
in the set to be of different types. Attributes are considered identical if their
string presentations match each other. Using these methods together with
tailored filtering for some parameters it is possible to build very powerful filter
capabilities into application.

In principle, sorting of data is a completely generic operation and can
therefore be supported easily. The Model Presentation Framework provides
basic services for sorting data in a table component. In the current design
sorting is based on a single sorting key at a time. The sorting key can be any
column of the table. Sorting is however stable, meaning that if objects are
considered to be equal by the current sorting key, the relative order of the
objects will not change. Basically this allows sorting with multiple keys, but
this requires sequential sort operations to be run. Sorting the actual model data
would be more efficient choice if it would be possible to implement a generic
sorting using multiple keys. The implementation would be closer to the actual
data, which decreases the overhead caused by object-oriented architecture of
the framework. Both sorting solutions have their advantages as sorting on the
table allows direct manipulation. Sorting using multiple keys would not be so
easy to use, but it could prove to be more efficient with large-scale
applications.

50

6.7. Status of the Model Presentation Framework
The existing implementation of the Model Presentation Framework was mainly
a result of prototyping. A rough design was made along the way, but apart
from the feasibility study [Vuorenmaa, 1999], no formal design documents
were finished at the prototyping phase. The implementation follows very
closely the design presented in this thesis, although some features have not
been implemented yet. For instance editing support is not completed for all
attribute types. All designed features have been studied to the level where it is
sure that they are possible to implement.

The implementation had an iterative cycle controlled by several demo
applications outlining real applications and smaller programs for testing the
separate features of the framework. During the implementation a few large-
scale changes were done to make the framework more feasible and easier to
use. Undoubtedly more of that work lies ahead.

In the future the existing implementation must be moved on top of internal
Java platform, Platypus that offers trace and error logging services and some
user interface components [Platypus, 1999]. This was one of the reasons why
some functionality was intentionally left unimplemented in the prototyping
phase.

The existing implementation is able to work together with the MVC++
architecture, but it does not rely on it. This was an intentional design decision.
The purpose of the Model Presentation Framework is to define a strict and
fixed separation of the model data and its presentation for the applications. On
top of that it offers a generic abstraction that allow the data to be displayed in
multiple user interface components, without additional conversion in the view
layer of the application. Ability to co-exist with the MVC++ was a requirement,
but restricting the implementation only to work with the MVC++ architecture
was not. So being, it should be possible to combine the Model Presentation
Framework with other application architectures as well.

51

7. Applicability of MPF
This chapter addresses the feasibility and applicability of the Model
Presentation Framework. After a short overview, we cover some experiences
collected during the framework development and experimental prototyping.
Then some Model Presentation Framework assets and downsides are summed
up. After this two other frameworks are shortly introduced and compared to
the Model Presentation Framework.

7.1. Achieved Benefits
The second chapter brought up the problems of the MVC++ architecture. They
were large amount of classes in the implementation and the fact that simple
changes, for example supporting new parameters, cause changes to several
classes in all layers of the MVC++ architecture.

The Model Presentation Framework does not directly reduce the number of
classes in the implementation. All layers of the MVC++ are still there and they
need to be implemented as before. This is a consequence of the MVC++
architecture itself and designing a new framework on top of the architecture
does not remove it. However, the Model Presentation Framework simplifies
the structure of a typical MVC++ application by defining parts of the
implementation.

In an application that uses the Model Presentation Framework the model
layer must follow certain guidelines that make the model implementation a bit
more difficult. This is a small cost when compared to the savings on controller
and view layers. The controller and view layers do not have to know so much
about the structure of the data. The view layer can use component adapters
and possibly user interface components supported by the Model Presentation
Framework. Because of this the view layer does not know what kind of data it
has and does not need to know how it is modified. Navigation in model object
hierarchies happens through the Model Presentation Framework, provided
that used user interface component supports navigation. Modifications also go
through the framework directly to the application model objects. When
compared to creation and removal of objects, modifications work like magic.
Although the user interface components do not know much about the
attributes they are displaying, the editor components are type aware and access
the additional attribute information. Editing functionality in the Model
Presentation Framework is therefore able to assign a dedicated editor
component for each attribute type.

52

As we learned before object creations and removals are at the responsibility
of the application. This means that they are passed through the MVC++ layers
of the application and therefore have to be designed for each application. The
design can in turn utilise the framework services if this is considered as
feasible.

