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Abstract

This thesis introduces a recently developed method, two-level structural equa-
tion modeling with non-normal observed variables. The method is applied to
household poverty assessment with a survey (n=1564) collected in Lao People’s
Democratic Republic in 2011. Due to multi-stage clustering in the sampling de-
sign, the assumption of the observations’ independence is violated. Multilevel
modeling ensures this design effect is not ignored.

Structural equation modeling is a flexible method combining confirmatory
factor analysis and path analysis, with the ability to model complex causal
relations. If the model parameters are estimated with weighted least squares,
one is able to model ordinal observed variables often found in survey data.
Multilevel methods are currently developed for two-level modeling. They allow
examining variation in a data on two levels simultaneously. Multilevel models
divide observed variables into two components. Cluster means are modeled on
the between level and individual effects, that is, the deviations from the cluster
means, are modeled on the within level.

Poverty can be defined in a number of ways. This thesis examines the re-
lation between two poverty indicators, monetary expenditure and the multi-
dimensional poverty index. The latter is modeled by a latent factor structure
with three parceled indicators: health, education and living conditions. On the
household level, the effect of household size on poverty indicators is considered.
On the village level, the number of services and infrastructure are assumed to
influence the poverty measures. The final obtained model is valid in terms of
the fit indices designed for model assessment. The results show that expendi-
ture and multidimensional poverty are significantly related on household and
village levels but the dependencies and relations are stronger on the village
level. Infrastructure has a significant impact on the level of poverty in a vil-
lage. Conclusively, the study suggests that poverty can be decreased effectively
by improving communal services.

Keywords covariance structure models, latent variable modeling, multilevel
modeling, confirmatory factor analysis, multivariate analysis, socio-economic
indicators
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1 Introduction

Poverty is a complex phenomenon which can be defined in multiple ways, each
capturing a different dimension of the subject. This thesis proposes a new ap-
proach for assessing poverty. The relationship between two poverty definitions
is examined by a recently developed method, two-level structural equation mod-
eling with non-normal observed variables, by Asparouhov & Muthén (2007).
The method is a combination of multilevel modeling and structural equation
modeling, traditionally applied in the fields of psychology and education. This
thesis demonstrates how the method is also applicable in social sciences.

Many quantitative studies on poverty have focused on defining relevant
livelihood factors (for example, Mtapuri 2011) or exploring two-way relations
between these factors, as in the study by Dasgupta, Deichmann, Meisner &
Wheeler (2005). Considering the holistic nature of the topic, a method that
takes into account several livelihood-related issues at once is preferable in order
to receive a better understanding of the nature of poverty.

Rarely used in development studies, structural equation modeling (SEM)
is a method that allows complex cause and effect relations in a single model.
It is an umbrella term for models that can be constructed as combinations of
observed variables, latent factor models and path analysis with varying causal
relations. While flexible in theory, the construction of this type of model is
often time-consuming, as will be discussed in the following chapters.

Village type determines the availability and importance of certain key as-
pects related to livelihoods, such as energy and services. Therefore, for reasons
out of the villagers’ power of decision, some services are unavailable by default.
Hence, in this study, the results are examined at both household and village lev-
els simultaneously by incorporating multilevel modeling into traditional SEM.
The aim is to explore the relations of the chosen variables, and estimate the
proportions of the relations that are explained by the village, and those that
are explained by the households themselves.

The data was collected by an extensive nationwide survey in one of the
poorest countries in the world, Lao People’s Democratic Republic (PDR), in
2011. Households and village heads were interviewed on topics related to liveli-
hoods, energy use and environmental changes. Similar, recent household data
from Laos is not currently available from any other source, and the main find-
ings of the survey are yet to be published. Consequently, this thesis provides
novel results of poverty in Laos, not only because of the new method but also
the newly collected data. With 69 % of the households residing in rural ar-
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eas, often with scarce infrastructure, and 44 % of the population considered
income poor, Lao PDR is an ideal location for examining the nature of poverty
(Government of Laos 2009; Alkire & Santos 2010b).

This thesis begins with an introduction to the statistical background of the
applied method. The traditional single-level SEM is presented first in chapter
2. After briefly describing the approach, the chapter’s main focus is on the
issues that are common with conducting multilevel SEM. Treatment of observed
items, whether it be factor analysis, parceling or transforming ordinal variables
into their underlying continuous equivalents, is discussed. Model estimation by
weighted least squares is also explained.

An overview of multilevel modeling is given in chapter 3, with issues to
consider when analyzing clustered data addressed. MSEM estimation procedure
for non-normal observed variables is shown in detail at the end of this chapter.
The method involves specifying the theoretical model, calculating the sample
estimates, and, finally, estimating the structural model parameters. None of
the stages are simple or straightforward.

In chapter 4, themes related to model building are discussed. Results are
not interpretable if the model is not statistically identified, or the fit of the
model is inappropriate. The chapter introduces tools for assuring the content
validity of a model.

The concept of poverty is discussed in chapter 5. Model building follows the
principles of the multidimensional poverty index (MPI), launched by United
Nations Development Programme (UNDP) in 2010. Similarities and differences
of the poverty indicators in the MPI, and the data in this thesis are evaluated.
The structural model to be tested is proposed at the end.

Chapter 6 exhibits the results. The model specification process is explained
in detail. The fit and the parameter estimates of the final model are critically
evaluated and interpreted, and the results and their relevance are discussed at
the end. Finally, chapter 7 concludes the thesis with summarising the main
findings and suggestions.
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2 Structural Equation Modeling

The fundamental idea behind structural equation modeling (SEM) is to analyse
the covariance structure of the selected observed and latent variables, rather
than values of individual cases. In an ideal model, the difference between sample
covariance and the hypothetical covariance predicted by the model is minimal.
The covariance matrix is assumed to consist of functions of a set of parameters.
In its simplest form, the hypothesis to be tested is

(2.1) Σ = Σ(θ)

where Σ is the population covariance matrix of the observed variables, θ is the
vector of the model parameters and Σ(θ) is the covariance matrix, written as
a function of θ. (Bollen 1989). In practice, the population covariance matrix is
unknown and the hypothesis testing is based on the sample covariances S and
the estimated covariance structure Σ(θ̂).

As indicated by its name, a structural equation model consists of a set
of equations, which contain structural parameters and random variables. The
structural parameters in the population are estimated based on the known
properties, variances and covariances, of the observed variables. Not all param-
eters are necessarily estimated, for the researcher can choose to add constraints
on them.

In regular linear models, the variables are generally regarded as indepen-
dent, often denoted by x, and dependent, denoted by y, according to the causal
relationships modeled. In structural equation models one variable can repre-
sent both cause and effect of others, and the variables in SEM are perceived as
exogenous and endogenous. The distinction between these has been considered
fundamentally important, yet debatable (Pearl 2010). Simplifying the issue,
exogenous variables are causally independent from the other variables in a par-
ticular model, whereas endogenous variables are, either completely or partially,
affected by at least one of the other variables in that model.

In this chapter, the general form of a structural equation model is presented
first. It is followed by an introduction to different ways of forming the latent
constructs. Finally, I present an estimation method for datasets containing
ordinal observed variables, a situation encountered often when analysing survey
data.
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2.1 Model Specification

A structural equation model consists of two parts. The latent structure model
defines the relationships between the latent constructs in the model. The indi-
cators of the latent structures are expressed in the measurement model.

The main interest of a researcher is fairly often in the latent structure model.
It represents the relations between the theoretical concepts whose intensities
are tested. In this section, the general forms of both latent structure and mea-
surement models are presented. In the latter, there are further underlying issues
which are discussed in the next section. The contents of this section derive from
Bollen’s comprehensive manual published in 1989.

The latent model can be written as

(2.2) η = Bη + Γξ + ζ

where η is a vector of endogenous and ξ a vector of exogenous latent random
variables, whose coefficient matrices areB and Γ, respectively. That is,B and Γ
contain the effects their multiplicands have to the latent endogenous variables.
For example, the coefficient βij is the direct impact that ηj has on ηi, given a
one unit change in the previous, and everything else held constant. Similarly,
γji is the effect that ξi has on ηj. The main diagonal of B is always zero, by
reason of the idea that a concept cannot influence itself immediately without
other interventions occurring first. This leads to the assumption that (I-B) is
a non-singular matrix whose inverse exists.

Other assumptions in 2.2 presume that the expected values of η, ξ and ζ,
the disturbance vector, are 0, and that ζ is not correlated with the exogenous
variables in ξ. In the following chapters, the covariance matrices of ξ and ζ are
denoted by Φ and Ψ, respectively.

The measurement model connects the latent random variables to their ob-
served indicator variables. The general construct is expressed as

x = Λxξ + δ(2.3)
y = Λyη + ε(2.4)

where x and y contain the indicator variables of the latent variable vectors
ξ and η, and δ and ε are their measurement errors. Both Λ matrices denote
the coefficients that relate the observed variables to the latent vectors. Thus,
they represent the expected change in an observed variable after a one unit
change in the corresponding latent variable, given that everything else remains
constant.

Assumptions in the measurement model are similar to those in the latent
model. Expected values of η, ξ and the disturbances δ and ε are 0. The dis-
turbance vectors are not allowed to correlate with the latent variables or each
other. Covariance matrices of δ and ε are, respectively, denoted with Θε and
Θδ.
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Solving η from 2.2, one obtains the equation η = (I − B)−1(Γξ + ζ). For
convenience, A is an abbreviation of (I − B)−1. Using these formulae, the
covariance matrix can be decomposed into the following four elements:

Σ(θ) =
[
Σyy(θ) Σyx(θ)
Σxy(θ) Σxx(θ)

]

=
[
E(yy′) E(yx′)
E(xy′) E(xx′)

]

=
E [(Λyη + ε)(η′Λ′y + ε′)

]
E [(Λyη + ε)(ξ′Λ′x + δ′)]

E
[
(Λxξ + δ)(η′Λ′y + ε′)

]
E [(Λxξ + δ)(ξ′Λ′x + δ′)]


=
[
ΛyA [ΓE(ξξ′)Γ′ + E(ζζ ′)]A′Λ′y + E(εε′) ΛyE [(AΓξ)ξ′] Λ′x

ΛxE [ξ(ξ′Γ′A′)] Λ′y ΛxE(ξξ′)Λ′x + E(δδ′)

]

=
[
ΛyA(ΓΦΓ′ + Ψ)A′Λ′y + Θε ΛyAΓΦΛ′x

ΛxΦΓ′A′Λ′y ΛxΦΛ′x + Θδ

]
.

2.2 On Measurement Models

Structural equation models cover a variety of model specifications. While the
latent model should be the foundation of the research, the underlying measure-
ment model may include various types of observed constructs. In this section,
I introduce three types of measurement models. First is the most traditional,
and least controversial, confirmatory factor analysis (CFA). It is followed by
single-indicator latent factors. Third, I discuss the issue of using parceled items,
either as single factors or as part of a factor construct.

Factor Constructs Often in structural equation models, each latent variable
is assigned multiple indicators. The procedure is better known as confirmatory
factor analysis. In CFA, the researcher determines beforehand the indicator
variables of the latent construct. Each observed item has its unique loading
factor and a residual parameter. Therefore, when modeling latent relations, it
is possible to detect errors that occur in the measurement of the constructs,
rather than in the model itself.

Confirmatory factor analysis also allows flexibility on the specification of
the model. For example, imposing constrains such as correlating errors of mea-
surement are possible with CFA. A common restriction is to force one of the
loadings of a latent construct to equal to 1. This type of constraint may not only
help to identify the model but it also ensures that all indicators are measured
on the same scale. (Bollen 1989).

Single-Indicators A latent construct may also be indicated by a single indi-
cator. What is problematic in this approach is that the observed values are now
perceived as exact measures of the latent concept. No error on the indicator
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level is modeled, even though most measurable concepts are, in reality, imper-
fectly measured and recorded. If the reliability of a construct is known from
previous research or if it can be estimated, the uncertainty related to the use
of a single indicator can be taken into account. Unfortunately, the reliability or
the means to estimate the reliability of a measure are rarely available. (Bollen
1989).

Possible reasons for a researcher to proceed the model building with single
indicators relate to practical issues such as data availability (Bollen 1989). If
the reliability remains unknown, it makes no difference to the model estimation
whether a single-indicator latent variable or an observed manifest variable is
included. For identification purposes, the latent factor loading and the error of
the latent variable need constraining nevertheless, and the number of estimated
parameters remains the same. (Little, Cunningham, Shahar & Widaman 2002).

Parceling Parceled item is defined as an aggregated indicator that comprises
of the sum or average of more than one observed items. It is a technique com-
monly used, but less often critically viewed in the applied literature. A pub-
lication by Little et al. (2002) discusses the advantages and risks of modeling
with parceled constructs.