An implication of the Model Presentation Framework at its best is that
changes in domain object model cause changes only to the model layer of the
application. A new object parameter means changes in the corresponding
model class and naturally if support for new model object is needed a new
model class has to be designed. Support for object creation can sometimes spoil
the ideal case, and that may be one issue that has to be studied in the future. To
sum it up the Model Presentation Framework does not reduce the number of
classes in an MVC++ application, but makes their implementation much
simpler by taking responsibility of defining generic functionality of the typical
user interface application.

The Model Presentation Framework implements functionality that is
reusable in application. This can not be achieved by using a simple user
interface library. This should speed up the development and let the developer
to concentrate more on the application specific functionality and problems,
instead of implementing the basic logic of the user interface. When all data
handling in the application code is done at the model layer, also the reusability
of application code increases. With small changes the implementation of view
and controller layers may be reused in another application. Of course this also
requires a reuse of the previous user interface concept.

7.2. Drawbacks
The framework does not support adding and deleting objects, and thus the
application must control these operations in a traditional MVC++ manner. The
framework can offer some support for updating the user interface after those
operations, but the application must still have the overall control of the
operations. Defining a generic logic for adding and deleting objects in the
future seems difficult, as there can be various dependencies in the application
data that affect these operations.

Many applications handle dates and times in some manner. Naturally
application can convert date or time into a StringAttribute in order to display it,
but the framework does not have components for date and time input. This is
definitely an issue that has to be studied further in the future. Needs to localise
dates and times make the problem more complicated.

Strong object-orientation of the framework makes it modular and generally
the functionality is divided into very small pieces. This hopefully makes the

53

maintenance work easier, but it also causes the decrease of performance. To
increase the performance some optimisation was done already at the
prototyping phase. Mainly they were targeted to increase response times in a
table component. TableAdapter class implements a short-term caching to reduce
the number of calls to the application model classes. When attributes of a
certain table row are asked for the first time, the TableAdapter accesses the
application model and stores the values. As long as the row is not changed, the
cached values are used and the application model is not accessed. Another
need for optimisation was discovered when sorting of the table rows by
column values was tested. This revealed both performance and memory
problems. Once again, caching the values inside an internal Comparator [Java2]
class inside the framework clearly improved the performance.

It was also discovered that the framework architecture allows an alternative
way for implementing the application model classes. The model interface has
the getAttributes() method that returns an instance of an AttributeSet. A
traditional way to implement getAttributes() would be to construct this set from
primitive type attributes stored in the model class and return it. Another
possibility would be not to use primitive attribute instances at all. The model
class could always keep the attributes inside the AttributeSet. This would
consume more memory, but the attribute access would be faster, because there
is no conversion step before the framework can access the attributes. The larger
memory consumption of course sets lower limits to the amount of objects kept
in memory. The practical knowledge in this area is still a bit vague, but it could
be proposed that classes that have a large amount of instances should store
their attributes as primitive types and construct the attribute sets only when
they are needed. For the classes that are not designed to have so many object
instances, storing the attributes in internal AttributeSet instance could be more
useful. Mainly this is an optimisation problem between the memory usage and
speed. Unfortunately the application developer has to solve it.

When these drawbacks and the general complexity of frameworks and
utilisation are taken into account, it is clear that learning to use the Model
Presentation Framework is not simple. The documentation must cover wide
range of issues from basic learning steps to design tips in order to help the
application developer work efficiently. The difficulty of tracking errors
between the application and the framework has already been noticed in
practise. This indicates that in wider use there should also be a contact person
with some expertise for fast assistance.

54

7.3. Existing Usage Experiences
Several demos were built during the prototyping of the Model Presentation
Framework. They indicated that building demos on top of the Model
Presentation Framework is more prototyping the structure of data than with
traditional user interface demos. This is because there must be a framework
compatible model implementation before anything reasonable can be
displayed. This creates a little more work for the first prototype, but it can also
be turned into asset. Once the prototype model for an application domain has
been created, making another demo with a different user interface concept is
fairly easy and fast, because multiple user interface components are able to
present the contents of the same model. An existing prototype may also have a
very generic user interface implementation that may be able to serve as a
skeleton for another demo user interface on a different application domain. In
an ideal case, only the model classes need to be redesigned, but early
experiences have shown that some adjustments are usually necessary.