When modeling with parcels rather than individual variables, many in-
dices of model fit are expected to become more acceptable. Little et al. (2002)
have summarized three reasons why this happens. Firstly, the models using
parceled variables have fewer estimated parameters. They are more parsimo-
nious, whereas many indices add penalty for additional parameters. Secondly,
the chances of encountering dual loadings (that is, an observed variable load-
ing on two or more latents) or correlation of the residuals are fewer. Finally,
parceling reduces the sources of sampling error. What is more, parcels can be
used to obtain a just-identified, thus, undisputedly unique, solutions instead of
an over-identified factor that may have many alternative solutions.

Parcels can be constructed from uni- or multi-dimensional observed items.
Of the two, the parcels that define a multidimensional construct have been
found more dubious and defining such should be conducted with caution. As an
indicator of a multidimensional construct, the parcel itself is likely to be a sum
of more than one substantive constructs. Thus, it may provide biased loading
estimates. The latent construct might also have fewer specified dimensions than,
in reality, underlie it.

In essence, whether a parcel construct is appropriate depends on the ap-
proach to the latent variable modeling. If the main focus is on the relations
among the items, parceling is not recommended. Ignoring correlated residuals
or dual loadings, the patterns of the observed data cannot be fully understood.
Instead, if the interest is mainly in the relations between the latent constructs,
parceling is more willingly warranted. From this viewpoint, observed variables
are but tools that enable constructing a measurement model for the desired la-
tent structure. Each construct is content-specific and the chosen measurement,
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in each construct, should be justified separately.
Parceling may relate to multiple and single-indicator factor modeling in

various ways. It serves as an alternative to confirmatory factor analysis if the
factor indicators are aggregated into one parceled variable, which can be used as
either a single-indicator latent or a manifest variable. Parcels may complement
and reduce the complexity of CFA by reducing the number of indicators (Yang,
Nay & Hoyle 2010). Parceling may also prevent having to construct a higher
order factor model. If the highest order latent factor is multidimensional and
each dimension is a latent construct itself, the model might remain easier to
interpret and converge if the lower level factors are parceled items, instead of
latent factors. Yang et al. (2010) found that parceling is most effective when
the indicators consist of five response categories and the parcels are used as
indicators of latent constructs.

2.3 Ordinal Observed Variables

The assumption of multivariate normality of the observed variables is not al-
ways met in reality. Even though the distributions in theory would be normal,
there might be errors in the measurement or the sampling that disturb the
observed distribution. If the level of measurement is dichotomous or ordinal,
the assumption of normality does not hold by default. In such case, the param-
eters in the model cannot be estimated until the observed variables have been
adjusted.

In a method designed to manage non-continuous observed variables, the
observed items are regarded as indicators of their underlying continuous la-
tent variables, denoted by ’*’ (e.g. x∗). The equation Σ = Σ(θ) cannot hold
anymore, instead, the main hypothesis needs to be expressed as

Σ∗ = Σ(θ)

where Σ* is the population covariance structure of the continuous latent vari-
ables. (Bollen 1989).

When modeling dichotomous or ordinal observed variables, the formulae
expressing the measurement model, 2.3 and 2.4, do not necessarily hold. The
distribution of an ordinal xq or yp might differ substantially from the distri-
bution of the underlying, continuous x∗q or y∗j . (Bollen 1989). For example,
categories in ordinal variables might not be of equal length which leads to a
violation of the original assumption. If the underlying continuous variables are
assumed multinormal, replacing x with x∗ in 2.3 and y with y∗ in 2.4 corrects
the equations (Bollen 1989).

Consequently, ordinal observed variables cannot be in linear relations with
their underlying latent continuous variables. A nonlinear function needs to be
fitted to delineate the relationship (Bollen 1989). As a result, the variances
and covariances of the observed and latent variables are not in a linear relation
either, and the evaluation of their true scales becomes complex. The general
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way to solve this problem is to standardise the latent, continuous variables to
the mean of 0 and variance of 1. Consequently, the covariance estimates and
the correlations become equal.

If two variables are both ordinal by origin, the correlation of their continuous
equivalents is called polychoric correlation. A special case of this correlation is
tetrachoric correlation, referring to two dichotomous variables. If one observed
variable is ordinal and the other continuous, correlation of their latent contin-
uous variables is called polyserial correlation. (Bollen 1989).

All of these can be estimated with one- or two-stage procedures, the lat-
ter being more computationally efficient, and, hence, often the only estimation
method offered by SEM softwares. The estimates from the two methods tend to
be very close, although, statistically, the estimates from the two-stage method
are not asymptotically efficient. Nevertheless, they are consistent and asymp-
totically normal. (Maydeu-Olivares, García-Forero, Gallardo-Pujol & Renom
2009).

Two-Stage Estimation Method The two-stage method was first presented
by Olsson (1979), and it includes assigning a monotonic function to estimate
the values of the underlying continuous variables, based on the correspond-
ing ordinal discrete variables. At the beginning, thresholds are estimated for
each marginal distribution of standardised x∗q and y∗p (q = 1, 2, . . . ,Q and
p=1, 2, . . . ,P , where Q and P are the numbers of exogenous and endogenous
observed, non-continuous variables in x and y). For the model to apply, one
needs to define such thresholds ak for each p variables for which the following
formula holds:

(2.5) ypi = k ⇔ apk−1 < y∗pi < apk.

In 2.5, i is a subscript of the individuals, k=1, 2, . . . , c, and c is the number of
categories in yp. Similarly, the number of categories in xq is d. For simplicity, in
the rest of this chapter, apk is abbreviated to ak. The lowermost and uppermost
thresholds are a0=−∞ and ac = ∞, and the remaining c− 1 thresholds are
estimated by the following formula

(2.6) ak = Φ−1
(

k∑
i=1

Ni

N

)

where Φ is the standardized normal distribution function and Ni the number of
cases in the ith category. (Bollen 1989; Asparouhov & Muthén 2007). Simply
put, the thresholds are equivalent to the values of standard normal distribution
at the cumulative percentage points of the observed variables.

Jöreskog (1990) states that the aim of the second phase is to estimate the
polychoric correlation with maximum likelihood estimation, given the thresh-
olds defined in 2.6. Let πkl denote the probability that an observation falls into
cell (k, l), which, in the case of bivariate standard normal distribution with
correlation coefficient ρ, is defined as
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πkl = Pr[x∗q = k, y∗p = l] =
ak∫

ak−1

bl∫
bl−1

φ2(u, v)dvdu

= Φ2 (ak, bl)− Φ2 (ak−1, bl)− Φ2 (ak, bl−1) + Φ2 (ak−1, bl−1)

where φ2 is the bivariate normal probability function and Φ2 the corresponding
distribution function, and ak and bl denote the thresholds for the variables x∗q
and y∗p. From here, the likelihood function to be maximised is in the form of

L = C
d∏
k

c∏
l

πNkl
kl

where C, in this case, is an irrelevant constant and can be dropped from the
formula at this point, and Nkl represents the number of cases in the cell (k, l).
Taking logarithms on both sides, one obtains the more easily solvable

lnL =
d∑
k

c∑
k

Nklln(πkl)

for which the maximum can be found, as a common procedure, by taking deriva-
tives in terms of the unknown parameter ρ and solving the zero point. (Olsson
1979). Finally, the estimation becomes a question of solving the equation

∂l

∂ρ
=

d∑
k=1

c∑
l=1

Nkl

πkl

(
∂πkl
∂ρ

)

=
d∑

k=1

c∑
l=1

Nkl

πkl
[φ2 (ak, bl)− φ2 (ak−1, bl)− φ2 (ak, bl−1) + φ2 (ak−1, bl−1)] = 0.

Olsson (1979) concluded that the absolute differences between the true cor-
relations and the estimated ones were low in practice. In fact, theoretically,
the polychoric correlation matrix is a consistent estimator of Σ*. This enables
testing the hypothesis Σ* = Σ(θ) with the method described in this section
(Bollen 1989.)

2.4 Weighted Least Square Estimator

In practice, the researcher does not know the parameters in the model, nor the
population covariances or variances. The assumed population values are derived
from the sample covariance (or correlation) matrix S = Σ̂. The unknown struc-
tural parameters in θ are estimated by minimising the differences between the
structural covariance matrix Σ(θ) and S with an appropriate fitting function
F . (Bollen 1989).

There are many available estimation functions F (S, Σ(θ)). Maximum like-
lihood (ML) is recommended if the observed variables are normally distributed.

15



Generalized least squares (GLS) and unweighted least squares (ULS) are also
suitable alternatives which require less information but whose properties are yet
known. If the observed variables in the model are not continuous and normally
distributed, the recommended fit function is weighted least squares (WLS). Lei
(2009) found WLS to result in relatively small bias unless the sample size is
less than 100. If the sample correlation matrix is used in the estimation, WLS
and the varieties derived from WLS are the only viable options (Olsson 1979;
Bollen 1989; Yu 2002; Hox, Maas &Brinkhuis 2010; Boulton 2011).

For the WLS fitting function, ρ̂ is defined as a vector which contains all
non-duplicated elements of the sample covariance or correlation matrix. The
vector σ(θ) contains the non-duplicated elements of Σ(θ). Now, the WLS
fitting fuction is

(2.7) FWLS = [ρ̂− σ (θ)]′W [ρ̂− σ (θ)] .

Values of θ are chosen in a way that minimises the weighted sum of the devia-
tions between ρ̂ and σ(θ). This leads to θ̂ becoming a consistent estimator of
θ, given that the original assumption Σ = Σ(θ) is true.

In order to determine the weight matrix W, it is necessary to introduce
a matrix G which is the asymptotic covariance (or correlation) matrix of ρ̂,
or its consistent estimator. It has been proven that if W=G−1, then θ̂ ob-
tained by FWLS is asymptotically efficient in the class of functions presented
in 2.7. (Bollen 1989). If identity matrix is chosen instead (W=I), one receives
the ULS estimator. If only the diagonal elements of G−1 are chosen and the
off-diagonal elements of the weight matrix are 0 (W=G−1

0 ), the estimator is
diagonal weighted least squares (DWLS). (Asparouhov & Muthén 2007.)

While computationally more efficient than WLS, the asymptotic properties
of FDWLS differ from the properties of FWLS. Consequently, the same assump-
tions behind the model fit assessment that apply to FWLS do not hold with
FDWLS. Different adjustment methods to correct the bias have been suggested.
(Asparouhov & Muthén 2007). The topic will be discussed more in the following
two chapters.

The WLS weight matrix G−1 needs to be positive-definite. Its calculation
can become complicated, especially if the number of variables is large. It also
requires a rather large N to be consistent. (Jöreskog 1990). The formulation
of G involves several stages and it has been defined by Olsson (1979), after
which the estimated matrix was proven to be applicable for the case of poly-
choric correlation by Muthén (1984). WLS and polychoric correlations have
been found to provide a better fit in the presence of non-normality, for exam-
ple when analysing ordinal data (Ory & Mokhtarian 2010; Şimşek & Noyan
2012). With a complicated model, computing G might prove impossible due to
the limitations mentioned above. In such a case, DWLS estimation with G−1

0
is a feasible alternative.
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3 Multilevel Structural Equation
Modeling

In social sciences, datasets are often structured hierarchically. One can examine
individuals nested within different groups and societies they belong to. Even
though the main interest of a study is focused on the individual, survey samples
are often clustered for time- and cost-effective reasons. This may lead to a
violation of the observations’ independence of each other, which should not
be neglected. One way to avoid this violation is to conduct the analysis on
several levels. Multilevel modeling takes into account the hierarchical structure
of a given dataset, and its applications cover a number of statistical methods.
The two main branches are regression and covariance structure models (Hox
2002). In this chapter, I concentrate on the latter, more precisely, the multilevel
structural equation model (MSEM) approach.

There is no single established name for multilevel models. Depending on
the field of science, they can be referred to as hierarchical models, multilevel
linear models, mixed- or random effects models, random coefficient models or
covariance components models. What is common to all of them is that each
level forms its own submodel. The submodels express how the variables are con-
nected within the level and across the other levels. Most methods are currently
developed for two levels only. (Raudenbush & Bryk 2002.) Originally, multi-
level modeling was restricted to the assumptions of linearity and normality.
Recent developments, such as the computationally efficient model presented in
this chapter, are less restrictive in their assumptions.

Following the guide to multilevel modeling by Hox (2002), a multilevel co-
variation structure is expressed, in its simplest form, as follows. The data to
be structured is denoted by a p-variate matrix yij, where i and j, respectively,
indicate individuals and clusters. The observed values, total score (t), of yij are
assumed to consist of two parts:

yt = yw + yb(3.1)
= Λwηwij + εwij + Λbηbj + εbj

where yb is the between groups component, defined as yj, and yw is the within
group component, yij−yj. A further decomposition is provided at section 3.2.

There is one major difference in the denotations of an MSEM model com-
pared to the SEM model described in the previous chapter. In a general SEM,
the latent variables are divided into endogenous, indicated by the observed

17



variables y, and exogenous, indicated by the observed variables x. In MSEM,
the main division is if the observed variables exist in one level only (denoted
by x) or if they are featured on different levels (y).

The expressions ’random effects model’ and ’random coefficient model’ give
some insight into these multilevel properties of y. The division of a variable yp
into a cluster level (ybp) and an individual (ywp) effect creates two new indepen-
dent latent variables. The between group component, that is, the cluster effect,
is a disaggregated variable which contains the cluster averages of each group.
These cluster averages are regarded as random samples from a population of
group intercepts. On the within level, they are specified as random intercepts
whereas on the between level, they are random variables modeled separately on
that level. This multilevel approach enables examining two types of dependen-
cies simultaneously: relations between different group characteristics and the
relations between the individuals, given the cluster effect.

Proceeding from 3.1, the population covariance matrix in the multilevel case
also consists of two separate parts:

(3.2) Σt = Σw + Σb.

In 3.2, Σb is the population covariance matrix of the group means in yb, and Σw

is the covariance matrix of the individual deviations from the group means, yw.
(Hox 2002). The approach is also known as disaggregated modeling. Ignoring
the multilevel structure of the data, one examines solely Σt by a conventional
SEM or aggregated modeling. (Muthén 1997.)

The estimates of the disaggregated population covariances Σw and Σb can-
not be obtained by directly calculating the sample covariances, Sb and Sw,
especially in the case of non-normal observed variables. (Hox 2002). The pro-
cedure for estimating Σb and Σw is provided later in this chapter. Before a
more detailed description of the MSEM procedure, I present some common
issues that require attention when dealing with clustered data.

3.1 Multilevel Samples

Whether a multilevel analysis is reasonable or not, depends mainly on the sam-
ple design and the properties of the observed variables. In this section, I present
three measures which help to evaluate whether a multilevel model is appropri-
ate. Intra-class correlation (ICC) is a measure related to the observed variables,
design effect concerns the accuracy of the model estimates and effective sample
size estimates if the design effect is adequately taken into account.

Intra-class correlation describes the share of the variation explained by the
covariance between the clusters, compared to the total variance. Thus, the ICC
of yp, denoted by ρp, is defined as

ρp =
σ2
bp

σ2
bp + σ2

wp

.
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If the ICC of a variable is low, specifying the model on more than one lev-
els might be unnecessary. Some studies have suggested 0.05 as the minimum
acceptable ICC in this regard. (Hox 2002).

In multilevel sampling designs, the effect of cluster sampling on the variances
of the estimates is called design effect. Snijders & Bosker (1999) define design
effect as the factor by which the total sample size n needs to be increased in
order to achieve the same estimation variance as an equal-sized simple random
sample would have. A large design effect implies a relatively large variance for
the estimates and is, thus, undesirable. In a two-level design, the formula is

(3.3) design effect = 1 + (nclus − 1)ρ.

In 3.3, the cluster size nclus is assumed to be constant across groups, although,
the formula provides decent approximations even if the cluster sizes are variable
but not too widely different (Snijders 2005).

Following from 3.3, the sample can become less attractive for two reasons.
First, if the ICC increases, that is, the clusters become more homogenous.
Second, the average cluster size nclus increases. (Snijders & Bosker 1999.) If the
design effect is considerable but ignored in the analysis, the standard errors of
the model estimates are too small, which may lead to false significant results.

Effective sample size is a measure which estimates whether the design effect
has been taken into account sufficiently in the sampling. It is an estimate of
the minimum sample size needed to obtain correct significant results. Efficient
sample size (neff ) depends on the population’s intra-class correlation ρ, total
sample size n and the average cluster size nclus, as follows:

neff = n

1 + (nclus − 1)ρ .

If neff is greater than or equal to the total sample size n, the design effect has
been considered in the sampling sufficiently. (Hox 2002).

Finally, Snijders (2005) and Maas & Hox (2005) argue that the sample size
at the higher level is the main limiting characteristic of the design. The argu-
ment of the latter is based on a simulation study on the effective sample sizes of
multilevel designs. The samples were simulated with varying ns and ICCs, with
each design involving a considerable design effect and ICC. The results showed
that if the higher level sample size is more than 50, the estimated coefficients,
variance components and standard errors were accurate and unbiased.

3.2 Robust Weighted Least Squares Estimation

As argued in 2.4, the weighted least squares estimator is the most appropriate
in the case of non-normal data. Its use has been acknowledged and supported by
traditional SEM users and software. As for multilevel methods, on the contrary,
a WLS estimation technique is fairly recently developed. It is currently only
available in the software package Mplus. In this section, I present the theory
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and the procedure of this new robust limited-information method. The main
findings are based on the work of Asparouhov & Muthén (2007).

The estimation is principally conducted in the same stages as the tra-
ditional SEM models. It begins with specifying the structural model to be
tested. Second, the sample estimates of the data are calculated. In the case
of non-normal, hierarchically structured observed variables, the calculation in-
volves several procedures, including maximum likelihood methods along with
the expectation-maximisation (EM) algorithm and numerical integration. The
univariate parameters are estimated first, after which bivariate methods are
applied. Third, the parameters of the structural model are estimated via min-
imising the WLS fit function. This final estimation is preceded by expressing
the structural model as nested within the model in the second stage.

The procedure is based on the method by Muthén (1984), which has been
extended to the two-level case recently. One of its main characteristics is that
it splits the estimated model into multiple simple models, where no higher
than one- and two-dimensional integration is needed. This way the estimates
are obtained computationally efficiently, without compromising on precision,
as was concluded by Asparouhov & Muthén (2007). A further advantage of the
method is that there are no restrictions on the measurement of the observed
variables. Any combination of binary, censored, ordered polytomous and con-
tinuous observed variables can be included in the model to indicate the latent
structures.

3.2.1 Model Specification

In this section, I define the decomposition of the structural model. It begins
with specifying the underlying latent variables y∗. If the observed yp is normally
distributed, yp = y∗p holds. The theoretical thresholds are formulated on the
same grounds as described in 2.3:

(3.4) ypij = k ⇔ τpk−1 < y∗pij < τpk.

The underlying normally distributed latent y∗p is itself a combination of two
normally distributed independent latent constructs:

(3.5) y∗pij = ywpij + ybpj

where j = 1, . . . , C represent the clusters, i = 1, . . . , Nj the individuals in
each cluster and p = 1, . . . , P the observed variables that exist on both levels.
The individual effect is denoted by ywpij and the cluster effect by ybpj, both
independent and normally distributed latent variables.

For the structural model, one defines the latent normally distributed vector
variables ηwij = (ηw1ij, . . . , ηwM1ij) on the individual and ηbj = (ηb1j, . . . , ηbM2j)
on the cluster level, with M1 denoting the number of the within level and M2
denoting the number of the between level latent constructs. The independent
variables, Q1-variate xwij and Q2-variate xbj, are expressed as xwq1ij and xbq2j

where q1 = 1, . . . , Q1 and q2 = 1, . . . , Q2.
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Thus, the individual and the between level structural models are as follows:{
ywij = Λwηwij + εwij
ηwij = Bwηwij + Γwxwij + ξwij

(3.6)

{
ybj = νb + Λbηbj + εbj
ηbj = αb + Bbηbj + Γbxbj + ξbj

(3.7)

where the matrices Λw, Bw, Γw, νb, Λb, αb, Bb and Γb contain the parameters
to be estimated. The between level intercept vectors νb and αb are not substan-
tially interesting. The residual matrices εwij, ξwij, εbj and ξbj are independent
and normally distributed with zero mean. Their respective covariances are de-
noted by Θw, Ψw, Θb and Ψb. In order to obtain identification, the variance
of εwpij is fixed at 1 if the pth variable is categorical. Some other restrictions
may also need to be posed to ensure identifiability, depending on the model.

3.2.2 Sample Estimates

The calculation of the sample estimates is more complex when the data is
hierarchically structured and the observed variables are non-continuous. In this
section, I present the formation of the data and a summary of the computational
methods required for the calculations.

The data is expressed as a saturated model. It contains no latent constructs
ηwij or ηbj, and full covariance matrices are fitted for the within and the be-
tween level variables. The topic of saturation and other reference models will
be further discussed in section 4.3.

The thresholds of the categorical variables have the same construction as
in the one-level structural equation models in formula 2.5 and the underlying
latent y∗p is defined as in the structural model specified in 3.5:

ypij = k ⇔ apk−1 < y∗pij < apk(3.8)
y∗pij = ywpij + ybpj.(3.9)

As previously described, the saturated model is in the form of

ywij = Πwxwij + εwij(3.10)
ybj = µb + Πbxbj + εbj.

The residual vectors εwij and εbj are assumed normally distributed with 0 means
and covariance matrices Σw and Σb, respectively. For identification purposes, if
the p-th variable is categorical, the variance of εwpij is fixed at 1 and the mean
parameter µpb is fixed at 0.

The parameters in 3.10 are estimated in two stages. The first stage is for the
estimation of the univariate parameters: the between means µbp, the thresholds
apk, the coefficients Πwpq and Πbpq, and the diagonal elements of the resid-
ual covariance matrix, Σwpp and Σbpp. At the second stage, the covariances of
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residuals, that is, the off-diagonal elements of Σw and Σb are estimated with
bivariate likelihood methods, given the univariate estimates.

The method for univariate and bivariate maximum likelihood estimation is
generalised from the growth mixture model procedure presented by Asparouhov
& Muthén (2008). The method is based on the EM algorithm where the la-
tent variables ywij and ybj are treated as missing data. The EM algorithm is
an iterative method for maximum likelihood estimation when the data are in-
complete or complex. Such is the case with hierarchical data. The algorithm
involves two steps - expectation and maximisation - which will be continued
until acceptable convergence has been obtained. One of the main benefits of
using the EM algorithm is that it reduces, either artificially or by forcing, the
complexity of maximum likelihood estimation. (McLachlan & Krishnan 1997.)
The principal iterative method behind the EM algorithm is shortly described
in appendices A and B.

After the two-stage iterative estimation, the univariate and bivariate es-
timates are combined in a vector s. The asymptotic covariance matrix of s,
denoted by G, is computed. The formulation of G as a consistent covariance
matrix of the estimated parameters has been found and proven by Muthén
and Satorra (1995). The covariances are based on the first derivatives of the
likelihoods in the univariate and bivariate estimation, given that the bivariate
estimates are conditional on the univariate estimates. The inverse of G will be
used as the weight matrix in the WLS estimation in the final stage.

3.2.3 Structural Model Estimation

In the third stage of the two-level WLS estimation, the structural or restricted
model parameters are estimated as in Muthén (1984), but with extending the
method into two-level-structure. Let us define the model first. The threshold
estimation and multilevel structure are expressed as the saturated model 3.8 -
3.10:

ypij = k ⇔ a∗pk−1 < y∗pij < a∗pk

ywij = Π∗wxwij + εwij(3.11)
ybj = µ∗b + Π∗bxbj + εbj.(3.12)

The structural model is nested within the saturated or unrestricted model. The
index ’*’ refers to a further decomposition which includes the parameters to
be estimated. The decomposition is presented next. The merged forms of the
theoretical structural model in 3.6 and 3.7 are

ywij = Λw(I−Bw)−1(Γwxwij + ξwij) + εwij(3.13)
ybj = νb + Λb(I−Bb)−1(αb + Γbxbj + ξbj) + εbj.(3.14)

The above formulae are useful when determining the relationship between the
saturated (3.8 - 3.10) and the structural model (3.4 - 3.7). First, the equations
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are solved in terms of the unstandardised (denoted by **) estimates, that is,
the coefficients of x on both levels, the intercepts on the between level and the
covariances of the the residual variables on both levels:

Π∗∗w = Λw(I−Bw)−1Γw(3.15)
Π∗∗b = Λb(I−Bb)−1Γb(3.16)

µ∗∗b = νb + Λb(I−Bb)−1αb(3.17)
Σ∗∗w = Cov(εw) = Cov(Λw(I−Bw)−1ξw + εw)(3.18)

= Λw(I−Bw)−1Ψw

[
(I−Bw)−1

]T
ΛT
w + Θw

Σ∗∗b = Cov(εb) = Cov(Λb(I−Bb)−1ξb + εb)(3.19)

= Λb(I−Bb)−1Ψb

[
(I−Bb)−1

]T
ΛT
b + Θb.