Figure 7-1. Test program mimicking Windows Explorer.

One of the Model Presentation Framework test programs is simple a file
system explorer imitating the well-known Windows explorer as illustrated in
figure 7-1. The program includes browsing functionality only, not any
manipulation of files. The main window has a tree on the left side, displaying
the drives and folders in the file system. On the right side lies a table that
displays files and their sizes and attributes. This program has MVC++

55

structure working together with the Model Presentation Framework. This
functionality is implemented in less than thousand lines of code. This test
program was built in parallel with the framework functionality, and therefore
it is hard give any reliable estimate of the actual development time.

In telecommunications network switch, there are many configuration
objects that only have a numeric ID to identification. A simple user interface
prototype was constructed to demonstrate the application that would be used
the give names to one numerically identified object type. The prototype
presents a hierarchy of configuration objects, which is based on some
parameter values the objects have. The user is able to navigate in this hierarchy
and add or modify the names for the objects. Based on the skeleton taken from
the earlier file system explorer program this prototype was put together in four
hours. When the domain area expert wanted to make some adjustments to
model, the additional work took one more hour. As the logic and the support
for editing name attributes came from the Model Presentation Framework, a
working basic functionality was implemented in roughly 900 lines of code. The
user interface initialisation took about 400 lines and the remaining 500 lines
were the implementation of model class hierarchy and general MVC++
architecture.

The view and controller layer implementations of the file system explorer
and this prototype are nearly similar. This case clearly demonstrated that
sometimes redefining the model layer is almost enough to build a new
prototype for different purpose.

As test programs and some prototypes were built on top of the Model
Presentation Framework, it also became clear that knowing the internals of
framework was something almost obligatory. Even though the framework
became more and more reliable, locating errors was sometimes hard. Frequent
switching of control between the framework and application code caused a few
confusing situations where tracking the error was especially hard.

7.4. Comparison to other Frameworks

7.4.1. ET++
ET++ is an object-oriented application framework for building user interfaces
with C++ for Unix environment [Weinand and Gamma, 1994]. With many
sophisticated features [Pree, 1995] and extensive domain area and about three
hundred classes [Weinand and Gamma, 1994], it is not possible to cover the
finer details of ET++ here. ET++ is divided into layers, each having their own
roles. The Toolkit layer has the most primitive parts of the framework,
including the class Object, which a base class for the most of the ET++ classes

56

[Weinand and Gamma, 1994]. Data Structures layer implements many general
classes, such as containers, that are also utilised in higher layers of the
framework [Weinand and Gamma, 1994]. The View System layer defines
characteristics of graphical objects and User Interface Toolkit provides graphical
user interface components. The Framework and Application Framework layers
define many higher level frameworks for building parts of the application or
the general logic as a starting point for the application [Weinand and Gamma,
1994]. Other layers provide operating system level abstractions as well as
services for investigating the internals of ET++ application while they are
running [Weinand and Gamma, 1994].

ET++ is able to load and link classes dynamically to a running application
by utilising virtual functions [Weinand and Gamma, 1994]. The Object base
class provides an object input/output with streams or to be used with
clipboard as well as change notification mechanism [Weinand and Gamma,
1994]. Nowadays similar features are becoming more popular in standard
development tools and for example object serialisation and listeners can be
found in Java API [Java2].

For graphical objects the View System layer in ET++ defines a VObject class
that implements basic functionality of visual objects [Weinand and Gamma,
1994]. That class is the basis for visual objects and user interface components
[Weinand and Gamma, 1994]. High level features of ET++ include for example
building blocks for text editors with support for several text formats, grid
views for tabular data and tree views for data hierarchies [Weinand and
Gamma, 1994].

ET++ really is a large library of services and a collection of frameworks. It
is suitable for building for example drawing editors, spreadsheet applications
word processors [Weinand and Gamma, 1994] or hypertext systems [Pree,
1995]. Isolation from the system underneath makes ET++ applications easily
portable between supported systems [Weinand and Gamma, 1994]. In short,
ET++ serves as an excellent example of successful framework design. It helps
the designer in many levels of the application, and when compared to the
Model Presentation Framework, ET++ is far more extensive and advanced.

7.4.2. HotDraw
HotDraw is a framework for designing graphical editors [HotDraw]. It is
versatile in many typical aspects of object oriented drawing tools [Johnson
1992] and has been used to implement for instance a case tool and a HyperCard
clone [HotDraw]. Drawing model is two-dimensional and objects in a drawing
may react to user commands, they can be animated as well as constraints can
be specified between them [Johnson 1992].

57

In application utilising HotDraw, all elements in drawings are subclasses of
Figure [Johnson 1992]. The framework contains ready-to-use subclasses of
Figure that can be used when applicable and the application developer can
specialise the Figure or any of its subclasses to implement his own drawing
elements [Johnson 1992]. CompositeFigure is a subclass of Figure that consists of
a set of other figures [Johnson 1992]. Therefore it is very usable when the
customised figures need to be created [Johnson 1992]. The name
CompositeFigure indicates that Composite design pattern [Gamma et al., 1995] is
applied in the design of figure class hierarchy. This solution is quite similar to
the attribute encapsulation layer in the Model Presentation Framework (see
section 5.3.1). Both of these cases have solved a problem of defining a container
class that can contain references to other container classes. Using the Composite
design pattern is a very natural choice here [Gamma et al., 1995].

More advanced features in HotDraw are constraints, handles, tools and
animations [Johnson 1992]. Constraint objects can be used to define
dependencies between objects [Johnson 1992]. Constraints can change some
attributes belonging to figures [Johnson 1992]. For example a constraint can
keep the line connected to some drawing figure when the figure is moved
[Johnson 1992]. Handle is small visible control that is attached to a figure
[Johnson 1992]. A typical usage of handle is for example resizing of figure, but
in principle a handle can be used to do any of operation to figure [Johnson
1992]. Tools are simply operations that are visualised in a tool palette [Johnson
1992]. This concept is used practically in any drawing editor. In HotDraw a
tool can be used for example to go into a different drawing mode, manipulate a
figure, or to perform some operation for entire drawing [Johnson 1992].
Animation features of HotDraw can be used to implement user independent
actions in a drawing [Johnson 1992]. They can be for example automatic
periodical adjustments to the drawing, executed by the editor application itself
[Johnson 1992]. All things considered, HotDraw forms a very good
customizable framework for editing and handling two-dimensional drawings
in applications that utilize it.

What HotDraw does for graphical editors, the Model Presentation
Framework does for model of the MVC++ client applications. It generalizes a
part of basic MVC++ interaction towards model and using that it provides
default functionality for its domain. The Model Presentation Framework is not
able to provide working default application like HotDraw. This is mainly
because of different framework domains. The Model Presentation Framework
can be utilized for any kind of application and it can only define an interface
towards model data, not the user interface the framework user wants to make.

58

In its own domain HotDraw goes further than the Model Presentation
Framework. It defines many hot spots where the framework is flexible and
customizable. The Model Presentation Framework practically has only one hot
spot, which is the extensible model interface layer.

7.4.3. Comparison Summary
ET++ and HotDraw are advanced frameworks that offer a lot of functionality,
and have clearly reached a level of maturity. ET++ is a framework for building
user interface and HotDraw is more focused on building graphical editors.
From that aspect, their domain is more fixed than the Model Presentation
Framework domain. The Model Presentation Framework extends the MVC++
architecture and helps the developer to bring the application data to the user
interface and handle it there. That task can be done by a fairly small
framework, which the Model Presentation Framework is currently. Lower level
framework layers provide very generic functionality, but on the other hand one
must agree that the set of supported user interface components at the moment
is quite limited.

The Model Presentation Framework will probably need some extensions to
be more powerful in the future. It is not that easy to anticipate what layer is the
first one that needs to be enhanced. The attribute encapsulation could have
support for more attribute types and the model interface layer could support
different operations, like sorting and searching model object hierarchies.
Possibly, support for new user interface components is needed as well. These
steps take the Model Presentation Framework more towards a black-box
framework with ready-made components. Very likely ET++ and HotDraw
have taken similar step in their process of growth. Due to its restricted domain
alongside MVC++, the Model Presentation Framework will probably not ever
grow to be a very large framework. Hopefully, it will be accepted as a
complement for the current MVC++ architecture.