For the categorical variables in the unrestricted model, the between level
mean µbp was restricted to 0 and the variance of the within level residual εwpij
was restricted to 1. In order to compare the parameters of the unrestricted and
restricted models, the parameters of the restricted model 3.15 - 3.19 need to
be standardised.

For standardising the estimates, one needs to weight the entries of the pa-
rameter vectors and matrices which are based on categorical observed variables.
Let ∆w be a p-dimensional diagonal matrix, with 1/

√
Σ∗∗wpp on the diagonal if

the p-th entry is categorical, and 1 if not. Similarly, let δb be a p-dimensional
vector with µ∗∗bp as the p-th entry if the p-th variable is categorical, and 0 oth-
erwise. To obtain the standardised estimates of the thresholds as well as the
parameters in 3.15 − 3.19, the following definitions apply:

a∗k = ∆w(τk − δb)
µ∗b = ∆w(µ∗∗b − δb)

Π∗w = ∆wΠ∗∗w
Π∗b = ∆wΠ∗∗b

Σ∗w = Cov(∆wεw) = ∆wΣ∗∗w ∆w

Σ∗b = Cov(∆wεb) = ∆wΣ∗∗b ∆w.

Thus, the estimates of the categorical variables are divided by the standard
deviation of their within error, and they are centered by subtracting their group
means. Finally, the standardised estimates are united in s∗ in the same order
as the unrestricted estimates in s.

The WLS fit function is similar to the case of standard one-level structural
estimation 2.7:

(3.20) FWLS = (s− s∗)′W(s− s∗).

The final estimates are obtained by minimising 3.20 in terms of the parameters
of the structural model presented in (3.4)−(3.7).
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In practice, it is more common to use only the diagonal of the weight matrix,
G−1

0 , instead of G−1, which is less strict on the requirements of number of
clusters and sample size (Hox 2010). This method, diagonal weighted least
squares (DWLS), is found to result in relatively small bias, even if the observed
variables are continuous. Depending on the correction method of the fit statistic
FDWLS, DWLS can be referred to as WLSM and WLSMV. Both lead to same
estimates and standard errors but different goodness-of-fit values. WLSM uses
a mean correction and WLSMV a mean and a variance correction of the fit
statistic. (Hox et al. 2010.)

A multilevel simulation study by Hox et al. (2010) showed that the differ-
ences between ML and DWLS estimates are negligible. A full ML estimation
should yet be chosen unless there is a violation of its assumptions such as
non-normal data. They concluded that the two most important factors that in-
fluence the fit of a model are the number of clusters and the estimation method.
Under conditions similar to the dataset in this study (100 clusters, average size
10), WLSMV was found to have the smallest average chi-square bias and the
best estimation accuracy of the five estimation methods tested. Therefore, in
the analysis of this thesis, the estimation is conducted with WLSMV.
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4 Model Building

Constructing and testing a (multilevel) structural equation model involves sev-
eral stages. Snijders & Bosker (1999) consider model specification one of the
most difficult parts in multilevel statistical inference. A model needs to fulfill
both substantive and statistical expectations. One wants to describe the vari-
ance of the observed data adequately but without unnecessary complications to
maintain substantive interest. In this chapter, I present three important issues
related to model building.

Identification implies whether it is possible to estimate the model in a sta-
tistical sense. As for SEM, there are many identification rules whereas the
identification of multilevel models is yet an unresolved question. Nonetheless,
it is an important one. In section 4.1, I present the existing tools for assessing
the identifiability of multilevel models.

Besides constructing the theory-based latent structural model, building and
assessing a number of comparison models is recommended. In a forward ap-
proach, the researcher begins with a null model that contains no latent structure
and adds new effects one by one, proceeding from the within level to the be-
tween level. The backward approach begins with specifying the two-level model
of interest and constraining any non-significant paths or loadings one by one.
(Snijders & Bosker 1999). The specification procedure described in section 4.2
is a combination of these two approaches.

After a model is estimated, its overall fit needs a thorough assessing. The
means for model fit assessment which are available for MSEM with the DWLS
estimator are presented in section 4.3. If the model fits adequately, the focus
may shift to the parameter estimates: whether they support the hypotheses,
whether they are reasonable and whether their standard errors are relatively
small. An estimator divided by its standard error is standard normally dis-
tributed, thus, its significance and reliability are easy to assess (Bollen 1989).

Sometimes an estimated model proposes impossible values for the parame-
ters, such as a negative variance or a correlation greater than 1. Encountering
this type of incidence, the model specification needs careful re-examining. If
no misspecification is found and the disturbed value is relatively close to an
acceptable value, it may be restricted. For example, a variance estimate of -0.01
may be constrained to 0. An anomaly might be a result from small variation
within the sample due to a small sample size, or for some other reason. (Bollen
1989).
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4.1 Identification

A structural equation model contains both known and unknown parameters.
Each parameter needs to be identified. Identification in SEM refers to the ability
to express a parameter in terms of the known elements in the model. The
parameters which are known to be identified include the elements of Σ, that is,
the sample variances and covariances. Since multilevel identification methods
barely exist, the denotations and findings in this section are limited to the
guidelines of Bollen (1989).

The unknown parameters ofB, Γ, Φ and Ψ are gathered in θ. If an unknown
parameter in θ can be written as a function of the elements in Σ, the parameter
is identified. If all unknown parameters are identified, the model is identified.
Thus, the problem of identification derives from the initial hypothesis Σ =
Σ(θ). Another definition of identification requires that the equation Σ(θ1) =
Σ(θ2) holds if and only if θ1 = θ2.

More often than not, the model needs some constraints to achieve iden-
tification. By constraints one usually means setting two or more parameters
equal or determining some parameters fixed. For example, it is quite common
to restrict the covariance of two variables to 0 if their relation is not relevant. If
no universal scale for a latent variable exists, as is often the case with abstract
constructs in social sciences, one of its factor loadings λij can be restricted to
1. This way the fixed indicator becomes equal to the latent variable and the
other loadings will be compared on the same scale.

There are two types of identification, global and local. Global identifica-
tion refers to the above-mentioned description. Local identification implies the
empirical means of examining identification, and it does not exclude the pos-
sibility that the parameters in θ are not unique. Thus, local identification is
easier to prove than global, but it lacks in power. A number of rules to sim-
plify the global identification process have been developed for SEM but none
for MSEM. In MSEM, the researchers still rely heavily on local identification.
The two identification methods presented next define the global identification
of SEM but can be applied to multilevel models as well.

Algebraic solution means manually solving the equation Σ = Σ(θ). It is
a comprehensive identification rule that functions for simple models with few
coefficients and variables. If all the unknown parameters can be written as a
function of the known ones, the model is identified. A major drawback of the
algebraic solution is that when the model is complex, the method becomes very
complicated and inefficient.

The t-rule is a necessary rule but not a sufficient rule of identification. It
means that if the condition is not met, the model is definitely not identified,
while fulfilling the rule does not yet guarantee identification. Let t denote the
number of free and unconstrained parameters in θ and by p + q the number of
observed variables in x and y. This leads to ( 1

2 )(p + q)(p + q +1) equations to
be solved in Σ = Σ(θ). If the number of unknown parameters is greater than
the number of equations it needs to be solved from, it is clear that the model
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is not identified. Thus, the t-rule is given by

t ≤
(1

2

)
(p+ q) (p+ q + 1) .

In multilevel models, the t-rule needs some modification before application.
The number of free parameters includes the thresholds that are estimated from
univariate distributions. As a consequence, their count needs to be subtracted
from t. A challenge in multilevel models is that the models on different levels
might not be specified in the same way, and identification on each level should
be ensured.

4.2 Comparison Models

Even though the main interest of a researcher often lies in the fit of the struc-
tural model, it is recommended to test the fits of selected comparison models
first. Assessing alternative models may widen the understanding of the vari-
ation in the data and also alleviate tracking potential misspecifications. In
single-level SEM with ML estimation, information criteria and a χ2-difference
test provide aid in testing whether the model has improved after the changes
in the specification (Dilalla 2000). Neither is available for the comparison of
nested multilevel structural equation models, which further complicates model
specification.

There are two types of general comparison models. They are both relevant
in the model fit assessment described in the next section. A baseline or restricted
model contains no paths between the variables, and the only free parameters
that are tested are the thresholds for the categorical variables and the residual
variances. A saturated or unrestricted model, on the contrary, estimates all
possible connections between the variables and it is a perfect reproduction
of the sample data. All models containing the same group of variables are
nested within the unrestricted model. The models which researchers estimate
are often specified somewhere between the baseline and the saturated model.
Consequently, it is valid to evaluate the fits of the target model and the two
comparison models.

Instead of starting the specification from either the null model or the sat-
urated model and strictly following the principles of forward or backward ap-
proach, Hox (2002) uses in his example a combination approach. It involves
four main steps. After each step, a new between model is specified and the
overall fit is evaluated. The within model is the structural model to be tested,
and it remains unchanged.

First, a null model is specified. The model ignores the between level alto-
gether. If the model holds, there might not be any between level structure in
the data and proceeding with the multilevel model building may be unneces-
sary. If the model is insufficient in any way, one continues to the second step.
The step involves specifying a between model with nothing else estimated but
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the univariate variances. Hox (2002) calls this an independence model. If the
independence model holds, there is considerable variation on the between level,
but no substantially interesting structural model. The model is useful in the
sense that it produces unbiased estimates of the individual model parameters.

In the third step, the researcher specifies a saturated model on the be-
tween level. The saturated model produces the best possible fit given the within
model. Extending from Hox’s approach, Ruy & West (2009) propose fitting also
a saturated model on the within level to locate where a potential lack of fit
might occur. Fourth and finally, one tests the structural model initially con-
structed. It may have the same specifications as the within level model, but
also some separate components. One may test a few parallel between models. If
two or more models have an equal fit, it is recommended to choose the simplest
model that fits well for further interpretation.

4.3 Model Assessment

There are several ways for assessing the overall fit of a constructed model. Most
are based on the minimum value of the fit function F . Methods to assess the
models are divided into absolute, relative and residual-based indices. The first
two compare the model to another, while the third measures the differences
between the sample and the model estimated values. All the indices presented
in this section are applicable to multilevel WLS estimation with non-normal
observed variables. If the ML estimator is used instead, under multivariate nor-
mal conditions, the related likelihood function provides a variety of additional
options for assessing the model fit.

Many of the model assessment properties are based on the minimum of the
estimation function F (S, Σ̂), denoted by F̂ . With WLS fit function,

(n− 1)F̂ ∼appr χ2
d, d = p(p+ 1)/2 + p− q

where p is the number of observed variables and q is the number of free pa-
rameters in θ (Yu 2002). Even though the χ2 test is the most common model
evaluation method in structural equation models, it has many drawbacks. To
name but a few, it is extremely sensitive to sample size and kurtosis (Bollen
1989).

Diagonal weighted least squares (DWLS) does not share all the qualities of
WLS, thus, the asymptotic distribution of F̂ is not a chi-square but a weighted
sum of chi-square distributions with one degree of freedom (Asparouhov &
Muthén 2010). As a result, the fit indices which are based on the asymptotic
properties of the chi-square distribution require modification in order to be
used and interpreted similarly to the WLS case.

The fit measures presented next are mainly indices of model fit, rather
than actual statistical tests. Their cutoff criterion and power to detect model
misspecifications vary between different types of models (Yu 2002). The cutoff
values introduced in this section are mainly suggestive as MSEM models have
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been studied little in general (Boulton 2011), and even less with the relatively
recent DWLS estimation technique.

Absolute fit indices Absolute fit indices assess the overall model fit in terms
of residuals, or compare the target model and the saturated model. The two
examined in this thesis, the χ2 test of the model fit and the root mean-square
error of approximation (RMSEA), are based on sample discrepancy, that is,
the difference between the unrestricted model and the estimated model.

To construct an equivalent of the ML- or WLS-based chi-square test to the
case of DWLS estimation, F̂ needs to be modified. First, let D denote the
difference in the number of parameters between the two models. Asparouhov &
Muthén (2010) have proposed a new second order correction statistic F̂ ∗ which
is chi-square distributed with D degrees of freedom, defined as

F̂ ∗ = F̂

√
D

Tr(M2) +D −

√√√√DTr(M)2

Tr(M2)

where M is a certain matrix defined by Satorra & Bentler (2001).
The RMSEA ranges from 0 to infinity, and it indicates the badness of fit.

The higher the value, the larger the discrepancy. The RMSEA was introduced
by Browne & Cudeck (1992) as

(4.1) RMSEA =

√√√√Max

[(
F̂ ∗

D
− 1
n

)
, 0
]

=

√√√√Max

[(
χ2

Dn
− 1
n

)
, 0
]
.