59

8. Conclusion
The purpose of the Model-View-Controller architecture is to divide the
application functionality into logical and manageable parts. I have presented
two weaknesses of the MVC++ architecture. Handling complicated model data,
both classes and their parameters, requires lot of effort in all layers of the
MVC++ application. Also the number of classes is fairly large in MVC++
applications, especially if the user interface consists of several windows and
dialogs. It is hard to reduce the number of classes, as it is a direct implication of
the MVC++ architecture. Therefore, I concentrated on finding an alternative
way for handling the model data in MVC++ applications.

To find a generic solution to the problem, I studied the principles of object-
oriented frameworks and their relationship to class libraries and design
patterns. I also investigated the issues of object-oriented framework design,
design tools, implementation, testing, documentation and maintenance. It
seemed that object-oriented framework could provide a solution for more
generic handling of model data in MVC++ applications.

Next, I presented the design of the Model Presentation Framework that
provides an automatic and generic presentation and modification of model
data. Although the Model Presentation Framework design was made for
MVC++ applications, it does not depend on the MVC++ and should be usable
in other application architectures as well. The framework functionality was
demonstrated with operation descriptions and the class diagram of a simple
test application.

The current state of the framework and test programs that have been built
using it, indicate that the Model Presentation Framework can partly solve the
problems of handling the data in the view layer of the MVC++ applications.
Presentation is already supported in many user interface components, and
editing the object attributes is possible in table based components. Application
using the Model Presentation Framework has total control over the model
classes, their attribute types and modifications, as long as the classes
implement an interface defined by the framework. Unfortunately, problems in
creation and deletion of model objects were not solved, and applications using
the Model Presentation Framework still have to use normal MVC++ methods
to implement these operations. In spite of that, the view and controller layers in
Model Presentation Framework based application are smaller, because most of
the object parameter handling can be performed inside the framework.

Other experiences with the Model Presentation Framework emphasise the
importance of good design and documentation. Common problems in building

60

and using frameworks were also faced in this case. Building prototypes on top
of the framework made clear that the Model Presentation Framework is very
data dependent. Even for prototypes, the structure data must be designed in
order to get the framework to display something. In application development
this can be turned into asset, but in prototyping it usually means just more
work. Comparisons to ET++ and HotDraw frameworks showed that the Model
Presentation Framework is still in quite an early phase of development and
careful research and design is needed to find out how it should be developed
in the future.

It has been shown that the handling of model data and parameters in
MVC++ applications can be partly automated with a framework that extends
the MVC++ architecture. At the moment it is difficult to say whether the
community of developers will accept such a solution and what form it will
eventually take.

61

References
[Bonnet, 1999] Stéphane Bonnet, Java MVC++ Framework for NMS GUI

Applications, Master of science thesis, Tampere University of Technology,
Dept. of Information Technology, 1999.

[Brugali et al., 1997] Davide Brugali, Giuseppe Menga, Amund Aarsten, The
Framework Life Span, Communications of the ACM, Vol. 40, No 10, October
1997.

[Fayad and Schmidt, 1997] Mohamed E. Fayad, Douglas C. Schmidt, Object-
Oriented Application Frameworks, Communications of the ACM, Vol. 40,
No 10, October 1997.

[Gamma et al., 1995] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, Design Patterns, Elements of Reusable Object-Oriented Software,
Addison-Wesley Publishing Company, 1995.

[Hakala et al., 1999] Markku Hakala, Juha Hautamäki, Jyrki Tuomi, Antti
Viljamaa, Jukka Viljamaa, Kai Koskimies, Juha Paakki, Managing Object-
Oriented Frameworks with Specialization Templates. April, 1999.
Available at http://www.cs.helsinki.fi/group/fred/reports/ecoop99.doc, Last
checked: December 21st, 1999.

[Holub, 1999a] Allen Holub, Building user interfaces for object-oriented systems,
Part 1, JavaWorld, July 1999. Available at http://www.javaworld.com/jw-07-
1999/jw-07-toolbox.html, Last checked: December 29th, 1999.

[Holub, 1999b] Allen Holub, Building user interfaces for object-oriented systems,
Part 2: The visual-proxy architecture, JavaWorld, September 1999. Available
at http://www.javaworld.com/javaworld/jw-09-1999/jw-09-toolbox.html, Last
checked: December 29th, 1999.

[HotDraw] HotDraw Home Page Available at
http://st-www.cs.uiuc.edu/users/brant/HotDraw/HotDraw.html, Last checked:
22.1.2000.