When the outcome variables are categorical, a function of sample variances
replaces the degrees of freedom (D) in 4.1 (Muthén 1998-2004). Values of the
RMSEA close to 0 indicate a better fit. Two generally accepted thresholds
are 0.08 for sufficient and 0.05 for good models (Browne & Cudeck 1992; Hu &
Bentler 1999). The RMSEA is sensitive to the number of estimated parameters.

Relative fit indices The relative or comparative fit indices compare the
estimated model (H0) to the baseline or restricted model (HB) and are some-
times referred to as indicators of goodness-of-fit. They measure how much of
the information which is lost by fitting the restricted model is recovered by
estimating the target model. (Boulton 2011).

Introduced by Bentler (1990), the comparative fit index (CFI) is defined as

(4.2) CFI = 1−
Max(χ2

H0 −DH0 , 0)
Max(χ2

H0 −DH0 , χ
2
HB
−DHB

, 0) .

The restricted model is nested within the estimated model. Thus, it is further
from the optimal fit and the fraction in 4.2 is always less than 1. Hence, the
range of the CFI is from 0 to 1 with higher values indicating a better fit.
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The Tucker-Lewis index (TLI), named after its developers Tucker & Lewis
(1973), is calculated by the following formula:

TLI =
χ2

HB

DHB

−
χ2

H0
DH0

χ2
HB

DHB

− 1

The TLI and the CFI have the same range, and a recommended cut-off value of
0.95. A value less than 0.90 is considered unacceptable in both cases (Muthén
1998-2004; Hu & Bentler 1999; Yu 2002).

Residual-based indices Instead of comparing model fit, the residual-based
indices measure the average differences between the sample (sjk) and the esti-
mated (σ̂jk) variances and covariances of the p observed variables in the model.
The total number of covariances and variances is p(p+ 1)/2, denoted by e. The
main developers of the following two indices presented next have been Muthén
and Muthén (1998-2010).

The standardised root mean square residual (SRMR) is computed for each
level separately, and it is defined for categorical outcomes as

(4.3) SRMR =
√√√√∑

j

∑
k≤j

(sjk − σ̂jk)2

e
.

Hu & Bentler (1999) suggest a cut-off value of 0.08 for the SRMR. This
index has been found sensitive to models with misspecification on factor covari-
ances (Yu 2002). A related measure, the weighted root mean square residual
(WRMR), weights the numerator in 4.3 with the estimated variances of the
sample statistics vector. In the case of categorical variables, the WRMR takes
the following form

WRMR =

√
2nF̂ ∗
e

.

In her dissertation,Yu (2002) proposed a threshold of 1.0 for small samples
(n=100) and 0.95 for larger samples (n ≥ 250). The performance of the WRMR
was found to depend on the normality of the observed variables and the sample
size.

Fit indices to evaluate multilevel SEM are understudied. It is not given that
the same statistical tests and goodness-of-fit indices which apply to single-level
SEM are transferable to multilevel models. One MSEM simulation study with
an ML estimator was conducted by Boulton (2011). His thesis concludes that,
in many cases, a low ICC value indicates that the use of MSEM is questionable.
He found that as the ICC increases, most tests (the χ2 test, the RMSEA, the
CFI, the TLI) become more sensitive to track misspecification on the between
level of the model. The overall sample size increase was found to have the same
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effect, as well as the average cluster size. Thus, the results from larger samples
with homogenous clusters are more reliable than those from smaller samples
with heterogenous groups.

Ruy & West (2009) introduced level-specific fit indices for MSEM to assess
if a lack of fit in the model is due to discrepancy on solely one level of the
model. These measures are based on the χ2-statistics of ML estimation and,
consequently, cannot be applied to the introduced WLSMV method. In their
study, Ruy & West (2009) conclude that the group level lack of fit remains
often undetected when evaluating model fit on both levels in parallel. In this
thesis, in the absence of a comprehensive set of level-specific fit indices, the
emphasis is on the evaluation of the comparison models described in section
4.3.
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5 Defining Poverty

The concept of poverty is more complicated than insufficient monetary income.
Poverty is a complex, multi-dimensional phenomenon: gendered, dynamic, in-
stitutionally embedded, and also location specific. Poverty is often defined as
’the lack of what is necessary for material well-being’, particularly regarding
food, but also housing, land and other assets. Employment and psychological
well-being can also be seen as dimensions of poverty. (Narayan, Patel, Schafft,
Rademacher & Koch-Schulte 1999).

The need for measures capturing different aspects of welfare has been ad-
dressed in the development field (for example, Bourguignon & Chakravarty
2003; Ravallion 1996; World Bank 2001). One extensive framework which de-
scribes the nature of poverty more thoroughly than the strictly income based
approach is the asset-based definition of livelihoods (Liverpool-Tasie & Winter-
Nelson 2011; Carter & May 1999; UNDP 2004). It categorises the assets that
define people’s livelihoods into natural, social, financial, human and physical
capital. The approach is very holistic, and, in practice, the different types of
capitals are very difficult to quantify into just one or two indicators. When
examining livelihoods based on these criteria, it is necessary to restrict the
analysis to fewer aspects of the approach.

Assets and their relations are always local. Thus, site-specific research is
needed in order to understand the nature of the problem in a certain time
and a place (Mtapuri 2011). A major share of the research related to poverty
is located in rural Africa. In South-East Asia, the livelihood issues have been
studied mainly on meso (provincial or district) or macro level (Dasgupta et al.
2005; World Bank 2006). One problem encountered when examining poverty
at higher levels is that the variation within the units is often greater than the
variance between them, as governmental units such as provinces often consist of
very different types of villages and households (World Bank 2006). World Bank
(2006) also states that most relations between the dimensions of livelihoods
should be analysed at the household level whenever possible. The community
or village level is recommended when looking at the impacts of certain services
that are part of the infrastructure accessible to the households.

The human development index (HDI) has been one attempt to capture the
different dimensions of poverty in a single index. The HDI is a combination
of national level aggregated indices on health, education and living standards.
Health and education represent the human capital. The concept of living stan-
dards was designed to measure physical capital even though its indicator, gross
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national income, is financial. (UNDP 2010). The HDI approach is aimed for in-
ternational comparisons, and it does not enable exploring poverty experienced
by individuals nor measuring inequalities within one country.

At the 20th anniversary edition of the Human Development Report in 2010,
the publishing authority UNDP released international comparisons based on a
new index, the multidimensional poverty index (MPI). Its aim was to address
the weaknesses of the HDI while retaining its advantages. The MPI is based
on the same three dimensions as the HDI but it is measured at the household
level, and, thus, allows comparisons in any higher regional level. The indicator
of living conditions is not based on income but the assets a household possesses.

In this chapter, I present how two-level structural equation modeling, the
statistical method described in the three earlier chapters, can encompass the
same dimensions of poverty as the MPI while featuring further relevant aspects
which the MPI disregards. A national household survey from one of the poorest
countries in the world, Lao PDR, is used as an example. The survey is referred
to as the Finland Futures Research Centre (FFRC) survey from this on.

Section 5.1 presents the method behind the MPI in more detail with some
results specific to Laos. After this, in section 5.2, I compare the indicators that
were used to calculate the official MPI in Laos to the indicators available in
the FFRC household survey. The comprehensive structural model is formed in
the final section 5.3.

5.1 Multidimensional Poverty Index

A recent attempt to capture the dimensions of the asset-based definition of
poverty in an applicable way has been the MPI, developed by Alkire & Foster
(2007). The MPI includes three equally-weighted dimensions: health, education
and living conditions. The dimensions are measured by ten indicators which
have been chosen based on participatory exercises among the poor and data
availability. Most of the indicators are linked to the Millenium Development
Goals (MDGs), and, thus, are supported by international consensus. (Alkire &
Santos 2010a.)

The method behind the calculation of the MPI is flexible and it can be ap-
plied to other subjects and levels. The method involves choosing the dimensions
and their indicators, assigning weights to the indicators and determining cutoffs
which categorise the observations. Each indicator is usually dichotomous, and
their weighted sum is calculated for each observation. If the sum exceeds the
selected cutoff, the unit is considered poor, or other distinct kind. The results
are aggregated into higher level to receive an estimate of the occurrence of the
incidence and the average intensity of the phenomenon. In the MPI, each di-
mension and indicator within a dimension has an equal weight but the number
of indicators in a dimension varies. (Alkire & Foster 2007).

The MPI results for 104 developing countries were released in 2010 by
UNDP. In the report, the MPI is presented as an advanced poverty measure,
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to replace the international comparisons based on the HDI. The dimensions
of poverty are the same in both but the observation level is different. In the
MPI, it is essential to look at individuals or households and the data within a
country needs to be from the same source, while the HDI consists of a set of
aggregated indicators on national level. The MPI is aimed to explore inequali-
ties also within regions and, indeed, it has revealed a large variation in poverty
within countries. (Alkire & Santos 2010a).

A household deprived in terms of one third of the weighted indicators is
identified as poor (Alkire 2011). In Laos, 47 % of the households are considered
poor with this method. According to the traditional income-based poverty line
of $1.25 per day per person, 44 % are poor. The data in the study is part of
the third round of international multiple indicator cluster surveys (MICS) from
2006. The three dimensions contributed to poverty in Laos somewhat equally:
living standards 39 %, education 33 % and health 28%. In the developing
countries, it is common that living conditions contribute the most. (Alkire &
Santos 2010b.)

The Alkire-Foster approach bases on simple mathematics. In the analysis
of this thesis, the perspective is different. Instead of forcing a cut-off and deter-
mining some households poor and others non-poor, MSEM is used to explore
the variation of the dimensions of poverty. The weights are not assigned before-
hand but estimated by the modeling technique. The relation between the MPI
and monetary indicators is explored, as it has been appointed one of the key
areas for future research by UNDP (2010). Other factors related to the topic
are also included in the MSEM model. These are all considered relevant in the
literature but their inclusion is not feasible in the MPI framework.

5.2 Indicators of MPI

The multidimensional poverty index is based on ten indicators of three dimen-
sions. Similarly, ten indicators for the same dimensions were chosen for the
factor structure of the MSEM model to be constructed in this thesis. In this
section, these indicators are described in detail by their dimensions: health,
education and living conditions. Appendix C summarises the comparison of
the indicators in the two datasets. Table 5.1 provides the distributions of each
indicator in the FFRC survey. Unfortunately, comparison data from MICS3
were not available.

Even though, in many cases, the indicators are not equivalent, they repre-
sent the same phenomena. The MPI was not designed as an exhaustive method
but a flexible one. In fact, although the MPI indicators were mainly chosen
based on data availability, as many as 40 % of the countries lacked at least one
indicator. (Alkire & Santos 2010b.)

All the surveys from which the MPI was calculated are multistage stratified
designs (Alkire & Santos 2010b). The data sample applied in this thesis was
designed by the multistage probability proportional to size clustering method,
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Table 5.1. Poverty indicators in the FFRC household survey (n=1564)

Dimension FFRC Survey (2011) Distribution (%)

Health

Frequency of having fish, meat
or eggs

Rarely 3.4
1-2 days a week 21.1

Several days a week 46.6
Daily 28.9

Number of persistent health
problems

Three or more 0.3
Two 1.0
One 7.4
None 91.4

Education

Highest school level household
head has graduated from

None 26.2
Primary School 46.0

Secondary school 24.4
Higher 3.5

How many members can read or
write

No one 2.7
At least two cannot 10.2

One cannot 27.4
All 59.7

Living
Conditions

No electrical lighting 16.6
Access to latrine sanitation become worse in the past
five years

17.8

House not completely made of permanent materials 25.8
Wood as the main cooking fuel 80.2
No car and no more than one of the following: bicycle,
motorcycle, radio, fridge, telephone, television

24.9

stratified by region and village type. The capital of the country was excluded
from the sample, as the main interest of the study was on rural poverty.

Health The most difficult dimension to measure proved to be health (Alkire
& Santos 2010b). The MPI uses two indicators: undernourishment and child
mortality. Definitions of undernourishment vary between surveys and countries.
Child mortality has been particularly problematic, and it is missing altogether
from the Laotian data 2006. All of the few missing responses in the dataset are
related to undernourishment.

On the FFRC data, the households were asked how often they eat protein-
containing food such as fish, meat or eggs. The replies were assumed to corre-
spond to undernourishment. The second health-related indicator was the num-
ber of persistent health problems the household members had suffered from.
Overall, 91 % claimed no one in their household had had any persistent health
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problems. Although the figure sounds underestimated, it is in line with the re-
sults from the latest social and economic indicator survey (LECS) in 2007-2008
by the Government of Laos (2009). In this survey, 10 % of the respondents
reported having had temporary health problems in the past four weeks. Only
2.3 % had suffered from long term illness or a disability.

Education In the MPI, education is measured by two indices. One criterion
is that no one in the household has completed five years of schooling, and the
other requires that at least one school-age child is not enrolled in school. These
criteria can be criticised for not measuring the quality of education nor the
level of knowledge attained (Alkire & Santos 2010b).

In the FFRC survey, the first education measure was the highest school level
the household head had graduated from. Household headship is a recognised
role within a family, and it is often assigned to a male. Considering that the
household head is likely to be the most educated member in a household and
that the completion of primary school requires five years of education, the first
education indicators are close to equivalent.

Second question related to education was if the household members can
read and write. This presumably indicates the knowledge gained by education
which neither of the MPI indicators managed to capture. The question was
asked separately of the household head, his or her spouse and others aged 15
years or more.

Living Conditions On total, there are six MPI indicators of living condi-
tions. The first three are directly based on the MDG’s and the latter three have
strong grounds in the development literature (Alkire & Santos 2010b).

The first living condition indicator is having access to clean drinking water.
In the FFRC survey, access to a number of different sources of drinking water
was investigated for wet and dry season separately, and the following were
considered safe: shared or public well with pump, private well, bottled pure
drinking water, tap water and gravity flow system. The household had to have
access to at least one of these sources on both seasons to satisfy the criteria.

The second indicator, improved sanitation, was slightly problematic as the
survey did not include a question on the actual condition of sanitation. Instead,
the households were asked if the access to latrine sanitation had improved,
remained the same or become worse in the past five years. The households
were classified in two: overall worsened access and improved or not changed
access.

Wood and charcoal were considered ’dirty’ cooking fuels in the MPI. Their
usage was classified as fulfilling one of the indicators of living conditions. In the
FFRC data, 99.6 % of the households said to use either of these as the primary
source of energy for cooking. Thus, the indicator would not have provided any
differences between the households. Fuel wood is often burned as such and it is
considered less efficient in terms of energy usage. Burning wood indoors is also
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related to respiratory health problems. Since 80 % of the Laotian households
use wood as their primary cooking fuel, this was selected as an indicator of
using dirty cooking fuel.

Electricity was seen as one of the keys in terms of living conditions (Alkire
& Santos 2010b). In the FFRC survey, electrification was defined on the village
level. Consequently, electrification contained no within variation essential in
multilevel modeling. Some households, although outside the reach of the na-
tional electricity grids, still had access to minor sources of electricity such as
local small-scale grids and battery lights. As electrical lighting can be seen as
one of the primary advantages of electrification (Alkire & Santos 2010b), the
electricity indicator was replaced with the use of an electric light bulb in this
study.

Quality of housing bases on the floor material in the MPI. The FFRC data
were more extensive: wall and roof materials were also recorded. 16 % of the
households lived in a house with at least one of these elements made of so called
soft or temporary materials (for example, thatch, bamboo and leaves). This was
chosen as a more comprehensive indicator than merely the floor material.

Finally, one indicator was formed on the basis of a number of assets, each
of them having a wide surrounding literature (Alkire & Santos 2010b). The
condition was satisfied if the household did not own a car and possessed at
most one of the following: radio, television, telephone, bicycle, motorbike and
refrigerator. It was possible to replicate the condition with the FFRC data
where 25 % of the households did not own more than one of the listed assets.

5.3 Structural Model of Poverty in Laos

After defining the poverty indicators, the structural model to be tested can be
formed. In this section, I validate the further parts included in the model. The
aim of the study is to explore the relation between multidimensional poverty
and monetary income on household and village levels. UNDP (2010) defines this
relation as one of the most important future research focuses. The preliminary
analysis by Alkire & Santos (2010b) suggests that the MPI captures a distinct
aspect of poverty that slightly overlaps with income. However, in most countries
the comparison has been conducted on an aggregated level because of lack of
available household data from one source.

I begin with the treatment of the poverty indicators (ηw1ij and ηb1j loading
on λwp1 and λbp1, respectively). The indicators and their relations were not
the main interest of this study. A second-order factor construct, with poverty
in the second order and three dimensions measured by two or six indices in
the first order proved computationally demanding and difficult to interpret.
The overall aim was to focus on the second order construct, multidimensional
poverty. Therefore, the second-order indicators were parceled into one variable
measuring each dimension (see figure 5.1). The distributions of these parceled
indicators are provided in appendix D.
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Besides multidimensional poverty, the second fundamental poverty indica-
tor relates to financial issues. One can either measure the direct monetary
income of a household, or its expenditure, which reflects consumption. Meyer
& Sullivan (2003) argue that expenditure is more preferable than income be-
cause consumption measures material welfare more directly. They found that
consumption indicates low material well-being better, especially for those with
few resources. The Laotian households can be perceived as such. The World
Bank (2001) considers expenditure estimates not only more reliable than cur-
rent income in practice but also better in capturing long-run welfare levels.
Hence, expenditure was chosen over income as the indicator of monetary re-
sources.

In the FFRC survey, the expenditure was not asked as the net expenditure
but in ordinal categories. In the model, it could have been specified as directly
measured or as a single indicator latent factor (ηw2ij, ηb2j) with 0 variance on
the latent part (ψw22=0, ψb22=0) and the loading fixed at 1 (λw12=1, λb12=1).
In estimation the two options are equivalent (section 2.2), and the latter was
chosen for convenience.

The use of a single indicator restricts the available relationship types that
can be modeled. The fewer indicators per latent factor, the more challenging
it is to maintain identifiability. In the model studied in this thesis, the only
attainable direct relation between multidimensional poverty and expenditure
is a path from the former to the latter (βw21, βb21).

Expenditure was measured as the total of the household. The net expendi-
ture per household member is not calculable from the ordinary scale. Therefore,
household size was added on the individual level as a variable explaining ex-
penditure (xw1ij, the effect on expenditure being γw21). One of the MPI’s two
developers, Alkire (2011), states that one of the main weaknesses of the MPI
method is its ignorance of household size. In some aspects, smaller households
have a greater probability of being deprived. Alkire (2011) concludes that the
overall effect of household size is not clear. Although the measures of multidi-
mensional poverty in the structural model described here should not have bias
due to household size, the path between the two (γw11) was tested in one of the
comparison models.

Access to public services is widely agreed an important non-market good
relevant to welfare (Ravallion 2011). Consequently, the number of services in
a village was chosen as an explanatory variable (xb1j) on the between level
for both expenditure (γb21) and multidimensional poverty (γb11). The services
cover most aspects of the asset-based theory of livelihoods briefly described
in the beginning of this chapter: primary school, health clinic, electricity grid,
transportation services and pagoda, to name but a few. Even though the ser-
vices are not categorised in this model but treated as equally important, the
most fundamental ones need to precede the less important. For example, a
two-season road needs to be built before a petrol station can be constructed.
Thus, the number of services in the village is assumed to indicate the level of
infrastructure reasonably well.

38



Poverty

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Expenditure

Household size

Expenditure

Health Education Living
conditions within

between
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Figure 5.1. The structural and measurement model for assessing
poverty in Lao PDR. The main focus is on the relationships represented
by the dashed arrows.

Finally, a word on the two-level approach. The World Bank (2006) recom-
mends assessing poverty on the household level whenever possible. However,
when looking at the impacts of certain services which are part of the infras-
tructure accessible to the households, the community or village level is advised.
These suggestions are consistent with the model specified in this section.

Alkire & Santos (2010b) also consider groups keys in analysing the causes of
multidimensional poverty. Their method for calculating the MPI allows study-
ing group differences. Two-level SEM has, nevertheless, a notable advantage.
The relations on the village and household levels can be studied simultane-
ously while separating the cluster and the individual effects. With MSEM, it is
possible to compare the dependencies determined by the community and the
dependencies the households themselves can influence. The nature of the rela-
tionships between the two poverty definitions is examined in the next chapter.
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6 Results

Multilevel structural equation modeling, alike regular single-level SEM, is an
extremely theory-orientated method. Models can be specified in a number of
ways, and the variables can be modified, parceled or discarded altogether. With
the new WLSMV technique presented, MSEM has become independent of one
of its traditional assumptions, the normality of the observed variables. The
methods becoming more and more flexible in different ways, it is increasingly
important to have a clear guideline to follow when conducting the analysis.
Otherwise the number of options may become overwhelming.

The basis for the specification of the structural model was presented and
justified in the previous chapter 5. Now I present the results of the model
building with the related background examinations, as introduced in chapter
4. The statistical theory behind the method was described in chapters 2 and 3.
Thus, this chapter, presenting the study results, is founded on the contents of
the previous chapters.

The data used on the analysis is described in section 6.1. The sample design
and the considerations related to its hierarchical structure are examined. Sec-
tion 6.2 provides an overview of the model specification process. Compared to
the procedure described in chapter 4, the specification involves two additional
saturated models for finding an optimal fit on both levels separately. The final
model selected for a more detailed inspection is described in section 6.3, and
its properties are discussed in the final section 6.4.

To date, there are no rules or methods for ensuring the identification of
multilevel models. Identification is an assumption that enables estimating and
interpreting the model but it does not provide any results in itself. In the lack
of means for proving identifiability, a trivial example is presented in appendix
E. The parameters on the between level are proven identified by solving them
algebraically. A between level model with three paths was chosen as an ex-
ample because it contains more parameters than the within level model by
default when categorical variables are modeled. If the higher level construct is
identified, the lower level model with more restrictions is also identified.

The observed covariance and correlation matrices are presented in tables 6.1
and 6.2. Like identification, the observed covariance structure is not a result as
such even though it is the foundation of the method. The sample covariance
(or correlation) matrix is what the structural model aims to replicate. The
fit indices are generally based on the differences between the sample and the
model estimated covariances.

40



Table 6.1. Sample within covariance/correlation matrix (n=1564). On
the within level, the variances are scaled to 1 by default when the ob-
served variables are ordinal.

Health Education Living Conditions Expenditure
Health 1.00 0.12 0.35 −0.21
Education 0.12 1.00 0.21 −0.17
Living conditions 0.35 0.21 1.00 −0.25
Expenditure −0.21 −0.17 −0.25 1.00

By examining the covariance matrices, one can see that the observed vari-
ables have stronger dependencies on the between level (table 6.2) compared to
the within level (table 6.1). Unfortunately, the significances of the correlations
are not available. More profound inference is, therefore, provided as the final
structural model is examined.

Table 6.2. Sample between covariance/correlation matrix (n=123). Be-
low the diagonal: covariances, on the diagonal: variances, above the di-
agonal: correlations.

Health Education Living Conditions Expenditure
Health 0.70 0.85 0.65 −0.55
Education 0.42 0.35 0.78 −0.75
Living conditions 0.67 0.57 1.53 −0.72
Expenditure −0.39 −0.37 −0.75 0.71

6.1 Sample

The sample of the Laos household data was designed by a multi-stage cluster-
ing method, with further stratification by region and village type. A number
of households proportional to the village population were interviewed in 123
villages. In each village, from 4 to 18 (on average, 13) randomly selected house-
holds participated. There was also a separate questionnaire designed for the
village head to obtain information on the village characteristics. The relevant
parts of the household and the village head surveys were combined for the anal-
ysis of this thesis. Due to mismatches on the village identification variable, the
original sample size of 1602 reduced to 1564 households.

Table 6.3 summarises the multilevel characteristics in the sample, as de-
scribed in section 3.1. The intra-class correlations of the observed and parceled
variables are all fairly high, ranging from 0.26 to 0.61. As a consequence, the
design effects of each variable are also rather large (4.1 - 8.1), which means that
the estimates have an increased chance of false significant results. However, the
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risk can be considered minimal on the basis of the effective sample sizes. They
range between 193 and 385, and, thus, are many times smaller than the actual
sample size, 1564. Considering the large sample size, an acceptable significance
level was determined to 1 %.

Table 6.3. Charasteristics of the multilevel sample (n=1564,
nclus=12.715)

Variable Intra-class correlation Design effect Effective sample size
Health 0.411 5.81 269
Education 0.261 4.06 385
Living cond. 0.605 8.09 193
Expenditure 0.417 5.89 266

As a conclusion, the clusters in the sample are homogenous, which causes a
threat to the reliability of the results (section 3.1) but, on the other hand, in-
creases the sensitivity of the model fit indices to track misspecification (section
4.3). Large sample size on the lower level is essential in diminishing the large
design effects, as measured by effective sample size. Sample size on the higher
level, 123, substantially exceeds the size of 50 which Maas & Hox (2005) found
to produce accurate and unbiased estimates. These arguments favour interpret-
ing the MSEM results as they are estimated without further manipulation.

6.2 Model Comparison

In this section, the fits of the final model and the comparison models are eval-
uated. The fit index values of each model are summarised in table 6.4. The
model on the individual level consists of expenditure ηw2ij regressing on the
multidimensional poverty factor structure ηw1ij and household size xw1ij, as il-
lustrated in figure 5.1. This is the default within model specification apart from
three exceptions. First, in the second between saturated model (2), the path
from household size to multidimensional poverty (γw11) is estimated. Second
and third, full covariance matrices on the within level are estimated instead of
structural relations in the two within saturated models (5, 6).