[Jaaksi, 1994] Ari Jaaksi, Implementing MVC Applications in NTC NMS, 1994.
[Jaaksi, 1995] Ari Jaaksi, Implementing Interactive Applications in C++,

Software Practice & Experience, March 1995.
[Jaaksi et al., 1999] Ari Jaaksi, Juha-Markus Aalto, Ari Aalto, and Kimmo

Vättö, Tried and True Object Development, Industry Proven Approaches with
UML, Cambridge University Press, 1999.

[Jacobson et al., 1997] Ivar Jacobson, Martin Griss, Patrik Jonsson, Software
Reuse, ACM Press, 1997.

62

[Java2] Java 2 SDK documentation. Available at
http://www.javasoft.com/products/jdk/1.2/docs/index.html. Last checked:
October 25th, 1999.

[JavaTutorial] The Java Tutorial, Available at
http://java.sun.com/docs/books/tutorial. Last checked: November 3rd, 1999.

[Johnson and Foote, 1988] Ralph E. Johnson, Brian Foote, Designing Reusable
Classes, Journal of Object-Oriented Programming (JOOP), June/July, 1988.
Available at ftp://st.cs.uiuc.edu/pub/papers/frameworks/designing-reusable-
classes.ps.

[Johnson and Russo, 1991] Ralph E. Johnson, Vincent F. Russo, Reusing
Object-Oriented Design. Technical Report UIUCDCS 91-1696, University of
Illinois, 1991. Available at
ftp://st.cs.uiuc.edu/pub/papers/frameworks/reusable-oo-design.ps.

[Johnson 1992] Ralph E. Johnson, Documenting Frameworks Using Patterns,
Proceedings of OOPSLA ’92, Available at
ftp://st.cs.uiuc.edu/pub/patterns/papers/documenting-frameworks.ps, Last
checked January 30th, 2000.

[Johnson, 1997] Ralph E. Johnson, Frameworks = Components + Patterns,
Communications of the ACM, Vol. 40, No 10, October 1997.

[Koskimies, 1997] Kai Koskimies, Pieni oliokirja, Suomen Atk-kustannus 1997.
[Koskimies and Mössenböck, 1995] Kai Koskimies, Hanspeter Mössenböck,

Designing a Framework by Stepwise Generalization, Proceedings of 5th
European Software Engineering Conference, Springer-Verlag, 1995. Available
at
http://www.ssw.uni-linz.ac.at/Research/Papers/Moe95.html. Last checked:
January 18th, 2000.

[Krasner and Pope, 1988] Glenn E. Krasner, Stephen E. Pope, A Cookbook for
Using the Model-View-Controller User Interface Paradigm in Smalltalk-
80, Journal of Object-Oriented Programming (JOOP), 1, 3, 1988.

[Lewis et al., 1995] Ted Lewis, Glenn Andert, Paul Calder, Erich Gamma,
Wolfgang Pree, Larry Rosenstein, Kurt Schmucker, André Weigand, John
Vlissides, Object Oriented Application Frameworks, Manning Publications
Co., 1995.

[Platypus, 1999] Platypus – Java GUI Platform, Designer's Guide. Nokia
Internal Document.

[Pree, 1995] Wolfgang Pree, Design Patterns for Object-Oriented Software
Development, Addison-Wesley Publishing Co., 1995.

63

[Taligent, 1993] Leveraging Object-Oriented Frameworks. A Taligent White
Paper, 1993. Available at
http://www.ibm.com/Java/education/ooleveraging/index.html.

[Taligent, 1994] Building Object-Oriented Frameworks. A Taligent White
Paper, 1994. Available at
http://www.ibm.com/Java/education/oobuilding/index.html.

[TFM, 1999] Traffic Flow Management, User's Guide, Nokia Internal
Document.

[Viitanen, 1999] Discussions with Heli Viitanen, December 1999.
[Virtanen, 1999] Discussions with Jussi Virtanen, December 1999.
[Vuorenmaa, 1999] Markku Vuorenmaa, Model Presentation Framework –

Feasibility Study, version 1.0, September 1999, Nokia Internal Document.
[Weinand and Gamma, 1994] Andre Weinand, Erich Gamma, ET++ - a

Portable, Homogenous Class Library and Application Framework,
Proceedings of the UBILAB '94 Conference, Zurich, 1994. Available at
http://www.ipd.hk-r.se/michaelm/fwpages/files/Wei94.ps.