Beginning the model building with the null model (1) gave strong grounds
to pursue further. Disregarding the multilevel nature of the data resulted in
a non-positive definite covariance matrix which could not produce parameter
estimates. Apart from the lack of estimates and a highly significant χ2 value,
the remaining fit index values - the RMSEA, the CFI, the TLI and the WRMR
- were excellent. The next specified model was the independence model (2)
with nothing but the univariate variances on the between level. The model was
insufficient in terms of most of the fit indices (the RMSEA was tolerable, 0.073,
and the within SRMR was good, 0.021).
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After excluding the possibility of a complete lack of multilevel structure,
two saturated models on both levels were tested. One level being perfectly
reproduced, misspecification on the other is easier to detect. Furthermore, level-
specific optimal fits are easier to find. First, the saturated models were specified
as suggested by the theory in section 5.3. Second, in the saturated models, one
path was either added or removed. The model with the better one-level fit was
chosen for the final model.

The first between level saturated model (3), constructed for testing the
within level model, had an excellent fit in terms of every fit index examined.
This indicated that there is no significant misspecification on the within level.
The second between saturated model (4) tested the path from household size
to multidimensional poverty (γw11). The fit of the model worsened in terms of
all of the indices apart from the SRMR and the WRMR. The χ2 statistic and
the TLI rejected the model. These values gave no reason to accept the tested
path into the final model.

The first within saturated (5) model was specified on the between level
as in figure 5.1. The multidimensional poverty factor structure ηb1j and ex-
penditure ηb2j regressed on infrastructure xb1j. The relationship between the
latent poverty factors was causal, as expenditure regressed on multidimen-
sional poverty. The model fit was good apart from the TLI being equal to 0.92
which was less than the recommended cut-off 0.95 but exceeded the ultimate
threshold of 0.90. However, the path from infrastructure to expenditure was
not significant (γb21=0.022, s.e.=0.033, p=0.51). This path was removed in the
second within saturated model (6). The model fit improved substantially, and,
consequently, γb21 was restricted to 0 in the final model.

The final model (7) specified causal relationships on both levels. The overall
fit is good, although the rather large value of the χ2 statistic (21.4, df=10,
p=0.018) is close to significant. It provided the only potential cause of a concern
in the fit. The χ2 test is known to reject models with large samples on the
basis of arbitrarily small differences, and researchers often disregard it when
analysing such data (Bollen 1989). The values of the RMSEA, the CFI, the
TLI, both SRMR’s and the WRMR are clearly in the favourable side of their
respective cut-offs.

The parameter estimates in the final model are significant except for the
between level residual variance of education. The parameter value is close to
zero (εb2j=0.009) with a relatively large standard error, resulting in a non-
significant (p=0.81) estimate. Considering the good overall fit of the model,
this issue was not subjected to further investigation nor was the model rejected.

6.3 Final Model

The final model (7), described in the previous section, was selected the best
of the compared models based on existing theory and empirical testing. The
parameter estimates are presented in figure 6.1. In the figure, the variables
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expressed by squares are observed and the variables in ellipses are latent, stan-
dard normally distributed. A filled circle at the end of an arrow indicates that
the variable being pointed to exists on both levels: on the within part, the vari-
able consist of a measured part and a random intercept (cluster mean), and
on the between level, the cluster means are latent variables which are modeled
separately. One-way arrows express either factor indicators or regressed rela-
tionships. Arrows with an unenclosed beginning pointing to a variable indicate
residual variances.

Fixed parameter values are expressed by a star (*). All of the measured in-
dicator variables were ordinal, and by default, their within level residual errors
were fixed at 1 (subsection 3.2.1). Other given restrictions included assigning to
the first indicator of each latent variable the loading of 1, and the constraints re-
lated to the single indicator latent variable expenditure (as explained in section
2.2).

Poverty

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Expenditure

Household size

Expenditure

Health Education Living
conditions within

between

Poverty

Health Education Living
conditions

Expenditure

Infrastructure

Expenditure

0.54 1.52

2.130.91

0.34

0.46

0.48 0.01† 0.64

0.31

0.10

-0.15

1.00*

1.00*

-0.79

0.00*

0.00*

1.00*
1.00*-1.10

1.00* 1.00* 1.00*

1.00*

Figure 6.1. The parameter estimates of the final model. All esti-
mates but one are significant on 99 % confidence level. χ2=21.4 (df=10,
p=0.018), RMSEA=0.027, CFI=0.98, TLI=0.95, SRMR within=0.020
and between=0.062, WRMR=0.55. *constrained †p≥0.01

In large samples, the estimates divided by their standard errors are asymp-
totically normally distributed (Bollen 1989). Known as the Wald’s test, the test
is suitable for parameters which can take any value. Thus, its power is com-
promised when when assessing residual variances, which, naturally, are always
positive.
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Most estimates in the final model were strongly significant with p-values
smaller than 0.001. The three exceptions were the residual variances of multi-
dimensional poverty (ξ̂b1j=0.46 with standard error 0.15 and their ratio 3.03,
p=0.002), living conditions (respectively, ε̂b3j=0.64, 0.25, 2.61 and 0.009) and,
the already mentioned, education (ε̂b2j=0.009, 0.036, 2.24 and 0.81).

Health was assigned a scale variable in the factor structures and its loading
was fixed at 1. Living conditions had the greatest and education the smallest
loading of the three poverty indicators on both levels. On the village level,
education loaded nearly twofold compared to the household level (0.91 and
0.54). Living conditions had also a larger loading on the village level, 2.13
compared to 1.52. The loadings indicate the expected change in the indicator
if the value of the respective latent factor increases by 1.

As assumed, household size had a small but significant effect on house-
hold expenditure. If household size increases by one member, the expenditure
is expected to increase by 0.10. On the between level, infrastructure had an
equally significant but slightly stronger influence on multidimensional poverty.
By adding one new element to the infrastructure of a village, multidimensional
poverty is expected to decrease by 0.15. On the contrary to the initial hypoth-
esis, the path from infrastructure to expenditure proved non-significant.

The regression coefficient from multidimensional poverty to expenditure is
-0.79 on the within level. A negative relation was expected; decreases in the
multiple dimensions of poverty increase monetary consumption. The respec-
tive coefficient on the higher level is almost 40 % greater, -1.10. Although
infrastructure does not influence expenditure directly, it has a positive indirect
effect on expenditure through multidimensional poverty, with the magnitude
of −0.15 ∗ (−1.10) = 0.17.

6.4 Discussion

Multilevel structural equation modeling provided valid and interpretable results
about the nature of poverty in Laos. The final model, in its simplicity, unveiled
features which cannot be examined by other statistical methods. Modeling
dependencies on two levels simultaneously allows separating the effects that
occur on one level alone.

Living conditions had the highest intra-class correlation and the strongest
loadings on multidimensional poverty. If the level of poverty decreases, living
conditions are most strongly affected. The result is consistent with the MPI
study where living conditions contributed the most to the poverty measure.
The ICC of education was the lowest, 0.26, which may have partly caused the
estimated variance of almost 0 on the between level.

Household size proved not to have an impact on multidimensional poverty
in Laos. Household size was added in the model to control for expenditure. The
effect was fairly small but significant. Other assumptions on household charac-
teristics that might impact poverty were not specified in the model. Although
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the results suggest focusing on the community in reducing poverty, this study
does not exclude the possibility that there are other household properties that
advance poverty reduction equally or more effectively.

The services and infrastructure in the village proved an important factor
behind both poverty measures. Multidimensional poverty regresses significantly
on infrastructure and it mediates the effect to expenditure. The indirect effect of
infrastructure on expenditure is, in fact, slightly stronger than its direct effect
on multidimensional poverty. Some of these mediated relations are obvious.
A hospital has a positive impact on health, which may or may not increase
the average expenditure of the households through improved productivity. By
having a local market in the village, the households have an opportunity to
improve their living conditions by exchanging goods, which might, again, lead
to increased expenditure.

Monetary measures assume that the markets for the goods and services
relevant to one’s well being exist, and they ignore the fact that if the service is
provided for free, no monetary assets are needed (Ravallion 1996). This model
was able to consider both of these arguments by including the three dimensions
(infrastructure, expenditure and multidimensional poverty) in the same model.
However, the types of infrastructure were not separated. Combining hospitals,
schools, roads and others into one count variable does not reveal any specific
impact a single service type might have. Some could be extremely effective
while others insignificant.

The main interest of the study was the relationship between financial and
multidimensional measures of poverty. The final model constructed showed that
the relationship is significant on both household and village levels. However,
on the village level it is considerably stronger. Poverty seems to arise from the
surrounding village. Based on the final model, multidimensional poverty can be
reduced most effectively by expanding the selection of services in the village.

Even though the multilevel design presumably did not cause biased or un-
derestimated parameter values (section 6.1), parceling the indicator variables
may have affected the error terms. Comparing the observed and the parceled
distributions (table 5.1, appendix D) one can see that summing the items
smoothed, at least to some extent, the distributions’ skewness and kurtosis.
This may have reduced the errors in the final model, which is typical when
modeling parcels (section 2.2). As the loadings were not the main interest of
the study, the risk was acknowledged and accepted.

Thus far, official information about the overlapping of income-poor and MPI
poor is not available, nor other relevant research that would provide a contrast
for the results of this study. Comparison to the results of the MPI is irrelevant.
The focus in this study was not in classifying the households into poor and
non-poor but to study the nature and relations of the poverty measures.

The statistical theory behind the model estimation was challenging to assim-
ilate. Nevertheless, what was compromised in the efforts of studying the theory,
was gained on the flexibility of applying the method. The model construction
and specification, by using the program Mplus, proved simple and applicable,
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and could be suggested to a researcher less familiar with statistical theories. A
strong understanding about the model specification is, nevertheless, necessary.
Contrary to many other programs developed for SEM, Mplus (version 6) does
not offer a graphical representation of the model, such as, for example, figure
6.1. Another drawback is the fact that variables and their residual variances
are not separated in the syntax but some commands are internally directed to
the residual variances and others to the variable itself.

The initial intention was to explore more than one topic, poverty. Concepts
such as ’energy poverty’ (UNDP 2012) and poverty-environment nexus (see
the World Bank 2006) were closer to the interest of the researcher and the
project that funded the data collection. Lack of an extensive theory covering
these topics and problems with the data led to discarding these ideas. Problems
with the data may have been due to measurement errors: evaluating one’s own
energy usage per fuel and recent environmental changes is more difficult than
evaluating the poverty indicators. The broader, mainly experimental models
seldom converged. Thus, the focus shifted to poverty, which not only had a
stronger theoretical background but also provided valid and interesting results.
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7 Conclusions

The constructed two-level structural equation model explored different dimen-
sions of poverty, how they are related, and how these relations differ on house-
hold and village levels. The final model was valid in terms of the indices assess-
ing model fit. Some results were unexpected, while others confirmed existing
theory.

The main interest was in the relation between monetary assets, measured by
households’ expenditure, and multidimensional poverty, whose indicators were
adapted from the indicators of the multidimensional poverty index (UNDP
2010; Alkire & Santos 2010b). The nature of the relation had to be restricted
to one-way paths from multidimensional poverty to expenditure to ensure sta-
tistical identification. The principal finding was that these two poverty mea-
sures have a significant negative causal relationship on both levels, although
the relation is considerably stronger on the village level.

Household size had a weak positive impact on the household’s expenditure
but no significant influence on multidimensional poverty. Thus, poverty cannot
be expected to diminish by simply reducing household size. A more effective
factor was found on the village level. The number of different types of services
and infrastructure had a significant direct effect on multidimensional poverty,
whereas the effect on expenditure was indirect, mediated by multidimensional
poverty.

As a conclusion, improving the infrastructure of the village influences poverty
effectively. The result is important to take into consideration when planning
and designing development aid projects. Lao PDR is part of the Mekong region,
one of the target cooperation regions of Finnish development policy (Ministry
of Foreign Affairs of Finland 2010). Recognising the influential role of the com-
munity, this study suggests that development aid projects in Laos should be
targeted at villages with a poor level of services. Naturally, other means outside
the scope of this study could prove equally or more effective.

The study was explorative in the sense that (multilevel) structural equa-
tion modeling has been barely used in social sciences. The results encourage
MSEM to be pursued further on similar issues. This framework applied to Laos
only. Conducting similar, possibly slightly modified analyses in other developing
countries could provide an interesting platform for assessing location-specific
characteristics of poverty. The data used in this analysis could also be further
exploited. The sample was clustered in multiple stages enabling three- and
four-level modeling, which could be tested once the software is complete.
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Appendix A

Expectation-Maximisation Algorithm

Let us denote the incomplete data where the unknown parameters θ (∈ Ω)
are estimated from as y, and the complete but unobservable data as z. Their
sample spaces are Sy and Sz, and the relations from Sz to Sy are many-to-one.
The probability function of y is fy(y;θ), and similarly for z. Instead of z, one
observes the incomplete vector y=y(z) that determines Sz(y), a subset of Sz.
Thus, the probability function of y can be written as

(A.1) fy(y;θ) =
∫

Sz(y)

fz(z;θ)dz

The likelihood is estimated in terms of the likelihood function of the com-
plete data, given the observed y. That is, log Lz(θ)|y. The algorithm starts by
assigning some initial values θ(0) for the parameters in θ.

The E-step calculates the expected likelihood in terms of θ(0), and its general
form is

(A.2) Q(θ;θ(k)) = Eθ(k){logLz(θ)|y},

where k = 0, 1, . . . is the count of the iteration process.
In the M-step, one chooses any θ(k+1) which maximises Q(θ;θ(k)) for all θ

∈ Ω:

(A.3) Q(θ(k+1);θ(k)) ≥ Q(θ;θ(k)).

The two steps are repeated until the difference in the likelihoods

(A.4) L(θ(k+1))− L(θ(k)) < c

with c expressing an arbitrarily small number defined beforehand.
(McLachlan & Krishnan 1997)
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Appendix B

Maximum Likelihood EM Algorithm

If the variable follows the normal distribution, the first-order statistics can
be estimated by a zero-dimensional integration (that is, integrating a constant
function) as shown by Raudenbush & Bryk (2002). In the case of obtaining first-
order statistics for categorical variables, the integration is one-dimensional.

In the EM algorithm, the likelihood function of the variable(s) is formed
first. In the first step, some random estimates are given to the univariate and
bivariate estimates. The likelihood is then maximised, and the estimates that
maximise the The observed likelihood is, in this case, denoted as

(B.1) L(ywij,ybj) =
C∏
j=1

∫
φ(ybj)

Nj∏
i=1

(∫
φ(ywij) dywij

)
dybj

where φ is the univariate normal probability function. The integration is con-
ducted numerically by adaptive and non-adaptive quadratures, which are based
on approximating the continuous distribution with a categorical distribution.
The integration interval is divided into R nodes, whose intervals are expressed
as nr. The density of each node is an approximation of the probability that the
latent variable receives the values of the node, expressed in the following way

(B.2)
∫
φ(y) dy ≈

R∑
r=1

φ(nr)∑R
i=1 φ(ni)

.

If adaptive integration is used, the nodes are concentrated in the area where
the posterior distribution of the random effects, ybj, is non-zero. The likelihood
is then approximated as

(B.3) L(ywij,ybj) ≈
C∏
j=1

R∑
r=1

Pr(ybj = nbrj)
Nj∏
i=1

(
S∑
s=1

Pr(ywij = nwsij)
)

where nbrj and nwsij are the integration nodes of the between and within mod-
els. For the EM algorithm, the posterior distribution of ybj is computed as
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pbrj = Pr(ybj = nbrj|∗)(B.4)

=
Pr(ybj = nbrj)

∏Nj

i=1

(∑S
s=1 Pr(ywij = nwsij)

)
∑R
r=1 Pr(ybj = nbrj)

∏Nj

i=1

(∑S
s=1 Pr(ywij = nwsij)

)
and the conditional distribution of ywij as

pwsij|r = Pr(ywij = nwsij|∗, ybj = nbrj)(B.5)

= Pr(ywij = nwrij)∑S
s=1 Pr(ywij = nwsij)

where the log-likelihood to be maximised for the complete data is as follows
(B.6)

R,C∑
r=1,j=1

pbrjlog(Pr(ybj = nbrj)) +
R,S,C,Nj∑

r=1,s=1,j=1,i=1
pbrjpwsij|rlog(Pr(ywij = nwsij)).

Alternatively, methods such as accelerated EM algorith (AEM) can be used in
order to obtain faster convergence. Also other numerical integration methods
are available for approximating B.2.
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Appendix C

Comparison of the indicators in
multidimensional poverty index and
FFRC data

Dimension MPI (2006) FFRC Survey (2011)
Health At least one malnourished

member
Frequency of having fish, meat
or eggs

One or more children has died∗ Number of persistent health
problems

Education No one completed 5 years of
schooling

Highest school level household
head has graduated from

At least one school-age child
not enrolled in school

How many members can read
and write

Living
Conditions

No electricity No electrical lighting
No access to safe drinking wa-
ter

No access to safe drinking wa-
ter

No access to adequate sanita-
tion

Access to latrine sanitation be-
come worse in the past 5 years

House has dirt floor House not completely made of
permanent materials

Dirty cooking fuel (wood, char-
coal)

Wood as the main cooking fuel

No car and no more than one of
the following: bicycle, motor-
cycle, radio, fridge, telephone,
television

No car and no more than one of
the following: bicycle, motor-
cycle, radio, fridge, telephone,
television

∗Missing from the MICS3 data in Laos, 2006
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Appendix D

Distributions of the measured variables
in the MSEM model

Table D.1. Variables in the MSEM model

Variable N Mean Median Std. dev. Variance Min Max
Health 1564 1.09 1 0.89 0.79 0 5
Education 1564 3.49 4 1.35 1.82 0 6
Living conditions 1564 2.00 2 1.47 2.17 0 6
Expenditure 1564 3.36 3 1.22 1.50 1 8
Household size 1564 5.93 6 2.39 5.70 1 22
Infrastructure 123 5.45 5 2.37 5.61 0 12
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Figure D.1. The distributions of the multidimensional poverty indica-
tors
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Figure D.2. The distribution of monthly expenditure by category in
kips
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Figure D.3. The distributions of the variables that exist on a single
level
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Appendix E

Proof of the identifiability of a between
level model using the algebraic solution

In this appendix, the identifiability of the between level model in comparison
model 5 is proved by an algebraic solution. Following the denotations of sub-
section 3.2.1, the model is first written in matrix terms. Subscript i (i=1, 2,
. . . , Nj) denotes individuals, j (j=1, 2, . . . , 123) clusters and p (p=1,2,3,4) the
observed dependent variables. The observed variable that exists only on the
cluster level is xb1j. The structural model is now as follows:

ybj = (y′b1j y′b2j y′b3j y′b4j)

=


νb1
νb2
νb3
νb4

+


1 0
λb21 0
λb31 0

0 1


(
ηb1j
ηb2j

)
+


εb1j
εb2j
εb3j
εb4j



=


νb1
νb2
νb3
νb4

+


1 0
λb21 0
λb31 0

0 1


{(

αb1
αb2

)
+
(

0 0
βb21 0

)(
ηb1j
ηb2j

)
+
(
γb11
γb21

)
xb1j +

(
ξb1j
ξb2j

)}
+


εb1j
εb2j
εb3j
εb4j



=


νb1
νb2
νb3
νb4

+


1 0
λb21 0
λb31 0

0 1


(

αb1 + γb11xb1j + ξb1j
αb2 + βb21ηb1j + γb21xb1j + ξb2j

)
+


εb1j
εb2j
εb3j
εb4j



=


νb1 + αb1 + γb11xb1j + ξb1j + εb1j

νb2 + λb21 (αb1 + γb11xb1j + ξb1j) + εb2j
νb3 + λb31 (αb1 + γb11xb1j + ξb1j) + εb3j

νb4 + αb2 + βb21ηb1j + γb21xb1j + ξb2j + εb4j

 .
The model contains 24 thresholds estimated from the univariate distribu-

tions and ten between level parameters to be solved: λb21, λb31, γb11, γb21, βb21,
var(ξb1j)=ψb11, var(εb1j)=θb11, var(εb2j)=θb22, var(εb3j)=θb33 and var(εb4j)=θb44.
Other parameters in the model are intercepts or restricted (for example, ψb22=0).

There are 1
2 (4+1+1)(4+1)=15 known parameters in the sample covariance

matrix and ten unknown parameters to be solved. Thus, the solutions provided
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next are not unique. Let me begin with defining the sample variances and
covariances. For simplicity, the uncorrelated items are already deleted from the
formulas.

var(yb1j) = γ2
b11var(xb1j) + ψb11 + θb11(E.1)

var(yb2j) = λ2
b21γ

2
b11var(xb1j) + λ2

b21ψb11 + θb22(E.2)
var(yb3j) = λ2

b31γ
2
b11var(xb1j) + λ2

b31ψb11 + θb33(E.3)
var(yb4j) = var(βb21ηb1j + γb21xb1j + εb4j)(E.4)

= β2
b21var(ηb1j) + γ2

b21var(xb1j) + θb44

= β2
b21(γ2

b11var(xb1j) + ψb11) + γ2
b21var(xb1j) + θb44

var(xb1j) = var(xb1j)
cov(yb1j, yb2j) = cov(γb11xb1j + ξb1j, λb21 (γb11xb1j + ξb1j))(E.5)

= λb21γ
2
b11var(xb1j) + λb21ψb11

cov(yb1j, yb3j) = λb31γ
2
b11var(xb1j) + λb31ψb11

cov(yb1j, yb4j) = cov(γb11xb1j + ξb1j, βb21ηb1j + γb21xb1j)(E.6)
= cov(γb11xb1j + ξb1j, βb21(γb11xb1j + ξb1j) + γb21xb1j)
= βb21γ

2
b11var(xb1j) + βb21ψb11 + γb11γb21var(xb1j)

cov(yb2j, yb3j) = λb21λb31γ
2
b11var(xb1j) + λb21λb31ψb11

cov(yb2j, yb4j) = cov(λb21(γb11xb1j + ξb1j), βb21ηb1j + γb21xb1j)(E.7)
= λb21(βb21γ

2
b11var(xb1j) + βb21ψb11 + γb11γb21var(xb1j))

cov(yb3j, yb4j) = λb31(βb21γ
2
b11var(xb1j) + βb21ψb11 + γb11γb21var(xb1j))

cov(xb1j, yb1j) = cov(xb1j, γb11xb1j)(E.8)
= γb11var(xb1j)

cov(xb1j, yb2j) = λb21γb11var(xb1j)(E.9)
cov(xb1j, yb3j) = λb31γb11var(xb1j)(E.10)
cov(xb1j, yb4j) = cov(xb1j, βb21γb11xb1j + γb21xb1j)(E.11)

= βb21γb11var(xb1j) + γb21var(xb1j)

The first coefficient of xb1j and the factor loadings λb21 and λb31 can be solved
directly from E.8 - E.10:

γb11 = cov(xb1j, yb1j)
var(xb1j)

(E.12)

λb21 = cov(xb1j, yb2j)
γb11var(xb1j)

= cov(xb1j, yb2j)
cov(xb1j, yb1j)

(E.13)

λb31 = cov(xb1j, yb3j)
cov(xb1j, yb1j)

.(E.14)

By utilising E.5 and E.12 - E.14, one obtains the variance of the latent residual
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variable:

ψb11 = cov(yb1j, yb2j)
λb21

− γ2
b11var(xb1j)

= cov(yb1j, yb2j)cov(xb1j, yb1j)
cov(xb1j, yb2j)

− [cov(xb1j, yb1j)]2

var(xb1j)
.

The relation between γb21 and βb21 can be solved from E.11:

γb21 = cov(xb1j, yb4j)
var(xb1j)

− βb21γb11.(E.15)

By substituting γb21 in E.6 by the form in E.15 and assuming γb11 and ψb11
known, βb21 can be identified.

cov(yb1j, yb4j) = βb21γ
2
b11var(xb1j) + βb21ψb11

+
(
cov(xb1j, yb4j)
var(xb1j)

− βb21γb11

)
γb11var(xb1j)

⇔ cov(yb1j, yb4j)− cov(xb1j, yb4j)γb11 = βb21(γ2
b11var(xb1j) + ψb11 − γ2

b11var(xb1j))

⇔ βb21 = cov(yb1j, yb4j)− cov(xb1j, yb4j)γb11

ψb11

The second coefficient of xb1j can be solved, for example, from E.7 where the
other parameters have already been identified:

γb21 = cov(yb2j, yb4j)
λb21γb11var(xb1j)

− βb21γ
2
b11var(xb1j)

γb11var(xb1j)
− βb21ψb11

γb11var(xb1j)

= cov(yb2j, yb4j)
λb21γb11var(xb1j)

− βb21γb11 −
βb21ψb11

γb11var(xb1j)

Finally, the only parameters left unsolved are the residual variances of the ybpj’s,
θb11, θb22, θb33 and θb44, which are the only unknowns in E.1 - E.4. Consequently,
they can be identified.
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